WorldWideScience

Sample records for gd crystal structure

  1. Crystal structure and electronic states of Co and Gd ions in a Gd0.4Sr0.6CoO2.85 single crystal

    Science.gov (United States)

    Platunov, M. S.; Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Solovyov, L. A.; Zubavichus, Ya. V.; Veligzhanin, A. A.; Dorovatovskii, P. V.; Vereshchagin, S. N.; Shaykhutdinov, K. A.; Ovchinnikov, S. G.

    2016-02-01

    X-ray diffraction and X-ray absorption near edge structure (XANES) spectra have been measured at the Co K-edge and Gd L 3-edge in GdCoO3 and Gd0.4Sr0.6CoO2.85 cobaltites. The effect of Sr substitution on the crystal structure and electronic and magnetic states of Co3+ ions in a Gd0.4Sr0.6CoO2.85 single crystal has been analyzed. The XANES measurements at the Co K-edge have not showed a noticeable shift of the absorption edge with an increase in the concentration of Sr. This indicates that the effective valence of cobalt does not change. An increase in the intensity of absorption at the Gd L 3-edge is due to an increase in the degree of hybridization of the Gd(5 d) and O(2 p) states. The effect of hole doping on the magnetic properties results in the appearance of the ferromagnetic component and in a significant increase in the magnetic moment.

  2. The new carbodiimide Li_2Gd_2Sr(CN_2)_5 having a crystal structure related to that of Gd_2(CN_2)_3

    International Nuclear Information System (INIS)

    Unverfehrt, Leonid; Stroebele, Markus; Meyer, H. Juergen

    2013-01-01

    The new carbodiimide compounds Li_2RE_2Sr(CN_2)_5 (RE = Sm, Gd, Eu, Tb) were prepared by a straight forward solid state metathesis reaction of REF_3, SrF_2, and Li_2(CN_2) at around 600 C. The crystal structure of Li_2Gd_2Sr(CN_2)_5 was solved based on X-ray single-crystal diffraction data. Corresponding Li_2RE_2Sr(CN_2)_5 compounds were analyzed by isotypic indexing of their powder patterns. The crystal structure of Li_2Gd_2Sr(CN_2)_5 can be well related to that of Gd_2(CN_2)_3, because both structures are based on layered structures composed of close packed layers of [N=C=N]"2"- sticks, alternating with layers of metal ions. The crystal structure of Li_2Gd_2Sr(CN_2)_5 can be considered to contain an ABC layer sequence of [N = C=N]"2"- layers with the interlayer voids being occupied by (three) distinct types of cations. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds

    Science.gov (United States)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.

    2017-12-01

    Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, T   =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

  4. Stabilization of crystal and magnetic structure of Gd2Al1-xInx

    International Nuclear Information System (INIS)

    Niazi, M.; Yazdani, A.

    2006-01-01

    A random mixture of two compounds with different type of crystal structure and magnetic characteristic which can lead to a new phase, is studied to find out the critical point at which both of them stabilized. such an interesting random system can be found by; 1) Gd 2 Al with two different magnetic phase transition on which T c is unstable 2) Gd 2 In which is also shows two magnetic phase transition, but completely different with Gd 2 Al on which T N is unstable. The stabilized point which is consider experimentally by X-Ray diffraction and theoretically by WIEN2K is suggested to be at x=0.3 where it is a good agreement between these two methods.

  5. Self-powdering and nonlinear optical domain structures in ferroelastic β'-Gd2(MoO4)3 crystals formed in glass

    International Nuclear Information System (INIS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-01-01

    Ferroelastic β'-Gd 2 (MoO 4 ) 3 , (GMO), crystals are formed through the crystallization of 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4 ) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic β'-Gd 2 (MoO 4 ) 3 crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.

  6. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex

    Science.gov (United States)

    Coban, Mustafa Burak

    2018-06-01

    A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.

  7. Experimental and theoretical study of pure and doped crystals: Gd2O2S, Gd2O2S:Eu3+ and Gd2O2S:Tb3+

    Science.gov (United States)

    Wang, Fei; Chen, Xiumin; Liu, Dachun; Yang, Bin; Dai, Yongnian

    2012-08-01

    Quantum chemistry and experimental method were used to study on pure and doped Gd2O2S crystals in this paper. The band structure and DOS diagrams of pure and doped Gd2O2S crystals which calculated by using DFT (Density Functional Theory) method were illustrated to explain the luminescent properties of impurities in crystals. The calculations of the crystal structure were finished by using the program of CASTEP (Cambridge Sequential Total Energy Package). The samples showed the characteristic emissions of Tb3+ ions with 5D4-7FJ transitions and Eu3+ ions with 5D0-7FJ transitions which emit pure green luminescence and red luminescence respectively. The experimental excitation spectra of Tb3+ and Eu3+ doped Gd2O2S are in agreement of the DOS diagrams over the explored energy range, which has allowed a better understanding of different luminescence mechanisms of Tb3+ and Eu3+ in Gd2O2S crystals.

  8. Pressure effects on crystal structures and magnetic properties of RCo{sub 5} (R = Y or Gd) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Burzo, E. [Faculty of Physics, Babes-Bolyai University Cluj-Napoca 400084 (Romania); Vlaic, P. [Faculty of Physics, Babes-Bolyai University Cluj-Napoca 400084 Romania and University of Medicine and Pharmacy Iuliu Hatieganu, Physics and Biophysics Department Cluj-Napoca (Romania)

    2013-11-13

    The pressure dependences of crystal structures and magnetic properties of YCo{sub 5} and GdCo{sub 5} compounds are analysed based on band structure calculations. Isomorphic transitions were evidenced for relative volumes v/v{sub 0} = 0.91 and 0.86, for YCo{sub 5} and GdCo{sub 5}, respectively. At the transition, there is a higher decrease of cobalt moments at 3g sites as compared to those located in 2c ones. The induced polarizations on Y4d and Gd5d bands, by short range interactions, are linearly dependent on the magnetizations of cobalt atoms situated in their neighborhood. The isomorphic transitions are analysed in correlations with band structures.

  9. The Gd14Ag51 structure type and its relation to some complex amalgam structures

    International Nuclear Information System (INIS)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin

    2015-01-01

    Highlights: • The Gd 14 Ag 51 structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd 14 Ag 51 shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE 14 Ag 51 structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd 14 Ag 51 structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd 14 Ag 51 ). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE 14 Ag 51 structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd 14 Ag 51 structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd 14 Ag 51 structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd 14 Ag 51 , the parent compound of this structure family

  10. Growth and structural characterization of single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) obtained by the partial melting technique

    Science.gov (United States)

    Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.

    2018-05-01

    In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.

  11. New look at magnetism in single-crystal Gd-Y alloys

    International Nuclear Information System (INIS)

    Ito, T.; Legvold, S.; Beaudry, B.J.

    1981-01-01

    Magnetic susceptibility, electrical resistivity, and specific-heat measurements have been made on a number of polycrystalline and single-crystal samples of Gd-rich Gd-Y alloys. It has been found (i) that samples with more than 30 at. % Y exhibit a helical structure phase; (ii) that samples between 10 and 30 at. % Y exhibit two different Curie-Weiss regimes leading to ''double'' ferromagnetism; and (iii) that samples with less than 10 at. % Y have Gd-like behavior

  12. The Gd{sub 14}Ag{sub 51} structure type and its relation to some complex amalgam structures

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The Gd{sub 14}Ag{sub 51} structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd{sub 14}Ag{sub 51} shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE{sub 14}Ag{sub 51} structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd{sub 14}Ag{sub 51} structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd{sub 14}Ag{sub 51}). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE{sub 14}Ag{sub 51} structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd{sub 14}Ag{sub 51} structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd{sub 14}Ag{sub 51} structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd{sub 14}Ag{sub 51}, the parent compound of this structure family.

  13. Peculiar features of thermal emission of GdB4 and GdB6 single crystals

    International Nuclear Information System (INIS)

    Ostrovskij, E.K.; Taran, A.A.; Kovalev, A.V.; Tkachenko, V.F.; Dudnik, E.M.; Matvienko, A.A.

    1990-01-01

    Thermoemission parameters of single crystals (410) GdB 4 and (110) GdB 6 are studied. Work function is calculated by total current. It is stated that work function of GdB 6 within temperature range of 1500-1880 K after 80 h of annealing varies from 2.95 to 3.10 eV practically with the same temperature coefficient as GdB 4 , i.e. 4.1x10 -4 eV/K. It is shown that single crystal gadolinium hexaboride during the high-temperature annealing in the surface region (∼70 mm) is transformed into gadolinium tetraboride. Influence of free air has been first studied on the GdB 4 emissivity which is determined to increase to p=1.3x10 -2 Pa within the range of T=1640-1840 K

  14. Crystal structure and electrical resistivity studies of Gd(Fe1-x Cox)2 intermetallics

    International Nuclear Information System (INIS)

    Onak, M.; Guzdek, P.; Stoch, P.; Chmist, J.; Bednarski, M.; Panta, A.; Pszczola, J.

    2007-01-01

    From X-ray analysis (295 K) it was found that the cubic, MgCu 2 -type, Fd3m crystal structure appears across the Gd(Fe 1-x Co x ) 2 series. Electrical resistivity measurements for the Gd(Fe 1-x Co x ) 2 intermetallics were performed in a wide temperature region and the parameters characterizing the resistivity dependence on temperature and composition were determined. The differential of the electrical resistivity against temperature was used to estimate Curie temperatures. The Curie temperature versus x, high and moderately increasing in the iron-rich area, rapidly drops in the cobalt-rich region. The obtained results are compared with the data known for the Dy(Fe 1-x Co x ) 2 series. The Curie temperature is related to both the number of 3d electrons and the de Gennes factor

  15. Experiment and density functional theory analyses of GdTaO4 single crystal

    Science.gov (United States)

    Ding, Shoujun; Kinross, Ashlie; Wang, Xiaofei; Yang, Huajun; Zhang, Qingli; Liu, Wenpeng; Sun, Dunlu

    2018-05-01

    GdTaO4 is a type of excellent materials that can be used as scintillation, laser matrix as well as self-activated phosphor has generated significant interest. Whereas its band structure, electronic structure and optical properties are still need elucidation. To solve this intriguing problem, high-quality GdTaO4 single crystal (M-type) was grown successfully using Czochralski method. Its structure as well as optical properties was determined in experiment. Moreover, a systematic theoretical calculation based on the density function theory methods were performed on M-type and M‧-type GdTaO4 and their band structure, density of state as well as optical properties were obtained. Combine with the performed experiment results, the calculated results were proved with high reliability. Hence, the calculated results obtained in this work could provide a deep understanding of GdTaO4 material, which also useful for the further investigation on GdTaO4 material.

  16. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  17. A sodium gadolinium phosphate with two different types of tunnel structure: Synthesis, crystal structure, and optical properties of Na3GdP2O8

    International Nuclear Information System (INIS)

    Fang, M.; Cheng, W.-D.; Zhang, H.; Zhao, D.; Zhang, W.-L.; Yang, S.-L.

    2008-01-01

    A sodium gadolinium phosphate crystal, Na 3 GdP 2 O 8 , has been synthesized by a high-temperature solution reaction, and it exhibits a new structural family of the alkali-metal-rare-earth phosphate system. Although many compounds with formula M 3 LnP 2 O 8 have been reported, but they were shown to be orthorhombic [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] rather than monoclinic as shown in this paper. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group C2/c and the cell parameters: a=27.55 (25), b=5.312 (4), c=13.935(11) A, β=91.30(1) o , and V=2038.80 A 3 , Z=4. Its structure features a three-dimensional GdP 2 O 8 3- anionic framework with two different types of interesting tunnels at where Na atoms are located by different manners. The framework is constructed by Gd polyhedra and isolated PO 4 tetrahedra. It is different from the structure of K 3 NdP 2 O 8 [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] with space group P2 1 /m that shows only one type of tunnel. The emission spectrum and the absorption spectrum of the compound have been investigated. Additionally, the calculations of band structure, density of states, dielectric constants, and refractive indexes have been also performed with the density functional theory method. The obtained results tend to support the experimental data. - Graphical abstract: Projection of the structure of Na 3 GdP 2 O 8 with a unit cell edge along the b-axis. The Na-O bonds are omitted for clarity

  18. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe2 (RE = Pr, Sm, Gd, Dy and Er)

    International Nuclear Information System (INIS)

    Esmaeili, Mehdi; Tseng, Yu-Chih; Mozharivskyj, Yurij

    2014-01-01

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe 2 phases. • Thermoelectric properties of the RECuSe 2 phases. • Temperature stability of the RECuSe 2 phases. - Abstract: The ternary RECuSe 2 phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2 1 /c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3 ¯ m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe 2 , DyCuSe 2 and ErCuSe 2 indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe 2 phases

  19. Synthesis, crystal structure, and physical properties of the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Scott; Yuan, Fang [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Kosuda, Kosuke; Kolodiazhnyi, Taras [Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada)

    2016-01-15

    The second and third known rare-earth bismuthide oxides, Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, have been discovered via high temperature reactions at 1300 °C. Like its Gd–Sb–O counterparts, the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases crystallize in the monoclinic C2/m space group, with the latter containing disordered Bi atoms along the b direction of the unit cell. Unlike the RE{sub 8}Sb{sub 3}O{sub 8} series, the formation of the Gd{sub 3}BiO{sub 3} phase does not necessarily precede the formation of Gd{sub 8}Bi{sub 3}O{sub 8}, which is likely due to the difficulty of accommodating bismuth in the RE–O framework due to its larger size. Physical property measurements performed on a pure Gd{sub 8}Bi{sub 3}O{sub 8} sample reveal semiconducting behavior. Although electronic structure calculations predict metallic behavior due to an unbalanced electron count, the semiconducting behavior originates from the Anderson localization of the Bi p states near the Fermi level as a result of atomic disorder. - Graphical abstract: Reaction of GdBi and Gd{sub 2}O{sub 3} at high temperatures yields Gd–Bi–O phases. - Highlights: • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, the second and third rare-earth bismuthide oxides, have been discovered. • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} are isostructural with RE{sub 3}SbO{sub 3} and RE{sub 8}Sb{sub 3}O{sub 8}. • Gd{sub 8}Bi{sub 3}O{sub 8} displays semiconducting behavior despite an unbalanced electron count. • Anderson localization of Bi p states results in semiconducting behavior in Gd{sub 8}Bi{sub 3}O{sub 8}.

  20. Crystal structure of RCoIn5 (R - Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y) and R2CoIn8 (R - Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Y) compounds

    International Nuclear Information System (INIS)

    Kalychak, Ya.M.; Zaremba, V.I.; Baranyak, V.M.; Bruskov, V.A.; Zavalij, P.Yu.

    1989-01-01

    Usng X-ray diffraction method of monocrystal, crystal structure of HoCoIn 5 compound belonging to the HoCoGa 5 structural type is determined. Using the method of powder belonging of CeCoIn 5 structure to the HoCoGa 5 structural type is confirmed. Isostructural compounds with Y, Pr, Nd, Sm, Gd, Tb, Dy are detected. Their lattice periods are determined. Using the method of powder belonging of Ce 2 CoIn 8 compound structure to Ho 2 CoGa 8 structural type is determined. Isostructural compounds with Y, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm are detected and their lattice periods are determined

  1. CW laser properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG mixed crystals

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.; Tang, D. Y.

    2011-10-01

    Three mixed crystals, Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG, were grown by Czochralski method. We report the continuous-wave (CW) Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG laser operation under laser diode pumping. The maximum output powers are 4.11, 5.31, and 7.47 W, with slope efficiency of 73.0, 55.3, and 57.1%, respectively. With replacing Lu3+ or Y3+ ions with large Gd3+ ions, the pump efficiency increases.

  2. Thermal, defects, mechanical and spectral properties of Nd-doped GdNbO{sub 4} laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Wang, Xiaofei; Sun, Guihua; Li, Xiuli; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-05-15

    A Nd-doped GdNbO{sub 4} crystal was grown successfully by Czochralski method. Its monoclinic structure was determined by X-ray diffraction; the unit-cell parameters are a = 5.38 Aa, b = 11.09 Aa, c = 5.11 Aa, and β = 94.56 . The morphological defects of Nd:GdNbO{sub 4} crystal were investigated using the chemical etching with the phosphoric acid etchant. For a new crystal, the physical properties are of great importance. The hardness and density of Nd:GdNbO{sub 4} were investigated first. Thermal properties of Nd:GdNbO{sub 4}, including thermal expansion coefficient and specific heat, were measured along a-, b-, and c-crystalline axes. Thermal properties indicate that the Nd:GdNbO{sub 4} pumped along c-axis can reduce the thermal lensing effect effectively. The specific heat is 0.53 J g{sup -1} K{sup -1} at 300 K, indicating a relatively high damage threshold of Nd:GdNbO{sub 4}. The transmission and emission spectrum of Nd:GdNbO{sub 4} were measured, and the absorption peaks were assigned. The strongest emission peak of Nd:GdNbO{sub 4} is located at 1065.3 nm in the spectral range of 850-1420 nm excited by 808 nm laser. The refractive index of Nd:GdNbO{sub 4} was calculated with the transmission spectrum and fitted with Sellmeier equation. All these obtained results is of great significance for the further research of Nd:GdNbO{sub 4}. (orig.)

  3. Crystal growth, spectroscopic and CW laser properties of Nd0.03Lu2.871Gd0.099Al5O12 crystal

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Cheng, S. S.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.

    2011-11-01

    Nd0.03Lu2.871Gd0.099Al5O12 (Nd:LuGdAG) crystal was grown by the Czochralski method. The absorption, fluorescence spectra and fluorescence lifetime of Nd:LuGdAG crystal at room temperature were investigated for the first time. We reported the continuous-wave (CW) Nd:LuGdAG laser operation under diode pumping. Output power of 1.43 W at 1064 nm was achieved with a slope efficiency of 34.1%. All the results show that Nd:LuGdAG crystal is a promising laser material.

  4. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe{sub 2} (RE = Pr, Sm, Gd, Dy and Er)

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, Mehdi [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Tseng, Yu-Chih [CANMET Materials, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2014-10-15

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe{sub 2} phases. • Thermoelectric properties of the RECuSe{sub 2} phases. • Temperature stability of the RECuSe{sub 2} phases. - Abstract: The ternary RECuSe{sub 2} phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2{sub 1}/c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3{sup ¯}m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe{sub 2}, DyCuSe{sub 2} and ErCuSe{sub 2} indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe{sub 2} phases.

  5. Growth of multiferroic Gd1-xYxMnO3 single crystals by optical floating zone technique

    International Nuclear Information System (INIS)

    Sarguna, R.M.; Ganesamoorthy, S.; Sridharan, V.; Subramanian, N.

    2014-01-01

    Rare earth manganites RMnO 3 with distorted perovskite structure are excellent multiferroic materials. The discovery of magnetic spin driven ferroelectricity in orthorhombic manganites (TbMnO 3 ) has sparked a surge in research into understanding the fundamental mechanism of multiferroic behavior. These systems fall under the category of type-2 multiferroics, the change of spatially modulated magnetic moment from sinusoidal to cycloidal gives rise to electric polarization. The magnetic structure depends upon the Mn-O-Mn bond angle. GdMnO 3 shows multiferroic properties only in the presence of applied magnetic field. When a magnetic field is applied along the b-axis, GdMnO 3 enters a ferroelectric state with an electric polarisation along the c-axis. By altering the Mn-O-Mn angle it is expected that GdMnO 3 will show multiferroic property even in the absence of magnetic field like TbMnO 3 . To alter the Mn-O-Mn bond angle GdMnO 3 was substituted with Y having lower ionic radius at Gd site. The effect of Y doping at the rare-earth site in GdMnO 3 investigated on polycrystalline samples of Gd 1-x Y x MnO 3 demonstrated a magneto-electric coupling in x=0.1-0.4. Single crystals are expected to give much amplified signal in respect of ferroelectric and magnetic properties. In this work we have grown Y substituted Gd 1-x Y x MnO 3 (x = 0.2, 0.3 and 0.4) by optical floating zone technique under different gas atmosphere. Growth rate of 1-2 mm/h yielded crack free crystals. Quality of the crystals was checked using Laue diffraction. Effect of growth rate and atmosphere pressure will be presented in this talk. (author)

  6. Magnetic properties of the tetragonal RCuGa{sub 3} (R=Pr, Nd and Gd) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nagalakshmi, R., E-mail: nagaphys@yahoo.com [Department of Physics, National Institute of Technology, Tiruchirappalli 6200015 (India); Kulkarni, Ruta; Dhar, S.K.; Thamizhavel, A. [DCMPMS, Tata Institute of Fundamental Research, Mumbai 400005 (India); Krishnakumar, V. [Department of Physics, Periyar University, Salem 636011 (India); Reiffers, Marian; Čurlík, Ivan [Institute of Experimental Physics, Watsonova 47, SK-040 01 Kosice (Slovakia); Department of Physics, University of Presov, 17 Novembra 1, SK-080 01 (Slovakia); Hagemann, Hans; Lovy, Dominique [Department of Physical Chemistry, University of Geneva, Geneva (Switzerland); Nallamuthu, S. [Department of Physics, National Institute of Technology, Tiruchirappalli 6200015 (India)

    2015-07-15

    Single crystals of tetragonal RCuGa{sub 3} (R=La, Pr, Nd and Gd), with BaNiSn{sub 3} type structure (space group I4 mm), have been grown by high temperature solution growth technique using Ga as flux. Their magnetic properties were determined by heat capacity and the measurement of magnetization and electrical resistivity along [100] and [001] directions. Except LaCuGa{sub 3}, the compounds order magnetically. PrCuGa{sub 3} undergoes a ferromagnetic transition with Curie temperature of 4.6 K. NdCuGa{sub 3} shows a bulk magnetic transition at 3.3 K. The data on GdCuGa{sub 3} indicate combined characteristics of spin glass and antiferromagnetic behavior at low temperatures. From the Schottky heat capacity data the crystal electric field level energy spectra have been determined. Further we have performed temperature dependent measurements of electron spin resonance (ESR) on GdCuGa{sub 3} between 11 K and room temperature. The ESR data indicate an enhancement of magnetic fluctuations associated with spin reorientation and both homogeneous and inhomogeneous thermal broadening of the linewidth. - Highlights: • RCuGa{sub 3} (R=La, Pr, Nd and Gd) single crystals were grown by flux technique. • The compounds exhibit long range magnetic ordering. • Crystal electric field levels have been derived from Schottky heat capacity. • Electron spin resonance (ESR) studies of GdCuGa{sub 3} are also discussed.

  7. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    Science.gov (United States)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  8. Peculiarities of component interaction in {l_brace}Gd, Er{r_brace}-V-Sn Ternary systems at 870 K and crystal structure of RV{sub 6}Sn{sub 6} stannides

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Stadnyk, Yu. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Demchenko, P.; Stadnyshyn, M.; Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine)

    2011-09-08

    Highlights: > {l_brace}Gd, Er{r_brace}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV{sub 6}Sn{sub 6}. > Isostructural RV{sub 6}Sn{sub 6} compounds were also found with Y, Dy, Ho, Tm, and Lu. > The crystal structure of RV{sub 6}Sn{sub 6} compounds was determined by powder diffraction method. > Structural analysis showed that RV{sub 6}Sn{sub 6} compounds (R = Gd, Dy-Tm, Lu) are disordered; YV{sub 6}Sn{sub 6} is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV{sub 6}Sn{sub 6} (SmMn{sub 6}Sn{sub 6}-type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn{sub 6}Sn{sub 6}-type were also found with Dy, Ho, Tm, and Lu, while YV{sub 6}Sn{sub 6} compound crystallizes in HfFe{sub 6}Ge{sub 6} structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  9. Gamma multi-detectors and nuclear structure studies: search for superdeformed structures in {sup 147}Gd and {sup 144}Gd isotopes using Crystal Castle; simulation calculations for EUROGAM multi-detector definition; Multidetecteurs gamma et etudes de structure nucleaire: recherche avec le Chateau de Cristal de structures superdeformees dans les isotopes {sup 147}Gd et {sup 144}Gd; calculs de simulation pour la definition du multidetecteur EUROGAM

    Energy Technology Data Exchange (ETDEWEB)

    France, G de

    1992-12-31

    Computer simulations have been used for the calculation of the new generation of 4 {pi}{gamma} multi-detectors (Castle Crystal) of EUROGAM system (phase I and II). Two superdeformed bands (I and II), comprising 16 and 13 transitions respectively, have been described for {sup 147}Gd nucleus during the {sup 122}Sn({sup 30}Si,5n) fusion-evaporation reaction in a 155 MeV bombardment energy. Dynamic inertia momentum similarities and gamma transition energy similarities have been observed between band I and {sup 148}Gd nucleus and between band II and {sup 146}Gd nucleus, respectively. These similarities can be related to a pseudo-spin symmetry. Calculations suggest the existence of an octupolar susceptibility in this mass region. {sup 144}Gd nucleus has been studied using {sup 120}Sn({sup 29}Si,5n) fusion-evaporation reaction in a 155 MeV bombardment energy and using {sup 100}Mo({sup 48}Ti,4n) reactions in a 200 MeV bombardment energy. {gamma}-{gamma} coincidences have revealed the existence of a 58 keV width valley in the matrix representation compatible with theoretical predictions. In spite of the evidence for about ten transitions during these experiments, no superdeformed structure has been demonstrated for {sup 144}Gd nucleus. (J.S.). 87 refs., 57 figs., 41 tabs.

  10. Achieving a table-like magnetocaloric effect and large refrigerant capacity in in situ multiphase Gd65Mn25Si10 alloys obtained by crystallization treatment

    International Nuclear Information System (INIS)

    Shen, X Y; Zhong, X C; Huang, X W; Mo, H Y; Feng, X L; Liu, Z W; Jiao, D L

    2017-01-01

    In situ multiphase structure Gd 65 Mn 25 Si 10 alloys were fabricated by melt spinning and subsequent crystallization treatment. In the process of crystallization, the α -Gd, GdMn 2 and Gd 5 Si 3 phases precipitate in the amorphous matrix in turn. The Curie temperature ( T C ) values for the α -Gd crystallization phase and amorphous matrix can be tailored by tuning the crystallization treatment time. All three multiphase alloys obtained by crystallization treatment at 637 K for 20, 30 and 40 min, respectively, undergo multiple successive magnetic phase transitions. A table-like magnetic entropy change over a wide temperature range (∼90–120 K) and a large full width at half maximum (Δ T FWHM ) magnetic entropy change (∼230 K) were achieved in the above-mentioned crystallized alloys, resulting in large refrigerant capacities (RCs). The enhanced RCs of the three crystallized alloys for a magnetic field change of 0–5 T are in the range of 541–614 J kg −1 . Large Δ T FWHM and RC values and a table-like (−Δ S M ) max feature obtained in in situ multiphase Gd 65 Mn 25 Si 10 crystallized alloys make them suitable for potential application in efficient Ericsson-cycle magnetic refrigeration working in a temperature range from 74 to 310 K. (paper)

  11. Absorption spectra of CsNd(MoO4)2 and CsGd(MoO4)2-Nd3+ crystals in strong magnetic fields

    International Nuclear Information System (INIS)

    Gorban', I.S.; Kozeeva, L.P.; Slobodyanyuk, A.V.; Shevchenko, V.A.

    1987-01-01

    The comparison of the electronic structure of Nd 3+ in CsNd(MoO 4 ) 2 and CsGd(MoO 4 ) 2 - Nd 3+ crystals is made. It is established that in these crystals the activator centers, mainly, of the certain type with the symmetry of the local environment C 2 are formed. The absorption spectra of self-activated CsNd(MoO 4 ) 2 crystal differ from spectra of CsGd(MoO 4 ) 2 - Nd 3+ by the presence of the vibrating structure. The Stark splittings of energy levels of Nd 3+ in the investigated crystalline matrices are more sensitive to the environment effect than the Zeeman ones. The ground state of Nd 3+ ion in CsNd(MoO 4 ) 2 and CsGd(MoO 4 ) 2 molybdates is characterized by the similar values of g-factors

  12. Spectroscopic analysis and laser performance of Tm3+ : NaGd(MoO4)2 crystal

    International Nuclear Information System (INIS)

    Guo Weijie; Chen Yujin; Lin Yanfu; Gong Xinghong; Luo Zundu; Huang Yidong

    2008-01-01

    Detailed polarized spectral properties of Tm 3+ : NaGd(MoO 4 ) 2 crystal have been investigated. The room temperature absorption and fluorescence spectra were recorded. The fluorescence decay mechanisms of the 1 G 4 and 3 H 4 multiplets in Tm 3+ : NaGd(MoO 4 ) 2 crystal were discussed. Room temperature quasi-cw 1.9 μm laser emission from the Ti : sapphire laser pumped Tm 3+ : NaGd(MoO 4 ) 2 crystal has been demonstrated. The maximum output power of 170 mW has been achieved with a slope efficiency of 25%

  13. Growth and optical properties of Tm:GdVO4 single crystal

    International Nuclear Information System (INIS)

    Urata, Y.; Akagawa, K.; Wada, S.; Tashiro, H.; Fukuda, T.

    1999-01-01

    Thulium-doped gadolinium vanadate (Tm:GdVO 4 ) single crystal has been successfully grown by a modified Czochralski (CZ) technique. Effective distribution coefficient of Tm was determined to be 0.74. Absorption characterization was performed in the 800 nm region and the maximum absorption peak was found at 799 nm for π polarization. Fluorescence spectra for tuning at the maximum absorption were obtained around 1.8-2.0 μm region with 100 nm bandwidth. This suggests that a Tm:GdVO 4 crystal is expected as a new promising LD pumped solid-state laser in the 2 μm region. (orig.)

  14. Structure and magnetic transport properties of GdIn{sub 3−x}Mn{sub x} intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiang; Guo, Yongquan, E-mail: yqguo@ncepu.edu.cn; Liu, Hanyuan

    2016-03-01

    The crystal structures and magneto-transport properties of GdIn{sub 3−x}Mn{sub x} have been investigated using X-ray diffraction and magnetic and electric measurements. GdIn{sub 3−x}Mn{sub x} crystallize in cubic structure, and their lattice parameters tend to decrease with increasing Mn content due to the size effect at In site by Mn substitution for In. Mn doped GdIn{sub 3−x}Mn{sub x} order antiferromagnetically at low temperature. However, Mn doping into GdIn{sub 3} causes the decrease of Néel temperature due to the distortion of Gd(In,Mn){sub 3} tetrahedron formed by Gd at corners and (In,Mn) at face centers in unit cell. The resistivities of GdIn{sub 3−x}Mn{sub x} are going up with increasing Mn content. The electric phase transition is associated with the magnetic transition, and the magneto-transport follows electron–magnon scattering model in low temperature region and the Stoner spin fluctuation model in high temperature region, respectively. - Highlights: • Novel GdIn{sub 3−x}Mn{sub x} intermetallic compounds have been successfully prepared. • The lattice parameters tend to decrease with increasing Mn content. • GdIn{sub 3−x}Mn{sub x} orders antiferromagnetically at low temperature. • The strong correlation between the electric transport and magnetic state is observed.

  15. Czochralski growth and optical properties of Li 6Gd 1-xEu x(BO 3) 3 ( x=0-1) single crystals

    Science.gov (United States)

    Yavetskiy, R. P.; Dolzhenkova, E. F.; Dubovik, M. F.; Korshikova, T. I.; Tolmachev, A. V.

    2005-04-01

    It was shown that a continuous series of Li 6Gd 1-xEu x(BO 3) 3 solid solutions exist within the whole concentration range ( x=0-1). Li 6Gd 1-xEu x(BO 3) 3 ( x=0-0.03; 1) single crystals up to 25 mm in length and up to 20 mm in diameter have been grown by the Czochralski method. The structural perfection of the crystals has been estimated from etch patterns and XPA analysis results. The optical absorption and thermally stimulated luminescence of the grown crystals has been studied.

  16. Double ferromagnetism in single-crystal Gd-Y-Lu alloys

    International Nuclear Information System (INIS)

    Ito, T.; Oka, M.; Legvold, S.; Beaudry, B.J.

    1984-01-01

    Magnetization, electrical resistivity, specific-heat and thermal-expansion measurements have been made on Gd-Y-Lu single crystals. Low isofield magnetization data for the a-axis sample of Gd 75 Y/sub 17.5/ Lu/sub 7.5/ exhibit two different Curie-Weiss regimes, which suggests double ferromagnetism. Electrical resistivity, specific-heat, and thermal-expansion data show two anomalies at the transition temperatures. The anomaly at 231.5 K shows a lambda-type second-order phase transition and the anomaly at 223 K shows a sharp spike first-order phase transition

  17. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  18. Polarized spectroscopic properties of Er3+:Gd2SiO5 crystal and evaluation of Er3+:Yb3+:Gd2SiO5 crystal as a 1.55 μm laser medium

    International Nuclear Information System (INIS)

    Wang, H.; Huang, J.H.; Gong, X.H.; Chen, Y.J.; Lin, Y.F.; Luo, Z.D.; Huang, Y.D.

    2016-01-01

    An Er 3+ -doped Gd 2 SiO 5 single crystal with high optical quality has been grown by the Czochralski method. Polarized absorption and fluorescence spectra and fluorescence lifetime of the crystal were measured at room temperature. Intensity parameters, spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were estimated on the basis of the Judd–Ofelt theory. Besides, potentiality of 1.55 μm laser emission in an Er 3+ –Yb 3+ co-doped Gd 2 SiO 5 crystal was evaluated.

  19. EPR study of Gd sup 3 sup + centres in Tl sub 2 ZnF sub 4 crystals

    CERN Document Server

    Arakawa, M; Ebisu, H; Takeuchi, H

    2003-01-01

    EPR measurements have been made at room temperature on Tl sub 2 ZnF sub 4 crystals doped with Gd sup 3 sup + and co-doped with Gd sup 3 sup + and Li sup +. For crystals doped only with Gd sup 3 sup + , a spectrum with tetragonal symmetry (A centre) is observed. For co-doped crystals new spectra with tetragonal (B centre) and monoclinic (C centre) symmetries are observed in place of the spectrum of the A centre. The A centre is identified as the substitutional Gd sup 3 sup + ion at a Zn sup 2 sup + site in six-fold coordination without any local charge compensation in its immediate neighbourhood. On the basis of spin Hamiltonian separation analysis, the separated parameter b sub 2 sub a sub ( sub 1 sub ) for the C centre has a value close to the b sub 2 sup 0 parameter for the B centre. The B and C centres in co-doped crystals are ascribed to a Gd sup 3 sup + ion substituted for a Tl sup + site in nine-fold coordination, where the divalent excess positive charge on Gd sup 3 sup + is compensated by a Li sup + i...

  20. Ab inito calculations of Hubbard parameters for NiO and Gd crystals

    Directory of Open Access Journals (Sweden)

    A. R Faghihi and S Jalali Asadabadi

    2008-07-01

    Full Text Available   In this research the Hubbard parameters have been calculated for NiO and Gd crystals, as two strongly correlated systems with partially full 3d and 4f levels, respectively. The calculations were performed within the density functional theory (DFT using the augmented plane waves plus the local orbitat (APW+lo method. We constructed a suitable supercell and found that the Hubbard parameters for the NiO and Gd compounds are equal to 5.9 eV and 5.7 eV, respectively. Our results are in good agreement with experimental data and results of other computational methods. Then we used the obtained parameters to study the structural properties of NiO and Gd by means of LDA+U approximation. Our results calculated by the LDA+U method which are in better agreement with the experiment show a significant improvement compared to the GGA approximation. The result shows that our method for calculating U parameter can be considered as a satisfactory method to study a strongly correlated system.

  1. The RELixSn2 (RE=La–Nd, Sm, and Gd; 0≤x<1) series revisited. Synthesis, crystal chemistry, and magnetic susceptibilities

    International Nuclear Information System (INIS)

    Makongo, Julien P.A.; Suen, Nian-Tzu; Guo, Shengping; Saha, Shanta; Greene, Richard; Paglione, Johnpierre; Bobev, Svilen

    2014-01-01

    This study is concerned with the ternary compounds RELi x Sn 2 (RE=La–Nd, Sm, and Gd; 0≤x 2 phases. These materials crystallize with the base-centered orthorhombic space group Cmcm (No. 63), and can be formally assigned with the CeNiSi 2 structure type (Pearson symbol oC16). Our systematic single-crystal X-ray diffraction studies revealed substantial Li-deficiencies in all cases, with SmSn 2 (space group Cmmm, ZrGa 2 structure type, Pearson symbol oC12) and GdSn 2 (space group Cmcm, ZrSi 2 structure type, Pearson symbol oC12) being completely lithium-free. The structure refinements also uncovered positional disorder on the Sn site neighboring the vacancies. The Sn-disorder and the Li-deficiency correlate, and vary monotonically with the decreased size of the rare-earth atoms in the order RE=La–Nd. The SmSn 2 and GdSn 2 structures are devoid of any disorder. Temperature-dependent studies of the magnetic response of the title compounds are also presented and discussed. -- Graphical abstract: RELi x Sn 2 (RE=La–Nd, 0≤x 2 structure type (a). The Sn-disorder and the Li-deficiency correlate, and vary monotonically with the decreased size of the rare-earth atoms in the order RE=La–Nd. The SmSn 2 (b) and GdSn 2 (c) structures are devoid of any disorder. Highlights: • The crystal structures of the RELi x Sn 2 (RE=La–Nd, 0≤x 2 structure type or defect variant of the CeNiSi 2 structure type. • SmSn 2 is isotypic with the ZrGa 2 structure, while RESn 2 (RE=Gd–Lu) are isotypic with the ZrSi 2 structure

  2. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles; Lazear, Eric; Connolly, Sarah A.; Eisenberg, Roselyn J.; Cohen, Gary H.; Wiley, Don C.; Carfi, Andrea (UPENN); (IRBM); (CHLMM)

    2010-07-19

    Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves upon receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.

  3. Optical properties and radiation response of Ce3+-doped GdScO3 crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke; Kochurikhin, Vladimir; Yanagida, Takayuki; Yoshikawa, Akira

    2012-01-01

    10%-Ce doped GdScO 3 perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO 3 crystal showed photo- and radio-luminescence peaks due to Ce 3+ of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Positron annihilation study on the superconductivity of Gd-doped YBCO system

    International Nuclear Information System (INIS)

    Chen Zhenping; Su Yuling; Xue Yuncai; Liu Haizeng; Gong Shicheng; Zhao Jingxun; Li Xigui

    2006-01-01

    To make clear the influence of magnetic rare-earth ion Gd 3+ doping in the Y site on crystal structure and localized electron structure of YBCO system, the Gd-doped Y 1-x Gd x Ba 2 Cu 3 O 7-δ (x=0-1.0) systems were studied systematically by the positron annihilation technique and X-ray diffraction (XRD). The XRD analysis reveals that Gd 3+ with bigger radius doping in Y site makes the crystal parameters and crystal volume increase, while all the samples remain the single orthorhombic phase as YBa 2 Cu 3 O 7-δ (YBCO) system does. The temperature dependence of resistance measurement shows that T c is above 90 K for all samples, and T c increases with increasing Gd 3+ content. The positron experiment indicates that the localized electronic density n e decreases with increasing Gd 3+ content. (authors)

  5. Growth and optical properties of Tm:GdVO{sub 4} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y.; Akagawa, K.; Wada, S.; Tashiro, H. [Photodynamics Research Center, Sendai (Japan). Inst. of Physical and Chemical Research; Suh, S.J.; Yoon, D.H. [Photodynamics Research Center, Sendai (Japan). Inst. of Physical and Chemical Research]|[Dept. of Metallurgical Engineering, Sung Kyun Kwan Univ. (Korea, Republic of); Fukuda, T. [Photodynamics Research Center, Sendai (Japan). Inst. of Physical and Chemical Research]|[Inst. for Materials Research, Tohoku Univ. (Japan)

    1999-04-01

    Thulium-doped gadolinium vanadate (Tm:GdVO{sub 4}) single crystal has been successfully grown by a modified Czochralski (CZ) technique. Effective distribution coefficient of Tm was determined to be 0.74. Absorption characterization was performed in the 800 nm region and the maximum absorption peak was found at 799 nm for {pi} polarization. Fluorescence spectra for tuning at the maximum absorption were obtained around 1.8-2.0 {mu}m region with 100 nm bandwidth. This suggests that a Tm:GdVO{sub 4} crystal is expected as a new promising LD pumped solid-state laser in the 2 {mu}m region. (orig.) 9 refs.

  6. Influence of Y, Gd and Sm on the glass forming ability and thermal crystallization of aluminum based alloy

    International Nuclear Information System (INIS)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J.; Danez, G.P.

    2010-01-01

    Al-based amorphous alloys represent an important family of metals and a great scientific activity has been devoted to determine the main features of both glass forming ability (GFA) and crystallization behavior in order to have a comprehensive framework aimed at potential technological applications. Nowadays, it is well known that the best Al-based amorphous alloys are formed in ternary systems such as Al- RE-TM, where RE is a rare earth and TM a transition metal. This paper presents results of research in Al 85 Ni 10 RE 5 alloys (RE = Y, Gd and Sm). Amorphous ribbons were processed by melt-spinning under the same conditions and subsequently characterized by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show appreciable micro structural differences as function of the rare earth, thus crystal is obtained for Y, nano-glassy for Gd and, fully amorphous structure for Sm. (author)

  7. Growth and properties of Nd:(Lu xGd 1-x) 3Ga 5O 12 laser crystal by Czochralski method

    Science.gov (United States)

    Jia, Zhitai; Tao, Xutang; Yu, Haohai; Dong, Chunming; Zhang, Jian; Zhang, Huaijin; Wang, Zhengping; Jiang, Minhua

    2008-10-01

    In this paper we report the growth and characterization of Nd:(Lu xGd 1-x) 3Ga 5O 12 crystal for the first time. The polycrystalline materials were synthesized by conventional solid-state reaction. Single crystal with good optical quality was successfully obtained and the dimensions of the as-grown crystal were Ø21 × 30 mm 3. X-ray powder diffraction studies confirm that the Nd:(Lu xGd 1-x) 3Ga 5O 12 crystal is isostructural with Gd 3Ga 5O 12 with unit cell parameter of 1.2361 nm which is less than that of Gd 3Ga 5O 12 crystal (1.2376 nm). The absorption and emission spectra of the crystal at room temperature have also been studied. Continuous-wave (CW) laser performance at 1.06 μm has been demonstrated on the crystal.

  8. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  9. Structural and electronic behavior of Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Corredor, L.T.; Velasco Zarate, J.; Landinez Tellez, D.A.; Fajardo, F.; Arbey Rodriguez M, J.; Roa-Rojas, J.

    2009-01-01

    We report experimental and theoretical study of crystallographic lattice and electronic structure of Sr 2 GdRuO 6 complex perovskite, which is used as precursor in the fabrication process of superconducting ruthenocuprate RuSr 2 GdCu 2 O 8 . Samples were produced by the standard solid state reaction. Rietveld refinement of experimental X-ray diffraction patterns shows that material crystallizes in a monoclinic structure, which belongs to the P2 1 /n (no.14) space group, with lattice parameters a=5.8019(6)A, b=5.8296(5)A, c=8.2223(7)A, and tilt angle β=90.258 deg. Calculations of electronic structure were performed by the density functional theory. The exchange and correlation potentials were included through the LDA+U approximation. Density of states (DOS) study was carried out considering the two spin polarizations. Results show Gd are majority responsible for the magnetic character in this material, but Ru contribution is also relevant because d-orbital is closer to Fermi level. Theoretical results evidence that Sr 2 GdRuO 6 material behaves as a magnetic semiconductor, with 20μ B effective magnetic moment.

  10. Structural investigation on K3Gd5(PO4)6 in between 20 K to 1073 K

    International Nuclear Information System (INIS)

    Bevara, Samatha; Achary, S.N.; Tyagi, A.K.; Mishra, K.K.; Ravindran, T.R.; Sinha, A.K.; Sastry, P.U.

    2016-01-01

    Evolution of crystal structure of K 3 Gd 5 (PO 4 ) 6 in the temperature range from 20 K to 1073 K, as observed from combined variable temperature X-ray diffraction (using both synchrotron source and Cu K α lab source) and Raman spectroscopic studies is communicated in the manuscript. The title compound has an open tunnel containing three dimensional structure built by periodic arrangements of (Gd 5 (PO 4 ) 6 ) 3- ions which in turn are formed by PO 4 tetrahedra and GdO n (n = 8 and 9) polyhedra and these tunnels are occupied by K + ions. The XRD patterns in the entire temperature range of study indicated no change in the crystal structural, which is also supported by differential thermal analyses and Raman spectroscopy. Average axial thermal expansion coefficients between 20K and 1073 K are : α a =10.6 x 10 -6 K -1 , α b = 5.5 x 10 -6 K -1 and α c = 16.4 X 10.6 -6 K -1 . (author)

  11. Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica

    Science.gov (United States)

    Tajiri, Takayuki; Mito, Masaki; Deguchi, Hiroyuki; Kohno, Atsushi

    2018-05-01

    Perovskite manganite GdMnO3 nanoparticles were synthesized using mesoporous silica as a template, and their magnetic properties and crystal structure were investigated. Powder X-ray diffraction data indicated successful synthesis of the GdMnO3 nanoparticles, with mean particle sizes of 13.9 and 20.9 nm. The lattice constants for the nanoparticles were slightly different from those for the bulk material and varied with the particle size. The magnetic transition temperatures for the nanoparticles were higher than those of the bulk crystal. The synthesized GdMnO3 nanoparticles exhibited superparamagnetic behaviors: The blocking temperature, coercive field, and transition temperature depended on the particle size. Magnetic measurements and crystal structure analysis suggest that the changes in the magnetic properties for GdMnO3 nanoparticles can be attributed to the modulation of the crystallographic structure.

  12. Structural and magnetic properties of Gd1-xPrxMn2Si2 silicides

    International Nuclear Information System (INIS)

    Kilic, A.; Kervan, S.; Gencer, A.

    2004-01-01

    X-ray powder diffraction, AC susceptibility and differential scanning calorimetry (DSC) studies were performed on the polycrystalline Gd 1-x Pr x Mn 2 Si 2 (0≤x≤1) compounds. All compounds investigated crystallize in the body-centred tetragonal ThCr 2 Si 2 -type structure with the space group I4/mmm. Substitution of Pr for Gd leads to a linear increase of the lattice constants and the unit cell volume. The lattice constants and the unit cell volume obey Vegard's law. At the Curie temperature T C (Gd), the Gd sublattice orders and reconfigures the ordering in the Mn sublattice. This temperature becomes depressed and disappears with increasing Pr content x. The Neel temperature T N (Mn) determined by DSC technique decreases linearly with increasing Pr content x. The results are summarized in the x-T magnetic phase diagram

  13. Optical properties and radiation response of Ce{sup 3+}-doped GdScO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kochurikhin, Vladimir [General Physics Institute, 38 Vavilov Str., 119991 Moscow (Russian Federation); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    10%-Ce doped GdScO{sub 3} perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO{sub 3} crystal showed photo- and radio-luminescence peaks due to Ce{sup 3+} of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. The Gd-Co-Al system at 870/1070 K as a representative of the rare earth-Co-Al family and new rare-earth cobalt aluminides: Crystal structure and magnetic properties

    Science.gov (United States)

    Morozkin, A. V.; Garshev, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Mozharivskyj, Y.; Yuan, Fang; Yao, Jinlei; Nirmala, R.; Quezado, S.; Malik, S. K.

    2018-05-01

    The Gd-Co-Al system has been investigated at 870/1070 K by X-ray and elemental EDS analyses. The existence of the known compounds Gd2Co3Al9 (Y2Co3Ga9-type), Gd3Co4.5Al11.5 (Gd3Co4.6Al11) (Gd3Ru4Al12-type), Gd3Co6-7.4Al3-1.6 (CeNi3-type), GdCo1.15-0.65Al0.85-1.35 (MgZn2-type), Gd2Co2Al (Mo2NiB2-type) and Gd3Co3.5-3.25Al0.5-0.75 (W3CoB3-type) has been confirmed at 870/1070 K. Structure types have been determined for Gd2Co6Al19 (U2Co6Al19-type), Gd7Co6Al7 (Pr7Co6Al7-type), Gd6Co2-2.21Al1-0.79 (Ho6Co2Ga-type) and Gd14Co3.2Al2.8 (Gd14Co2.58Al3.42 at 970 K) (Lu14Co3In3-type). The structures of Gd6Co2Al, Gd6Co2.21Al0.79 and Gd14Co2.58Al3.42 flux-grown at 970 K have been refined from the single crystal X-ray diffraction data. Additionally, new ternary compounds Gd2Co5.7-5.3Al1.3-1.7 (Er2Co7-type) and Gd58Co20Al22 (unknown type structure) have been identified. Quasi-binary solid solutions were detected for Gd2Co17, GdCo5, Gd2Co7, GdCo3, GdCo2 and GdAl2 at 870/1070 K, while no appreciable solubility was observed for the other binary compounds in the Gd-Co-Al system. Magnetic properties of the Gd2Co3Al9, Gd3Co4.6Al11, Gd7Co6Al7, Gd6Co2.2Al0.8 and Gd14Co2.58Al3.42 compounds have been studied and are presented in this work. Gd6Co2.2Al0.8, Gd3Co4.6Al11, Gd7Co6Al7 and Gd14Co2.58Al3.42 order ferromagnetically, while Gd2Co3Al9 displays antiferromagnetic transition. Additionally, {Y, Sm, Tb - Tm}2Co6Al19 (U2Co6Al19-type), Yb2Co3Al9 (Y2Co3Ga9-type), {Y, Sm, Tm, Yb}3Co4.6Al11 (Gd3Ru4Al12-type) and Tb7Co6Al7 (Pr7Co6Al7-type) compounds have been synthesized and investigated.

  15. Growth and scintillation properties of Ce{sup 3+}-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    The optical and scintillation properties of 0.5% fixed Ce-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} single crystals have been investigated at three different levels of Gd doping: x = 0.2, 0.4 and 0.6. Single crystal of the Ce{sup 3+}-doped (Y{sub 0.8}Gd{sub 0.2})AlO{sub 3}, (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} and (Y{sub 0.4}Gd{sub 0.6})AlO{sub 3} were successfully grown by {mu}-PD technique in nitrogen atmosphere. From X-ray diffraction analysis, no impurity phase was detected for the grown Ce-doped crystals. Ce-doped (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} crystal demonstrated highest fluorescence quantum efficiency ({proportional_to} 25%) with improvement of excitation efficiency due to the Gd-doping. When irradiated by the alpha-rays from a {sup 241}Am source, all the Ce-doped crystals showed luminescence band that corresponding to 5d (t{sub 2g})-4f transition of Ce{sup 3+}. The scintillation decay time was characterized by two components; the fast component (5-15 ns) is ascribed to 5d-4f transition of Ce{sup 3+}, while the slow one (100-200 ns) may be related to energy transfer between Ce{sup 3+} and Gd{sup 3+} ion. According to the result of {sup 137}Cs gamma-ray irradiated pulse height spectra compared with BGO scintillator, the relative scintillation light output was found to be about 12200 {+-} 1220 (Gd 20%) and 16000 {+-} 1600 (Gd 40%) ph/MeV. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Magnesium substitutions in rare-earth metal germanides with the Gd5Si4 type. Synthesis, structure determination and magnetic properties of RE5-xMgxGe4 (RE=Gd-Tm, Lu and Y)

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Tobash, P H [UNIV. OF DE; Bobev, S [UNIV. OF DE

    2009-01-01

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE{sub 5-x}Mg{sub x}Ge{sub 4} (x {approx} 1.0-2.3; RE =Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd{sub 5}Si{sub 4} type in the orthorhombic space group Pnma (No. 62; Z =4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45 % at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures, and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of hte magnetic properties as a function of the Mg content are also discussed. KEYWORDS: Rare-earth intermetallics, germanides, crystal structure,Gd{sub 5}Si{sub 4} type.

  17. Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites

    Science.gov (United States)

    Nikzad, Alireza; Parvizi, Roghaieh; Rezaei, Ghasem; Vaseghi, Behrooz; Khordad, Reza

    2018-02-01

    A series of Co- and Gd-substituted NiFe2O4 ferrite nanoparticles with the formula Ni1- x Co x Fe2- y Gd y O4 (where x = 0.0-1.0 and y = 0.0-0.1) have been successfully synthesized using a hydrothermal method. X-ray diffraction and field emission scanning electron microscopy results indicated that a highly crystallized spherical ferrite nanoparticle structure was obtained along with an increase in the lattice parameters. Compositional analysis of the prepared nanoferrite powders has been carried out using energy-dispersive x-ray (EDX) spectra. The EDX analysis reveals the presence of Ni, Co, Gd and Fe elements in the specimens. Magnetization and the coercive field improved dramatically with an increase in the amount of cobalt and gadolinium added, attributed to the redistribution of cations in the spinel nanoferrite structure. Saturation magnetization and coercivity values up to 99 emu/g and 918 Oe, respectively, were measured using a vibration sample magnetometer at room temperature. Comparative microwave absorption experiments demonstrated that the reflection loss (RL) properties enhanced with increasing substitution of cations in the Ni-ferrite spinel structure for an absorber thickness of 1.8 mm. A maximum RL of - 26.7 dB was obtained for substituted Ni-Co-Gd nanoferrite with x = 1.0 and y = 0.1 at a frequency of 9.4 GHz with a bandwidth of 3.6 GHz (RL ≤ - 10 dB). Experimental results revealed that the synthesized nanoparticles possessed great potential in microwave absorption applications.

  18. A model for the magnetic domain structure of Gd at 77K

    International Nuclear Information System (INIS)

    Corner, W.D.; Saad, F.M.; Jones, D.W.; Jordan, R.G.

    1978-01-01

    Magnetic domain structures have been observed on planes perpendicular to the c and b axes of Gd crystals at 77K. Various types of domain boundary which might be found in an easy-cone ferromagnet are discussed. A model is presented which is consistent with observations. In this the easy-cone structure is maintained, but it is assumed that owing to the lower basal-plane anisotropy the magnetization component in the basal plane may change in direction within a single domain. (author)

  19. Crystal growth, structure, defects, mechanical and spectral properties of Nd{sub 0.01}:Gd{sub 0.89}La{sub 0.1}NbO{sub 4} mixed crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Lu, Wancheng; Xu, Jinrui [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Guihua; Sun, Dunlu [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui Province (China)

    2017-10-15

    A novel mixed laser crystal of Nd:GdLaNbO{sub 4} (Nd:GLNO) was grown successfully by conventional Czochralski method. The unit cell parameters were obtained by Rietveld refinement method. The density of the as-grown crystal was measured by Archimedean buoyancy method and calculated in theory. Absorption spectrum of Nd:GLNO crystal was recorded at room temperature, and 11 absorption peaks were assigned. The defects of Nd:GLNO crystal were revealed by using chemical etching method with phosphoric acid as etchant. The mechanical properties (including hardness, yield strength, elastic stiffness constant, fracture toughness and brittleness index) were systemically estimated based on Vickers hardness test. All these obtained results play a quite important role in further investigation of Nd:GLNO crystal. (orig.)

  20. Synthesis and crystal structure of K{sub 2}NiF{sub 4}-type novel Gd{sub 1+x}Ca{sub 1−x}AlO{sub 4−x}N{sub x} oxynitrides

    Energy Technology Data Exchange (ETDEWEB)

    Masubuchi, Yuji, E-mail: yuji-mas@eng.hokudai.ac.jp; Hata, Tomoyuki; Motohashi, Teruki; Kikkawa, Shinichi

    2014-01-05

    Highlights: • Novel gadolinium calcium aluminum oxynitride was prepared by solid state reaction. • Crystal structure of the oxynitride was refined by using synchrotron X-ray diffraction. • Gd{sub 1.2}Ca{sub 0.8}AlO{sub 3.8}N{sub 0.2} has a layered K{sub 2}NiF{sub 4}-type structure with the I4mm space group. • Nitride ions preferentially occupy the apical site of aluminum octahedron. -- Abstract: Novel gadolinium calcium aluminum oxynitrides, Gd{sub 1+x}Ca{sub 1−x}AlO{sub 4−x}N{sub x}, were prepared in x = 0.15–0.25 by the solid state reaction of a nitrogen–rich mixture with AlN as an aluminum source; the mixture was sintered twice at 1500 °C for 5 h under 0.5 MPa of nitrogen gas. Shift in the optical absorption edge was observed in their diffuse reflectance spectra from 4.46 eV for the oxide (x = 0) to 2.94 eV for the oxynitride at x = 0.2. The crystal structure of Gd{sub 1.2}Ca{sub 0.8}AlO{sub 3.8}N{sub 0.2} at x = 0.2 was refined using a synchrotron X-ray diffraction data as a layered K{sub 2}NiF{sub 4}-type structure with the I4mm space group. Longer Al–O/N bond lengths in the oxynitride than those in GdCaAlO{sub 4} suggest that the nitride ions are in the apical site of aluminum polyhedron, similar to those in Nd{sub 2}AlO{sub 3}N.

  1. Polarized spectroscopic properties of Er{sup 3+}:Gd{sub 2}SiO{sub 5} crystal and evaluation of Er{sup 3+}:Yb{sup 3+}:Gd{sub 2}SiO{sub 5} crystal as a 1.55 μm laser medium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Huang, J.H.; Gong, X.H.; Chen, Y.J.; Lin, Y.F.; Luo, Z.D. [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Y.D., E-mail: huyd@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-10-01

    An Er{sup 3+}-doped Gd{sub 2}SiO{sub 5} single crystal with high optical quality has been grown by the Czochralski method. Polarized absorption and fluorescence spectra and fluorescence lifetime of the crystal were measured at room temperature. Intensity parameters, spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were estimated on the basis of the Judd–Ofelt theory. Besides, potentiality of 1.55 μm laser emission in an Er{sup 3+}–Yb{sup 3+} co-doped Gd{sub 2}SiO{sub 5} crystal was evaluated.

  2. Crystal phase transition in LixNa1-xGdF4 solid solution nanocrystals - Tuning of optical properties

    KAUST Repository

    Bański, Mateusz

    2014-01-01

    The influence of precursor composition on the crystallization of LixNa1-xGdF4 is investigated and discussed. Nanocrystals are prepared from the thermal decomposition of trifluoroacetates in the presence of trioctylphosphine oxide to provide control over particle size. A crystal phase transition from hexagonal to cubic and to tetragonal is observed by increasing lithium trifluoroacetate (Li-TFA) in the solution. Controlling the composition of LixNa1-xGdF4 nanocrystals results in modified crystal field symmetry and emission properties from doped europium (Eu3+) ions. We report that for lithium (Li+) substitution <15%, the hexagonal crystal field is preferred, while the Eu3+ emission is already tuned, whereas at higher Li+ substitution, a phase change takes place and the number of crystalline matrix defects increases which is reflected in the optical properties of Eu3+. From Eu3+ emission properties, the optimum Li+ content is determined to be ∼6.2% in the prepared LixNa1-xGdF4 nanocrystals.

  3. A comparative study on the luminescence properties of Ce3+/Tb3+ doped Gd-based host nanomaterials

    Science.gov (United States)

    Jadhao, Charushila Vasant; Rani, Barkha; Sahu, Niroj Kumar

    2018-04-01

    A comparative study on the crystal phases and their respective luminescence behaviour of Gd3+ based host materials such as GdPO4, GdF3, GdVO4 and Gd2O3 sensitized with 7at.% Ce3+ and activated with 5 at.% Tb3+ have been reported. The nanomaterials were prepared by polyol method using ethylene glycol as solvent and found to have different crystal structures such as monoclinic, orthorhombic, tetragonal and cubic phase. Clear characteristics emission from Tb3+ has been observed in all the samples when excited in the absorption wavelength of Ce3+ and Gd3+ (˜280 nm). Among all the above materials, intense emission of Tb3+ is found in GdPO4 followed by GdF3, Gd2O3 and GdVO4 respectively. The Tb3+ emission is strongly influenced by the energy transfer process and crystal structure of the host materials and hence this study will be important for choosing suitable materials for display devices and biomedical applications.

  4. Synthesis and characterization of Gd-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Honghu; Malik, Vikash; Mallapragada, Surya; Akinc, Mufit

    2017-01-01

    Synthesis of magnetite nanoparticles has attracted increasing interest due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. Here we investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizes under the conditions tested (0–10 at% Gd"3"+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. Our results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd"3"+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe_(_3_−_x_)Gd_xO_4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method. - Highlights: • Gd-doped magnetite nanoparticles are synthesized via aqueous co-precipitation method under mild conditions. • Gd doping affects growth of magnetite nanoparticles leading to tunable particle size. • Gd-doped magnetite nanoparticles exhibit ferrimagnetic properties.

  5. On improvement of scintillation characteristics of Gd2SiO5:Ce crystals by thermal treatment

    International Nuclear Information System (INIS)

    Bondar, Valery G.; Grinyov, Boris V.; Katrunov, Konstantin A.; Lisetski, Longin N.; Nagornaya, Lyudmila L.; Ryzhikov, Vladimir D.; Spasov, Vladimir G.; Starzhinskiy, Nikolai; Tamulaitis, Gintautas

    2005-01-01

    Effects of thermal treatment of Gd 2 SiO 5 :Ce crystals at T∼0.7T m under low pressure on their optical and scintillation properties were studied. It is shown that thermal treatment in the atmosphere with the chemical potential of ∼40 J mol -1 decreases the absorption in the UV region and substantially improves the crystal transparency in the region of intrinsic emission peaked at 427 nm.Narrowing of the emission band due to suppression of the long-wave component in the range of 520-560 nm, light output increase by 7-10%, decrease of the emission decay time, and improvement of thermal stability of the luminescence yield were also observed. Transformations of the ensemble of structural defects in cerium-activated gadolinium oxyorthosilicate crystals are under discussion

  6. Optical waveguide formed in Yb:GdCOB and Yb:YCOB crystals by 3.0MeV O{sup +} implantation

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang, E-mail: sdujy@163.com [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)

    2013-07-15

    Planar optical waveguides were formed in Yb:GdCOB and Yb:YCOB crystals by 3.0 MeV O{sup +} ion implantation at fluence of 2 × 10{sup 15} ions/cm{sup 2} at room temperature, respectively. The prism coupling method was performed to characterize the dark-mode property of the waveguides. The refractive index profiles in the waveguides were reconstructed by reflectivity calculation method (RCM). The results show that after the implantation, a 1.5 μm-wide region with enhanced refractive-index was formed beneath the sample surfaces to act as waveguide structures for both Yb:GdCOB and Yb:YCOB.

  7. Calculation of the band structure of GdCo2, GdRh2 e GdIr2 by the APW method

    International Nuclear Information System (INIS)

    Carvalho, J.A.B. de.

    1974-03-01

    The band structure of GdCo 2 , GdRh 2 , GdIr 2 has been calculated by the APW method. A histogram of the density of states is presented for each compound. The bands are transition-metal-like, with s-d hybridization near the Fermi level. The 5d character near the Fermi level increases as one goes from Co to Ir

  8. Energy transfer phenomena and Judd-Ofelt analysis on Sm{sup 3+} ions in K{sub 2}GdF{sub 5} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Do, Phan Van [Thuyloi University, 175 Tay Son, Dong da Dist, Hanoi (Viet Nam); Tuyen, Vu Phi, E-mail: vptuyen@gust-edu.vast.vn [Graduate University of Science and Technology - VAST, 18 Hoang quoc Viet, Hanoi (Viet Nam); DuyTan University, K7/25 QuangTrung, Danang (Viet Nam); Quang, Vu Xuan [DuyTan University, K7/25 QuangTrung, Danang (Viet Nam); Khaidukov, Nicholas M. [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation); TrongThanh, Nguyen [Institute of Materials Science - VAST, 18 Hoang quoc Viet, Hanoi (Viet Nam); Sengthong, Bounyavong [DuyTan University, K7/25 QuangTrung, Danang (Viet Nam); Huy, Bui The, E-mail: buithehuy.nt@gmail.com [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2016-11-15

    The Raman, absorption, luminescence spectra and lifetimes curves of Sm{sup 3+}-doped K{sub 2}GdF{sub 5}were measured. Based on the Judd-Ofelt analysis, the values of radiative transition probabilities, branching ratios, integrated emission cross-sections and radiative lifetimes of excited states of Sm{sup 3+} in K{sub 2}GdF{sub 5} crystal were calculated. The migration of excitation energy between the Gd{sup 3+} ions and the trapping processes of Gd{sup 3+} excitation energy by Sm{sup 3+} and Tb{sup 3+}ions in K{sub 2}GdF{sub 5} crystal are reported. The role of the overlapping between the broad, allowed absorption bands of the RE{sup 3+} ions and the narrow absorption lines {sup 6}I{sub J} and {sup 6}P{sub J} of Gd{sup 3+} ions on the trapping rates of the RE{sup 3+} was discussed. The energy transfer between the Sm{sup 3+} ions was studied by the decay measurement, which has been fitted by Inokuti-Hirayama energy transfer model and revealed that electric dipole–quadrupole interaction is responsible for the energy transfer process in Sm{sup 3+} ions doped K{sub 2}GdF{sub 5} crystal.

  9. Syntheses and crystal structures of BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica C.; Ibers, James A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM-UMR 5257 CNRS/CEA/UM2/ENSCM, Bat 426, BP 17171, 30207 Bagnols/Ceze (France)

    2015-06-15

    Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}, were synthesized by the reactions of the elements at 1173-1273 K. For CsAgUTe{sub 3} CsCl flux was used. Their crystal structures were determined by single-crystal X-ray diffraction studies. The sulfide BaAgTbS{sub 3} crystallizes in the BaAgErS{sub 3} structure type in the monoclinic space group C{sup 3},{sub 2h}-C2/m, whereas the tellurides BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3} crystallize in the KCuZrS{sub 3} structure type in the orthorhombic space group D{sup 1},{sub 2}{sup 7},{sub h}-Cmcm. The BaAgTbS{sub 3} structure consists of edge-sharing [TbS{sub 6}{sup 9-}] octahedra and [AgS{sub 5}{sup 9-}] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features {sup 2}{sub ∞}[MLnTe{sub 3}{sup 2-}] layers for BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and {sup 2}{sub ∞}[AgUTe{sub 3}{sup 1-}] layers for CsAgUTe{sub 3}. These layers comprise [MTe{sub 4}] tetrahedra and [LnTe{sub 6}] or [UTe{sub 6}] octahedra. Ba or Cs atoms separate these layers. As there are no short Q..Q (Q = S or Te) interactions these compounds achieve charge balance as Ba{sup 2+}M{sup +}Ln{sup 3+}(Q{sup 2-}){sub 3} (Q = S and Te) and Cs{sup +}Ag{sup +}U{sup 4+}(Te{sup 2-}){sub 3}. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Thermal conductivity of ferrimagnet GdBaMn2O5.0 single crystals

    Directory of Open Access Journals (Sweden)

    J. C. Wu

    2017-05-01

    Full Text Available GdBaMn2O5.0 is a double-perovskite ferrimagnet consisting of pyramidal manganese layers. In this work, we study the in-plane and the c-axis thermal conductivities of GdBaMn2O5.0 single crystals at low temperatures down to 0.3 K and in high magnetic fields up to 14 T. The κc(T curve shows a broad hump below the Néel temperature (TN = 144 K, which indicates the magnon heat transport along the c axis. Whereas, the κa(T shows a kink at TN, caused by a magnon-phonon scattering effect. This anisotropic behavior is caused by the anisotropy of spin interactions along different directions. At very low temperatures, magnetic-field-induced changes of κa and κc, which is likely due to phonon scattering by free Gd3+ spins, is rather weak. This indicates that the spin coupling between Gd3+ and Mn2+/Mn3+ is rather strong at low temperatures.

  11. Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators

    Science.gov (United States)

    Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin

    2017-06-01

    Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.

  12. Spectral properties of Er{sup 3+}-doped CaGdAlO{sub 4} crystal for laser application around 1.55 μm

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.H.; Gong, X.H.; Chen, Y.J.; Lin, Y.F; Luo, Z.D.; Huang, Y.D., E-mail: huyd@fjirsm.ac.cn

    2014-02-05

    Highlights: • Detailed spectral properties of the Er:CaGdAlO{sub 4} crystal have been investigated. • Multi-phonon relaxation rate of Er{sup 3+} ions in the Er:CaGdAlO{sub 4} crystal is estimated. • The quantum efficiency of the {sup 4}I{sub 13/2} level in the Er:CaGdAlO{sub 4} crystal is near 100%. -- Abstract: Room-temperature polarized spectral properties of the Er:CaGdAlO{sub 4} crystal are reported. The Judd–Ofelt theory was applied to analyze the polarized absorption spectra and then calculate the spontaneous emission probabilities, radiative lifetimes, and branch ratios. Room-temperature fluorescence lifetimes of the {sup 4}I{sub 13/2}, {sup 4}I{sub 11/2}, {sup 4}F{sub 9/2}, and {sup 4}S{sub 3/2} multiplets for Er{sup 3+} ions were measured. Stimulated emission cross-sections of the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition obtained by the Fuchtbauer–Ladenberg formula and the reciprocity method were compared. The results show that the Er:CaGdAlO{sub 4} crystal may be a potential gain medium for a low-threshold 1.55 μm laser.

  13. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  14. Structural and magnetic properties of Gd{sup 3+} ion substituted magnesium ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Elkady, Ashraf S. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Reactor Physics, NRC, Atomic Energy Authority, Cairo (Egypt); Hussein, Shaban I. [Department of Reactor Physics, NRC, Atomic Energy Authority, Cairo (Egypt); Rashad, Mohamed M., E-mail: rashad133@yahoo.com [Central Metallurgical Research and Development Institute, Helwan, Cairo 11421 (Egypt)

    2015-07-01

    Nanocrystalline MgGd{sub x}Fe{sub 2−x}O{sub 4} powders (where x=0, 0.05, 0.1, 0.2, 0.25, 0.3) have been synthesized by the ethylene diamine tetraacetic acid (EDTA)-based sol–gel combustion method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) were applied in order to study the effect of variation of Gd{sup 3+} ion substitution and its impact on crystal structure, crystallite size, lattice parameters, nanostructure and magnetic properties of the formed powders. XRD indicated that, after doping and calcination at 400 °C for 2 h, all samples have two spinel ferrite structures namely cubic and tetragonal phases, which are dependent on Gd{sup 3+} ion concentration. The cubic phase is found to increase with increasing the Gd{sup 3+} ion molar ratio up to 0.1, compared to pure MgFe{sub 2}O{sub 4} and higher Gd{sup 3+} content samples. Indeed, with increasing Gd{sup 3+} ion, the crystallite size was almost unchanged whereas the lattice parameter was found to increase. FT-IR spectrum showed broadening of the ν{sub 2} band and the presence of another band in the range (465–470 cm{sup −1}) upon adding Gd{sup 3+} ion, which confirm the presence of Gd{sup 3+} ion in addition to Fe{sup 3+} ion at octahedral site. Besides, these bands were assigned to the formation of (Gd{sup 3+}–O{sup 2−}) complexes at B-sites. HRTEM images showed that the studied samples consist of nanocrystallites having average particle sizes around 9 nm for pure MgFe{sub 2}O{sub 4} up to 27 and 42 nm for the Gd{sup 3+} ion substituted MgFe{sub 2}O{sub 4} of molar ratio 0.05 and 0.30, respectively. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Gd concentration incorporation up to x=0.1, as a result of the change of cubic and tetragonal spinel ratio and lattice parameters. Meanwhile, the formed powders exhibited

  15. Polymorphous GdScO3 as high permittivity dielectric

    International Nuclear Information System (INIS)

    Schäfer, A.; Rahmanizadeh, K.; Bihlmayer, G.; Luysberg, M.; Wendt, F.; Besmehn, A.; Fox, A.

    2015-01-01

    Four different polymorphs of GdScO 3 are assessed theoretically and experimentally with respect to their suitability as a dielectric. The calculations carried out by density functional theory reveal lattice constants, band gaps and the energies of formation of three crystal phases. Experimentally all three crystal phases and the amorphous phase can be realized as thin films by pulsed laser deposition using various growth templates. Their respective crystal structures are confirmed by X-ray diffraction and transmission electron microscopy reflecting the calculated lattice constants. X-ray photoelectron spectroscopy unveils the band gaps of the different polymorphs of GdScO 3 which are above 5 eV for all films demonstrating good insulating properties. From capacitance voltage measurements, high permittivities of up to 27 for hexagonal GdScO 3 are deduced. - Highlights: • Different epitaxial polymorph phases of GdScO 3 were grown by pulsed laser deposition. • The cubic phase of GdScO 3 is reported for the first time. • All phases are proven to be useful for the use in silicon based and III–V based microelectronic devices.

  16. Ising-like spin anisotropy and competing antiferromagnetic-ferromagnetic orders in GdBaCo2O5.5 single crystals.

    Science.gov (United States)

    Taskin, A A; Lavrov, A N; Ando, Yoichi

    2003-06-06

    In RBaCo2O5+x compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo2O5.5 single crystals and find a remarkable uniaxial anisotropy of Co3+ spins which is tightly linked with the chain oxygen ordering in GdO0.5 planes. Reflecting the underlying oxygen order, CoO2 planes also develop a spin-state order consisting of Co3+ ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.

  17. Investigation of the thermoluminescent response of K2GdF5:Dy3+ crystals to photon radiation and neutron fields

    International Nuclear Information System (INIS)

    Silva, Edna C.; Faria, Luiz O.; Santos, Joelan A.L.; Vilela, Eudice C.

    2009-01-01

    The thermoluminescent (TL) properties of undoped and Dy 3+ doped K 2 GdF 5 crystals were investigated from the point of view of gamma and neutron dosimetry. Crystalline K 2 GdF 5 platelets with thickness of about 1 mm and doped with 0.0, 0.2, 1.0, 5.0 and 10.0 at.% Dy 3+ ions, synthesized under hydrothermal conditions, were irradiated in order to study TL sensitivity, as well as dose and energy response, reproducibility and fading. As it has been turned out, crystals doped with 5.0 at% Dy 3+ show the most efficient TL response and demonstrate a linear response to doses for all the radiation fields. TL glow curves from Dy 3+ doped K 2 GdF 5 crystals can be deconvoluted into four individual TL peaks centered at 153, 185, 216 and 234 deg C. Concerning the photon fields studied, the maximum TL response has been found for the 52.5 keV photons. The intensity is 15 times more than that of the response for the 662 keV photons from a Cs-137 source. On the other hand, the K 2 GdF 5 crystals doped with 5.0 at % Dy 3+ have also been found to have the better TL response for fast neutron radiation, among all dopants studied. For fast neutron radiation produced by a 241 Am-Be source, the TL responses for doses were also linear and comparable to that of commercial TLD-600, irradiated at same conditions. It has been established that the gamma sensitivity of the crystals is about 0.07% of the neutron sensitivity and the fast neutron sensitivity is about 4.5 % of the thermal neutron sensitivity. These results points out that K 2 Gd 0.95 Dy 0.05 F 5 crystals are good candidates for use in neutron dosimetry applications. (author)

  18. Hard X-ray MCD in GdNi/sub 5/ and TbNi/sub 5/ single crystals

    CERN Document Server

    Galera, R M

    1999-01-01

    XMCD experiments have been performed at the R L/sub 2,3/ and Ni K- edges on magnetically saturated single crystals of GdNi/sub 5/ and Tb Ni/sub 5/ ferromagnetic compounds. The spectra present huge and well structured dichroic $9 signals at both the R L/sub 2,3/ and the Ni K- edges. Structures from the quadrupolar (2p to 4f) transitions are clearly observed at the R L/sub 2,3/-edges. Though Ni is not magnetic, large intensities, up to 0.4, are measured at the $9 Ni K- edge. The Ni K-edge XMCD shows a three-peak structure which intensities dependent on the rare earth. (7 refs).

  19. Effect of Al2Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    International Nuclear Information System (INIS)

    Chen, Hong; Zhang, Ke; Yao, Chengwu; Dong, Jie; Li, Zhuguo; Emmelmann, Claus

    2015-01-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al 2 Gd led to further grain refining and elevated mechanical properties. • Al 2 Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al 2 Gd phase as well as suppressed the precipitation of eutectic Mg 17 Al 12 phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al 2 Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation

  20. Structural characterization of the CeO{sub 2}/Gd{sub 2}O{sub 3} mixed system by synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Artini, Cristina, E-mail: c.artini@ge.ieni.cnr.it [Dipartimento di Chimica e Chimica Industriale, Universita degli Studi di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Costa, Giorgio A., E-mail: costa@chimica.unige.it [Dipartimento di Chimica e Chimica Industriale, Universita degli Studi di Genova, Via Dodecaneso 31, 16146 Genova (Italy); CNR-SPIN Genova, Corso Perrone 24, 16152 Genova (Italy); Pani, Marcella, E-mail: marcella@chimica.unige.it [Dipartimento di Chimica e Chimica Industriale, Universita degli Studi di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Lausi, Andrea, E-mail: andrea.lausi@elettra.trieste.it [Sincrotrone Trieste S.C.p.A., ss 14, km 163, 5, 34149 Basovizza, Trieste (Italy); Plaisier, Jasper, E-mail: jasper.plaisier@elettra.trieste.it [Sincrotrone Trieste S.C.p.A., ss 14, km 163, 5, 34149 Basovizza, Trieste (Italy)

    2012-06-15

    The structural determination of the CeO{sub 2}/Gd{sub 2}O{sub 3} mixed system is a non-trivial problem because of the close resemblance between the ionic sizes of Ce{sup 4+} and Gd{sup 3+} and between the crystal structures of CeO{sub 2} and Gd{sub 2}O{sub 3}. (Ce{sub 1-x}Gd{sub x})O{sub 2-x/2} powder samples with x ranging between 0 and 1 have been synthesized by coprecipitation of mixed oxalates and subsequent thermal decomposition in air at 1200 Degree-Sign C followed by slow cooling. Synchrotron powder X-ray diffraction data were collected and refined by the Rietveld method. Lattice parameters do not follow Vegard's law and no peak splitting has been observed for any composition, meaning that no biphasic regions exist over the whole compositional range. The same hybrid structural model - a proper mixture of the structures of the two pure oxides - was used for the refinements, allowing to account for the data observed. - graphical abstract: Substituting Ce{sup 4+} by Gd{sup 3+}, a gradual transition from the F structure (typical of CeO{sub 2}) to the C structure (typical of Gd{sub 2}O{sub 3}) takes place. The lattice parameters do not follow Vegard's law. Highlights: Black-Right-Pointing-Pointer A structural study of Ce-Gd mixed oxides has been performed. Black-Right-Pointing-Pointer In (Ce{sub 1-x}Gd{sub x})O{sub 2-x/2} a solid solution forms for 0{<=}x{<=}0.3. Black-Right-Pointing-Pointer For x>0.3 a gradual transition from the C to the F structure is observed. Black-Right-Pointing-Pointer Lattice parameters do not follow Vegard's law.

  1. Luminescence and scintillation timing characteristics of (Lu{sub x}Gd{sub 2−x})SiO{sub 5}:Ce single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yawai, Nattasuda; Chewpraditkul, Warut; Sakthong, Ongsa [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Chewpraditkul, Weerapong, E-mail: weerapong.che@kmutt.ac.th [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Wantong, Kriangkrai [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek [National Centre for Nuclear Research, A. Soltana 7, PL 05-400 Otwock-Swierk (Poland); Sidletskiy, Oleg [Institute for Scintillation Materials NAS of Ukraine, 60 Nauky Avenue, 61001 Kharkiv (Ukraine)

    2017-02-01

    The luminescence and scintillation characteristics of cerium-doped lutetium-gadolinium orthosilicate (Lu{sub x}Gd{sub 2−x}SiO{sub 5}:Ce; x=0, 0.8, 1.8) single crystals were investigated. At 662 keV γ-rays, the light yield of 29,800±3000 ph MeV{sup −1} obtained for Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce is higher than that of 20,200±2000 and 11,800±1200 ph MeV{sup −1} obtained for Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce and Gd{sub 2}SiO{sub 5}:Ce, respectively. The fast component decay time of 32, 18 and 17 ns was measured in the scintillation decay of Gd{sub 2}SiO{sub 5}:Ce, Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce and Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce, respectively. The coincidence time spectra for 511 keV annihilation quanta were measured in reference to a fast BaF{sub 2} detector and time resolution was discussed in terms of a number of photoelectrons and decay time of the fast component. The mass attenuation coefficient for studied crystals at 60 and 662 keV γ-rays was also evaluated and discussed. - Highlights: • Scintillation timing characteristics of Lu{sub x}Gd{sub 2−x}SiO{sub 5}:Ce crystals are studied. • Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce exhibits excellent light yield and timing response. • Energy resolution of 6% @662 keV is obtained for Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce. • Coincidence time resolution of 368 ps is obtained for Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce.

  2. Single-crystal-like GdNdOx thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Directory of Open Access Journals (Sweden)

    Ziwei Wang

    2016-06-01

    Full Text Available Single-crystal-like rare earth oxide thin films on silicon (Si substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdOx (GNO film was deposited using a high-temperature sputtering process at 500°C. A Gd2O3 and Nd2O3 mixture was used as the sputtering target, in which the proportions of Gd2O3 and Nd2O3 were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  3. Spectroscopic properties and laser performance at 1,066 nm of a new laser crystal Nd:GdTaO4

    Science.gov (United States)

    Peng, Fang; Yang, Huajun; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2015-03-01

    A new laser medium Nd3+:GdTaO4 single crystal with high optical quality was grown successfully by the Czochralski method, and its high-efficiency laser operation at 1,066 nm was demonstrated for the first time. The absorption cross section of the crystal at 808 nm is 5.098 × 10-20 cm2, and the full width at half maximum of this absorption band is about 6 nm. Spectral properties are investigated by Judd-Ofelt theory. The stimulated emission cross section at 1,066 nm is 3.9 × 10-19 cm2, and the fluorescence lifetime of 4F3/2 level is 178.4 μs. A diode end-pumped Nd:GdTaO4 laser at 1,066 nm with the maximum output power of 2.5 W is achieved in the continuous-wave mode. The optical-to-optical conversion efficiency and slope efficiency are 34.6 and 36 %, respectively. In addition, the fluorescence branching ratio of 4F3/2 → 4I9/2 transition reaches 44.4 %, indicating that Nd:GdTaO4 may be an efficient laser medium at 920 nm. All the results demonstrate that Nd:GdTaO4 crystal is a good candidate for laser diode-pumped laser material.

  4. Effect of Al{sub 2}Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Zhang, Ke; Yao, Chengwu [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Dong, Jie [National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Emmelmann, Claus [Institute of Laser and System Technologies, Hamburg University of Technology, Hamburg, 21073 (Germany)

    2015-03-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al{sub 2}Gd led to further grain refining and elevated mechanical properties. • Al{sub 2}Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al{sub 2}Gd phase as well as suppressed the precipitation of eutectic Mg{sub 17}Al{sub 12} phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al{sub 2}Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation.

  5. Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T=La, Gd, Y, and Lu) disordered single crystals

    Science.gov (United States)

    Cano-Torres, J. M.; Rico, M.; Han, X.; Serrano, M. D.; Cascales, C.; Zaldo, C.; Petrov, V.; Griebner, U.; Mateos, X.; Koopmann, P.; Kränkel, C.

    2011-11-01

    Tetragonal double tungstate single crystals with formula NaT(WO4)2 have been grown by the Czochralski (T = Gd, La, Y) or by the top-seeded solution growth (T = Lu) methods with Tm concentration between 8 × 1018 and 7.85 × 1020 cm-3. The spectroscopic properties of Tm3+ in these crystals are related with the peculiarities of their I4¯ crystalline structure. Sixty-five percent of La ions in NaLa(WO4)2 are in the 2d site, while in the other crystal hosts, the lanthanide occupies preferentially the 2b site (59% in T = Gd, 74% in T = Y, and 58% in T = Lu). As a consequence, the linewidths of spectral bands associated with the electronic transitions are significantly narrower in NaLa(WO4)2 than in the rest of the isostructural crystals considered. Polarized spectroscopic measurements at 5 K and at higher temperatures, along with energy level simulation of the 4f12 configuration using a single-electron Hamiltonian, including free-ion and crystal field interactions, allowed us to determine the irreducible representation and energy of Stark levels up to the 3P0 multiplet and thus to obtain realistic partition functions (Z) used for emission cross-section calculations. In particular, for the 3F4(u) → 3H6(l) laser transition at λ ≈ 2 μm, this provides: Zl/Zu = 1.436 (T = Gd), 1.464 (T = La), 1.448 (T = Y), and 1.471 (T = Lu). Radiative lifetimes calculated by the Judd-Ofelt and Füchtbauer-Ladenburg methods are in agreement and decrease in the following order T = Gd, La, Y, and Lu, however, nonradiative losses are stronger for T = Gd and La crystals; therefore, experimental lifetimes of 1D2, 1G4, 3H4, and 3F4 Tm3+ multiplets do not change too much with crystal host. For 4.68 at.% Tm:NaY(WO4)2 crystal continuous-wave laser operation is obtained with ≈42% of slope efficiency and a record (for this crystal class) tuning capability of λ = 1847-2069 nm. The broad bandwidths, ΔλFWHM > 20 nm, of the free-running laser emission are promising for ultrafast (fs) mode

  6. Development and measurement of luminescence properties of Ce-doped Cs2LiGdBr6 crystals irradiated with X-ray, γ-ray and proton beam

    Science.gov (United States)

    Jang, Jonghun; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2017-12-01

    The effect of higher Ce-concentration on the luminescence and scintillation properties of Cs2LiGdBr6 single crystals are studied. We used the Bridgman method for the growth of Ce-doped Cs2LiGdBr6 single crystals. Luminescence properties of the grown crystals are measured by X-ray and proton excitations. We measured the pulse height and fluorescence decay time spectra of Cs2LiGdBr6:Ce3+ with a bi-alkali photo multiplier tube (PMT) under γ-ray excitation from 137Cs source. Improvements in the scintillation properties are observed with the increase of Ce-concentration in the lattice. Detailed procedure of the crystal growth is also discussed.

  7. Inhomogeneous ferrimagnetic-like behavior in Gd2/3Ca1/3MnO3 single crystals

    International Nuclear Information System (INIS)

    Haberkorn, N.; Larregola, S.; Franco, D.; Nieva, G.

    2009-01-01

    We present a study of the magnetic properties of Gd 2/3 Ca 1/3 MnO 3 single crystals at low temperatures, showing that this material behaves as an inhomogeneous ferrimagnet. In addition to small saturation magnetization at 5 K, we have found history dependent effects in the magnetization and the presence of exchange bias. These features are compatible with microscopic phase separation in the clean Gd 2/3 Ca 1/3 MnO 3 system studied

  8. Structural, spectroscopic, and tunable laser properties of Yb3+ -doped NaGd(WO4)2

    Science.gov (United States)

    Cascales, C.; Serrano, M. D.; Esteban-Betegón, F.; Zaldo, C.; Peters, R.; Petermann, K.; Huber, G.; Ackermann, L.; Rytz, D.; Dupré, C.; Rico, M.; Liu, J.; Griebner, U.; Petrov, V.

    2006-11-01

    Single crystals of Yb3+ -doped NaGd(WO4)2 with up to 20mol% ytterbium content have been grown by the Czochralski technique in air or in N2+O2 atmosphere and cooled to room temperature at different rates (4-250°C/h) . Only the noncentrosymmetric tetragonal space group I4¯ accounts for all reflections observed in the single crystal x-ray diffraction analysis. The distortion of this symmetry with respect to the centrosymmetric tetragonal space group I41/a is much lower for crystals cooled at a fast rate. Na+ , Gd3+ , and Yb3+ ions share the two nonequivalent 2b and 2d sites of the I4¯ structure, but Yb3+ (and Gd3+ ) ions are found preferentially in the 2b site. Optical spectroscopy at low (5K) temperature provides additional evidence of the existence of these two sites contributing to the line broadening. The comparison with the F7/22(n) and F5/22(n') Stark energy levels calculated using the crystallographic Yb-O bond distances allows to correlate the experimental optical bands with the 2b and 2d sites. As a novel uniaxial laser host for Yb3+ , NaGd(WO4)2 is characterized also with respect to its transparency, band-edge, refractive indices, and main optical phonons. Continuous-wave Yb3+ -laser operation is studied at room temperature both under Ti:sapphire and diode laser pumping. A maximum slope efficiency of 77% with respect to the absorbed power is achieved for the π polarization by Ti:sapphire laser pumping in a three-mirror cavity with Brewster geometry. The emission is tunable in the 1014-1079nm spectral range with an intracavity Lyot filter. Passive mode locking of this laser produces 120fs long pulses at 1037.5nm with an average power of 360mW at ≈97MHz repetition rate. Using uncoated samples of Yb:NaGd(WO4)2 at normal incidence in simple two-mirror cavities, output powers as high as 1.45W and slope efficiencies as high as 51% are achieved with different diode laser pump sources.

  9. CW and AO Q-switched operation of a dual-crystal Tm, Ho:GdVO4 laser pumped by two diodes

    International Nuclear Information System (INIS)

    Li, L J; Bai, Y F; Liu, Y W; He, Z L; Wang, J; Yao, B Q; Zhou, S; Xing, M N

    2013-01-01

    Continuous wave (CW) mode and acousto-optic (AO) Q-switched mode operation of a dual-crystal Tm, Ho:GdVO 4 laser is reported. The dual-crystal Tm, Ho:GdVO 4 laser with output wavelength of 2.05 μm was pumped by two laser diodes (LDs). The Tm, Ho:GdVO 4 crystals were cooled by liquid nitrogen and pumped by two fiber-coupled LDs with a center output wavelength of 801.0 nm. A 20.5 W output power was obtained at a 255 mm physical cavity length in CW mode operation, and a 19.6 W average power was obtained at a pulse repetition frequency (PRF) of 10 kHz with a 19 ns pulse duration. Also, the efficiency loss of the laser is not more than 4.4% from CW mode to Q-switch mode, and the M 2 factor, which is measured by the traveling knife-edge method, does not exceed 1.2. (paper)

  10. Structural and magnetic properties of Gd-doped ZnO

    KAUST Repository

    Bantounas, Ioannis

    2014-01-01

    We use density functional theory to investigate structural and magnetic properties of Gd doped ZnO, accounting for the impurity 4f states using the GGA + U method. (i) We calculate the binding energy of forming [Gd-Gd] dimers, [VO - GdZn] and [VZn - GdZn] complexes and find that while the formation of [VZn - GdZn] is favourable, [GdZn - GdZn] and [VO - GdZn] complexes are less likely to form. Next, (ii) we investigate the spacial arrangement of two (and three) GdZn impurities in a 3 × 3 × 2 supercell and find that the magnetic impurities are energetically favourable when occupying distant lattice sites. Finally, we study the nature of interactions between the magnetic impurities (iii) for Gd in nearest-neighbour and non-nearest-neighbour Zn sites, (iv) in the presence of Zn or O vacancies, and (v) with and without additional charge carriers. Our results show mainly paramagnetic behaviour. In a few cases, e.g. magnetic impurities occupying in-plane nearest-neighbour zinc sites with n-type carrier doping, weak ferromagnetic coupling is observed. This magnetic ordering is of the order of a few meV and can be easily destroyed by thermal fluctuations. We thus expect Gd:ZnO to show paramagnetic behaviour at temperatures approaching room temperature.

  11. The magnetic structure of GdNi2B2C investigated by neutron powder diffraction

    International Nuclear Information System (INIS)

    Barcza, A.; Rotter, M.; Doerr, M.; Beuneu, B.

    2005-01-01

    Full text: The group of ReT 2 B 2 C (Re=rare earth, T=transition metal) shows a very interesting interplay between magnetism and superconductivity due to the rare earth metals. In this work the magnetism of GdNi 2 B 2 C was studied with neutron diffraction. Previous investigations with x-ray diffraction methods have determined the crystal structure as a body centered tetragonal structure (I 4/mmm). Hot neutrons were used for the diffraction experiment, because the absorption cross section of Gd is significantly smaller for short wavelengths. The investigated compound orders magnetically at TN=19.5 K, and so the experiment was carried out at two temperatures, namely 30 K and 2.2 K. The results show a incommensurate spin structure with a propagation vector of (0.55 0 0). To confirm this results additional simulations of the spin structure were done based on the Standard Model of rare earth magnetism. A neutron diffraction pattern was calculated using the McPhase program package and is compared to the experimental data. (author)

  12. Valence and magnetic state of transition-metal and rare-earth ions in single-crystal multiferroics RMn{sub 2}O{sub 5} (R = Y, Bi, Eu, Gd) from X-ray photoelectron spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Kozakov, A.T. [Scientific-Research Institute of Physics at Southern Federal University, 194 Stachki, Rostov-na-Donu 344194 (Russian Federation); Kochur, A.G., E-mail: agk@rgups.ru [Rostov State University of Transport Communication, 2 Narodnogo Opolcheniya, Rostov-na-Donu 344038 (Russian Federation); Nikolsky, A.V.; Googlev, K.A.; Smotrakov, V.G.; Eremkin, V.V. [Scientific-Research Institute of Physics at Southern Federal University, 194 Stachki, Rostov-na-Donu 344194 (Russian Federation)

    2011-11-15

    Highlights: {yields} Single crystals RMn{sub 2}O{sub 5} (R = Y, Bi, Eu, Gd) and YMnO{sub 3} are grown. {yields} Core level XPS are measured and calculated with inclusion of temperature effect. {yields} Mn2p, Mn3s, R4s, and R4d (R = Eu, Gd) XPS are sensitive to valence and spin state. {yields} Paramagnetic moments per structural cell are estimated. - Abstract: Single crystals of orthorhombic multiferroics RMn{sub 2}O{sub 5} (R = Y, Bi, Eu, Gd), and of hexagonal manganite YMnO{sub 3} are grown. X-ray photoelectron spectra of the core levels of the Mn, Y, Bi, Eu, Gd, and O atoms in multiferroics are obtained at room temperature with the ESCALAB 250 microprobe system with monochromatization of the exciting X-ray radiation. X-ray photoelectron spectra of Mn2p, Mn3s, R4s, and R4d (R = Eu, Gd) levels are assigned based on one-configuration isolated-ion approximation calculations with taking the temperature effect into account. It is shown using the photoelectron spectroscopy methods that both Mn{sup 3+} and Mn{sup 4+} ions are present in orthorhombic multiferroics, while Eu and Gd are in trivalent state. Paramagnetic moments per structural unit are calculated and compared with those determined from our spectroscopic data and with the data from other authors.

  13. Specific features of the domain structure of (Gd1-xNdx)2(MoO4)3 crystals

    International Nuclear Information System (INIS)

    Bryzgalov, A.N.; Slepchenko, B.M.; Virachev, B.P.

    1989-01-01

    Formation of the domain structures by sample transfer into thermodynamically metastable state using a simultaneous effect of electric field and temperature change is investigated in Gd 1.7 Nd 0.3 (MoO 4 ) 3 monocrystals (GMO). Some new results obtained under investigations into GMO domain structure using neodymium by means of hydrothermal etching and polarization-optical method are presented

  14. Hyperfine structure in the Gd II spectrum and the nuclear electric quadrupole moment of 157Gd

    International Nuclear Information System (INIS)

    Clieves, H.P.; Steudel, A.

    1979-01-01

    The hyperfine structure of 157 Gd was investigated in 20 Gd II lines by means of a photoelectric recording Fabry-Perot interferometer with digital data processing. The hyperfine splitting factors, A and B, were obtained by computer fits to the observed line structures. Using a multiconfigurational set of wave functions in intermediate coupling derived by Wyart, mono-electronic parameters were deduced by a parametric treatment. The nuclear electric quadrupole moment of 157 Gd was evaluated from the quadrupole interaction of the 5d electron in 4f 7 5d6s, the 5d electron in 4f 7 5d6p, and the 6p electron in 4f 7 5d6p. The three values obtained for the quadrupole moment agree very well. The final result, corrected for Sternheimer shielding, is Q( 157 Gd) = 1.34(7) x 10 -24 cm 2 . (orig.) [de

  15. Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types

    Energy Technology Data Exchange (ETDEWEB)

    McWhorter, Sean William [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd5(SixGe1-x)4 several new compounds were synthesized with different crystal structures, but similar structural features. In Gd5(SixGe1-x)4, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd5(SixGe1-x)4 can be thought of as being formed from two 32434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd2MgGe2 and Gd2InGe2 both possess the same 32434 nets of Gd atoms as Gd5(SixGe1-x)4, but these nets are connected differently, forming the Mo2FeB2 crystal structure. A search of the literature revealed that compounds with the composition R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo2FeB2, Zr3Al2, Mn2AlB2 and W2CoB2 crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd2AlGe2 forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how

  16. Influence of Y, Gd and Sm on the glass forming ability and thermal crystallization of aluminum based alloy; Efeito das terras raras Y, Gd e Sm na tendencia a formacao de amorfo e na cristalizacao termica em ligas a base de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J., E-mail: aliaga@ufscar.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Danez, G.P. [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Al-based amorphous alloys represent an important family of metals and a great scientific activity has been devoted to determine the main features of both glass forming ability (GFA) and crystallization behavior in order to have a comprehensive framework aimed at potential technological applications. Nowadays, it is well known that the best Al-based amorphous alloys are formed in ternary systems such as Al- RE-TM, where RE is a rare earth and TM a transition metal. This paper presents results of research in Al{sub 85}Ni{sub 10}RE{sub 5} alloys (RE = Y, Gd and Sm). Amorphous ribbons were processed by melt-spinning under the same conditions and subsequently characterized by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show appreciable micro structural differences as function of the rare earth, thus crystal is obtained for Y, nano-glassy for Gd and, fully amorphous structure for Sm. (author)

  17. Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Chen, Yan; Yu, Hua; Lu, Hongwei; Ji, Zhenguo; Huang, Ping

    2015-01-01

    Highlights: • Na 5 Gd 9 F 32 nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na 5 Gd 9 F 32 lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na 5 Gd 9 F 32 nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na 5 Gd 9 F 32 lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb 3+ /Er 3+ ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties

  18. New intermetallic compounds Ln(Ag, AL)4 (Ln-Y, Gd, Tb, Dy) and their structure

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.

    1990-01-01

    By the methods of X-ray analysis crystal structure of compounds Ln(Ag,Al) 4 , where Ln-Y, Gd, Tb, Dy, posessing rhombic structure, is determined. The intermetallics have been prepared for the first time. Ways of atom distribution and their coordinates in DyAg 0.55 Al 3.45 structure (a=0.4296(1), b=04179(1), c=0.9995(3), R=0.093) are specified. Other compounds are formed in case of LnAgAl 3 compositions. Interatomic distances in Dy(Ag,Al) 4 structure are considered. A supposition is made on the formation in Ln-Ag-Al systems of a greater number of intermetallic compounds

  19. Rotational and translational distortions of the crystal structure of the Sr2HrRuO6 (Hr = Ho, Dy, Gd, Eu) complex perovskites

    International Nuclear Information System (INIS)

    Triana, C.A.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2013-01-01

    Sr 2 HrRuO 6 (Hr = Ho, Dy, Gd, Eu) complex perovskites were synthesized through the high-temperature solid-state reaction method, and their crystal structures were analyzed in detail as a function of the Hr-cation ionic radius. Results of powder XRD pattern measurement and Rietveld analysis of the experimental profiles show that the Sr 2 HrRuO 6 compounds crystallize in a monoclinic distorted perovskite-like structure, P2 1 /n (#14) space group, where the unit cell parameters are related to the primitive unit cell a p by a≈√(2)a p , b≈√(2)a p and c ≈ 2a p . The structures show an alternate distribution of the Ru 5+ (2d: 0.5, 0, 0) and Hr 3+ (2c: 0, 0.5, 0) making up RuO 6 and HrO 6 octahedra alternatively arranged in two interleaving fcc sublattices, where the O(1), O(2), and O(3) ions are localized at the corner of the octahedral, while the Sr 2+ is located at the A-site, occupying the cavities built by the corner-sharing octahedra with Wyckoff position 4e. Due to the existence of mismatched ionic sizes between the ionic radii of the Sr 2 HrRuO 6 compounds, the HrO 6 and RuO 6 octahedra are constrained to tilting around the [111] c , [001] c , and [110] c cubic directions so as to optimize the Sr–O inter-atomic bond lengths, tending to rotate the structure in order to fix the Ru 5+ and Hr 3+ ions on the M′ and M″ sites of the complex perovskites. The cell parameters a, b, and c, the inter-atomic bond angles, the inter-atomic bond lengths, and the tilting angles increase as the Hr-cation ionic radius increases. The mismatch that exists in the Sr 2 HrRuO 6 ionic radius produces a large distortion from the ideal cubic symmetry. The pure perovskite-like phase of Sr 2 HrRuO 6 is thermodynamically and kinetically stable at high temperatures above 1420 K, where it is entirely governed by the average size of the Hr 3+ and Ru 5+ cations. Highlights: ► Crystal structure of Sr 2 HrRuO 6 (Hr = Ho, Dy, Gd, Eu) as a function of Hr ionic radius. ► XRD

  20. Room-temperature picosecond high-order stimulated Raman scattering in laser garnet crystal hosts Gd3Ga5O12, Gd3Sc2Ga3O12, and Ca3(Nb,Ga)2Ga3O12

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Eichler, H J; Findeisen, J; Ueda, Ken-ichi; Fernandez, J; Balda, R

    1998-01-01

    High-order Stokes and anti-Stokes generation in the visible and near-infrared in cubic laser crystal hosts Gd 3 Ga 5 O 12 , Gd 3 Sc 2 Ga 3 O 12 , and Ca 3 (Nb,Ga) 2 Ga 3 O 12 was observed for the first time. All scattering-laser components were identified and attributed to the SRS-active vibration modes of these garnet crystals. (letters to the editor)

  1. Magnetic ordering of GdMn2

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Ritter, C.; Ballou, R.; Deportes, J.

    1999-01-01

    Complete text of publication follows. GdMn 2 crystallizes in the C15 cubic Laves phase structure. Within this structure Mn atoms lie at the vertices of regular tetrahedra stacked in the diamond arrangement connected by sharing vertices, leading to a strong geometric frustration. An antiferromagnetic magnetic order sets in below T N ∼ 105 K. It gives rise to a large magnetovolume effect (ΔV/V ∼ 1%). Thermal expansion data show two anomalies at 105 K and 35 K. The second anomaly was often interpreted as the ferromagnetic ordering of Gd sublattice. Moessbauer data indicate however, that Gd sublattice orders at T N ∼ 105 K as the Mn moments. Elastic neutron scattering measurements were performed using short wavelength neutron beam (λ = 0.5 A) on D9 at ILL. No magnetic contribution to the nuclear peaks was found excluding thereby any K = [0 0 0] component. However antiferromagnetic peaks indexed by a propagation vector [2/3 2/3 0] were observed leading to a non collinear magnetic arrangement of both Mn and Gd sublattices. The results are discussed by invoking the geometric frustration associated with the Mn atomic packing and the singlet state of the Gd ions. (author)

  2. Characterization of mixed Nd :LuxGd1-xVO4 laser crystals

    Science.gov (United States)

    Yu, H. H.; Zhang, H. J.; Wang, Z. P.; Wang, J. Y.; Yu, Y. G.; Cheng, X. F.; Shao, Z. S.; Jiang, M. H.; Ling, Z. C.; Xia, H. R.

    2007-06-01

    A series of laser crystals Nd :LuxGd1-xVO4 (x=0.14,0.32,0.50,0.61,0.70,0.80) was grown by the Czochralski method. The thermal properties, including the average linear thermal expansion coefficients, thermal diffusion coefficients, specific heats, and thermal conductivities, of the mixed crystals were obtained. The material constants Ms for the thermal stress resistance figure were calculated and showed that the thermal fracture limits of the mixed crystals should be comparable with that of Nd :YVO4. The polarization absorption spectra from 240to1000nm were measured at room temperature and the absorption cross sections at 809nm were calculated. Using the Judd-Ofelt theory, the theoretical radiative lifetimes were calculated and compared with the experimental results. Continuous wave laser performances were achieved with the mixed crystals at the wavelength of 1.06μm when they were pumped by a laser diode. Thermal, optical, and laser properties have shown variation as a function of x and proved that the mixed crystals are good laser materials.

  3. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO(4) crystal by direct femtosecond laser writing.

    Science.gov (United States)

    Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng

    2014-08-01

    We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.

  4. β-Y(BO{sub 2}){sub 3}. A new member of the β-Ln(BO{sub 2}){sub 3} (Ln = Nd, Sm, Gd-Lu) structure family

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Martin K.; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-07-01

    β-Y(BO{sub 2}){sub 3} was synthesized in a Walker-type multianvil module at 5.9 GPa/1000 C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO{sub 2}){sub 3} crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a = 15.886(2), b = 7.3860(6), and c = 12.2119(9) Aa. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO{sub 2}){sub 3} (Ln = Nd, Sm, Gd-Lu).

  5. Comparative optical study of thulium-doped YVO4 , GdVO4 , and LuVO4 single crystals

    Science.gov (United States)

    Lisiecki, R.; Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W.; Sobczyk, M.; Černý, Pavel; Šulc, Jan; Jelínková, Helena; Urata, Yoshiharu; Higuchi, Mikio

    2006-07-01

    YVO4:Tm3+ crystals grown by the Czochralski technique and GdVO4:Tm3+ and LuVO4:Tm3+ crystals grown by the floating-zone technique were investigated using methods of optical spectroscopy. Polarized absorption and emission spectra were recorded at room temperature and at 6K . The crystal-field analysis was performed assuming the D2d site symmetry for Tm3+ ions. In this way the missing crystal-field components of the H63 ground multiplet were located. Room temperature absorption spectra were analyzed in the framework of the Judd-Ofelt theory. Evaluated radiative lifetimes of luminescent levels of Tm3+ follow a general trend diminishing in agreement with the sequence: YVO4:Tm3+→GdVO4:Tm3+→LuVO4:Tm3+ . Luminescence lifetimes measured for the systems under study are similar except for the F43 lifetime, which appears to be surprisingly short for LuVO4:Tm3+ . Anisotropy of optical spectra is particularly pronounced in LuVO4:Tm3+ . Peak absorption cross section for the band relevant for optical pumping at about 805nm is roughly three times higher for π polarization. Stimulated emission cross sections for the F43-H63 transition near 1800nm were evaluated using the reciprocity method. The diode-pumped continuous wave laser operation in GdVO4:Tm3+ with a slope efficiency of up to 40% is demonstrated. In LuVO4:Tm3+ the diode-pumped laser oscillation in a pulsed mode was observed.

  6. Crystal growth and characterization of Tm doped mixed rare-earth aluminum perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Daisuke, E-mail: totsuka@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co., Ltd., 810-5 Nobe-cho, Tatebayashi, Gunma 374-0047 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Sugiyama, Makoto; Fujimoto, Yutaka; Yokota, Yuui [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystals were grown by the {mu}-PD method. Black-Right-Pointing-Pointer The grown crystals were single phase with perovskite structure (Pbnm). Significant segregation of Lu and Gd was detected in the growth direction. Black-Right-Pointing-Pointer Some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited. Black-Right-Pointing-Pointer Radioluminescence spectra showed several emission peaks ascribed to Tm{sup 3+} and Gd{sup 3+}. -- Abstract: In this work, we present results of structural characterization and optical properties including radio luminescence of (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystal scintillators for (x, y) = (0.30, 0.19), (0, 0.19) and (0, 0) grown by the micro-pulling-down ({mu}-PD) method. The grown crystals were single phase materials with perovskite structure (Pbnm) as confirmed by XRD and had a good crystallinity. The distribution of the crystal constituents in growth direction was evaluated, and significant segregation of Lu and Gd was detected in (Lu{sub 0.30}Gd{sub 0.19}Y{sub 0.50}Tm{sub 0.01})AP sample. The crystals demonstrated 70% transmittance in visible wavelength range and some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited in 190-900 nm. The radioluminescence measurement under X-ray irradiation demonstrated several emission peaks ascribed to 4f-4f transitions of Tm{sup 3+} and Gd{sup 3+}. The ratio of emission intensity in longer wavelength range was increased when Y was replaced by Lu or Gd.

  7. Structure and magnetic properties of Gd{sub x}Y{sub 1−x}FeO{sub 3} obtained by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bolarín-Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma, Hidalgo 42184 (Mexico); Sánchez-De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma, Hidalgo 42184 (Mexico); Cortés-Escobedo, C.A. [Centro de Investigación e Innovación Tecnológica del IPN, Distrito Federal 02250 (Mexico); Valenzuela, R. [Depto. de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Ammar, S. [ITODYS, UMR 7086, Université de Paris-Diderot, 75250 Paris Cedex (France)

    2014-02-15

    Highlights: • Orthohombic GDxY1-xFeO3 was obtained by mechanosynthesis after 5 h of milling. • Mechanosynthesized GdxY1-xFeO3 show weak ferromagnetic behavior. • Mechanosynthesis promotes unexpected magnetic properties in GdxY1-xFeO3. • The maximum magnetization that was reached 7.7 emu/g for Gdo.75Y0.25FeO3. • For Gd0.5Y0.5FeO3, the magnetization decreases down to 2.1 emu/g. -- Abstract: Solid solutions of yttrium–gadolinium orthoferrites Gd{sub x}Y{sub 1−x}FeO{sub 3} (0 ⩽ x ⩽ 1) were prepared by high-energy ball milling. The aim of this work was to study the influence of the synthesis parameters on the crystal structure and the magnetic behavior of these solid solutions. The precursors, Fe{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}, mixed in a stoichiometric ratio to obtain these orthoferrites, were milled for different times (up to 5 h). X-ray diffraction and Rietveld refinement were used to elucidate the phase transformation as a function of the milling time. Results showed the complete formation of orthoferrite with an orthorhombic structure (S.G. Pbnm) without any annealing after 5 h of milling for all of the compositions. The effect of the synthesis process and the x value on the crystal structure and the magnetic properties were also studied. All of the synthesized powders demonstrated weak ferromagnetic behavior. In particular, an increase in the maximum magnetization for all the compositions was found, with a maximum that reached 7.7 emu/g for Gd{sub 0.75}Y{sub 0.25}FeO{sub 3}. For Gd{sub 0.5}Y{sub 0.5}FeO{sub 3}, the magnetization decreases down to 2.1 emu/g. A small contamination of metallic Fe was confirmed through electron spin resonance experiments.

  8. Near-infrared and upconversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibres grown by the laser-heated pedestal growth technique

    International Nuclear Information System (INIS)

    Camargo, A S S de; Nunes, L A O; Andreeta, M R B; Hernandes, A C

    2002-01-01

    Neodymium-doped Y 0.8 La 0.2 VO 4 and Gd 0.8 La 0.2 VO 4 single-crystal fibres were successfully grown by the laser-heated pedestal growth (LHPG) technique. The fibres were completely transparent and no dark inclusions were observed by optical microscopy. In the characterization process, microprobe Raman, optical absorption, fluorescence, lifetime, and gain-excited state absorption spectra were investigated in addition to upconversion measurements. The fibres' structural and spectroscopic properties are very similar to those of YVO 4 and GdVO 4 bulk laser crystals, with the advantageous characteristic of broadened spectral linewidths that facilitate the pumping of the 1064 nm emission by a diode laser. These fairly new crystal compositions, that can be grown in fast and economical processes, are potential candidates for use as compact laser-active media

  9. Gadolinium scandium germanide, Gd2Sc3Ge4

    Directory of Open Access Journals (Sweden)

    Sumohan Misra

    2009-04-01

    Full Text Available Gd2Sc3Ge4 adopts the orthorhombic Pu5Rh4-type structure. The crystal structure contains six sites in the asymmetric unit: two sites are statistically occupied by rare-earth atoms with Gd:Sc ratios of 0.967 (4:0.033 (4 and 0.031 (3:0.969 (3, one site (.m. symmetry is occupied by Sc atoms, and three distinct sites (two of which with .m. symmetry are occupied by Ge atoms. The rare-earth atoms form two-dimensional slabs with Ge atoms occupying the trigonal-prismatic voids.

  10. Synthesis and characterization of Gd{sub 2}O{sub 3} doped UO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Soldati, A.L., E-mail: asoldati@cab.cnea.gov.ar [Centro Atómico Bariloche (CAB) – Comisión Nacional de Energía Atómica (CNEA), Av. Bustillo 9500, CP: 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. De los Pioneros 2300, CP: 8400 Bariloche (Argentina); Gana Watkins, I. [Centro Atómico Bariloche (CAB) – Comisión Nacional de Energía Atómica (CNEA), Av. Bustillo 9500, CP: 8400 Bariloche (Argentina); Fernández Zuvich, A. [Centro Atómico Bariloche (CAB) – Comisión Nacional de Energía Atómica (CNEA), Av. Bustillo 9500, CP: 8400 Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, CP: 8400 Bariloche (Argentina); Napolitano, F.; Troiani, H. [Centro Atómico Bariloche (CAB) – Comisión Nacional de Energía Atómica (CNEA), Av. Bustillo 9500, CP: 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. De los Pioneros 2300, CP: 8400 Bariloche (Argentina); and others

    2016-10-15

    UO{sub 2} nanoparticles doped with 4, 8, 10 and 15 wt% Gd{sub 2}O{sub 3}were synthesized by a reverse strike method. Crystal structure and chemical homogeneity were evaluated using a combination of X-ray diffraction and microscopy tools. An exhaustive study of the composition and its homogeneity at the micro and at the nanometer level was carried out in this nuclear fuel material. Field Emission Gun Scanning and Transmission Electron Microscopy images revealed the presence of micrometer scale agglomerates of nanoparticles, with rounded morphology and an average crystallite size of 100 nm. Rietveld refinements of high-statistic X-ray Diffraction data determined the crystal structure and composition. Furthermore, Energy Dispersive Spectroscopy using a 2 nm{sup 2} spot on the sample surface determined a Gd concentration variation around the average of ±5% in different spots of a single crystallite and of ±10% between different crystallites. However, when measuring large amounts of nanoparticles the concentration averages, producing a homogeneous composition distribution at the micrometer scale. - Highlights: • Synthesis of 4, 8, 10 and 15wt% Gd{sub 2}O{sub 3} doped UO{sub 2} nanoparticles. • Crystallite sizes around 100 nm and rounded morphology. • 90% Gd distribution homogeneity between particles for the less concentrated sample. • High Statistic X-ray Rietveld analysis determined an U{sub 1−x}Gd{sub x}O{sub 2−δ} fcc structure. • Phases with similar crystal structure and symmetry, but different lattice parameter.

  11. Growth and laser characterization of mixed Nd:Lu xGd 1-xVO 4 laser crystals

    Science.gov (United States)

    Yu, Haohai; Yu, Yonggui; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang; Cheng, Xiufeng; Shao, Zongshu; Jiang, Minhua

    2006-08-01

    A new series Nd:Lu xGd 1-xVO 4 ( x=0.14, 0.32, 0.50, 0.61, 0.70 and 0.80) mixed laser crystals have been successfully grown by the Czochralski method. The X-ray powder diffraction (XRPD) analysis shows that the as-grown mixed crystals possess the ZrSiO 4 structure. The cell parameters are found to decrease with an increase of x. The optical absorption spectra of the mixed crystals have been measured at room temperature, and five strong-absorption bands centered at the wavelengths of 531, 594, 752, 807 and 880 nm have been revealed in all crystals. They are assigned to the different spin- and electric-dipole-allowed transition from the ground state to the 2K 13/2+ 4G 7/2+ 4G 9/2, 4G 5/2+ 2G 7/2, 4F 7/2+ 4S 3/2, 4F 5/2+ 2H 9/2 and 4F 3/2 energy levels, respectively. A continuous-wave (CW) laser output has been achieved with the mixed crystals at 1.06 μm under laser diode pumping. The maximum CW output power of 377.4 mW has been obtained with the pump power of 2 W, and the corresponding optical conversion efficiency is 18.8%.

  12. Luminescent and laser properties of Yb Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers

    Science.gov (United States)

    Denker, B.; Galagan, B.; Ivleva, L.; Osiko, V.; Sverchkov, S.; Voronina, I.; Hellstrom, J. E.; Karlsson, G.; Laurell, F.

    2004-09-01

    We present for the first time 1.5-μm laser emission in Yb Er:GdCa4O(BO3)3 (GdCOB). The crystals were grown by the Czochralski method from platinum crucibles. Spectroscopic and laser tests of the crystals are described. A continuous-wave output power of 80 mW was achieved in a monolithic microchip cavity under laser-diode pumping.

  13. Unoccupied surface electronic structure of Gd(0001)

    International Nuclear Information System (INIS)

    Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.

    1994-01-01

    The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV

  14. Single-crystal-like GdNdO{sub x} thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziwei; Xiao, Lei; Liang, Renrong, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn; Shen, Shanshan; Xu, Jun; Wang, Jing, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2016-06-15

    Single-crystal-like rare earth oxide thin films on silicon (Si) substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdO{sub x} (GNO) film was deposited using a high-temperature sputtering process at 500°C. A Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} mixture was used as the sputtering target, in which the proportions of Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  15. Spectroscopic study of magnetic phase transitions and magnetic structures in rare earth ferroborates RFe3(BO3)4 (R = Y, Er, Tb, Gd)

    International Nuclear Information System (INIS)

    Popova, M.N.; Chukalina, E.P.; Stanislavchuk, T.N.; Bezmaternykh, L.N.

    2006-01-01

    One investigated into the absorption spectra of RFe 3 (BO 3 ) 4 , R=Y, Er, Tb, Gd rare earth borate single crystals containing erbium (1%) introduced to serve as a probe. On the basis of the temperature dependences of Er 3+ ion spectral line splittings one determined the values of the magnetic ordering temperatures of Er, Tb and Gd ferroborates and the temperatures of the spin reoriented first order phase transition in GdFe 3 (BO 3 ) 4 :Er 3+ (1%). On the basis of comparison of the splitting values of Er 3+ ion ground state in RFe 3 (BO 3 ) 4 (R=Y, Er, Tb) and in GdFe 3 (BO 3 )4 compounds the magnetic structure of which is known one makes a concussion about the orientation of iron magnetic moments in the magneto-ordered state: a lightly planar structure is observed for YFe 3 (BO 3 ) 4 and ErFe 3 (BO 3 ) 4 and a lightly axial one - for TbFe 3 (BO 3 ) 4 . One discusses the role of R 3+ ion single ion anisotropy when determining the magnetic structure type in RFe 3 (BO 3 ) 4 [ru

  16. Linear optical properties of Ca4EuO(BO3)3 and Eu3+ : Ca4GdO(BO3)3 crystals

    International Nuclear Information System (INIS)

    Antic-Fidancev, E.; Lemaitre-Blaise, M.; Porcher, P.; Caramanian, A.; Aka, G.

    1998-01-01

    Full text: The title compounds are now intensively studied due to their quadratic nonlinear properties in view of applications, e.g. high power laser frequency conversion. Rare earth calcium oxoborates, Ca 4 REO(BO 3 ) 3 , constitute an isostructural family along the rare earth series with RE = La - Lu, Y included. These compounds crystallize in the monoclinic biaxial crystal system with Cm (N 8) space group. They are isostructural to the calcium fluoroborate Ca 5 (BO 3 ) 3 F which is related to the fluoroapatite structure Ca 5 (PO 4 ) 3 F. The rare earth ions are located in the distorted octahedron with C s point site symmetry in the mirror plane. Two types of distorted octahedral sites exist for calcium ions. The existence of some disorder between calcium and rare earth atoms is suspected from the structural analysis. Good optical quality crystals of europium (or gadolinium) oxoborate, EuCOB (GdCOB) have been grown from the stoichiometric melt by the Czochralski pulling method. From the luminescence of the Eu 3+ doped gadolinium or in the europium stoichiometric compound very complex emission spectra have been obtained. It principally depends on the preparation method of studied samples: i) for a monocrystalline sample, a single phase with a single site is observed; ii) for a polycrystalline sample complex feature occurs. It is probably due to an expanded disorder between calcium and rare earth atoms. Practically, there is one principal site corresponding to the low symmetry site of the rare earth as expected from the structural investigation. Other minor sites are attributed to the local distortion created around the active rare earth ion. The intensity of the emission lines of Eu 3+ used as a local structural probe related to these minor sites increases when the gadolinium in Ca 4 GdO(BO 0 ) 3 is substituted by lanthanum or yttrium ions. It seems therefore evident that the synthesis of these rare earth calcium oxoborates must be realised carefully. The crystal

  17. Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F3 single crystals

    International Nuclear Information System (INIS)

    Kamada, Kei; Yanagida, Takayuki; Fujimoto, Yutaka; Fukabori, Akihiro; Yoshikawa, Akira; Nikl, Martin

    2011-01-01

    The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd 0.5 Y 0.5 F 3 single crystals were grown by the μ-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce 3+ -perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce 3+ → (Gd 3+ ) n → the perturbed Ce 3+ sites was evidenced through observation of decay time shortening of the regular Ce 3+ and Gd 3+ centers and the change between the Gd 3+ and Ce 3+ -perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd 0.5 Y 0.5 F 3 sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.

  18. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser

    International Nuclear Information System (INIS)

    Zhu Guo-Li; Ju You-Lun; Yao Bao-Quan; Wang Yue-Zhu

    2012-01-01

    We report a 31.2 W cw diode-pumped cryogenic Ho(0.4at.%),Tm(4at.%):GdVO 4 laser in a dual-crystal cavity. The pumping sources are two fiber-coupled laser diodes with a fiber core diameter of 0.4 mm, both of which can supply 42 W near 802 nm. With an incident pump power of 70.3 W at 802.4 nm, a cw output power of 31.2 W at 2.05 μm is attained, corresponding to an optical-to-optical conversion efficiency of 44.4%. The M 2 factor is measured as ∼1.3 under an output power of 20 W. (fundamental areas of phenomenology(including applications))

  19. Electronically- and crystal-structure-driven magnetic structures and physical properties of RScSb (R = rare earth) compounds. A neutron diffraction, magnetization and heat capacity study

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, C [Institut Lauer-Langevin, Grenoble (France); Dhar, S K [TIFR, Mumbai (India); Kulkarni, R [TIFR, Mumbai (India); Provino, A [Inst. SPIN-CNR, Genova (Italy); Univ. of Genova (Italy); Ames Lab., Ames, IA (United States); Paudyal, Durga [Ames Lab., Ames, IA (United States); Manfrinetti, Pietro [Inst. SPIN-CNR, Genova (Italy); Univ. of Genova (Italy); Ames Lab., Ames, IA (United States); Gschneidner, Karl A [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2014-08-14

    The synthesis of the new equiatomic RScSb ( R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type ( I 4/ mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4 /nmm) structure for the heavier R ( R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds ( R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 >T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [¼ ¼ 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering ( τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to

  20. GdCuMg with ZrNiAl-type structure. An 82.2 K ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-08-01

    GdCuMg has been synthesized by induction-melting of the elements in a sealed niobium ampoule followed by annealing in a muffle furnace. The sample was studied by powder and single crystal X-ray diffraction: ZrNiAl type, P anti 62m (a=749.2(4), c=403.3(1) pm), wR2=0.0242, 315 F{sup 2} values and 15 variables. Temperature dependent magnetic susceptibility measurements have revealed an experimental magnetic moment of 8.54(1) μ{sub B} per Gd atom. GdCuMg orders ferromagnetically below T{sub C}=82.2(5) K and based on the magnetization isotherms it can be classified as a soft ferromagnet.

  1. Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals

    NARCIS (Netherlands)

    Krumpel, A.H.; Van der Kolk, E.; Cavalli, E.; Boutinaud, P.; Bettinelli, M.; Dorenbos, P.

    2009-01-01

    The spectral properties of LaVO4, GdVO4 and LuVO4 crystals doped with Ce3+, Pr3+, Eu3+ or Tb3+ have been investigated in order to determine the position of the energy levels relative to the valence and conduction bands of the hosts along the trivalent and divalent lanthanide series. Pr3+ and Tb3+

  2. Superconductivity degradation in Gd-containing high temperature superconductors (HTSC) under thermal neutron irradiation

    International Nuclear Information System (INIS)

    Petrov, A.; Kudrenitskis, I.; Makletsov, A.; Arhipov, A.; Karklin, N.

    1999-01-01

    The physical properties of ordered crystals are extremely sensitive to the degree of order in the distribution of the various kinds of atoms over the corresponding sites in the crystal lattice. An increasingly popular means of creating disordered states is to use nuclear radiation. The type of radiation defects which appear and the nature and degree of the structural changes in ordered crystals depend on the kind of radiation and the fluence level, the irradiation temperature, the type of crystal structure, the composition and initial disorder of the material, the character of the interatomic forces, etc. There are many such scientific publications where the effects of fast neutron irradiation on high temperature superconductors (HTSC) have been studied in both polycrystalline and single crystalline superconductors. It is known also that the role of thermal neutrons in structural defects forming is negligible in comparison with fast neutrons because of their small (∼0.025 eV) energy. But it is evident enough that in superconductors containing isotopes with large thermal neutron cross sections the important results concerning the role of point defects could be obtained. Such point defects are creating due to soft displacements of isotopes having interacted with thermal neutrons. Such the possibility of creating point defects in solids including HTSC is investigating by several groups (Austria, USA, China, Latvia) and these investigations have found the support in the person of IAEA. In this review the authors consider the changes brought about by thermal-neutron irradiation (E∼0.025 eV) in the structure, superconducting and magnetic properties of gadolinium containing ordered HTSC with the structure 123, whose extreme electric and magnetic properties continue to attract both research and practical interest. All of the studies reviewed have been done on bulk polycrystalline samples RBa 2 Cu 3 O 7-δ (where R - natural mixture of Gd isotopes, 155 Gd, 157 Gd, 160

  3. A comprehensive investigation of tetragonal Gd-doped BiVO{sub 4} with enhanced photocatalytic performance under sun-light

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yangyang; Tan, Guoqiang, E-mail: tan3114@163.com; Dong, Guohua; Ren, Huijun; Xia, Ao

    2016-02-28

    Graphical abstract: - Highlights: • Tetragonal Gd-BiVO{sub 4} with enhanced photocatalytic activity was synthesized. • Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. • GdVO{sub 4} seeds as crystal nucleus dominate the formation of tetragonal Gd-BiVO{sub 4}. • Tetragonal Gd-BiVO{sub 4} exhibits the excellent separation of electrons and holes. • The contribution of high photocatalytic activity under sun-light is from UV-light. - Abstract: Tetragonal Gd-doped BiVO{sub 4} having enhanced photocatalytic activity have been synthesized by a facile microwave hydrothermal method. The structural analysis indicates that Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. The reaction results in precursor solutions imply that tetragonal GdVO{sub 4} seeds as crystal nucleus are the original and determined incentives to force the formation of tetragonal Gd-BiVO{sub 4}. The influences of the surface defect, band structure, and BET surface area on the improved photocatalytic activities of tetragonal Gd-doped BiVO{sub 4} are investigated systematically. The results demonstrate that the more surface oxygen deficiencies as active sites and the excellent mobility and separation of photogenerated electrons and holes are beneficial to the enhancement of the photocatalytic performance of tetragonal Gd-BiVO{sub 4}. The RhB photodegradation experiments indicate that the contribution of high photocatalytic activities under simulated sun-light is mainly from UV-light region due to the tetragonal structure feature. The best photocatalytic performance is obtained for tetragonal 10 at% Gd-BiVO{sub 4}, of which the RhB degradation rate can reach to 96% after 120 min simulated sun-light irradiation. The stable tetragonal Gd-BiVO{sub 4} with efficient mineralization will be a promising photocatalytic material applied in water purification.

  4. Structural characteristics and corrosion behavior of biodegradable Mg-Zn, Mg-Zn-Gd alloys.

    Science.gov (United States)

    Kubásek, J; Vojtěch, D

    2013-07-01

    In this research, binary Mg-Zn (up to 3 wt% Zn) and ternary Mg-Zn-Gd (up to 3 wt% Gd, 3 wt% Zn) alloys were prepared by induction melting in an argon atmosphere. The structures of these alloys were characterized using light and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and X-ray fluorescence. In addition, Brinell hardness measurements were taken to supplement these studies. Corrosion behavior was evaluated by immersion tests and potentiodynamic measurements in a physiological solution (9 g/l NaCl). Depending on the composition, structures of the as-cast alloys contained α-Mg dendrites, MgZn, Mg5Gd and Mg3Gd2Zn3 phases. Compared to pure Mg, zinc improved the corrosion resistance of binary Mg-Zn. Gadolinium also improved the corrosion resistance in the case of Mg-1Zn-3Gd alloy. The highest corrosion rate was observed for Mg-3Zn-3Gd alloy. Our results improve the understanding of the relationships between the structure and corrosion behavior of our studied alloy systems.

  5. High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Triana, C.A.; Corredor, L.T.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2011-01-01

    Highlights: ► Crystal structure, thermal expansion and phase transitions at high-temperature of Sr 2 GdRuO 6 perovskite has been investigated. ► X-ray diffraction pattern at 298 K of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with P2 1 /n space group. ► Evolution of X-ray diffraction patterns at high-temperature shows that the Sr 2 GdRuO 6 perovskite suffers two-phase transitions. ► At 573 K the X-ray diffraction pattern of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with I2/m space group. ► At 1273 K the Sr 2 GdRuO 6 perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr 2 GdRuO 6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2 1 /n (no. 14) space group and 1:1 ordered arrangement of Ru 5+ and Gd 3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å 3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å 3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å 3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87) is characterized

  6. Synthesis, structure and photoluminescence of novel lanthanide (Tb(III), Gd(III)) complexes with 6-diphenylamine carbonyl 2-pyridine carboxylate

    International Nuclear Information System (INIS)

    An Baoli; Gong Menglian; Cheah, Kok-Wai; Wong, Wai-Kwok; Zhang Jiming

    2004-01-01

    A novel organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic acid (HDPAP), and the corresponding lanthanide complexes, tris(6-diphenylamine carbonyl 2-pyridine carboxylato) terbium(III) (Tb-DPAP) and tris(6-diphenylamine carbonyl 2-pyridine carboxylato) gadolinium(III) (Gd-DPAP) have been designed and synthesized. The crystal structure and photoluminescence of Tb-DPAP and Gd-DPAP have been studied. The results showed that the lanthanide complexes have electroneutral structures, and the solid terbium complex emits characteristic green fluorescence of Tb(III) ions at room temperature while the gadolinium complex emits the DPAP ligand phosphorescence. The lowest triplet level of DPAP ligand was calculated from the phosphorescence spectrum of Gd-DPAP in N,N-dimethyl formamide (DMF) dilute solution determined at 77 K, and the energy transfer mechanisms in the lanthanide complexes were discussed. The lifetimes of the 5 D 4 levels of Tb 3+ ions in the terbium complex were examined using time-resolved spectroscopy, and the values are 0.0153±0.0001 ms for solid Tb(DPAP) 3 ·11.5H 2 O and 0.074±0.007 ms for 2.5x10 -5 mol/l Tb-DPAP ethanol solution

  7. Electron spin resonance of Gd3+ in the intermetallic Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds

    Science.gov (United States)

    Mendonça, E. C.; Silva, L. S.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Duque, J. G. S.; Souza, J. C.; Pagliuso, P. G.; Lora-Serrano, R.; Teixeira-Neto, A. A.

    2017-10-01

    In this work, experiments of X-ray diffraction, magnetic susceptibility, heat capacitance, and Electron Spin Resonance (ESR) carried out in the Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds grown through a Ga self flux method are reported. The X-ray diffraction data indicate that these compounds crystallize in a trigonal crystal structure with a space group R32. This crystal structure is unaffected by Y-substitution, which produces a monotonic decrease of the lattice parameters. For the x = 0 compound, an antiferromagnetic phase transition is observed at TN = 19.2 K, which is continuously suppressed as a function of the Y-doping and extrapolates to zero at x ≈ 0.85. The ESR data, taken in the temperature range 15 ≤ T ≤ 300 K, show a single Dysonian Gd3+ line with nearly temperature independent g-values. The linewidth follows a Korringa-like behavior as a function of temperature for all samples. The Korringa rates (b = ΔH /ΔT ) are Y-concentration-dependent indicating a "bottleneck" regime. For the most diluted sample (x = 0.90), when it is believed that the "bottleneck" effect is minimized, we have calculated the q-dependent effective exchange interactions between Gd3+ local moments and the c-e of 〈Jf-ce 2(q ) 〉 1 /2 = 18(2) meV and Jf -c e(q =0 ) = 90(10) meV.

  8. Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator

    Science.gov (United States)

    Cao, Maoqing; Hu, Zewang; Ivanov, Maxim; Dai, Jiawei; Li, Chaoyu; Kou, Huamin; Shi, Yun; Chen, Haohong; Xu, Jiayue; Pan, Yubai; Li, Jiang

    2018-02-01

    In this paper, (Lu1-xGdx)2O3:Eu (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) ceramics were consolidated by the solid-state reaction method combined with vacuum sintering without sintering aids. We investigated the effect of the varying contents of Gd2O3 on the structure and spectroscopic properties of (Lu1-xGdx)2O3:Eu ceramics. X-ray diffraction (XRD) patterns indicate that proper amount of Gd2O3 can incorporate well with Lu2O3 and form Lu2O3-Gd2O3 solid solution. However, excessive Gd3+-doping in Lu2O3 will lead to the cubic phase transforming into monoclinic even hexagonal phase. The Gd3+ substitution no more than 50% of Lu2O3 enhances the radioluminescence, and reduces the fluorescence lifetime. Transmittance, photoluminescence, and radiation damage of the (Lu1-xGdx)2O3:Eu scintillation ceramics were also studied.

  9. Timing characteristics of Ce doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} single crystals in comparison with CsI(Tl) scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, M.; Singh, A.K.; Singh, S.G.; Sen, S.; Gadkari, S.C. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Desai, V.V.; Nayak, B.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-10-15

    Single crystals of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce with B codopants were successfully grown using the Czochralski technique. The timing characteristics of the crystal was measured by coupling the crystal to photomultiplier tubes (PMT) or silicon photodiodes [Si(PIN)]. The two prompt γ-rays emitted in a cascade from {sup 60}Co or {sup 22}Na source were detected in coincidence using Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystal detectors and a BaF{sub 2} detector. The time resolution of these crystals are observed to be better than that measured for CsI:Tl crystal coupled to PMT or Si(PIN) in an identical measurement setup. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. New orthorhombic derivative of CaCu{sub 5}-type structure: RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho), crystal structure and some magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-12-15

    The crystal structure of new YNi{sub 4}Si-type RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds has been established using powder X-ray diffraction. The YNi{sub 4}Si structure is a new structure type, which is orthorhombic derivative of CaCu{sub 5}-type structure (space group Cmmm N 65, oC12). GdNi{sub 4}Si and DyNi{sub 4}Si compounds order ferromagnetically at 25 and 19 K, respectively whereas YNi{sub 4}Si shows antiferromagnetic nature. At 15 K, DyNi{sub 4}Si shows second antiferromagnetic-like transition. The magnetic moment of GdNi{sub 4}Si at 5 K in 50 kOe field is ∼7.2 μ{sub B}/f.u. suggesting a completely ordered ferromagnetic state. The magnetocaloric effect of GdNi{sub 4}Si is calculated in terms of isothermal magnetic entropy change and it reaches the maximum value of −12.8 J/kg K for a field change of 50 kOe near T{sub C} ∼25 K. - Graphical abstract: The RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds crystallize in new YNi{sub 4}Si-type structure which is orthorhombic derivative of the basic CaCu{sub 5}-type structure. GdNi{sub 4}Si and DyNi{sub 4}Si compounds show the ferromagnetic-like ordering, whereas.YNi{sub 4}Si has the antiferromagnetic nature. The GdNi{sub 4}Si demonstrates the big magnetocaloric effect near temperature of ferromagnetic ordering. The relationship between initial CaCu{sub 5}-type DyNi{sub 5} and YNi{sub 4}Si-type DyNi{sub 4}Si lattices.

  11. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    Science.gov (United States)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  12. Solution growth of the Gd-Cu-Al systems in the low-gadolinium concentration range

    International Nuclear Information System (INIS)

    Uhlirova, Klara; Sechovsky, Vladimir

    2009-01-01

    Solution growth of Gd-Cu-Al resulted in the formation of single crystals of GdCu 4 Al 8 with tetragonal ThMn 12 -type structure (a = 8.751 Aa, c = 5.148 Aa), Gd 2 Cu 9.4-6.7 Al 7.6-10.3 with hexagonal Th 2 Zn 17 -type structure (a = 8.83 Aa c = 1.28 Aa), and Gd(Cu, Al) 4 with orthorhombic CeNi 2+x Sb 2-x -type structure. An antiferromagnetic ordering of GdCu 4 Al 8 was found below 35 K, which is in agreement with the previously reported T N = 35 K and T N = 32 K measured on polycrystalline samples. In the temperature range 50-320 K the magnetic susceptibility χ follows the Curie-Weiss law with μ eff = 7.8 μ B /f.u. and θ p = -17 K for B parallel c, μ eff = 7.9 μ B /f.u. and θ p = - 18 K for B perpendicular to c. The a-axis is the easy magnetization direction. The Gd(Cu, Al) 4 and Gd(Cu, Al) 4 compounds order antiferromagnetically below T N = 35 K and T N = 31 K, respectively. (orig.)

  13. Lanthanide-activated Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China); Wan, Zhongyi; Zhou, Yang [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Yan, E-mail: chenyan@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Yu, Hua; Lu, Hongwei; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China)

    2015-03-15

    Highlights: • Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na{sub 5}Gd{sub 9}F{sub 32} lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na{sub 5}Gd{sub 9}F{sub 32} lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb{sup 3+}/Er{sup 3+} ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties.

  14. Scintillation and optical properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Masaki, E-mail: masaki.mori.mz4@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Nakauchi, Daisuke; Okada, Go [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Fujimoto, Yutaka [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Kawaguchi, Noriaki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Koshimizu, Masanori [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Yanagida, Takayuki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan)

    2017-06-15

    The single crystals of 0, 0.6, 1, 1.6 and 2 mol% Ce doped CaGdAl{sub 3}O{sub 7} (Ce:CGAM) were grown by the Floating Zone method, and investigated on photoluminescence (PL) and scintillation properties. In the PL spectra, a broad emission appeared over 380–500 nm under 280 and 360 nm excitations with the quantum yield of 33.8–38.8%. Under a vacuum ultraviolet excitation (90 nm) using a synchrotron source, non-doped CGAM single crystal showed broad emissions over 250–650 nm. The PL decay time profiles followed a monotonic exponential decay with a decay time constant of around 33 ns. The scintillation spectra were similar to those of PL. All of the samples exhibited a clear photoabsorption peak and Compton edge in the pulse height spectra measured under {sup 137}Cs γ-ray irradiation, and the absolute scintillation light yield (LY) was highest for the 2% Ce-doped sample with the value of 3300±300 ph/MeV. The scintillation decay profiles were approximated by a third order exponential decay function, and the extracted decay time of Ce{sup 3+} emission component was around 36–44 ns. Among all the samples, 2%Ce:CGAM single crystal sample showed the best afterglow level as a scintillator under X-ray irradiation. - Highlights: •Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals were synthesized by the FZ method. •Optical and scintillation properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} were investigated. •Photoabsorption peak in a pulse height spectrum was clearly observed under γ-rays.

  15. Pressure-enhanced light emission and its structural origin in Er:GdVO 4

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Fang; Yue, Binbin; Cheng, Zhenxiang; Shen, Hui; Yang, Ke; Hong, Xinguo; Chen, Bin; Mao, Ho-Kwang

    2017-01-09

    Rare earth phosphors have been widely studied because of their sharp emission lines and excellent optical performance. However, photoluminescence (PL) tuning by crystal field in Er3+ embedded phosphors has always been a challenge. Here, we demonstrate that pressure can help to enhance the red and green light emission simultaneously in Er:GdVO4. Synchrotron X-ray diffraction investigations revealed that a structural phase transition was responsible for the enhancement. Our work brightens the future prospects for applications of Er3+-based PL materials in various fields, such as high power lasers and (bio) medical imaging.

  16. Optical properties of Ho3+-doped NaGd(WO4)2 crystal for laser materials

    International Nuclear Information System (INIS)

    Wang, Hongyan; Li, Jianfu; Jia, Guohua; You, Zhenyu; Yang, Fugui; Wei, Yanping; Wang, Yan; Zhu, Zhaojie; Lu, Xiuai; Tu, Chaoyang

    2007-01-01

    Holmium doped sodium gadolinium tungstate crystals with sizes of about O20 mm x 40 mm were grown successfully by the Czochralski technique along the (0 0 1) orientation. Polarized absorption spectra, fluorescence spectra and fluorescence decay curve of Ho 3+ -doped NaGd(WO 4 ) 2 have been recorded at room temperature. Based on the Judd-Ofelt theory, three intensity parameters were obtained. The spectroscopic parameters of this crystal such as the oscillator strengths, radiative transition probabilities, radiative lifetimes as well as the branching ratios were calculated. The fluorescence lifetime τ f of the 5 S 2 level was measured to be 5 μs

  17. Structural phase transitions at high-temperature in double perovskite Sr{sub 2}GdRuO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia)

    2012-08-15

    The crystal structure evolution of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K{<=}T{<=}1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P2{sub 1}/n (no. 14) space group and the 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) A, b=5.82341(4) A, c=8.21939(7) A, V=278.11(6) A{sup 3} and angle {beta}=90.311(2){sup o}. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) A, b=5.82526(4) A, c=8.22486(1) A, V=278.56(2) A{sup 3} and angle {beta}=90.28(2){sup o}. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) A, c=8.27261(1) A, V=282.89(5) A{sup 3} and angle {beta}=90.02(9){sup o}. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.

  18. Structure evolution and magnetic properties of annealed nanoscale Gd/Ti multilayers

    Directory of Open Access Journals (Sweden)

    Larrañaga A.

    2013-01-01

    Full Text Available The structure and magnetic properties were comparatively analyzed for [Gd/Ti]n multilayers with Gd layer thickness of 1.5 to 12 nm. Multilayers were deposited by sputtering technique at room temperature and annealed for the temperatures up to 400 ºC. It was observed that the samples are highly textured in a different way depending on the Gd layer thickness and annealing temperature. It was found that the heat treatment practically does not change the Gd grain size. The lattice parameters obtained from X-ray results change significantly only for [Gd(1.5nm/Ti]50 multilayers, but their values remain higher than for the bulk Gd. The initial slope of the temperature dependence of magnetization near Curie temperature becomes steeper and Curie temperature increases upon annealing. Curie temperature variation can be understood by taking into account both relaxation of the lattice imperfections and change in lattice constants.

  19. Crystal structures and some physical properties of perovskite type vanadites of lanthanide-series elements

    Energy Technology Data Exchange (ETDEWEB)

    Shinike, T [Osaka Dental Coll., Hirakata (Japan); Adachi, G; Shiokawa, J

    1980-04-01

    Crystal structures and some physical properties of the perovskite type vanadites of the lanthanide-series elements were studied. LaVO/sub 3/ and CeVO/sub 3/ had a tetragonal unit cell and other compounds studied were isostructural with orthorhombic GdFeO/sub 3/. The conductivity of all compounds showed semiconductive behavior with an activation energy about 0.1 eV. Electrical conductivity at room temperature decreased along the series from LaVO/sub 3/ to GdVO/sub 3/, and quasiconstant values were observed from TbVO/sub 3/ to LuVO/sub 3/. All the compounds studied, with the exception of LaVO/sub 3/, SmVO/sub 3/ and GdVO/sub 3/, were antiferromagnets with a weak ferromagnetism because of antisymmetric exchange interaction at low temperatures. At high temperature, all the compounds showed paragnetism.

  20. Pr and Gd co-doped bismuth ferrite thin films with enhanced ...

    Indian Academy of Sciences (India)

    in Pr content, the crystal structures of BPGFO thin films retain rhombohedral (R3c) symmetry accompanied by structure distortion. ... Pr and Gd co-modified BiFeO3 thin film; ferroelectric properties; sol-gel. 1. Introduction. In recent years, great attention has been paid to single- phase BiFeO3 (BFO) multiferroic materials ...

  1. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Ramana, C.V.

    2015-01-01

    Graphical abstract: Room temperature Raman spectra of CoFe 2−x Gd x O 4 (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm −1 ). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe 2−x Gd x O 4 ; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO 3 ) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO 3 phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd 3+ (4f 7 ) residing in octahedral sites is higher when compared to that of Fe 3+ (3d 5 ) and as well due to the migration of Co 2+ (3d 7 ) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE 3+ ) ions in the spinel lattice. Increase in coercivity with increase in Gd 3+ is content is attributed to magnetic anisotropy in the ceramics

  2. Electrical and structural properties of GdBa2Cu3-xVxO7-x

    International Nuclear Information System (INIS)

    Javanmard, H.; Bazargan, S.; Akhavan, M.

    2007-01-01

    Full text: It is well known that the characteristics of the CuO 2 planes are essential for understanding the unconventional superconductivity and the anomalous transport behavior of the normal state in cuprate superconductors. Continuous efforts have been devoted to the study of effects of substitution for Cu, which are of great importance for understanding the role of Cu in high-Tc superconductivity. The bulk samples of GdBa 2 Cu 3-x V x O 7-x with 0.0 4+ in the compound, and because of the high tendency of the V 4+ for achieving the octahedral structure, it appears that vanadium enters the chains, which accounts for the observed changes in the crystal structure and superconducting properties. (authors)

  3. The magnetic anisotropy of Gd-Y alloys

    Science.gov (United States)

    Phu Thuy, Nguyen; Verdonk, H. J.; Menovsky, A.; Franse, J. J. M.; Gersdorf, R.

    1983-02-01

    Magnetic torque curves on single crystals of Gd 1- xY x ( x ⩽ 0.1) show a reduction of the anomalous contribution that was observed in pure Gd, with increasing Y-content. Several explanations of this phenomenon are indicated in this paper.

  4. Low-temperature magnetic properties of GdCoIn5

    Science.gov (United States)

    Betancourth, D.; Facio, J. I.; Pedrazzini, P.; Jesus, C. B. R.; Pagliuso, P. G.; Vildosola, V.; Cornaglia, Pablo S.; García, D. J.; Correa, V. F.

    2015-01-01

    A comprehensive experimental and theoretical study of the low temperature properties of GdCoIn5 was performed. Specific heat, thermal expansion, magnetization and electrical resistivity were measured in good quality single crystals down to 4He temperatures. All the experiments show a second-order-like phase transition at 30 K probably associated with the onset of antiferromagnetic order. The magnetic susceptibility shows a pronounced anisotropy below TN with an easy magnetic axis perpendicular to the crystallographic ĉ-axis. Total energy GGA+U calculations indicate a ground state with magnetic moments localized at the Gd ions and allowed a determination of the Gd-Gd magnetic interactions. Band structure calculations of the electron and phonon contributions to the specific heat together with Quantum Monte Carlo calculations of the magnetic contributions show a very good agreement with the experimental data. Comparison between experiment and calculations suggests a significant anharmonic contribution to the specific heat at high temperature (T ≳ 100 K).

  5. Structural and dielectric properties of Gd doped bismuth ferrite-lead titanate

    International Nuclear Information System (INIS)

    Mohanty, N. K.; Behera, A. K.; Satpathy, S. K.; Behera, B.; Nayak, P.

    2014-01-01

    0.5BiGd x Fe 1−x O 3 −0.5PbTiO 3 with x=0.05, 0.10, 0.15, 0.20 composite was prepared by mixed oxide method. Structural characterization was performed by X-ray diffraction and studied that the materials show tetragonal structure at room temperature for all concentration of Gd. Studies of dielectric properties (ε r and tanδ) of the above compound at different frequencies in a wide range of temperature (25°-500°C) with an impedance analyser revealed that the dielectric constant increases with increase in Gd concentration as well temperature and the compound do not have any dielectric anomaly in the studied frequency and temperature range

  6. Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kei, E-mail: k-kamada@furukawakk.co.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); Furukawa Co. Ltd. (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Fukabori, Akihiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai (Japan); Nikl, Martin [Institute of Physics AS CR (Czech Republic)

    2011-12-11

    The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd{sub 0.5}Y{sub 0.5}F{sub 3} single crystals were grown by the {mu}-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce{sup 3+}-perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce{sup 3+}{yields} (Gd{sup 3+}){sub n}{yields} the perturbed Ce{sup 3+} sites was evidenced through observation of decay time shortening of the regular Ce{sup 3+} and Gd{sup 3+} centers and the change between the Gd{sup 3+} and Ce{sup 3+}-perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd{sub 0.5}Y{sub 0.5}F{sub 3} sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.

  7. Site preference of metal atoms in Gd_5_-_xM_xTt_4 (M = Zr, Hf; Tt = Si, Ge)

    International Nuclear Information System (INIS)

    Yao, Jinlei; Mozharivskyj, Yurij

    2011-01-01

    Zirconium and hafnium were incorporated into the Gd_5Ge_4 and Gd_5Si_4 parent compounds in order to study the metal-site occupation in the M_5X_4 magnetocaloric phases (M = metals; X = p elements) family. The Gd_5_-_xZr_xGe_4 phases adopt the orthorhombic Sm_5Ge_4-type (space group Pnma) structure for x ≤ 1.49 and the tetragonal Zr_5Si_4-type (P4_12_12) structure for x ≥ 1.77. The Gd_5_-_xHf_xSi_4 compounds crystallize in the orthorhombic Gd_5Si_4-type (Pnma) structure for x ≤ 0.41 and the Zr_5Si_4-type structure for x ≥ 0.7. In both systems, single-crystal X-ray diffraction reveals that the Zr/Hf atoms preferentially occupy the slab-surface M2 and slab-center M3 sites, both of which have a significantly larger Zr/Hf population than the slab-surface M1 site. The metal-site preference, i.e. the coloring problem on the three metal sites, is discussed considering geometric and electronic effects of the local coordination environments. The analysis of the metal-site occupation in Gd_5_-_xZr_xGe_4 and Gd_5_-_xHf_xSi_4 as well as other metal-substituted M_5X_4 systems suggests that both geometric and electronic effects can be used to explain the metal-site occupation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Pulse shape discrimination properties of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B single crystal in comparison with CsI:Tl

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, S. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Netrakanti, P.K.; Kashyap, V.K.S.; Mitra, A. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, A.K.; Desai, D.G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, G. Anil [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Gadkari, S.C. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-21

    Single crystals of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B and CsI:Tl were grown by Czochralski and Bridgman techniques, respectively. While both the crystals exhibited similar emission at about 550 nm, their scintillation decay times showed significantly different characteristics. The average scintillation decay time of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystal was found to be about 284 ns for alpha excitation compared to 108 ns measured for a gamma source. On the other hand in CsI:Tl crystals, the alpha excitation resulted in a lower average decay time of 600 ns compared to 1200 ns with gamma excitation. Their pulse shape discrimination (PSD) for gamma and alpha radiations were studied by coupling the scintillators with photomultiplier tube or SiPM and employing an advanced digitizer as well as a conventional zero-crossing setup. In spite of having a poor α/γ light yield ratio, the PSD figure of merit and the difference of zero-crossing time in Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystals were found to be superior in comparison to CsI:Tl crystals.

  9. Spectra and energy levels of Eu{sup 3+} in cubic phase Gd{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Eric R. [Kratos Defense and Security Solutions, Inc., 5030 Bradford Dr., Huntsville, AL 35805 (United States); Gruber, John B. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249-0697 (United States); Wellenius, Patrick; Muth, John F. [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States); Everitt, Henry O. [Department of Physics, Duke University, Durham, NC 27708 (United States); Army Aviation and Missile RD and E Center, Redstone Arsenal, AL 35898 (United States)

    2010-07-15

    In pulsed laser deposition of the sesquioxide semiconductor Gd{sub 2}O{sub 3}, adjusting the chamber oxygen pressure controls the crystalline structure of the host. This technique was used to deposit thin films of nominally 1.6% by weight europium-doped, cubic phase Gd{sub 2}O{sub 3} using 50 mTorr of oxygen. Structural measurements using high-resolution transmission electron microscopy and selected area electron diffraction confirm the films were polycrystalline, cubic phase Eu:Gd{sub 2}O{sub 3}. The spectroscopic assignment of emission lines to specific radiative transitions within the trivalent Eu ion is confirmed by theoretical analysis of the appropriate crystal field Hamiltonian. Detailed crystal-field splittings are presented for the {sup 5}D{sub J=0-2} and {sup 7}F{sub J=0-5} multiplet manifolds of Eu{sup 3+} in this host material. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  11. Phase transition control, melt growth of (Gd,RE)F{sub 3} single crystal and their luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Akira, E-mail: yosikawa@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Jouini, Anis [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); BerlinSolar GmbH, Magnusstrasse 11, D-12489 Berlin (Germany); Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Boulon, Georges [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon 1 University, UMR 5620 CNRS, Villeurbanne (France); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Saito, Fumio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2009-12-15

    Rare-earth sesquifluorides with no absorption in visible spectral region, such as LaF{sub 3}, GdF{sub 3}, LuF{sub 3}, YF{sub 3}, ScF{sub 3}, are the topic of intense study as a host for luminescence materials. However, except Nd:LaF{sub 3}, they are not studied as a host for laser materials. The main obstacle troubling further study of GdF{sub 3}, LuF{sub 3}, YF{sub 3}, ScF{sub 3} single crystal is the fact that there is first-order phase transition (LaF{sub 3} type{leftrightarrow}{beta}-YF{sub 3} type for GdF{sub 3}, {alpha}-YF{sub 3} type{leftrightarrow}{beta}-YF{sub 3} type for the rest) between the room and melting temperature.To prevent the phase transition, first of all, we have tried to make solid solution between GdF{sub 3} and YF{sub 3} in such a way that the average cation radii can be shifted to the size that does not have phase transition. Ce{sup 3+} perturbed luminescence was observed in the Ce- and Sr-codoped GdF{sub 3}-YF{sub 3} system. Similar solid solution concept was applied to the combination between GdF{sub 3} and YbF{sub 3}. The emission spectrum of Yb{sup 3+} that exhibits broad bands around 1 {mu}m was observed. Room temperature up-conversion luminescence spectra of Pr{sup 3+}-doped Gd{sub 1-x}Yb{sub x}F{sub 3} were studied and visible emission from Pr{sup 3+} was obtained under infrared laser pumping in the Yb{sup 3+} broad absorption band at 935.5 nm.

  12. Structural evolution and electrical properties of BaTiO{sub 3} doped with Gd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Lara, Juan Pablo; Perez Labra, Miguel; Barrientos Hernandez, Francisco Raul, E-mail: miguelabra@hotmail.com [Autonomous University of Hidalgo (Mexico); Romero Serrano, Jose Antonio; Hernandez Ramirez, Aurelio [Metallurgy and Materials Department, ESIQIE-IPN, UPALM, Zacatenco (Mexico); Avila Davila, Erika Osiris [Mechanical Engineering Department, Technological Institute of Pachuca, Hidalgo (Mexico); Thangarasu, Pandiyan [Facultad de Quimica, UNAM, Mexico D.F. (Mexico)

    2017-03-15

    BaTiO{sub 3} doped with Gd{sup 3+} (Ba{sub 1-x}Gd{sub x}Ti{sub 1-x/4}O{sub 3}) was synthesized using the solid-state reaction method with x = 0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 Gd{sup 3+} (wt. %). The powders were decarbonated at 900 °C and sintered at 1400 °C for 8 hours. The tetragonality of the synthesized Gd{sup 3+}-doped BaTiO{sub 3} particles was analyzed. XRD patterns and Raman spectra revealed that the crystal phase of the obtained particles was predominately tetragonal BaTiO{sub 3}; the intensity of the Raman bands at 205 cm{sup -1}, 265 cm{sup -1}, and 304 cm{sup -1} decreased when Gd'3{sup +} was increased. A secondary phase (Gd{sub 2}Ti{sub 2}O{sub 7}) was found when the Gd{sup 3+} content was higher than 0.15 wt. %. The capacitance of the sintering pellets was measured at 1 kHz; these values were used to calculate the relative permittivity, the maximum permittivity values were recorded for the samples with x = 0.001, 0.005, and 0.1. (author)

  13. Rotational and translational distortions of the crystal structure of the Sr{sub 2}HrRuO{sub 6} (Hr = Ho, Dy, Gd, Eu) complex perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A., E-mail: ctrianae@unal.edu.co [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia)

    2013-05-15

    Sr{sub 2}HrRuO{sub 6} (Hr = Ho, Dy, Gd, Eu) complex perovskites were synthesized through the high-temperature solid-state reaction method, and their crystal structures were analyzed in detail as a function of the Hr-cation ionic radius. Results of powder XRD pattern measurement and Rietveld analysis of the experimental profiles show that the Sr{sub 2}HrRuO{sub 6} compounds crystallize in a monoclinic distorted perovskite-like structure, P2{sub 1}/n (#14) space group, where the unit cell parameters are related to the primitive unit cell a{sub p} by a≈√(2)a{sub p}, b≈√(2)a{sub p} and c ≈ 2a{sub p}. The structures show an alternate distribution of the Ru{sup 5+} (2d: 0.5, 0, 0) and Hr{sup 3+} (2c: 0, 0.5, 0) making up RuO{sub 6} and HrO{sub 6} octahedra alternatively arranged in two interleaving fcc sublattices, where the O(1), O(2), and O(3) ions are localized at the corner of the octahedral, while the Sr{sup 2+} is located at the A-site, occupying the cavities built by the corner-sharing octahedra with Wyckoff position 4e. Due to the existence of mismatched ionic sizes between the ionic radii of the Sr{sub 2}HrRuO{sub 6} compounds, the HrO{sub 6} and RuO{sub 6} octahedra are constrained to tilting around the [111]{sub c}, [001]{sub c}, and [110]{sub c} cubic directions so as to optimize the Sr–O inter-atomic bond lengths, tending to rotate the structure in order to fix the Ru{sup 5+} and Hr{sup 3+} ions on the M′ and M″ sites of the complex perovskites. The cell parameters a, b, and c, the inter-atomic bond angles, the inter-atomic bond lengths, and the tilting angles increase as the Hr-cation ionic radius increases. The mismatch that exists in the Sr{sub 2}HrRuO{sub 6} ionic radius produces a large distortion from the ideal cubic symmetry. The pure perovskite-like phase of Sr{sub 2}HrRuO{sub 6} is thermodynamically and kinetically stable at high temperatures above 1420 K, where it is entirely governed by the average size of the Hr{sup 3+} and Ru

  14. Crystal Chemistry and Photocatalytic Properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm): Experimental and Theoretical Investigations.

    Science.gov (United States)

    Chi, Yang; Rong, Liang-Zhen; Suen, Nian-Tzu; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-04-25

    Reported are the synthesis and structural characterization of a new series of ternary rare-earth mix-chalcogenides RE 4 S 4 Te 3 (RE = Gd, Ho, Er, Tm) that have been obtained from high-temperature solid state reactions. These compounds crystallize in Ho 4 S 4 Te 2.68 structure types with monoclinic C2/ m and/or orthorhombic Immm space groups. The space group variation within this series is due to the position disorder along the Te plane (Te to TeA and TeB). The structural relationship and change between these two space groups are analyzed. It is realized that these compounds are all photocatalytic active under simulated sunlight. The trend of their photocatalytic activities and photocurrent responses is well-explained by using theoretical calculation as well as dipole moment analysis.

  15. X-ray diffraction studies on K3Gd5 (PO4) 6 between 20K to 1073 K

    International Nuclear Information System (INIS)

    Bevara, Samatha; Achary, S.N.; Tyagi, A.K.; Sinha, A.K.; Sastry, P.U.

    2016-01-01

    Complex inorganic phosphates have been of interest due to their diversified crystal chemistry depending on composition, preparation condition as well as external parameters like temperature and pressure. In addition varieties of complex phosphates have been considered as potential host matrices for immobilization of radioactive elements as well as for selective separation of ions from high level nuclear waste or heavy metal ion pollutants from environment. Temperature and/or pressure induced structural variations are often noticed in such type complex phosphates. In K 2 O-Gd 2 O 3 -P 2 O 5 , a novel complex phosphate with K 3 Gd 5 (PO 4 ) 6 has been reported recently. In order to study the effect of temperature on crystal structure of K 3 Gd 5 (PO 4 ) 6 variable temperature XRD studies between 20 K to 1073 K were carried out and the results are presented herein

  16. Thermal expansion of the magnetorefrigerant Gd5(Si,Ge)4

    NARCIS (Netherlands)

    Brück, E.H.; Nazih, M.; de Visser, A.; Zhang, L.; Tegus, O.

    2003-01-01

    We report thermal expansion measurements carried out on a single-crystal of the giant magnetocaloric effect material Gd5(Si0.43Ge0.57)4. At the magneto-structural phase transition at T0~240 K, large steps in the relative length change ÄL/L along the principle crystallographic axes are observed. The

  17. Thermal, Spectral and Laser Properties of Er3+:Yb3+:GdMgB₅O10: A New Crystal for 1.5 μm Lasers.

    Science.gov (United States)

    Huang, Yisheng; Yuan, Feifei; Sun, Shijia; Lin, Zhoubin; Zhang, Lizhen

    2017-12-25

    A novel laser crystal of Er 3+ :Yb 3+ :GdMgB₅O 10 with dimension of 26 × 16 × 12 mm³ was grown successfully from K₂Mo₃O 10 flux by the top seeded solution growth method. The thermal diffusivity and specific heat capacity were measured to calculate the thermal conductivity of the crystal. The absorption and fluorescence properties of the crystal at room temperature were investigated in detail. The Judd-Ofelt method was used to analyze the polarized absorption spectra. The emission cross-section of the ⁴I 13/2 →⁴I 15/2 transition was calculated by the Füchtbauer-Ladenburg formula and the relevant gain cross-sections were estimated. Continuous-wave laser output of 140 mW at 1569 nm with the slope efficiency of 17.8% was demonstrated in a plano-concave resonator. The results reveal that Er 3+ :Yb 3+ :GdMgB₅O 10 crystal is a promising material for 1.5 μm lasers.

  18. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: vspuli@utep.edu [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States); Adireddy, Shiva [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States)

    2015-09-25

    Graphical abstract: Room temperature Raman spectra of CoFe{sub 2−x}Gd{sub x}O{sub 4} (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm{sup −1}). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO{sub 3}) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO{sub 3} phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd{sup 3+} (4f{sup 7}) residing in octahedral sites is higher when compared to that of Fe{sup 3+} (3d{sup 5}) and as well due to the migration of Co{sup 2+} (3d{sup 7}) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE{sup 3+}) ions in the spinel lattice. Increase in coercivity with increase in Gd{sup 3+} is content is attributed to magnetic anisotropy in the ceramics.

  19. X-ray absorption in GaGdN: A study of local structure

    Science.gov (United States)

    Martínez-Criado, G.; Sancho-Juan, O.; Garro, N.; Sans, J. A.; Cantarero, A.; Susini, J.; Roever, M.; Mai, D.-D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A.

    2008-07-01

    In this study, we report on the incorporation of dilute Gd amounts into GaN films grown by molecular beam epitaxy. A combination of x-ray fluorescence with x-ray absorption spectroscopic techniques enabled us to examine not only the distribution of rare earth atoms in the GaN matrix but also the short-range structural order. Our results show Gd atoms in a trivalent state with tetrahedral coordination, thus substituting Ga in the wurtzite GaN structure.

  20. X-ray absorption in GaGdN: A study of local structure

    International Nuclear Information System (INIS)

    Martinez-Criado, G.; Sans, J. A.; Susini, J.; Sancho-Juan, O.; Cantarero, A.; Garro, N.; Roever, M.; Mai, D.-D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A.

    2008-01-01

    In this study, we report on the incorporation of dilute Gd amounts into GaN films grown by molecular beam epitaxy. A combination of x-ray fluorescence with x-ray absorption spectroscopic techniques enabled us to examine not only the distribution of rare earth atoms in the GaN matrix but also the short-range structural order. Our results show Gd atoms in a trivalent state with tetrahedral coordination, thus substituting Ga in the wurtzite GaN structure

  1. Polarized spectral properties of Yb3+ : Li2Gd4(MoO4)7 crystal: a candidate for tunable and ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Zhu Haomiao; Chen Yujin; Lin Yanfu; Gong Xinghong; Liao Jinsheng; Chen Xueyuan; Luo Zundu; Huang Yidong

    2007-01-01

    Detailed polarized spectral properties of a 3.2 at.% Yb 3+ : Li 2 Gd 4 (MoO 4 ) 7 crystal, including absorption cross-section, emission cross-section, up-conversion spectrum and intrinsic fluorescence lifetime, were investigated. The laser potentiality was also evaluated and the results show that this crystal is a good candidate for tunable and ultrashort pulse lasers

  2. Substitution studies of Mn and Fe in Ln{sub 6}W{sub 4}Al{sub 43} (Ln=Gd, Yb) and the structure of Yb{sub 6}Ti{sub 4}Al{sub 43}

    Energy Technology Data Exchange (ETDEWEB)

    Treadwell, LaRico J.; Watkins-Curry, Pilanda [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); McAlpin, Jacob D. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Prestigiacomo, Joseph; Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Chan, Julia Y., E-mail: Julia.Chan@utdallas.edu [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2014-02-15

    The synthesis and characterization of Mn- and Fe-substituted Ln{sub 6}W{sub 4}Al{sub 43} (Ln=Gd, Yb) and Yb{sub 6}Ti{sub 4}Al{sub 43} are reported. The compounds adopt the Ho{sub 6}Mo{sub 4}Al{sub 43} structure type with lattice parameters of a∼11 Å and c∼17.8 Å with structural site preferences for Mn and Fe. The magnetization of Yb{sub 6}W{sub 4}Al{sub 43} is sensitive to Mn and Fe doping, which is evident by an increase in the field dependent magnetization. Gd{sub 6}W{sub 4}Al{sub 43}, Gd{sub 6}W{sub 4}Al{sub 42.31(11)}Mn{sub 0.69(11)}, and Gd{sub 6}W{sub 4}Al{sub 41.69(12)}Fe{sub 1.30(12)} order antiferromagnetically in the ab- and c-directions at 15, 14, and 13 K, respectively, with positive Weiss constants, suggesting the presence of ferromagnetic exchange interactions. Anisotropic magnetization data of Gd{sub 6}W{sub 4}Al{sub 43−y}T{sub y} (T=Mn, Fe) analogs are discussed. - Graphical abstract: The magnetic susceptibility of Ln{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} (Ln = Gd, Yb; T= Mn, Fe). Display Omitted - Highlights: • Single crystals of Ln{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} were grown with Al-flux. • Anisotropic magnetic behavior were determined on single crystals. • Gd{sub 6}W{sub 4−x}Al{sub 43−y}T{sub x+y} (T=Mn, Fe) analogs order antiferromagnetically.

  3. Synthesis, crystal structure and photoluminescent properties of Eu{sup 3+} ion-activated R{sub 4}MoO{sub 9} (R = Y, Gd, and Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huaiyong [Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Moon, Byung Kee; Choi, Byung Chun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Jeong, Jung Hyun, E-mail: jhjeong@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Yang, Hyun Kyoung [Jeju Global Research Center, Korea Institute of Energy Research, Jeju 695-971 (Korea, Republic of); Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung Soo [Department of Electronic Material Engineering, Silla University, Busan 617-736 (Korea, Republic of)

    2013-05-15

    Rare earth molybdates R{sub 4}MoO{sub 9} (R = Y, Gd, and Lu) with Eu{sup 3+} ion-doped were synthesized by solid-state reaction. The phase structure, optical absorption and photoluminescence properties of the as-prepared powder samples were studied. The powder X-ray diffraction patterns indicated that all the compounds crystallized in a hexagonal structure, and the lattice parameters reduced in the order of the ionic radii of R. The UV–visible diffuse reflectance spectra revealed that the compounds had a strong absorption of near-UV light due to the excitation of MoO{sub 6} groups in the host lattices. The energy absorbed by the host lattices could then be transferred to doped Eu{sup 3+} ions, resulting in red emission due to the f–f transitions of Eu{sup 3+} ions. The optical absorption and photoluminescence properties of the compounds indicated that they might be candidates as the color-conversion red phosphors for solid-state lighting. - Highlights: ► Structure, optical and photoluminescence properties of Eu{sup 3+} ion-activated R{sub 4}MoO{sub 9} were studied. ► Energy transfer from MoO{sub x} to Eu{sup 3+} can be used to convert near-UV to red light. ► R{sub 4}MoO{sub 9}:Eu might be candidate for color-conversion red phosphors excited by near-UV light.

  4. Monte Carlo study of the magnetic properties of GdSb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Sidi Bouzid, Safi, BP, 46000 63 (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Bahmad, L. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Layers and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Institute of Layers and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2014-03-15

    The magnetic properties of antiferromagnetic GdSb layers have been studied using Monte Carlo simulations within the Ising model framework. The considered Hamiltonian includes first nearest-neighbor, an external magnetic field and a crystal field. The thermal magnetizations and magnetic susceptibilities are computed for a fixed size. In addition, the Néel temperature is deduced. The magnetization versus the exchange interactions and crystal field are studied for a fixed system size, N=5, 7 and 9 sites. The magnetic hysteresis cycle versus temperature is also established. - Highlights: • Determination of the Néel temperature of GdSb by MC simulations. • Magnetic hysteresis cycle of GdSb. • Determination of saturation magnetization and field coercive in GdSb.

  5. Structure and Chemical Bonding of the Li-Doped Polar Intermetallic RE2In1−xLixGe2 (RE = La, Nd, Sm, Gd; x = 0.13, 0.28, 0.43, 0.53 System

    Directory of Open Access Journals (Sweden)

    Junsu Lee

    2018-03-01

    Full Text Available Four polar intermetallic compounds belonging to the RE2In1−xLixGe2 (RE = La, Nd, Sm, Gd; x = 0.13(1, 0.28(1, 0.43(1, 0.53(1 system have been synthesized by the traditional solid-state reaction method, and their crystal structures have been characterized by single-crystal X-ray diffraction (SXRD analyses. The isotypic crystal structures of four title compounds adopt the Mo2FeB2-type structure having the tetragonal space group P4/mbm (Z = 2, Pearson code tP40 with three crystallographically independent atomic sites and can be simply described as a pile of the identical 2-dimensioanl (2D RE2In1-xLixGe2 slabs stacked along the c-axis direction. The substituting Li atom shows a particular site preference for replacing In at the Wyckoff 2a site rather than Ge at the Wyckoff 4g in this crystal structure. As the size of a used rare-earth metal decreases from La3+ to Gd3+ throughout the title system, the Ge-Ge and Ge-In/Li bond distances, both of which consist of the 2D anionic Ge2(In/Li layer, gradually decrease resulting in the reduction of a unit cell volume. A series of theoretical investigations has been performed using a hypothetical structure model Gd2In0.5Li0.5Ge2 by tight-binding linear muffin-tin orbital (TB-LMTO method. The resultant densities of states (DOS value at the Fermi level (EF suggests a metallic conductivity for this particular composition, and this calculation result is in a good agreement with the formal charge distribution assigning two extra valence electrons for a metal-metal bond in the conduction band. The thorough analyses of six crystal orbital Hamilton population (COHP curves representing various interatomic interactions and an electron localization function (ELF diagram indicating the locations of paired-electron densities are also provided in this article.

  6. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Litsardakis, G. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: Lits@eng.auth.gr; Manolakis, I. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Serletis, C. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Efthimiadis, K.G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2007-09-15

    The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr{sub 1-x}Gd{sub x})O.5.25Fe{sub 2}O{sub 3} and Sr{sub 1-x}Gd{sub x}Fe{sub 12-x}Co{sub x}O{sub 19}, both prepared by the ceramic method, where x=0-0.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr{sub 0.95}Gd{sub x0.05})O.5.25Fe{sub 2}O{sub 3} is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr-Gd samples, coercivity showed a maximum value of 305kA/m (3.8kOe) for x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr-Gd-Co series decreased steadily with substitution degree.

  7. External electric field effects on Schottky barrier at Gd3N@C80/Au interface

    Science.gov (United States)

    Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong

    2017-08-01

    The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.

  8. Continuous-wave and acousto-optically Q-switched 1066 nm laser performance of a novel Nd:GdTaO4 crystal

    Science.gov (United States)

    Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun

    2018-05-01

    A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.

  9. Electron microscopic study on SrGdMnO4

    International Nuclear Information System (INIS)

    Nakano, Hiromi; Ishizawa, Nobuo; Kamegashira, Naoki; Zulhadjri; Shishido, Toetsu

    2006-01-01

    Single crystals of SrGdMnO 4 have been synthesized by the floating zone method. The structure was characterized as the K 2 NiF 4 -type, using X-ray diffraction (XRD) and a transmission electron microscope (TEM). Presence of weak reflections breaking the archetypal tetragonal symmetry was observed from the selected area diffraction (SAD). The compound was found to have an orthorhombic unit cell of a ≅ b = 0.532(4) nm, c = 1.271(6) nm, by taking the a and b axes along the diagonal directions on the basal plane of the tetragonal archetype. Structural change occurred around 1018 K. The weak reflections disappeared in the SAD pattern, suggesting that crystal is of the archetype above 1018 K

  10. Judd–Ofelt analysis and transition probabilities of Er{sup 3+} doped KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Mendívil, Jon, E-mail: jon.martinez@uam.es [Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Lifante, Ginés [Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Pujol, Maria Cinta; Aguiló, Magdalena; Díaz, Francesc [Física i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili, Tarragona (Spain); Cantelar, Eugenio [Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-09-15

    In this work the transition probabilities, radiative lifetimes and branching ratios of Er{sup 3+} ions in KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals have been determined. With this aim, Er{sup 3+} doped KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals have been grown by means of the high temperature Top-Seeded Solution Growth. A spectroscopic analysis of Er{sup 3+} ions in this crystal has been performed following anisotropic Judd–Ofelt analysis to obtain basic spectroscopic properties. A quantum efficiency over 97% has been determined for the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition, indicating that this material is adequate for the development of lasers and amplifiers working in the third telecommunication window. - Highlights: • Er{sub 0.01}:KY{sub 1−x−y}Gd{sub x}Lu{sub y}(WO{sub 4}){sub 2} crystals have been grown. • Anisotropic Judd Ofelt analysis has been carried out. • Optical transition probabilities and branching ratios have been calculated. • Radiative and non-radiative lifetimes have been obtained.

  11. Analysis on the energetics, magnetism and electronic properties in a 45° ZnO grain boundary doped with Gd

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2018-04-13

    The structural stability and magnetic properties of a grain boundary (GB) formed by aligning two ZnO single crystals oriented at an angle of 45° is investigated by density functional theory, using generalized gradient approximation (GGA) and taking the U parameter into consideration for the 4f impurity states. We found that the GB is stable with no dangling bonds and inter-granular structures. The stability of defects such as Gd substituted to the Zn site (Gd), Zn vacancy (V) and O vacancy (V) as well as defect complexes Gd-Gd, Gd-V, and Gd-V are analyzed using formation energy calculations. It is found that Gd-Gd clusters prefers to form at the GB. The spin polarization at the Gd sites is too localized and the exchange coupling energy is insufficient to overcome the thermal fluctuations. However, we show that the presence of V increases the hybridization between p orbitals of O as well as d orbitals of Zn, which can assist in increasing the magnetic polarization of the system. This work advances the understanding of the ferromagnetism in Gd-doped ZnO, indicating that Gd clustering at the GB is not likely to contribute to the ferromagnetism.

  12. Synchrotron Based Structural Investigations of Mass-Selected PtxGd Nanoparticles and a Gd/Pt(111) Single Crystal for Electrochemical Oxygen Reduction

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Velazquez-Palenzuela, Amado Andres; Masini, Federico

    2015-01-01

    . 134, 16476–16479 (2012). 3. Velazquez-Palenzuela, A. et al. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J. Catal. [in press] (2015). doi:10.1016/j.jcat.2014.12.012 4. Perez-Alonso, F. J. et al. The Effect of Size on the Oxygen Electroreduction Activity...

  13. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  14. Pr:Ca1-xRxF2+x (R=Y or Gd) crystals: Modulated blue, orange and red emission spectra with the proportion of R3+ ions

    Science.gov (United States)

    Yu, Hao; Qian, Xiaobo; Guo, Linyang; Jiang, Dapeng; Wu, Qinghui; Tang, Fei; Su, Liangbi; Ju, Qiangwen; Wang, Jingya; Xu, Jun

    2018-04-01

    The spectroscopic properties of 0.6at.%:Pr:Ca1-xRxF2+x (R = Y, Gd; x = 0,0.006, 0.012, 0.03, 0.06) crystals were investigated and compared. The XRD tests were conducted and the cell dimensions of the crystals were calculated. Room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. Increasing the proportion of the lattice regulators of Y3+ or Gd3+ ions could significantly enhance the luminescence intensity of all visible emission bands with different ratios. Particularly, the emission intensity ratio of orange to red increased from 0.15 to 1.9 in Pr:Ca1-xYxF2+x crystals and to 1.02 in Pr:Ca1-xGdxF2+x crystals, respectively. Furthermore, Pr:Ca1-xGdxF2+x crystals have substantially strong emission at orange and red region of 580-660 nm, comparable with blue light at 482 nm. The quantum efficiency of the crystals increased rapidly with the increment of R3+ concentration, and finally tend to be 100%.

  15. Rebuttal of the existence of solid rare earth bicarbonates and the crystal structure of holmium nitrate pentahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Rincke, Christine; Schmidt, Horst; Voigt, Wolfgang [Institute for Inorganic Chemistry, TU Bergakademie Freiberg (Germany)

    2017-03-16

    The synthesis routes of Gd(HCO{sub 3}){sub 3}.5H{sub 2}O and Ho(HCO{sub 3}){sub 3}.6H{sub 2}O, which are the only known bicarbonates of rare earth metals, were refuted and the published crystal structures were discussed. Because of the structural relationship of Ho(HCO{sub 3}){sub 3}.6H{sub 2}O to rare earth nitrate hexahydrates,[] the synthesis of holmium nitrate hydrate was considered and the crystal structure of Ho(NO{sub 3}){sub 3}.5H{sub 2}O was solved by single crystal X-ray diffraction measurements. Ho(NO{sub 3}){sub 3}.5H{sub 2}O was determined to crystallize in the triclinic space group P1 (no. 2) with a = 6.5680(14) Aa, b = 9.503(2) Aa, c = 10.462(2) Aa, α = 63.739(14) , β = 94.042(2) and γ = 76.000(16) . The crystal structure consists of isolated [Ho(H{sub 2}O){sub 4}(NO{sub 3}){sub 3}] polyhedra and non-coordinating water molecules. It is isotypic to other rare earth nitrate pentahydrates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal

    Science.gov (United States)

    Pan, Z. B.; Zhang, H. J.; Yu, H. H.; Xu, M.; Zhang, Y. Y.; Sun, S. Q.; Wang, J. Y.; Wang, Q.; Wei, Z. Y.; Zhang, Z. G.

    2012-01-01

    A high-quality disordered Nd3+:Ca3Gd2(BO3)4 (Nd3+:CGB) laser crystal was grown by the Czochralski method. The space group and effective segregation coefficient of Nd3+ were determined to be Pnma and 1.06, respectively. The thermal properties, including the average linear thermal expansion coefficient, thermal diffusivity, specific heat, and thermal conductivity were systematically measured for the first time. It was found that the thermal conductivity increases with increasing temperature, indicating glasslike behavior. The polarized spectral properties of the crystal were investigated, including the polarized absorption spectra, polarized fluorescence spectra, and fluorescence decay. The spectroscopic parameters of Nd3+ ions in Nd3+:CGB crystal have been obtained based on Judd-Ofelt theory. The anisotropy of the spectral properties for different polarized directions was discussed. Additionally, the continuous-wave (CW) laser performance at 1.06 μm was demonstrated for the first time. The maximum output power of 603 mW was achieved with corresponding optical conversion efficiency of 8.33% and slope efficiency of 9.95%.

  17. Phase-Transition and Magnetic Moment of the Gd3+ Ion in the Gd2Fe17 Compound

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-Ming; FU Bin; ZHOU Yan; ZHAO Miao

    2009-01-01

    The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows that there are two phase structures for the Gd2Fe17 compound: the hexagonal Th2Ni17-type structure at high tem-peratures (above 1243℃), and the rhombohedrai Th2Zn17-type structure, respectively. A method to measure the magnetic moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound is presented. The moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound from 77 to 500 K are measured in this way with a vibrating sample magnetometer. A detailed discussion is presented.

  18. High temperature-induced phase transitions in Sr{sub 2}GdRuO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Crystal structure, thermal expansion and phase transitions at high-temperature of Sr{sub 2}GdRuO{sub 6} perovskite has been investigated. Black-Right-Pointing-Pointer X-ray diffraction pattern at 298 K of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with P2{sub 1}/n space group. Black-Right-Pointing-Pointer Evolution of X-ray diffraction patterns at high-temperature shows that the Sr{sub 2}GdRuO{sub 6} perovskite suffers two-phase transitions. Black-Right-Pointing-Pointer At 573 K the X-ray diffraction pattern of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with I2/m space group. Black-Right-Pointing-Pointer At 1273 K the Sr{sub 2}GdRuO{sub 6} perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K {<=} T {<=} 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2{sub 1}/n (no. 14) space group and 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Angstrom-Sign , b =5.8234(1) Angstrom-Sign , c =8.2193(9) Angstrom-Sign , V = 278.11(2) Angstrom-Sign {sup 3} and angle {beta} = 90.310(5) Degree-Sign . The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Angstrom-Sign , b = 5.8326(3) Angstrom-Sign , c = 8.2449(2) Angstrom-Sign , V = 280.31(3) Angstrom-Sign {sup 3} and angle {beta} = 90.251(3) Degree-Sign . Close

  19. Air stability and magnetic properties of GdN, TiN, and (Gd,Ti)N nanoparticles

    International Nuclear Information System (INIS)

    Si Pingzhan; Choi, C. J.; Tegus, O.; Brueck, E.; Geng, D. Y.; Zhang, Z. D.

    2008-01-01

    GdN, TiN, and (Gd,Ti)N nanoparticles were prepared by arc evaporating Gd, Ti, and Gd-Ti alloys in N 2 , respectively. Most of these nanoparticles show narrow size distribution with average diameter of 20 nm. Shell/core structure was observed in the (Gd,Ti)N nanoparticles, in which the shell was formed by surface reaction with air. (Gd,Ti)N nanoparticles are more stable than GdN nanoparticles in air due partially to the formation of the protective shell. The Curie temperature of GdN nanoparticles is lower than that of the bulk GdN. Both GdN and (Gd, Ti)N nanoparticles are difficult to reach magnetic saturation and show zero coercivity

  20. Effect of Mg$^{2+}$ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd$_{3}$Al$_{2}$Ga$_{3}$O$_{12}$ crystals

    CERN Document Server

    Lucchini, M.T.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  1. Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor

    Directory of Open Access Journals (Sweden)

    G. Krishna Reddy

    2017-09-01

    Full Text Available The present paper describes the synthesis of 0.1 mol% Gadolinium (Gd doped Zinc oxide (ZnO nanophosphor by solution combustion method using Oxalyl dihydrazide (ODH fuel. Powder X-ray diffraction (PXRD peaks are well matched with the standard hexagonal wurtzite structure of ZnO (JCPDS card no. 36-1451. SEM and TEM analysis reveals porous morphology of as -formed sample with particles having narrow size distribution in the range ∼60–70 nm, in good agreement with XRD data. The PL spectrum of Gd doped ZnO sample exhibits an extra blue emission at 441 nm (∼2.81 eV in addition to the emission bands from undoped ZnO. From the TL data of ZnO:Gd nanophosphor with UV irradiation, it is observed that considerable amount of re-trapping is taking place in all the TL second order peaks. The EPR spectrum exhibits a number of resonance signals suggesting that Gd3+ ions are experiencing different crystal field strength and Zeeman interactions.

  2. Density functional studies on the exchange interaction of a dinuclear Gd(iii)-Cu(ii) complex: method assessment, magnetic coupling mechanism and magneto-structural correlations.

    Science.gov (United States)

    Rajaraman, Gopalan; Totti, Federico; Bencini, Alessandro; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante

    2009-05-07

    Density functional calculations have been performed on a [Gd(iii)Cu(ii)] complex [L(1)CuGd(O(2)CCF(3))(3)(C(2)H(5)OH)(2)] () (where L(1) is N,N'-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato) with an aim of assessing a suitable functional within the DFT formalism to understand the mechanism of magnetic coupling and also to develop magneto-structural correlations. Encouraging results have been obtained in our studies where the application of B3LYP on the crystal structure of yields a ferromagnetic J value of -5.8 cm(-1) which is in excellent agreement with the experimental value of -4.42 cm(-1) (H = JS(Gd).S(Cu)). After testing varieties of functional for the method assessment we recommend the use of B3LYP with a combination of an effective core potential basis set. For all electron basis sets the relativistic effects should be incorporated either via the Douglas-Kroll-Hess (DKH) or zeroth-order regular approximation (ZORA) methods. A breakdown approach has been adopted where the calculations on several model complexes of have been performed. Their wave functions have been analysed thereafter (MO and NBO analysis) in order to gain some insight into the coupling mechanism. The results suggest, unambiguously, that the empty Gd(iii) 5d orbitals have a prominent role on the magnetic coupling. These 5d orbitals gain partial occupancy via Cu(ii) charge transfer as well as from the Gd(iii) 4f orbitals. A competing 4f-3d interaction associated with the symmetry of the complex has also been observed. The general mechanism hence incorporates both contributions and sets forth rather a prevailing mechanism for the 3d-4f coupling. The magneto-structural correlations reveal that there is no unique parameter which the J values are strongly correlated with, but an exponential relation to the J value found for the O-Cu-O-Gd dihedral angle parameter is the most credible correlation.

  3. Synchrotron topography of grow defects in GdCa4O(BO3)3

    International Nuclear Information System (INIS)

    Wierzbicka, E.; Lefeld-Sosnowska, M.; Wierzchowski, W.; Wieteska, K.; Graeff, W.

    2005-01-01

    Gadolinium calcium oxyborane (GdCOB) is a perspective material, especially in the optoelectronics. GdCOB exhibits excellent nonlinear optical parameters and can be easily doped with Nd 3+ , Yb 3+ or Er 3+ ions. To be applied in the optoelectronics it is necessary to obtain crystals with small number of defects, which cause unwanted tensions changing optical properties of the material. The aim of the work was analysis of the defects distribution in the GdCOB and finding its dependence on the crystal growing conditions. Crystals were grown in the Institute of Electronic Materials Technology (ITME) using Czochralski method. Analyses of the crystal quality are the first studies performed using the synchrotron beam reflection topography in the white beam, monochromatic and projecting transmission topography and the Lang reflections. It has been shown, that the main observed defects are the dislocations, which occur in all crystals of different density depending on the grown parameters [pl

  4. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  5. Effect of Mg"2"+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd_3Al_2Ga_3O_1_2 crystals

    International Nuclear Information System (INIS)

    Lucchini, M.T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd_3Al_2Ga_3O_1_2 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd_3Al_2Ga_3O_1_2 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd_3Al_2Ga_3O_1_2 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  6. Anomalous electrical resistance and magnetoresistance in Gd{sub 2}PdSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, R; Sampathkumaran, E V [Tata Institute of Fundamental Research, Mumbai (India)

    1997-12-31

    The results of the investigations of electrical resistance (p) in zero field as well as in the presence of magnetic field (up to 70 kOe) and of heat capacity (C) in a new compound, Gd{sub 2}PdSi{sub 3} having AlB{sub 2} type crystal structure are reported. 1 ref., 2 figs.

  7. Influence of hydrogenation and mechanical grinding on the structural and ferromagnetic properties of GdFeSi

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Bernard; Duttine, Mathieu; Wattiaux, Alain [Universite de Bordeaux, CNRS ICMCB, Pessac (France)

    2016-08-01

    Hydrogen insertion into GdFeSi induces (i) a structural transition from a tetragonal CeFeSi-type to a tetragonal ZrCuSiAs-type, (ii) an anisotropic expansion of the unit cell parameters because the a parameter decreases, whereas the c parameter increases, and (iii) a decrease in Curie temperature from 121 to 20 K. On the contrary, an amorphous ferromagnet (T{sub C} = 65 K) is obtained by mechanical grinding of GdFeSi. The three compounds (GdFeSi, GdFeSiH, and amorphous GdFeSi) were investigated by {sup 57}Fe Moessbauer spectroscopy. At 4.2 K, this study has revealed that the magnetically ordered Gd substructure produces a small transferred hyperfine magnetic field at the {sup 57}Fe nucleus.

  8. Photoluminescence related to Gd3+:N-vacancy complex in GaN:Gd multi-quantum wells

    International Nuclear Information System (INIS)

    Almokhtar, Mohamed; Emura, Shuichi; Koide, Akihiro; Fujikawa, Takashi; Asahi, Hajime

    2015-01-01

    Highlights: • We grew Gd-doped GaN multi-quantum wells (MQWs) with quantum layer thickness of one nm by MBE. • The X-ray absorption near edge structure spectra observed at Gd LIII-edge indicate a nitrogen vacancy adjacent to Gd substituting the Ga ion in Gd-doped GaN MQW. • The photoluminescence of the samples is discussed considering the formation of a Gd 3+ :Nitrogen-vacancy complex. • A model is presented considering exciton-polaron formation trapped in defect sites around the Gd 3+ :N-vacancy complex in Gd-doped GaN MQWs. - Abstract: The photoluminescence of Gd-doped GaN multi-quantum wells (MQWs) is presented and discussed considering the formation of a Gd 3+ :Nitrogen-vacancy (N-vacancy) complex. A lower energy photoluminescence peak was observed for the Gd-doped GaN MQW sample with respect to the main peak assigned to a neutral donor bound exciton (D 0 X) of the undoped GaN MQW sample. The X-ray absorption near edge structure spectrum observed at Gd L III -edge indicates a nitrogen vacancy adjacent to the Gd substituting the Ga ion in Gd-doped GaN MQW sample. Local stresses around the Gd dopants in Gd-doped GaN matrix generated due to the larger diameter of the Gd 3+ ion with respect to the Ga 3+ ion can be relieved by the creation of vacancies. The lower formation energy of N-vacancies in GaN matrix introduce them as a preferred candidate to relieve the generated stresses. A Gd 3+ :N-vacancy complex consisting of a Gd 3+ ion and the created nitrogen vacancy adjacent to the Gd 3+ dopant is likely to form in GaN:Gd matrix. The lower photoluminescence peak energy observed in the Gd-doped GaN MQW sample is assigned to the recombination of an exciton captured at the Gd 3+ :N-vacancy complex forming a small polaron-like state. A model is presented considering the small exciton-polaron population in defect sites captured around the Gd 3+ ions in the Gd-doped GaN

  9. Micro structural and magnetic characterization of Gd doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Adhikari, R.; Das, A.K.; Karmakar, D.; Chandrasekhar Rao, T.V.; Ghatak, J.

    2008-01-01

    Gd doped SnO 2 nanoparticles were prepared by a chemical co-precipitation method. The prepared samples were calcined at 600 deg C. The annealed samples were characterized using XRD, TEM and SQUID magnetometry. The structural characterizations showed formation of particles in the nanometer regime. The M(T) and M(H) studies indicated an antiferromagnetic (AFM) interaction in 3 and 6% (at. wt.) Gd doped SnO 2 nanoparticles. The M(H) plot of both samples indicate a super paramagnetic (SPM) behavior at 7K as against the perfect AFM nature at 300K. The samples exhibit an insulating DMS nature, but we do not observe any ferromagnetism as was observed for other Gd doped systems like GaN and ZnO. (author)

  10. Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)

    Science.gov (United States)

    Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.

    2018-04-01

    We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.

  11. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites

    Science.gov (United States)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    2007-09-01

    The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr1-xGdx)O·5.25Fe2O3 and Sr1-xGdxFe12-xCoxO19, both prepared by the ceramic method, where x=0-0.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr0.95Gd)O·5.25Fe2O3 is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr-Gd samples, coercivity showed a maximum value of 305 kA/m (3.8 kOe) for x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr-Gd-Co series decreased steadily with substitution degree.

  12. Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3- for protein structure analysis

    International Nuclear Information System (INIS)

    Yagi, Hiromasa; Loscha, Karin V.; Su, Xun-Cheng; Stanton-Cook, Mitchell; Huber, Thomas; Otting, Gottfried

    2010-01-01

    Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein-ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA) 3 ] 3- , can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA) 3 ] 3- to protein, allowing quantitative distance measurements for nuclear spins within about 15 A of the Gd 3+ ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA) 3 ] 3- complexes of paramagnetic lanthanide (Ln 3+ ) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.

  13. Morphotropic phase boundary and magnetoelastic behaviour in ferromagnetic Tb{sub 1−x}Gd{sub x}Fe{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Murtaza; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Mi, Meng; Zhou, Chao, E-mail: zhouch1982@gmail.com; Wang, Jieqiong; Zhang, Rui; Liao, Xiaoqi; Wang, Yu; Ren, Xiaobing; Song, Xiaoping, E-mail: xpsong@mail.xjtu.edu.cn [School of Sciences, Frontier Institute of Science and Technology, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-03-30

    Morphotropic phase boundary (MPB), separating two ferroic phases of different crystal symmetries, has been studied extensively for its extraordinary enhancement of piezoelectricity in ferroelectrics. Based on the same mechanism, we have designed a magnetic MPB in the pseudobinary ferromagnetic system of Tb{sub 1−x}Gd{sub x}Fe{sub 2} and the corresponding crystal structure, magnetic properties, and magnetostriction are explored. With the synchrotron x-ray diffractometry, the structure symmetry of TbFe{sub 2}-rich compositions is detected to be rhombohedral (R) and that of GdFe{sub 2}-rich compositions is tetragonal (T) below T{sub c}. With the change of concentration, the value of magnetostriction of the samples changes monotonously, while the MPB composition Tb{sub 0.1}Gd{sub 0.9}Fe{sub 2}, which corresponds to the coexistence of R and T phases, exhibits the maximum magnetization among all available compositions and superposition of magnetostriction behaviour of R and T phases. Our result of MPB phenomena in ferromagnets may provide an effective route to design functional magnetic materials with exotic properties.

  14. Inter-atomic bonding and dielectric polarization in Gd"3"+ incorporated Co-Zn ferrite nanoparticles

    International Nuclear Information System (INIS)

    Pawar, R.A.; Desai, S.S.; Patange, S.M.; Jadhav, S.S.; Jadhav, K.M.

    2017-01-01

    A series of ferrite with a chemical composition Co_0_._7Zn_0_._3Gd_xFe_2_−_xO_4 (where x=0.0 to x=0.1) were prepared by sol-gel auto-combustion method. X-ray diffraction pattern were used to determine the crystal structure and phase formation of the prepared samples. Scanning electron microscopy is used to study the surface morphology of the prepared samples. Elastic properties were determined from the infrared spectroscopy. Debye temperature, wave velocities, elastic constants found to increase with the increase in Gd"3"+ substitution. Dielectric properties such as dielectric constant and dielectric loss were studied as a function of Gd"3"+ substitution and frequency. Dielectric constant decreased with the increase in frequency and Gd"3"+ substitution. Behavior of dielectric properties was explained on the basis of Maxwell-Wagner interfacial polarization which in accordance with Koops phenomenological theory. Real and imaginary part of impedance was studied as a function of resistance and Gd"3"+ substitution. The behavior of impedance is systematically discussed on the basis of resistance-capacitance circuit.

  15. Bulk glass ceramics containing Yb{sup 3+}/Er{sup 3+}: β-NaGdF{sub 4} nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yan [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Zhong, Jiasong; Ding, Mingye [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-07-25

    Highlights: • Hexagonal NaGdF{sub 4} nanocrystals embedded bulk glass ceramics were fabricated. • The incorporation of Ln{sup 3+} dopants into the β-NaGdF{sub 4} lattice was demonstrated. • Upconversion luminescence was highly intensified after glass crystallization. • Such glass ceramics had possible application in the optical temperature sensors. - Abstract: Lanthanide doped hexagonal β-NaGdF{sub 4} nanocrystals embedded transparent bulk glass ceramics were successfully fabricated via a phase-separation-controlled crystallization route. Elemental mapping in the scanning transmission electron microscope and optical spectroscopy analysis demonstrated the partition of the active centers into the β-NaGdF{sub 4} crystalline lattice. As a result, upconversion luminescence of the glass ceramic co-doped with Yb{sup 3+} and Er{sup 3+} is about 60 times as high as that of the precursor glass, attributing to the modification of Yb{sup 3+}/Er{sup 3+} surrounding from phase-separated amorphous nanoparticle to β-NaGdF{sub 4} crystalline lattice with low phonon energy and high crystallinity after crystallization. Furthermore, the temperature-dependent green upconversion emissions assigned to {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2} (520 nm) and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} (540 nm) transitions were investigated, and the corresponding fluorescence intensity ratio of these two thermally coupled emitting-states greatly enhanced with increase of temperature. Using such fabricated glass ceramic as an optical thermometric medium, the maximum sensitivity reached as high as 0.0037 K{sup −1} at 580 K. It is expected that the investigated Er{sup 3+}/Yb{sup 3+} codoped glass ceramic might be a very promising candidate for accurate optical temperature sensors.

  16. The structural response of gadolinium phosphate to pressure

    International Nuclear Information System (INIS)

    Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.; Boatner, Lynn A.

    2016-01-01

    Accurate elastic constants for gadolinium phosphate (GdPO 4 ) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO 4 determined under hydrostatic conditions, 128.1(8) GPa (K′=5.8(2)), is markedly different from that obtained with GdPO 4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO 4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO 4 structure is facilitated by bending/twisting of the Gd–O–P links that result in increased distortion in the GdO 9 polyhedra. - Graphical abstract: A high-pressure single crystal diffraction study of GdPO 4 with the monazite structure is presented. The elastic behaviour of rare-earth phosphates are believed to be sensitive to shear forces. The bulk modulus of GdPO 4 measured under hydrostatic conditions is 128.1(8) GPa. Compression of the structure is facilitated by bending/twisting of the Gd−O−P links that result in increased distortion in the GdO 9 polyhedra. Display Omitted - Highlights: • The elastic responses of rare-earth phosphates are sensitive to shear forces. • The bulk modulus of GdPO 4 measured under hydrostatic conditions is 128.1(8) GPa. • Twisting of the inter-polyhedral links allows compression of the GdPO 4 structure. • Changes to the GdO 9 polyhedra occur in response to pressure (<7.0 GPa).

  17. Composition-driven enhanced magnetic properties and magnetoelectric coupling in Gd substituted BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vijayasundaram, S.V., E-mail: vijayasundaramsv@gmail.com [Department of Physics, Presidency College, Chennai 600005 (India); Suresh, G. [Department of Physics, Park College of Engineering and Technology, Coimbatore 641659 (India); Department of Urology, Singapore General Hospital, Singapore 169856 (Singapore); Mondal, R.A. [Department of Physics, Hindustan University, Chennai 603103 (India); Kanagadurai, R. [Department of Physics, Presidency College, Chennai 600005 (India)

    2016-11-15

    Bi{sub 1-x}Gd{sub x}FeO{sub 3} (x=0, 0.05 and 0.1) samples were synthesized by modified sol–gel process. X-ray diffraction studies confirmed that the crystal structures of Gd substituted samples remain stable for x<0.1, while compositional-driven structural phase transition from rhombohedral to orthorhombic was observed in the case of x=0.1. The average particle sizes of pure and Gd substituted BiFeO{sub 3} nanoparticles were found to be in the range 62–46 nm. The size of the oblate spherical particles decreased with increasing Gd concentration. XPS studies revealed the trivalent oxidation states of Bi and Fe ions along with sample purity. Pure BiFeO{sub 3} exhibited linear M–H loop indicating its antiferromagnetic characteristics, whereas obvious non-linear M–H loops were observed in Gd substituted samples. In contrast to the observed room temperature magnetization (0.36 emu/g) under 40 kOe for BiFeO{sub 3}, the sample with 10% Gd exhibited appreciable enhancement of magnetization (1.88 emu/g). A leaky type P–E hysteresis loop was observed for the pure one, whereas concave-like ferroelectric loops were obtained for Gd substituted samples. The possible origins of enhanced multiferroic properties have been explained on the basis of substituent, its concentration, phase purity, particle size, structural distortion and the modified magnetic structure. The measurement of magnetoelectric studies at room temperature revealed the coupling between magnetic and ferroelectric ordering, which is desirable for multifunctional device applications of multiferroics. - Highlights: • The substitution of Gd in BiFeO{sub 3} (BFO) nanoparticles led to structural distortion. • Average sizes of the substituted samples are less than the spin period of BFO. • Gd-substitution altered the original magnetic structure of BFO (AFM – FM). • M{sub r} of a substituted sample is an order of magnitude higher than that of BFO. • All the samples show magnetoelectric coupling

  18. Optical waveguides in Nd:GdVO4 crystals fabricated by swift N3+ ion irradiation

    Science.gov (United States)

    Dong, Ningning; Yao, Yicun; Chen, Feng

    2012-12-01

    Optical planar waveguides have been manufactured in Nd:GdVO4 crystal by swift N3+ ions irradiation at fluence of 1.5 × 1014 ions/cm2. A typical "barrier"-style refractive index profile was formed and the light can be well confined in the waveguide region. The modal distribution of the guided modes obtained from numerical calculation has a good agreement with the experimental modal distribution. The measured photoluminescence spectra revealed that the fluorescence properties of the Nd3+ ions have been modified to some extent in the waveguide's volume. The propagation loss of the planar waveguide can decrease to lower than 1 dB/cm after adequate annealing.

  19. Crystallization of 21.25Gd2O3-63.75MoO3-15B2O3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    International Nuclear Information System (INIS)

    Zhong, M.J.; Han, Y.M.; Liu, L.P.; Zhou, P.; Du, Y.Y.; Guo, Q.T.; Ma, H.L.; Dai, Y.

    2010-01-01

    We report the formation of β'-Gd 2 (MoO 4 ) 3 (GMO) crystal on the surface of the 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1 , 240 cm -1 , 466 cm -1 , 664 cm -1 and 994 cm -1 which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  20. Synthesis and characterization of physical properties of Gd{sub 2}O{sub 2}S:Pr{sup 3+} semi-nanoflower phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H.R. [University of Isfahan, Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, Isfahan (Iran, Islamic Republic of); Zamani Zeinali, H. [Nuclear Science and Technology Research Institute, Agriculture, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2016-05-15

    Pure gadolinium oxysulfide phosphor (Gd{sub 2}O{sub 2}S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd{sub 2}O{sub 2}S:Pr{sup 3+}) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator were studied. Luminescence spectra of Gd{sub 2}O{sub 2}S:Pr{sup 3+} under 320 nm UV excitation show a green emission at near 511 nm corresponding to the {sup 3}P{sub 0}-{sup 3}H{sub 4} of Pr ions. After scintillation properties of synthesized Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator investigated, Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator could be used for radiography applications in which good spatial resolution is needed. (orig.)

  1. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  2. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  3. Ternary gallides RE_4Rh_9Ga_5, RE_5Rh_1_2Ga_7 and RE_7Rh_1_8Ga_1_1 (RE=Y, La-Nd, Sm, Gd, Tb). Intergrowth structures with MgCu_2 and CaCu_5 related slabs

    International Nuclear Information System (INIS)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer; Janka, Oliver

    2017-01-01

    Fourteen ternary gallides RE_4Rh_9Ga_5, RE_5Rh_1_2Ga_7 and RE_7Rh_1_8Ga_1_1 (RE=Y, La-Nd, Sm, Gd, Tb) were synthesized from the elements by arc-melting, followed by different annealing sequences either in muffle or induction furnaces. The samples were characterized through Guinier powder patterns and the crystal structures of Ce_4Rh_9Ga_5, Ce_5Rh_1_2Ga_7, Ce_7Rh_1_8Ga_1_1, Nd_5Rh_1_0_._4_4_(_4_)Ga_8_._5_6_(_4_), Nd_4Rh_9Ga_5 and Gd_4Rh_9Ga_5 were refined from single crystal X-ray diffractometer data. The new gallides are the n=2, 3 and 5 members of the RE_2_+_n Rh_3_+_3_n Ga_1_+_2_n structure series in the Parthe intergrowth concept. The slabs of these intergrowth structures derive from the cubic Laves phase MgCu_2 (Mg_2Ni_3Si as ternary variant) and CaCu_5 (CeCo_3B_2 as ternary variant). Only the Nd_5Rh_1_0_._4_4_(_4_)Ga_8_._5_6_(_4_) crystal shows Rh/Ga mixing within the Laves type slabs. Magnetic susceptibility measurements reveal Pauli paramagnetism for Y_4Rh_9Ga_5 and Curie-Weiss paramagnetism for Gd_4Rh_9Ga_5 and Tb_4Rh_9Ga_5. Low-temperature data show ferromagnetic ordering at T_C=78.1 (Gd_4Rh_9Ga_5) and 55.8 K (Tb_4Rh_9Ga_5).

  4. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Moretti, F.; Vedda, A.; Nikl, Martin; Nitsch, Karel

    2009-01-01

    Roč. 21, č. 15 (2009), 155103/1-155103/7 ISSN 0953-8984 R&D Projects: GA AV ČR IAA200100626 Institutional research plan: CEZ:AV0Z10100521 Keywords : Na-Gd metaphosphate glass * glass -ceramics * NaGd(PO 3 ) 4 * optical properties * structural properties * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  5. General synthesis and structural evolution of a layered family of Ln8(OH)20Cl4 x nH2O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y).

    Science.gov (United States)

    Geng, Fengxia; Matsushita, Yoshitaka; Ma, Renzhi; Xin, Hao; Tanaka, Masahiko; Izumi, Fujio; Iyi, Nobuo; Sasaki, Takayoshi

    2008-12-03

    The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water

  6. Phase equilibria and crystal chemistry of the CaO-½Gd2O3-CoOz system at 885 °C in air

    Science.gov (United States)

    Wong-Ng, W.; Laws, W.; Lapidus, S. H.; Ribaud, L.; Kaduk, J. A.

    2017-10-01

    The CaO-½Gd2O3-CoOz system prepared at 885 °C in air consists of two thermoelectric calcium cobaltate compounds, namely, the 2D thermoelectric oxide solid solution, (Ca3-xGdx)Co4O9-z (0 ≤ x ≤ 0.42) which has a misfit layered structure, and the 1D Ca3Co2O6 compound which consists of chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound. In the peripheral binary systems, Gd was not present in the Ca site of CaO, while a small solid solution region was identified for (Gd1-xCax)O(3-z)/2 (0 ≤ x ≤ 0.075). A solid solution region of distorted perovskite, (Gd1-xCax)CoO3-z (0 ≤ x ≤ 0.24, space group Pnma) was established. The structure of a member of the solid solution, (Gd0.92Ca0.08)CoO3-z, was determined using high resolution synchrotron radiation. A ternary oxide compound CaGdCoO4-z which has an orthorhombic structure (Bmab) was found to be stable at this temperature. Five solid solution tie-line regions and six three-phase regions were determined in the CaO-½Gd2O3-CoOz system. A comparison of the phase diagrams of the CaO-½R2O3-CoOz (R = La, Sm and Gd) systems is provided.

  7. Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Júnior, H.; Aquino, J. C. R.; Aragón, F. H. [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Hidalgo, P. [Universidade de Brasília, Faculdade Gama-FGA, Setor Central Gama (Brazil); Cohen, R.; Nagamine, L. C. C. M. [Universidade de São Paulo, Instituto de Física (Brazil); Coaquira, J. A. H., E-mail: coaquira@unb.br; Silva, S. W. da [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Brito, H. F. [Universidade de São Paulo, Instituto de Química (Brazil)

    2014-12-15

    In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is ∼11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature {sup 119}Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn{sup 4+} ions provoked by the entrance of Gd{sup 3+} ions and to the likely presence of Sn{sup 2+} ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.

  8. Spectroscopic analysis and efficient diode-pumped 1.9 μm Tm3+-doped β'-Gd2(MoO4)3 crystal laser.

    Science.gov (United States)

    Tang, Jianfeng; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Huang, Jianhua; Luo, Zundu; Huang, Yidong

    2011-07-04

    Tm3+-doped β'-Gd2(MoO4)3 single crystal was grown by the Czochralski method. Spectroscopic analysis was carried out along different polarizations. End-pumped by a quasi-cw diode laser at 795 nm in a plano-concave cavity, an average laser output power of 58 mW around 1.9 μm was achieved in a 0.93-mm-thick crystal when the output coupler transmission was 7.1%. The absorbed pump threshold was 8 mW and the slope efficiency of the laser was 57%. This crystal has smooth and broad gain curve around 1.9 μm, which shows that it is also a potential gain medium for tunable and short pulse lasers.

  9. Three phenoxo-bridged dinuclear lanthanide complexes. Syntheses, crystal structures, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Chao; Dai, Rui-Peng; Yang, En-Cui [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Normal University (China); Dong, Hui-Ming; Zhao, Xiao-Jun [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Normal University (China); Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin (China)

    2018-03-15

    Three dinuclear lanthanide complexes [Ln{sub 2}(H{sub 2}L){sub 2}(NO{sub 3}){sub 4}] [Ln = Dy (1), Tb (2), and Gd (3)] [H{sub 3}L = 2-hydroxyimino-N'-[(2-hydroxy-3-methoxyphenyl)methylidene]- propanohydrazone] were solvothermally synthesized by varying differently anisotropic rare earth ions. Single-crystal structural analyses demonstrate that all the three complexes are crystallographically isostructural with two centrosymmetric Ln{sup III} ions aggregated by a pair of monodeprotonated H{sub 2}L{sup -} anions. Weak intramolecular antiferromagnetic interactions with different strength were mediated by a pair of phenoxo bridges due to superexchange and/or single-ion anisotropy. Additionally, the Dy{sup III}-based entity shows the strongest anisotropy exhibits field-induced single-molecule magnetic behavior with two thermally activated relaxation processes. In contrast, 3 with isotropic Gd{sup III} ion has a significant cryogenic magnetocaloric effect with the maximum entropy change of 25.7 J.kg{sup -1}.K{sup -1} at 2.0 K and 70.0 kOe. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The structural response of gadolinium phosphate to pressure

    Energy Technology Data Exchange (ETDEWEB)

    Heffernan, Karina M. [Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 (United States); Ross, Nancy L., E-mail: nross@vt.edu [Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 (United States); Spencer, Elinor C. [Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 (United States); Boatner, Lynn A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Accurate elastic constants for gadolinium phosphate (GdPO{sub 4}) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO{sub 4} determined under hydrostatic conditions, 128.1(8) GPa (K′=5.8(2)), is markedly different from that obtained with GdPO{sub 4} under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO{sub 4} tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO{sub 4} structure is facilitated by bending/twisting of the Gd–O–P links that result in increased distortion in the GdO{sub 9} polyhedra. - Graphical abstract: A high-pressure single crystal diffraction study of GdPO{sub 4} with the monazite structure is presented. The elastic behaviour of rare-earth phosphates are believed to be sensitive to shear forces. The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. Compression of the structure is facilitated by bending/twisting of the Gd−O−P links that result in increased distortion in the GdO{sub 9} polyhedra. Display Omitted - Highlights: • The elastic responses of rare-earth phosphates are sensitive to shear forces. • The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. • Twisting of the inter-polyhedral links allows compression of the GdPO{sub 4} structure. • Changes to the GdO{sub 9} polyhedra occur in response to pressure (<7.0 GPa).

  11. Optical and magneto-optical properties of single crystals of RFe{sub 2} (R = Gd, Tb, Ho, and Lu) and GdCo{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.

    1999-02-12

    The author has studied the diagonal and off-diagonal optical conductivity of RFe{sub 2}(R = Gd, Tb, Ho, Lu) and GdCo{sub 2} single crystals grown by the flux method. Using spectroscopic ellipsometry the author has measured the dielectric function from 1.5 to 5.5 eV. The magneto-optical Kerr spectrometer at temperatures between 7 and 295 K and applied magnetic fields between 0.5 to 1.6 T. The apparatus and calibration method are described in detail. Using magneto-optical data and optical constants he derives the experimental value of the off-diagonal conductivity components. Theoretical calculations of optical conductivities and magneto-optical parameters were performed using the tight binding-linear muffin tin orbitals method within the local spin density approximation. He applied this TB-LMTO method to LuFe{sub 2}. The theoretical results obtained agree well with the experimental data. The oxidation effects on the diagonal part of the optical conductivity were considered using a three-phase model. The oxidation effects on the magneto-optical parameters were also considered by treating the oxide layer as a nonmagnetic thin transparent layer. These corrections change not only the magnitude but also the shape of the optical conductivity and the magneto-optical parameters.

  12. Gallium-Indium ordering in the complex [Ni{sub 2}Ga{sub 3}In] network of GdNi{sub 2}Ga{sub 3}In

    Energy Technology Data Exchange (ETDEWEB)

    Galadzhun, Yaroslav V.; Horiacha, Myroslava M.; Nychyporuk, Galyna P.; Zaremba, Vasyl I. [Inorganic Chemistry Department, Ivan Franko National University of Lviv (Ukraine); Rodewald, Ute C.; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany)

    2016-08-15

    Polycrystalline samples of the isotypic quaternary compounds RENi{sub 2}Ga{sub 3}In (RE = Y, Gd - Tm) were obtained by arc-melting of the elements. Crystals of the gadolinium compound were found by slow cooling of an arc-melted button of the initial composition ''GdNiGa{sub 3}In''. All samples were characterized by powder X-ray diffraction. The structure of GdNi{sub 2}Ga{sub 2.89}In{sub 1.11} was refined from single-crystal X-ray diffractometer data: new type, Pnma, a = 2426.38(7), b = 418.17(2), c = 927.27(3) pm, wR{sub 2} = 0.0430, 1610 F{sup 2} values and 88 variables. Two of the six crystallographically independent gallium sites show a small degree of Ga/In mixing. The nickel atoms show tricapped trigonal prismatic coordination by gadolinium, gallium, and indium. Together, the nickel, gallium, and indium atoms build up a complex three-dimensional [Ni{sub 2}Ga{sub 3}In]{sup δ-} network, which leaves cages for the gadolinium atoms. The indium atoms form zigzag chains with In-In distances of 337 pm. The crystal chemical similarities of the polyhedral packing in the GdNi{sub 2}Ga{sub 3}In and La{sub 4}Pd{sub 10}In{sub 21} structures are discussed. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Enhanced flux pinning by BaZrO3 and (Gd,y)2O3 nano-structures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Paranthaman, Mariappan Parans [ORNL; Cantoni, Claudia [ORNL; Aytug, Tolga [ORNL; Goyal, Amit [ORNL; Lee, Dominic F [ORNL; Specht, Eliot D [ORNL; Zuev, Yuri L [ORNL; Zhang, Yifei [ORNL

    2009-01-01

    We have formed BaZrO3 nano-columns and (Gd,Y)2O3 nano-precipitates in reel-to-reel MOCVD processed (Gd,Y)Ba2Cu3O7-x coated conductors and increased the critical currents (Ic) of the conductors in applied magnetic fields to remarkable levels. A (Gd,Y)Ba2Cu3O7-x tape of 1m length with 6.5% Zr-additions and 30% composition rich in both Gd and Y showed Ic values of 813 A/cm-width at (self-field, 77K) and above 186 A/cm-width at (1T, 77K). The strongly enhanced flux pinning over a wide range of magnetic field orientations can be attributed to the bidirectionally aligned defect structures of BaZrO3 and (Gd,Y)2O3 created by optimized MOCVD conditions.

  14. Magnetic short-range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1978-01-01

    The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed

  15. RNi{sub 8}Si{sub 3} (R=Gd,Tb): Novel ternary ordered derivatives of the BaCd{sub 11} type

    Energy Technology Data Exchange (ETDEWEB)

    Pani, M., E-mail: marcella@chimica.unige.it [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Morozkin, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-2 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Provino, A.; Manfrinetti, P. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2016-01-15

    The title compounds have been synthesized and characterized both from the structural and magnetic point of view. Both crystallize in a new monoclinic structure strictly related to the tetragonal BaCd{sub 11} type. The structure was solved by means of X-ray single-crystal techniques for GdNi{sub 8}Si{sub 3} and confirmed for TbNi{sub 8}Si{sub 3} on powder data; the corresponding lattice parameters (obtained from Guinier powder patterns) are a=6.3259(2), b=13.7245(5), c=7.4949(3) Å, β=113.522(3)°, V{sub cell}=596.64(3) Å{sup 3} and a=6.3200(2), b=13.6987(4), c=7.4923(2) Å, β=113.494(2)°, V{sub cell}=594.88(2) Å{sup 3}. The symmetry relationship between the tI48-I4{sub 1}/amd BaCd{sub 11} aristotype and the new ordered mS48-C2/c GdNi{sub 8}Si{sub 3} derivative is described via the Bärnighausen formalism within the group theory. The large Gd–Gd (Tb–Tb) distances, mediated via Ni–Si network, likely lead to weak magnetic interactions. Low-field magnetization vs temperature measurements indicate weak and field-sensitive antiferromagnetic ground state, with ordering temperatures of 3 K in GdNi{sub 8}Si{sub 3} and about 2–3 K in TbNi{sub 8}Si{sub 3}. On the other hand, the isothermal field-dependent magnetization data show the presence of competing interactions in both compounds, with a field-induced ferromagnetic behavior for GdNi{sub 8}Si{sub 3} and a ferrimagnetic-like behavior in TbNi{sub 8}Si{sub 3} at the ordering temperature T{sub C/N} of about (or slightly higher than) 3K. The magnetocaloric effect, quantified in terms of isothermal magnetic entropy change ΔS{sub m}, has the maximum values of –19.8 J(kg K){sup −1} (at 4 K for 140 kOe field change) and −12.1 J(kg K){sup −1} (at 12 K for 140 kOe field change) in GdNi{sub 8}Si{sub 3} and TbNi{sub 8}Si{sub 3}, respectively. - Graphical abstract: GdNi{sub 8}Si{sub 3} and TbNi{sub 8}Si{sub 3} compounds are isostructural, and crystallize in a new monoclinic type strictly related to the tetragonal

  16. Citrate mediated synthesis and tuning of luminescence in Eu3+ incorporated Gd2O3 nanophosphors

    Science.gov (United States)

    Abhilash Kumar, R. G.; Gopchandran, K. G.

    2015-02-01

    Gd1.9Eu0.1O3 nanophosphors were prepared successfully by a large-scale facile solution based citrate-metal complex controlled combustion method and was systematically studied by varying the citric acid to metal cation ratio. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) measurements and radiative properties were done to evaluate the crystal structure, phase formation, phase composition, surface morphology, radiative and luminescent properties of the prepared nanophosphors. Photoluminescent emission intensity of the samples can be correlated with the amount of citric acid, improved crystallinity, uniform morphology, particle size, reduced defects, and proper diffusion of Eu3+ in to the crystal structure of Gd2O3. Higher asymmetricity results in intense red emission (612 nm) due to 5D0-7F2 forced electric dipole transition and found that photoluminescence intensity is highest for the sample prepared with citric acid to metal cation ratio of 2:1. The existence of strong red emission from Gd1.9Eu0.1O3 nanophosphor corresponding to 5D0-7F2 transition (612 nm) of Eu3+ under UV light excitation make it a promising candidate for applications in bio assays, magnetic resonance imaging, deep uv LED's, solid state lighting, fluorescent lamps and flat panel displays.

  17. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  18. Structural transition in lanthanum gallate and transformation of the fine structure of the EPR spectrum of a Gd3+ impurity center

    Science.gov (United States)

    Vazhenin, V. A.; Guseva, V. B.; Fokin, A. V.; Potapov, A. P.; Artyomov, M. Yu.

    2011-04-01

    Abrupt changes in resonance positions, hysteretic temperature behavior, and coexistence of phases, which indicate a first-order phase transition, have been revealed from measurements of temperature dependences of the EPR spectra of Gd3+ and Mn4+ centers in the vicinity of the structural transition of lanthanum gallate. The transformation of monoclinic Gd3+ centers into trigonal Gd3+ centers upon the phase transition has been used to estimate the adequacy of two approximations of the superposition model for parameters of the zero-field splitting of the ground state.

  19. Radiation damage in CaF2: Gd

    International Nuclear Information System (INIS)

    Prado, L.

    1979-01-01

    Calcium fluoride crystals doped with Gd 3+ at four different concentrations were irradiated at room temperature. The damage produced by radiation and the primary and secondary effects as well were studied by optical spectroscopy. The increase in optical absorption (with loss of transparency) varied from sample as a function of concentration and dose. The coloration curves showed an evolution from two to three radiation damage steps when going from a pure to the most Gd 3+ concentrated sample. The obtained spectra were analysed at characteristic wave lenghts of electronic defects (photochromic centers, F and its aggregates) and of Gd 3+ and Gd 2+ defects. As a result of the radiation damage the valence change (Gd 3+ →Gd 2+ ) and its reversible character under thermal activation were directly observed. These effects were correlated with other observed effects such as the room temperature luminescence after the irradiation ceased. The non radiative F centers formation from the interaction of holes and photochromic centers was also observed and analysed. A thermal activation study of the several defects responsible for the different absorption bands was made. Values of activation energies were obtained as expected for the kind of defects involved in these processes [pt

  20. NMR measurements in milled GdCo2 and GdFe2 intermetallic compounds

    International Nuclear Information System (INIS)

    Tribuzy, C.V.B.; Guimaraes, A.P.; Biondo, A.; Larica, C.; Alves, K.M.B.

    1998-12-01

    We have used the nuclear magnetic resonance technique to study the magnetic and structural properties of the Gd-Co and Gd-Fe metallic systems, starting with the C15 laves phase intermetallic compounds, and submitting them to a high energy milling process. This leads to the amorphization of the samples, as determined by the X-ray diffraction spectra. For the Gd-Co system the NMR study used the 59 Co nucleus; in the Gd-Fe system, 155,157 Gd and 57 Fe were used. Both systems showed segregation of the pure elements, after a few hours of milling. In the Gd-Co system, a single line, of increasing width, was observed in the 59 Co spectrum. In the Gd-Fe system, the 155 Gd and 157 Gd resonances show three lines, arising from electrical quadrupole interaction. With increasing milling time, the lines broaden, and extra lines appear attributed to a cubic phase of Gd; this interpretation is supported by the X-ray analysis of the samples. The 57 Fe NMR spectrum of this system also informs on the direction of magnetization of the samples in the early stages of milling. From 1 h to 7 h of milling, a spectrum of α-Fe was observed. The study of the NMR line intensity as a function of radio frequency (r.f.) power in Gd Co 2 suggests the existence of regions of the samples with different degrees of disorder. We have observed the persistence of NMR signals from the original intermetallic compounds in the samples with up to 10 h and 7 h of milling, respectively, for Gd Co 2 and Gd Fe 2 . (author)

  1. Magnetic and structural studies on nanostructured Gd/Cr multilayer films

    International Nuclear Information System (INIS)

    Gadioli, G.Z.; Rouxinol, F.P.; Gelamo, R.V.; Cardoso, L.P.; Gama, S.; Bica de Moraes, M.A.

    2013-01-01

    Investigations of magnetic phases, transition temperatures and coercivity were performed in multilayered Gd/Cr films as a function of the crystalline state and morphology of the Gd layers. The films were deposited by dc magnetron sputtering at three substrate temperatures, T s , (room temperature, 300 and 500 °C). The Gd and Cr thicknesses were of 10 and 30 nm, respectively. Two series of three films were prepared. In one of the series, the films had a single Gd/Cr bilayer; in the other, 15 bilayers. The discontinuous or granular nature of the Gd layers was revealed by scanning electron microscopy Grazing incidence angle x-ray diffraction was used to investigate the crystalline state of the Gd and Cr layers. These techniques revealed that grain average size and crystalline order increase with increasing T s . From dc magnetic measurements, the co-existence of ferromagnetic and superferromagnetic phases in the Gd layers was observed, and Curie transition temperatures, T C , were determined. High coercive fields at low temperature (2 K) were measured in hysteresis cycles. Field-cooled and zero field-cooled magnetizations as functions of temperature curves exhibited, for some of the samples, a low temperature peak suggesting a freezing transition to a cluster glass state. This was confirmed by complementary ac-susceptibility measurements carried out as a function of temperature, for various frequencies of the ac field. Some results of this work – the decline in T C for decreasing Gd grain size, the high coercive field and its dependence on particle size, and the behavior of the magnetization at low temperatures for the sample deposited at room temperature – are discussed in terms of finite size and surface effects in nanosized particles. - Highlights: • Sputter-deposited Gd/Cr multilayer films with nanostructured Gd layers • Ferromagnetic and superferromagnetic phases are observed. • Ferromagnetic phase dependent of the deposition temperature • Improved

  2. The influence of Co substitution on the magnetocaloric effect of Gd(Al,Fe)2

    International Nuclear Information System (INIS)

    Deng, J Q; Yan, J L; Huang, J L; Zhu, J M; Chen, X; Zhuang, Y H

    2007-01-01

    The magnetocaloric effect (MCE) in samples GdAl 1.7 (Fe 1-x Co x ) 0.3 with x= 0, 0.1, 0.2, 0.3 and 0.4 were investigated by x-ray diffraction (XRD) and magnetization measurements. It was found that five samples crystallize well in the MgCu 2 -type structure. The lattice parameter and the values of Curie temperature decrease with increasing Co content, whereas the magnetic-entropy change and cooling capacity increase. In the magnetic-field change of 2.0 T the maximum of the magnetic-entropy change and refrigerant capacity in sample GdAl 1.7 Fe 0.7 Co 0.3 reach 4.8 J kg -1 K -1 and 88.3 J kg -1 , respectively. The maximum of the magnetic-entropy change is comparable to that of Gd metal (3.8 J kg -1 K -1 in Δ B=1.5 T)

  3. Magnetic properties of the germanides RE3Pt4Ge6 (RE=Y, Pr, Nd, Sm, Gd-Dy)

    International Nuclear Information System (INIS)

    Eustermann, Fabian; Eilers-Rethwisch, Matthias; Renner, Konstantin; Hoffmann, Rolf-Dieter; Poettgen, Rainer; Janka, Oliver; Oldenburg Univ.

    2017-01-01

    The germanides RE 3 Pt 4 Ge 6 (RE=Y, Pr, Nd, Sm, Gd-Dy) have been synthesized by arc-melting of the elements followed by inductive annealing to improve the crystallinity and allow for structural order. The compounds have been studied by powder X-ray diffraction; additionally the structure of Y 3 Pt 4 Ge 6 has been refined from single-crystal X-ray diffractometer data. It exhibits a (3+1)D modulated structure, indicating isotypism with Ce 3 Pt 4 Ge 6 . The crystal structure can be described as an intergrowth between YIrGe 2 - and CaBe 2 Ge 2 -type slabs along [100]. Temperature-dependent magnetic susceptibility measurements showed Pauli paramagnetism for Y 3 Pt 4 Ge 6 and Curie-Weiss paramagnetism for Pr 3 Pt 4 Ge 6 and Nd 3 Pt 4 Ge 6 . Sm 3 Pt 4 Ge 6 exhibits van Vleck paramagnetism, while antiferromagnetic ordering at T N =8.1(1) K and T N =11.0(1) K is observed for Gd 3 Pt 4 Ge 6 and Tb 3 Pt 4 Ge 6 , respectively.

  4. Investigation of Gd compounds using synchrotron radiation

    International Nuclear Information System (INIS)

    Tyszka, B.; Szade, J.; Burian, W.; Skorek, G.; Deniszczyk, J.; Sikora, M.; Zajac, D.; Kapusta, Cz.; Matteucci, M.; Bondino, F.; Zacchigna, M.; Zangrando, M.

    2005-01-01

    The electronic structure of ferromagnetic compound GdTiGe has been investigated using element sensitive methods-X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD) and resonant inelastic X-ray scattering (RIXS). Additionally, another ferromagnet GdTiSi has been studied using XMCD. XMCD revealed a strong dichroic signal at Gd L 2 and L 3 edges, which can be related to polarisation of Gd 5d band. XAS at Ti L 2,3 edges has exhibited a structure which appeared to be in general agreement with the LAPW calculations. RIXS spectra have shown some resonance features for photon energies close to Ti L 2 and Gd M 5 edges

  5. Inter-atomic bonding and dielectric polarization in Gd{sup 3+} incorporated Co-Zn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, R.A. [Department of Physics, P.V.P. Arts, Commerce and Science College, Pravaranagar, MS (India); Desai, S.S. [Materials Research Laboratory, Shrikrishna Mahavidyalaya, Gunjoti 413613, MS (India); Patange, S.M., E-mail: drsmpatange@rediffmail.com [Materials Research Laboratory, Shrikrishna Mahavidyalaya, Gunjoti 413613, MS (India); Jadhav, S.S. [Department of Physics, Dnyanopasak Shikshan Mandal' s Arts, Commerce and Science College, Jintur 431509, MS (India); Jadhav, K.M. [Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431001, MS (India)

    2017-04-01

    A series of ferrite with a chemical composition Co{sub 0.7}Zn{sub 0.3}Gd{sub x}Fe{sub 2−x}O{sub 4} (where x=0.0 to x=0.1) were prepared by sol-gel auto-combustion method. X-ray diffraction pattern were used to determine the crystal structure and phase formation of the prepared samples. Scanning electron microscopy is used to study the surface morphology of the prepared samples. Elastic properties were determined from the infrared spectroscopy. Debye temperature, wave velocities, elastic constants found to increase with the increase in Gd{sup 3+} substitution. Dielectric properties such as dielectric constant and dielectric loss were studied as a function of Gd{sup 3+} substitution and frequency. Dielectric constant decreased with the increase in frequency and Gd{sup 3+} substitution. Behavior of dielectric properties was explained on the basis of Maxwell-Wagner interfacial polarization which in accordance with Koops phenomenological theory. Real and imaginary part of impedance was studied as a function of resistance and Gd{sup 3+} substitution. The behavior of impedance is systematically discussed on the basis of resistance-capacitance circuit.

  6. Detailed crystallization study of co-precipitated Y1.47 Gd1.53 Fe5 O12 and relevant magnetic properties

    International Nuclear Information System (INIS)

    Serra, Rogerio Arving; Ogasawara, Tsuneharu; Ogasawara, Angelica Soares

    2007-01-01

    The crystallization process of co-precipitated Y 1.5 Gd 1.5 Fe 5 O 12 powder heated up to 1000 deg C at rate of 5 deg C min -1 was investigated. Above 810 deg C crystalline Y 1.47 Gd 1.53 Fe 5 O 12 was obtained with a lattice parameter of 12.41 A and a theoretical density of 5.84 g cm -3 . Dry pressed rings were sintered at 1270 and 1320 deg C, increasing the grain-size from 3.1 to 6.5 μm, the theoretical density by 87.6 to 95.3% and decreasing H c from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 deg C and Ms equalled 9.25 emu g -1 (0.17 kG) agreeing well with the B s -value of the hysteresis graph and literature values. (author)

  7. Growth, spectral properties, and laser demonstration of Nd:(Lu0.5Gd0.5)2SiO5 crystal

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Wu, F; Xia, C T; Zhang, J; Ma, J; Cong, Z H; Tang, D Y; Zhu, H M; Chen, X Y; Xu, J

    2011-01-01

    A Nd:(Lu 0.5 Gd 0.5 ) 2 SiO 5 (Nd:LGSO) crystal has been grown by the Czochralski method. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 5.37, 1.63, and 5.57×10 -20 cm 2 , respectively. The absorption and emission cross sections and branching ratios were calculated. The Nd:LGSO crystal reveals a broadband emission feature (FWHM = 9.8 nm), which shows potential as gain medium for ultrashort pulse lasers. The radiative and fluorescence lifetimes are 299 and 230 μs, respectively, resulting in a quantum efficiency of 77%. Pumped by a laser diode, the maximum continuous wave (CW) output power of 444 mW and a slope efficiency of 17.7% have been obtained

  8. Growth, spectral properties, and laser demonstration of Nd:(Lu0.5Gd0.5)2SiO5 crystal

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhang, J.; Cong, Z. H.; Tang, D. Y.; Ma, J.; Zhu, H. M.; Chen, X. Y.; Wu, F.; Xia, C. T.; Xu, J.

    2011-09-01

    A Nd:(Lu0.5Gd0.5)2SiO5 (Nd:LGSO) crystal has been grown by the Czochralski method. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intensity parameters Ω2,4,6 were obtained to be 5.37, 1.63, and 5.57×10-20 cm2, respectively. The absorption and emission cross sections and branching ratios were calculated. The Nd:LGSO crystal reveals a broadband emission feature (FWHM = 9.8 nm), which shows potential as gain medium for ultrashort pulse lasers. The radiative and fluorescence lifetimes are 299 and 230 μs, respectively, resulting in a quantum efficiency of 77%. Pumped by a laser diode, the maximum continuous wave (CW) output power of 444 mW and a slope efficiency of 17.7% have been obtained.

  9. Synthesis and Characterization of Hollow Magnetic Alloy (GdNi2, Co5Gd Nanospheres Coated with Gd2O3

    Directory of Open Access Journals (Sweden)

    Wang Li

    2014-01-01

    Full Text Available Uniform magnetic hollow nanospheres (GdNi2, Co5Gd coated with Gd2O3 have been successfully prepared on a large scale via a urea-based homogeneous precipitation method using silica (SiO2 spheres as sacrificed templates, followed by subsequent heat treatment. Nitrogen sorption measurements and scanning electron microscope reveal that these hollow-structured magnetic nanospheres have the mesoporous shells that are composed of a large amount of uniform nanoparticles. After reduction treatment, these nanoparticles exhibit superparamagnetism that might have potential applications in medicine. Furthermore, the developed synthesis route may provide an important guidance for the preparation of other multifunctional hollow spherical materials.

  10. Magnetism in ordered metallic perovskite compound GdPd3BxC1-x

    International Nuclear Information System (INIS)

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Dattagupta, S.

    2009-01-01

    We report results of dc-magnetization, ac-susceptibility and magnetoresistance measurements on crystalline metallic-perovskite compounds GdPd 3 B x C 1-x (x=0.25, 0.50, 0.75 and 1.00) and the parent cubic compound GdPd 3 . The interest in these materials stems from the observation of negative temperature coefficient of resistance and negative thermal expansion in some of the members of this series. In the present study, we show that by substitution of non-magnetic elements, boron and carbon, the nature of the magnetic interaction can be varied from dominating ferromagnetic to antiferromagnetic and finally to a canted magnetic structure without altering the crystal symmetry of the compounds. The variation of magnetic interaction by modifying the lattice parameter resembles Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillations.

  11. Synthesis, electronic structure and luminescent properties of a new red-emitting phosphor GdBiW2O9:Eu3+

    Science.gov (United States)

    Xie, Zhi; Zhou, Weiwei; Zhao, Wang; Zhang, Hao; Hu, Qichang; Xu, Xuee

    2017-10-01

    Red phosphor of GdBiW2O9:Eu3+ was prepared by solid-state reaction method. The phase purity and structure of the samples were characterized by XRD. The electronic structures of GdBiW2O9 host were estimated by DFT calculation. The PLE and PL spectra were also investigated. The optimal luminescent properties of GdBiW2O9:Eu3+ phosphors were obtained at 900 °C with 40 mol% of Eu3+ concentration. The phosphors can be excited efficiently by 396 nm NUV light and emit intense red light peaking at 618 nm. The results indicate GdBiW2O9:Eu3+ can act as a potential red-emitting phosphor for LEDs application.

  12. Magnetic exchange in {Gd(III)-radical} complexes: method assessment, mechanism of coupling and magneto-structural correlations.

    Science.gov (United States)

    Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan

    2014-07-28

    Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.

  13. Raman and FTIR spectra of CeO{sub 2} and Gd{sub 2}O{sub 3} in iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yuanming, E-mail: laiyuanming@ipm.com.cn [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng; Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liu, Pei; Zeng, Yiming; Hu, Changyi [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2014-12-25

    Highlights: • The structure of the studied samples has been investigated by Raman and FTIR spectroscopy. • The structure for the all samples has similar features. • The structure consists of predominantly Q{sup 1} with a fraction of Q{sup 0} and Q{sup 2} units. • The Ce and Gd enters in the structure of studied glasses as a network modifier. - Abstract: In the present work, multicomponent oxide samples of composition x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} (0 ⩽ x ⩽ 8 mol%) were produced by conventional melting method. The samples were investigated to examine the effect of the CeO{sub 2} and Gd{sub 2}O{sub 3} composition on the structure of the iron phosphate glasses system. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) for the x ⩽ 6 mol% samples show all the samples formed homogeneous glass, but for the x = 8 mol% samples show the presence of randomly distributed crystalline phase embedded in an amorphous matrix. The x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} glass containing 8 mol% CeO{sub 2} and Gd{sub 2}O{sub 3} partially crystallized during annealing and Ce/Gd-rich were identified by EDS in the crystalline phase. The structure of the studied samples has been investigated using Raman and Fourier transform infrared spectroscopy (FTIR). The Raman and FTIR spectra for the samples have analogous spectral features. The Raman and FTIR spectra suggest that the structure is mainly constituted by the pyrophosphate glass based structure, with a part proportion of metaphosphate and orthophosphate structure. Raman and FTIR spectra allowed us to identify the structural units which appear in the structural network of these phosphate glasses and also the network modifier role of cerium and gadolinium ions.

  14. Magnetism of cyano-bridged hetero-one-dimensional Ln3+-M3+ complexes (Ln3+ = Sm, Gd, Yb; M3+ = FeLS, Co).

    Science.gov (United States)

    Figuerola, Albert; Diaz, Carmen; Ribas, Joan; Tangoulis, Vassilis; Sangregorio, Claudio; Gatteschi, Dante; Maestro, Miguel; Mahía, José

    2003-08-25

    The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).

  15. A comparison of Gd-BOPTA and Gd-DOTA for contrast-enhanced MRI of intracranial tumours

    International Nuclear Information System (INIS)

    Colosimo, C.; Knopp, M.V.; Barreau, X.; Gerardin, E.; Kirchin, M.A.; Guezenoc, F.; Lodemann, K.P.

    2004-01-01

    A two-centre intra-individual crossover study was performed in 23 patients with suspected high-grade glioma or metastases to assess and compare the safety and enhancement characteristics of two different MRI contrast media (gadobenate dimeglumine, Gd-BOPTA and gadoterate meglumine, Gd-DOTA) at equivalent doses of 0.1 mmol/kg body weight. T1-weighted spin-echo (SE) and T2-weighted fast SE images were obtained before and T1-weighted images 0, 2, 4, 6, 8 and 15 min after injection. T1-weighted images with magnetisation transfer contrast were acquired 12 min after injection. Qualitative assessment by blinded, off-site readers (reader 1: 19 patients; reader 2: 21) and on-site investigators (23) revealed significant (P ≤0.005) overall preference for Gd-BOPTA over Gd-DOTA for contrast enhancement (Gd-BOPTA preferred in 18, 15 and 18 cases; Gd-DOTA in 0, 1 and 1 and no preference in 1, 5 and 4; off-site readers 1 and 2, and on-site investigators, respectively). A similar significant preference for Gd-BOPTA was expressed by off-site readers and on-site investigators for lesion-to-brain contrast, lesion delineation, internal lesion structure, and overall image preference. Quantitative assessment by off-site readers revealed significantly (p<0.05) greater lesion enhancement with Gd-BOPTA than with Gd-DOTA at all times from 2 min after injection. (orig.)

  16. Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior

    Science.gov (United States)

    Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.

    2013-12-01

    We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.

  17. Role of anion doping on electronic structure and magnetism of GdN by first principles calculations

    KAUST Repository

    Zhang, Xuejing; Mi, Wenbo; Guo, Zaibing; Cheng, Yingchun; Chen, Guifeng; Bai, Haili

    2014-01-01

    We have investigated the electronic structure and magnetism of anion doped GdN1-yXy (X = B, C, O, F, P, S and As) systems by first-principles calculations based on density functional theory. GdN 1-yXy systems doped by O, C, F, P, and S atoms are more stable than those doped by B and As atoms because of relatively high binding energies. The anion doping and the N defect states modify the density of states at the Fermi level, resulting in a decrease in spin polarization and a slight increase in the magnetic moment at the Gd and N sites. © 2014 The Royal Society of Chemistry.

  18. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y.

    2012-01-01

    Graphical abstract: Faraday hysteresis loops for Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 film on glass-ceramic substrate (a), Bi 2.8 Y 0.2 Fe 5 O 12 film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO 2 /Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi 2.8 Y 0.2 Fe 5 O 12 , Bi 2.5 Gd 0.5 Fe 3.8 Al 1.2 O 12 , Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 and Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO 2 films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO 2 films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  19. Thickness dependent formation and properties of GdSi2/Si(100) interfaces

    International Nuclear Information System (INIS)

    Peto, G.; Molnar, G.; Dozsa, L.; Horvath, Z.E.; Horvath, Zs.J.; Zsoldos, E.; Dimitriadis, C.A.; Papadimitriou, L.

    2005-01-01

    Epitaxial and polycrystalline orthorhombic GdSi 2 films were grown on Si(100) substrates by solid phase reaction between Si and Gd films at different thicknesses of the Gd film. The most important property of these GdSi 2 /Si interfaces was defect formation. This was investigated by studying the properties of the Schottky barriers by means of current voltage and capacitance-voltage characteristics, deep level transient spectroscopy by double crystal X-ray diffractometry, and transmission electron microscopy. Epitaxial growth of the silicide layer ensured a relatively low interface defect density (about 10 10 cm -2 ), while the non-epitaxial growth induced defects of a much higher density (about 10 12 cm -2 ). The defects generated during the silicide formation are located within a depth of about 10 nm from the GdSi 2 /Si interface. (orig.)

  20. RE{sub 3}Ga{sub 9}Ge (RE=Y, Ce, Sm, Gd and Yb): compounds with an open three-dimensional polygallide framework synthesized from liquid gallium

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, M A; Kanatzidis, M G

    2003-07-01

    The RE{sub 3}Ga{sub 9}Ge compounds (RE=Y, Ce, Sm, Gd and Yb) were synthesized at 850 deg. C in quantitative yield from reactions containing excess liquid Ga. The orthorhombic crystal structure is characterized by a unique three-dimensional open Ga framework with parallel straight tunnels. In the tunnels, inserted are arrays of the RE atoms together with interpenetrated monoatomic RE-Ga-Ge planes. A complex disordered arrangement of the RE and Ga atoms is observed in the monoatomic plane. Depending on the extent of disorder, the crystal structure could be presented either in a sub-cell (no ordering) or in a super-cell (partial ordering). Single-crystal X-ray data for Ce{sub 3}Ga{sub 9}Ge sub-structure: space group Immm, Z=2, cell parameters a=4.3400(12) A; b=10.836(3) A; and c=11.545(3) A; super-structure: space group Cmma, Z=8, cell parameters a=8.680(3) A; b=23.090(7) A; and c=10.836(3) A. The refinement based on the full-matrix least squares on F{sub o}{sup 2}[I>2{sigma}(I)] converged to final residuals R{sub 1}/wR{sub 2}=0.0226/0.0528 and 0.0729/0.1569 for the sub- and super-structures, respectively. The relationship between the disordered sub-structure and partially ordered super-structure is discussed. Magnetic susceptibility measurements show Curie-Weiss behavior at the temperatures above 30 K with the negative Weiss constants {theta}=-49(1) and-7.7 K for Gd and Ce analogs, respectively. An antiferromagnetic transition is observed in the Gd analog at T{sub N}=26.1 K. The {mu}{sub eff} obtained for both analogs is close to the RE{sup 3+} free-ion value.

  1. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  2. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  3. Investigation of nanocrystalline Gd films loaded with hydrogen

    KAUST Repository

    Hruška, Petr; Čí žek, Jakub; Dobroň, Patrik; Anwand, Wolfgang; Mü cklich, Arndt; Gemma, Ryota; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid

    2015-01-01

    The present work reports on microstructure studies of hydrogen-loaded nanocrystalline Gd films prepared by cold cathode beam sputtering on sapphire (112¯0) substrates. The Gd films were electrochemically step-by-step charged with hydrogen and the structural development with increasing concentration of absorbed hydrogen was studied by transmission electron microscopy and in-situ   X-ray diffraction using synchrotron radiation. The relaxation of hydrogen-induced stresses was examined by acoustic emission measurements. In the low concentration range absorbed hydrogen occupies preferentially vacancy-like defects at GBs typical for nanocrystalline films. With increasing hydrogen concentration hydrogen starts to occupy interstitial sites. At the solid solution limit the grains gradually transform into the ββ-phase (GdH2). Finally at high hydrogen concentrations xH>2.0xH>2.0 H/Gd, the film structure becomes almost completely amorphous. Contrary to bulk Gd specimens, the formation of the γγ-phase (GdH3) was not observed in this work.

  4. Crystallization of 21.25Gd{sub 2}O{sub 3}-63.75MoO{sub 3}-15B{sub 2}O{sub 3} glass induced by femtosecond laser at the repetition rate of 250 kHz

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, M.J.; Han, Y.M. [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Liu, L.P. [Hunan Biological and Electromechanical Polytechnic, Changsha 410126 (China); Zhou, P.; Du, Y.Y.; Guo, Q.T. [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Ma, H.L., E-mail: mahl@staff.shu.edu.cn [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Dai, Y. [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2010-12-01

    We report the formation of {beta}'-Gd{sub 2}(MoO{sub 4}){sub 3} (GMO) crystal on the surface of the 21.25Gd{sub 2}O{sub 3}-63.75MoO{sub 3}-15B{sub 2}O{sub 3} glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm{sup -1}, 240 cm{sup -1}, 466 cm{sup -1}, 664 cm{sup -1} and 994 cm{sup -1}which belong to the MoO{sub 3} crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  5. Specific features of the domain structure of (Gd sub 1-x Nd sub x ) sub 2 (MoO sub 4 ) sub 3 crystals. Osobennosti domennoj struktury kristallov (Gd sub 1-x Nd sub x ) sub 2 (MoO sub 4 ) sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Bryzgalov, A N; Slepchenko, B M; Virachev, B P [Cherepovetskij Gosudarstvennyj Pedagogicheskij Inst., Cherepovets (USSR)

    1989-11-01

    Formation of the domain structures by sample transfer into thermodynamically metastable state using a simultaneous effect of electric field and temperature change is investigated in Gd{sub 1.7}Nd{sub 0.3}(MoO{sub 4}){sub 3} monocrystals (GMO). Some new results obtained under investigations into GMO domain structure using neodymium by means of hydrothermal etching and polarization-optical method are presented.

  6. Probing ultrafast dynamics in electronic structure of epitaxial Gd(0 0 0 1) on W(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, Nathan [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France); Malinowski, Gregory [Laboratoire de Physique des Solides, Université Paris Sud, Orsay (France); Bendounan, Azzedine; Silly, Mathieu G.; Chauvet, Christian [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France); Krizmancic, Damjan [Instituto Officina dei Materiali (IOM)-CNR Laboratorio TASC, in Area Science Park S.S.14, Km 163.5, I-34149 Trieste (Italy); Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2013-08-15

    Highlights: •Study of the magnetism of epitaxial Gd(0 0 0 1)/W(1 1 0). •Study of Gd(0 0 0 1) band structure as a function of the temperature. •Study of the Gd magnetism dynamics probing the M5 edge. -- Abstract: The electronic and magnetic properties of Gd have been studied using time- and angle-resolved photoelectron spectroscopy employing laser pump and synchrotron radiation probe pulses. The static temperature evolution of the valence band and more precisely, the 5d6s exchange splitting is reported. Ultrafast demagnetization is measured using dichroic resonant Auger spectroscopy. Remarkably, a complete demagnetization is observed followed up by a non-monotonic recovery that could be associated to magnetization oscillations.

  7. On the Precipitation in an Ag-Containing Mg-Gd-Zr Alloy

    Science.gov (United States)

    Zhang, Yu; Zhu, Yuman; Rong, Wei; Wu, Yujuan; Peng, Liming; Nie, Jian-Feng; Birbilis, Nick

    2018-02-01

    The evolution of precipitates in a high-strength Mg-2.4Gd-0.4Ag-0.1Zr (at. pct) alloy was investigated using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The precipitation of Mg-2.4Gd-0.4Ag-0.1Zr includes β- and γ-type precipitates, the latter involving a hitherto unreported precipitation sequence that is the focus of the present study. The β-type precipitation sequence is described as follows: supersaturated solid solution (S.S.S.S.) → ordered solute clusters → zigzag GP zones → β' → βF' → β 1 → β. Compared with the precipitation sequence of the Mg-Gd system, the proposed β-type precipitation sequence includes ordered solute clusters, zigzag GP zones, and βF' , but excludes β″. The strain field around the coarsened β' phase is supposed to stimulate the formation of the β^'F phase. Furthermore, the βF' phase provides preferential nucleation site for the β 1 phase. The γ-type precipitation sequence is proposed as follows: S.S.S.S. → basal GP zones → γ''' → γ″ → γ. The crystal structures, morphologies, and orientations of the basal GP zone, γ''', γ″, γ phases were comprehensively examined and established herein. The results are described in the context of other, but similar, alloy systems. A holistic description of the precipitate evolution in Ag-containing Mg-Gd alloys is discussed and rationalized.

  8. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  9. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  10. Diode-pumped thin-disk Nd:GdVO4 laser at 893 nm

    International Nuclear Information System (INIS)

    Li, Y L; Fu, X H; Wang, A G

    2011-01-01

    We report for the first time a Nd:GdVO 4 laser operating in a continuous wave (CW) on the quasi-three-level laser at 893 nm, based on the 4 F 3/2 – 4 I 9/2 transition, generally used for a 912 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:GdVO 4 thin-disk laser with 157 mW of CW output power at 893 nm. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 23 mW at 447 nm by using a BiB 3 O 6 (BiBO) nonlinear crystal

  11. Predictions of thermomagnetic properties of Laves phase compounds: TbAl2, GdAl2 and SmAl2 performed with ATOMIC MATTERS MFA computation system

    Science.gov (United States)

    Michalski, Rafał; Zygadło, Jakub

    2018-04-01

    Recent calculations of properties of TbAl2 GdAl2 and SmAl2 single crystals, performed with our new computation system called ATOMIC MATTERS MFA are presented. We applied localized electron approach to describe the thermal evolution of Fine Electronic Structure of Tb3+, Gd3+ and Sm3+ ions over a wide temperature range and estimate Magnetocaloric Effect (MCE). Thermomagnetic properties of TbAl2, GdAl2 and SmAl2 were calculated based on the fine electronic structure of the 4f8, 4f7 and 4f5 electronic configuration of the Tb3+ and Gd3+ and Sm3+ ions, respectively. Our calculations yielded: magnetic moment value and direction; single-crystalline magnetization curves in zero field and in external magnetic field applied in various directions m(T,Bext); the 4f-electronic components of specific heat c4f(T,Bext); and temperature dependence of the magnetic entropy and isothermal entropy change with external magnetic field - ΔS(T,Bext). The cubic universal CEF parameters values used for all CEF calculations was taken from literature and recalculated for universal cubic parameters set for the RAl2 series: A4 = +7.164 Ka04 and A6 = -1.038 Ka06. Magnetic properties were found to be anisotropic due to cubic Laves phase C15 crystal structure symmetry. These studies reveal the importance of multipolar charge interactions when describing thermomagnetic properties of real 4f electronic systems and the effectiveness of an applied self-consistent molecular field in calculations for magnetic phase transition simulation.

  12. The production and use of a 148Gd charged particle target in a spectroscopic study of 147Gd

    International Nuclear Information System (INIS)

    Massey, T.N.

    1988-01-01

    This thesis discusses the nuclear structure of 147 Gd elucidated by the neutron pickup reactions (p,d), (d,t) and ( 3 He,α) on the unstable 148 Gd target. The neutron pickup reaction on 148 Gd probes the two-particle-one-hole states by the pickup of neutrons in the shell model orbitals below the N = 82 gap and one-particle states by pickup of neutrons in shell model orbitals above the N = 82 gap. Our experiments will provide information on the location of neutron single-particle energies which can be used for shell-model calculations in the 146 Gd region. The 2-particle-1-hole (2p-1h) states which are probed directly by the neutron transfer reaction in the experiments with the 148 Gd target, will bear indirectly on the energies of one-hole states in 145 Gd. They will also provide information on the strongest single-particle states in 147 Gd because all the single-particle states in the 148 Gd target are partially occupied because of the mixing by the pairing interaction. 107 refs., 23 figs., 20 tabs

  13. Impact of Gd3+/graphene substitution on the physical properties of magnesium ferrite nanocomposites

    Science.gov (United States)

    Ateia, Ebtesam E.; Mohamed, Amira T.; Elsayed, Kareem

    2018-04-01

    Magnesium nano ferrite with composition MgFe2O4, MgGd0.05Fe1.95O4 and MgFe2O4 - 5 wt% GO was synthesized using a citrate auto-combustion method. The crystal structure, morphology, and magnetic properties of the investigated samples were studied. High Resolution Transmission Electron Microscopy (HRTEM) images show that the substitution of small amounts of Gd3+/GO causes a considerable reduction of the grain size. Studies on the magnetic properties demonstrate that the coercivity of GO-substituted magnesium nano ferrites is enhanced from 72 Oe to 203 Oe and the magnetocrystalline anisotropy constant increases from 1171 to 3425 emu Oe/gm at 300 K. The direct effects of graphene on morphology, crystal structure as well as the magnetic properties reveal that the studied sample are suitable for turbidity color and removal. The magnetic entropy change is estimated from magnetization data using Maxwell relation. The calculated Curie temperature from the Curie-Weiss law and the maximum entropy change are in good agreement with each other. Based on UV diffuse reflectance spectroscopy studies, the optical band gaps are in the range of 1.4-2.15 eV. In addition, the combination of small particle size and good magnetic properties makes the investigated samples act as a potential candidates for superior catalysts, adsorbents, and electromagnetic wave absorbers.

  14. Thermal stability and magnetocaloric properties of GdDyAlCo bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hui, X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: huixd01@hotmail.com; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2008-01-25

    Gd{sub 56-x}Dy{sub x}Al{sub 24}Co{sub 20} (x = 16, 20 and 22) bulk metallic glasses (BMGs) alloys with a diameter of 2, 3 and 3 mm, respectively, were prepared by using copper mold casting. These alloys exhibit higher values of the glass transition temperature, crystallization temperature, and activation energy of the glass transition and crystallization, compared with those of other known rare-earth-based BMGs. A maximum magnetic entropy changes of 15.78 J/(kg K) is obtained in Gd{sub 40}Dy{sub 16}Al{sub 24}Co{sub 20}, which is the maximal among all the bulk metallic glasses, and is much larger than those of the known crystalline magnetic refrigerant compound Gd{sub 5}Si{sub 2}Ge{sub 1.9}Fe{sub 0.1} and pure Gd metal. All the three BMG alloys have a broader temperature range of the entropy change peak, resulting in larger refrigerate capacities (RC) than those of conventional crystalline materials. The excellent magnetocaloric properties combining with high thermal stability make them an attractive candidate for magnetic refrigerants in the temperature range of 20-100 K.

  15. Structure and physical properties of RT{sub 2}Cd{sub 20} (R=rare earth, T=Ni, Pd) compounds with the CeCr{sub 2}Al{sub 20}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, V.W.; Yazici, D.; White, B.D. [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Dilley, N.R. [Quantum Design, 6325 Lusk Boulevard, San Diego, CA 92121 (United States); Friedman, A.J.; Brandom, B. [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Maple, M.B., E-mail: mbmaple@physics.ucsd.edu [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Eleven new compounds, R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) and R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm), were grown as single crystals in high temperature cadmium-rich solutions. They crystallize in the cubic CeCr{sub 2}Al{sub 20}-type structure (Fd3{sup ¯}m, Z=8) as characterized by measurements of powder X-ray diffraction. Electrical resistivity, magnetization, and specific heat measurements were performed on R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals. Whereas YNi{sub 2}Cd{sub 20} and LaNi{sub 2}Cd{sub 20} exhibit unremarkable metallic behavior, when magnetic moments from localized 4f electron states (Gd{sup 3+}–Tb{sup 3+}) are embedded into this host, they exhibit ferromagnetic order with values of the Curie temperature T{sub C} for R Ni{sub 2}Cd{sub 20} (R=Gd, and Tb) which scale with the de Gennes factor. - Graphical abstract: Specific heat divided by temperature C/T vs. T for single crystals of R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Gd, and Tb). Left inset: Low temperature C/T vs. T{sup 2} for LaNi{sub 2}Cd{sub 20}. The solid line represents a linear fit of the data. Right inset: Low-temperature C/T data vs. T for R=Ce–Nd, Gd, and Tb; magnetic ordering temperatures are indicated by arrows. - Highlights: • R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals synthesized for the first time. • R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm) single crystals synthesized for the first time. • Single crystals are of good metallurgical quality (large RRR values). • NdNi{sub 2}Cd{sub 20} orders antiferromagnetically at T{sub N}=1.5 K. • R Ni{sub 2}Cd{sub 20} (R=Sm, Gd, Tb) order ferromagnetically.

  16. The effect of Gd doping on the electrical and photoelectrical properties of Gd:ZnO/p-Si heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Baturay, Silan [Department of Physics, Faculty of Science, Dicle University, 21280 Diyarbakir (Turkey); Ocak, Yusuf Selim, E-mail: yusufselim@gmail.com [Department of Science, Faculty of Education, Dicle University, 21280 Diyarbakir (Turkey); Science and Technology Application and Research Center, Dicle University, 21280 Diyarbakir (Turkey); Kaya, Derya [Department of Physics, Institute of Natural Applied Sciences, Dicle University, 21280 Diyarbakir (Turkey)

    2015-10-05

    Highlights: • Undoped and Gd doped ZnO thin films were deposited onto p-Si semiconductor. • The Gd:ZnO/p-Si heterojunctions were compared with undoped ZnO/p-Si heterojunction. • A strong effect of Gd doping on the performance of the devices were reported. - Abstract: Undoped ZnO thin films, as well as 1%, 3% and 5% Gd-doped ZnO films, were deposited on p-type Si using spin coating. The structural properties of these thin films were analysed using X-ray diffraction, and the current–voltage (I–V) and capacitance–voltage (C–V) characteristics of the Gd:ZnO/p-Si heterojunctions were compared with those of the undoped ZnO/p-Si heterojunctions. We found that Gd doping had a strong effect on the performance of the devices, and that the Gd:ZnO/p-Si heterojunctions formed with 1% Gd-doped ZnO were the most strongly rectifying, and had the highest barrier height and the lowest series resistance. Furthermore, the I–V measurements of the 1% Gd-doped ZnO/p-Si heterojunction exhibited the strongest response to light.

  17. Structural basis for the antibody neutralization of Herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Chung; Lin, Li-Ling [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Chan, Woan-Eng [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ko, Tzu-Ping [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Lai, Jiann-Shiun [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ministry of Economic Affairs, Taipei 100, Taiwan (China); Wang, Andrew H.-J., E-mail: ahjwang@gate.sinica.edu.tw [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Taipei Medical University, Taipei 110, Taiwan (China)

    2013-10-01

    The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.

  18. Study on the thermoluminescent properties of K2YF5 and K2GdF5 crystals doped with optically active trivalent ions for gamma and neutrons dosimetry

    International Nuclear Information System (INIS)

    Silva, Edna Carla da

    2008-01-01

    In this work, the thermoluminescent (TL) properties of both double potassium yttrium fluoride (K 2 YF 5 ) and double potassium gadolinium fluoride (K 2 GdF 5 ) crystals doped with optically active rare earth ions were investigated from the point of view of gamma and neutron dosimetry. Crystalline platelets with thickness of about 1 mm, synthesized under hydrothermal conditions, were irradiated in order to study TL sensitivity, as well as dose and energy response, reproducibility and fading, in terms of Ce 3+ , Tb 3+ , Dy 3+ , e Pr 3+ concentrations. The K 2 YF 5 crystals doped with 1.0 at por cent Dy 3+ have been found to have an excellent linear TL response to X and gamma photons, in the range of 0.01 to 10 mGy. The TL output is comparable to that of CaS0 4 :Mn dosemeters. The main peak at 130 deg C has been found to have a TL response for 41.1 keV X-ray energy 32 times higher than that for 662 keV gamma rays. This fact points out that the K 2 Y 0.99 Dy 0.01 F 5 crystals have great potential for X-rays diagnostic and/or industrial radiography. On the other hand, the K 2 GdF 5 crystals doped with 5.0 at por cent Dy 3+ have been found to have the better TL response for gamma and fast neutron radiation, among the dopants studied. For gamma fields the TL response was linear for doses ranging from 0.1 to 200 mGy. The TL peak around 200 deg C can be deconvoluted into four individual peaks, all of them with linear behavior. For fast neutron radiation produced by an 241 Am B e source, the TL responses for doses ranging from 0.6 to 12 mSv were also linear and comparable to that of commercial TLD-600, irradiated at same conditions. The TL emission due to neutrons was in the high temperature range, above 200 deg C. These results points out that K 2 Gd 0.95 Dy 0.05 F 5 crystals are good candidates for use in neutron dosimetry applications. (author)

  19. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F. [Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013 (Brazil); Correa, Charlane C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil); Ribeiro, Sidney J.L.; Santos, Molíria V. dos [Institute of Chemistry, São Paulo State University − UNESP, CP 355 Araraquara-SP 14801-970 Brazil (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil)

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  20. Facile one-step hydrothermal synthesis and luminescence properties of Eu{sup 3+}-doped NaGd(WO{sub 4}){sub 2} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zehan; Cai, Peiqing; Chen, Cuili; Pu, Xipeng; Kim, Sun Il, E-mail: sikim@pknu.ac.kr; Jin Seo, Hyo, E-mail: hjseo@pknu.ac.kr

    2017-06-01

    Eu{sup 3+}-doped NaGd(WO{sub 4}){sub 2} nanophosphors were synthesized via a facile one-step hydrothermal method without any surfactants or a further heat treatment. X-ray powder diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), the photoluminescence (PL) excitation and emission spectra, and decay curves were used to characterize NaGd(WO{sub 4}){sub 2}:Eu{sup 3+} phosphors. The results show that the Eu{sup 3+}-concentration has little influence on the structure and morphology of the as-synthesized samples. However, pH value plays a vital role on the structure and morphology of NaGd(WO{sub 4}){sub 2}. The well-crystallized sheet-like NaGd(WO{sub 4}){sub 2} phosphors can be obtained only at pH = 5–7. On the basis of the time-dependent synthesis, a possible growth mechanism of sheet-like architectures is proposed. The luminescence properties of NaGd{sub 1-x}Eu{sub x}(WO{sub 4}){sub 2} (0 ≤ x ≤ 1) are investigated. It is found that the charge transfer band of Eu{sup 3+} shifts to lower energy and broadens with increasing the Eu{sup 3+}-concentration. - Highlights: • NaGd(WO{sub 4}){sub 2}:Eu{sup 3+} nanosheets were synthesized by facile one-step hydrothermal method. • Luminescence properties of NaGd(WO{sub 4}){sub 2}:Eu{sup 3+} phosphor were firstly reported. • The CT band of Eu{sup 3+} depends strongly on Eu{sup 3+}-concentrations.

  1. STREAMFINDER II: A possible fanning structure parallel to the GD-1 stream in Pan-STARRS1

    Science.gov (United States)

    Malhan, Khyati; Ibata, Rodrigo A.; Goldman, Bertrand; Martin, Nicolas F.; Magnier, Eugene; Chambers, Kenneth

    2018-05-01

    STREAMFINDER is a new algorithm that we have built to detect stellar streams in an automated and systematic way in astrophysical datasets that possess any combination of positional and kinematic information. In Paper I, we introduced the methodology and the workings of our algorithm and showed that it is capable of detecting ultra-faint and distant halo stream structures containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia dataset. Here, we test the method with real proper motion data from the Pan-STARRS1 survey, and by selecting targets down to r0 = 18.5 mag we show that it is able to detect the GD-1 stellar stream, whereas the structure remains below a useful detection limit when using a Matched Filter technique. The radial velocity solutions provided by STREAMFINDER for GD-1 candidate members are found to be in good agreement with observations. Furthermore, our algorithm detects a ˜ {40}° long structure approximately parallel to GD-1, and which fans out from it, possibly a sign of stream-fanning due to the triaxiality of the Galactic potential. This analysis shows the promise of this method for detecting and analysing stellar streams in the upcoming Gaia DR2 catalogue.

  2. The Effects of Gd-Free Impurity Phase on the Aging Behavior for the Microwave Surface Resistance of Ag-coated GdBa2Cu3O7-δ at Cryogenic Temperatures

    Science.gov (United States)

    Lee, Sungho; Yang, Woo Il; Jung, Ho Sang; Oh, Won-Jae; Jang, Jiyeong; Lee, Jae-Hun; Kang, Kihyeok; Moon, Seung-Hyun; Yoo, Sang-Im; Lee, Sang Young

    2018-05-01

    High-T C GdBa2Cu3O7-δ (GdBCO) superconductor has been popular for making superconductive tapes that have much potential for various fields of large-scale applications. We investigated aging effects on the microwave surface resistance (R S) of Ag-coated GdBCO layer on Hastelloy substrate, so called GdBCO coated conductors (CCs), and Ag-coated GdBCO films on LaAlO3 (LAO) single-crystal substrates at cryogenic temperatures and compared them with each other. Unlike the R S of Ag-coated GdBCO films showing significant degradation in 4 weeks, no significant aging effects were found in our Ag-coated GdBCO CCs aged 85 weeks. The reactive co-evaporation deposition and reaction (RCE-DR) method was used for preparing the Ag-coated GdBCO CCs. Such durability of the Ag-coated GdBCO CCs in terms of the R S could be explained by existence of a protective impurity phase, i.e., Gd-free Ba-Cu-O phase as confirmed by transmission electron microscopy study combined with the energy-dispersive X-ray spectroscopy measurements. Although the scope of this study is limited to the Ag-coated GdBCO CCs prepared by using the RCE-DR method, our results suggest that a solution for preventing the aging effects on transport properties of other kinds of Ag-coated GdBCO CCs could be realized by means of an artificially-grown protective impurity layer.

  3. Electron paramagnetic resonance parameters and local structure for ...

    Indian Academy of Sciences (India)

    HUA-MING ZHANG. 1. , GUANG-DUO LU. 1 ... the above ZFSs, the local structure information for the impurity Gd. 3+ is obtained, i.e., .... parameters, extended X-ray absorption fine-structure (EXAFS) measurements and crystal-field spectrum ...

  4. Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes

    Science.gov (United States)

    Lee, Su Youn; Lee, J. H.; Lee, Young Jun

    2018-05-01

    The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.

  5. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.

    Science.gov (United States)

    Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo

    2014-11-01

    Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses

  6. Ferrimagnetic properties of Co/(Gd-Co) multilayers

    International Nuclear Information System (INIS)

    Svalov, A.V.; Fernandez, A.; Vas'kovskiy, V.O.; Tejedor, M.; Barandiaran, J.M.; Orue, I.; Kurlyandskaya, G.V.

    2006-01-01

    Co/(Gd-Co) multilayers have been prepared by rf-sputtering and investigated by means of Transverse Magnetooptic Kerr Effect (TMOKE), SQUID and VSM magnetometry. The composition of amorphous Gd 0.36 Co 0.64 layers was chosen so that their saturation magnetization was dominated by Gd moments in all the temperature range. Co and Gd-Co layers formed a macroscopic ferrimagnetically coupled system displaying a compensation temperature. Complete magnetic moment compensation was found at such point. An inversion of TMOKE hysteresis loops and a divergent behaviour of coercivity were also observed. By changing the layers thickness it has been possible to control the magnetic characteristics of the Co/(Gd-Co) structures, in particular the compensation takes place at different temperatures

  7. Platinum triangles in the Pt/Al framework of the intermetallic REPt6Al3 (RE = Ce-Nd, Sm, Gd, Tb) series

    International Nuclear Information System (INIS)

    Eustermann, Fabian; Stegemann, Frank; Renner, Konstantin; Janka, Oliver

    2017-01-01

    The compounds of the REPt 6 Al 3 series (RE = Ce-Nd, Sm, Gd, Tb) were obtained by reaction of the elements via arc-melting. They were characterized by powder and single-crystal X-ray diffraction (NdPt 6 Al 3 : wR = 0.0432, 759 F 2 values, 33 variables) as well as by magnetic susceptibility measurements. The isostructural compounds crystallize with a new structure type in the trigonal crystal system with space group R anti 3c, twelve formula units in the unit cell, and lattice parameters of a = 752-755 and c = 3882-3945 pm. The crystal structure can be described by different slabs stacked along [001]. One layer features Pt 3 triangles, centering the cavities of a flat honeycomb RE layer that are arranged in a..ABCA ' B ' C ' .. sequence. The other layer consists of condensed hexagonal [Pt 6 Al 6 ] prisms, centered by Pt atoms, separating the before mentioned slabs. Magnetic measurements revealed that all rare-earth atoms are in the trivalent oxidation state, however, due to the low lanthanoide content magnetic ordering phenomena were observed only at low temperatures [SmPt 6 Al 3 : T C = 5.0(1) K; GdPt 6 Al 3 : T C = 7.3(1) K; TbPt 6 Al 3 : T N = 3.6(1) K]. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  9. Magnetic and thermodynamic properties of GdCu4Au

    International Nuclear Information System (INIS)

    Bashir, Aiman K; Tchokonté, Moise B Tchoula; Britz, Douglas; Sondezi, B M; Strydom, André M

    2015-01-01

    The results of magnetic susceptibility, χ(T), magnetization, σ(μ 0 H), and specific heat, C P (T), for GdCu 4 Au are presented. The room temperature powder X-ray diffraction studies indicate a cubic MgCu 4 Sn – type crystal structure with space group F4-bar 3m (No.216). The low field dc χ(T) data shows an antiferromagnetic – like (AFM) anomaly associated with a Néel temperature T N = 10.8 K for GdCu 4 Au. In the paramagnetic region above T N , χ(T) data follows the Curies – Weiss law with an effective magnetic moment μ eff = 7.444(1) μ B and paramagnetic Weiss temperature θ P = -15.01(2) K. The experimental value of is close to the calculated value of 7.94 μ B expected for the free Gd 3+ -ion. The field-cooled (FC) and zero-field-cooled (ZFC) χ(T) data provide evidence for the formation of spin-glass state with a freezing temperature T f = 15 K. σ(μ 0 H) measured in the ordering region (below TN) shows that GdCu 4 Au undergoes metamagnetic transition above 0.7 T, characterized by a slight upward curvature above this field. Measurement of σ(μ 0 H) in the paramagnetic regions show a linear behaviour up to 0.7 T and a downward curvature at high fields. C P (T) data shows an AFM – like phase transition at T N = 10.4 K close to the phase transition observed in χ(T) results. The 4f-electron entropy reaches the value of Rln2 close to T N at 9.02 K and reaches the value of Rln(2J + 1) at T = 180 K

  10. GD 358 - the demise of rotational splitting?

    International Nuclear Information System (INIS)

    Hill, J.A.

    1987-01-01

    Observations of GD 358 were obtained at the McDonald Observatory in 1982 and 1985 in order to determine its periods, stability, and rates of period change. The period structure could not be resolved, and the results indicate that GD 358 does not fit the rotational splitting model. It is suggested that if the changes in the amplitude spectra of GD 358 are due to beating of stable modes, then the number of modes must be large. 7 references

  11. Recent developments in melt processed Gd-123 and MgB2 materials at RTRI

    International Nuclear Information System (INIS)

    Muralidhar, M.; Fukumoto, Y.; Ishihara, A.; Suzuki, K.; Tomita, M.; Koblischka, M.R.; Yamamoto, A.; Kishio, K.

    2014-01-01

    Highlights: •Large size Gd-123 bulk material grown in air, using novel thin film Nd-123 seeds grown on MgO crystals. •Quality and uniformity of the Gd-123 materials are excellent. •Batch processed Gd-123 material was used for construction of chilled Maglev vehicle. •MgB 2 bulks can be utilized around 20 K similarly to the Gd-123 material at 77 K. -- Abstract: In this contribution we will report on the current status, recent developments in GdBa 2 Cu 3 O y “Gd-123” and MgB 2 material processing, characterization, and applications at the Railway Technical Research Institute (RTRI). Batch-processing of Gd-123 bulk material grown in air was performed using novel thin film Nd-123 seeds grown on MgO crystals. In this way, we are able to fabricate materials with good quality, and uniform performance. We examined the technology of the uniform performance of the large 45 mm diameter, single grain Gd-123 bulks for use in application of NMR. For this purpose, four 5 mm thick pieces are cut vertically from a single grain Gd-123 material and the magnetic field distribution is measured using a scanning hall sensor. We found that all four pieces are single domain and exhibit a quite uniform field distribution. Furthermore, the batch-processed bulk materials are used for the construction of a chilled Maglev vehicle. On the other hand, to optimize the trapped field performance of bulk MgB 2 material, several samples were prepared by solid state reaction at different temperatures ranging from 750 to 950 °C in pure argon atmosphere. X-ray diffraction results indicated that single phase and homogenous MgB 2 bulks are produced when sintering them around 775 °C. Further, atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated that an uniform grain size results by controlling the processing temperature. So, higher trapped fields can be achieved in sintered MgB 2 material

  12. Probing structural homogeneity of La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions by combined spectroscopic and computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Huittinen, N., E-mail: n.huittinen@hzdr.de [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Arinicheva, Y. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Kowalski, P.M.; Vinograd, V.L. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); JARA High-Performance Computing, Schinkelstraße 2, 52062 Aachen (Germany); Neumeier, S. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Bosbach, D. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); JARA High-Performance Computing, Schinkelstraße 2, 52062 Aachen (Germany)

    2017-04-01

    Here we study the homogeneity of Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} (x = 0, 0.11, 0.33, 0.55, 0.75, 0.92, 1) monazite-type solid solutions by a combination of Raman and time-resolved laser fluorescence spectroscopies (TRLFS) with complementary quasi-random structure-based atomistic modeling studies. For the intermediate La{sub 0.45}Gd{sub 0.55}PO{sub 4} composition we detected a significant broadening of the Raman bands corresponding to the lattice vibrations of the LnO{sub 9} polyhedron, indicating much stronger distortion of the lanthanide cation site than the PO{sub 4} tetrahedron. A distortion of the crystal lattice around the dopant site was also confirmed in our TRLFS measurements of Eu{sup 3+} doped samples, where both the half width (FWHM) of the excitation peaks and the {sup 7}F{sub 2}/{sup 7}F{sub 1} ratio derived from the emission spectra increase for intermediate solid-solution compositions. The observed variation in FWHM correlates well with the simulated distribution of Eu···O bond distances within the investigated monazites. The combined results imply that homogenous Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions are formed over the entire composition range, which is of importance in the context of using these ceramics for immobilization of radionuclides. - Highlights: •Homogenous Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions have been synthesized. •Solid solution formation is accompanied by slight distortion of the LnO{sub 9} polyhedron. •Raman and laser spectroscopic trends are observed within the monazite series. •Results are explained with atomistic simulations of Eu-O bond distance distribution.

  13. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N. [Taurida National V.I. Vernadsky University, Vernadsky Av., 4, 95007 Simferopol (Ukraine); Salyuk, O.Y., E-mail: olga-saliuk@yandex.ru [Institute of Magnetizm NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  14. Passivation of the surfaces of single crystal gadolinium molybdate (Gd2(MoO4)3) against attack by hydrofluoric acid by inert ion beam irradiation

    International Nuclear Information System (INIS)

    Bhalla, A.; Cross, L.E.; Tongson, L.

    1978-01-01

    The passivation effect from inert ion beam bombardment has been studied on a ferroelectric surface. The mechanism in these materials may have some additional contributions because of the polarization charges of the domains and the dipole effect (ion beam and surface species) on the surfaces. For these studies Gd 2 (MoO 4 ) 3 (GMO) crystals were selected. Two possible mechanisms of passivation of GMO surfaces when bombarded with ion beams are discussed

  15. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  16. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  17. A new promising nonlinear optical (NLO) crystal for visible and ultraviolet (UV) regions

    Science.gov (United States)

    Gheorghe, L.; Achim, A.; Voicu, F.

    2012-08-01

    Different La1-xGdxSc3(BO3)4 compounds with 0 ≤ x ≤ 0.5 were synthesized by solid-state reaction method. The X-ray diffraction studies revealed that the compounds containing more than 30 at.% Gd3+ ions have non-centrosymmetric trigonal structure (space group R32) and, consequently they are optically nonlinear. A crystal of LaxGdyScz(BO3)4 (x+y+z = 4) - LGSB with La0.75Gd0.5Sc2.75(BO3)4 starting melt composition and relatively small dimensions (about 10 mm in diameter and 25 mm in length) was grown by the Czochralski method. In order to confirm the NLO property, the as-grown crystal was subjected to second-harmonic generation (SHG) test. The nonlinear coefficient d11 of LGSB crystal has been preliminary estimated to be about 1.9 pm/V, which is larger than that of YAl3(BO3)4 (YAB) crystal. This article has been formally retracted, please refer to the article PDF for the full retraction notice.

  18. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    Science.gov (United States)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  19. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  20. Ternary gallides RE{sub 4}Rh{sub 9}Ga{sub 5}, RE{sub 5}Rh{sub 12}Ga{sub 7} and RE{sub 7}Rh{sub 18}Ga{sub 11} (RE=Y, La-Nd, Sm, Gd, Tb). Intergrowth structures with MgCu{sub 2} and CaCu{sub 5} related slabs

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Univ. Oldenburg (Germany). Inst. fuer Chemie

    2017-07-01

    Fourteen ternary gallides RE{sub 4}Rh{sub 9}Ga{sub 5}, RE{sub 5}Rh{sub 12}Ga{sub 7} and RE{sub 7}Rh{sub 18}Ga{sub 11} (RE=Y, La-Nd, Sm, Gd, Tb) were synthesized from the elements by arc-melting, followed by different annealing sequences either in muffle or induction furnaces. The samples were characterized through Guinier powder patterns and the crystal structures of Ce{sub 4}Rh{sub 9}Ga{sub 5}, Ce{sub 5}Rh{sub 12}Ga{sub 7}, Ce{sub 7}Rh{sub 18}Ga{sub 11}, Nd{sub 5}Rh{sub 10.44(4)}Ga{sub 8.56(4)}, Nd{sub 4}Rh{sub 9}Ga{sub 5} and Gd{sub 4}Rh{sub 9}Ga{sub 5} were refined from single crystal X-ray diffractometer data. The new gallides are the n=2, 3 and 5 members of the RE{sub 2+n} Rh{sub 3+3n} Ga{sub 1+2n} structure series in the Parthe intergrowth concept. The slabs of these intergrowth structures derive from the cubic Laves phase MgCu{sub 2} (Mg{sub 2}Ni{sub 3}Si as ternary variant) and CaCu{sub 5} (CeCo{sub 3}B{sub 2} as ternary variant). Only the Nd{sub 5}Rh{sub 10.44(4)}Ga{sub 8.56(4)} crystal shows Rh/Ga mixing within the Laves type slabs. Magnetic susceptibility measurements reveal Pauli paramagnetism for Y{sub 4}Rh{sub 9}Ga{sub 5} and Curie-Weiss paramagnetism for Gd{sub 4}Rh{sub 9}Ga{sub 5} and Tb{sub 4}Rh{sub 9}Ga{sub 5}. Low-temperature data show ferromagnetic ordering at T{sub C}=78.1 (Gd{sub 4}Rh{sub 9}Ga{sub 5}) and 55.8 K (Tb{sub 4}Rh{sub 9}Ga{sub 5}).

  1. The Deuteron Spin-dependent Structure Function $g^{d}_1$ and its First Moment

    CERN Document Server

    Alexakhin, V.Yu.; Alexeev, G.D.; Alexeev, M.; Amoroso, A.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; M. Finger jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu. V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Zvyagin, A.

    2007-01-01

    We present a measurement of the deuteron spin-dependent structure function g^d_1 based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for \\Gamma^d_1, the first moment of g^d_1(x), and for the matrix element of the singlet axial current, a_0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function \\Delta_G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3(GeV/c)^2 the first moment of \\Delta G is found to be of the order of 0:2 - 0:3 in absolute value.

  2. Magnetism in ordered metallic perovskite compound GdPd{sub 3}B{sub x}C{sub 1-x}

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: abhishek.phy@gmail.com; Mazumdar, Chandan [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: chandan.mazumdar@saha.ac.in; Ranganathan, R. [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Dattagupta, S. [Indian Institute of Science Education and Research, Block-HC, Sector-III, Salt Lake, Kolkata 700106 (India)

    2009-08-15

    We report results of dc-magnetization, ac-susceptibility and magnetoresistance measurements on crystalline metallic-perovskite compounds GdPd{sub 3}B{sub x}C{sub 1-x} (x=0.25, 0.50, 0.75 and 1.00) and the parent cubic compound GdPd{sub 3}. The interest in these materials stems from the observation of negative temperature coefficient of resistance and negative thermal expansion in some of the members of this series. In the present study, we show that by substitution of non-magnetic elements, boron and carbon, the nature of the magnetic interaction can be varied from dominating ferromagnetic to antiferromagnetic and finally to a canted magnetic structure without altering the crystal symmetry of the compounds. The variation of magnetic interaction by modifying the lattice parameter resembles Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillations.

  3. Electronic structure and exchange interactions in GdB{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Baranovskiy, A., E-mail: andriy.baranovskiy@gmail.com; Grechnev, A.

    2015-02-01

    The electronic structure of the antiferromagnetic Shastry–Sutherland compound GdB{sub 4} has been analyzed with density functional theory and the all-electron full-potential linearized augmented-plane wave (FP-LAPW) code. Different magnetic configurations, including the realistic dimer one, have been considered. The exchange interactions were found to be J{sub 1}/k{sub B}=−12K and J{sub 2}/k{sub B}=−2–0.8K, where, J{sub 1} and J{sub 2} are the diagonal exchange interaction and the exchange interaction along the edges of a square, respectively. - Highlights: • Electronic structure of AFM Shastry–Sutherland compound GB{sub 4} is calculated. • The mechanism of exchange parameters evaluation within Heisenberg model is proposed. • Calculated exchange parameters are found to be in agreement with experimental data. • Higher-order exchange interactions are important for dimer structure stabilizing.

  4. Gd3+-ESR and magnetic susceptibility of GdCu4Al8 and GdMn4Al8

    International Nuclear Information System (INIS)

    Coldea, R.; Coldea, M.; Pop, I.

    1994-01-01

    Gd ESR of GdCu 4 Al 8 and GdMn 4 Al 8 and magnetic susceptibility of GdCu 4 Al 8 , GdMn 4 Al 8 , and YMn 4 Al 8 were measured in the temperature range of 290K--460K and 90K--1050K, respectively. The occurrence of the Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 is strongly correlated with the critical value of d∼2.6 angstrom of the Mn-Mn distance below which the Mn moment is not stable. The experimental data for GdMn 4 Al 8 , compared with the data for the isostructural compounds GdCu 4 Al 8 and YMn 4 Al 8 , show that near the critical value of d, the existence of Mn moment depends not only on the value of d, but also on the local magnetic surroundings. It has been revealed that the magnetic character of Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 changes from an itinerant electron type to a local-moment type with increasing temperature

  5. Diode-laser-pumped high efficiency continuous-wave operation at 912 nm laser in Nd:GdVO4 crystal

    International Nuclear Information System (INIS)

    Yu, X; Chen, F; Gao, J; Li, X D; Yan, R P; Zhang, K; Yu, J H; Zhang, Z H

    2009-01-01

    High efficiency operation on continuous-wave (cw) 912 nm laser at room temperature in Nd:GdVO 4 crystal pumped by 808 nm diode-laser is reported in this letter. The maximum output power of 8.0 W was obtained at the incident un-polarized pump power of 47.0 W, giving the corresponding optical-to-optical conversion efficiency of 17.0% and the average slope efficiency of 22.9%. Further tests show that the lasing threshold is reduced and the efficiency is increased evidently when using the π-polarized 808 nm pump source. 4.8 W 912 nm laser was achieved at the polarized pump power of 21.8 W, optical-to-optical conversion efficiency is increased to 22.0% and average slope efficiency is up to 33.6%

  6. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, A., E-mail: yoshikawa@imr.tohoku.ac.jp [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kamada, K. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kurosawa, S. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Shoji, Y. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Yokota, Y. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Chani, V.I. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); Nikl, M. [Institute of Physics, AS CR, Cukrovarnická 10, 162 53 Prague (Czech Republic)

    2016-01-15

    Crystal growth by micro-pulling-down, Czochralski, and floating zone methods and scintillation properties of Ce:Gd{sub 3}(Ga,Al){sub 5}O{sub 12} (Ce:GGAG) multi-component oxide garnets, and Ce:Gd{sub 2}Si{sub 2}O{sub 7} (Ce:GPS) or Ce:(La,Gd){sub 2}Si{sub 2}O{sub 7} (Ce:La-GPS) pyro-silicates are reviewed. GGAG crystals demonstrated practically linear dependences of some of the parameters including lattice constant, emission wavelength, and band gap on Ga content. However, emission intensity, light yield and energy resolution showed maxima for intermediate compositions. GGAG crystals had the highest light yield of 56,000 photon/MeV for Ga content of 2.7 atoms per garnet formula unit. Similarly the light yield and energy resolution of La-GPS showed the highest values of 40,000 photon/MeV and 4.4%@662 keV, respectively, for La-GPS containing 10% of La. Moreover, La-GPS demonstrated stable scintillation performance up to 200 °C.

  7. Thermal and optical properties of Tm{sup 3+}: Li{sub 6}Gd(BO{sub 3}){sub 3} crystal: A potential candidate for 1.83 {mu}m lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xinghua [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Key Laboratory of Materials Chemistry and Physics, Yangqiao West Road 155, Fuzhou, Fujian 350002 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Li Jianfu; Zhu Zhaojie; You Zhenyu; Wang Yan [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Key Laboratory of Materials Chemistry and Physics, Yangqiao West Road 155, Fuzhou, Fujian 350002 (China); Tu Chaoyang [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Key Laboratory of Materials Chemistry and Physics, Yangqiao West Road 155, Fuzhou, Fujian 350002 (China)], E-mail: tcy@fjirsm.ac.cn

    2008-10-15

    Single crystal of Tm{sup 3+}: Li{sub 6}Gd (BO{sub 3}){sub 3} was grown by the Czochralski method. The heat capacity was measured from 308 to 673 K. The absorption spectra of the crystal in three mutually perpendicular arbitrary directions were measured at room temperature. Based on the Judd-Ofelt theory and the spectra measured in three mutually perpendicular directions, the intensity parameters {omega}{sub t} (t=2, 4, 6), the line strengths, the oscillator strengths, the radiative rates, radiative lifetimes and fluorescent branching ratios were calculated. We calculated the emission cross-section by the reciprocity method and also obtained the gain cross-section.

  8. Recent developments in melt processed Gd-123 and MgB{sub 2} materials at RTRI

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M., E-mail: miryala1@rtri.or.jp [Railway Technology Research Institute (RTRI), Applied Superconductivity, Materials Technology Division, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Fukumoto, Y.; Ishihara, A.; Suzuki, K.; Tomita, M. [Railway Technology Research Institute (RTRI), Applied Superconductivity, Materials Technology Division, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, P.O. Box 151150, D-66041 Saarbrucken (Germany); Yamamoto, A.; Kishio, K. [Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-656 (Japan)

    2014-01-15

    Highlights: •Large size Gd-123 bulk material grown in air, using novel thin film Nd-123 seeds grown on MgO crystals. •Quality and uniformity of the Gd-123 materials are excellent. •Batch processed Gd-123 material was used for construction of chilled Maglev vehicle. •MgB{sub 2} bulks can be utilized around 20 K similarly to the Gd-123 material at 77 K. -- Abstract: In this contribution we will report on the current status, recent developments in GdBa{sub 2}Cu{sub 3}O{sub y} “Gd-123” and MgB{sub 2} material processing, characterization, and applications at the Railway Technical Research Institute (RTRI). Batch-processing of Gd-123 bulk material grown in air was performed using novel thin film Nd-123 seeds grown on MgO crystals. In this way, we are able to fabricate materials with good quality, and uniform performance. We examined the technology of the uniform performance of the large 45 mm diameter, single grain Gd-123 bulks for use in application of NMR. For this purpose, four 5 mm thick pieces are cut vertically from a single grain Gd-123 material and the magnetic field distribution is measured using a scanning hall sensor. We found that all four pieces are single domain and exhibit a quite uniform field distribution. Furthermore, the batch-processed bulk materials are used for the construction of a chilled Maglev vehicle. On the other hand, to optimize the trapped field performance of bulk MgB{sub 2} material, several samples were prepared by solid state reaction at different temperatures ranging from 750 to 950 °C in pure argon atmosphere. X-ray diffraction results indicated that single phase and homogenous MgB{sub 2} bulks are produced when sintering them around 775 °C. Further, atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated that an uniform grain size results by controlling the processing temperature. So, higher trapped fields can be achieved in sintered MgB{sub 2} material.

  9. A new ~1 μm laser crystal Nd:Gd2SrAl2O7: growth, thermal, spectral and lasing properties

    Science.gov (United States)

    Yuan, Feifei; Liao, Wenbin; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Wang, Yeqing; Lin, Zhoubin; Wang, Guofu; Zhang, Ge

    2018-03-01

    Nd:Gd2SrAl2O7 crystals were grown by the Czochralski technique; thermal, spectral and laser properties were investigated in detail. The average thermal expansion coefficients along a- and c-axis are 12.6  ×  10-6 K-1 and 14.9  ×  10-6 K-1, respectively. At room temperature, the thermal conductivities are 4.98 and 5.24 W (m-1 * K-1) along the a- and c-axis, respectively. The absorption cross sections at ~808 nm are 13.7  ×  10-20 cm2 with a FWHM of 3.3 nm for π-polarization and 11.84  ×  10-20 cm2 with a FWHM of 3.4 nm for σ-polarization. The emission cross sections at ~1080 nm are 15  ×  10-20 cm2 and 12.7  ×  10-20 cm2 with a FWHM of about 5.1 nm and 12.5 nm for π- and σ-polarization, respectively. The fluorescence lifetime for the 4F3/2  →  4I11/2 transition was fitted to be 118 µs. Pumped by a fiber-coupled 808 nm laser diode, the maximum 1.55 W continuous-wave laser output at ~1.08 µm was achieved with a slope efficiency of 30.5%. All the results show that Nd:Gd2SrAl2O7 crystal is a promising laser material.

  10. Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Wan Jing; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Lu Weili; Tian Yue; Lin Hai; Chen Baojiu

    2010-01-01

    Dy 3+ single-doped and Eu 3+ /Dy 3+ co-doped gadolinium molybdate (Gd 2 (MoO 4 ) 3 ) phosphors were synthesized by a traditional solid-state reaction method. The XRD was used to confirm the crystal structure of the phosphors. The energy transfer between Eu 3+ and Dy 3+ was observed and studied. The Eu 3+ concentration can hardly affect the blue and yellow emission intensities of Dy 3+ , and the Eu 3+ emission intensity increases with the increase of Eu 3+ concentration. Co-doping with Eu 3+ compensated the red emission component of the Dy 3+ doped Gd 2 (MoO 4 ) 3 phosphor. Introducing proper amount of Eu 3+ can improve the colorimetric performance of the phosphors.

  11. Interfacial exchange, magnetic coupling and magnetoresistance in ultra-thin GdN/NbN/GdN tri-layers

    Science.gov (United States)

    Takamura, Yota; Goncalves, Rafael S.; Cascales, Juan Pedro; Altinkok, Atilgan; de Araujo, Clodoaldo I. L.; Lauter, Valeria; Moodera, Jagadeesh S.; MIT Team

    Superconducting spin-valve structures with a superconductive (SC) spacer sandwiched between ferromagnetic (FM) insulating layers [Li PRL 2013, Senapati APL 2013, Zhu Nat. Mat. 2016.] are attractive since the SC and FM characteristics can mutually be controlled by the proximity effect. We investigated reactively sputtered GdN/NbN/GdN tri-layer structures with various (SC) NbN spacer thicknesses (dNbN) from superconducting to normal layers. Magnetoresistive behavior similar to GMR in metallic magnetic multilayers was observed in the tri-layers with dNbN between 5-10 monolayers (ML), where thinner NbN layers did not show superconductivity down to 4.2 K. The occurrence of GMR signal indicates the presence of a ML of FM metallic layers at the GdN/NbN interfaces. Susceptibility and transport measurements in these samples revealed that the interface layers (ILs) are ferromagnetically coupled with adjacent GdN layers. The thickness of each of the IL is deduced to be about 1.25 ML, and as a result for dNbN magnetically coupled and switched simultaneously. These findings and interfacial characterization by various techniques will be presented. Work supported by NSF and ONR Grants.

  12. Fabrication and properties of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengjuan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Guohong, E-mail: sic_zhough@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Fang; Qin, Xianpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ai, Jianping [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-01-15

    La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm{sup 3}) and effective atomic number, some of the La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  13. Magnetic properties of the germanides RE{sub 3}Pt{sub 4}Ge{sub 6} (RE=Y, Pr, Nd, Sm, Gd-Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Eustermann, Fabian; Eilers-Rethwisch, Matthias; Renner, Konstantin; Hoffmann, Rolf-Dieter; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Oldenburg Univ. (Germany). Inst. fuer Chemie

    2017-07-01

    The germanides RE{sub 3}Pt{sub 4}Ge{sub 6} (RE=Y, Pr, Nd, Sm, Gd-Dy) have been synthesized by arc-melting of the elements followed by inductive annealing to improve the crystallinity and allow for structural order. The compounds have been studied by powder X-ray diffraction; additionally the structure of Y{sub 3}Pt{sub 4}Ge{sub 6} has been refined from single-crystal X-ray diffractometer data. It exhibits a (3+1)D modulated structure, indicating isotypism with Ce{sub 3}Pt{sub 4}Ge{sub 6}. The crystal structure can be described as an intergrowth between YIrGe{sub 2}- and CaBe{sub 2}Ge{sub 2}-type slabs along [100]. Temperature-dependent magnetic susceptibility measurements showed Pauli paramagnetism for Y{sub 3}Pt{sub 4}Ge{sub 6} and Curie-Weiss paramagnetism for Pr{sub 3}Pt{sub 4}Ge{sub 6} and Nd{sub 3}Pt{sub 4}Ge{sub 6}. Sm{sub 3}Pt{sub 4}Ge{sub 6} exhibits van Vleck paramagnetism, while antiferromagnetic ordering at T{sub N}=8.1(1) K and T{sub N}=11.0(1) K is observed for Gd{sub 3}Pt{sub 4}Ge{sub 6} and Tb{sub 3}Pt{sub 4}Ge{sub 6}, respectively.

  14. Investigation on the elastic properties of Gd-Sc-Al garnet by the Mandelstam-Brillouin light scattering method

    International Nuclear Information System (INIS)

    Zharikov, E.V.; Zagumennyj, A.I.; Kitaeva, V.F.; Lutts, G.B.; Terskov, D.B.

    1991-01-01

    The Gd-Sc-Al garnet (GSAG) crystals grown from the melt with composition Gd 2.88 Sc 1.89 Al 3.23 O 12 , were investigated. The GSAG doped with chromium was also studied. The Mandelstam-Brillouin (MB) light scattering in the GSAG crystals was observed. The garnet elastic components were determined using the data on the MB component shifts, the products of the elastic constants by molar volume were calculated as well. The GSAG is elastically anisotropic. The doping addition introduction do not cause noticeable change in the elastic properties. The obtained values of elastic constants and their combinations for GSAG were compared with the data for aluminium and gallium garnets. The comparison has shown that the values of elastic constants for GSAG is closer to those for Gd-Sc-Ga garnet than to the corresponding values for the Y-Al one

  15. Magnetic and transport properties of amorphous ferro magnetic Gd--Au, Gd--Ni and Gd--Co alloys obtained by splat-cooling

    International Nuclear Information System (INIS)

    Durand, J.; Poon, S.J.

    1977-06-01

    We present the results of magnetization and transport measurements on the amorphous Gd 80 Au 20 , Gd 68 Ni 32 and Gd 67 Co 33 alloys over a temperature range of 1.8 to 300 0 K in fields up to 75 kOe. These ferromagnetic alloys obtained by splat-cooling have Curie temperatures T/sub c/ of 150, 125 and 175 0 K, respectively. The saturation moment per Gd atom extrapolated to 0 0 K is estimated to be 7 +- 0.1 μ/sub B/. The exchange integrals for Gd-Au and Gd-Ni are determined from the value of T/sub c/ and from the temperature dependence of the saturation magnetization. The zero-field resistivity for Gd-Ni and Gd-Co exhibits maxima around T/sub c/. We present some preliminary results of magnetoresistivity measurements with applied field parallel and perpendicular to the foil plane. The anisotropy is in-plane for Gd-Co. For the Gd-Au and Gd-Ni alloys, there is no well-defined easy axis

  16. Synthesis and characterization of the structural and magnetic properties of new uranium and copper-based silicides and germanides: study of the physical and hydridation properties of some compounds belonging to the Gd-Ni-X systems, where X = Ga, Al, Sn

    International Nuclear Information System (INIS)

    Pechev, St.

    1998-01-01

    Three novel phases, U 3 Cu 4 Si 4 , U 3 Cu 4 Ge 4 and UCuGe 1,77 , were prepared in the U - Cu - X (X = Si or Ge) ternary system. Their structural and magnetic properties were investigated. The magnetic structures of the first two compounds were determined by neutron diffraction. Structural and magnetic behaviour transitions occur as copper substitutes silicon atoms in the UCu x Si 2-x (0,28 ≤ x ≤ 0,96) solid solution. Thus, the structure of the compositions changes in the α-ThSi 2 (tetragonal) → AlB 2 (hexagonal) → Ni 2 In(hexagonal) sequence while a transition from a nonmagnetic to ferromagnetic then antiferromagnetic behaviour is observed. The magnetic properties of the different compositions are governed by a Kondo - RKKY -type interactions competition. Crystallographic disorder and magnetic frustrations are at the origin of a spin glass state between the ferro- and antiferromagnetic areas. The investigations of the GdNi 3 X 2 (X =Ga, Al, Sn) compounds revealed that their structural and magnetic properties are strongly dependent on the nature of the X element as well as the on thermal treatment. A CaCu 5 → HoNi 2,6 Ga 2,4 - type structure transition and a ferro - to antiferromagnetic behaviour evolution are favoured by the increase of the X - atom size. A commensurate modulated crystal structure (described also as a a HoNi 2,6 Ga 2,4 x a HoNi 2,6 Ga 2,4 x 2c HoNi 2,6 Ga 2,4 -type superstructure) has been observed for GdNi 3 Al 2 . Hydrogen absorption in Gd 3 Ni 6 Al 2 and GdNi 3 Al 2 weakens the strength of the magnetic interactions. (author)

  17. Giant magnetostructural coupling in Gd{sub 2/3}Ca{sub 1/3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Correa, V F; Nieva, G; Haberkorn, N [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 S. C. de Bariloche (Argentina); Saenger, N [Fachbereich Physik, Universitaet Konstanz, D-78457 Konstanz (Germany); Jorge, G, E-mail: victor.correa@cab.cnea.gov.a [Departamento de Fisica, FCEyN, Universidad de Buenos Aires (Argentina)

    2009-05-01

    We report high magnetic field magnetostructural studies on Gd{sub 2/3}Ca{sub 1/3}MnO{sub 3} single crystals. A giant linear magnetostrictive effect is observed in a wide temperature range (T < 120 K). Above 25 K a large hysteresis is seen reflecting the Mn magnetic moments ordering. At lower temperature (T < 15 K), a rather complicated field dependence arising from the competition between the Mn and Gd magnetic sublattices is observed. The relevance of the Gd ions in the low temperature behavior is further corroborated by specific heat experiments.

  18. Characterization of InGaGdN layers prepared by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tawil, Siti Nooraya Mohd [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihagaoka, Ibaraki, 567-0047 Osaka (Japan); Faculty of Electrical and Electronic Engineering, Tun Hussein Onn University of Malaysia, 86400 Batu Pahat Johor (Malaysia); Kakimi, Rina; Krishnamurthy, Daivasigamani; Emura, Shuichi; Tambo, Hiroyuki; Hasegawa, Shigehiko; Asahi, Hajime [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihagaoka, Ibaraki, 567-0047 Osaka (Japan)

    2010-11-15

    Gd-doped InGaN layers were prepared by plasma-assisted molecular-beam epitaxy in search of new functional diluted magnetic semiconductors for their potential use in spintronics. The local structure around the Gd atoms was examined by the Gd L{sub III}-edge of X-ray absorption fine structure. It was found that the majority of Gd atoms substitutionally occupied the cation sites in the InGaGdN layers. Clear hysteresis and saturation magnetization were observed from the magnetization versus field curves examined by means of a superconducting quantum interference device magnetometer at low and room temperatures. In addition, the incorporation of extra shallow donors by co-doping InGaN with both Gd and Si showed higher magnetization than the undoped InGaGdN. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  20. First measurement of the nonlinear coefficient for Gd1-xLux Ca4O(BO3)3 and Gd1-xScxCa4O(BO3)3 crystals

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Mortensen, Jesper Liltorp; Germershausen, Sven

    2007-01-01

    The effective nonlinear coefficient and temperature acceptance bandwidth of three Lu and Sc co-doped GdCa4O(B03)3 type nonlinear crystals were measured. NCPM for SHG in to the blue-UV spectral region can be obtained by controlling the co-dopant concentration. Measurements were based on intra-cavi...

  1. Preparation, structural, optical, electrical, and magnetic characterisation of orthorhombic GdCr{sub 0.3}Mn{sub 0.7}O{sub 3} multiferroic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Deepa; Bamzai, K.K. [Jammu Univ. (India). Crystal Growth and Materials Research Laboratory

    2017-04-01

    In this article, chromium-doped gadolinium manganate (GdCr{sub 0.3}Mn{sub 0.7}O{sub 3}) nanoparticles has been prepared by wet-chemical route in order to investigate their structural, optical, electrical, and room temperature magnetic properties. Microstructural and compositional analyses have been carried out by X-ray diffraction and scanning electron microscopy (SEM). Synthesised material is found to be in orthorhombic crystal structure with Pbnm space group. The spherical morphology of the nanoparticles has been examined from the SEM images. Functional groups have been identified using Fourier transform infrared spectroscopy. Dielectric constant, dielectric loss, AC conductivity (σ{sub ac}), and activation energy in the range of 1 kHz-1 MHz from room temperature to high temperature (400 C) have been investigated. The frequency dependence of AC conductivity obeys the universal power law. The value of activation energy depends on increase in frequency. Room temperature magnetic behaviour suggests the material to be paramagnetic in nature.

  2. Diode-pumped quasi-three-level Nd:GdV O4–Nd:YAG sum-frequency laser at 464 nm

    International Nuclear Information System (INIS)

    Lu, Jie

    2014-01-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O 4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O 4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB 3 O 5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm. (letter)

  3. Raman and infrared spectroscopy of pure and doped GdAlO3 with rare earth ions

    International Nuclear Information System (INIS)

    Bagnato, V.S.

    1983-01-01

    IR and Raman measurements were carried out in pure and Eu +3 - doped GdAlO 3 with the purpose of understanding their K=O phonom modes and the Eu +3 electronic transitions. Starting from the GdAlO 3 symmetry, (D1 6 sub(2h)), the correlation method allows the classification of the number and symmetries of the modes, as well their assignement as either internal or external. Experimental and theoretical results are in good agreement and show three well defined absorption bands in GdAlO 3 . The internal modes are found to be located around 670 cm -1 (stretching) and 480 cm -1 (bending), while the external modes are around 200 cm -1 . The interaction of Eu +3 electronic states with the GdAlO 3 crystal field were studied by taking into account a small perturbative orthorrombic (C sub(s)) distortion on a crystal field with symmetry O sub(h). This small distortion lifts completely the degeneracy of the 7 F sub(J) (J=0,1,...,6) levels and allows the 7 J sub(o) → 7 F sub(J) transitions. (Author) [pt

  4. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [School of Physics and Electronic Sciences, Guizhou Education University, Guiyang 550018 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China); Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China)

    2016-07-07

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.

  5. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  6. Effect of Gd"3"+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe_2O_4

    International Nuclear Information System (INIS)

    Joshi, Seema; Kumar, Manoj; Chhoker, Sandeep; Kumar, Arun; Singh, Mahavir

    2017-01-01

    Nanoparticles of CoGd_xFe_2_−_xO_4 with x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.15 were synthesized by co-precipitation method. Gd"3"+ substitution effect on different properties of nanocrystalline CoFe_2O_4 has been studied. X-ray diffraction and Raman spectroscopy confirmed the formation of single phase cubic mixed spinel structure. Cation distribution has been proposed from Rietveld refined data. Mössbauer spectra at room temperature showed two ferrimagnetic Zeeman sextets with one superparamagnetic doublet. Mössbauer parameters suggested that Gd"3"+ ions occupy the octahedral site in CoFe_2O_4. Room temperature magnetic measurements exhibited that the saturation magnetization decreased from 91 emu/gm to 54 emu/gm for x=0.0 to 0.15 samples. The coercivity decreased from 1120 Oe to 340 Oe for x=0.0 to 0.07 samples and increased from 400 Oe to 590 Oe for x=0.10 and 0.15 samples, respectively. Raman analysis showed that the degree of inversion with Gd"3"+ substitution supporting the variation of coercivity. Electron spin resonance spectra revealed the dominancy of superexchange interactions in these samples. Optical band gap measurement suggested that all samples are indirect band gap materials and band gap has been decreased with Gd"3"+ substitution. Both dielectric constant and dielectric loss is found to decrease because of the decrease in hopping rate with the Gd"3"+ substitution for Fe"3"+ at the octahedral sites. Low dielectric loss suggested the applicability of Gd"3"+ doped CoFe_2O_4 nanoparticles for high frequency microwave device applications. - Highlights: • Gd"3"+ ions were successfully added in to the spinel lattice of CoFe_2O_4. • Magnetic hysteresis loss is influenced by Gd"3"+ doping. • All doped samples exhibit normal dielectric dispersion behaviour of spinel ferrites. • UV–vis diffuse spectroscopy concludes band gap is reduced by Gd"3"+ doping.

  7. Structure and properties of gadolinium loaded calcium phosphate glasses

    International Nuclear Information System (INIS)

    Wang, Cuiling; Liang, Xiaofeng; Li, Haijian; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-01-01

    The glass samples with composition xGd 2 O 3 –(50 − x)CaO–50P 2 O 5 (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd 2 O 3 containing is up to 6 mol%. Two main crystalline phases, Ca 2 P 2 O 7 and Gd 3 (P 2 O 7 ) 3 , are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q 2 ) units and the depolymerization of phosphate network with the addition of Gd 2 O 3 . Both the chemical durability and the glass transition temperature (T g ) are improved with the increase of Gd 2 O 3 , which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass

  8. Cooperative down-conversion of UV light in disordered scheelitelike Yb-doped NaGd(MoO4)2 and NaLa(MoO4)2 crystals

    Science.gov (United States)

    Subbotin, K. A.; Osipova, Yu. N.; Lis, D. A.; Smirnov, V. A.; Zharikov, E. V.; Shcherbakov, I. A.

    2017-07-01

    Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.

  9. Magnetic properties of the filled skutterudite-type structure compounds GdRu4P12 and TbRu4P12 synthesized under high pressure

    OpenAIRE

    Sekine, C; Uchiumi, T; Shirotani, I; Matsuhira, kazuyuki; Sakakibara, T; Goto, T; Yagi, T

    2000-01-01

    We have succeeded in synthesizing filled skutterudite-type structure compounds GdRu4P12 and TbRu4P12 under high pressure. The magnetic properties of GdRu4P12 and TbRu4P12 have been studied by means of electrical resistivity, magnetic susceptibility, and magnetization measurements. Magnetic experiments suggest that the Gd and Tb ions in the compounds have trivalent state. The compound GdRu4P12 displays features that suggest the occurrence of antiferromagnetic ordering below TN=22 K. In TbRu4P1...

  10. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  11. Crystallization of the pneumococcal autolysin LytC: in-house phasing using novel lanthanide complexes

    International Nuclear Information System (INIS)

    Pérez-Dorado, Inmaculada; Sanles, Reyes; González, Ana; García, Pedro; García, José L.; Martínez-Ripoll, Martín; Hermoso, Juan A.

    2010-01-01

    The complete pneumococcal autolysin LytC has been crystallized by the hanging-drop vapor-diffusion method. A SAD data set has been collected in-house from a Gd derivative up to 2.6 Å resolution. LytC, one of the major autolysins from the human pathogen Streptococcus pneumoniae, has been crystallized as needles by the hanging-drop technique using 10%(w/v) PEG 3350 as precipitant and 10 mM HEPES pH 7.5. LytC crystals were quickly soaked in mother liquor containing 2 mM of the complex Gd-HPDO3A to produce derivatized crystals (LytC Gd-HPDO3A ). Both native LytC and isomorphous LytC Gd-HPDO3A crystals were flash-cooled in a nitrogen flow at 120 K prior to X-ray data collection using an in-house Enraf–Nonius rotating-anode generator (λ = 1.5418 Å) and a MAR345 imaging-plate detector. In both cases, good-quality diffraction patterns were obtained at high resolution. LytC Gd-HPDO3A crystals allowed the collection of a SAD X-ray data set to 2.6 Å resolution indexed in terms of a P2 1 monoclinic unit cell with parameters a = 59.37, b = 67.16, c = 78.85 Å, β = 105.69°. The anomalous Patterson map allowed the identification of one heavy-atom binding site, which was sufficient for the calculation of an interpretable anomalous map at 2.6 Å resolution

  12. NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties.

    Science.gov (United States)

    Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2016-08-10

    Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu(3+) nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu(3+) are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb(3+)/Er(3+), Yb(3+)/Tm(3+) nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb(3+)/Er(3+) nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K(-1) at 285 K.

  13. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Dou, Renqin [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Liu, Wenpeng; Zhang, Qingli; Peng, Fang; Luo, Jianqiao; Sun, Guihua; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-01-15

    A mixed laser crystal of Nd-doped GYNO crystal was grown successfully by Czochralski method. The crystal belongs to monoclinic system with space group I2/a, the structural parameters are obtained by the X-ray Rietveld refinement method. The defects and dislocations along three crystallographic orientations were studied by using the chemical etching method with the phosphoric acid etchant. The mechanical properties (including hardness, yield strength, fracture toughness, and brittle index) of the crystal were estimated by Vickers hardness test. The transmission spectrum was measured at room temperature, and the absorption peaks were assigned. Spectral properties of the as-grown crystal were investigated by Judd-Ofelt theory, and the Judd-Ofelt intense parameters Ω{sub 2,4,6} were obtained to be 9.674 x 10{sup -20}, 2.092 x 10{sup -20}, and 4.061 x 10{sup -20} cm{sup 2}, respectively. (orig.)

  14. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure.

    Science.gov (United States)

    Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Jana, Surajit; Roy, Anisha; Singh, Kanishk; Cheng, Hsin-Ming; Chang, Mu-Tung; Mahapatra, Rajat; Chiu, Hsien-Chin; Yang, Jer-Ren

    2016-12-01

    A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 μM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 μM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

  15. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  16. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  17. Structural and electrical properties of Na{sub 1/2}Gd{sub 1/2}TiO{sub 3} nanoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Subrat K [Department of Physics and Meteorology, IIT Kharagpur, Kharagpur 721302 (India); Choudhary, R N.P. , [Department of Physics and Meteorology, IIT Kharagpur, Kharagpur 721302 (India); Mahapatra, P K [Department of Physics and Technophysics, Vidyasagar University, Midnapur 721102, West Bengal (India)

    2008-07-14

    The polycrystalline fine (i.e., 38 nm) powder of Na{sub 1/2}Gd{sub 1/2}TiO{sub 3} was prepared by a high-temperature solid-state reaction technique. The formation of single phase compound was confirmed by an X-ray diffraction technique. A preliminary structural analysis exhibited the orthogonal crystal structure of the compound. The surface morphology was studied by scanning electron microscopy. The dielectric permittivity and the loss tangent of the pellet sample were obtained in a wide frequency range (1 kHz-1 MHz) at different temperatures (28-500 deg. C). A dielectric anomaly was observed at 73 deg. C which may be related to ferroelectric-paraelectric phase transition. The ferroelectric transition was confirmed by observation of hysteresis loop at room temperature. Electrical properties of the pellet sample were studied using an AC impedance spectroscopic technique. Detailed analysis of impedance spectra indicated the bulk contribution to electrical properties below 375 deg. C, and the grain boundary above 375 deg. C. The negative temperature coefficient of resistance (NTCR) effect and the temperature dependant electrical relaxation phenomenon in the sample were also observed. Studies of DC conductivity exhibited that the material has a thermally activated process. AC conductivity spectrum obeys Jonscher's universal power law.

  18. Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives

    Science.gov (United States)

    Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.

    2017-01-01

    Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.

  19. Magnetic upconverting fluorescent NaGdF4:Ln3+ and iron-oxide@NaGdF4:Ln3+ nanoparticles

    Science.gov (United States)

    Shrivastava, Navadeep; Rocha, Uéslen; Muraca, Diego; Jacinto, Carlos; Moreno, Sergio; Vargas, J. M.; Sharma, S. K.

    2018-05-01

    Microwave assisted solvothermal method has been employed to synthesize multifunctional upconverting β-NaGdF4:Ln3+ and magnetic-upconverting Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (Ln = Yb and Er) nanoparticles. The powder x-ray diffraction data confirms the hexagonal structure of NaGdF4:Ln3+ and high resolution transmission electron microscopy shows the formation of rod shaped NaGdF4:Ln3+ (˜ 20 nm) and ovoid shaped Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (˜ 15 nm) nanoparticles. The magnetic hysteresis at 300 K for β-NaGdF4:Ln3+ demonstrates paramagnetic features, whereas iron-oxide@β-NaGdF4:Ln3+ exhibits superparamagnetic behavior along with a linear component at large applied field due to paramagnetic NaGdF4 matrix. Both nanoparticle samples provide an excellent green emitting [(2H11/2, 4S3/2)→4I15/2 (˜ 540 nm)] upconversion luminescence emission under excitation at 980 nm. The energy migration between Yb and Er in NaGdF4 matrix has been explored from 300-800 nm. Intensity variation of blue, green and red lines and the observed luminescence quenching due to the presence of Fe3O4/γ-Fe2O3 in the composite has been proposed. These kinds of materials contain magnetic and luminescence characteristics into single nanoparticle open new possibility for bioimaging applications.

  20. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Rajivgandhi, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Arout Chelvane, J. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Quezado, S.; Malik, S.K. [Departamento de F’ısica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970 (Brazil); Nirmala, R., E-mail: nirmala@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2017-07-01

    Highlights: • Melt-spinning yields microcrystalline RNi (R = Gd, Tb and Ho) samples with texture. • The texture-induced anisotropy affects magnetic and magnetocaloric properties. • Melt-spinning helps one engineer magnetocaloric effect in rare-earth compounds. - Abstract: Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P2{sub 1}/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (T{sub C}) respectively. While the melt-spun GdNi shows about 6 K increase in T{sub C}, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in T{sub C} by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆S{sub m}, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  1. Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

    Directory of Open Access Journals (Sweden)

    Dovile Baziulyte-Paulaviciene

    2017-09-01

    Full Text Available Upconverting nanoparticles (UCNPs are promising, new imaging probes capable of serving as multimodal contrast agents. In this study, monodisperse and ultrasmall core and core–shell UCNPs were synthesized via a thermal decomposition method. Furthermore, it was shown that the epitaxial growth of a NaGdF4 optical inert layer covering the NaGdF4:Yb,Er core effectively minimizes surface quenching due to the spatial isolation of the core from the surroundings. The mean diameter of the synthesized core and core–shell nanoparticles was ≈8 and ≈16 nm, respectively. Hydrophobic UCNPs were converted into hydrophilic ones using a nonionic surfactant Tween 80. The successful coating of the UCNPs by Tween 80 has been confirmed by Fourier transform infrared (FTIR spectroscopy. Scanning electron microscopy (SEM, powder X-ray diffraction (XRD, photoluminescence (PL spectra and magnetic resonance (MR T1 relaxation measurements were used to characterize the size, crystal structure, optical and magnetic properties of the core and core–shell nanoparticles. Moreover, Tween 80-coated core–shell nanoparticles presented enhanced optical and MR signal intensity, good colloidal stability, low cytotoxicity and nonspecific internalization into two different breast cancer cell lines, which indicates that these nanoparticles could be applied as an efficient, dual-modal contrast probe for in vivo bioimaging.

  2. Scintillation properties of Zr co-doped Ce:(Gd, La)_2Si_2O_7 grown by the Czochralski process

    International Nuclear Information System (INIS)

    Murakami, Rikito; Kurosawa, Shunsuke; Shoji, Yasuhiro; Jary, Vitezslav; Ohashi, Yuji; Pejchal, Jan; Yokota, Yuui; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2016-01-01

    (Gd_0_._7_5,Ce_0_._0_1_5,La_0_._2_3_5)_2Si_2O_7 (Ce:La-GPS) single crystals co-doped with 0, 100, 200, 500 and 1000 ppm Zr were grown by the Czochralski process, and their scintillation properties were investigated. We investigated the co-doping effect of a stable tetravalent ion in Ce:La-GPS for the first time. The scintillation decay times in the faster component were shortened with increasing the Zr concentration. While the non-co-doped sample showed ∼63 ns day time, the Zr 100, 200, 500 and 1000 ppm co-doped samples showed ∼61, ∼59, ∼57, ∼54 ns, respectively. Additionally, light output, photon nonproportional response (PNR) and other optical properties were investigated. - Highlights: • Czochralski growth of Ce:(Gd,La)_2Si_2O_7 single crystals. • Co-doping effect of a stable tetravalent ion in Ce:(Gd,La)_2Si_2O_7 system. • Photon nonproportional response of Zr co-doped Ce:(Gd,La)_2Si_2O_7.

  3. Detailed crystallization study of co-precipitated Y{sub 1.47} Gd{sub 1.53} Fe{sub 5} O{sub 12} and relevant magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Rogerio Arving [Instituto de Criminalistica Carlos Eboli (ICCE), Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu; Ogasawara, Angelica Soares [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ogasawat@metalmat.ufrj.br

    2007-07-01

    The crystallization process of co-precipitated Y{sub 1.5}Gd{sub 1.5}Fe{sub 5}O{sub 12} powder heated up to 1000 deg C at rate of 5 deg C min{sup -1} was investigated. Above 810 deg C crystalline Y{sub 1.47}Gd{sub 1.53}Fe{sub 5}O{sub 12} was obtained with a lattice parameter of 12.41 A and a theoretical density of 5.84 g cm{sup -3}. Dry pressed rings were sintered at 1270 and 1320 deg C, increasing the grain-size from 3.1 to 6.5 {mu}m, the theoretical density by 87.6 to 95.3% and decreasing H{sub c} from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 deg C and Ms equalled 9.25 emu g{sup -1} (0.17 kG) agreeing well with the B{sub s}-value of the hysteresis graph and literature values. (author)

  4. Platinum triangles in the Pt/Al framework of the intermetallic REPt{sub 6}Al{sub 3} (RE = Ce-Nd, Sm, Gd, Tb) series

    Energy Technology Data Exchange (ETDEWEB)

    Eustermann, Fabian; Stegemann, Frank; Renner, Konstantin [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Janka, Oliver [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Chemie, Carl von Ossietzky Universitaet Oldenburg (Germany)

    2017-12-13

    The compounds of the REPt{sub 6}Al{sub 3} series (RE = Ce-Nd, Sm, Gd, Tb) were obtained by reaction of the elements via arc-melting. They were characterized by powder and single-crystal X-ray diffraction (NdPt{sub 6}Al{sub 3}: wR = 0.0432, 759 F{sup 2} values, 33 variables) as well as by magnetic susceptibility measurements. The isostructural compounds crystallize with a new structure type in the trigonal crystal system with space group R anti 3c, twelve formula units in the unit cell, and lattice parameters of a = 752-755 and c = 3882-3945 pm. The crystal structure can be described by different slabs stacked along [001]. One layer features Pt{sub 3} triangles, centering the cavities of a flat honeycomb RE layer that are arranged in a..ABCA{sup '}B{sup '}C{sup '}.. sequence. The other layer consists of condensed hexagonal [Pt{sub 6}Al{sub 6}] prisms, centered by Pt atoms, separating the before mentioned slabs. Magnetic measurements revealed that all rare-earth atoms are in the trivalent oxidation state, however, due to the low lanthanoide content magnetic ordering phenomena were observed only at low temperatures [SmPt{sub 6}Al{sub 3}: T{sub C} = 5.0(1) K; GdPt{sub 6}Al{sub 3}: T{sub C} = 7.3(1) K; TbPt{sub 6}Al{sub 3}: T{sub N} = 3.6(1) K]. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Some particularities of impurity center structure in concentrated solid solutions MeF2-GdF3, where Me-Ca2+, Sr2+ and Ba2+

    International Nuclear Information System (INIS)

    Karelin, V.V.; Orlov, Yu.N.; Bozhevol'nov, V.E.; Ivanov, L.N.

    1981-01-01

    The monocrystalline CaF 2 -GdF 3 , SrF 2 -GdF 3 and BaF 2 -GdF 3 systems are studied using the methods of EPR, photo-, radio-, cathode- and thermoluminescence. It is shown that the structure of fluorite solid solutions changes considerably with the growth of the rare earth component concentration. At that, in the systems investigated at least three concentration regions can be singled out: (up to 1%; from 1 to 15%, and > 15% GdF 3 ) which are characterized by their certain selection of impurity centres [ru

  6. Indides RE{sub 3}T{sub 2}In{sub 4} (RE = Y, Gd-Tm, Lu; T = Ni, Ru, Rh) with a ZrNiAl superstructure

    Energy Technology Data Exchange (ETDEWEB)

    Heying, Birgit; Niehaus, Oliver; Rodewald, Ute C.; Poettgen, Rainer [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie

    2016-07-01

    Three series of rare earth-transition metal-indides RE{sub 3}T{sub 2}In{sub 4} (RE=Y, Gd-Tm, Lu; T=Ni, Ru, Rh) were synthesized from arc-melted RE{sub 3}T{sub 2} precursor compounds and indium tear shot in sealed niobium ampoules using different annealing sequences. The new indides crystallize with the hexagonal Lu{sub 3}Co{sub 2}In{sub 4}-type structure, space group P anti 6. All samples were characterized on the basis of Guinier powder patterns and six structures were refined from single crystal X-ray diffractometer data. The RE{sub 3}T{sub 2}In{sub 4} structures are derived from the ZrNiAl type through RE/In ordering, paralleled by a symmetry reduction from P anti 62m to P anti 6. This induces twinning for some of the investigated crystals. The main crystal chemical motifs of the RE{sub 3}T{sub 2}In{sub 4} structures are trigonal prisms of rare earth, respectively indium atoms that are filled by the transition metals.

  7. Structure and magnetism in Fe-Gd based dinuclear and chain systems: the interplay of weak exchange coupling and zero field splitting effects

    NARCIS (Netherlands)

    Ferbinteanu, M.; Cimpoesu, F.; Gîrtu, M. A.; Enachescu, C.; Tanase, S.

    2012-01-01

    The synthesis and characterization of two Fe-Gd systems based on bpca- (Hbpca = bis(2-pyridilcarbonyl)amine) as bridging ligand is presented, taking the systems as a case study for structure-property correlations. Compound 1, [FeLSII(μ-bpca)2Gd(NO3)2(H2O)]NO3·2CH3NO2, is a zigzag polymer,

  8. Experimental evaluation of contrast-enhanced high-reselution MR angiography in the rabbit. Gd-DTPA versus Gd-DTPA polylysin

    International Nuclear Information System (INIS)

    Vogl, T.J.; Hoffmann, Y.; Juergens, M.; Weinmann, H.J.; Muehler, A.; Yucel, S.; Felix, R.

    1996-01-01

    In ten anesthesized rabbits (average weight 4.3 kg) MR angiography was performed using a 1.5 TMR unit (Magnetom SP63; Siemens Erlangen) and a CP head coil. Arterial MRA (FISP 3D TONE, TR/TE=33/8, Flip 20 ) and venous MRA (FLASH 2D, TR/TE=37/10, Flip 60 ) was performed before and after administration of the paramagnetic contrast agents Gd-DTPA (n=5) or Gd-DTPA polylysine (n=5) at a doseage of 0.1 mmol/kg. In all studies the single selections and the MIP reconstructions were evaluated quantitatively by measuring and calculating signal intensity, percentage enhancement, signal-to-noise and contrast-to-noise ratios. All studies were assessed qualitatively for visualization and distinction of the arterial and venous vessel system by three independent observers before and after the administration of contrast agent. Results: Gd-DTPA-enhanced arterial FISP 3D tone led to a percentage enhancement of 30% for the kidneys, 12% for the superior mesenteric artery, 18% for the deep circumfluent iliac artery, and 7% for the internal iliac artery. In FLASH 2D sequences Gd-DTPA led to a good C/N only for venous abdominal vessels like the left renal vein (2.59) and internal iliac vein (1.66); the percentage enhancement of these structures was between 16 and 21%. Qualitative comparison also showed no significant improvement after injection of Gd-DTPA. In FISP 3D TONE sequences Gd-DTPA polylysine led to a strong percentlage enhancement of right and left kidney (21 and 40%) and deep circumfluent iliac artery (17%). Qualitative evaluation showed improved delineation and contrast of low-diameter vessels, while the soft tissue was only slightly enhanced and did not impair vessel visualization. Conclusion: CMRA using Gd-DTPA and Gd-DTPA polylysine significantly improved the delineation of abdominal vessels, with Gd-DTPA polylysine being superior. (orig.) [de

  9. Temperature effects on separation of Gd3+ from Gd-DTPA-folate using nanofiltration method

    Science.gov (United States)

    Rahayu, I.; Indraneli, R. P.; Yuliyati, Y. B.; Anggraeni, A.; Soedjanaatmadja, U. M. S.; Bahti, H. H.

    2018-05-01

    MRI is one of the best techniques in medical diagnostics. Contrast agents are used to improve the visual of organs that are difficult to distinguish through MRI. Gd-DTPA-folate is one of the specific contrast agents against cancer diagnosis, because it has a high affinity to folate receptors. In the complexing Gd-DTPA-folate, does not rule out the complexity step runs imperfectly, so there is still Gd3+ in the Gd-DTPA-folate complex. The separation of Gd3+ from the Gd-DTPA-folate complex is important to eliminate toxic effects on the contrast agent. This study aims to determine the effect of temperature on the separation of Gd-DTPA-folate from Gd3+ with nanofiltration. The method are preparation Gd-DTPA-folate from GdCl3.6H2O and DTPA-folate by reflux method, then separated Gd-DTPA-folate complex from Gd3+ with nanofiltration at variation temperature (40, 41, 42, 43, 44oC ). Then, the values of flux and rejection coefficients were analyzed. The results showed that the optimum temperature for the separation of Gd3+ from Gd-DTPA-folate was achieved at 42.6°C with the rejection coefficient of 24% and the permeate flux of 403 L.m-2.h-1.

  10. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    Science.gov (United States)

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.

  11. Two-dimensional TiO_2-based nanosheets co-modified by surface-enriched carbon dots and Gd_2O_3 nanoparticles for efficient visible-light-driven photocatalysis

    International Nuclear Information System (INIS)

    Lu, Dingze; Fang, Pengfei; Ding, Junqian; Yang, Minchen; Cao, Yufei; Zhou, Yawei; Peng, Kui; Kondamareddy, Kiran Kumar; Liu, Min

    2017-01-01

    Highlights: • Gd-C-TNSs with high stability and recycle usability were prepared by two-pot method. • Gd_2O_3 loading results in the structure changes of TNSs and increase of the Ti"3"+ ions. • Modified CDs leads to obvious increase of optical absorption ability and red shift. • Appropriate amount of Gd_2O_3 nanoparticles and CDs improve the separation of charges. • Gd-C-TNSs exhibit excellent synergistic photocatalytic activity for Cr(VI) and RhB. - Abstract: Two-dimensional TiO_2-based nanosheets (TNSs) co-modified by surface-enriched carbon dots (CDs) and Gd_2O_3 nanoparticles: (Gd-C-TNSs), capable of exhibiting visible-light-driven photo catalysis were synthesized using a two-pot hydrothermal route. The samples had a sheet-like structure, thickness of approximately 3.6 nm, large specific surface area of 240–350 cm"2/g. The CDs (2–3 nm) and Gd_2O_3 nanoparticles (1–2 nm) were highly dispersed over the surface of the nanosheets. The co-modification by Gd_2O_3 nanoparticles and CDs influenced the crystallinity, crystal structure, and surface area of the TNSs, and improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate amount of modification. A very high efficiency was obtained using 0.5 at% Gd/Ti and 3.0 g/L of CDs. The visible-light-induced photocatalytic activity is enhanced under the isolated Cr(VI) system, isolated Rhodamin B (RhB) system, and the synergism between RhB degradation and Cr(VI) reduction for the Gd-C-TNSs photocatalysts. Initially, the photocatalytic activity gradually increased with an increase in the amount of CDs, and then decreased after attaining a maximum, in the case where 0.5 at% Gd/Ti and 3.0 g/L of CDs were used. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Gd_2O_3 nanoparticles, TNSs, and CDs in the Gd-C-TNSs composites. The

  12. Time domain simulation of Gd3+-Gd3+ distance measurements by EPR

    Science.gov (United States)

    Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella

    2017-07-01

    Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.

  13. Ternary germanides RERhGe{sub 2} (RE = Y, Gd-Ho) – New representatives of the YIrGe{sub 2} type

    Energy Technology Data Exchange (ETDEWEB)

    Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer, E-mail: pottgen@uni-muenster.de

    2016-11-15

    The YIrGe{sub 2} type ternary germanides RERhGe{sub 2} (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe{sub 2} was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F{sup 2} values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe{sub 2}] polyanion is stabilized through covalent Rh–Ge (243–261 pm) and Ge–Ge (245–251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE{sub 5}Rh{sub 4}Ge{sub 10} (≡ RERh{sub 0.8}Ge{sub 2}) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe{sub 2} and Curie-Weiss paramagnetism for RERhGe{sub 2} with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at T{sub N} = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively. - Graphical abstract: The germanides RERhGe{sub 2} (RE = Y, Gd-Ho) are new representatives of the YIrGe{sub 2} type.

  14. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.

    2017-12-04

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  15. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.; Cavallaro, Andrea; Li, Cheng; Handoko, Albertus D.; Chan, Kuang Wen; Walker, Robert J.; Regoutz, Anna; Herrin, Jason S.; Yeo, Boon Siang; Payne, David J.; Kilner, John A.; Ryan, Mary P.; Skinner, Stephen J.

    2017-01-01

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  16. Dielectric and magnetic properties of Ba-, La- and Pb-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Radheshyam Rai

    2014-04-01

    Full Text Available The multiferroic Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3, (where M = Ba (DB, La (DL and Pb (DP has been synthesized by using solid-state reaction technique. Effects of Ba, La and Pb substitution on the structure, electrical and ferroelectric properties of Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 samples have been studied by performing X-ray diffraction, dielectric and magnetic measurements. The crystal structures of the ceramic samples have a tetragonal phase. The vibrating sample magnetometer (VSM measurement shows a significant change in the magnetic properties of Ba-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 as compared to La- and Pb-doped ceramics. It is seen that coercive field (HC and remanent magnetization (MR increases with Ba-doped ceramics but decreases for La- and Pb-doped ceramics.

  17. Correlating Structure and Oxygen Reduction Activity on Y/Pt(111) and Gd/Pt(111) Single Crystals

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Pedersen, Anders Filsøe; Johansson, Tobias Peter

    2015-01-01

    Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation of this tech......Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation...... of this technology. Improving the activity of Pt by alloying it with other metals could decrease the loading of Pt at the cathode to a level comparable to Pt-group metal loading in internal combustion engines. PtxY and PtxGd exhibit exceptionally high activity for oxygen reduction, both in the polycrystalline form...

  18. Large magnetocaloric effect of GdNiAl2 compound

    International Nuclear Information System (INIS)

    Dembele, S.N.; Ma, Z.; Shang, Y.F.; Fu, H.; Balfour, E.A.; Hadimani, R.L.; Jiles, D.C.; Teng, B.H.; Luo, Y.

    2015-01-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl 2 . Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl 2 alloy is CuMgAl 2 -type phase structure with about 1 wt% GdNi 2 Al 3 secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10 2 J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl 2 compound. • The ΔS Mmax and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl 2 comparing with other candidates

  19. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    Directory of Open Access Journals (Sweden)

    Yuka Miyake

    2015-12-01

    Full Text Available Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs, which showed longitudinal relaxivity (r1 values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer. In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T. In this study, the association constants (Ka of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA, measured and calculated with a quartz crystal microbalance (QCM in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  20. Magnetocaloric effect of Gd4(BixSb1-x)3 alloy series

    International Nuclear Information System (INIS)

    Niu, Xuejun

    1999-01-01

    Alloys from the Gd 4 (Bi x Sb 1-x ) 3 series were prepared by melting a stoichiometric amounts of pure metals in an induction furnace. The crystal structure is of the anti-Th 3 P 4 type (space group Ibar 43d) for all the compounds tested. The linear increase of the lattice parameters with Bi concentration is attributed to the larger atomic radius of Bi than that of Sb. Magnetic measurements show that the alloys order ferromagnetically from 266K to 330K, with the ordering temperature increasing with decreasing Bi concentration. The alloys are soft ferromagnets below their Curie temperatures, and follow the Curie-Weiss law above their ordering temperatures. The paramagnetic effective magnetic moments are low compared to the theoretical value for a free Gd 3+ , while the ordered magnetic moments are close to the theoretical value for Gd. The alloys exhibit a moderate magnetocaloric effect (MCE) whose maxima are located between 270K and 338K and have relatively wide peaks. The peak MCE temperature decreases with decreasing Bi concentration while the peak height increases with decreasing Bi concentration. The Curie temperatures determined from inflection points of heat capacity are in good agreement with those obtained from the magnetocaloric effect. The MCE results obtained from the two different methods (magnetization and heat capacity) agree quite well with each other for all of the alloys in the series

  1. Structural and microstructural analysis of the U-Gd-O system using X-Ray diffraction data

    International Nuclear Information System (INIS)

    Darin, Gaspar; Imakuma, Kengo; Martinez, Luis G.; Turrrilas, Xabier M.; Ichikawa, Rodrigo U.; Silva, André S.B.; Durazzo, Michelangelo; Riella, Humberto G.; Urano, Elita

    2017-01-01

    Gadolinium is one of the best neutron absorber materials and its usage can be considered as a burnable poison for Light Water Reactors (LWR) and as a sacrificial material in Sodium Fast Reactor (SFR). Most of the experiments in the literature focus on nuclear fuel with up to 12 wt% Gd 2 O 3 . Recently, the phase diagram and melting point has been investigated for high contents of Gd 2 O 3 in the U-Gd-O system, that means a solid solution of the composition (U 1-x , Gd x )O 2 for 0Gd-O system for high contents of Gd 2 O 3 using X-ray diffraction data. Rietveld analysis was applied to obtain cell parameters, atomic positions and atomic displacement factors and compared with literature available. Also, the quantification of phases was performed for the different contents of Gd 2 O 3 in the system. Finally, mean crystallite sizes were determined and correlated with the weight fraction of the phases. (author)

  2. Data of evolutionary structure change: 1RAAA-3GD5C [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1RAAA-3GD5C 1RAA 3GD5 A C ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPELL...LRDPFEAARGAHILYTDVWTHRLQLFEQYQINAALLN--------------CAAAEAIVLHCLPAHRGEEITDEVMEGPRS... 0 1RAA A 1RAAAA 1RAAA PLPRV--DEIAT...Chain> 1RAA A 1RAAA

  3. Noticeable red emission and Raman active modes in nanoscale gadolinium oxyfluoride (Gd4O3F6) systems with Eu3+ inclusion

    International Nuclear Information System (INIS)

    Hazarika, Samiran; Mohanta, Dambarudhar

    2017-01-01

    Eu 3+ doped gadolinium oxyfluoride (Gd 4 O 3 F 6 , GOF) nanoscale systems have been synthesized following a modified Pechini method. While exhibiting a tetragonal crystal structure, the GOF nanosystem gave an average crystallite size (d) of ∝21-26 nm. The Lotgering factor (L F ), which is a measure of orientation of crystallites along the preferred direction was found to vary between 0.22 and 0.48. In the photoluminescence spectra, ∝595 and ∝613 nm peaks were identified as magnetically driven ( 5 D 0 → 7 F 1 ) and electrically driven ( 5 D 0 → 7 F 2 ) transitions with latter (red emission) being strongly manifested with Eu 3+ doping concentration and intrinsic defects. Moreover, several Raman active modes have been probed in the Raman spectra with low frequency peaks (<300 cm -1 ) and moderate frequency peaks (∝481 and 567 cm -1 ) assigned to observable vibration of heavy atom Gd-Gd pairs and Gd-O groups, respectively. Apart from manifestation of phononic features, inclusion of Eu 3+ in the host lattice would bring new insight on improving the red emission response prior to concentration quenching. (orig.)

  4. Charge disproportionation in (X0.6Sr0.4)0.99Fe0.8Co0.2O3-δ perovskites (X = La, Pr, Sm, Gd)

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Saadi, Souheil; Nielsen, K.H.

    2005-01-01

    The change in crystal structure and the oxidation state in iron of iron-cobalt-based perovskites with different A-site cations is investigated by the use of powder XRD and Mossbauer spectroscopy. The perovskites investigated are (X0.6Sr0.4)(0.99)Fe0.8Co0.2O3-delta, where X is La, Pr, Sm or Gd...

  5. Identifying the influence of the intrinsic defects in Gd-doped ZnO thin-films

    KAUST Repository

    Flemban, Tahani H.; Sequeira, M. C.; Zhang, Z.; Venkatesh, S.; Alves, E.; Lorenz, K.; Roqan, Iman S.

    2016-01-01

    Gd-doped ZnO thin films were prepared using pulsed laser deposition at different oxygen pressures and varied Gd concentrations. The effects of oxygen deficiency-related defects on the Gd incorporation, optical and structural properties, were explored by studying the impact of oxygen pressure during deposition and post-growth thermal annealing in vacuum. Rutherford Backscattering Spectrometry revealed that the Gd concentration increases with increasing oxygen pressure for samples grown with the same Gd-doped ZnO target. Unexpectedly, the c-lattice parameter of the samples tends to decrease with increasing Gd concentration, suggesting that Gd-defect complexes play an important role in the structural properties. Using low-temperature photoluminescence(PL), Raman measurements and density functional theory calculations, we identified oxygen vacancies as the dominant intrinsic point defects. PL spectra show a defect band related to oxygen vacancies for samples grown at oxygen deficiency.

  6. Identifying the influence of the intrinsic defects in Gd-doped ZnO thin-films

    KAUST Repository

    Flemban, Tahani H.

    2016-02-08

    Gd-doped ZnO thin films were prepared using pulsed laser deposition at different oxygen pressures and varied Gd concentrations. The effects of oxygen deficiency-related defects on the Gd incorporation, optical and structural properties, were explored by studying the impact of oxygen pressure during deposition and post-growth thermal annealing in vacuum. Rutherford Backscattering Spectrometry revealed that the Gd concentration increases with increasing oxygen pressure for samples grown with the same Gd-doped ZnO target. Unexpectedly, the c-lattice parameter of the samples tends to decrease with increasing Gd concentration, suggesting that Gd-defect complexes play an important role in the structural properties. Using low-temperature photoluminescence(PL), Raman measurements and density functional theory calculations, we identified oxygen vacancies as the dominant intrinsic point defects. PL spectra show a defect band related to oxygen vacancies for samples grown at oxygen deficiency.

  7. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  8. Data of evolutionary structure change: 1RAAA-3GD5D [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1RAAA-3GD5D 1RAA 3GD5 A D ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPELL...RDPFEAARGAHILYTDVWTHRLQLFEQYQINAAL-----------LNC--AAAEAIVLHCLPAHRGEEITDEVMEGPRSRI... 0 1RAA A 1RAAA...RAA A 1RAAA P...ine> 1RAA A 1RAAA

  9. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  10. Synthesis, thermionic emission and magnetic properties of (NdxGd1–x)B6

    International Nuclear Information System (INIS)

    Bao Li-Hong; Zhang Jiu-Xing; Zhou Shen-Lin; Tegus

    2011-01-01

    Polycrystalline rare-earth hexaborides (Nd x Gd 1–x )B 6 (x = 0, 0.2, 0.6, 0.8, 1) were prepared by the reactive spark plasma sintering (SPS) method using mixed powder of GdH 2 , NdH 2 and B. The effects of Nd doping on the crystal structure, the grain orientation, the thermionic emission and the magnetic properties of the hexaboride were investigated by X-ray diffraction, electron backscattered diffraction and magnetic measurements. It is found that all the samples sintered by the SPS method exhibit high densities (> 95%) and high values of Vickers hardness (2319 kg/mm 2 ). The values are much higher than those obtained in the traditional method. With the increase of Nd content, the thermionic emission current density increases from 11 to 16.30 A/cm 2 and the magnetic phase transition temperature increases from 5.85 to 7.95 K. Thus, the SPS technique is a suitable method to synthesize the dense rare-earth hexaborides with excellent properties. (interdisciplinary physics and related areas of science and technology)

  11. Bulk and nanocrystalline electron doped Gd0.15Ca0.85MnO3: Synthesis and magnetic characterization

    Science.gov (United States)

    Dhal, Lakshman; Chattarpal; Nirmala, R.; Santhosh, P. N.; Kumary, T. Geetha; Nigam, A. K.

    2014-09-01

    Polycrystalline Gd0.15Ca0.85MnO3 sample was prepared by solid state reaction method and nanocrystalline samples of different grain sizes of the same were prepared by sol-gel method. Phase purity and composition were verified by room temperature X-ray diffraction and SEM-EDAX analysis. Magnetization data of bulk Gd0.15Ca0.85MnO3 in 5 kOe field shows a peak at 119 K (TN) suggesting an antiferromagnetic transition. Nanocrystalline Gd0.15Ca0.85MnO3 sample ( 54 nm size) also shows a cusp at 107 K and a broad thermal hysteresis between field cooled cooling (FCC) and field cooled warming (FCW) data around this temperature. This thermal hysteresis suggests possible crystal structural transition. Field variation of magnetization of bulk Gd0.15Ca0.85MnO3 at 5 K shows a tendency to saturate, but yields a magnetic moment value of only 1.12 μB/f.u. in 70 kOe. The value of magnetization of nanocrystalline sample at 5 K in 70 kOe field is slightly larger and is 1.38 μB/f.u. which is probably due to the surface moments of the nanoparticle samples. Both the samples show Curie-Weiss-like behaviour in their paramagnetic state.

  12. Passivation of the surfaces of single crystal gadolinium molybdate (Gd/sub 2/(MoO/sub 4/)/sub 3/) against attack by hydrofluoric acid by inert ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, A; Cross, L E; Tongson, L [Pennsylvania State Univ., University Park (USA). Materials Research Lab.

    1978-01-01

    The passivation effect from inert ion beam bombardment has been studied on a ferroelectric surface. The mechanism in these materials may have some additional contributions because of the polarization charges of the domains and the dipole effect (ion beam and surface species) on the surfaces. For these studies Gd/sub 2/(MoO/sub 4/)/sub 3/ (GMO) crystals were selected. Two possible mechanisms of passivation of GMO surfaces when bombarded with ion beams are discussed.

  13. Data of evolutionary structure change: 1RAAA-3GD5F [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1RAAA-3GD5F 1RAA 3GD5 A F ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPELL...ARGAHILYTDVWTHR---LQLFEQ----YQINAALLNCAAAEAIVLHCLPAHRGEEITDEVMEGPRSRIWDEAENRLHAQK...ex> 1RAA A 1RAAA DML...> A 1RAAA PLPRV--DEIA...dbChain> 1RAAA TEFSGNVPVLN HHHH

  14. Data of evolutionary structure change: 1RAAA-3GD5A [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1RAAA-3GD5A 1RAA 3GD5 A A ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPELL...ARGAHILYTDVWTHR---LQLFEQYQ----INAALLNCAAAEAIVLHCLPAHRGEEITDEVMEGPRSRIWDEAENRLHAQK...index> 1RAA A 1RAAA ... 1RAA A 1RAAA...ntryChain> 1RAA A 1RAAA

  15. Data of evolutionary structure change: 1RAAA-3GD5E [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1RAAA-3GD5E 1RAA 3GD5 A E ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPELL...LRDPFEAARGAHILYTDVWTHRLQLFEQYQINAAL------------LNC--AAAEAIVLHCLPAHRGEEITDEVMEGPRS...ID> 0 1RAA A 1RAAA 1RAA A 1RAAA1RAA A 1RAAA TEFSGNVPVLN

  16. Structural and microstructural analysis of the U-Gd-O system using X-Ray diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Darin, Gaspar; Imakuma, Kengo; Martinez, Luis G.; Turrrilas, Xabier M.; Ichikawa, Rodrigo U.; Silva, André S.B.; Durazzo, Michelangelo; Riella, Humberto G.; Urano, Elita, E-mail: gaspardarin@gmail.com, E-mail: kimakuma@ipen.br, E-mail: lgallego@ipen.br, E-mail: ichikawa@usp.br, E-mail: andre.santos.silva@ipen.br, E-mail: mdurazzo@ipen.br, E-mail: riella@enq.ufsc.br, E-mail: elitaucf@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Combustíveis Nuclear; Institute of Material Science of Barcelona (ICMAB) Barcelona (Spain)

    2017-11-01

    Gadolinium is one of the best neutron absorber materials and its usage can be considered as a burnable poison for Light Water Reactors (LWR) and as a sacrificial material in Sodium Fast Reactor (SFR). Most of the experiments in the literature focus on nuclear fuel with up to 12 wt% Gd{sub 2}O{sub 3}. Recently, the phase diagram and melting point has been investigated for high contents of Gd{sub 2}O{sub 3} in the U-Gd-O system, that means a solid solution of the composition (U{sub 1-x}, Gd{sub x})O{sub 2} for 0Gd-O system for high contents of Gd{sub 2}O{sub 3} using X-ray diffraction data. Rietveld analysis was applied to obtain cell parameters, atomic positions and atomic displacement factors and compared with literature available. Also, the quantification of phases was performed for the different contents of Gd{sub 2}O{sub 3} in the system. Finally, mean crystallite sizes were determined and correlated with the weight fraction of the phases. (author)

  17. Gd2O3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging

    Science.gov (United States)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2016-04-01

    Gd2O3 nanoparticles of a few nm in size and their agglomerates dispersed in dextrose derived polymer template were synthesized by hydrothermal treatment. The produced nanosized material was investigated by TEM, FTIR spectroscopy, SQUID measurements and NMR relaxometry. Biological evaluation of this material was done by crystal violet and MTT assays to determine the cell viability. Longitudinal and transverse NMR relaxivities of water diluted Gd2O3 nanoparticle dispersions measured at the magnetic field of 1.5 T, estimated to be r1(Gd2O3)=9.6 s-1 mM-1 in the Gd concentration range 0.1-30 mM and r2(Gd2O3)=17.7 s-1 mM-1 in the lower concentration range 0.1-0.8 mM, are significantly higher than the corresponding relaxivities measured for the standard contrast agent r1(Gd-DTPA)=4.1 s-1 mM-1 and r2(Gd-DTPA)=5.1 s-1 mM-1. The ratio of the two relaxivities for Gd2O3 nanoparticles r2/r1=1.8 is suitable for T1-weighted imaging. Good MRI signal intensities of the water diluted Gd2O3 nanoparticle dispersions were recorded at lower Gd concentrations 0.2-0.8 mM. The Gd2O3 samples did not exert any significant cytotoxic effects at Gd concentrations of 0.2 mM and below. These properties of the produced Gd2O3 nanoparticles in hydrothermally modified dextrose make them promising for potential application in MRI for the design of a positive MRI contrast agent.

  18. Experimental and first principle study of the structure, electronic, optical and luminescence properties of M-type GdNbO4 phosphor

    Science.gov (United States)

    Ding, Shoujun; Zhang, Haotian; Zhang, Qingli; Chen, Yuanzhi; Dou, Renqin; Peng, Fang; Liu, Wenpeng; Sun, Dunlu

    2018-06-01

    In this work, GdNbO4 polycrystalline with monoclinic phase was prepared by traditional high-temperature solid-state reaction. Its structure was determined by X-ray diffraction and its unit cell parameters were obtained with Rietveld refinement method. Its luminescence properties (including absorbance, emission and luminescence lifetime) were investigated with experiment method and the CIE chromaticity coordinate was presented. Furthermore, a systematic theoretical calculation (including band gap, density of states and optical properties) based on the density function theory methods was performed on GdNbO4. Lastly, a comparison between experiment and calculated results was conducted. The calculated and experiment results obtained in this work can provide an essential understanding of GdNbO4 material.

  19. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  20. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  1. Perpendicular exchange coupling effects in ferrimagnetic TbFeCo/GdFeCo hard/soft structures

    Science.gov (United States)

    Wang, Ke; Wang, Yahong; Ling, Fujin; Xu, Zhan

    2018-04-01

    Bilayers consisting of magnetically hard TbFeCo and soft GdFeCo alloy were fabricated. Exchange-spring and sharp switching in a step-by-step fashion were observed in the TbFeCo/GdFeCo hard/soft bilayers with increasing GdFeCo thickness. A perpendicular exchange bias field of several hundred Oersteds is observed from the shift of minor loops pinned by TbFeCo layer. The perpendicular exchange energy is derived to be in the range of 0.18-0.30 erg/cm2. The exchange energy is shown to increase with the thickness of GdFeCo layer in the bilayers, which can be attributed to the enhanced perpendicular anisotropy of GdFeCo layer in our experimental range.

  2. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  3. Electric and magnetic properties of Al{sub 86}Ni{sub 8}R{sub 6} (R=Sm, Gd, Ho) alloys in liquid and amorphous states

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation); Svec, P.; Svec, P.; Janickovic, D. [Institute of Physics SAS, Bratislava (Slovakia); Mikhailov, V. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Sidorova, E. [Plekhanov Russian University of Economics, Moscow (Russian Federation); Son, L. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation)

    2016-06-15

    Electrical resistivity and magnetic susceptibility of Al{sub 86}Ni{sub 8}Sm{sub 6}, Al{sub 86}Ni{sub 8}Gd{sub 6} and Al{sub 86}Ni{sub 8}Ho{sub 6} alloys are studied in a wide temperature range including amorphous, crystalline and liquid states. The negative value of resistivity temperature coefficient in amorphous ribbons is explained by the structural separation starting much before the beginning of their crystallization. The effective magnetic moments per Gd and Ho atoms are found to be essentially lower than for R{sup 3+} ions. The results are discussed in supposition of directed bonds between rare earth and aluminum atoms. - Highlights: • Electric and magnetic properties of Al{sub 86}Ni{sub 8}R{sub 6} alloys are studied experimentally. • The negative value of rtc in amorphous ribbons is explained. • The effective magnetic moments per Gd and Ho are found to be lower than for R{sup 3+} ions.

  4. Combustion synthesis and characterization of MV0.5P0.5O4: Sm3+, Tm3+ (M = Gd, La, Y)

    Science.gov (United States)

    Motloung, Selepe J.; Lephoto, Mantwa A.; Tshabalala, Kamohelo G.; Ntwaeaborwa, Odireleng M.

    2018-04-01

    In this paper, GdV0.5P0.5O4: Sm3+, Tm3+, LaV0.5P0.5O4: Sm3+, Tm3+ and YV0.5P0.5O4: Sm3+, Tm3+ phosphor powders were prepared by solution combustion method using urea as a fuel. The phase purity, surface morphology, optical and photoluminescence properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence spectroscopy. The XRD results indicated that the prepared powders are of a single phase and crystallized in tetragonal structure for Gd and Y systems while monoclinic phase was observed for La system. SEM showed that the samples consisted of mixed structures. The estimated band gaps were 2.2, 2.4 and 2.3 eV for Y, Gd and La systems respectively. The photoluminescence results showed four emission peaks. One peak is assigned to 1G4 - 3H6 transition of Tm3+, and three other emission peaks are attributed to 6G5/2 - 6H5/2, 6G5/2 - 6H7/2 and 6G5/2 - 6H9/2 transitions of Sm3+. The photoluminescent intensity was the highest in the gadolinium system.

  5. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    KAUST Repository

    Aravindh, S. Assa

    2014-12-19

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn 48O48 nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high TC in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  6. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    KAUST Repository

    Aravindh, S. Assa; Schwingenschlö gl, Udo; Roqan, Iman S.

    2014-01-01

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn 48O48 nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high TC in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  7. Photophysical electronic structure of double-perovskites A{sub 2}GdTaO{sub 6} (A = Ba and Sr)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Binita, E-mail: ghosh.binita@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering, Agency for Science Technology and Research, 3 Research Link, Singapore 117602 (Singapore); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2015-11-05

    X-ray photoemission spectroscopy (XPS) measurements of double perovskite oxides, Ba{sub 2}GdTaO{sub 6} and Sr{sub 2}GdTaO{sub 6} are performed in the energy window of 0–1300 eV. Density functional theory calculations are initiated with the Vienna ab initio Simulation Package to understand the electronic structure of the systems. The calculated DOS has been compared with the experimental valence band XPS spectra. It has been observed that the Ta-5d and O-2p states are hybridized in the valence band. The chemical shifts of these compounds suggest a mixed ionic and covalent character of the bonds, which has been used to explain the electrical conduction mechanism of the systems. The calculated ratio of the spin-orbit interaction energy for Ba 3d and 4d states matches well with the observed experimental results. - Highlights: • DFT calculations of Ba{sub 2}GdTaO{sub 6} and Sr{sub 2}GdTaO{sub 6} have been performed with VASP. • XPS measurements are performed in the energy window of 0–1300 eV. • The calculated DOS has been compared with the valence band XPS spectra. • Chemical shifts from XPS spectra have been used to explain the conduction mechanism.

  8. Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol gel method

    Science.gov (United States)

    Liu, Guixia; Hong, Guangyan; Wang, Jinxian; Dong, Xiangting

    2006-07-01

    The deposition and coating of GdVO4:Eu3+ nanoparticles on spherical silica was carried out using a simple sol-gel method at low temperature. The GdVO4:Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the ~5 nm GdVO4:Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4:Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4:Eu3+-coated silica composites are similar to those of the bulk GdVO4:Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.

  9. Study of X-ray L2 absorption edges of Gd, Dy, Ho and Er in metals and compounds

    International Nuclear Information System (INIS)

    Agarwal, B.K.; Agarwal, B.R.K.

    1978-01-01

    The positions and shapes of L2 X-ray absorption edges of Gd, Dy, Ho and Er have been studied in metals and in oxides and chlorides, using a forty centimetre bent mica crystal spectrograph. It has been found that the L2 edge shifts towards the high energy side in the compounds and that the chemical shift ΔE depends on the degree of covalency involved. The white line structure at the edge has been analysed in terms of transitions of L2 shell electron to optical nd (n >= 5) states. (author)

  10. The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission

    Science.gov (United States)

    Teng, Xin; Wang, Wenzhi; Cao, Zhentao; Li, Jinkai; Duan, Guangbin; Liu, Zongming

    2017-07-01

    The gadolinium aluminum garnets Gd3Al5O12 (GdAG) activated with Tb3+/Eu3+ were successfully prepared via co-precipitation method at 1500 °C in this work. The crystal structure stabilization, elements analysis, microphotograph, PL/PLE spectra, decay behavior and quantum efficiency were discussed in detail. The metastable GdAG compounds been effectively stabilized by doping with smaller 10 at.% Tb3+, which then allows the development of new phosphors of (Gd0.9-xTb0.1Eux)3Al5O12 (GdAG:Tb3+/Eu3+, x = 0-0.03) for opto-functionality explorations. The PLE/PL spectra displays that the strongest PLE peak was located at ∼276 nm, which overlaps the 8S7/2 → 6IJ transition of Gd3+. Under 276 nm excitation, the phosphors exhibited both Tb3+ and Eu3+ emissions at 548 nm (green, 5D4 → 7F5 transition of Tb3+) and 592 nm (orange-red, 5D0 → 7F1 transition of Eu3+), respectively. The emission intensities of Tb3+ and Eu3+ remarkably varied with the Eu3+ incorporation. As a consequence, the emission color can be readily tuned from approximately green to orange-red. Fluorescence decay analysis found that the lifetime for the Tb3+ emission rapidly decreased conforming to the Tb3+ → Eu3+ energy transfer, and the energy transfer efficiency was calculated. Owing to the Gd3+ → Eu3+ and Gd3+ → Tb3+ energy transfer, the emission intensities of Tb3+ and Eu3+ in (Gd0.9-xTb0.1Eux)AG phosphor were higher than (Y0.87Tb0.1Eu0.03)AG and (Lu0.87Tb0.1Eu0.03)AG system. The (Gd0.9-xTb0.1Eux)AG garnet phosphors developed in this work may serve as a new type of phosphor which hopefully meets the requirements of various lighting and optical display applications.

  11. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  12. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  13. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  14. Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4

    Science.gov (United States)

    Joshi, Seema; Kumar, Manoj; Chhoker, Sandeep; Kumar, Arun; Singh, Mahavir

    2017-03-01

    Nanoparticles of CoGdxFe2-xO4 with x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.15 were synthesized by co-precipitation method. Gd3+ substitution effect on different properties of nanocrystalline CoFe2O4 has been studied. X-ray diffraction and Raman spectroscopy confirmed the formation of single phase cubic mixed spinel structure. Cation distribution has been proposed from Rietveld refined data. Mössbauer spectra at room temperature showed two ferrimagnetic Zeeman sextets with one superparamagnetic doublet. Mössbauer parameters suggested that Gd3+ ions occupy the octahedral site in CoFe2O4. Room temperature magnetic measurements exhibited that the saturation magnetization decreased from 91 emu/gm to 54 emu/gm for x=0.0 to 0.15 samples. The coercivity decreased from 1120 Oe to 340 Oe for x=0.0 to 0.07 samples and increased from 400 Oe to 590 Oe for x=0.10 and 0.15 samples, respectively. Raman analysis showed that the degree of inversion with Gd3+ substitution supporting the variation of coercivity. Electron spin resonance spectra revealed the dominancy of superexchange interactions in these samples. Optical band gap measurement suggested that all samples are indirect band gap materials and band gap has been decreased with Gd3+ substitution. Both dielectric constant and dielectric loss is found to decrease because of the decrease in hopping rate with the Gd3+ substitution for Fe3+ at the octahedral sites. Low dielectric loss suggested the applicability of Gd3+ doped CoFe2O4 nanoparticles for high frequency microwave device applications.

  15. Large magnetocaloric effect of GdNiAl{sub 2} compound

    Energy Technology Data Exchange (ETDEWEB)

    Dembele, S.N.; Ma, Z.; Shang, Y.F. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fu, H., E-mail: fuhao@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Balfour, E.A. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hadimani, R.L.; Jiles, D.C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Teng, B.H.; Luo, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-10-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl{sub 2}. Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl{sub 2} alloy is CuMgAl{sub 2}-type phase structure with about 1 wt% GdNi{sub 2}Al{sub 3} secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10{sup 2} J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl{sub 2} compound. • The ΔS{sub Mmax} and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl{sub 2} comparing with other candidates.

  16. Two-dimensional TiO{sub 2}-based nanosheets co-modified by surface-enriched carbon dots and Gd{sub 2}O{sub 3} nanoparticles for efficient visible-light-driven photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dingze, E-mail: 1005116870@qq.com [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Fang, Pengfei, E-mail: fangpf@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Ding, Junqian, E-mail: 630736958@qq.com [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Yang, Minchen, E-mail: 1023635028@qq.com [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Cao, Yufei, E-mail: 344541464@qq.com [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Zhou, Yawei, E-mail: 769107311@qq.com [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Peng, Kui, E-mail: 758007737@qq.com [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Kondamareddy, Kiran Kumar, E-mail: kokila_kkk@yahoo.co.in [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Liu, Min, E-mail: liumhb@126.com [State Grid Zhejiang Electric Power Research Institute, Hangzhou, Zhejiang 310007 (China)

    2017-02-28

    Highlights: • Gd-C-TNSs with high stability and recycle usability were prepared by two-pot method. • Gd{sub 2}O{sub 3} loading results in the structure changes of TNSs and increase of the Ti{sup 3+} ions. • Modified CDs leads to obvious increase of optical absorption ability and red shift. • Appropriate amount of Gd{sub 2}O{sub 3} nanoparticles and CDs improve the separation of charges. • Gd-C-TNSs exhibit excellent synergistic photocatalytic activity for Cr(VI) and RhB. - Abstract: Two-dimensional TiO{sub 2}-based nanosheets (TNSs) co-modified by surface-enriched carbon dots (CDs) and Gd{sub 2}O{sub 3} nanoparticles: (Gd-C-TNSs), capable of exhibiting visible-light-driven photo catalysis were synthesized using a two-pot hydrothermal route. The samples had a sheet-like structure, thickness of approximately 3.6 nm, large specific surface area of 240–350 cm{sup 2}/g. The CDs (2–3 nm) and Gd{sub 2}O{sub 3} nanoparticles (1–2 nm) were highly dispersed over the surface of the nanosheets. The co-modification by Gd{sub 2}O{sub 3} nanoparticles and CDs influenced the crystallinity, crystal structure, and surface area of the TNSs, and improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate amount of modification. A very high efficiency was obtained using 0.5 at% Gd/Ti and 3.0 g/L of CDs. The visible-light-induced photocatalytic activity is enhanced under the isolated Cr(VI) system, isolated Rhodamin B (RhB) system, and the synergism between RhB degradation and Cr(VI) reduction for the Gd-C-TNSs photocatalysts. Initially, the photocatalytic activity gradually increased with an increase in the amount of CDs, and then decreased after attaining a maximum, in the case where 0.5 at% Gd/Ti and 3.0 g/L of CDs were used. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Gd{sub 2}O

  17. Mechanism of luminescent enhancement in Ba{sub 2}GdNbO{sub 6}:Eu{sup 3+} perovskite by Li{sup +} co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Marcos Vinicius dos Santos [Departamento de Física, Universidade Federal de Sergipe, 49500-000, Itabaiana, SE (Brazil); Valério, Mario Ernesto Giroldo [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE (Brazil); Mouta, Rodolpho; Diniz, Eduardo Moraes [Departamento de Física, CCET, Universidade Federal do Maranhão, 65085-580 São Luís, MA (Brazil); Paschoal, Carlos William de Araujo, E-mail: paschoal@ufma.br [Departamento de Física, CCET, Universidade Federal do Maranhão, 65085-580 São Luís, MA (Brazil); Department of Materials Science and Engineering, University of California Berkeley, 94720-1760 Berkeley, CA (United States); Department of Physics, University of California Berkeley, 94720-7300 Berkeley, CA (United States)

    2015-02-15

    We investigated the Li{sup +} ion incorporation in Ba{sub 2}GdNbO{sub 6}:Eu{sup 3+} perovskite by atomistic simulations based on energy minimization. We predicted the most probable sites occupied by Eu{sup 3+} and Li{sup +} ions and the related charge-compensation mechanisms involved into these substitutions. The results show that the Eu{sup 3+} and Li{sup +} ions are incorporated mainly at the Gd{sup 3+} site. In the Li{sup +} ion case, there is a charge compensation by Nb{sub Gd}{sup •} {sup •} antisite. The crystal field parameters and the transition levels for the Eu{sup 3+} ion in the BGN:Eu{sup 3+} were calculated with basis on the simulated local symmetry of the Eu{sup 3+} site. The results show that the mechanism of luminescent properties enhancement is the symmetry distortion induced by the Li{sup +} co-doping. - Highlights: • We performed a full defect calculations in Ba{sub 2}GdNbO{sub 6} double perovskite. • We modeled with excellent agreement the optical transition of Ba{sub 2}GdNbO{sub 6}:Eu{sup 3+} crystal. • We explained the mechanism of luminescent enhancement in Ba{sub 2}GdNbO{sub 6}:Eu{sup 3+} perovskite by Li{sup +} co-doping.

  18. Diode-pumped two-frequency lasers based on c-cut vanadate crystals

    International Nuclear Information System (INIS)

    Sirotkin, A A; Garnov, Sergei V; Zagumennyi, A I; Zavartsev, Yu D; Kutovoi, S A; Vlasov, V I; Shcherbakov, Ivan A

    2009-01-01

    The luminescent and lasing properties of the neo-dymium ion at the 4 F 3/2 - 4 I 11/2 transition in c-cut vanadate crystals (Nd:YVO 4 , Nd:GdVO 4 , and Nd:Gd 1-x Y x VO 4 ) are studied. Tuning of the laser radiation wavelength (Δλ = 5.4 nm) is demonstrated. Two-frequency laser schemes with the use of a Lyot filter, a Fabry-Perot etalon, and a Brewster prism as spectral selection elements are proposed and experimentally realised. Stable two-frequency lasing of a laser based on the c-cut Nd:GdVO 4 crystal was obtained in the cw, Q-switched (nanosecond pulses), and active acousto-optic mode-locked (picosecond pulses) regimes. (lasers)

  19. Optical and crystal chemistry studies of Na3Ln(PO4)2-K3Ln(PO4)2 (Ln=Eu, Gd)

    International Nuclear Information System (INIS)

    Mesnaoui, M.; Maazaz, M.

    1987-01-01

    In these systems, large single phase domains are separated by two phase regions. The structural evolution as a function of composition is analysed both by X-ray diffraction and by using Eu 3+ and Gd 3+ as luminescent local structural probes. Due to layer type structure of the K 3 Ln(PO 4 ) 2 phases an exchange reaction resulting in total substitution of sodium for potassium can be carried out with formation of metastable Na 3 Ln(PO 4 ) 2 phases, the structure of which is close to those of the potassium compounds. 10 refs.; 18 figs [fr

  20. Structure and magnetic properties of Gd2Co17-xCr x (1.17 ≤ x ≤ 3.0) compounds

    International Nuclear Information System (INIS)

    Fuquan, B.; Tegus, O.; Dagula, W.; Brueck, E.; Klaasse, J.C.P.; Buschow, K.H.J.

    2007-01-01

    The structure and magnetic properties of Gd 2 Co 17-x Cr x (1.17 ≤ x ≤ 3.0) compounds have been investigated by means of X-ray diffraction (XRD) and magnetization measurements. The powder X-ray diffraction patterns show that all samples crystallize as a single phase with the rhombohedral Th 2 Zn 17 -type structure. The lattice parameters a and the unit cell volume V increases slightly with increasing Cr content, but the c parameter varies in a less simple way with increasing Cr content. The X-ray diffraction patterns of the magnetically aligned samples show that all compounds investigated have uniaxial anisotropy. Spin reorientation phenomena occur in all of the compounds. The Curie temperature T C , the spin reorientation temperature T sr , the spontaneous magnetization M 0 and the saturation magnetization M s decrease with the increasing Cr content. The anisotropy constant K 1 and the anisotropy field B a of the compounds at room temperature reach a maximum for x = 1.76. The M 0 and M s increase with increasing temperature from 5 K to 300 K. The easy-axis anisotropy of all compounds changes to easy-plane anisotropy at low temperatures and the spin reorientation phenomena are more pronounced for low Cr concentration

  1. An aging effect and its origin in GdBCO thin films

    Science.gov (United States)

    Schlesier, K.; Huhtinen, H.; Granroth, S.; Paturi, P.

    2010-06-01

    An aging effect investigation was made for GdBa2Cu3O7 (GdBCO) thin films grown on SrTiO3 (001) substrates with pulsed laser deposition (PLD) method from nanograined targets. The films were cut into two pieces where one piece was coated with gold cap layer while the other was left without coating. Both pieces were kept in ambient air during the half year measurement period. Magnetization measurements as well as phase purity, lattice parameter, oxygen effect and depth structure determination with x-ray diffraction (XRD) were made in one month interval. For structure and oxygen content, x-ray photoelectron spectroscopy measurements (XPS) were done in the beginning and in the end of the period. A reduction of the critical temperature and the critical current density, Jc, was found in the gold coated GdBCO film in ambient air in course of time. A smaller decrease of Jc was detected in uncoated GdBCO. No development of impurity phase, increase of a-orientation or reduction of the pinning structure was detected in uncoated GdBCO. However, a small development of impurity phase was found in gold coated GdBCO. The diminution of Tc and Jc is concluded to originate from oxygen release. No such a phenomenon was found in YBa2Cu3O7. We conclude that gold is not a proper cap layer at least for some applications.

  2. Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics

    International Nuclear Information System (INIS)

    Samantaray, S.; Mishra, D.K.; Pradhan, S.K.; Mishra, P.; Sekhar, B.R.; Behera, Debdhyan; Rout, P.P.; Das, S.K.; Sahu, D.R.; Roul, B.K.

    2013-01-01

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO 3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO 3 . Room temperature dielectric constant (ε r ) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO 3 at room temperature as multifunctional materials. - Highlights: • Preparation of single-phasic polycrystalline GdMnO 3 sample by the solid state sintering route. • Observation of square type P–E hysteresis loop with higher saturation and remnant polarization. • Observation of antiferromagnetic behavior at 40 K in polycrystalline GdMnO 3 . • Possibility of room temperature application of GdMnO 3 as multifunctional material

  3. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  4. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    International Nuclear Information System (INIS)

    Voloshina, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.Ts.

    2012-01-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4 ) and yttrium (YVO 4 ) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  5. Multiple rare-earth ion environments in amorphous (Gd2O3)0.230(P2O5)0.770 revealed by gadolinium K-edge anomalous X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M.; Cramer, Alisha J.; Shastri, Sarvjit D.; Mukaddem, Karim T.; Newport, Robert J

    2018-04-26

    A Gd K-edge anomalous X-ray scattering (AXS) study is performed on the rare-earth (R) phosphate glass, (Gd2O3)0.230(P2O5)0.770, in order to determine Gd…Gd separations in its local structure. The minimum rare-earth separation is of particular interest given that the optical properties of these glasses can quench when rare-earth ions become too close to each other. To this end, a weak Gd…Gd pairwise correlation is located at 4.2(1) Å which is representative of a meta-phosphate R…R separation. More intense first neighbor Gd…Gd pairwise correlations are found at the larger radial distributions, 4.8(1) Å, 5.1(1) Å and 5.4(1) Å. These reflect a mixed ultra-phosphate and meta-phosphate structural character, respectively. A second neighbor Gd…Gd pairwise correlation lies at 6.6(1) Å which is indicative of meta-phosphate structures. Meta- and ultra-phosphate classifications are made by comparing the R…R separations against those of rare-earth phosphate crystal structures, R(PO3)3 and RP5O14 respectively, or difference pair distribution function (PDF) features determined on similar glasses using difference neutron scattering methods. The local structure of this glass is therefore found to display multiple rare-earth ion environments, presumably because its composition lies between these two stoichiometric formulae. These Gd…Gd separations are well resolved in the PDFs that represent the AXS signal. Indeed, the spatial resolution is so good that it also enables the identification of R…X (X = R, P, O) pairwise correlations up to r ~ 9 Å; their average separations lie at r ~ 7.1(1) Å, 7.6(1) Å 7.9(1) Å, 8.4(1) Å and 8.7(1) Å. This is the first report of a Gd K-edge AXS study on an amorphous material. Its demonstrated ability to characterize the local structure of a glass up to such a long-range of r, heralds exciting prospects for AXS studies on other ternary non-crystalline materials. However, the technical challenge of such an experiment

  6. Crystallographic and 119Sn and 155Gd Moessbauer analyses of Gd5Ge2(Si1-xSnx)2 (x = 0.23 and x = 0.40)

    International Nuclear Information System (INIS)

    Campoy, J. C. P.; Santos, A. O. dos; Cardoso, L. P.; Paesano, A.; Raposo, M. T.; Fabris, J. D.

    2010-01-01

    We report the structural characterization of Gd 5 Ge 2 (Si 1-x Sn x ) 2 (x = 0.23 and x = 0.40) compounds by means of 100 and 298 K-X-ray diffractometry (XRD) and 4 K- 155 Gd and 298 K- 119 Sn Moessbauer spectroscopy. These compounds order ferromagnetically at 218.4 and 172.7 K, respectively. At ∼100 K, it was identified the Gd 5 Si 4 -orthorhombic phase (type I) for both samples. At ∼298 K, it was identified a Gd 5 Si 2 Ge 2 -monoclinic phase, for x = 0.23 and a Sm 5 Sn 4 -orthorhombic phase (type II), for x 0.40. The Rietveld analysis of XRD data suggests a first order magneto-structural transition at Curie temperature for both compositions. Moessbauer results are well consistent with the proposed crystallographic models for these systems.

  7. Angular non-critical phase-matching second-harmonic-generation characteristics of RECOB (RE = Tm, Y, Gd, Sm, Nd and La) crystals.

    Science.gov (United States)

    Liu, Yanqing; Wang, Zhengping; Yu, Fapeng; Qi, Hongwei; Yang, Xiuqin; Yu, Xiaoqiang; Zhao, Xian; Xu, Xinguang

    2017-05-15

    For the first time, the angular non-critical phase-matching (A-NCPM) second-harmonic-generation (SHG) characteristics of a family of monoclinic oxoborate crystals, RECa 4 O(BO 3 ) 3 (RECOB, RE = Tm, Y, Gd, Sm, Nd and La), were comprehensively investigated. For all of the realizable A-NCPM SHG styles, the feature parameters including PM wavelength, angular, wavelength and temperature acceptance bandwidths, have been derived from the theory and verified by the experiments. We discovered that the closer the ion radius between RE 3+ and Ca 2+ , the smaller the birefringence, and the better the A-NCPM SHG properties. As a result, for the Type-I SHG on Y-axis which has the largest effective nonlinear optical coefficient (d eff ) among the three realizable A-NCPM styles, NdCOB crystal presents the longest PM wavelength (927 nm), the largest angular acceptance bandwidth (Δθ⋅l 1/2 = 84.3 mrad·cm 1/2 , Δϕ⋅l 1/2 = 58.8 mrad·cm 1/2 ), and the broadest wavelength acceptance bandwidth (8.7 nm). This discovery will contribute to the design of new NCPM materials, at the same time the parameter formula will be helpful for the theoretical prediction of NCPM performance.

  8. Relativistic electronic structure calculations on endohedral Gd rate at C60, La rate at C60, Gd rate at C74, and La rate at C74

    International Nuclear Information System (INIS)

    Lu, J.; Zhang, X.; Zhao, X.

    2000-01-01

    Relativistic discrete-variational local density functional calculations on endohedral Gd rate at C 60 , La rate at C 60 ,Gd rate at C 74 , and La rate at C 74 are performed. All the C 60 - and C 74 -derived levels are lowered upon endohedral Gd and La doping. Both the Gd (4f 7 5d 1 6s 2 ) and La (5d 1 6s 2 ) atoms only donate their two 6s valence electrons to the cages, leaving behind their 5d electrons when they are placed at the cage centers. Compared with large-band-gap C 60 , small-band-gap C 74 and Gd (La)-metallofullerenes have strong both electron-donating and electron-accepting characters, and the calculated ionization potentials and electron affinities for them agree well with the available experimental data. (orig.)

  9. Ni3d-Gd4f correlation effects on the magnetic behaviour of GdNi

    Energy Technology Data Exchange (ETDEWEB)

    Paulose, P L [Tata Inst. of Fundamental Research, Bombay (India); Patil, Sujata [Tata Inst. of Fundamental Research, Bombay (India); Mallik, R [Tata Inst. of Fundamental Research, Bombay (India); Sampathkumaran, E V [Tata Inst. of Fundamental Research, Bombay (India); Nagarajan, V [Tata Inst. of Fundamental Research, Bombay (India)

    1996-07-01

    The results of magnetization and heat-capacity measurements on the alloys, Gd{sub 1-x}Y{sub x}Ni (x=0.0, 0.25, 0.5, 0.75 and 0.9) are reported. The data suggest that there is a Gd induced magnetic moment on Ni, which may in turn enhance Gd-Gd exchange interaction strength in GdNi. The induced moment (on Ni) apparently exhibits itinerant ferromagnetism in the magnetically ordered state of GdNi. (orig.).

  10. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Aravindh, S. Assa; Schwingenschloegl, Udo, E-mail: udo.schwingenschloegl@kaust.edu.sa, E-mail: iman.roqan@kaust.edu.sa; Roqan, Iman S., E-mail: udo.schwingenschloegl@kaust.edu.sa, E-mail: iman.roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2014-12-21

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn{sub 48}O{sub 48} nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high T{sub C} in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  11. Electrical characteristics of hybrid detector based Gd2O2S:Tb-Selenium for digital radiation imaging

    International Nuclear Information System (INIS)

    Kang, Sang-Sik; Park, Ji-Koon; Choi, Jang-Yong; Cha, Byung-Yul; Cho, Sung-Ho; Nam, Sang-Hee

    2005-01-01

    Fine Gd 2 O 2 S:Tb powders were synthesized by using a solution-combustion method for a high-resolution digital X-ray imaging detector. The PL spectrum showed that the phosphor was fully crystallized and that the Tb 3+ ions substituted well for the Gd 3+ sites. To investigate the X-ray response of the phosphor, a uniform Gd 2 O 2 S:Tb film was grown using a screen-printing method. The X-ray sensitivities of the 100 μm-Gd 2 O 2 S:Tb/30 μm -Se and 200 μm -Se detector were 470 and 420 pC/cm 2 /mR, respectively, at an electric field of 10 V/μm. The results of the study suggest that the hybrid detector has a significant potential in the application of digital radiography and fluoroscopy systems

  12. Evaluation of Gd and Gd{sup 159} as new approaches for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, I.; Neves, M.J., E-mail: nevesmj@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Grupo de Desenvolvimento de Radiofarmacos; Santos, R.G., E-mail: santosr@cdtn.br [Instituto Nacional de Ciencia e Tecnologia em Medicina Molecular (INCT-MM), Belo Horizonte, MG (Brazil)

    2011-07-01

    Metal compounds have shown many biological activities and have been successfully used as anticancer agents such cisplatin. Actually gadolinium (Gd) complexed with a porphyrin Motexafin (MGd) has been investigated as redox-active compound for treatment of cancer. 1{sup 59G}d decays by beta emission with an energy of 970 keV and half-life of 18.59 hours. The de-excitation can be via gamma ray and internal conversion electron emission followed by auger electrons and x rays. Considering all of this 1{sup 59G}d could be a interesting radionuclide to be as a radio therapeutical agent. The aims of this works were to evaluate the cytotoxicity of Gd and 1{sup 59G}d on malignant brain tumors such as glioblastoma multiform, the most frequent brain tumors which has a very poor prognosis. For this purpose, it was used human glioblastoma cell lines T98 (mutant p53) and U87 (wild-type p53) to investigate the cytotoxicity of gadolinium on cell metabolism by MTT assay and also morphological changes, chromatin condensation by DAPI assay and ROS generation. Gadolinium was able to decrease cell viability, the cells presented morphological changes like round shapes and blebs formation after cell treatment with 5x10{sup -6}M of Gd. Nuclear changing and ROS generation occurred in a dose dependent way indicating the cytotoxic effect of Gd. Treatment with 1{sup 59G}d increased all of changes observed with treatment with Gd. These results state for an additive effect of metal toxicity and radioactivity inducing ROS generation as the main mechanism of anti tumoral action of 1{sup 59G}d. The results obtained indicated that the radioactive analogues of Gd have increased cytotoxic effects and gadolinium can be a metal of choice for development of new drugs for cancer treatment. (author)

  13. Structure and properties of gadolinium loaded calcium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiling [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: XFLiang@swust.edu.cn [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Haijian; Yu, Huijun; Li, Zhen [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-15

    The glass samples with composition xGd{sub 2}O{sub 3}–(50 − x)CaO–50P{sub 2}O{sub 5} (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd{sub 2}O{sub 3} containing is up to 6 mol%. Two main crystalline phases, Ca{sub 2}P{sub 2}O{sub 7} and Gd{sub 3}(P{sub 2}O{sub 7}){sub 3}, are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q{sup 2}) units and the depolymerization of phosphate network with the addition of Gd{sub 2}O{sub 3}. Both the chemical durability and the glass transition temperature (T{sub g}) are improved with the increase of Gd{sub 2}O{sub 3}, which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass.

  14. Electronic and magnetic structures of GdS layers investigated by first principle and series expansions calculations

    International Nuclear Information System (INIS)

    Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.

    2014-01-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full Potential Linear Augmented Plane Wave (FLAPW) method within GGA+U approximation, are performed to investigate both electronic and magnetic properties of the GdS layers. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Gd layers. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the High Temperature Series Expansions (HTSEs) calculations to compute other magnetic parameters. Using the Heisenberg model, the exchange interactions between the magnetic atoms Gd–Gd in the same layer and between the magnetic atoms in the adjacent bilayers are estimated. This estimate is obtained using the antiferromagnetic and ferromagnetic energies computed by abinitio calculations for GdS layers. The High Temperature Series Expansions (HTSEs) of the magnetic susceptibility of GdS with antiferromagnetic moment (m Gd ) is given up to sixth order series versus of (J 11 (Gd–Gd)/k B T). The Néel temperature T N is obtained by mean field theory and by HTSEs of the magnetic susceptibility series using the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is calculated for GdS layers. - Highlights: • Electronic and magnetic properties of GdS are investigated using the ab initio calculations. • Obtained data from abinitio calculations are used as input for HTSEs to compute other magnetic parameters. • Néel temperature and critical exponent are deduced using HTSE method

  15. EPR spectroscopy of MRI-related Gd(III) complexes: simultaneous analysis of multiple frequency and temperature spectra, including static and transient crystal field effects.

    Science.gov (United States)

    Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E

    2001-03-21

    For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).

  16. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  17. Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd3

    Science.gov (United States)

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Johnston, D. C.

    2017-01-01

    Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions. PMID:28211520

  18. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  19. Ortho-vanadates K3RE(VO4)2 (RE = La, Pr, Eu, Gd, Dy, Y) for near UV-converted phosphors

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Dong-Lei; Huang, Yanlin; Qin, Chuanxiang; Cai, Peiqing; Kim, Sun-Il; Seo, Hyo-Jin

    2014-01-01

    The orthovanadate poly-crystals K 3 RE(VO 4 ) 2 (RE = La, Pr, Eu, Gd, Dy, Y) were synthesized via the solid-state reaction route. The crystal phase formation was verified through X-ray diffraction (XRD) studies and was performed by structural refinements. The optical properties were also investigated in detail. K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) phosphors present different luminescence behaviors: the profiles of excitation and emission spectra, the spectra shift, the luminescence decay lifetimes, the absolute quantum efficiency (QE), and the CIE color coordinates are very different. The luminescence of K 3 RE(VO 4 ) 2 (RE = La, Gd, Y, Pr) presents yellow or yellowish green color, while, K 3 Dy(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show white and red luminescence, respectively. This was discussed on the base of the different micro-structure, activator centers, and the charge transfer transitions from [VO 4 ] 3− groups in the lattices. K 3 Y(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show higher QE values of 47.0% and 45.0% at room temperature, respectively. All the phosphors have efficient absorption in the region of near-UV wavelengths or blue wavelength region. This can well match with the light from UV-LED (360–400 nm) or blue LED chips (450–480 nm) based on GaN semiconductor. K 3 RE(VO 4 ) 2 could be suggested to be a potential candidate to give further investigations for the application on near-UV excited white LEDs. - Graphical abstract: A series of orthovanadates K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) have been developed to be new phosphors with rich luminescence colors; there are efficiency excitation in the near UV wavelength region. Compared with the reported vanadate phosphors K 3 R(VO 4 ) 2 has rich luminescence color, rich color, no concentration quenching, and comparable luminescence QE. - Highlights: • A new phosphor of non-doped of K 3 R(VO 4 ) 2 (R = Eu, Dy, Gd, Pr, La, Y) were developed by solid-state reaction route. • The phosphor

  20. Structural relaxation of scintillating Ce doped NaGd(PO.sub.3./sub.).sub.4./sub. glass

    Czech Academy of Sciences Publication Activity Database

    Chromčíková, M.; Rodová, Miroslava; Nitsch, Karel; Liška, M.

    2010-01-01

    Roč. 102, č. 3 (2010), 961-964 ISSN 1388-6150 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : structural relaxation * Tool-Narayanaswamy-Mazurin model * thermo-mechanical analysis * Ce:NaGd(PO 3 ) 4 glass * dynamic viscosity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.752, year: 2010

  1. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  2. Electronic and magnetic structures of GdS layers investigated by first principle and series expansions calculations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2014-04-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full Potential Linear Augmented Plane Wave (FLAPW) method within GGA+U approximation, are performed to investigate both electronic and magnetic properties of the GdS layers. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Gd layers. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the High Temperature Series Expansions (HTSEs) calculations to compute other magnetic parameters. Using the Heisenberg model, the exchange interactions between the magnetic atoms Gd–Gd in the same layer and between the magnetic atoms in the adjacent bilayers are estimated. This estimate is obtained using the antiferromagnetic and ferromagnetic energies computed by abinitio calculations for GdS layers. The High Temperature Series Expansions (HTSEs) of the magnetic susceptibility of GdS with antiferromagnetic moment (m{sub Gd}) is given up to sixth order series versus of (J{sub 11}(Gd–Gd)/k{sub B}T). The Néel temperature T{sub N} is obtained by mean field theory and by HTSEs of the magnetic susceptibility series using the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is calculated for GdS layers. - Highlights: • Electronic and magnetic properties of GdS are investigated using the ab initio calculations. • Obtained data from abinitio calculations are used as input for HTSEs to compute other magnetic parameters. • Néel temperature and critical exponent are deduced using HTSE method.

  3. Phase analysis and magnetocaloric properties of Zr substituted Gd-Si-Ge alloys

    International Nuclear Information System (INIS)

    Prabahar, K.; Raj Kumar, D.M.; Manivel Raja, M.; Chandrasekaran, V.

    2011-01-01

    The structure, microstructure, magneto-structural transition and magnetocaloric effect have been investigated in series of (Gd 5-x Zr x )Si 2 Ge 2 alloys with 0≤x≥0.20. X-ray powder diffraction analysis revealed the presence of orthorhombic structure for Zr containing alloys at room temperature in contrast to the monoclinic structure observed in the parent Gd 5 Si 2 Ge 2 alloy. The microstructural studies reveal that, low Zr addition (x≤0.1) resulted in low volume fraction of detrimental Gd 5 Si 3 -type secondary phase compared to that present in the parent alloy. All the Zr containing alloys have shown the presence of only second order magnetic transition unlike the parent alloy showing both first order structural and second order magnetic transition. A moderate (ΔS) M value of -5.5 J/kg K was obtained for the x=0.05 alloy at an enhanced operating temperature of 292 K compared to -7.8 J/kg K at 274 K of the parent alloy for an applied field of 2 T. The interesting feature of Zr (x=0.05) containing alloy is the wide operating temperature range of ∼25 K than that of ∼10-12 K for the parent, which resulted in enhanced net refrigerant capacity of 103 J/kg compared to that of 53 J/kg for the parent alloy. - Research highlights: → Zr addition in Gd 5 Si 2 Ge 2 alloy has been investigated for the first time to reduce the 5:3-type (Gd 5 Si 3 ) secondary phase formed when using commercial grade elements in Gd 5 Si 2 Ge 2 alloy. → It is interesting to observe that Zr addition decrease the volume fraction 5:3. → The refrigerator capacity and transition temperature of Zr added alloy is greater than the pure Gd 5 Si 2 Ge 2 which makes this alloy promising for room temperature application.

  4. NMR relaxometric properties and cytotoxicity of Gd2O3 nanoparticle suspensions in an organic liquid

    Science.gov (United States)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2014-10-01

    Gd2O3 nanoparticles and their agglomerates from approximately 10 to 80 nm in size suspended in an organic liquid were synthesized via polyol route. The reaction between diethylene glycol and added acetic acid, which occurred simultaneously with the synthesis of Gd2O3 nanoparticles, was catalyzed by sodium bisulfate to transform as much as possible diethylene glycol in corresponding ester at the end of complete reaction. The produced nanosized material of gadolinium oxide was investigated by TEM, DLS, FTIR spectroscopy, and NMR relaxometry. Biological evaluation of this material was done by MTT and crystal violet assays to determine the cell viability. Longitudinal and transverse relaxivities of water-diluted Gd2O3 nanoparticle suspensions estimated to be r 1 = 13.6 and r 2 = 14.7 s-1 mM-1 are about three times higher compared to the relaxivities obtained for standard contrast agent Gd-DTPA (Magnevist). Good MRI signal intensities of the water-diluted Gd2O3 nanoparticle suspensions were recorded in the Gd concentration range 0.2-0.3 mM for which the suspensions were not toxic exhibiting simultaneously higher signal intensities than those for Magnevist in the Gd concentration range 0.4-1 mM for which this standard contrast agent was not toxic. These properties make the produced Gd2O3 nanoparticle material promising for potential application as MRI contrast agent.

  5. Gd_2O_3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2016-01-01

    Gd_2O_3 nanoparticles of a few nm in size and their agglomerates dispersed in dextrose derived polymer template were synthesized by hydrothermal treatment. The produced nanosized material was investigated by TEM, FTIR spectroscopy, SQUID measurements and NMR relaxometry. Biological evaluation of this material was done by crystal violet and MTT assays to determine the cell viability. Longitudinal and transverse NMR relaxivities of water diluted Gd_2O_3 nanoparticle dispersions measured at the magnetic field of 1.5 T, estimated to be r_1(Gd_2O_3)=9.6 s"−"1 mM"−"1 in the Gd concentration range 0.1–30 mM and r_2(Gd_2O_3)=17.7 s"−"1 mM"−"1 in the lower concentration range 0.1–0.8 mM, are significantly higher than the corresponding relaxivities measured for the standard contrast agent r_1(Gd-DTPA)=4.1 s"−"1 mM"−"1 and r_2(Gd-DTPA)=5.1 s"−"1 mM"−"1. The ratio of the two relaxivities for Gd_2O_3 nanoparticles r_2/r_1=1.8 is suitable for T_1-weighted imaging. Good MRI signal intensities of the water diluted Gd_2O_3 nanoparticle dispersions were recorded at lower Gd concentrations 0.2–0.8 mM. The Gd_2O_3 samples did not exert any significant cytotoxic effects at Gd concentrations of 0.2 mM and below. These properties of the produced Gd_2O_3 nanoparticles in hydrothermally modified dextrose make them promising for potential application in MRI for the design of a positive MRI contrast agent. - Highlights: • Gd_2O_3 nanoparticles (NPs) were stabilized by hydrothermally modified dextrose. • Magnetic moment per Gd"3"+ ion in the Gd_2O_3 NPs is much lower than that in the bulk. • The ratio r_2/r_1=1.8 for Gd_2O_3 NPs dispersions is favorable for T_1-weighted MRI. • Gd_2O_3 NPs dispersions had good MRI signal intensity just at lower Gd concentrations. • Gd concentrations of 0.2 mM and below in the Gd_2O_3 NPs dispersions were not toxic.

  6. Diode-end-pumped Tm:GdVO4 laser operating at 1818 and 1915 nm

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-10-01

    Full Text Available wavelengths. We therefore embarked on ac- curately measuring absorption spectra of Tm:GdVO4 laser crystals at both 0.8 (pump band) and at 1.9 µm (emission band). The measurements were conducted with a Cary 5000 spectrometer with resolution set to 1 nm...

  7. Compensation scheme for online neutron detection using a Gd-covered CdZnTe sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan, E-mail: jonathan.dumazert@cea.fr; Coulon, Romain; Kondrasovs, Vladimir; Boudergui, Karim

    2017-06-11

    The development of portable and personal neutron dosimeters requires compact and efficient radiation sensors. Gd-157, Gd-155 and Cd-113 nuclei present the highest cross-sections for thermal neutron capture among natural isotopes. In order to allow for the exploitation of the low and medium-energy radiative signature of the said captures, the contribution of gamma background radiation, falling into the same energy range, needs to be cancelled out. This paper introduces a thermal neutron detector based on a twin-dense semiconductor scheme. The neutron-sensitive channel takes the form of a Gd-covered CdZnTe crystal, a high density and effective atomic number detection medium. The background compensation will be carried out by means of an identical CdZnTe sensor with a Tb cover. The setting of a hypothesis test aims at discriminating the signal generated by the signature of thermal neutron captures in Gd from statistical fluctuations over the compensation of both independent channels. The measurement campaign conducted with an integrated single-channel chain and two metal Gd and Tb covers, under Cs-137 and Cf-252 irradiations, provides first quantitative results on gamma-rejection and neutron sensitivity. The described study of concept gives grounds for a portable, online-compatible device, operable in conventional to controlled environments.

  8. Hydrothermal synthesis of Gd2O3:Eu3+ nanophosphors: Effect of surfactant on structural and luminescence properties

    International Nuclear Information System (INIS)

    Dhananjaya, N.; Nagabhushana, H.; Sharma, S.C.; Rudraswamy, B.; Shivakumara, C.; Nagabhushana, B.M.

    2014-01-01

    Highlights: • Gd(OH) 3 :Eu 3+ , GdOOH:Eu 3+ and Gd 2 O 3 :Eu 3+ phases were prepared by hydrothermal method. • Phosphors were well characterized by XRD, SEM, TEM, Raman, UV–Vis, FT-IR. • Cubic Gd 2 O 3 :Eu 3+ show intense red emission, which was highly useful for photonics application. • HDA surfactant plays an important role in conversion of cubic to hexagonal phases. -- Abstract: Various morphologies of Eu 3+ activated gadolinium oxide have been prepared by hydrothermal method using hexadecylamine (HDA) as surfactant at different experimental conditions. The powder X-ray diffraction studies reveal as-formed product is hexagonal Gd(OH) 3 :Eu 3+ phase and subsequent heat treatment at 350 and 600 °C transforms to monoclinic GdOOH:Eu 3+ and cubic Gd 2 O 3 :Eu 3+ phases respectively. SEM pictures of without surfactant show irregular shaped rods along with flakes. However, in the presence of HDA surfactant, the particles are converted into rods of various sizes. The temperature dependent morphological evolution of Gd 2 O 3 :Eu 3+ without and with HDA surfactant is studied. TEM micrographs of Gd(OH) 3 :Eu 3+ sample with HDA confirms smooth nanorods with various diameters in the range 20–100 nm. FTIR studies reveal that HDA surfactant plays an important role in conversion of cubic to hexagonal phases. Among these three phases, cubic phase Gd 2 O 3 :Eu 3+ (λ ex = 254 nm) show red emission at 612 nm corresponding to 5 D 0 → 7 F 2 and is more efficient host than the monoclinic counterpart. The band gap for hexagonal Gd(OH) 3 :Eu 3+ is more when compared to monoclinic GdOOH:Eu 3+ and cubic Gd 2 O 3 :Eu 3+

  9. Thermal behaviour of GdCo1-xMnxO3 cobaltates

    Science.gov (United States)

    Thakur, Rasna; Thakur, Rajesh K.; Gaur, N. K.

    2018-05-01

    With the objective of exploring the unknown thermodynamic behavior of GdCo1-xMnxO3 family, we present here an investigation of the temperature-dependent (10K≤T≤1000K) thermodynamic properties of GdCo1-xMnxO3 (x=0.1 to 0.8). The specific heat of GdCoO3 with Mn doping in the perovskite structure at B-site has been studied by means of a Modified Rigid Ion Model (MRIM). The cohesive energy, specific heat (C), volume thermal expansion (α) and Gruneisen parameter (γ) of GdCo1-xMnxO3 compounds are also discussed.

  10. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  11. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  12. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  13. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  14. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  15. The Structural Evolution of (Gd, Y)Ba2Cu3Ox Tapes With Zr Addition Made by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei, CH; Galstyan, E; Chen, YM; Shi, T; Liu, YH; Khatri, N; Liu, JF; Xiong, XM; Majkic, G; Selvamanickam, V

    2013-06-01

    Structural analysis of (Gd, Y) Ba2Cu3Ox tapes with Zr addition made by metal organic chemical vapor deposition has been conducted with transmission electron microscopy and X-ray diffraction. Zr content in the films was varied from 0 to 25% in the precursor. In all Zr-doped films, self-assembled nanocolumnar structures of BaZrO3 (BZO) were observed along the c-axis. The amount of BaZrO3 was found to increase steadily with Zr content. Additionally, planar BZO plates were found on the (001) plane of (Gd, Y) Ba2Cu3Ox film. The size and thickness of BZO plates were seen to increase with Zr doping level. Rare-earth copper oxide phases were observed to begin to emerge in the 20% Zr-doped film. Cross-sectional study of the interface between (Gd, Y)Ba2Cu3Ox and LaMnO3 cap layer revealed a thin discrete BZO layer on the LaMnO3 in the 20% Zr doped film.

  16. 926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition

    Science.gov (United States)

    Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing

    2018-05-01

    926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.

  17. Efficient infrared (≈1.9-2.0 μm) laser operation in color-defect-free Tm:NaGd(MoO4)2 crystal

    Science.gov (United States)

    Han, X.; Rico, M.; Serrano, M. D.; Cascales, C.; Zaldo, C.

    2013-04-01

    Color-defect-free 5 at.% Tm:NaGd(MoO4)2 crystals have been grown in a Na2MoO4/Na2Mo2O7 flux. Using a hemispherical optical cavity and pumping at λ = 794.5 nm with a Ti-sapphire laser, up to 850 mW of output power at λ ≈ 1900 nm was obtained at 300 K with an output coupler transmission of 8%. In the cw regime, the slope efficiency versus absorbed power was η = 45% and the pump power laser threshold was ≈180 mW. The laser was tunable from 1875 to 1975 nm and the emission had a FWHM bandwidth ≈20 nm, indicating the potential for ultrashort laser pulse generation.

  18. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  19. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  20. Effect of Gd{sup 3+} substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Seema [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307 (India); Kumar, Manoj, E-mail: mkumar.phy@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307 (India); Chhoker, Sandeep [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307 (India); Kumar, Arun; Singh, Mahavir [Department of Physics, Himachal Pradesh University, Shimla 5 (India)

    2017-03-15

    Nanoparticles of CoGd{sub x}Fe{sub 2−x}O{sub 4} with x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.15 were synthesized by co-precipitation method. Gd{sup 3+} substitution effect on different properties of nanocrystalline CoFe{sub 2}O{sub 4} has been studied. X-ray diffraction and Raman spectroscopy confirmed the formation of single phase cubic mixed spinel structure. Cation distribution has been proposed from Rietveld refined data. Mössbauer spectra at room temperature showed two ferrimagnetic Zeeman sextets with one superparamagnetic doublet. Mössbauer parameters suggested that Gd{sup 3+} ions occupy the octahedral site in CoFe{sub 2}O{sub 4}. Room temperature magnetic measurements exhibited that the saturation magnetization decreased from 91 emu/gm to 54 emu/gm for x=0.0 to 0.15 samples. The coercivity decreased from 1120 Oe to 340 Oe for x=0.0 to 0.07 samples and increased from 400 Oe to 590 Oe for x=0.10 and 0.15 samples, respectively. Raman analysis showed that the degree of inversion with Gd{sup 3+} substitution supporting the variation of coercivity. Electron spin resonance spectra revealed the dominancy of superexchange interactions in these samples. Optical band gap measurement suggested that all samples are indirect band gap materials and band gap has been decreased with Gd{sup 3+} substitution. Both dielectric constant and dielectric loss is found to decrease because of the decrease in hopping rate with the Gd{sup 3+} substitution for Fe{sup 3+} at the octahedral sites. Low dielectric loss suggested the applicability of Gd{sup 3+} doped CoFe{sub 2}O{sub 4} nanoparticles for high frequency microwave device applications. - Highlights: • Gd{sup 3+} ions were successfully added in to the spinel lattice of CoFe{sub 2}O{sub 4}. • Magnetic hysteresis loss is influenced by Gd{sup 3+} doping. • All doped samples exhibit normal dielectric dispersion behaviour of spinel ferrites. • UV–vis diffuse spectroscopy concludes band gap is reduced by Gd{sup 3+} doping.

  1. Application of a dynamic-nanoindentation method to analyze the local structure of an Fe-18 at.% Gd cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong; Baik, Youl [Dept. of Materials Science and Technology, Dankook University, Cheonan(Korea, Republic of); Moon, Byung M. [Liquid Processing and Casting Technology R and D Group, KITECH, Incheon (Korea, Republic of); Sohn, Dong Seong [Nuclear Engineering Department, UNIST, Ulsan (Korea, Republic of)

    2017-04-15

    A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of Fe9Gd. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% Fe3Gd, 6.58 at.% Fe5Gd, 16.22 at.% Fe9Gd, 1.87 at.% Fe2Gd, and 39.49 at.% β-Fe17Gd2. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

  2. Síntesis hidrotermal de monocristales LnMn2O5 (Ln= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho y Er

    Directory of Open Access Journals (Sweden)

    Señarís Rodríguez, M. A.

    2008-08-01

    Full Text Available Ten single crystals of the series LnMn2O5 (Ln= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er were synthesized by hydrothermal synthesis in a single step and without subsequent thermal treatments from aqueous solutions of metals salts at 240 ºC. The obtained single crystals have a size of various micrometers and their morphology changes throughout the serie: they are polygonal in the case of the compounds with Ln= Pr, Nd, Sm, Eu and Gd and needle-like in the case of the compounds with Ln= Y, Tb, Dy, Ho and Er. After the analysis of the obtained products employing different conditions of synthesis we attributed the different morphology to a greater growth rate along the c axis when the smaller ions (Y, Tb, Dy, Ho y Er are involved, due to their better adaptation to the compound’s crystal structure.Se han conseguido preparar monocristales de 10 óxidos mixtos de la serie LnMn2O5 (Ln= Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho y Er mediante síntesis hidrotermal optimizada, en un único paso y sin tratamientos térmicos posteriores partiendo de las correspondientes sales metálicas en disolución acuosa a 240 ºC. Los monocristales obtenidos son relativamente grandes, de varias micras y su morfología varía a lo largo de la serie: es poligonal en el caso de los compuestos de los lantánidos del inicio de la serie (Ln= Pr, Nd, Sm, Eu y Gd y acicular en el caso de los compuestos de Y y de los lantánidos del final de la serie (Ln= Tb, Dy, Ho y Er. Tras el análisis de los productos obtenidos empleando distintas condiciones de síntesis atribuimos la diferente morfología a una mayor velocidad de crecimiento cristalino a lo largo del eje c cuando intervienen los iones más pequeños (Y, Tb, Dy, Ho y Er debido a la mejor adaptación de éstos últimos a la estructura cristalina del compuesto.

  3. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    Science.gov (United States)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  4. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  5. Study of the Polarization Behavior of Ce0.9Gd0.1O2-δ Single Crystals below 350°C to Room Temperature

    DEFF Research Database (Denmark)

    Neuhaus, K.; Bernemann, M.; Hansen, Karin Vels

    2016-01-01

    was investigated by mapping the introduced defect gradient and its decay with time using Kelvin probe force microscopy. The generated surface potential gradients were found to have a diameter of up to 1 μm, which is explained by the local ionization of defect associates by the applied high electric field......Single crystalline ceria samples with the composition Ce0.9Gd0.1O2-δ were pre-polarized with ±5 V for up to 300 s using a Pt coated AFM tip as working electrode. The direct contact zone had a diameter of potential of the samples....... Measurements were performed at room temperature and 50°C. The polarization behavior of the Ce0.9Gd0.1O2-δ single crystals was compared to cyclovoltammetry and polarization-relaxation experiments at T ≤ 350°C and in dry air or nitrogen which were performed using a specially suited AFM (Controlled Atmosphere...

  6. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  7. Study and optimization of the composite nuclear fuel with burnable poison UO2/Gd2O3

    International Nuclear Information System (INIS)

    Balestrieri, D.

    1995-09-01

    The studied composite ceramics is a nuclear fuel constituted of a uranium dioxide matrix UO 2 in which big grains (or 'macro-masses') of gadolinium oxide (Gd 2 O 3 ) of 300 ± 100 μm of diameter (mass fraction of 12%) are dispersed. Used as burnable poison (neutron absorbent whose action disappears progressively during the irradiation), gadolinium oxide is the object of a particular attention because some of its properties as the crystal structure, the aptitude to sintering and the thermomechanical behavior have been studied. The aim of this work is to perfect and optimize the process of manufacture of the composite in order to answer to accurate specifications for the density, the shape and the mass fraction of macro-masses. In this framework, it has been necessary to strengthen the Gd 2 O 3 macro-masses by a thermal treatment in order to avoid their deformation during the uniaxial pressing. The influence of this pre-consolidation on the ended microstructure, the aptitude to sintering and the thermal conductivity of the composite have been studied. (O.M.)

  8. Unusual Formation of Precursors for Crystallization of Ultra-High Performance Polypropylene and Poly(ethylene terephthalate) Fibers by Utilization of Ecologically Friendly Horizontal Isothermal Bath

    Science.gov (United States)

    Avci, Huseyin

    structural development and the production of ultra-high performance as-spun and drawn polypropylene (PP) filaments were investigated. Two different commercial fiber forming PP polymers were used with the melt flow rate of 4.1 and 36 g/10 min. The results demonstrate surprisingly different precursor morphologies for each type of polymer at their optimum process condition. Interestingly, the all treated fibers demonstrated the similar fiber performance having tenacity of about 7 g/d and modulus of 75 g/d for as-spun fibers. After fiber drawing with DR of 1.49, tenacity greater than 12 g/d and modulus higher than 190 g/d were observed. The mean value for the modulus after the drawing process for the high melt flow rate is about 196 g/d. The theoretical modulus of PP is 35--42 GPa17, 275-330 g/d, which demonstrates the hIB fiber's modulus performance is approaching its theoretical maximum values. A key aspect of the third section of this study was to obtain ultra-high performance poly(ethylene terephthalate) fibers (PET) by utilizing a low molecular weight polymer via hIB method. The resulted fibers showed the efficient polymer chain orientation and the highly crystalline and ordered structures. The highest tenacity of more than 8 and 10 g/d were observed for the as-spun and drawn fibers, respectively, after only 1.28 draw ratios. The significant effect of the temperature of hIB spinning system on the fibrillar structure and the precursor's formation of the as-spun fibers was demonstrated. The melting temperature increased 8.51 °C from 254.05 to 262.56 °C when untreated and treated fibers are compared. The most important contribution of this study is that all these various types of polymer precursors for crystallization with different molecular weights after the baths treatments were highly oriented, yet non-crystallized or just showed the initial stages of crystallization. By a subsequent hot drawing process with the low draw ratio (DR< 1.5), the treated fibers showed a well

  9. Study of the superdeformed states of the gadolinium nuclei: neutron excitations in {sup 147}Gd nucleus; Etude des etats superdeformes de noyaux de Gadolinium: Excitations neutron dans le noyau {sup 147}Gd

    Energy Technology Data Exchange (ETDEWEB)

    Khadiri, Najia [Institut de Recherche Subatomique, CNRS-IN2P3 - Universite Louis Pasteur, 67 - Strasbourg (France)

    1997-10-17

    This work is devoted to nuclear structure studies of superdeformed states in the second potential well. Under focus are the gadolinium isotopes and in particular the {sup 147}Gd nucleus. High spin states in {sup 147}Gd have been populating by {sup 122}Sn ({sup 30}Si,5n){sup 147}Gd fusion-evaporation reaction with a silicon beam of 158 MeV delivered by the VIVITRON accelerator of the Institut de Recherches Subatomiques. The nucleus {gamma} de-excitations have been measured using the EUROGAM II {gamma}-ray multidetector. On the basis of multiple coincidences, four new superdeformed (SD) rotational bands have been assigned to {sup 147}Gd nucleus. Nuclear structures corresponding to these bands have been investigated by shell model calculations using a harmonic oscillator potential with cranking, in the Nilsson Strutinsky formalism. Comparison of dynamical moments of inertia of band (1) and (5) in {sup 147}Gd with {sup 148}Gd(2) and {sup 146}Gd(1) SD bands has fixed the role of the [651 1/2]{alpha} = -1/2 orbital crossing frequency. Theoretical calculations reproduce quite well the {sup 148}Gd(2), {sup 127}Gd(1,5) and G{sup 146}Gd(1) dynamical moments of inertia. Using the particle hole excitation nature of {sup 149,148,147,146}Gd bands, effective spin alignment of [651 1/2]{alpha}= {+-}1/2, [770 1/2]{alpha} = -1/2 and [441 1/2]{alpha} = +1/2 orbitals have been deduced from the experiment in agreement with the theoretical values. Of particular interest, the spin alignment measured for the [441 1/2]{alpha} +1/2 orbital, with a value close to zero, is in contradiction with the value predicted by the Pseudo SU(3) model, formalism often used to explain the identical band phenomenon. (author) 68 refs., 41 figs., 17 tabs.

  10. Correlation between structural, electrical and magnetic properties of GdMnO{sub 3} bulk ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Samantaray, S. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Mishra, D.K. [Department of Physics, Institute of Technical Education and Research, S ‘O’ A University, Bhubaneswar 751030, Odisha (India); Pradhan, S.K. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Mishra, P.; Sekhar, B.R. [Institue of Physics, Sachivalaya Marg, Bhubaneswar, Odisha (India); Behera, Debdhyan [Advanced Materials Technology Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha (India); Rout, P.P.; Das, S.K. [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India); Sahu, D.R. [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Roul, B.K., E-mail: ims@iopb.res.in [Institute of Materials Science, Planetarium Building, Bhubaneswar 751013, Odisha (India)

    2013-08-15

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO{sub 3} (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO{sub 3}. Room temperature dielectric constant (ε{sub r}) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO{sub 3} at room temperature as multifunctional materials. - Highlights: • Preparation of single-phasic polycrystalline GdMnO{sub 3} sample by the solid state sintering route. • Observation of square type P–E hysteresis loop with higher saturation and remnant polarization. • Observation of antiferromagnetic behavior at 40 K in polycrystalline GdMnO{sub 3}. • Possibility of room temperature application of GdMnO{sub 3} as multifunctional material.

  11. Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal

    Science.gov (United States)

    Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan

    2018-02-01

    Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.

  12. Free carrier absorption in self-activated PbWO_4 and Ce-doped Y_3(Al_0.25Ga_0.75)_3O_12 and Gd_3Al_2Ga_3O_12 garnet scintillators

    CERN Document Server

    Auffray, E.; M.T. Lucchini; S. Nargelas; O. Sidletskiy; G. Tamulaitis; Y. Tratsiak; A. Vaitkevičius

    2016-01-01

    tungstate (PbWO_4, PWO) ant two garnet crystals, GAGG:Ce and YAGG:Ce. It was shown that free electrons appear in the conduction band of PWO and YAGG:Ce crystals within a sub-picosecond time scale, while the free holes in GAGG:Ce appear due to delocalization from Gd^3+ ground states to the valence band within a few picoseconds after short-pulse excitation. The influence of Gd ions on the nonequilibrium carrier dynamics is discussed on the base of comparison the results of the free carrier absorption in GAGG:Ce containing gadolinium and in YAGG without Gd in the host lattice.

  13. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  14. Crystal structure, solvothermal synthesis, thermogravimetric studies and DFT calculations of a five-coordinate cobalt(II) compound based on the N,N-bis-(2-hy-droxy-eth-yl)glycine anion.

    Science.gov (United States)

    Zhou, Yanling; Liu, Xianrong; Wang, Qijun; Wang, Lisheng; Song, Baoling

    2016-10-01

    The reaction of CoCl 2 ·6H 2 O, N , N -bis-(2-hy-droxy-eth-yl)glycine and tri-ethyl-amine (Et 3 N) in ethanol solution under solvothermal conditions produced crystals of [ N , N -bis-(2-hy-droxy-eth-yl)glycinato]chloridocobalt(II), [Co(C 6 H 12 NO 4 )Cl]. The Co II ion is coordinated in a slightly distorted trigonal-bipyramidal environment which is defined by three O atoms occupying the equatorial plane and the N and Cl atoms in the apical sites. In the crystal, two types of O-H⋯O hydrogen bonds connect the mol-ecules, forming a two-dimensional network parallel to (001). The mol-ecular structure of the title compound confirms the findings of FTIR, elemental analysis, ESI-MS analysis and TG analysis. By using the density functional theory (DFT) (B3LYP) method with 6-31G(d) basis set, the molecular structure has been calculated and optimized.

  15. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  16. Nuclear magnetic relaxation and origins of RMN signals from GdAl2

    International Nuclear Information System (INIS)

    Santos Oliveira Junior, I. dos.

    1988-12-01

    The intermetallic compound GdAl 2 crystallizes in the cubic Laves phase C15. It is a simple ferromagnet below 176K. The easy direction of magnetization in this compound is such that the Al ions are distributed among two magnetically inequivalent sites. The pulsed NMR technique was used to study the origin of the signals from these two sites and the nuclear magnetic relaxation. (author) [pt

  17. Novel chromium doped perovskites A{sub 2}ZnTiO{sub 6} (A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hekai [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Fang, Minghao, E-mail: fmh@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Huang, Zhaohui, E-mail: huang118@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Yan’gai [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Chen, Kai [National Engineering Research Center for Rare Earth Materials, General Research Institute For Nonferrous Metals, Grirem Advanced Materials Co.,Ltd., Beijing 100088 (China); Guan, Ming; Tang, Chao; Zhang, Lina; Wang, Meng [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2017-01-30

    Highlights: • Novel Cr doped A{sub 2}ZnTiO{sub 6} (A = Pr, Gd) photocatalysts were successfully synthesized. • The light absorbance and photocatalytic activity are enhanced through Cr doping. • The photocatalytic reaction mechanism of these photocatalyst was investigated. - Abstract: Double perovskite related oxides A{sub 2}ZnTiO{sub 6} (A = Pr, Gd) have been successfully synthesized by solid state reaction and investigated as photocatalysts for the first time. The two layered titanates mainly demonstrate absorbances under UV irradiation, except for several sharp absorption bands above 400 nm for Pr{sub 2}ZnTiO{sub 6}. Therefore, a series of photocatalysts by doping A{sub 2}ZnTiO{sub 6} (A = Pr, Gd) with Cr have been developed in the hope to improve their absorption in the visible light region. The successful incorporation of Cr was detected by XRD and XPS, and the prepared samples have also been characteriazed by SEM, UV–vis DRS and PL. The characterization results suggested that Cr was present mainly in the form of Cr3+, with only a small amount of Cr6+ species. It served as an efficient dopant for the extension of visible light absorbance and improved photocatalytic activities under solar light irradiation. For both Pr{sub 2}ZnTiO{sub 6} and Gd{sub 2}ZnTiO{sub 6}, the valence band (VB) was composed of hybridized states of the Zn 3d, O 2p and the conduction band (CB) has major contribution from Zn 4s, Ti 3d orbitals. For Cr doped samples, the newly formed spin-polarized valence band in the middle of the band gap that primarily arises from Cr 3d orbitals was responsible for the improved optical and photocatalytic properties.

  18. Effect of Gd{sup 3+} doping and reaction temperature on structural and optical properties of CdS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajanan, E-mail: pandeygajanan@rediffmail.com [Department of Applied Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, (U.P.) (India); Dixit, Supriya; Shrivastava, A.K. [School of Studies in Physics, Jiwaji University, Gwalior, 474011, (M.P.) (India)

    2015-10-15

    Graphical abstract: - Highlights: • Cd{sub 1−x}Gd{sub x}S nanoparticles have been prepared in aqueous medium in presence of CTAB. • From XRD, EDX and ICP-OES study, successful doping of Gd{sup 3+} in CdS has been proved. • Gd{sup 3+} doping reduced size of NCs, while temperature increased size and altered shape. • Gd{sup 3+} doping and reaction temperature influenced the optical properties of NCs. - Abstract: CdS and Gd{sup 3+} ions doped CdS nanoparticles have been prepared at two reaction temperatures 90 and 120 °C in aqueous medium in presence of cationic surfactant cetyltrimethylammonium bromide. X-ray diffraction study revealed predominant formation of zinc blend CdS and Gd:CdS at 90 °C, while at 120 °C, phase pure wurtzite CdS and Gd:CdS were formed. From EDX spectra and ICP-OES analysis, successful doping of Gd{sup 3+} ions in CdS host has been proved. Fourier transform infrared spectroscopy results show the interaction of CTAB through headgroup at the nanoparticles surface. In the transmission electron microscopy images, it has been observed that the reaction temperature and Gd{sup 3+} doping played critical role on size and shape of nanocrystals. In UV–visible absorption as well as photoluminescence emission spectra, size and shape-dependent quantum confinement effect has been observed. On Gd{sup 3+} doping, surface states related emission peak shifted to higher wavelength, while intensity of peaks increased on increasing temperature.

  19. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  20. Dependence of morphology and photoluminescent properties of GdPO4:Eu3+ nanostructures on synthesis condition

    International Nuclear Information System (INIS)

    Yu Lixin; Li Dianchao; Yue Mingxin; Yao Jie; Lu Shaozhe

    2006-01-01

    GdPO 4 :Eu 3+ nanoparticles, nanowires and nanorods phosphors were successfully synthesized by a hydrothermal method. Their photoluminescent properties were investigated and compared. The results indicated that the one-dimensional nanowires and nanorods were formed as the pH value of precursor solution was 1, 5 and 9, while zero-dimensional nanoparticles were formed for the pH value of 9. The crystallization state of nanoparticles was relative lower and the crystal structure belongs to monoclinic phase for other samples. The charge transfer band (CTB) of Eu 3+ ions in nanorods (for pH value of 13) clearly blue-shifted in contrast with other samples. The integrate intensity ratio of 5 D 0 - 7 F 2 to 5 D 0 - 7 F 1 in nanoparticles increased due to high disorder. The lifetime of 5 D 0 level of Eu 3+ in nanoparticles decreased in comparison with other samples and radiative transition rate of 5 D 0 -bar J 7 F J increased

  1. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Khalaji, A. D., E-mail: alidkhalaji@yahoo.com [Golestan University, Department of Chemistry, Faculty of Science (Iran, Islamic Republic of); Maddahi, E. [Iran University of Science & Technology, Ms.C Educated, Department of Chemistry (Iran, Islamic Republic of); Dusek, M.; Fejfarova, K. [Institute of Physics of the ASCR, v.v.i. (Czech Republic); Chow, T. J. [Academia Sinica, Institute of Chemistry (China)

    2015-12-15

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, {sup 1}H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  2. Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    International Nuclear Information System (INIS)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-01-01

    Ln 3 SbO 7 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (La–Nd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (Sm–Dy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222 1 space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La 3 SbO 7 ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: • Ln 3 SbO 7 ceramics belonging to the space groups Cmcm and Ccmm are synthesized. • SXRD, SHG and Raman scattering confirmed the orthorhombic structures. • Ccmm instead of C222 1 is the correct one based on SHG and Raman data

  3. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  4. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd

    Institute of Scientific and Technical Information of China (English)

    Ping Zou; Guiying Xun; Song Wang; Penglei Chen; Fengzhu Huang

    2014-01-01

    Bi2Te2.7Se0.3 of high performance doped with Gd bulk materials was prepared by a high pressure (6.0 GPa) sintering (HPS) method at 593 K, 633 K, 673 K and 693 K. The sample was then annealed for 36 h in a vacuum at 633 K. The phase composition, crystal structure and morphology of the sample were analyzed by X-ray diffraction and scanning electron microscopy. The electric conductivity, Seebeck coefficient, and thermal conductivity aspects of the sample were measured from 298 K to 473 K. The results show that high pressure sintering and the doping with Gd has a great effect on the crystal structure and the thermoelectric properties of the samples. The samples are consisted of nanoparticles before and after annealing, and these nanostructures have good stability at high temperature. HPS together with annealing can improve the TE properties of the sample by decreasing the thermal conductivity of the sample with nanostructures. The maximum ZT value of 0.74 was obtained at 423 K for the sample, which was sintered at 673 K and then annealed at 633 K for 36 h. Compared with the zone melting sample, it was increased by 85%at 423 K. Hence the temperature of the maximum of figure of merit was increased. The results can be applied to the field of thermoelectric power generation materials.

  5. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  6. Effect of BSO addition on Cu-O bond of GdBa{sub 2}Cu{sub 3}O{sub 7-x} films with varying thickness probed by extended x-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. K.; Lee, J. K.; Yang, D. S.; Kang, B. [Chungbuk National University, Cheongju (Korea, Republic of); Kang, W. N. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    We investigated the relation between the Cu-O bond length and the superconducting properties of BaSnO{sub 3} (BSO)-added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films by using extended x-ray absorption fine structure (EXAFS) spectroscopy. 4 wt.% BaSnO{sub 3} (BSO) added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films with varying thickness from 0.2 μm to 1.0 μm were fabricated by using pulsed laser deposition (PLD) method. The transition temperature (T{sub c}) and the residual resistance ratio (RRR) of the GdBCO films increased with increasing thickness up to 0.8 μm, where the crystalline BSO has the highest peak intensity, and then decreased. This uncommon behaviors of T{sub c} and RRR are likely to be created by the addition of BSO, which may change the ordering of GdBCO atomic bonds. Analysis from the Cu K-edge EXAFS spectroscopy showed an interesting thickness dependence of ordering behavior of BSO-added GdBCO films. It is noticeable that the ordering of Cu-O bond and the transition temperature are found to show opposite behaviors in the thickness dependence. Based on these results, the growth of BSO seemingly have evident effect on the alteration of the local structure of GdBCO film.

  7. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Li-Mei [College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001 (China); Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn [College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2017-01-15

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealed that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect.

  8. Superconducting properties of GdBa{sub 2}Cu{sub 3}O{sub y} films by metal-organic deposition using new fluorine-free complex solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561 (Japan); Kita, R. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan)], E-mail: terkita@ipc.shizuoka.ac.jp; Miura, O. [Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0364 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Ichinose, A. [CRIEPI, Nagasaka 2-6-1, Yokosuka, Kanagawa 240-0916 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Matsumoto, K. [Kyushu Institute of Techonology, Sensui-cho, Tobata-ku, Kitakyushu, Hukuoka 804-8550 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Yoshida, Y. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Mukaida, M. [Kyushu University, Hakozaki 6-10-1, Higashi-ku 4-3-16, Fukuoka 992-8510 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Horii, S. [University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8586 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan)

    2008-09-15

    GdBa{sub 2}Cu{sub 3}O{sub y} (GdBCO) films have been prepared on LaAlO{sub 3} single-crystal substrates by metal-organic deposition (MOD) using new fluorine-free complex solutions consisting of metal 2-ethylhexanates (2-EH) and metal naphthenates. The dispersion of T{sub c} values for GdBCO films improved by using a complex solution, rather than only a solution of metal naphthenates. c-axis oriented GdBCO films with flat surfaces were grown under lower calcining temperatures and higher firing temperatures than in the process using only metal naphthenates. The T{sub c} and J{sub c} of the GdBCO films were 91.2 K and 0.61 MA/cm{sup 2}, respectively, at 77 K at self-field.

  9. Thermodynamic calculation of Al-Gd and Al-Gd-Mg phase equilibria checked by key experiments

    International Nuclear Information System (INIS)

    Groebner, J.; Kevorkov, D.; Schmid-Fetzer, R.

    2001-01-01

    The binary Al-Gd and the ternary Al-Gd-Mg systems were calculated using the Calphad method. It is demonstrated that previous interpretation of ternary liquidus temperatures below 700 C must be related to other phase equilibria. The actual ternary liquidus temperatures are much higher, up to some 600 C above the previous interpretation in literature. They are widely governed by the high-melting compounds Al 2 Gd and Al 3 Gd with liquidus surfaces stretching far into the ternary system. A small number of key experiments in this work confirmed the calculated liquidus temperature and the phase relations. The available experimental data in literature fit excellently with the calculation in the binary Al-Gd system. In the ternary Al-Gd-Mg system, which is shown in several sections of the phase diagram, a good agreement can be observed too, considering the necessary reinterpretation of the liquidus temperatures suggested by Rokhlin et al. Ternary solubilities were not found experimentally. The ternary compound Al 4 GdMg (τ) forms in a ternary peritectic reaction at 761 C. (orig.)

  10. Spin-phonon and lattice contributions to the ground-state splitting of Gd3+ and Eu2+ in scheelite crystals

    Science.gov (United States)

    Gorlov, A. D.

    2015-07-01

    The EPR spectra of Gd3+ in CaWO4 single crystals have been studied at temperatures T = 1.8, 4.2, and 114-300 K, and the temperature dependence of the parameters b {/n m } ( T) of the spin Hamiltonian has been found. The behavior of b {2/0}( T) has been analyzed. The spin-phonon and static lattice contributions b {2/0}( F) and b {2/0}( L) to b {2/0}( T) have been revealed. For this purpose, the variation of b {2/0}( L) has been calculated taking into account the thermal shifts of oxygen ions in CaWO4. Similar analysis has been carried out for CaWO4: Eu2+ based on the EPR data of other authors (Bronstein, Voterra and Harvey, Kiefte). It has been shown that at b {2/0}( F) > 0, the variation of b {2/0}( F) as a function of T for these impurity centers is described well by the Pfister model and a sign change of b {2/0}( T) for Eu2+ is determined by thermal expansion of the lattice.

  11. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  12. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  13. Epitaxial growth of cubic Gd{sub 2}O{sub 3} thin films on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Molle, A; Wiemer, C; Bhuiyan, M D N K; Tallarida, G; Fanciulli, M [CNR-INFM, Laboratorio Nazionale MDM, via C. Olivetti 2, I-20041 Agrate Brianza (Italy)], E-mail: alessandro.molle@mdm.infm.it

    2008-03-15

    Gd{sub 2}O{sub 3} thin films were grown on Ge (001) substrates by molecular beam epitaxy. The epitaxial character of the film is demonstrated by electron diffraction during the growth. The structural characterization of the films shows that the Gd{sub 2}O{sub 3} forms a bixbyite polymorph with a (110) out-of-plane orientation. The formation of bixbyite structured Gd{sub 2}O{sub 3} is discussed in terms of the atomic arrangement of the oxide planes on the Ge(001) surface.

  14. Phase equilibria in the MgMoO4-Ln2(MoO4)3 (Ln=La,Gd) systems

    International Nuclear Information System (INIS)

    Fedorov, N.F.; Ipatov, V.V.; Kvyatkovskij, O.V.

    1980-01-01

    Phase equilibria in the MgMoO 4 -Ln 2 (MoO 4 ) 3 systems (Ln=La, Gd) have been studied by static and dynamic methods of the physico-chemical analysis, using differential thermal, visual-polythermal, crystal-optical, X-ray phase, and infrared spectroscopic methods, and their phase diagrams have been constructed. Phase equilibria in the systems studied are characterized by limited solubility of components in the liquid state, formation of solid solutions on the base of α- and β-forms of Gd 2 (MoO 4 ) 3 . Eutectics in the MgMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=La, Gd) systems corresponds to the composition of 71 mode % La 2 (MoO 4 ) 3 -29 mole % MgMoO 4 , tsub(melt)--935+-5 deg C and 57 mole % Gd 2 (MoO 4 ) 3 -43 mole % MgMoO 4 , tsub(melt)=1020+-5 deg C. The region of glass formation has been established [ru

  15. Thermogravimetric investigation into some crystals of rare earth ultraphosphates and glasses on their base

    Energy Technology Data Exchange (ETDEWEB)

    Dudko, G D; Musiyachenko, V D; Shevelevich, R S; Gut' ko, A D

    1986-01-01

    Thermal properties of crystal and glass-like ulraphosphates (UP) rare earth and bismuth: LnP/sub 5/O/sub 14/, where Ln-La, Nd, Eu, Gd, and (R, Nd)P/sub 5/O/sub 14/, where R=La, Gd, Bi, depending on their thermal prehistory are studied. The ratio R/sub 2/O/sub 3/:Nd/sub 2/O/sub 3/ equals 1:2. The glasses were produced by initial UP melt cooling from 1200 deg C to room temperature. It is shown, that the reaction of continuous decomposition with the maximum rate at 1000-1080 deg C and the loss of P/sub 2/O/sub 5/ at 1200 deg C not exceeding 4.5 weight % precedes the melting of LnP/sub 5/O/sub 14/ type crystal, where Ln=La, Nd, Eu, Gd, and (R, Nd)P/sub 5/O/sub 14/, where R=La, Gd, Bi (at the temperatures 1035-1100 deg C). The decomposition activation energy E/sub a/, as well as melting enthalpy ..delta..H/sub melting/ and melting temperature t/sub melting/ of LnP/sub 5/O/sub 14/ crystals, decrease in the series from La to Gd with the increase in the rare earth atomic number E/sub a/:580+-34-464+-32 kJ/mol, ..delta..H/sub melting/:37+-3-32+-2 kJ/mol, t/sub melting/:1100+-10-1035+-10 deg C.

  16. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  17. Noticeable red emission and Raman active modes in nanoscale gadolinium oxyfluoride (Gd{sub 4}O{sub 3}F{sub 6}) systems with Eu{sup 3+} inclusion

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, Samiran; Mohanta, Dambarudhar [Tezpur University, Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur, Assam (India)

    2017-05-15

    Eu{sup 3+} doped gadolinium oxyfluoride (Gd{sub 4}O{sub 3}F{sub 6}, GOF) nanoscale systems have been synthesized following a modified Pechini method. While exhibiting a tetragonal crystal structure, the GOF nanosystem gave an average crystallite size (d) of ∝21-26 nm. The Lotgering factor (L{sub F}), which is a measure of orientation of crystallites along the preferred direction was found to vary between 0.22 and 0.48. In the photoluminescence spectra, ∝595 and ∝613 nm peaks were identified as magnetically driven ({sup 5}D{sub 0} → {sup 7}F{sub 1}) and electrically driven ({sup 5}D{sub 0} → {sup 7}F{sub 2}) transitions with latter (red emission) being strongly manifested with Eu{sup 3+} doping concentration and intrinsic defects. Moreover, several Raman active modes have been probed in the Raman spectra with low frequency peaks (<300 cm{sup -1}) and moderate frequency peaks (∝481 and 567 cm{sup -1}) assigned to observable vibration of heavy atom Gd-Gd pairs and Gd-O groups, respectively. Apart from manifestation of phononic features, inclusion of Eu{sup 3+} in the host lattice would bring new insight on improving the red emission response prior to concentration quenching. (orig.)

  18. Recent experiments at Brookhaven: level structure of N = 86 isotones 156Yb and 150Gd

    International Nuclear Information System (INIS)

    Sunyar, A.W.

    1980-01-01

    States of the N = 86 isotones 156 Yb and 150 Gd have been studied by means of the 144 Sm( 16 O,4n) 156 Yb, 113 In( 46 Ti,p2n) 156 Yb, and 124 Sn( 30 Si,4n) 150 Gd reactions. Levels have been established to spin 36 h-bar and over 12.5 MeV in excitation in 150 Gd and to beyond spin 25 h-bar in 156 Yb. The systematics of levels in the N = 86 isotones from 150 Gd to 156 Yb are described, and the near-spherical shell model description for states in this region to near spin 30 h-bar is discussed. A T/sub 1/2/ = 6 ns, 72-keV isomeric transition in 156 Yb has been discovered, and an E1 multipolarity is assigned to this transition. The spin-parity of the isomeric state is established as 11 - . 6 figures

  19. Bulk and nanocrystalline electron doped Gd{sub 0.15}Ca{sub 0.85}MnO{sub 3}: Synthesis and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dhal, Lakshman; Chattarpal [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Nirmala, R., E-mail: nirmala@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Santhosh, P.N. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Kumary, T. Geetha [CMPD, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nigam, A.K. [Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2014-09-01

    Polycrystalline Gd{sub 0.15}Ca{sub 0.85}MnO{sub 3} sample was prepared by solid state reaction method and nanocrystalline samples of different grain sizes of the same were prepared by sol–gel method. Phase purity and composition were verified by room temperature X-ray diffraction and SEM-EDAX analysis. Magnetization data of bulk Gd{sub 0.15}Ca{sub 0.85}MnO{sub 3} in 5 kOe field shows a peak at ∼119 K (T{sub N}) suggesting an antiferromagnetic transition. Nanocrystalline Gd{sub 0.15}Ca{sub 0.85}MnO{sub 3} sample (∼54 nm size) also shows a cusp at ∼107 K and a broad thermal hysteresis between field cooled cooling (FCC) and field cooled warming (FCW) data around this temperature. This thermal hysteresis suggests possible crystal structural transition. Field variation of magnetization of bulk Gd{sub 0.15}Ca{sub 0.85}MnO{sub 3} at 5 K shows a tendency to saturate, but yields a magnetic moment value of only ∼1.12 μ{sub B}/f.u. in 70 kOe. The value of magnetization of nanocrystalline sample at 5 K in 70 kOe field is slightly larger and is ∼1.38 μ{sub B}/f.u. which is probably due to the surface moments of the nanoparticle samples. Both the samples show Curie–Weiss-like behaviour in their paramagnetic state.

  20. Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Bita Pourbahari

    2017-04-01

    Full Text Available The effect of Gd/Al ratio on the properties of as-cast Mg-Gd-Al-Zn alloys was investigated by changing the chemical composition from that of AZ61 to GZ61. At the ratio of 1, the Al2Gd phase becomes predominant and Mg17Al12 is hardly seen in the microstructure. As a potent inoculant, the Al2Gd phase resulted in intense grain refinement and enhancement of strength, ductility and toughness. For instance, the tensile strength and elongation to failure of Mg-3Gd-3Al-1Zn alloy were enhanced by ~4% and 180% compared with those of AZ61 alloy, respectively. However, at high Gd/Al ratios, the Al2Gd phase was replaced by (Mg,Al3Gd and Mg5Gd phases and very large grain sizes were achieved, which led to poor tensile properties and the appearance of cleavage facets on the fracture surfaces. Therefore, it can be deduced that the presence of Gd and Al, in appropriate amounts to reach Gd/Al ratio of ~ 1, is required for the achievement of grain refinement, good ductility, high strength, and the appearance of ductile fracture surfaces in the Mg-Gd-Al-Zn system. Conclusively, the Mg-Gd-Al-Zn alloys can be considered as a new class of structural magnesium alloy and it is superior to both AZ (Mg-Al-Zn and GZ (Mg-Gd-Zn series of alloys.

  1. Experimental evaluation of Gd3Al2Ga3O12:Ce (GAGG:Ce) single crystals coupled to a silicon photomultiplier (SiPM) under high gamma ray irradiation conditions

    Science.gov (United States)

    Metallinos, A.; Kefalidis, E.; Kandarakis, I.; David, S.

    2017-11-01

    Cerium (Ce) ion doped scintillators are of high interest in Medical Imaging systems and radiation monitoring devices, due to their very fast response and very good emission characteristics. In this study, a series of measurements regarding the energy resolution, photofraction, sensitivity, as well as the figure of merit, of Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator crystals, is presented. All GAGG:Ce crystals have a surface area of 3x3 mm2 with varying thicknesses, from 4 up to 20 mm (4, 5, 6, 8, 10, 15 and 20 mm). These crystals were exposed to γ radiation, using two different radioactive sources: 137Cs (0.662 MeV) and 60Co (1.173 MeV and 1.332 MeV). Each crystal was measured individually and was optically coupled to a KETEK PM3350 SiPM, an optical sensor with high gain, suitable to operate in room temperature. The digitization of the pulses was accomplished using CAEN DT5720 desktop digitizer and its corresponding digital pulse processing (DPP) firmware. Each measurement was performed in a light-tight box and had duration of 30 min. The best energy resolution value was measured for the GAGG:Ce crystal with dimensions 3x3x15mm3, equal to 3.9% at 1.332 MeV. Results were evaluated and compared to previous published data.

  2. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qianqian; Han, Ying [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Lin, Hechun, E-mail: hclin@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Zhang, Yuanyuan; Duan, Chungang [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Peng, Hui, E-mail: hpeng@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2017-03-15

    One dimensional coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO{sub 4}{sup 2-} ions to generate a 1-D chain, and all oxygen atoms in SO{sub 4}{sup 2-} groups are connected to three nearest Gd atoms in µ{sup 3}:η{sup 1}:η{sup 1}:η{sup 2} fashion. Gd, S and N from SO{sub 4}{sup 2-} and NO{sub 3}{sup -} are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH=7 T. - Graphical abstract: Coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] was obtained mediated by Bronsted acid Ionic Liquid, which presents a 1-D chains collected by SO{sub 4}{sup 2-} groups. Magnetic susceptibility of the polymer reveals weak antiferromagnetic interactions between the Gd(III) ions with the relatively large magneto-caloric effect of –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH= 7T.

  3. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  4. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  5. Spectral management and morphology evolution of β-NaGdF4:Yb3+,Er3+ by tuning the concentration of citric acid

    Science.gov (United States)

    Yao, Lu; Xu, Dekang; Lin, Hao; Yang, Shenghong; Zhang, Yueli

    2018-05-01

    β-NaGdF4:Yb3+,Er3+ upconversion (UC) particles were prepared by a facile hydrothermal process with assistance of citric acid (CA). The morphologies of β-NaGdF4 UC particles were controlled by changing the doses of CA in precursor. With an increase CA concentration in precursor, increase sizes of crystals were observed, resulting in the increasing of luminescence intensity. The energy transfer ET mechanism was analyzed in detail.

  6. Single-crystal growth of ceria-based materials

    International Nuclear Information System (INIS)

    Ulbrich, Gregor

    2015-01-01

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  7. Hyperfine fields and spin relaxation of Ce in GdAl2 and DyAl2

    International Nuclear Information System (INIS)

    Waeckelgaard, E.; Karlsson, E.; Lindgren, B.; Mayer, A.

    1987-04-01

    We have investigated the ferromagnetic state of the cubic intermetallic compounds GdAl 2 and DyAl 2 with the 140 Ce nuclei using DPAC. The local fields of Ce are for the lowest measured temperatures B eff (30 K) = 54(2) T for GdAl 2 and B eff (12.5 K) = 27(1) T for DyAl 2 which are considerably lower than the hyperfine field measured for a free Ce ion (183 T). By introducing a crystal field, of cubic symmetry, a lower hyperfine field is obtained which is in quantitative agreement with the local field of Ce in GdAl 2 . For DyAl 2 an additional effect, represented by a non-magnetic level below the lowest magnetic level, may explain a further reduction of the hyperfine field. Two models relating to a Kondo non-magnetic state of Ce are discussed. Spin relaxation in the paramagnetic state are also studied and compared with observations of the same systems measured with μSR. (authors)

  8. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  9. Measurement of Gd content in (U,Gd)O2 using thermal gravimetric analysis

    International Nuclear Information System (INIS)

    Kim, Keon Sik; Yang, Jae Ho; Kang, Ki Won; Song, Kun Woo; Kim, Gil Moo

    2004-01-01

    We propose a simple and precise method for measuring the Gd content in the (U,Gd)O 2 pellet by only measuring the weight variation of the pellet during thermal heat treatment in air. The (U,Gd)O 2 fuel pellets were oxidized at 475 deg. C, subsequently heat treated at 1300 deg. C, and then cooled to room temperature in air. The accompanying weight variations were measured using thermo gravimetric analysis (TGA). The measured weight variations were mathematically analyzed with reference to the successive phase reactions during the heat treatment. This method provides an advantage in that the rare-earth element content including Gd can be measured using relatively simple equipment such as an electric furnace and a balance

  10. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing

    2014-12-08

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface and interface the Gd f states shift to lower energy and new surface/interface Gd d states appear at the Fermi energy, which are strongly hybridized with the Mo 4d states and thus lead to a high spin-polarization (ferromagnetically ordered Mo magnetic moments of 0.15 μB). Gd therefore is an interesting candidate for spin injection into monolayer MoS2.

  11. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  12. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  13. ESR of Gd3+ in magnetically ordered Eu2CuO4

    International Nuclear Information System (INIS)

    Rettori, C.; Oseroff, S.B.; Rao, D.; Valdivia, J.A.; Barberis, G.E.; Martins, G.B.; Sarrao, J.; Fisk, Z.; Tovar, M.

    1996-01-01

    Electron spin resonance (ESR) experiments of Gd 3+ in the antiferromagnetic (AF) ordered phase (T N ) of Eu 2 CuO 4 can be interpreted in terms of four magnetically nonequivalent rare-earth sites with local internal fields H i =±310(30) Oe along the [100] and [010] directions. The internal field is well described by a dipolar magnetic field of a noncollinear AF array of 0.35(4) μ B per Cu moment aligned along the [100] and [010] directions. This is consistent with recent results of magnetic-field-dependent neutron-diffraction experiments. From the ESR and magnetic susceptibility data, the crystal field parameters for Gd 3+ and Eu 3+ in Eu 2 CuO 4 are determined. The exchange parameters between the rare earths are also estimated. copyright 1996 The American Physical Society

  14. Magnetic and superconducting phase diagram of Nb/Gd/Nb trilayers

    Science.gov (United States)

    Khaydukov, Yu. N.; Vasenko, A. S.; Kravtsov, E. A.; Progliado, V. V.; Zhaketov, V. D.; Csik, A.; Nikitenko, Yu. V.; Petrenko, A. V.; Keller, T.; Golubov, A. A.; Kupriyanov, M. Yu.; Ustinov, V. V.; Aksenov, V. L.; Keimer, B.

    2018-04-01

    We report on a study of the structural, magnetic, and superconducting properties of Nb (25 nm ) /Gd (df) /Nb (25 nm ) hybrid structures of a superconductor/ ferromagnet (S/F) type. The structural characterization of the samples, including careful determination of the layer thickness, was performed using neutron and x-ray scattering with the aid of depth-sensitive mass spectrometry. The magnetization of the samples was determined by superconducting quantum interference device magnetometry and polarized neutron reflectometry, and the presence of magnetic ordering for all samples down to the thinnest Gd(0.8 nm) layer was shown. The analysis of the neutron spin asymmetry allowed us to prove the absence of magnetically dead layers in junctions with Gd interlayer thickness larger than one monolayer. The measured dependence of the superconducting transition temperature Tc(df) has a damped oscillatory behavior with well-defined positions of the minimum at df=3 nm and the following maximum at df=4 nm, in qualitative agreement with prior work [J. S. Jiang et al., Phys. Rev. B 54, 6119 (1996), 10.1103/PhysRevB.54.6119]. We use a theoretical approach based on the Usadel equations to analyze the experimental Tc(df) dependence. The analysis shows that the observed minimum at df=3 nm can be described by the so-called zero to π phase transitions of highly transparent S/F interfaces with a superconducting correlation length ξf≈4 nm in Gd. This penetration length is several times higher than for strong ferromagnets like Fe, Co, and Ni, thus simplifying the preparation of S/F structures with df˜ξf which are of topical interest in superconducting spintronics.

  15. Synthesis, structure and magnetic properties of Fe-Gd nanocapsules coated with B2O3/H3BO3 and Fe3BO5+GdBO3

    International Nuclear Information System (INIS)

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Buschow, K.H.J.; Zhang, W.S.; Klaasse, J.C.P.; Boer, F.R. de

    2004-01-01

    Nanocapsules consisting of B 2 O 3 /H 3 BO 3 encapsulating Fe-Gd cores have been synthesized by an arc-discharge process using metal-boron alloys as cathode. Most of the nanocapsules have a well-constructed shell/core structure with a uniform B 2 O 3 /H 3 BO 3 shell. Heat-treatment induces reactions between the shell and the core, resulting in the formation of a Fe 3 BO 5 +GdBO 3 matrix embedded with Fe nanoparticles, reduction of the metallic-core size and decrease of the blocking temperature T B . Above T B , the magnetization curves plotted vs. H/T overlap and show zero coercivity. Below T B , the coercivity shows a linear dependence when plotted vs. T 1/2 . However, the coercivity-T 1/2 curve below 60 K has a different slope from that above 60 K, indicating the existence of two different magnetic phases in the nanocapsules. Different from bulk Fe 3 BO 5 , nanoscale Fe 3 BO 5 particles have a lower transition temperature to the weak-ferromagnetic state, and magnetic hysteresis is absent due to size effects

  16. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  17. Gd{sub 2}O{sub 3} nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Babić-Stojić, Branka, E-mail: babic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Jokanović, Vukoman; Milivojević, Dušan [Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Požek, Miroslav [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Jagličić, Zvonko [Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Arsikin, Katarina; Paunović, Verica [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, 11000 Belgrade (Serbia)

    2016-04-01

    Gd{sub 2}O{sub 3} nanoparticles of a few nm in size and their agglomerates dispersed in dextrose derived polymer template were synthesized by hydrothermal treatment. The produced nanosized material was investigated by TEM, FTIR spectroscopy, SQUID measurements and NMR relaxometry. Biological evaluation of this material was done by crystal violet and MTT assays to determine the cell viability. Longitudinal and transverse NMR relaxivities of water diluted Gd{sub 2}O{sub 3} nanoparticle dispersions measured at the magnetic field of 1.5 T, estimated to be r{sub 1}(Gd{sub 2}O{sub 3})=9.6 s{sup −1} mM{sup −1} in the Gd concentration range 0.1–30 mM and r{sub 2}(Gd{sub 2}O{sub 3})=17.7 s{sup −1} mM{sup −1} in the lower concentration range 0.1–0.8 mM, are significantly higher than the corresponding relaxivities measured for the standard contrast agent r{sub 1}(Gd-DTPA)=4.1 s{sup −1} mM{sup −1} and r{sub 2}(Gd-DTPA)=5.1 s{sup −1} mM{sup −1}. The ratio of the two relaxivities for Gd{sub 2}O{sub 3} nanoparticles r{sub 2}/r{sub 1}=1.8 is suitable for T{sub 1}-weighted imaging. Good MRI signal intensities of the water diluted Gd{sub 2}O{sub 3} nanoparticle dispersions were recorded at lower Gd concentrations 0.2–0.8 mM. The Gd{sub 2}O{sub 3} samples did not exert any significant cytotoxic effects at Gd concentrations of 0.2 mM and below. These properties of the produced Gd{sub 2}O{sub 3} nanoparticles in hydrothermally modified dextrose make them promising for potential application in MRI for the design of a positive MRI contrast agent. - Highlights: • Gd{sub 2}O{sub 3} nanoparticles (NPs) were stabilized by hydrothermally modified dextrose. • Magnetic moment per Gd{sup 3+} ion in the Gd{sub 2}O{sub 3} NPs is much lower than that in the bulk. • The ratio r{sub 2}/r{sub 1}=1.8 for Gd{sub 2}O{sub 3} NPs dispersions is favorable for T{sub 1}-weighted MRI. • Gd{sub 2}O{sub 3} NPs dispersions had good MRI signal intensity just at lower Gd concentrations

  18. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    Science.gov (United States)

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  19. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  2. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  3. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  4. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  5. Studies on the Sintering Behaviour of UO2-Gd2O3 Nuclear Fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Gracher Riella, Humberto

    2008-01-01

    The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fuel cycles and optimized fuel utilization. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low diffusivity Gd rich (U,Gd)O 2 phase. Experimental evidences indicated the existence of phases in the (U,Gd)O 2 system with structure different from the fluorite type structure of UO 2 . The apparition of these new phases coincides with the lowering of the density after sintering and with the lowering of the interdiffusion coefficient. However, it has been shown experimentally that the sintering blockage phenomena cannot be explained on the basis of the formation of low diffusivity Gd rich (U,Gd)O 2 phases. The work was continued to investigate other possible blocking mechanism. (authors)

  6. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  7. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  8. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  9. Thermal expansion studies on HfO2-Gd2O3 system

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Nagarajan, K.

    2014-01-01

    A series of solid solutions containing GdO 1.5 in HfO 2 , (Hf 1-y Gd y ) O 2 (y = 0.15, 0.2, 0.3, 0.41 and 0.505) were prepared by solid state method. Structural characterization and computation of lattice parameter was carried out using room temperature X-ray diffraction measurements

  10. Study on the Mechanical Properties and Corrosion Behaviors of Fe-(20, 45) wt%Gd Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bo Kyeong; Baik, Youl; Choi, Yong [Dankook University, Chungnam (Korea, Republic of); Moon, Byung Moon [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-02-15

    Fe-(20, 45 wt%) Gd intermetallics were vacuum arc melted as the mother alloy of a neutron shielding and absorbing material. The structure of the cast Fe-20 wt%Gd intermetallics had primary dendrites with a short width of about 2 μm, which became coarse with increasing Gd content. The final compositions of the Fe-20 wt%Gd and Fe-45 wt%Gd intermetallics determined by Rietveld refinement were mainly Fe{sub 3}Gd with 26.6 at%Fe{sub 2}Gd, and Fe{sub 3}Gd with various intermetallics like 13.9 at%Fe{sub 2}Gd, 7.3 at%Fe{sub 9}Gd and 3.9 at%Fe{sub 17}Gd{sub 2}, respectively. The micro-hardnesses, yield strength, ultimate compressive strength and elongation of the Fe-20 wt%Gd intermetallics were 629±12 Hv, 753 MPa, 785 MPa and 4%, respectively, and those of the Fe-45 wt%Gd intermetallics were 741±13 Hv, 772 MPa, 823 MPa and 3%. Passivity was not present in artificial sea water at room temperature. The corrosion potentials and the corrosion rates of the Fe-20 wt%Gd and Fe-45 wt%Gd intermetallics were –624 mV{sub SHE}, 2.771 mA/cm{sup 2} , and –804 mV{sub SHE}, 3.397 mA/cm{sup 2} , respectively. The corroded surface of the Fe-Gd intermetallics contained corrosion products like gadolinium with iron, which detached to leave a trail of pits.

  11. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  12. Generating a 2.4-W cw Green Laser by Intra-Cavity Frequency Doubling of a Diode-Pumped Nd:GdVO4 Laser with a MgO:PPLN Crystal

    International Nuclear Information System (INIS)

    Lu Jun; Liu Yan-Hua; Zhao Gang; Hu Xiao-Peng; Zhu Shi-Ning

    2012-01-01

    High-power cw green laser radiation is generated by intra-cavity frequency doubling of a diode-pumped Nd:GdVO 4 laser with a MgO-doped periodically-poled LiNbO 3 (MgO:PPLN) crystal at room temperature. An average power of 2.4 W at 0.53 μm is obtained under the pump 15 W at 808 nm, corresponding to an overall optical-to-optical conversion efficiency of 16%. The M 2 factor of the green beam is 3.90 and 1.34 for the horizontal and vertical direction, respectively. In addition, the power fluctuation is measured to be about ±5%

  13. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  14. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  15. Magnetic, electrical and structural properties of the Re-doped ruthenocuprate Ru1−xRexSr2GdCu2Oy

    International Nuclear Information System (INIS)

    Corredor, L.T.; Albino Aguiar, J.; Landínez Téllez, D.A.; Pureur, P.; Mesquita, F.; Roa-Rojas, J.

    2015-01-01

    Highlights: • We investigated the effect of the dilution of magnetic Ru sub-lattice of RuSr 2 GdCu 2 O 8 . • We synthesized the doped compound Rui x Re x Sr 2 GdCu 2 O y , for 3%, 6%, 9% and 12% Re. • Re would affect the electron coupling: just 3 and 6% samples were superconductor. • Superconductivity emergence strongly affects magnetic properties of 3 and 6% samples. • A weak ferromagnetic component is consistent with a globally antiferromagnetic system. - Abstract: Despite the discovery of new superconductors classes, high-Tc oxides continue to be a current topic, because of their complex phase diagrams and doping-dependant effects (allowing one to investigate the interaction between orbitals), as well as structural properties such as lattice distortion and charge ordering, among many others. Ruthenocuprates are magnetic superconductors in which the magnetic transition temperature is much higher than the critical superconducting temperature, making them unique compounds. With the aim of investigating the dilution of the magnetic Ru sub-lattice, we proposed the synthesis of the Ru 1−x Re x Sr 2 GdCu 2 O y ruthenocuprate-type family, adapting the known two-step process (double perovskite + CuO) by directly doping the double perovskite, thus obtaining the perovskite compound Sr 2 GdRu 1−x Re x O y , which represents a new synthesis process to the best of our knowledge. Our samples were structurally characterized through X-ray diffraction, and the patterns were analysed via Rietveld refinement. A complete magnetic characterization as a function of temperature and applied field, as well as transport measurements were carried out. We discuss our results in the light of the two-lattice model for ruthenocuprates, and a relation between RuO 2 (magnetic) and CuO 2 (superconductor) sub-lattices can clearly be observed

  16. Radiation defects in oxide crystals doped with rare earth ions

    NARCIS (Netherlands)

    Matkovskii, A; Durygin, A; Suchocki, A; Sugak, D; Wallrafen, F; Vakiv, M

    1999-01-01

    The nature of stable and transient color centers in Y3Al5O12, Gd3Ca5O12, YAlO3 and LiNbO3 crystals is studied. The color centers are created by various types of irradiation. The effect of irradiation on crystal optical properties in visible and ultraviolet range is presented.

  17. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning

    Science.gov (United States)

    Fortin, Marc-André; Petoral, Rodrigo M., Jr.; Söderlind, Fredrik; Klasson, A.; Engström, Maria; Veres, Teodor; Käll, Per-Olof; Uvdal, Kajsa

    2007-10-01

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG-Gd2O3 and PEG-silane-SPGO (Gd2O3,DTPA and the r2/r1 ratio was 1.4. PEG-silane-SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG-Gd2O3. Treatment of DEG-US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  18. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  19. Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses

    Science.gov (United States)

    Bahrenberg, Thorsten; Rosenski, Yael; Carmieli, Raanan; Zibzener, Koby; Qi, Mian; Frydman, Veronica; Godt, Adelheid; Goldfarb, Daniella; Feintuch, Akiva

    2017-10-01

    Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95 GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D ∼ 1150 MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D ∼ 550 MHz) as a model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D

  20. Development of an RGB color analysis method for controlling uniformity in a long-length GdBCO coated conductor

    International Nuclear Information System (INIS)

    Kim, Tae-Jin; Lee, Jae-Hun; Lee, Yu-Ri; Moon, Seung-Hyun

    2015-01-01

    Reactive co-evaporation-deposition and reaction (RCE-DR) is a very productive GdBa 2 Cu 3 O 7−x (GdBCO) coated conductor (CC) fabrication process, which involves the fast phase conversion of an amorphous film formed by co-evaporation of three metal sources, Gd, Ba and Cu, and thus reduces the time and cost for fabrication of a GdBCO CC. We routinely use quartz crystal microbalance (QCM) to measure and control the evaporation rates of each metal source to keep a constant nominal composition of the superconducting (SC) layer. However, in the case of kilometre long GdBCO CC fabrication, evaporation rates measured by QCM do not exactly reflect deposition rates onto the substrate as source levels decrease, and thus an RGB color analysis method for quality control is designed. With this RGB color analysis method, it is possible to measure the composition of the converted SC layer very close to the actual composition, even in real time. We set up the RGB color analysis program by establishing a database, where RGB color values are matched to composition of the SC layer, and as a result of applying the program to the RCE-DR process, could fabricate high quality GdBCO CC with average critical current of 561 A cm −1 and 95% uniformity along a 1 km length. (paper)