WorldWideScience

Sample records for gcnf directs gene

  1. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells.

    Science.gov (United States)

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J

    2016-04-15

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process.

  2. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  3. Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules.

    Science.gov (United States)

    Zhong, Wei-Hong; Li, Jiang; Xu, Luoyu R; Michel, Jason A; Sullivan, Lisa M; Lukehart, Charles M

    2004-09-01

    Processing methods have been optimized for the formation of graphitic carbon nanofiber (GCNF)/epoxy nanocomposites containing GCNFs highly dispersed throughout a thermoset epoxy matrix. GCNFs having a herringbone atomic structure are surface-derivatized with bifunctional hexanediamine linker molecules (GCNF-HDA) capable of covalent binding to an epoxy matrix during thermal curing and are cut to smaller dimension using high-power ultrasonication. GCNF-HDA nanofibers are dispersed in epoxy resin at 0.3 wt.% loading using variable levels of ultrasonication processing prior to thermal curing. Effects of sonication power on the quality of the GCNF-HDA/epoxy material obtained after curing have been determined from flexural property measurements, thermomechanical analysis and SEM/TEM imaging. GCNF-HDA/epoxy material of the highest quality is obtained using low-power sonication, although high-power sonication for short periods gives improved flexural properties without lowering the glass transition temperature. Good dispersion and polymer wetting of the GCNF component is evident on the nanoscale.

  4. Sex-related genes, directional sexual selection, and speciation.

    Science.gov (United States)

    Civetta, A; Singh, R S

    1998-07-01

    Reproductive isolation and speciation can result from the establishment of either premating or postmating barriers that restrict gene flow between populations. Recent studies of speciation have been dominated by a molecular approach to dissect the genetic basis of hybrid male sterility, a specific form of postmating reproductive isolation. However, relatively little attention has been paid to the evolution of genes involved in premating isolation and genes generally involved in other sex-related functions (e.g., mating behavior, fertilization, spermatogenesis, sex determination). We have assembled DNA sequences from 51 nuclear genes and classified them based on their functional characteristics. The proportion of nonsynonymous to synonymous nucleotide substitutions were compared between Drosophila melanogaster, Drosophila simulans, and Drosophila pseudoobscura, as well as between Caenorhabditis elegans and Caenorhabditis briggsae. We found a high ratio of nonsynonymous to synonymous substitutions for sex-related genes (i.e., genes involved in mating behavior, fertilization, spermatogenesis, or sex determination). The results suggest that directional sexual selection has shaped the evolution of sex-related genes and that these changes have more likely occurred during the early stages of speciation. It is possible that directional selection becomes relaxed after reproductive isolation has been completed between more distantly related species (e.g., D. melanogaster and D. pseudoobscura). However, a saturation in the number of nucleotide substitutions since the time of species separation may mask any sign of directional selection between more distantly related species.

  5. A copula method for modeling directional dependence of genes

    Directory of Open Access Journals (Sweden)

    Park Changyi

    2008-05-01

    Full Text Available Abstract Background Genes interact with each other as basic building blocks of life, forming a complicated network. The relationship between groups of genes with different functions can be represented as gene networks. With the deposition of huge microarray data sets in public domains, study on gene networking is now possible. In recent years, there has been an increasing interest in the reconstruction of gene networks from gene expression data. Recent work includes linear models, Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the most effective in constructing gene networks. A major problem with the Bayesian network approach is the excessive computational time. This problem is due to the interactive feature of the method that requires large search space. Since fitting a model by using the copulas does not require iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need for reference to extensive search spaces can be eliminated leading to manageable computational affords. Bayesian network approach produces a discretely expression of conditional probabilities. Discreteness of the characteristics is not required in the copula approach which involves use of uniform representation of the continuous random variables. Our method is able to overcome the limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary transformation. Results We analyzed the gene interactions for two gene data sets (one group is eight histone genes and the other group is 19 genes which include DNA polymerases, DNA helicase, type B cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a subunit of the cohesin complex by adopting a measure of directional dependence based on a copula function. We have compared

  6. Simulation of gene evolution under directional mutational pressure

    Science.gov (United States)

    Dudkiewicz, Małgorzata; Mackiewicz, Paweł; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Mirosław; Cebrat, Stanisław

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  7. Achieving HIV-1 Control through RNA-Directed Gene Regulation

    Directory of Open Access Journals (Sweden)

    Vera Klemm

    2016-12-01

    Full Text Available HIV-1 infection has been transformed by combined anti-retroviral therapy (ART, changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi, short interfering RNA (siRNA induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.

  8. Bystander or No Bystander for Gene Directed Enzyme Prodrug Therapy

    Directory of Open Access Journals (Sweden)

    Adam V. Patterson

    2009-11-01

    Full Text Available Gene directed enzyme prodrug therapy (GDEPT of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK with ganciclovir (GCV, cytosine deaminase (CD from bacteria or yeast with 5-fluorocytodine (5-FC, and bacterial nitroreductase (NfsB with 5-(azaridin-1-yl-2,4-dinitrobenzamide (CB1954, and their respective derivatives.

  9. Gene duplication models for directed networks with limits on growth

    Science.gov (United States)

    Enemark, Jakob; Sneppen, Kim

    2007-11-01

    Background: Duplication of genes is important for evolution of molecular networks. Many authors have therefore considered gene duplication as a driving force in shaping the topology of molecular networks. In particular it has been noted that growth via duplication would act as an implicit means of preferential attachment, and thereby provide the observed broad degree distributions of molecular networks. Results: We extend current models of gene duplication and rewiring by including directions and the fact that molecular networks are not a result of unidirectional growth. We introduce upstream sites and downstream shapes to quantify potential links during duplication and rewiring. We find that this in itself generates the observed scaling of transcription factors for genome sites in prokaryotes. The dynamical model can generate a scale-free degree distribution, p(k)\\propto 1/k^{\\gamma } , with exponent γ = 1 in the non-growing case, and with γ>1 when the network is growing. Conclusions: We find that duplication of genes followed by substantial recombination of upstream regions could generate features of genetic regulatory networks. Our steady state degree distribution is however too broad to be consistent with data, thereby suggesting that selective pruning acts as a main additional constraint on duplicated genes. Our analysis shows that gene duplication can only be a main cause for the observed broad degree distributions if there are also substantial recombinations between upstream regions of genes.

  10. Integrase-directed recovery of functional genes from genomic libraries.

    Science.gov (United States)

    Rowe-Magnus, Dean A

    2009-09-01

    Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet's biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures.

  11. Direct Gene Transfer into Rabbit Peripheral Nerve in vivo

    Institute of Scientific and Technical Information of China (English)

    张世强; 张经歧; 张英泽; 刘玲

    2001-01-01

    Exogenous gene suture was used to achieve peripheral nerve anastomoses to probe into the feasibility that the sites of anastomoses of nerves directly transfer gene and thus enable gene to be expressed at the sites of anastomoses under the condition that perfect nerve anastomoses are ensured. PCMVβ plasmid containing cytomegalovirus promoter (CMV promoter) and Escherichia coli (E.coli) β-Galactosidase (β-Gal) structural gene (lacZ gene) was conducted. A soaked medical 8-0nylon suture was used to perform epineurial repair of rabbit sciatic nerve. In the control group a suture soaked in sucrose PBS was used, while in the experimental group a suture soaked in PCMVβ plasmid solution was applied. The sites of anastomoses of nerves by stages were taken out, and β-Gal histochemical staining was performed and β-Gal enzyme activity was assayed with 5-bromo-4-chloro-3-indolyl-β-D-galactoside. Results showed that the sites of anastomoses of nerves were taken out 2 days, 7 days, 14 days and 30 days respectively after the operation. The β-Gal histochemical stains at the sites of anastomoses showed no indigo positive cells at different stages in the control group, whereas displayed indigo positive cells in the experimental group. In the control group, no β-Gal enzyme activity was detected at different stages after operation, but in the experimental group, β-Gal enzyme activity could be detected from the 3rd day to the 30th day after operation. It was concluded that by using exogenous gene suture, exogenous gene could be transferred to the sites of peripheral nerve and expressed the exogenous gene expression products with bioactivity, which provided the feasibility of using gene therapy to accelerate the recovery of nerve function.

  12. [Immunoglobulin genes encoding antibodies directed to oncodevelopmental carbohydrate antigens].

    Science.gov (United States)

    Zenita, K; Yago, K; Fujimoto, E; Kannagi, R

    1990-07-01

    We investigated the immunoglobulin genes which encode the variable region of the monoclonal antibodies directed to the onco-developmental carbohydrate antigens such SSEA-1, fucosyl SSEA-1, SSEA-3 and SSEA-4. The VH region of these antibodies was preferentially encoded by the gene members of the X24, VH7183 and Q52 families, the families which are known to be located at the 3'-end region of the murine germ line VH gene. This result is interesting particularly when considering that the members of the 3'-end VH families are known to be preferentially expressed in embryonic B lymphocytes by an intrinsic genetic program. The comparative study of the nucleic acid sequences of mRNAs encoding these antibodies and the sequences of the corresponding germ line VH genes disclosed that the sequences encoding the antibodies contain no mutation from the germ line VH genes, or contain only a few somatic mutations, which are thought to be insignificant for the reactivity of the antibodies to the nominal antigens. These results imply that some of the embryonic B lymphocytes that express the unmutated germ line VH genes of the 3'-end families can be reactive with embryonic carbohydrate antigens, albeit rearranged with appropriate D-JH gene segments, and coupled with proper light chains. The VH region of the syngenic monoclonal anti-idiotypic antibodies directed to these anti-carbohydrate antibodies were also encoded preferentially by the members of the 3'-end VH families. We propose here that a part of the virgin embryonic B lymphocytes, which express the antibody encoded by the gene members of the 3'-end VH families at the cell surface, will be stimulated by the embryonic carbohydrate antigens which are abundantly present in the internal milieu of the embryo. The clonally expanded B lymphocytes, in turn, will facilitate the proliferation of other populations of embryonic B lymphocytes expressing the corresponding anti-idiotypic antibodies, which are also encoded by the gene members

  13. Advances in imaging gene-directed enzyme prodrug therapy.

    Science.gov (United States)

    Bhaumik, Srabani

    2011-04-01

    Gene-directed enzyme prodrug therapy (GDEPT) is one of the promising alternatives to conventional chemotherapy. Suicide gene therapy based anticancer strategy involves selective introduction of a foreign gene into tumor cells to produce a foreign enzyme that can activate an inert prodrug to its cytotoxic form and cause tumor cell death. In this review, we present three most promising suicide gene/prodrug combinations (1) herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), (2) cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC) and (3) bacterial nitroreductase (NTR) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954) and discuss how molecular imaging may improve therapy strategies. Current advances in noninvasive imaging technologies can measure vector dose, tumor selectivity, transgene expression and biodistribution of therapeutic gene with the aid of reporter genes and imageable probes from live animal. In this review we will discuss various imaging modalities - Optical, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), and highlight some of the approaches that can advance prodrug cancer therapy from bench to clinic.

  14. A novel BDNF gene promoter directs expression to skeletal muscle

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2003-06-01

    Full Text Available Abstract Background Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood. Results The cloning and analysis of three additional zebrafish (Danio rerio BDNF gene exons and two associated promoters, is reported. Among them are two exons that generate a novel tripartite mature transcript. The exons were located on the transcription unit, whose overall organization was determined by cloning, Southern blot hybridization and sequence analysis, and compared with the pufferfish (Fugu rubripes and mammalian BDNF loci, revealing a conserved but more compact organization. Structural and functional analysis of the exons, their adjacent promoters and 5' flanks, showed that they are expressed cell-specifically. The promoter associated with the 5' exon of the tripartite transcript is GC-rich, TATA-less and the 5' flank adjacent to it contains multiple Sp1, Mef2, and AP1 elements. A fusion gene containing the promoter and 1.5 KB of 5' flank is directed exclusively to skeletal muscle of transiently transfected embryos. The second promoter, whose associated 5' exon contains a 25-nucleotide segment of identity with a mammalian BDNF gene exon, was transiently expressed in yolk of the early embryo. RT-PCR analysis of total RNA from whole juvenile fish and adult female skeletal muscle revealed tissue-specific expression of the 5' exons but the novel exon could not be detected even after two rounds of nested PCR. Conclusion The zebrafish BDNF gene is as complex as the mammalian gene yet much more compact. Its exons are

  15. Molecular Cloning of Human Gene(s) Directing the Synthesis of Nervous System Cholinesterases

    Science.gov (United States)

    1987-09-01

    Report No. 4 If MOLECULAR CLONING OF O HUMAN GENE(S) DIRECTING qTHE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASES cc Annual/Final Report 0 N November...62734A I734A875 IAl 451 MOLECULAR CLONING OF HUMAN GEME(S) DIRECTING THE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASE 12. PERSONAL AUTHOR(S) Hermona Soreq...important roles in regulating the pace and mode of function of particular types of synapses. For example, molecular cloning of the nicotinic (44-46) and the

  16. Gene therapy for Leber congenital amaurosis: advances and future directions.

    Science.gov (United States)

    Hufnagel, Robert B; Ahmed, Zubair M; Corrêa, Zélia M; Sisk, Robert A

    2012-08-01

    Leber congenital amaurosis (LCA) is a congenital retinal dystrophy that results in significant and often severe vision loss at an early age. Comprehensive analysis of the genetic mutations and phenotypic correlations in LCA patients has allowed for significant improvements in understanding molecular pathways of photoreceptor degeneration and dysfunction. The purpose of this article is to review the literature on the subject of retinal gene therapy for LCA, including historical descriptions, preclinical animal studies, and human clinical trials. A literature search of peer-reviewed and indexed publications from 1996-2011 using the PubMed search engine was performed. Key terms included "Leber congenital amaurosis", LCA, RPE65, "cone-rod dystrophy", "gene therapy", and "human trials" in various combinations. Seminal articles prior to 1996 were selected from primary sources and reviews from the initial search. Articles were chosen based on pertinence to clinical, genetic, and therapeutic topics reviewed in this manuscript. Fundus photographs from LCA patients were obtained retrospectively from the clinical practice of one of the authors (R.A.S). Herein, we reviewed the literature on LCA as a genetic disease, the results of human gene therapy trials to date, and possible future directions towards treating inherited retinal diseases at the genetic level. Original descriptions of LCA by Theodor Leber and subsequent research demonstrate the severity of this disease with early-onset blindness. Discoveries of the causative heritable mutations revealed genes and protein products involved in photoreceptor development and visual transduction. Animal models have provided a means to test novel therapeutic strategies, namely gene therapy. Stemming from these experiments, three independent clinical trials tested the safety of subretinal delivery of viral gene therapy to patients with mutations in the RPE65 gene. More recently, efficacy studies have been conducted with encouraging

  17. Direct cell lysis for single-cell gene expression profiling

    Directory of Open Access Journals (Sweden)

    David eSvec

    2013-11-01

    Full Text Available The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA to be the best lysis agent, resulting in efficient cell lysis, high RNA stability and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single cells as well as samples composed of small numbers of cells.

  18. Identification of rat genes by TWINSCAN gene prediction, RT-PCR, and direct sequencing

    DEFF Research Database (Denmark)

    Wu, Jia Qian; Shteynberg, David; Arumugam, Manimozhiyan

    2004-01-01

    The publication of a draft sequence of a third mammalian genome--that of the rat--suggests a need to rethink genome annotation. New mammalian sequences will not receive the kind of labor-intensive annotation efforts that are currently being devoted to human. In this paper, we demonstrate...... an alternative approach: reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on dual-genome de novo predictions from TWINSCAN. We tested 444 TWINSCAN-predicted rat genes that showed significant homology to known human genes implicated in disease but that were partially...

  19. Oligonucleotide-directed mutagenesis for precision gene editing.

    Science.gov (United States)

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  20. Non-Viral Ocular Gene Therapy: Assessment and Future Directions

    OpenAIRE

    2008-01-01

    The purpose of this review is to give the general reader a brief overview of the current state of the field of non-viral ocular gene therapy. For multiple reasons the eye is an excellent organ for gene therapy application and while non-viral gene therapy modalities have been around for quite some time; they have only been applied to the eye in the last few years. This review will cover the exciting current trends in non-viral gene therapy and their application to the eye in addition to a brie...

  1. Antipsychotic pathway genes with expression altered in opposite direction by antipsychotics and amphetamine.

    Science.gov (United States)

    Ko, Françoise; Tallerico, Teresa; Seeman, Philip

    2006-08-01

    To develop a new strategy for identifying possible psychotic- or antipsychotic-related pathway genes, rats were treated with clinical doses of haloperidol and clozapine for 4 days, and the altered expression of genes was compared with the genes altered in expression after amphetamine sensitization. The objective was to identify genes with expression altered in the same direction by haloperidol and clozapine but in the opposite direction in the amphetamine-sensitized rat striatum. These criteria were met by 21 genes, consisting of 15 genes upregulated by amphetamine, and 6 genes downregulated by amphetamine. Of the 21 genes, 15 are not presently identified, and only 3 genes (cathepsin K, GRK6, and a gene with accession number AI177589) are located in chromosome regions known to be associated with schizophrenia.

  2. Cardiac gene therapy: Recent advances and future directions.

    Science.gov (United States)

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.

  3. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Science.gov (United States)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  4. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  5. Glaucoma: genes, phenotypes, and new directions for therapy.

    Science.gov (United States)

    Fan, Bao Jian; Wiggs, Janey L

    2010-09-01

    Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic nerve damage, usually associated with intraocular pressure. Although the clinical progression of the disease is well defined, the molecular events responsible for glaucoma are currently poorly understood and current therapeutic strategies are not curative. This review summarizes the human genetics and genomic approaches that have shed light on the complex inheritance of glaucoma genes and the potential for gene-based and cellular therapies that this research makes possible.

  6. Unambiguous demonstration of triple-helix-directed gene modification.

    Science.gov (United States)

    Barre, F X; Ait-Si-Ali, S; Giovannangeli, C; Luis, R; Robin, P; Pritchard, L L; Helene, C; Harel-Bellan, A

    2000-03-28

    Triple-helix-forming oligonucleotides (TFOs), which can potentially modify target genes irreversibly, represent promising tools for antiviral therapies. However, their effectiveness on endogenous genes has yet to be unambiguously demonstrated. To monitor endogenous gene modification by TFOs in a yeast model, we inactivated an auxotrophic marker gene by inserting target sequences of interest into its coding region. The genetically engineered yeast cells then were treated with psoralen-linked TFOs followed by UV irradiation, thus generating highly mutagenic covalent crosslinks at the target site whose repair could restore gene function; the number of revertants and spectrum of mutations generated were quantified. Results showed that a phosphoramidate TFO indeed reaches its target sequence, forms crosslinks, and generates mutations at the expected site via a triplex-mediated mechanism: (i) under identical conditions, no mutations were generated by the same TFO at two other loci in the target strain, nor in an isogenic control strain carrying a modified target sequence incapable of supporting triple-helix formation; (ii) for a given target sequence, whether the triplex was formed in vivo on an endogenous gene or in vitro on an exogenous plasmid, the nature of the mutations generated was identical, and consistent with the repair of a psoralen crosslink at the target site. Although the mutation efficiency was probably too low for therapeutic applications, our results confirm the validity of the triple-helix approach and provide a means of evaluating the effectiveness of new chemically modified TFOs and analogs.

  7. Transcription mediated insulation and interference direct gene cluster expression switches.

    Science.gov (United States)

    Nguyen, Tania; Fischl, Harry; Howe, Françoise S; Woloszczuk, Ronja; Serra Barros, Ana; Xu, Zhenyu; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-11-19

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

  8. Informative Gene Selection and Direct Classification of Tumor Based on Chi-Square Test of Pairwise Gene Interactions

    Directory of Open Access Journals (Sweden)

    Hongyan Zhang

    2014-01-01

    Full Text Available In efforts to discover disease mechanisms and improve clinical diagnosis of tumors, it is useful to mine profiles for informative genes with definite biological meanings and to build robust classifiers with high precision. In this study, we developed a new method for tumor-gene selection, the Chi-square test-based integrated rank gene and direct classifier (χ2-IRG-DC. First, we obtained the weighted integrated rank of gene importance from chi-square tests of single and pairwise gene interactions. Then, we sequentially introduced the ranked genes and removed redundant genes by using leave-one-out cross-validation of the chi-square test-based Direct Classifier (χ2-DC within the training set to obtain informative genes. Finally, we determined the accuracy of independent test data by utilizing the genes obtained above with χ2-DC. Furthermore, we analyzed the robustness of χ2-IRG-DC by comparing the generalization performance of different models, the efficiency of different feature-selection methods, and the accuracy of different classifiers. An independent test of ten multiclass tumor gene-expression datasets showed that χ2-IRG-DC could efficiently control overfitting and had higher generalization performance. The informative genes selected by χ2-IRG-DC could dramatically improve the independent test precision of other classifiers; meanwhile, the informative genes selected by other feature selection methods also had good performance in χ2-DC.

  9. Electroporation-mediated gene transfer directly to the swine heart.

    Science.gov (United States)

    Hargrave, B; Downey, H; Strange, R; Murray, L; Cinnamond, C; Lundberg, C; Israel, A; Chen, Y-J; Marshall, W; Heller, R

    2013-02-01

    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using three different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the electrocardiogram were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were killed 48 h after injection and electroporation and gene expression was determined. Results were compared with sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared with injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo.

  10. The Himalayas as a directional barrier to gene flow.

    Science.gov (United States)

    Gayden, Tenzin; Cadenas, Alicia M; Regueiro, Maria; Singh, Nanda B; Zhivotovsky, Lev A; Underhill, Peter A; Cavalli-Sforza, Luigi L; Herrera, Rene J

    2007-05-01

    High-resolution Y-chromosome haplogroup analyses coupled with Y-short tandem repeat (STR) haplotypes were used to (1) investigate the genetic affinities of three populations from Nepal--including Newar, Tamang, and people from cosmopolitan Kathmandu (referred to as "Kathmandu" subsequently)--as well as a collection from Tibet and (2) evaluate whether the Himalayan mountain range represents a geographic barrier for gene flow between the Tibetan plateau and the South Asian subcontinent. The results suggest that the Tibetans and Nepalese are in part descendants of Tibeto-Burman-speaking groups originating from Northeast Asia. All four populations are represented predominantly by haplogroup O3a5-M134-derived chromosomes, whose Y-STR-based age (+/-SE) was estimated at 8.1+/-2.9 thousand years ago (KYA), more recent than its Southeast Asian counterpart. The most pronounced difference between the two regions is reflected in the opposing high-frequency distributions of haplogroups D in Tibet and R in Nepal. With the exception of Tamang, both Newar and Kathmandu exhibit considerable similarities to the Indian Y-haplogroup distribution, particularly in their haplogroup R and H composition. These results indicate gene flow from the Indian subcontinent and, in the case of haplogroup R, from Eurasia as well, a conclusion that is also supported by the admixture analysis. In contrast, whereas haplogroup D is completely absent in Nepal, it accounts for 50.6% of the Tibetan Y-chromosome gene pool. Coalescent analyses suggest that the expansion of haplogroup D derivatives--namely, D1-M15 and D3-P47 in Tibet--involved two different demographic events (5.1+/-1.8 and 11.3+/-3.7 KYA, respectively) that are more recent than those of D2-M55 representatives common in Japan. Low frequencies, relative to Nepal, of haplogroup J and R lineages in Tibet are also consistent with restricted gene flow from the subcontinent. Yet the presence of haplogroup O3a5-M134 representatives in Nepal

  11. Direct Cell Lysis for Single-Cell Gene Expression Profiling

    OpenAIRE

    David eSvec; Daniel eAndersson; Milos ePekny; Robert eSjöback; Mikael eKubista; Anders eStåhlberg

    2013-01-01

    The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously express...

  12. Directional gene flow and ecological separation in Yersinia enterocolitica

    Science.gov (United States)

    Reuter, Sandra; Corander, Jukka; de Been, Mark; Harris, Simon; Cheng, Lu; Hall, Miquette; Thomson, Nicholas R.

    2015-01-01

    Yersinia enterocolitica is a common cause of food-borne gastroenteritis worldwide. Recent work defining the phylogeny of the genus Yersinia subdivided Y. enterocolitica into six distinct phylogroups. Here, we provide detailed analyses of the evolutionary processes leading to the emergence of these phylogroups. The dominant phylogroups isolated from human infections, PG3–5, show very little diversity at the sequence level, but do present marked patterns of gain and loss of functions, including those involved in pathogenicity and metabolism, including the acquisition of phylogroup-specific O-antigen loci. We tracked gene flow across the species in the core and accessory genome, and show that the non-pathogenic PG1 strains act as a reservoir for diversity, frequently acting as donors in recombination events. Analysis of the core and accessory genome also suggested that the different Y. enterocolitica phylogroups may be ecologically separated, in contrast to the long-held belief of common shared ecological niches across the Y. enterocolitica species.

  13. The urease gene cluster of Vibrio parahaemolyticus does not influence the expression of the thermostable direct hemolysin (TDH) gene or the TDH-related hemolysin gene.

    Science.gov (United States)

    Nakaguchi, Yoshitsugu; Okuda, Jun; Iida, Tetsuya; Nishibuchi, Mitsuaki

    2003-01-01

    In order to investigate why the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH) of Vibrio parahaemolyticus are produced at low levels from urease-positive strains, the effect of the functional urease gene cluster of V. parahaemolyticus on the expression of the tdh and trh genes was examined. Transcriptional lacZ fusions with the tdh1, tdh2, trh1 and trh2 genes representing variants of the tdh and trh genes were integrated into the chromosome of an Escherichia coli strain and a urease-negative V. parahaemolyticus strain. The plasmid-borne urease gene cluster introduced and expressed in these constructs did not affect expression of any of the fusion genes. The amount of TDH produced from a Kanagawa phenomenon-positive V. parahaemolyticus did not change by introduction of the urease gene cluster either. It was concluded therefore that the urease gene cluster is not involved in the regulation of tdh and trh expression.

  14. Direct gene transfer into rat articular cartilage by in vivo electroporation.

    Science.gov (United States)

    Grossin, Laurent; Cournil-Henrionnet, Christel; Mir, Lluis M; Liagre, Bertrand; Dumas, Dominique; Etienne, Stéphanie; Guingamp, Corinne; Netter, Patrick; Gillet, Pierre

    2003-05-01

    To establish a system for efficient direct in vivo gene targeting into rat joint, we have evaluated a strategy of gene transfer by means of the delivery of external electric pulses (EP) to the knee after intra-articular injection of a reporter gene (GFP). Rats were killed at various times after the electro gene-therapy to analyze GFP gene expression by immunohistochemistry. GFP staining was detected in the superficial, middle, and deep zones of the patellar cartilage at days 2 and 9, and thereafter only in the deep zone (months 1 and 2). The average percentage of GFP-positive cells was estimated at 30% both one and 2 months after the gene transfer. Moreover, no pathologic change caused by the EP was detected in the cartilage. The level and stability of the long-term GFP expression found in this study demonstrate the feasibility of a treatment of joint disorders (inflammatory or degenerative, focal or diffuse) using electric gene transfer.

  15. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.

    Science.gov (United States)

    Mout, Rubul; Ray, Moumita; Yesilbag Tonga, Gulen; Lee, Yi-Wei; Tay, Tristan; Sasaki, Kanae; Rotello, Vincent M

    2017-03-28

    Genome editing through the delivery of CRISPR/Cas9-ribonucleoprotein (Cas9-RNP) reduces unwanted gene targeting and avoids integrational mutagenesis that can occur through gene delivery strategies. Direct and efficient delivery of Cas9-RNP into the cytosol followed by translocation to the nucleus remains a challenge. Here, we report a remarkably highly efficient (∼90%) direct cytoplasmic/nuclear delivery of Cas9 protein complexed with a guide RNA (sgRNA) through the coengineering of Cas9 protein and carrier nanoparticles. This construct provides effective (∼30%) gene editing efficiency and opens up opportunities in studying genome dynamics.

  16. Image-Guided Hydrodynamic Gene Delivery: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Kenya Kamimura

    2015-08-01

    Full Text Available Hydrodynamics-based delivery has been used as an experimental tool to express transgene in small animals. This in vivo gene transfer method is useful for functional analysis of genetic elements, therapeutic effect of oligonucleotides, and cancer cells to establish the metastatic cancer animal model for experimental research. Recent progress in the development of image-guided procedure for hydrodynamics-based gene delivery in large animals directly supports the clinical applicability of this technique. This review summarizes the current status and recent progress in the development of hydrodynamics-based gene delivery and discusses the future directions for its clinical application.

  17. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Lloyd, Alan; Drews, Gary N

    2008-08-01

    The female gametophyte contains two synergid cells that play a role in many steps of the angiosperm reproductive process, including pollen tube guidance. At their micropylar poles, the synergid cells have a thickened and elaborated cell wall: the filiform apparatus that is thought to play a role in the secretion of the pollen tube attractant(s). MYB98 regulates an important subcircuit of the synergid gene regulatory network (GRN) that functions to activate the expression of genes required for pollen tube guidance and filiform apparatus formation. The MYB98 subcircuit comprises at least 83 downstream genes, including 48 genes within four gene families (CRP810, CRP3700, CRP3730 and CRP3740) that encode Cys-rich proteins. We show that the 11 CRP3700 genes, which include DD11 and DD18, are regulated by a common cis-element, GTAACNT, and that a multimer of this sequence confers MYB98-dependent synergid expression. The GTAACNT element contains the MYB98-binding site identified in vitro, suggesting that the 11 CRP3700 genes are direct targets of MYB98. We also show that five of the CRP810 genes, which include DD2, lack a functional GTAACNT element, suggesting that they are not directly regulated by MYB98. In addition, we show that the five CRP810 genes are regulated by the cis-element AACGT, and that a multimer of this sequence confers synergid expression. Together, these results suggest that the MYB98 branch of the synergid GRN is multi-tiered and, therefore, contains at least one additional downstream transcription factor.

  18. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression.

    NARCIS (Netherlands)

    H. Russcher (Henk); P. Smit (Pauline); E.L.T. van den Akker (Erica); E.F.C. van Rossum (Liesbeth); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractCONTEXT: Interindividual variation in glucocorticoid (GC)-sensitivity can be partly explained by polymorphisms in the GC receptor (GR) gene. The ER22/23EK and N363S polymorphisms have been described to be associated with lower and higher GC sensitivity, respectively. OBJECTIVE AND DESIGN

  19. Direct transfer of A20 gene into pancreas protected mice from streptozotocin-induced diabetes

    Institute of Scientific and Technical Information of China (English)

    Lu-yang YU; Bo LIN; Zhen-lin ZHANG; Li-he GUO

    2004-01-01

    AIM: To investigate the efficiency of transfer of A20 gene into pancreas against STZ-induced diabetes. METHODS:PVP-plasmid mixture was directly transferred into the pancreatic parenchyma 2 d before STZ injection. The uptake of plasmid pcDNA3-LacZ or pcDNA3-A20 was detected by PCR and the expression of LacZ was confirmed by histological analysis with X-gal. A20 expression in the pancreas of pcDNA3-A20 transgenic mice was measured by RT-PCR and Westem blots. Urine amylase, NO generation, and histological examination were examined. RESULTS:Injection of PVP-plasmid mixture directly into the pancreatic parenchyma increased urine amylase concentration 16 h after operation and reversed it to nearly normal 36 h later. On d 33 LacZ expression could be found in spleen,duodenum, and islets. The development of diabetes was prevented by direct A20 gene transferring into the pancreas and A20-mediated protection was correlated with suppression of NO production. The insulitis was ameliorated in A20-treated mice. CONCLUSION: Injection of PVP-plasmid mixture directly into the pancreatic parenchyma led to target gene expression in islets. Direct transfer of A20 gene into the pancreas protected mice from STZ-induced diabetes.

  20. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice.

    Science.gov (United States)

    Jiang, Yanjun; Jin, Jingling; Iakova, Polina; Hernandez, Julio Cesar; Jawanmardi, Nicole; Sullivan, Emily; Guo, Grace L; Timchenko, Nikolai A; Darlington, Gretchen J

    2013-09-01

    Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although farnesoid X receptor (FXR, Nr1h4) mRNA levels do not change significantly, FXR protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor α (RXRα) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice.

  1. Deletion of Helicobacter pylorivacuolating cytotoxin gene by introduction of directed mutagenesis

    Institute of Scientific and Technical Information of China (English)

    Jian-Ping Yuan; Tao Li; Xiao-Dong Shi; Bao-Yu Hu; Gui-Zhen Yang; Shan-Qing Tong; Xiao-Kui Guo

    2003-01-01

    AIM: To construct a vacA-knockout Helicobacter pylori mutant strain, whose only difference from the wild strain is its disrupted vacA gene.METHODS AND RESULTS: A clone containing kanamycin resistance gene used for homologous recombination was constructed in a directional cloning procedure into pBluescript ⅡSK, and then transformed into vacA+ H pylori by electroporation.Colonies growing on the selective media containing kanamycin were harvested for chromosomal DNA extraction,and the allelic exchange was determined by polymerase chain reactions and sequencing. Loss of vacuolating activity of the vaci-knockout strain was confirmed by examining the gastric cells co-cultured with cell-free supernatants from H pylori wild strain or the mutant.CONCLUSION: We constructed a vacA-knockout strain of H pylori through direct mutagenesis, which creates an important precondition for the future research on virulence comparison with gene expression analysis.

  2. Adaptation of the short intergenic spacers between co-directional genes to the Shine-Dalgarno motif among prokaryote genomes

    DEFF Research Database (Denmark)

    Caro, Albert Pallejà; García-Vallvé, Santiago; Romeu, Antoni

    2009-01-01

    influence the stop codon usage or the spacing lengths between co-directional genes. RESULTS: The SD sequences for 530 prokaryote genomes have been predicted using computer calculations of the base-pairing free energy between translation initiation regions and the 16S rRNA 3' tail. Genomes with a large......ABSTRACT: BACKGROUND: In prokaryote genomes most of the co-directional genes are in close proximity. Even the coding sequence or the stop codon of a gene can overlap with the Shine-Dalgarno (SD) sequence of the downstream co-directional gene. In this paper we analyze how the presence of SD may...... number of genes with the SD sequence concentrate this regulatory motif from 4 to 11 bps before the start codon. However, not all genes seem to have the SD sequence. Genes separated from 1 to 4 bps from a co-directional upstream gene show a high SD presence, though this regulatory signal is located...

  3. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene.

    Science.gov (United States)

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-05-13

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1alpha (EF-1alpha), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of "EFL-containing" lineages within "EF-1alpha-containing" lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1alpha and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1alpha gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor-recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1alpha.

  4. Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus.

    Science.gov (United States)

    Conway-Campbell, B L; Sarabdjitsingh, R A; McKenna, M A; Pooley, J R; Kershaw, Y M; Meijer, O C; De Kloet, E R; Lightman, S L

    2010-10-01

    In vivo glucocorticoid (GC) secretion exhibits a distinctive ultradian rhythmicity. The lipophilic hormone can rapidly diffuse into cells, although only the pulse peak is of sufficient amplitude to activate the low affinity glucocorticoid receptor (GR). Discrete pulses readily access brain regions such as the hippocampus where GR expression is enriched and known to regulate neuronal function, including memory and learning processes. In the present study, we have tested the hypothesis that GR brain targets are responsive to ultradian GC rhythmicity. We have used adrenalectomised rats replaced with pulses of corticosterone to determine the transcriptional effects of ultradian pulses in the hippocampus. Confocal microscopy confirmed that each GC pulse results in transient GR nuclear localisation in hippocampal CA1 neurones. Concomitant GR activation and DNA binding was demonstrated by synthetic glucocorticoid response element oligonucleotide binding, and verified for the Clock gene Period 1 promoter region by chromatin immunoprecipitation assays. Strikingly each GC pulse induced a 'burst' of transcription of Period 1 measured by heterogeneous nuclear RNA quantitative polymerase chain reaction. The net effect of pulsatile GC exposure on accumulation of the mature transcript was also assessed, revealing a plateau of mRNA levels throughout the time course of pulsatile exposure, indicating the pulse timing works optimally for steady state Per1 expression. The plateau dropped to baseline within 120 min of the final pulse, indicating a relatively short half-life for hippocampal Per1. The significance of this strict temporal control is that any perturbation to the pulse frequency or duration would have rapid quantitative effects on the levels of Per1. This in turn could affect hippocampal function, especially circadian related memory and learning processes.

  5. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  6. CRISPR-mediated direct mutation of cancer genes in the mouse liver.

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler

    2014-10-16

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.

  7. A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137

    Science.gov (United States)

    Devanna, Paolo; Vernes, Sonja C.

    2014-02-01

    Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes.

  8. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster

    Science.gov (United States)

    Nagy, Ervin D.; Bennetzen, Jeffrey L.

    2008-01-01

    The Pc locus of sorghum (Sorghum bicolor) determines dominant sensitivity to a host-selective toxin produced by the fungal pathogen Periconia circinata. The Pc region was cloned by a map-based approach and found to contain three tandemly repeated genes with the structures of nucleotide binding site–leucine-rich repeat (NBS–LRR) disease resistance genes. Thirteen independent Pc-to-pc mutations were analyzed, and each was found to remove all or part of the central gene of the threesome. Hence, this central gene is Pc. Most Pc-to-pc mutations were associated with unequal recombination. Eight recombination events were localized to different sites in a 560-bp region within the ∼3.7-kb NBS–LRR genes. Because any unequal recombination located within the flanking NBS–LRR genes would have removed Pc, the clustering of cross-over events within a 560-bp segment indicates that a site-directed recombination process exists that specifically targets unequal events to generate LRR diversity in NBS–LRR loci. PMID:18719093

  9. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Mawatari Kazuaki

    2008-09-01

    Full Text Available Abstract Background The hfq gene is conserved in a wide variety of bacteria and Hfq is involved in many cellular functions such as stress responses and the regulation of gene expression. It has also been reported that Hfq is involved in bacterial pathogenicity. However, it is not clear whether Hfq regulates virulence in Vibrio parahaemolyticus. To evaluate this, we investigated the effect of Hfq on the expression of virulence-associated genes including thermostable direct hemolysin (TDH, which is considered to be an important virulence factor in V. parahaemolyticus, using an hfq deletion mutant. Results The production of TDH in the hfq deletion mutant was much higher than in the parental strain. Quantification of tdh promoter activity and mRNA demonstrated that transcription of the tdh gene was up-regulated in the mutant strain. The hfq-complemented strain had a normal (parental amount of tdh expression. The transcriptional activity of tdhA was particularly increased in the mutant strain. These results indicate that Hfq is closely associated with the expression level of the tdh gene. Interestingly, other genes involved in the pathogenicity of V. parahaemolyticus, such as VP1680, vopC, and vopT, were also up-regulated in the mutant strain. Conclusion Hfq regulates the expression of virulence-associated factors such as TDH and may be involved in the pathogenicity of V. parahaemolyticus.

  10. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes

    Directory of Open Access Journals (Sweden)

    Wu Bai-Lin

    2009-10-01

    Full Text Available Abstract Background One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other

  11. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  12. Directional transduction of male sterile gene rfv1 of NIAN type in wheat

    Institute of Scientific and Technical Information of China (English)

    Na NIU; Gaisheng ZHANG; Yue CAO; Yu ZHANG; Fang WEI

    2008-01-01

    A new method for producing a NIAN type wheat maintenance line with the male sterile gene rfv1was described. That is the variety Xinong Fpl, a 1BL/1RS translocation line, as the acceptor and Triticum macha var. subletschchumicum, a non-1BL/1RS transloca-tion line, as the donor, a directional substitution back-cross was made and confirmed by chromosome of root tip preparations and SDS-PAGE analysis. The male ster-ile gene rfv1 of Triticum macha var. subletschchumicum was transferred to the genome of Xinong Fpl. A new NIAN type wheat maintenance line with the male sterile gene rfv1was bred. The method described was success-ful in breeding a new male sterile type for hybrid wheat production.

  13. Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin.

    OpenAIRE

    Nishibuchi, M.; Fasano, A; Russell, R G; Kaper, J B

    1992-01-01

    Vibrio parahaemolyticus produces a thermostable direct hemolysin (TDH) that has been implicated in the pathogenesis of diarrheal disease caused by this organism. However, previous studies attempting to demonstrate the contribution of the hemolysin to virulence have been inconclusive. We investigated this putative virulence factor by using an isogenic TDH-negative (TDH-) strain constructed by specifically inactivating the two copies of the tdh gene encoding TDH. The enterotoxigenicities of the...

  14. Directed differentiation of embryonic stem cells allows exploration of novel transcription factor genes for pancreas development.

    Science.gov (United States)

    Sui, Jing; Mehta, Munish; Shi, Bingyin; Morahan, Grant; Jiang, Fang-Xu

    2012-09-01

    Embryonic stem cells (ESCs) have been promised as a renewable source for regenerative medicine, including providing a replacement therapy in type 1 diabetes. However, they have not yet been differentiated into functional insulin-secreting β cells. This is due partially to the knowledge gap regarding the transcription factors (TFs) required for pancreas development. We hypothesize that, if directed differentiation in vitro recapitulates the developmental process in vivo, ESCs provide a powerful model to discover novel pancreatic TF genes. Guided by knowledge of their normal development and using RT-PCR and immunochemical analyses, we have established protocols for directed differentiation of mouse ESCs into pancreatic progenitors. Microarray analyses of these differentiating ESC cells at days 0, 4, 8 and 15 confirmed their sequential differentiation. By day 15, we found up-regulation of a group of pancreatic progenitor marker genes including Pdx1, Ptf1a, Nkx6.1, Pax4 and Pax6. Consistently, Pdx1-immunoreactive cells were detected on day 15. Most of these Pdx1(+) cells also expressed Nkx6.1. Bioinformatic analyses of sequential datasets allowed identification of over 20 novel TF genes potentially important for pancreas development. The dynamic expression of representative known and novel genes was confirmed by quantitative real time RT-PCR analysis. This strategy may be modified to study novel regulatory molecules for development of other tissue and organ systems.

  15. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. © 2016 American Society of Plant Biologists. All rights reserved.

  16. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    Science.gov (United States)

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-05

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation.

  17. IDENTIFICATION OF UTERIN MILK PROTEIN (UTMT GENE IN BALI CATTLE USING DIRECT SEQUENCING

    Directory of Open Access Journals (Sweden)

    Jakaria

    2016-03-01

    Full Text Available The objective of this research was to identify diversity of exon 5 UTMP gene fragment in Bali cattle using direct sequencing. The total 60 blood samples of Bali Cattle derived from BPTU Bali in Bali siland (20 heads, BPTU Serading in Sumbawa island (20 heads and Village Breeding Center in Barru District South Sulawesi (20 heads were used to evaluate their genetic diversity at exon 5 UTMP gene. The forward and reverse data sequences were analyzed using Bioedit program and alignment analysis was carried out using MEGA5 program. Meanwhile haplotype analysis was performed by DnaSPv5 program. The result showed that partial sequences in exon 5 UTMP gene had 16 haplotypes with the highest number of haplotypes ware found in VBC Barru district South Sulawesi (8 haplotypes. Moreover, the highest average of haplotype (h and nucleotide (p diversity were found in VBC Barru district South Sulawesi were 0.7949 and 0.0016, respectively. In addition, minisatellite insersion was found in exon 5 UTMP gene fragment on Bali cattle which are consist of 5'-CCA GTC ATG AAG AAG GCA GAG GTC GTC GTG CCG GCG AAA-3'. According to our results, haplotype and minisatellite variation in exon 5 UTMP gene fragment can be used as a candidate genetic marker specific for reproductive trait in the Bali cattle and for its strategy breeding program in the future.

  18. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J; Park, Sung-Min; Cai, Dongsheng

    2011-07-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  19. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  20. A survey of disease connections for CD4+ T cell master genes and their directly linked genes.

    Science.gov (United States)

    Li, Wentian; Espinal-Enríquez, Jesús; Simpfendorfer, Kim R; Hernández-Lemus, Enrique

    2015-12-01

    Genome-wide association studies and other genetic analyses have identified a large number of genes and variants implicating a variety of disease etiological mechanisms. It is imperative for the study of human diseases to put these genetic findings into a coherent functional context. Here we use system biology tools to examine disease connections of five master genes for CD4+ T cell subtypes (TBX21, GATA3, RORC, BCL6, and FOXP3). We compiled a list of genes functionally interacting (protein-protein interaction, or by acting in the same pathway) with the master genes, then we surveyed the disease connections, either by experimental evidence or by genetic association. Embryonic lethal genes (also known as essential genes) are over-represented in master genes and their interacting genes (55% versus 40% in other genes). Transcription factors are significantly enriched among genes interacting with the master genes (63% versus 10% in other genes). Predicted haploinsufficiency is a feature of most these genes. Disease-connected genes are enriched in this list of genes: 42% of these genes have a disease connection according to Online Mendelian Inheritance in Man (OMIM) (versus 23% in other genes), and 74% are associated with some diseases or phenotype in a Genome Wide Association Study (GWAS) (versus 43% in other genes). Seemingly, not all of the diseases connected to genes surveyed were immune related, which may indicate pleiotropic functions of the master regulator genes and associated genes.

  1. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes.

    Science.gov (United States)

    McDaniel, Jonathan R; Mackay, J Andrew; Quiroz, Felipe García; Chilkoti, Ashutosh

    2010-04-12

    This paper reports a new strategy, recursive directional ligation by plasmid reconstruction (PRe-RDL), to rapidly clone highly repetitive polypeptides of any sequence and specified length over a large range of molecular weights. In a single cycle of PRe-RDL, two halves of a parent plasmid, each containing a copy of an oligomer, are ligated together, thereby dimerizing the oligomer and reconstituting a functional plasmid. This process is carried out recursively to assemble an oligomeric gene with the desired number of repeats. PRe-RDL has several unique features that stem from the use of type IIs restriction endonucleases: first, PRe-RDL is a seamless cloning method that leaves no extraneous nucleotides at the ligation junction. Because it uses type IIs endonucleases to ligate the two halves of the plasmid, PRe-RDL also addresses the major limitation of RDL in that it abolishes any restriction on the gene sequence that can be oligomerized. The reconstitution of a functional plasmid only upon successful ligation in PRe-RDL also addresses two other limitations of RDL: the significant background from self-ligation of the vector observed in RDL, and the decreased efficiency of ligation due to nonproductive circularization of the insert. PRe-RDL can also be used to assemble genes that encode different sequences in a predetermined order to encode block copolymers or append leader and trailer peptide sequences to the oligomerized gene.

  2. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris).

    Science.gov (United States)

    Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Adám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  3. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera.

    Science.gov (United States)

    Boncristiani, Humberto; Underwood, Robyn; Schwarz, Ryan; Evans, Jay D; Pettis, Jeffery; vanEngelsdorp, Dennis

    2012-05-01

    The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site.

    Science.gov (United States)

    Andes, D; Lepak, A; Pitula, A; Marchillo, K; Clark, J

    2005-09-01

    Gene expression analysis after the host-pathogen interaction is revolutionizing our understanding of the host response to infection. Numerous studies have utilized microarray analysis to follow host cell transcriptome alterations in response to interactions with infectious pathogens. However, similar analyses of pathogen transcriptional adaptation at the infection site have been limited. Understanding the nature of this interaction from the pathogen perspective at different sites and stages of infection is central to strategies for development of new anti-infective therapies. Toward this end, we developed a protocol to analyze changes in gene expression for a eukaryotic pathogen, Candida albicans, during systemic infection in mice. The experimental approach takes advantage of the resistance of the cell wall of many fungal pathogens to cell lysis, relative to mammalian cells. After lysis of mammalian cells, the tissue mixture containing fungal cells is depleted of mammalian RNA by centrifugation, followed by enzymatic digestion. RNA-digesting enzymes are then inhibited before eukaryotic cell lysis and RNA isolation. The protocol provides a reproducible quantity of RNA based on pathogen cell number. The quality of the RNA allowed reliable downstream transcriptional analysis using reverse-transcription polymerase chain reaction and microarrays. The in vivo gene expression data confirmed involvement of several putative pathogenesis genes. More importantly, the results provided a wealth of biologically interesting hypotheses to direct future investigation.

  5. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    Energy Technology Data Exchange (ETDEWEB)

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong; Chung, Hyun Joo [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Myoung Hee, E-mail: mhkim1@yuhs.ac [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna was similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.

  6. Molecular analysis of the bovine coronavirus S1 gene by direct sequencing of diarrheic fecal specimens

    Directory of Open Access Journals (Sweden)

    E. Takiuchi

    2008-04-01

    Full Text Available Bovine coronavirus (BCoV causes severe diarrhea in newborn calves, is associated with winter dysentery in adult cattle and respiratory infections in calves and feedlot cattle. The BCoV S protein plays a fundamental role in viral attachment and entry into the host cell, and is cleaved into two subunits termed S1 (amino terminal and S2 (carboxy terminal. The present study describes a strategy for the sequencing of the BCoV S1 gene directly from fecal diarrheic specimens that were previously identified as BCoV positive by RT-PCR assay for N gene detection. A consensus sequence of 2681 nucleotides was obtained through direct sequencing of seven overlapping PCR fragments of the S gene. The samples did not undergo cell culture passage prior to PCR amplification and sequencing. The structural analysis was based on the genomic differences between Brazilian strains and other known BCoV from different geographical regions. The phylogenetic analysis of the entire S1 gene showed that the BCoV Brazilian strains were more distant from the Mebus strain (97.8% identity for nucleotides and 96.8% identity for amino acids and more similar to the BCoV-ENT strain (98.7% for nucleotides and 98.7% for amino acids. Based on the phylogenetic analysis of the hypervariable region of the S1 subunit, these strains clustered with the American (BCoV-ENT, 182NS and Canadian (BCQ20, BCQ2070, BCQ9, BCQ571, BCQ1523 calf diarrhea and the Canadian winter dysentery (BCQ7373, BCQ2590 strains, but clustered on a separate branch of the Korean and respiratory BCoV strains. The BCoV strains of the present study were not clustered in the same branch of previously published Brazilian strains (AY606193, AY606194. These data agree with the genealogical construction and suggest that at least two different BCoV strains are circulating in Brazil.

  7. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes.

    Directory of Open Access Journals (Sweden)

    Helena Bujalka

    Full Text Available The myelination of axons is a crucial step during vertebrate central nervous system (CNS development, allowing for rapid and energy efficient saltatory conduction of nerve impulses. Accordingly, the differentiation of oligodendrocytes, the myelinating cells of the CNS, and their expression of myelin genes are under tight transcriptional control. We previously identified a putative transcription factor, Myelin Regulatory Factor (Myrf, as being vital for CNS myelination. Myrf is required for the generation of CNS myelination during development and also for its maintenance in the adult. It has been controversial, however, whether Myrf directly regulates transcription, with reports of a transmembrane domain and lack of nuclear localization. Here we show that Myrf is a membrane-associated transcription factor that undergoes an activating proteolytic cleavage to separate its transmembrane domain-containing C-terminal region from a nuclear-targeted N-terminal region. Unexpectedly, this cleavage event occurs via a protein domain related to the autoproteolytic intramolecular chaperone domain of the bacteriophage tail spike proteins, the first time this domain has been found to play a role in eukaryotic proteins. Using ChIP-Seq we show that the N-terminal cleavage product directly binds the enhancer regions of oligodendrocyte-specific and myelin genes. This binding occurs via a defined DNA-binding consensus sequence and strongly promotes the expression of target genes. These findings identify Myrf as a novel example of a membrane-associated transcription factor and provide a direct molecular mechanism for its regulation of oligodendrocyte differentiation and CNS myelination.

  8. Direct gene transfer in the Gottingen minipig CNS using stereotaxic lentiviral microinjections

    DEFF Research Database (Denmark)

    GLUD, AN; Hedegaard, Claus; nielsen, MS;

    2010-01-01

    We aim to induce direct viral mediated gene transfer in the substantia nigra (SN) of the Gottingen minipig using MRI guided stereotaxic injections of lentiviral vectors encoding enhanced green fluorescent protein (EGFP). Nine female Gottingen minipigs were injected unilaterally into the SN with 6...... per 2.5 microliters lentivirus capable of transducing cells and mediating expression of recombinant EGFP. The animals were euthanized after four (n=3) or twenty weeks (n=6). Fresh brain tissue from three animals was used for PCR. The remaining six brains were cryo- or paraffin...

  9. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa.

    OpenAIRE

    Uozumi, N; Sakurai, K; Sasaki, T.; Takekawa, S.; Yamagata, H; Tsukagoshi, N; Udaka, S

    1989-01-01

    The Bacillus polymyxa amylase gene comprises 3,588 nucleotides. The mature amylase comprises 1,161 amino acids with a molecular weight of 127,314. The gene appeared to be divided into two portions by the direct-repeat sequence located at almost the middle of the gene. The 5' region upstream of the direct-repeat sequence was shown to be responsible for the synthesis of beta-amylase. The 3' region downstream of the direct-repeat sequence contained four sequences homologous with those in other a...

  10. A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages

    Science.gov (United States)

    Bao, Zhang; Chen, Ran; Zhang, Pei; Lu, Shan; Chen, Xing; Yao, Yake; Jin, Xiaozheng; Sun, Yilan; Zhou, Jianying

    2016-01-01

    Mycobacterium tuberculosis (MTB), one of the major bacterial pathogens for lethal infectious diseases, is capable of surviving within the phagosomes of host alveolar macrophages; therefore, host genetic variations may alter the susceptibility to MTB. In this study, to identify host genes exploited by MTB during infection, genes were non-selectively inactivated using lentivirus-based antisense RNA methods in RAW264.7 macrophages, and the cells that survived virulent MTB infection were then screened. Following DNA sequencing of the surviving cell clones, 26 host genes affecting susceptibility to MTB were identified and their pathways were analyzed by bioinformatics analysis. In total, 9 of these genes were confirmed as positive regulators of collagen α-5(IV) chain (Col4a5) expression, a gene encoding a type IV collagen subunit present on the cell surface. The knockdown of Col4a5 consistently suppressed intracellular mycobacterial viability, promoting the survival of RAW264.7 macrophages following mycobacterial infection. Furthermore, Col4a5 deficiency lowered the pH levels of intracellular vesicles, including endosomes, lysosomes and phagosomes in the RAW264.7 cells. Finally, the knockdown of Col4a5 post-translationally increased microsomal vacuolar-type H+-ATPase activity in macrophages, leading to the acidification of intracellular vesicles. Our findings reveal a novel role for Col4a5 in the regulation of macrophage responses to mycobacterial infection and identify Col4a5 as a potential target for the host-directed anti-mycobacterial therapy. PMID:27432120

  11. Do GnRH analogues directly affect human endometrial epithelial cell gene expression?

    KAUST Repository

    Zhang, Xiaomei

    2010-03-04

    We examined whether Gonadotrophin-releasing hormone (GnRH) analogues [leuprolide acetate (LA) and ganirelix acetate (GA)] modulate gene expression in Ishikawa cells used as surrogate for human endometrial epithelial cells in vitro. The specific aims were: (i) to study the modulatory effect of GnRH analogues by RT-PCR [in the absence and presence of E2 and P4, and cyclic adenosine monophos-phate (cAMP)] on mRNA expression of genes modulated during the window of implantation in GnRH analogues/rFSH-treated assisted reproductive technology cycles including OPTINEURIN (OPTN), CHROMATIN MODIFYING PROTEIN (CHMP1A), PROSAPOSIN (PSAP), IGFBP-5 and SORTING NEXIN 7 (SNX7), and (ii) to analyze the 5\\'-flanking regions of such genes for the presence of putative steroid-response elements [estrogen-response elements (EREs) and P4-response element (PREs)]. Ishikawa cells were cytokeratin+/vimentin2 and expressed ERa,ERb, PR and GnRH-R proteins. At 6 and 24 h, neither LA nor GA alone had an effect on gene expression. GnRH analogues alone or following E2 and/or P4 co-incubation for 24 h also had no effect on gene expression, but P4 significantly increased expression of CHMP1A.E2 + P4 treatment for 4 days, alone or followed by GA, had no effect, but E2 + P4 treatment followed by LA significantly decreased IGFBP-5 expression. The addition of 8-Br cAMP did not modify gene expression, with the exception of IGFBP-5 that was significantly increased. The GnRH analogues did not modify intracellular cAMP levels. We identified conserved EREs for OPN, CHMP1A, SNX7 and PSAP and PREs for SNX7. We conclude that GnRH analogues appear not to have major direct effects on gene expression of human endo-metrial epithelial cells in vitro. © The Author 2010. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

  12. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  13. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  14. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility.

    Science.gov (United States)

    Williams, Elsie M; Little, Rory F; Mowday, Alexandra M; Rich, Michelle H; Chan-Hyams, Jasmine V E; Copp, Janine N; Smaill, Jeff B; Patterson, Adam V; Ackerley, David F

    2015-10-15

    This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.

  15. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.

    Science.gov (United States)

    Vinayagam, Arunachalam; Gibson, Travis E; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-05-03

    The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.

  16. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.

    Science.gov (United States)

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-07-15

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.

  17. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    Science.gov (United States)

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  18. Expression liver-directed genes by employing synthetic transcriptional control units

    Institute of Scientific and Technical Information of China (English)

    Marie-Luise Lemken; Wolfgang A. Wybranietz; Ulrike Schmidt; Florian Graepler; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer

    2005-01-01

    AIM: To generate and characterize the synthetic transcriptional control units for transcriptional targeting of the liver,thereby compensating for the lack of specificity of currently available gene therapeutic vector systems.METHODS: Synthetic transcriptional control unit constructs were generated and analyzed for transcriptional activities in different cell types by FACS quantification, semi-quantitative RT-PCR, and Western blotting. RESULTS: A new bifunctionally-enhanced green fluorescent protein (EGFP)/neor fusion gene cassette was generated,and could flexibly be used both for transcript quantification and for selection of stable cell clones. Then, numerous synthetic transcriptional control units consisting of a minimal promoter linked to "naturally" derived composite enhancer elements from liver-specific expressed genes or binding sites of liver-specific transcription factors were inserted upstream of this reporter cassette. Following liposome-mediated transfection, EGFP reporter protein quantification by FACS analysis identified constructs encoding multimerized composite elements of the apolipoprotein B100 (ApoB) promoter or the ornithin transcarbamoylase (OTC) enhancer to exhibit maximum transcriptional activities in liver originating cell lines, but only background levels in non-liver originating cell lines. In contrast, constructs encoding only singular binding sites of liver-specific transcription factors, namely hepatocyte nuclear factor (HNF)1, HNF3, HNF4, HNF5, or CAAT/enhancer binding protein (C/EBP) only achieved background levels of EGFP expression. Finally, both semi-quantitative RT-PCR and Western blotting analysis of Hep3B cells demonstrated maximum transcriptional activities for a multimeric 4xApoB cassette construct, which fully complied with the data obtained by initial FACS analysis.CONCLUSION: Synthetic transcriptional control unit constructs not only exhibit a superb degree of structural compactness, but also provide new means for liver-directed

  19. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Anna Kis

    Full Text Available The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG and one known (rs8679684 single nucleotide polymorphisms (SNPs in the regulatory regions (5' and 3' UTR of the oxytocin receptor gene in German Shepherd (N = 104 and Border Collie (N = 103 dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i proximity seeking towards an unfamiliar person, as well as their owner, and on (ii how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  20. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell-directed gene therapy of murine hemophilia A.

    Science.gov (United States)

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.

  1. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Directory of Open Access Journals (Sweden)

    Allison M Lytle

    2016-01-01

    Full Text Available Immune responses to coagulation factors VIII (FVIII and IX (FIX represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.

  2. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Science.gov (United States)

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV. PMID:26909355

  3. Characterisation of a DNA sequence element that directs Dictyostelium stalk cell-specific gene expression.

    Science.gov (United States)

    Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J

    2000-12-01

    The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.

  4. Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer.

    Science.gov (United States)

    Curatti, Leonardo; Rubio, Luis M

    2014-08-01

    Some regions of the developing world suffer low cereal production yields due to low fertilizer inputs, among other factors. Biological N2 fixation, catalyzed by the prokaryotic enzyme nitrogenase, is an alternative to the use of synthetic N fertilizers. The molybdenum nitrogenase is an O2-labile metalloenzyme composed of the NifDK and NifH proteins, which biosyntheses require a number of nif gene products. A challenging strategy to increase cereal crop productivity in a scenario of low N fertilization is the direct transfer of nif genes into cereals. The sensitivity of nitrogenase to O2 and the apparent complexity of nitrogenase biosynthesis are the main barriers identified so far. Expression of active NifH requires the products of nifM, nifH, and possibly nifU and nifS, whereas active NifDK requires the products of nifH, nifD, nifK, nifB, nifE, nifN, and possibly nifU, nifS, nifQ, nifV, nafY, nifW and nifZ. Plastids and mitochondria are potential subcellular locations for nitrogenase. Both could provide the ATP and electrons required for nitrogenase to function but they differ in their internal O2 levels and their ability to incorporate ammonium into amino acids.

  5. Site-directed mutagenesis of long QT syndrome KCNQ1 gene in vitro

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Junguo YANG; Rong DU; Li TIAN; Bin WANG; Qiumei XU; Qinmei KE; Qing WANG

    2008-01-01

    To construct a polymerase chain reaction (PCR) site-directed mutagenesis of the long QT syndrome KCNQ1 gene in vitro, two sets of primers were designed according to the sequence of KCNQ1 cDNA and a mismatch was introduced into primers. Mutagenesis was performed in a two-step PCR. The amplified fragments from the third PCR which contained the mutation site were sub-cloned into the T-vector pCR2.1. Then, the fragments containing the mutation site was obtained from pCR2.1 using restriction enzymes digestion and inserted into the same restriction site of plRES2-EGFP-KCNQ1. The sequencing analysis shows that the mutation site was correct. Mutation from A to G in site 983 of KCNQ1 cDNA was found. Using the Effectene transfection reagent, plRES2-EGFP-KCNQ1 (G983A) was transfected into HEK cells successfully. These results may shed light on further functional study of KCNQ1 gene.

  6. Application of gene sequencing directly to identify the pathogens in specimens

    Institute of Scientific and Technical Information of China (English)

    LU Xin-xin; YUAN Liang; WAN Xiao-hua; GENG Jia-jing

    2010-01-01

    Background Accurate identification of bacterial isolates is an essential task in clinical microbiology. This study compared culturing to analyzing 16S rRNA gene sequences as methods to identify bacteria in clinical samples. We developed a key technique to directly identify bacteria in clinical samples via nucleic acid sequences, thus improving the ability to confirm pathogens.Methods We obtained 225 samples from Beijing Tongran Hospital and examined them by conventional culture and 16S rDNA sequencing to identify pathogens. This study made use of a modified sample pre-treatment technique which came from our laboratory to extract DNA. 16S rDNA was amplified by PCR. The amplified product was sequenced on a CEQ8000 capillary sequencer. Sequences were uploaded to the GenBank BLAST database for comparison.Results Among the positively cultivated bacterial strains, seven strains were identified differently by Vitek32 and by 16S rDNA sequencing. Twelve samples that were negative by standard culturing were determined to have pathogens by sequence analysis.Conclusion The use of 16S rRNA gene sequencing can improve clinical microbiology by providing better identification of unidentified bacteria or providing reference identification of unusual strains.

  7. Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo.

    Science.gov (United States)

    Li, Enhu; Materna, Stefan C; Davidson, Eric H

    2012-09-15

    The Nodal signaling pathway is known from earlier work to be an essential mediator of oral ectoderm specification in the sea urchin embryo, and indirectly, of aboral ectoderm specification as well. Following expression of the Nodal ligand in the future oral ectoderm during cleavage, a sequence of regulatory gene activations occur within this territory which depend directly or indirectly on nodal gene expression. Here we describe additional regulatory genes that contribute to the oral ectoderm regulatory state during specification in Strongylocentrotus purpuratus, and show how their spatial expression changes dynamically during development. By means of system wide perturbation analyses we have significantly improved current knowledge of the epistatic relations among the regulatory genes of the oral ectoderm. From these studies there emerge diverse circuitries relating downstream regulatory genes directly and indirectly to Nodal signaling. A key intermediary regulator, the role of which had not previously been discerned, is the not gene. In addition to activating several genes earlier described as targets of Nodal signaling, the not gene product acts to repress other oral ectoderm genes, contributing crucially to the bilateral spatial organization of the embryonic oral ectoderm. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Wang Xiaoyi

    2009-06-01

    Full Text Available Abstract Background The zinc uptake regulator Zur is a Zn2+-sensing metalloregulatory protein involved in the maintenance of bacterial zinc homeostasis. Up to now, regulation of zinc homeostasis by Zur is poorly understood in Y. pestis. Results We constructed a zur null mutant of Y. pestis biovar microtus strain 201. Microarray expression analysis disclosed a set of 154 Zur-dependent genes of Y. pestis upon exposure to zinc rich condition. Real-time reverse transcription (RT-PCR was subsequently used to validate the microarray data. Based on the 154 Zur-dependent genes, predicted regulatory Zur motifs were used to screen for potential direct Zur targets including three putative operons znuA, znuCB and ykgM-RpmJ2. The LacZ reporter fusion analysis verified that Zur greatly repressed the promoter activity of the above three operons. The subsequent electrophoretic mobility shift assay (EMSA demonstrated that a purified Zur protein was able to bind to the promoter regions of the above three operons. The DNase I footprinting was used to identify the Zur binding sites for the above three operons, verifying the Zur box sequence as predicted previously in γ-Proteobacteria. The primer extension assay was further used to determine the transcription start sites for the above three operons and to localize the -10 and -35 elements. Zur binding sites overlapped the -10 sequence of its target promoters, which was consistent with the previous observation that Zur binding would block the entry of the RNA polymerase to repress the transcription of its target genes. Conclusion Zur as a repressor directly controls the transcription of znuA, znuCB and ykgM-RpmJ2 in Y. pestis by employing a conserved mechanism of Zur-promoter DNA association as observed in γ-Proteobacteria. Zur contributes to zinc homeostasis in Y. pestis likely through transcriptional repression of the high-affinity zinc uptake system ZnuACB and two alternative ribosomal proteins YkgM and RpmJ2.

  9. An optimised direct lysis method for gene expression studies on low cell numbers.

    Science.gov (United States)

    Le, Anh Viet-Phuong; Huang, Dexing; Blick, Tony; Thompson, Erik W; Dobrovic, Alexander

    2015-08-05

    There is increasing interest in gene expression analysis of either single cells or limited numbers of cells. One such application is the analysis of harvested circulating tumour cells (CTCs), which are often present in very low numbers. A highly efficient protocol for RNA extraction, which involves a minimal number of steps to avoid RNA loss, is essential for low input cell numbers. We compared several lysis solutions that enable reverse transcription (RT) to be performed directly on the cell lysate, offering a simple rapid approach to minimise RNA loss for RT. The lysis solutions were assessed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in low cell numbers isolated from four breast cancer cell lines. We found that a lysis solution containing both the non-ionic detergent (IGEPAL CA-630, chemically equivalent to Nonidet P-40 or NP-40) and bovine serum albumin (BSA) gave the best RT-qPCR yield. This direct lysis to reverse transcription protocol outperformed a column-based extraction method using a commercial kit. This study demonstrates a simple, reliable, time- and cost-effective method that can be widely used in any situation where RNA needs to be prepared from low to very low cell numbers.

  10. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.

    Directory of Open Access Journals (Sweden)

    Alla Buzina

    2008-04-01

    Full Text Available The Locus Control Region (LCR requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate

  11. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.

    Science.gov (United States)

    Strug, Lisa J; Gonska, Tanja; He, Gengming; Keenan, Katherine; Ip, Wan; Boëlle, Pierre-Yves; Lin, Fan; Panjwani, Naim; Gong, Jiafen; Li, Weili; Soave, David; Xiao, Bowei; Tullis, Elizabeth; Rabin, Harvey; Parkins, Michael D; Price, April; Zuberbuhler, Peter C; Corvol, Harriet; Ratjen, Felix; Sun, Lei; Bear, Christine E; Rommens, Johanna M

    2016-08-29

    Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector.In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.

  12. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa.

    Directory of Open Access Journals (Sweden)

    Seong-Bin Kim

    Full Text Available Paenibacillus polymyxa is a bacterium widely used in agriculture, industry, and environmental remediation because it has multiple functions including nitrogen fixation and produces various biologically active compounds. Among these compounds are the antibiotics polymyxins, and the bacterium is currently being reassessed for medical application. However, a lack of genetic tools for manipulation of P. polymyxa has limited our understanding of the biosynthesis of these compounds.To facilitate an understanding of the genetic determinants of the bacterium, we have developed a system for marker exchange mutagenesis directly on competent cells of P. polymyxa under conditions where homologous recombination is enhanced by denaturation of the suicide plasmid DNA. To test this system, we targeted P. polymyxa α-and β-amylase genes for disruption. Chloramphenicol or erythromycin resistance genes were inserted into the suicide plasmid pGEM7Z-f+ (Promega. To mediate homologous recombination and replacement of the targeted genes with the antibiotic resistance genes nucleotide sequences of the α-and β-amylase genes were cloned into the plasmid flanking the antibiotic resistance genes.We have created a simple system for targeted gene deletion in P. polymyxa E681. We propose that P. polymyxa isogenic mutants could be developed using this system of marker exchange mutagenesis. α-and β-amylase genes provide a useful tool for direct recombinant screening in P. polymyxa.

  13. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  14. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle.

    Science.gov (United States)

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J; Krejci, Alena

    2016-02-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues.

  15. Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors.

    Science.gov (United States)

    Gu, Peili; Morgan, Daniel H; Sattar, Minawar; Xu, Xueping; Wagner, Ryan; Raviscioni, Michele; Lichtarge, Olivier; Cooney, Austin J

    2005-09-01

    Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.

  16. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.

    Directory of Open Access Journals (Sweden)

    Pawel Bialk

    Full Text Available Single-stranded DNA oligonucleotides (ssODNs can direct the repair of a single base mutation in human genes. While the regulation of this gene editing reaction has been partially elucidated, the low frequency with which repair occurs has hampered development toward clinical application. In this work a CRISPR/Cas9 complex is employed to induce double strand DNA breakage at specific sites surrounding the nucleotide designated for exchange. The result is a significant elevation in ssODN-directed gene repair, validated by a phenotypic readout. By analysing reaction parameters, we have uncovered restrictions on gene editing activity involving CRISPR/Cas9 complexes. First, ssODNs that hybridize to the non-transcribed strand direct a higher level of gene repair than those that hybridize to the transcribed strand. Second, cleavage must be proximal to the targeted mutant base to enable higher levels of gene editing. Third, DNA cleavage enables a higher level of gene editing activity as compared to single-stranded DNA nicks, created by modified Cas9 (Nickases. Fourth, we calculated the hybridization potential and free energy levels of ssODNs that are complementary to the guide RNA sequences of CRISPRs used in this study. We find a correlation between free energy potential and the capacity of single-stranded oligonucleotides to inhibit specific DNA cleavage activity, thereby indirectly reducing gene editing activity. Our data provide novel information that might be taken into consideration in the design and usage of CRISPR/Cas9 systems with ssODNs for gene editing.

  17. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa.

    Science.gov (United States)

    Uozumi, N; Sakurai, K; Sasaki, T; Takekawa, S; Yamagata, H; Tsukagoshi, N; Udaka, S

    1989-01-01

    The Bacillus polymyxa amylase gene comprises 3,588 nucleotides. The mature amylase comprises 1,161 amino acids with a molecular weight of 127,314. The gene appeared to be divided into two portions by the direct-repeat sequence located at almost the middle of the gene. The 5' region upstream of the direct-repeat sequence was shown to be responsible for the synthesis of beta-amylase. The 3' region downstream of the direct-repeat sequence contained four sequences homologous with those in other alpha-amylases, such as Taka-amylase A. The 48-kilodalton (kDa) amylase isolated from B. polymyxa was proven to have alpha-amylase activity. The amino acid sequences of the peptides generated from the 48-kDa amylase showed complete agreement with the predicted amino acid sequence of the C-terminal portion. The B. polymyxa amylase gene was therefore concluded to contain in-phase beta- and alpha-amylase-coding sequences in the 5' and 3' regions, respectively. A precursor protein, a 130-kDa amylase, directed by a plasmid, pYN520, carrying the entire amylase gene, had both beta- and alpha-amylase activities. This represents the first report of a single protein precursor in procaryotes that gives rise to two enzymes. Images PMID:2464578

  18. Release of biomarkers of myocardial damage after direct intramyocardial injection of genes and stem cells via the percutaneous transluminal route

    DEFF Research Database (Denmark)

    Baldazzi, F.; Jørgensen, Erik; Ripa, R.S.;

    2008-01-01

    no patient in the group receiving 0.2 mL had a more than two-fold CKMB increase. No patient developed new ECG changes. There were no clinically ventricular arrhythmias and no death. CONCLUSION: NOGA mapping followed by direct intramyocardial injections of stem cells or genes lead to measurable release......AIMS: We aimed to quantify the release of biomarkers of myocardial damage in relation to direct intramyocardial injections of genes and stem cells in patients with severe coronary artery disease. METHODS AND RESULTS: We studied 71 patients with 'no-option' coronary artery disease. Patients had, via...

  19. Direct Gene Transfer into Plant Mature Seeds via Electroporation After Vacuum Treatment

    Science.gov (United States)

    Hagio, Takashi

    A number of direct gene transfer methods have been used successfully in plant genetic engineering, providing powerful tools to investigate fundamental and applied problems in plant biology (Chowrira et al., 1996; D'halluin et al., 1992; Morandini and Salamini, 2003; Rakoczy-Trojanowska, 2002; Songstad et al., 1995). In cereals, several methods have been found to be suitable for obtaining transgenic plant; these include bombardment of scutellum (Hagio et al., 1995) and inflorescence cultures (He et al., 2001), and silicon carbide fiber-mediated DNA delivery (Asano et al., 1991) and Agrobacterium tumefaciens transformation (Potrykus, 1990). Electroporation of cereal protoplasts also has proved successful but it involves prolonged cell treatments and generally is limited by the difficulties of regeneration from cereal protoplast cultures (Fromm et al., 1987). Many laboratories worldwide are now using Agrobacterium as a vehicle for routine production of transgenic crop plants. The primary application of the particle system (Klein et al., 1987) has been for transformation of species recalcitrant to conventional Agrobacterium (Binns, 1990) or protoplast methods. But these conventional methods can be applied to the species and varieties that are amenable to tissue culture (Machii et al., 1998). Mature seeds are readily available and free from the seasonal limits that immature embryo, inflorescence, and anther have. This method enables us to produce transgenic plants without time-consuming tissue culture process.

  20. Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools

    Directory of Open Access Journals (Sweden)

    Kai Voss-Fels

    2015-07-01

    Full Text Available Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat ( L., the staple food for 35% of the world’s population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.

  1. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species.

    Science.gov (United States)

    Schunter, C; Carreras-Carbonell, J; Macpherson, E; Tintoré, J; Vidal-Vijande, E; Pascual, A; Guidetti, P; Pascual, M

    2011-12-01

    Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population F(ST) values ranged between -0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria-Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts. © 2011 Blackwell Publishing Ltd.

  2. Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Mario Hermann

    Full Text Available Zinc finger nucleases (ZFNs enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN ZFNs. OPEN ZFN can be constructed using publicly available resources and therefore provide an attractive alternative for academic researchers. Two ZFN pairs specific to the mouse genomic locus gt(ROSA26Sor were generated by OPEN selections and used for gene disruption and homology-mediated gene replacement in single cell mouse embryos. One specific ZFN pair facilitated non-homologous end joining (NHEJ-mediated gene disruption when expressed in mouse zygotes. We also observed a single homologous recombination (HR-driven gene replacement event when this ZFN pair was co-injected with a targeting vector. Our experiments demonstrate the feasibility of achieving both gene ablation through NHEJ and gene replacement by HR by using the OPEN ZFN technology directly in mouse zygotes.

  3. Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Sengeløv, Gitte; Jensen, Lars Bogø

    2004-01-01

    . The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. Result...

  4. Direct Regulation of tRNA and 5S rRNA Gene Transcription by Polo-like Kinase 1

    NARCIS (Netherlands)

    Fairley, Jennifer A.; Mitchell, Louise E.; Berg, Tracy; Kenneth, Niall S.; von Schubert, Conrad; Sillje, Herman H. W.; Medema, Rene H.; Nigg, Erich A.; White, Robert J.

    2012-01-01

    Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase Ill (pol Ill) through direct binding and phosphorylation of transcription factor Brit During interphase, Plk1 promotes

  5. Direct Regulation of tRNA and 5S rRNA Gene Transcription by Polo-like Kinase 1

    NARCIS (Netherlands)

    Fairley, Jennifer A.; Mitchell, Louise E.; Berg, Tracy; Kenneth, Niall S.; von Schubert, Conrad; Sillje, Herman H. W.; Medema, Rene H.; Nigg, Erich A.; White, Robert J.

    2012-01-01

    Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase Ill (pol Ill) through direct binding and phosphorylation of transcription factor Brit During interphase, Plk1 promotes

  6. Directed neural differentiation of mouse embryonic stem cells is a sensitive system for the identification of novel Hox gene effectors.

    Science.gov (United States)

    Bami, Myrto; Episkopou, Vasso; Gavalas, Anthony; Gouti, Mina

    2011-01-01

    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox

  7. Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation.

    Science.gov (United States)

    Zhang, Shu Xing; Garcia-Gras, Eduardo; Wycuff, Diane R; Marriot, Suzanne J; Kadeer, Nijiati; Yu, Wei; Olson, Eric N; Garry, Daniel J; Parmacek, Michael S; Schwartz, Robert J

    2005-05-13

    Serum-response factor (SRF) is an obligatory transcription factor, required for the formation of vertebrate mesoderm leading to the origin of the cardiovascular system. Protein A-TEV-tagged chromatin immunoprecipitation technology was used to collect direct SRF-bound gene targets from pluripotent P19 cells, induced by Me2SO treatment into an enriched cardiac cell population. From 242 sequenced DNA fragments, we identified 188 genomic DNA fragments as potential direct SRF targets that contain CArG boxes and CArG-like boxes. Of the 92 contiguous genes that were identified, a subgroup of 43 SRF targets was then further validated by co-transfection assays with SRF. Expression patterns of representative candidate genes were compared with the LacZ reporter expression activity of the endogenous SRF gene. According to the Unigene data base, 84% of the SRF target candidates were expressed, at least, in the heart. In SRF null embryonic stem cells, 81% of these SRF target candidates were greatly affected by the absence of SRF. Among these SRF-regulated genes, Raf1, Map4k4, and Bicc1 have essential roles in mesoderm formation. The 12 regulated SRF target genes, Mapk10 (JNK3), Txnl2, Azi2, Tera, Sema3a, Lrp4, Actc1, Myl3, Hspg2, Pgm2, Hif3a, and Asb5, have been implicated in cardiovascular formation, and the Ski and Hes6 genes have roles in muscle differentiation. SRF target genes related to cell mitosis and cycle, E2f5, Npm1, Cenpb, Rbbp6, and Scyl1, expressed in the heart tissue were differentially regulated in SRF null ES cells.

  8. Direct evidence for redundant segmental replacement between multiple 18S rRNA genes in a single Prototheca strain.

    Science.gov (United States)

    Ueno, Ryohei; Huss, Volker A R; Urano, Naoto; Watabe, Shugo

    2007-11-01

    Informational genes such as those encoding rRNAs are related to transcription and translation, and are thus considered to be rarely subject to lateral gene transfer (LGT) between different organisms, compared to operational genes having metabolic functions. However, several lines of evidence have suggested or confirmed the occurrence of LGT of DNA segments encoding evolutionarily variable regions of rRNA genes between different organisms. In the present paper, we show, for the first time to our knowledge, that variable regions of the 18S rRNA gene are segmentally replaced by multiple copies of different sequences in a single strain of the green microalga Prototheca wickerhamii, resulting in at least 17 genotypes, nine of which were actually transcribed. Recombination between different 18S rRNA genes occurred in seven out of eight variable regions (V1-V5 and V7-V9) of eukaryotic small subunit (SSU) rRNAs. While no recombination was observed in V1, one to three different recombination loci were demonstrated for the other regions. Such segmental replacement was also implicated for helix H37, which is defined as V6 of prokaryotic SSU rRNAs. Our observations provide direct evidence for redundant recombination of an informational gene, which encodes a component of mature ribosomes, in a single strain of one organism.

  9. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Dong Fang

    Full Text Available Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1 was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.

  10. Sleeping Beauty Transposon Vectors in Liver-directed Gene Delivery of LDLR and VLDLR for Gene Therapy of Familial Hypercholesterolemia.

    Science.gov (United States)

    Turunen, Tytteli A K; Kurkipuro, Jere; Heikura, Tommi; Vuorio, Taina; Hytönen, Elisa; Izsvák, Zsuzsanna; Ylä-Herttuala, Seppo

    2016-03-01

    Plasmid-based Sleeping Beauty (SB) transposon vectors were developed and used to deliver genes for low-density lipoprotein and very-low-density lipoprotein receptors (LDLR and VLDLR, respectively) or lacZ reporter into liver of an LDLR-deficient mouse model of familial hypercholesterolemia (FH). SB transposase, SB100x, was used to integrate the therapeutic transposons into mice livers for evaluating the feasibility of the vectors in reducing high blood cholesterol and the progression of atherosclerosis. Hydrodynamic gene delivery of transposon-VLDLR into the livers of the mice resulted in initial 17-19% reductions in plasma cholesterol, and at the later time points, in a significant stabilization of the cholesterol level for the 6.5-month duration of the study compared to the control mice. Transposon-LDLR-treated animals also demonstrated a trend of stabilization in the cholesterol levels in the long term. Vector-treated mice had slightly less lipid accumulation in the liver and reduced aortic atherosclerosis. Clinical chemistry and histological analyses revealed normal liver function and morphology comparable to that of the controls during the follow-up with no safety issues regarding the vector type, transgenes, or the gene transfer method. The study demonstrates the safety and potential benefits of the SB transposon vectors in the treatment of FH.

  11. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription.

    Science.gov (United States)

    Dey, Anup; Nishiyama, Akira; Karpova, Tatiana; McNally, James; Ozato, Keiko

    2009-12-01

    On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global transcriptional coactivator. We found that throughout mitosis, Brd4 remained bound to the transcription start sites of many M/G1 genes that are programmed to be expressed at the end of, or immediately after mitosis. In contrast, Brd4 did not bind to genes that are expressed at later phases of cell cycle. Brd4 binding to M/G1 genes increased at telophase, the end phase of mitosis, coinciding with increased acetylation of histone H3 and H4 in these genes. Increased Brd4 binding was accompanied by the recruitment of P-TEFb and de novo M/G1 gene transcription, the events impaired in Brd4 knockdown cells. In sum, Brd4 marks M/G1 genes for transcriptional memory during mitosis, and upon exiting mitosis, this mark acts as a signal for initiating their prompt transcription in daughter cells.

  12. Advances in liver-directed gene therapy for hepatocellular carcinoma by non-viral delivery systems.

    Science.gov (United States)

    Ding, Buyun; Li, Tao; Zhang, Jian; Zhao, Lixia; Zhai, Guangxi

    2012-04-01

    Hepatocellular carcinoma (HCC) is a malignancy with a high mortality. Gene therapy provides a promising way for the treatment of HCC. Efficient gene delivery system, suitable gene target and appropriate way of administration together determine the effect of gene therapy for HCC. In recent years, employing non-viral gene delivery systems in gene therapy for HCC has attracted a lot of attention. Compared with viral vectors, non-viral gene delivery systems are nearly non-immunogenic, relatively safer, less expensive to produce and can carry a good many of genetic materials. But the transfection efficiency of these vectors still needs to be improved. And the liver targeting is another problem that needs to be solved. Attaching ligands to the non-viral vectors to enhance the targeting ability to the specific receptor and targeting to molecular targets of HCC are the effective strategies. Adopting suitable ways of administration is also a factor that plays an important role to achieve liver targeting. This review introduced the advances in liver-targeted gene therapy by non-viral vectors including the efforts to overcome the low transfection efficiency and enhance the liver targeting effect.

  13. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    Science.gov (United States)

    Winham, Stacey J.; Biernacka, Joanna M.

    2013-01-01

    Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…

  14. Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle

    Science.gov (United States)

    Iwasaki, Osamu; Corcoran, Christopher J.; Noma, Ken-ichi

    2016-01-01

    Chromosomes are not randomly disposed in the nucleus but instead occupy discrete sub-nuclear domains, referred to as chromosome territories. The molecular mechanisms that underlie the formation of chromosome territories and how they are regulated during the cell cycle remain largely unknown. Here, we have developed two different chromosome-painting approaches to address how chromosome territories are organized in the fission yeast model organism. We show that condensin frequently associates RNA polymerase III-transcribed genes (tRNA and 5S rRNA) that are present on the same chromosomes, and that the disruption of these associations by condensin mutations significantly compromises the chromosome territory arrangement. We also find that condensin-dependent intra-chromosomal gene associations and chromosome territories are co-regulated during the cell cycle. For example, condensin-directed gene associations occur to the least degree during S phase, with the chromosomal overlap becoming largest. In clear contrast, condensin-directed gene associations become tighter in other cell-cycle phases, especially during mitosis, with the overlap between the different chromosomes being smaller. This study suggests that condensin-driven intra-chromosomal gene associations contribute to the organization and regulation of chromosome territories during the cell cycle. PMID:26704981

  15. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas.

    Science.gov (United States)

    Avnit-Sagi, Tali; Kantorovich, Lia; Kredo-Russo, Sharon; Hornstein, Eran; Walker, Michael D

    2009-01-01

    microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved 768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to evaluate the functional significance of sequence blocks within the upstream fragment. 5'-RACE analysis was used for mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 5'-RACE analysis identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental processes.

  16. Rapid detection of translation-terminating mutations at the adenomatous polyposis coli (APC) gene by direct protein truncation test

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Luut, R.; Khan, P.M.; Van Leeuwen, C.; Tops, C.; Roest, P.; Den Dunnen, J. (Leiden Univ. (Netherlands))

    1994-03-01

    Familial adenomatous polyposis (FAP) is usually associated with protein truncating mutations in the adenomatous polyposis coli (APC) gene. The APC mutations are known to play a major role in colorectal carcinogensis. For the identification of protein truncating mutations of the APC gene, the authors developed a rapid, sensitive, and direct screening procedure. The technique is based on the in vitro transcription and translation of the genomic PCR products and is called the protein truncation test. Samples of DNA from individual FAP patients, members of a FAP family, colorectal tumors, and colorectal tumor-derived cell lines were used to show the effectiveness of this method. 9 refs., 2 figs.

  17. Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan

    Science.gov (United States)

    YAMASAKI-YASHIKI, Shino; SAWADA, Hiroshi; KINO-OKA, Masahiro; KATAKURA, Yoshio

    2016-01-01

    Co-culture of lactic acid bacteria (LAB) and yeast induces specific responses that are not observed in pure culture. Gene expression profiles of Lactobacillus paracasei ATCC 334 co-cultured with Saccharomyces cerevisiae IFO 0216 were analyzed by DNA microarray, and the responses induced by direct contact with the yeast cells were investigated. Coating the LAB cells with recombinant DnaK, which acts as an adhesive protein between LAB and yeast cells, enhanced the ratio of adhesion of the LAB cells to the yeast cells. The signals induced by direct contact were clarified by removal of the LAB cells unbound to the yeast cells. The genes induced by direct contact with heat-inactivated yeast cells were very similar to both those induced by the intact yeast cells and those induced by a soluble mannan. The top 20 genes upregulated by direct contact with the heat-inactivated yeast cells mainly encoded proteins related to exopolysaccharide synthesis, modification of surface proteins, and transport systems. In the case of the most upregulated gene, LSEI_0669, encoding a protein that has a region homologous to polyprenyl glycosylphosphotransferase, the expression level was upregulated 7.6-, 11.0-, and 8.8-fold by the heat-inactivated yeast cells, the intact yeast cells, and the soluble mannan, respectively, whereas it was only upregulated 1.8-fold when the non-adherent LAB cells were not removed before RNA extraction. Our results indicated that the LAB responded to direct contact with the yeast cells through recognition of mannan on the surface of the yeast.

  18. Development of a site-directed integration plasmid for heterologous gene expression in Mycoplasma gallisepticum.

    Directory of Open Access Journals (Sweden)

    Isolde Nieszner

    Full Text Available Deciphering the molecular basis of the interactions between the parasite Mycoplasma gallisepticum and its avian hosts suffers from the lack of genetic tools available for the pathogen. In the absence of well established methods for targeted disruption of relevant M. gallisepticum genes, we started to develop suicide vectors and equipped them with a short fragment of M. gallisepticum origin or replication (oriC MG. We failed to create a disruption vector, although by adding a further short fragment of the M. gallisepticum tufB upstream region we created a "Trojan horse" plasmid. This is fully integrated into the genomic DNA of M. gallisepticum, always at the same site, oriC MG, and is able to carry and express any gene of interest in the genetic background of M. gallisepticum. Successful expression of a heterologous gene was shown with the lacZ gene of E. coli. When used for gene complementation or expression of hybrid genes in M. gallisepticum, a site-specific combined integration/expression vector constitutes an improvement on randomly integrating transposons, which might have unexpected effects on the expression of chromosomal genes.

  19. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  20. Improving lipoprotein profiles by liver-directed gene transfer of low density lipoprotein receptor gene in hypercholesterolaemia mice

    Indian Academy of Sciences (India)

    HAILONG OU; QINGHAI ZHANG; JIA ZENG

    2016-06-01

    The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia(FH). In this study, we directly delivered exogenousLdlrgene into the liver of FH model mice (Ldlr − / −) by lentiviral genetransfer system. The results showed that theLdlrgene controlled by hepatocyte-specific human thyroxine-binding globulin(TBG) promoter successfully and exclusively expressed in livers. We found that, although, the content of high density lipopro-tein in serum was not significantly affected by theLdlrgene expression, the serum low density lipoprotein level was reducedby 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjectedLdlr − / −mice. Moreover, the TBG directed expression ofLdlrsignificantly decreased the lipid accumulation in liver andreduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression ofLdlrgene strikinglylowered serum lipid levels and resulted in amelioration of hypercholesterolaemia.

  1. Brd4 Marks Select Genes on Mitotic Chromatin and Directs Postmitotic Transcription

    OpenAIRE

    Dey, Anup; Nishiyama, Akira; Karpova, Tatiana; McNally, James; Ozato, Keiko

    2009-01-01

    On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global...

  2. Ehrlichia chaffeensis TRP32 is a Nucleomodulin that Directly Regulates Expression of Host Genes Governing Differentiation and Proliferation.

    Science.gov (United States)

    Farris, Tierra R; Dunphy, Paige S; Zhu, Bing; Kibler, Clayton E; McBride, Jere W

    2016-08-29

    Ehrlichia chaffeensis is an obligately intracellular bacterium that reprograms the mononuclear phagocyte through diverse effector-host interactions to modulate numerous host cell processes, including transcription. In a previous study, we reported that E. chaffeensis TRP32, a type 1 secreted effector, interacts with multiple host nucleus-associated proteins and also auto-activates reporter gene expression in yeast. In this study, we demonstrate that TRP32 is a nucleomodulin that binds host DNA and alters host gene transcription. TRP32 enters the host cell nucleus via a noncanonical translocation mechanism that involves phosphorylation of Y179 located in a C-terminal tri-tyrosine motif. Both genistein and mutation of Y179 inhibited TRP32 nuclear entry. An electromobility shift assay (EMSA) demonstrated TRP32 host DNA binding via its tandem repeat domain. TRP32 DNA binding and motif preference were further confirmed by supershift assays, as well as competition and mutant probe analyses. Using ChIP-Seq, we determined that TRP32 binds a G-rich motif primarily within ±500 bp of the gene transcription start site. An ontology analysis identified genes involved in processes such as immune cell differentiation, chromatin remodeling, and RNA transcription and processing, as primary TRP32 targets. TRP32 bound genes (n=1223) were distributed on all chromosomes and included several global regulators of proliferation and inflammation such as FOS and JUN, AKT3 and NRAS, and non-coding RNA genes, miRNA 21 and miRNA 142. TRP32 target genes were differentially regulated during infection, the majority of which were repressed, and direct repression/activation of these genes by TRP32 was confirmed in vitro with a cellular luciferase reporter assay.

  3. Mab-3 is a direct tra-1 target gene regulating diverse aspects of C. elegans male sexual development and behavior.

    Science.gov (United States)

    Yi, W; Ross, J M; Zarkower, D

    2000-10-01

    Sex determination is controlled by global regulatory genes, such as tra-1 in Caenorhabditis elegans, Sex lethal in Drosophila, or Sry in mammals. How these genes coordinate sexual differentiation throughout the body is a key unanswered question. tra-1 encodes a zinc finger transcription factor, TRA-1A, that regulates, directly or indirectly, all genes required for sexual development. mab-3 (male abnormal 3), acts downstream of tra-1 and is known to be required for sexual differentiation of at least two tissues. mab-3 directly regulates yolk protein transcription in the intestine and specifies male sense organ differentiation in the nervous system. It encodes a transcription factor related to the products of the Drosophila sexual regulator doublesex (dsx), which also regulates yolk protein transcription and male sense-organ differentiation. The similarities between mab-3 and dsx led us to suggest that some aspects of sex determination may be evolutionarily conserved. Here we find that mab-3 is also required for expression of male-specific genes in sensory neurons of the head and tail and for male interaction with hermaphrodites. These roles in male development and behavior suggest further functional similarity to dsx. In male sensory ray differentiation we find that MAB-3 acts synergistically with LIN-32, a neurogenic bHLH transcription factor. Expression of LIN-32 is spatially restricted by the combined action of the Hox gene mab-5 and the hairy homolog lin-22, while MAB-3 is expressed throughout the lateral hypodermis. Finally, we find that mab-3 transcription is directly regulated in the intestine by TRA-1A, providing a molecular link between the global regulatory pathway and terminal sexual differentiation.

  4. Identification of a gene expression profile that discriminates indirect-acting genotoxins from direct-acting genotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Hu Ting; Gibson, David P.; Carr, Gregory J.; Torontali, Suzanne M.; Tiesman, Jay P.; Chaney, Joel G.; Aardema, Marilyn J

    2004-05-18

    During the safety evaluation process of new drugs and chemicals, a battery of genotoxicity tests is conducted starting with in vitro genotoxicity assays. Obtaining positive results in in vitro genotoxicity tests is not uncommon. Follow-up studies to determine the biological relevance of positive genotoxicity results are costly, time consuming, and utilize animals. More efficient methods, especially for identifying a putative mode of action like an indirect mechanism of genotoxicity (where DNA molecules are not the initial primary targets), would greatly improve the risk assessment for genotoxins. To this end, we are participating in an International Life Sciences Institute (ILSI) project involving studies of gene expression changes caused by model genotoxins. The purpose of the work is to evaluate gene expression tools in general, and specifically for discriminating genotoxins that are direct-acting from indirect-acting. Our lab has evaluated gene expression changes as well as micronuclei (MN) in L5178Y TK{sup +/-} mouse lymphoma cells treated with six compounds. Direct-acting genotoxins (where DNA is the initial primary target) that were evaluated included the DNA crosslinking agents, mitomycin C (MMC) and cisplatin (CIS), and an alkylating agent, methyl methanesulfonate (MMS). Indirect-acting genotoxins included hydroxyurea (HU), a ribonucleotide reductase inhibitor, taxol (TXL), a microtubule inhibitor, and etoposide (ETOP), a DNA topoisomerase II inhibitor. Microarray gene expression analysis was conducted using Affymetrix mouse oligonucleotide arrays on RNA samples derived from cells which were harvested immediately after the 4 h chemical treatment, and 20 h after the 4 h chemical treatment. The evaluation of these experimental results yields evidence of differentially regulated genes at both 4 and 24 h time points that appear to have discriminating power for direct versus indirect genotoxins, and therefore may serve as a fingerprint for classifying chemicals

  5. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach.

    Science.gov (United States)

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be leptopirosis.

  6. Identification of bacteria directly from positive blood culture samples by DNA pyrosequencing of the 16S rRNA gene

    OpenAIRE

    2012-01-01

    Rapid identification of the causative bacteria of sepsis in patients can contribute to the selection of appropriate antibiotics and improvement of patients' prognosis. Genotypic identification is an emerging technology that may provide an alternative method to, or complement, established phenotypic identification procedures. We evaluated a rapid protocol for bacterial identification based on PCR and pyrosequencing of the V1 and V3 regions of the 16S rRNA gene using DNA extracted directly from...

  7. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    OpenAIRE

    Ana Sofia Ferreira; Pedro Costa; Teresa Rocha; Ana Amaro; Maria Luísa Vieira; Ahmed Ahmed; Gertrude Thompson; Hartskeerl, Rudy A.; João Inácio

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpet...

  8. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves.

    Directory of Open Access Journals (Sweden)

    Mary P Lee

    Full Text Available Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences.

  9. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.

    Science.gov (United States)

    Doetschman, Thomas; Georgieva, Teodora

    2017-03-03

    Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases. © 2017 American Heart Association, Inc.

  10. The synthetic gestagen levonorgestrel directly affects gene expression in thyroid and pituitary glands of Xenopus laevis tadpoles.

    Science.gov (United States)

    Lorenz, Claudia; Opitz, Robert; Trubiroha, Achim; Lutz, Ilka; Zikova, Andrea; Kloas, Werner

    2016-08-01

    The synthetic gestagen levonorgestrel (LNG) was previously shown to perturb thyroid hormone-dependent metamorphosis in Xenopus laevis. However, so far the mechanisms underlying the anti-metamorphic effects of LNG remained unknown. Therefore, a series of in vivo and ex vivo experiments was performed to identify potential target sites of LNG action along the pituitary-thyroid axis of X. laevis tadpoles. Prometamorphic tadpoles were treated in vivo with LNG (0.01-10nM) for 72h and brain-pituitary and thyroid tissue was analyzed for marker gene expression. While no treatment-related changes were observed in brain-pituitary tissue, LNG treatment readily affected thyroidal gene expression in tadpoles including decreased slc5a5 and iyd mRNA expression and a strong induction of dio2 and dio3 expression. When using an ex vivo organ explant culture approach, direct effects of LNG on both pituitary and thyroid gland gene expression were detecTable Specifically, treatment of pituitary explants with 10nM LNG strongly stimulated dio2 expression and concurrently suppressed tshb expression. In thyroid glands, ex vivo LNG treatment induced dio2 and dio3 mRNA expression in a thyrotropin-independent manner. When thyroid explants were cultured in thyrotropin-containing media, LNG caused similar gene expression changes as seen after 72h in vivo treatment including a very strong repression of thyrotropin-induced slc5a5 expression. Concerning the anti-thyroidal activity of LNG as seen under in vivo conditions, our ex vivo data provide clear evidence that LNG directly affects expression of genes important for thyroidal iodide handling as well as genes involved in negative feedback regulation of pituitary tshb expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Variation in key genes of serotonin and norepinephrine function predicts gamma-band activity during goal-directed attention.

    Science.gov (United States)

    Enge, Sören; Fleischhauer, Monika; Lesch, Klaus-Peter; Reif, Andreas; Strobel, Alexander

    2014-05-01

    Recent evidence shows that genetic variations in key regulators of serotonergic (5-HT) signaling explain variance in executive tasks, which suggests modulatory actions of 5-HT on goal-directed selective attention as one possible underlying mechanism. To investigate this link, 130 volunteers were genotyped for the 5-HT transporter gene-linked polymorphic region (5-HTTLPR) and for a variation (TPH2-703 G/T) of the TPH2 gene coding for the rate-limiting enzyme of 5-HT synthesis in the brain. Additionally, a functional polymorphism of the norepinephrine transporter gene (NET -3081 A/T) was considered, which was recently found to predict attention and working memory processes in interaction with serotonergic genes. The flanker-based Attention Network Test was used to assess goal-directed attention and the efficiency of attentional networks. Event-related gamma-band activity served to indicate selective attention at the intermediate phenotype level. The main findings were that 5-HTTLPR s allele and TPH2 G-allele homozygotes showed increased induced gamma-band activity during target processing when combined with the NET A/A genotype compared with other genotype combinations, and that gamma activity mediates the genotype-specific effects on task performance. The results further support a modulatory role of 5-HT and NE function in the top-down attentional selection of motivationally relevant over competing or irrelevant sensory input.

  12. c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair.

    Science.gov (United States)

    Chiang, Yu-Chi; Teng, Shu-Chun; Su, Yi-Ning; Hsieh, Fon-Jou; Wu, Kou-Juey

    2003-05-23

    The c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, and chromosomal instability. The NBS gene product, NBS1 (p95 or nibrin), is a part of the hMre11 complex, a central player associated with double-strand break (DSB) repair. NBS1 contains domains characteristic for proteins involved in DNA repair, recombination, and replication. Here we show that c-Myc directly activates NBS1. c-Myc-mediated induction of NBS1 gene transcription occurs in different tissues, is independent of cell proliferation, and is mediated by a c-Myc binding site in the intron 1 region of NBS1 gene. Overexpression of NBS1 in Rat1a cells increased cell proliferation. These results indicate that NBS1 is a direct transcriptional target of c-Myc and links the function of c-Myc to the regulation of DNA DSB repair pathway operating during DNA replication.

  13. The thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus: Sequence variation and implications for detection and function.

    Science.gov (United States)

    Nilsson, William B; Turner, Jeffrey W

    2016-07-01

    Vibrio parahaemolyticus is a leading cause of bacterial food-related illness associated with the consumption of undercooked seafood. Only a small subset of strains is pathogenic. Most clinical strains encode for the thermostable direct hemolysin (TDH) and/or the TDH-related hemolysin (TRH). In this work, we amplify and sequence the trh gene from over 80 trh+strains of this bacterium and identify thirteen genetically distinct alleles, most of which have not been deposited in GenBank previously. Sequence data was used to design new primers for more reliable detection of trh by endpoint PCR. We also designed a new quantitative PCR assay to target a more conserved gene that is genetically-linked to trh. This gene, ureR, encodes the transcriptional regulator for the urease gene cluster immediately upstream of trh. We propose that this ureR assay can be a useful screening tool as a surrogate for direct detection of trh that circumvents challenges associated with trh sequence variation.

  14. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock[OPEN

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Nakamichi, Norihito

    2016-01-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR (PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5. CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore, ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated in cca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. PMID:26941090

  15. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  16. [Levels of thermostable direct hemolysin production by Vibrio parahaemolyticus strains carrying both tdh and trh genes].

    Science.gov (United States)

    Suzuki, N; Hashimoto, S; Ishibashi, M; Kim, Y B; Okuda, J; Nishibuchi, M

    1997-12-01

    One hundred and twenty-five strains of Vibrio parahaemolyticus carrying both the tdh and trh genes were selected from the strains isolated from the travelers with diarrhea by an hybridization test using polynucleotide probes. The levels of TDH produced by these strains and the association between the TDH levels and related characteristics in these strains were analyzed. The TDH level varied greatly from strain to strain, but none of the levels was as high as that of the typical Kanagawa phenomenon-positive strains. The strains were classified into "TDH producer" (18 strains), "Low-level TDH producer" (85 strains), and "No TDH producer" (22 strains) based on the results of a modified Elek test and the hemolysis assay on Wagatsuma agar. The highest TDH level achieved by the "TDH producer" was twofold lower than that of the Kanagawa phenomenon-positive strains as assayed by the RPLA method. All strains possessed the toxR gene. The trh1 and trh2 genes were detected in, respectively, 105 and 20 strains, and no correlation existed between the type of the trh gene and the levels of TDH produced. Considerable restriction fragment length polymorphism was observed with the tdh gene-bearing HindIII DNA fragment in different strains, but it was not related with the TDH level.

  17. Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species.

    Science.gov (United States)

    Oddou-Muratorio, Sylvie; Klein, Etienne K

    2008-06-01

    The comparison between historical estimates of gene flow, using variance in allelic frequencies, and contemporary estimates of gene flow, using parentage assignment, is expected to provide insights into ecological and evolutionary processes at work within and among populations. Genetic variation at six microsatellite loci was used to quantify genetic structure in the insect-pollinated, animal-dispersed, low-density tree Sorbus torminalis L. Crantz, and to derive historical estimates of gene flow. The neighbourhood size and root-mean-squared dispersal distance inferred from seedling genotypes (N(b) = 70 individuals, sigma(e) = 417 m) were similar to those inferred from adult genotypes (N(b) = 114 individuals, sigma(e) = 472 m). We also used parentage analyses and a neighbourhood model approach after an evaluation of the statistical properties of this method on simulated data. From our data, we estimated even contributions of seed- and pollen-mediated dispersal to the genetic composition of established seedlings, with both fat-tailed pollen and seed dispersal kernels, and slightly higher mean distance of pollen dispersal (248 m) as compared to seed dispersal (135 m). The resulting contemporary estimate of gene dispersal distance (sigma(c) = 211 m) was approximately twofold smaller than the historical estimates. Besides different assumptions and statistical nuances of both approaches, this discrepancy is likely to reflect a recent restriction in the scale of gene flow which requires manager's attention in a context of increasing forest fragmentation.

  18. Direct evidence for pitavastatin induced chromatin structure change in the KLF4 gene in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Takashi Maejima

    Full Text Available Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3 and thrombomodulin (THBD, were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2 family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET, and real time chromosome conformation capture (3C assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells.

  19. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  20. Does follistatin gene have any direct role in the manifestation of polycystic ovary syndrome in Indian women?

    Directory of Open Access Journals (Sweden)

    S Dasgupta

    2012-01-01

    Full Text Available Background: Out of a panel of 37 candidate genes tested for linkage with polycystic ovary syndrome (PCOS, the strongest evidence of linkage was reported in the follistatin (FST gene region. Subsequently, a couple of studies outside India investigated the FST gene for the presence of any mutations and its association with PCOS and the results were found to be largely inconsistent probably due to differences in the ethnic backgrounds and small sample sizes. Aims: To screen the FST gene for mutations and to establish their association pattern with PCOS among a large cohort of South Indian women. Settings and Design: Case-control study. Materials and Methods: PCOS cases were recruited according to the 2003 Rotterdam diagnostic criteria. All the exons of the FST gene were amplified and analyzed in all the cases and controls for the presence of mutations using polymerase chain reaction (PCR and direct DNA sequencing. Results: A total of 549 women consisting of 250 PCOS cases and 299 controls were recruited for the study. No mutations were found in any of the exons of the FST gene in our Indian sample which is consistent with an earlier finding among the Asian women from Singapore. Although three of the four cohorts of Caucasian background studied earlier reported variants, none of them could establish a strong association with PCOS. Conclusions: The occurrence of the exonic variants of FST gene seems to be dependent on the ethnic background of the subjects under study and its role in the PCOS pathophysiology cannot be established with hitherto available evidence.

  1. SIRT1 is a Direct Coactivator of Thyroid Hormone Receptor β1 with Gene-Specific Actions

    Science.gov (United States)

    Suh, Ji Ho; Sieglaff, Douglas H.; Zhang, Aijun; Xia, Xuefeng; Cvoro, Aleksandra; Winnier, Glenn E.; Webb, Paul

    2013-01-01

    Sirtuin 1 (SIRT1) NAD+-dependent deacetylase regulates energy metabolism by modulating expression of genes involved in gluconeogenesis and other liver fasting responses. While many effects of SIRT1 on gene expression are mediated by deacetylation and activation of peroxisome proliferator activated receptor coactivator α (PGC-1α), SIRT1 also binds directly to DNA bound transcription factors, including nuclear receptors (NRs), to modulate their activity. Since thyroid hormone receptor β1 (TRβ1) regulates several SIRT1 target genes in liver and interacts with PGC-1α, we hypothesized that SIRT1 may influence TRβ1. Here, we confirm that SIRT1 cooperates with PGC-1α to enhance response to triiodothyronine, T3. We also find, however, that SIRT1 stimulates TRβ1 activity in a manner that is independent of PGC-1α but requires SIRT1 deacetylase activity. SIRT1 interacts with TRβ1 in vitro, promotes TRβ1 deacetylation in the presence of T3 and enhances ubiquitin-dependent TRβ1 turnover; a common response of NRs to activating ligands. More surprisingly, SIRT1 knockdown only strongly inhibits T3 response of a subset of TRβ1 target genes, including glucose 6 phosphatase (G-6-Pc), and this is associated with blockade of TRβ1 binding to the G-6-Pc promoter. Drugs that target the SIRT1 pathway, resveratrol and nicotinamide, modulate T3 response at dual TRβ1/SIRT1 target genes. We propose that SIRT1 is a gene-specific TRβ1 co-regulator and TRβ1/SIRT1 interactions could play important roles in regulation of liver metabolic response. Our results open possibilities for modulation of subsets of TR target genes with drugs that influence the SIRT1 pathway. PMID:23922917

  2. Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts.

    Science.gov (United States)

    Lin, W; Odell, J T; Schreiner, R M

    1987-07-01

    A method was developed for culturing protoplasts freshly isolated from developing soybean (Glycine max L.) cotyledons. First cell divisions were observed within 5 days after protoplast isolation and microcalli, consisting of about 20 cells, were formed within 10 days. Thirty days after protoplast isolation, callus tissues were observed without the aid of a microscope. A 30 to 50% plating efficiency was consistently obtained. Using a polyethylene glycol-electroporation technique, DNA was introduced into these protoplasts. The protoplasts were then cultured to form callus. Chloramphenicol acetyltransferase (CAT) activity was detected in protoplast cultures 6 hours after introduction of a 35S-CAT-nopaline synthase 3' chimeric gene. The highest CAT activity was detected in 3-day-old electroporated protoplast cultures, indicating transient expression of the introduced gene. Some CAT activity was detected in 40-day-old callus cultures and in geneticin (G418) selected callus tissues which also received a chimeric neomycin phosphotransferase II gene, indicating the presence of stable transformants. A control chimeric gene with an inverted 35S promoter failed to produce any CAT activity in this system.

  3. [Mutational analysis of the MECP2 gene by direct sequencing in Hungarian patients with Rett syndrome

    NARCIS (Netherlands)

    Karteszi, J.; Hollody, K.; Bene, J.; Morava, E.; Hadzsiev, K.; Czako, M.; Melegh, B.; Kosztolanyi, G.Y.

    2004-01-01

    INTRODUCTION: Rett syndrome is an X-linked neurodevelopmental disorder characterized by loss of acquired skills and stereotypical hand movements. Mutations in the gene encoding methyl-CpG-binding protein 2 have been identified as cause of Rett syndrome in 1999. AIM: The authors initialized mutation

  4. In vivo alteration of the keratin 17 gene in hair follicles by oligonucleotide-directed gene targeting.

    Science.gov (United States)

    Fan, W; Yoon, K

    2003-12-01

    Using intradermal injection of a chimeric RNA-DNA oligonucleotide (RDO) or a single-stranded oligonucleotide (ssODN) into murine skin, we attempted to make a dominant mutation (R94p) in the conserve alpha-helical domain of keratin 17 (K17), the same mutation found in pachyononychia congenichia type 2 (PC-2) patients with phenotypes ranging from twisted hair and multiple pilosebaceous cysts. Both K17A-RDO and -ssODN contained a single base mismatch (CGC to CCC) to alter the normal K17 sequence to cause an amino acid substitution (R94P). The complexes consisting of oligonucleotides and cationic liposomes were injected to C57B1/6 murine skin at 2 and 5 day after birth. Histological examination of skin biopsies at postnatal day 8 from several mice showed consistent twisted hair shafts or broken hair follicles at the sebaceous gland level and occasional rupture of the hair bulb or epidermal cyst-like changes. In the injected area, the number of full anagen hair follicles decrease by 50%. Injection of the control oligonucleotide, identical to K17A-RDO but containing no mismatch to the normal sequence, did not result in any detectable abnormality. The frequency of gene alteration was lower than 3%, according to the restriction fragment length polymorphism (RFLP) analysis of the genomic DNA isolated by dissection of hair follicles from slides. Although intradermal injection of K17A-RDO or K17-ssODN caused a dominant mutation in K17 affecting hair growth and morphology, these phenotypic changes were transient either due to the compensation of K17 by other keratins or the replacement of the mutated cells by normal surrounding cells during hair growth.

  5. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.

    Science.gov (United States)

    Han, Han; Cortez, Connie C; Yang, Xiaojing; Nichols, Peter W; Jones, Peter A; Liang, Gangning

    2011-11-15

    Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.

  6. The thermostable direct hemolysin gene (tdh) of Vibrio hollisae is dissimilar in prevalence to and phylogenetically distant from the tdh genes of other vibrios: implications in the horizontal transfer of the tdh gene.

    Science.gov (United States)

    Nishibuchi, M; Janda, J M; Ezaki, T

    1996-01-01

    Vibrio hollisae strains isolated recently from patients in various locations were examined for the presence of the thermostable direct hemolysin gene (tdh) using nucleic acid hybridization and polymerase chain reaction assays. The results were consistent with the previous finding that all strains of V. hollisae carry the tdh gene. In contrast, the tdh gene has been detected in a minority of strains for other Vibrio species (V. parahaemolyticus, V. cholerae non-O1, and V. mimicus). Detailed phylogenetic analysis showed that the tdh genes of the non-V. hollisae species were very closely related to each other and that the tdh gene of V. hollisae was distantly related to the tdh genes of the non-V. hollisae species. These results and the proposed insertion sequence-mediated tdh transfer mechanism suggest that the tdh gene may have been maintained stably in V. hollisae and that the tdh genes of the non-V. hollisae species may have been involved in recent horizontal transfer.

  7. Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain.

    Directory of Open Access Journals (Sweden)

    Qing Xie

    Full Text Available Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of α-, β- and δ-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip were performed using three distinct sources of chromatin (lens, forebrain and β-cells. ChIP-chip studies, performed as biological triplicates, identified a total of 5,260 promoters occupied by Pax6. 1,001 (133 of these promoter regions were shared between at least two (three distinct chromatin sources, respectively. In lens chromatin, 2,335 promoters were bound by Pax6. RNA expression profiling from Pax6⁺/⁻ lenses combined with in vivo Pax6-binding data yielded 76 putative Pax6-direct targets, including the Gaa, Isl1, Kif1b, Mtmr2, Pcsk1n, and Snca genes. RNA and ChIP data were validated for all these genes. In lens cells, reporter assays established Kib1b and Snca as Pax6 activated and repressed genes, respectively. In situ hybridization revealed reduced expression of these genes in E14 cerebral cortex. Moreover, we examined differentially expressed transcripts between E9.5 wild type and Pax6⁻/⁻ lens placodes that suggested Efnb2, Fat4, Has2, Nav1, and Trpm3 as novel Pax6-direct targets. Collectively, the present studies, through the identification of Pax6-direct target genes, provide novel insights into the molecular mechanisms of Pax6 gene control during mouse embryonic development. In addition, the present data demonstrate that Pax6

  8. Phylogenetic conservation of immunoglobulin heavy chains: direct comparison of hamster and mouse Cmu genes.

    Science.gov (United States)

    McGuire, K L; Duncan, W R; Tucker, P W

    1985-08-12

    We have analyzed the JH-Cmu locus of the Syrian hamster by DNA cloning and sequencing. The single Cmu gene is highly homologous to that of the mouse. The hamster equivalents of the JH and switch (S) recombination regions are arranged as in the mouse, but surprisingly are not highly conserved. Also unlike its close murine relative, the Smu regions among inbred hamster strains are not polymorphic. The complete nucleotide sequence of hamster and mouse Cmu genes have been compared to partial Cmu sequences of other species. Conservation within a portion of the 3' untranslated region may signify functional requirements for 3' end processing. Mutational frequencies within exons and introns of hamster and mouse do not support the theory that the rate of DNA transitions to transversions decreases with evolutionary distance.

  9. Genes implicated in stem cell identity and temporal programme are directly targeted by Notch in neuroblast tumours.

    Science.gov (United States)

    Zacharioudaki, Evanthia; Housden, Benjamin E; Garinis, George; Stojnic, Robert; Delidakis, Christos; Bray, Sarah J

    2016-01-15

    Notch signalling is involved in a multitude of developmental decisions and its aberrant activation is linked to many diseases, including cancers. One example is the neural stem cell tumours that arise from constitutive Notch activity in Drosophila neuroblasts. To investigate how hyperactivation of Notch in larval neuroblasts leads to tumours, we combined results from profiling the upregulated mRNAs and mapping the regions bound by the core Notch pathway transcription factor Su(H). This identified 246 putative direct Notch targets. These genes were highly enriched for transcription factors and overlapped significantly with a previously identified regulatory programme dependent on the proneural transcription factor Asense. Included were genes associated with the neuroblast maintenance and self-renewal programme that we validated as Notch regulated in vivo. Another group were the so-called temporal transcription factors, which have been implicated in neuroblast maturation. Normally expressed in specific time windows, several temporal transcription factors were ectopically expressed in the stem cell tumours, suggesting that Notch had reprogrammed their normal temporal regulation. Indeed, the Notch-induced hyperplasia was reduced by mutations affecting two of the temporal factors, which, conversely, were sufficient to induce mild hyperplasia on their own. Altogether, the results suggest that Notch induces neuroblast tumours by directly promoting the expression of genes that contribute to stem cell identity and by reprogramming the expression of factors that could regulate maturity.

  10. Gene Knockdown of Venezuelan Equine Encephalitis Virus E2 Glycoprotein Using DNA-Directed RNA Interference

    Science.gov (United States)

    2006-12-01

    e _s~u~m mary - Introduction: Alphaviruses are a large family of RNA viruses that can cause acute infection resulting in arthritis and encephalitis...One of the important alphaviruses is the Venezuelan equine encephalitis virus. This virus has been linked to a number of outbreaks in both North and... replication of VEE virus in vitro. Bhogal, H.S., McLaws, L.J., and Jager, S.J. 2006. Gene Knockdown of Venezuelan Equine Encephalitis Virus E2

  11. Bi-directional semantic similarity for gene ontology to optimize biological and clinical analyses.

    Science.gov (United States)

    Bien, Sang Jay; Park, Chan Hee; Shim, Hae Jin; Yang, Woongcheol; Kim, Jihun; Kim, Ju Han

    2012-01-01

    Semantic similarity analysis facilitates automated semantic explanations of biological and clinical data annotated by biomedical ontologies. Gene ontology (GO) has become one of the most important biomedical ontologies with a set of controlled vocabularies, providing rich semantic annotations for genes and molecular phenotypes for diseases. Current methods for measuring GO semantic similarities are limited to considering only the ancestor terms while neglecting the descendants. One can find many GO term pairs whose ancestors are identical but whose descendants are very different and vice versa. Moreover, the lower parts of GO trees are full of terms with more specific semantics. This study proposed a method of measuring semantic similarities between GO terms using the entire GO tree structure, including both the upper (ancestral) and the lower (descendant) parts. Comprehensive comparison studies were performed with well-known information content-based and graph structure-based semantic similarity measures with protein sequence similarities, gene expression-profile correlations, protein-protein interactions, and biological pathway analyses. The proposed bidirectional measure of semantic similarity outperformed other graph-based and information content-based methods.

  12. Direct evidence of recombination in the recA gene of Aeromonas bestiarum.

    Science.gov (United States)

    Sanglas, Ariadna; Albarral, Vicenta; Farfán, Maribel; Lorén, J Gaspar; Fusté, M Carmen

    2016-03-01

    Two hundred and twenty-one strains representative of all Aeromonas species were characterized using the recA gene sequence, assessing its potential as a molecular marker for the genus Aeromonas. The inter-species distance values obtained demonstrated that recA has a high discriminatory power. Phylogenetic analysis, based on full-length gene nucleotide sequences, revealed a robust topology with clearly separated clusters for each species. The maximum likelihood tree showed the Aeromonas bestiarum strains in a well-defined cluster, containing a subset of four strains of different geographical origins in a deep internal branch. Data analysis provided strong evidence of recombination at the end of the recA sequences in these four strains. Intergenomic recombination corresponding to partial regions of the two adjacent genes recA and recX (248 bp) was identified between A. bestiarum (major parent) and Aeromonas eucrenophila (minor parent). The low number of recombinant strains detected (1.8%) suggests that horizontal flow between recA sequences is relatively uncommon in this genus. Moreover, only a few nucleotide differences were detected among these fragments, indicating that recombination has occurred recently. Finally, we also determined if the recombinant fragment could have influenced the structure and basic functions of the RecA protein, comparing models reconstructed from the translated amino acid sequences of our A. bestiarum strains with known Escherichia coli RecA structures.

  13. Detection of a functional insertion sequence responsible for deletion of the thermostable direct hemolysin gene (tdh) in Vibrio parahaemolyticus.

    Science.gov (United States)

    Kamruzzaman, Muhammad; Bhoopong, Phuangthip; Vuddhakul, Varaporn; Nishibuchi, Mitsuaki

    2008-09-15

    The thermostable direct hemolysin coded by the tdh gene is a marker of virulent strains of Vibrio parahaemolyticus. The tdh genes are flanked by insertion sequences collectively named as ISVs or their remnants; but the ISVs so far examined have accumulated mutations in the transposase genes and underwent structural arrangements and their transposition activity could not be expected; the tdh gene was thus considered to have been acquired by V. parahaemolyticus through horizontal transfer in the past during evolution. We recently isolated from the same patient tdh+ strains and a tdh(-) strain (PCR examination) that were otherwise indistinguishable. The purpose of this study was to examine the hypothesis that the tdh(-) strain was derived from the tdh+ strain by a deletion of the tdh gene mediated by a functional ISV. Southern blot hybridization showed tdh+ sequences in the tdh(-) strain (PSU-1466). Nucleotide sequence analysis of the tdh and its flanking sequences revealed the tdh gene was split into two parts and they were located 3182-bp apart in PSU-1466. The two tdh sequences were flanked by one of the ISVs, named as ISVpa3, in PSU-1466. This genetic structure could be explained by an ISVpa3-mediated partial tdh deletion from a tdh+ strain followed by transposition of the duplicated ISVpa3 and the deleted tdh sequence into a neighboring location. The ISVpa3 of PSU-1466 coded for a full-length transposase and a DDE motif. We were able to demonstrate transposition activity of the ISVpa3 cloned from PSU-1466 using the replicon fusion assay with the conjugal transfer of a cointegrate from Escherichia coli to V. parahaemolyticus. Our data support ISVpa3-mediated partial tdh deletion resulted in the emergence of the tdh(-) strain.

  14. Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-01-01

    There has been much interest in reconstructing bi-directional regulatory networks linking the circadian clock to metabolism in plants. A variety of reverse engineering methods from machine learning and computational statistics have been proposed and evaluated. The emphasis of the present paper is on

  15. Urea hydrolysis and suppressed production of thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus associated with presence of TDH-related hemolysin genes.

    Science.gov (United States)

    Okitsu, T; Osawa, R; Pornruangwong, S; Yamai, S

    1997-05-01

    A total of 18 strains of V. parahaemolyticus isolated from patients of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were assayed for presence of the thermostable direct hemolysin (TDH) gene and the TDH-related hemolysin (TRH) genes (trh 1 and trh 2) with specific reference to their ability to hydrolyze urea and TDH production. A polymerase chain reaction assay revealed that all urea-hydrolyzing strains (9 strains) carried either trh 1 gene or trh 2 gene. The strains carrying the trh genes as well as the tdh gene produced TDH less by a factor of 4 to 16 than those carrying only the tdh gene, suggesting the expression of the tdh gene was suppressed by the presence of trh gene through a mechanism yet to be defined.

  16. Direct visualization of the highly polymorphic RNU2 locus in proximity to the BRCA1 gene.

    Directory of Open Access Journals (Sweden)

    Chloé Tessereau

    Full Text Available Although the breast cancer susceptibility gene BRCA1 is one of the most extensively characterized genetic loci, much less is known about its upstream variable number tandem repeat element, the RNU2 locus. RNU2 encodes the U2 small nuclear RNA, an essential splicing element, but this locus is missing from the human genome assembly due to the inherent difficulty in the assembly of repetitive sequences. To fill the gap between RNU2 and BRCA1, we have reconstructed the physical map of this region by re-examining genomic clone sequences of public databases, which allowed us to precisely localize the RNU2 array 124 kb telomeric to BRCA1. We measured by performing FISH analyses on combed DNA for the first time the exact number of repeats carried by each of the two alleles in 41 individuals and found a range of 6-82 copies and a level of heterozygosity of 98%. The precise localisation of the RNU2 locus in the genome reference assembly and the implementation of a new technical tool to study it will make the detailed exploration of this locus possible. This recently neglected macrosatellite could be valuable for evaluating the potential role of structural variations in disease due to its location next to a major cancer susceptibility gene.

  17. Amplification and direct sequence analysis of the 23S rRNA gene from thermophilic bacteria

    DEFF Research Database (Denmark)

    Ibrahim, Ashraf; Hofman-Bang, H. Jacob Peider; Ahring, Birgitte Kiær

    2001-01-01

    We present a simplified and fast method to obtain high-quality sequences directly from PCRs without the traditional gel purification. We also report on an improved method to obtain sequence-quality PCR products from microorganisms that are difficult to lyse with no need for DNA extraction. The te....... The technique uses exonuclease I and shrimp alkaline phosphatase to degrade residual dNTPs and primers. Our technique is shown to work on both Gram-positive and Gram-negative bacteria...

  18. Oral Tolerance: A New Tool for the Treatment of Gastrointestinal Inflammatory Disorders and Liver-Directed Gene Therapy

    Directory of Open Access Journals (Sweden)

    Yaron Ilan

    1999-01-01

    Full Text Available Oral tolerance is a method of downregulating an immune response by feeding antigens. The use of oral tolerance toward adenoviruses and colitis-extracted proteins for long term gene therapy and alleviation of experimental colitis, and the mechanisms of tolerance induction are presented. Adenoviruses are efficient vectors in liver-directed gene therapy; however, the antiviral immune response precludes the ability to achieve long term gene expression and prohibits the ability to reinject the recombinant virus. Oral tolerance induction via feeding of viral-extracted proteins prevented the antiadenoviral humoral and cellular immune responses, thus enabling long term gene therapy using these viruses. Moreover, pre-existing immune response to the virus was overcome by tolerance induction, enabling prolonged gene expression in a presensitized host. Inflammatory bowel diseases are immune-mediated disorders where an imbalance between proinflammatory (T helper cell type 1 and anti-inflammatory (T helper cell type 2 cytokines are thought to play a role in the pathogenesis. In the experimental colitis model, the feeding of colitis-extracted proteins downregulated the anticolon immune response. Tolerance induction toward colitis-extracted proteins ameliorated colonic inflammation as shown by decreased diarrhea and reduction of colonic ulcerations, intestinal and peritoneal adhesions, wall thickness and edema. Histological parameters for colitis were markedly improved in tolerized animals. In both models, tolerized animals developed an increase in transforming growth factor-beta, interleukin-4 and interleukin-10, and a decrease in the mRNA of interferon-gamma lymphocytes and serum levels. Adoptive transfer of tolerized lymphocytes enabled the transfer of tolerance toward adenoviruses and colon-extracted proteins. Thus, oral tolerance induces suppressor lymphocytes that mediate immune response downregulation by induction of a shift from a proinflammatory T

  19. Rapidly Evolving Mitochondrial Genome and Directional Selection in Mitochondrial Genes in the Parasitic Wasp Nasonia (Hymenoptera: Pteromalidae)

    Science.gov (United States)

    Raychoudhury, Rhitoban; Lavrov, Dennis V.; Werren, John H.

    2008-01-01

    We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a “Compensation-Draft Feedback”; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus

  20. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp nasonia (hymenoptera: pteromalidae).

    Science.gov (United States)

    Oliveira, Deodoro C S G; Raychoudhury, Rhitoban; Lavrov, Dennis V; Werren, John H

    2008-10-01

    We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a "Compensation-Draft Feedback"; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus accelerating the process of amino acid substitutions.

  1. Muscle segment homeobox genes direct embryonic diapause by limiting inflammation in the uterus

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda; Li, Yingju; Baker, Erin Shammel; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo M.; Piehowski, Paul D.; Monroe, Matthew E.; Jegga, Anil; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K.

    2015-06-11

    Embryonic diapause (delayed implantation) is a reproductive strategy widespread in the animal kingdom. Under this condition, embryos at the blastocyst stage become dormant simultaneously with uterine quiescence until environmental or physiological conditions are favorable for the survival of the mother and newborn. Under favorable conditions, activation of the blastocyst and uterus ensues with implantation and progression of pregnancy. Although endocrine factors are known to participate in this process, the underlying molecular mechanism coordinating this phenomenon is not clearly understood. We recently found that uterine muscle segment homeobox (Msx) transcription factors are critical for the initiation and maintenance of delayed implantation in mice. To better understand why Msx genes are critical for delayed implantation, we compared uterine proteomics profiles between littermate floxed (Msx1/Msx2f/f) mice and mice with uterine deletion of Msx genes (Msx1/Msx2d/d) under delayed conditions. In Msx1/Msx2d/d uteri, pathways including protein translation, ubiquitin-proteasome system, inflammation, chaperone-mediated protein folding, and endoplasmic reticulum (ER) stress were enriched, and computational modeling showed intersection of these pathways on inflammatory responses. Indeed, increases in the ubiquitin-proteasome system and inflammation conformed to proteotoxic and ER stress in Msx1/Msx2d/d uteri under delayed conditions. Interestingly, treatment with a proteasome inhibitor bortezomib further exacerbated ER stress in Msx1/Msx2d/d uteri with aggravated inflammatory response, deteriorating rate of blastocyst recovery and failure to sustain delayed implantation. This study highlights a previously unrecognized role for Msx in preventing proteotoxic stress and inflammatory responses to coordinate embryo dormancy and uterine quiescence during embryonic diapause.

  2. Dissection of tumour and host cells from target organs of metastasis for testing gene expression directly ex vivo.

    Science.gov (United States)

    Rocha, M.; Hexel, K.; Bucur, M.; Schirrmacher, V.; Umansky, V.

    1996-01-01

    We report on a new methodology which allows the direct analysis ex vivo of tumour cells and host cells (lymphocytes, macrophages, endothelial cells) from a metastasised organ (liver or spleen) at any time point during the metastatic process and without any further in vitro culture. First, we used a tumour cell line transduced with the bacterial gene lacZ, which permits the detection of the procaryotic enzyme beta-galactosidase in eukaryotic cells at the single cell level thus allowing flow adhesion cell sorting (FACS) analysis of tumour cells from metastasised target organs. Second, we established a method for the separation and enrichment of tumour and host cells from target organs of metastasis with a high viability and reproducibility. As exemplified with the murine lymphoma ESb, this new methodology permits the study of molecules of importance for metastasis or anti-tumour immunity (adhesion, costimulatory and cytotoxic molecules, cytokines, etc.) at the RNA or protein level in tumour and host cells during the whole process of metastasis. This novel approach may open new possibilities of developing strategies for intervention in tumour progression, since it allows the determination of the optimal window in time for successful treatments. The possibility of direct analysis of tumour and host cell properties also provides a new method for the evaluation of the effects of immunisation with tumour vaccines or of gene therapy. Images Figure 3 PMID:8883407

  3. Manipulation of cell cycle progression can counteract the apparent loss of correction frequency following oligonucleotide-directed gene repair

    Directory of Open Access Journals (Sweden)

    Kmiec Eric B

    2007-02-01

    Full Text Available Abstract Background Single-stranded oligonucleotides (ssODN are used routinely to direct specific base alterations within mammalian genomes that result in the restoration of a functional gene. Despite success with the technique, recent studies have revealed that following repair events, correction frequencies decrease as a function of time, possibly due to a sustained activation of damage response signals in corrected cells that lead to a selective stalling. In this study, we use thymidine to slow down the replication rate to enhance repair frequency and to maintain substantial levels of correction over time. Results First, we utilized thymidine to arrest cells in G1 and released the cells into S phase, at which point specific ssODNs direct the highest level of correction. Next, we devised a protocol in which cells are maintained in thymidine following the repair reaction, in which the replication is slowed in both corrected and non-corrected cells and the initial correction frequency is retained. We also present evidence that cells enter a senescence state upon prolonged treatment with thymidine but this passage can be avoided by removing thymidine at 48 hours. Conclusion Taken together, we believe that thymidine may be used in a therapeutic fashion to enable the maintenance of high levels of treated cells bearing repaired genes.

  4. Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2016-12-01

    Full Text Available Genistein (GNT, an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage.

  5. Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley.

    Science.gov (United States)

    Budhagatapalli, Nagaveni; Rutten, Twan; Gurushidze, Maia; Kumlehn, Jochen; Hensel, Goetz

    2015-07-06

    Transcription activator-like effector nucleases open up new opportunities for targeted mutagenesis in eukaryotic genomes. Similar to zinc-finger nucleases, sequence-specific DNA-binding domains can be fused with effector domains like the nucleolytically active part of FokI to induce double-strand breaks and thereby modify the host genome on a predefined target site via nonhomologous end joining. More sophisticated applications of programmable endonucleases involve the use of a DNA repair template facilitating homology-directed repair (HDR) so as to create predefined rather than random DNA sequence modifications. The aim of this study was to demonstrate the feasibility of editing the barley genome by precisely modifying a defined target DNA sequence resulting in a predicted alteration of gene function. We used gfp-specific transcription activator-like effector nucleases along with a repair template that, via HDR, facilitates conversion of gfp into yfp, which is associated with a single amino acid exchange in the gene product. As a result of co-bombardment of leaf epidermis, we detected yellow fluorescent protein accumulation in about three of 100 mutated cells. The creation of a functional yfp gene via HDR was unambiguously confirmed by sequencing of the respective genomic site. In addition to the allele conversion accomplished in planta, a readily screenable marker system is introduced that might be useful for optimization approaches in the field of genome editing.

  6. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Zheng, Zhimin

    2010-01-06

    RNA-directed DNA methylation (RdDM) is an important epigenetic mechanism for silencing transgenes and endogenous repetitive sequences such as transposons. The RD29A promoter-driven LUCIFERASE transgene and its corresponding endogenous RD29A gene are hypermethylated and silenced in the Arabidopsis DNA demethylase mutant ros1. By screening for second-site suppressors of ros1, we identified the RDM12 locus. The rdm12 mutation releases the silencing of the RD29A-LUC transgene and the endogenous RD29A gene by reducing the promoter DNA methylation. The rdm12 mutation also reduces DNA methylation at endogenous RdDM target loci, including transposons and other repetitive sequences. In addition, the rdm12 mutation affects the levels of small interfering RNAs (siRNAs) from some of the RdDM target loci. RDM12 encodes a protein with XS and coiled-coil domains, and is similar to SGS3, which is a partner protein of RDR6 and can bind to double-stranded RNAs with a 5′ overhang, and is required for several post-transcriptional gene silencing pathways. Our results show that RDM12 is a component of the RdDM pathway, and suggest that RdDM may involve double-stranded RNAs with a 5′ overhang and the partnering between RDM12 and RDR2. © 2010 Blackwell Publishing Ltd.

  7. Genistein: A Novel Anthocyanin Synthesis Promoter that Directly Regulates Biosynthetic Genes in Red Cabbage in a Light-Dependent Way

    Science.gov (United States)

    Zhang, Na; Qi, Yan; Zhang, Hai-Jun; Wang, Xiaoyun; Li, Hongfei; Shi, Yantong; Guo, Yang-Dong

    2016-01-01

    Genistein (GNT), an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L) as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage. PMID:27990149

  8. Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles.

    Science.gov (United States)

    Chen, Xuesong; Gu, Qi; Wang, Xiang; Ma, Qingwen; Tang, Huixiang; Yan, Xiaoshuang; Guo, Xinbing; Yan, Hao; Hao, Jie; Zeng, Fanyi

    2013-07-01

    Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.

  9. MicroRNA-34 directly targets pair-rule genes and cytoskeleton component in the honey bee

    Science.gov (United States)

    Freitas, Flávia C. P.; Pires, Camilla V.; Claudianos, Charles; Cristino, Alexandre S.; Simões, Zilá L. P.

    2017-01-01

    MicroRNAs (miRNAs) are key regulators of developmental processes, such as cell fate determination and differentiation. Previous studies showed Dicer knockdown in honeybee embryos disrupt the processing of functional mature miRNAs and impairs embryo patterning. Here we investigated the expression profiles of miRNAs in honeybee embryogenesis and the role of the highly conserved miR-34-5p in the regulation of genes involved in insect segmentation. A total of 221 miRNAs were expressed in honey bee embryogenesis among which 97 mature miRNA sequences have not been observed before. Interestingly, we observed a switch in dominance between the 5-prime and 3-prime arm of some miRNAs in different embryonic stages; however, most miRNAs present one dominant arm across all stages of embryogenesis. Our genome-wide analysis of putative miRNA-target networks and functional pathways indicates miR-34-5p is one of the most conserved and connected miRNAs associated with the regulation of genes involved in embryonic patterning and development. In addition, we experimentally validated that miR-34-5p directly interacts to regulatory elements in the 3′-untranslated regions of pair-rule (even-skipped, hairy, fushi-tarazu transcription factor 1) and cytoskeleton (actin5C) genes. Our study suggests that miR-34-5p may regulate the expression of pair-rule and cytoskeleton genes during early development and control insect segmentation. PMID:28098233

  10. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua

    Directory of Open Access Journals (Sweden)

    Mittelholzer Christian

    2009-12-01

    Full Text Available Abstract Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs for evidence of selection in local populations of Atlantic cod (Gadus morhua L. across the species distribution. Results Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread and complex, i.e. outlier loci were generally not only associated with one of a few divergent local populations. Even on a limited geographical scale between the proximate North Sea and Baltic Sea populations four loci displayed evidence of adaptive evolution. Temporal genome scan analysis applied to DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found that genetic variation at several of the outlier loci was better correlated with temperature and/or salinity conditions at spawning grounds at spawning time than with geographic distance per se. Conclusion These findings illustrate that adaptive population divergence may indeed be prevalent despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of

  11. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression.

    Directory of Open Access Journals (Sweden)

    Victor Y L Leung

    2011-11-01

    Full Text Available Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between

  12. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton.

    Science.gov (United States)

    Lu, Qiuheng; Schafer, Dorothy A; Adler, Paul N

    2015-07-15

    The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.

  13. Direct regulation of tRNA and 5S rRNA gene transcription by Polo-like kinase 1.

    Science.gov (United States)

    Fairley, Jennifer A; Mitchell, Louise E; Berg, Tracy; Kenneth, Niall S; von Schubert, Conrad; Silljé, Herman H W; Medema, René H; Nigg, Erich A; White, Robert J

    2012-02-24

    Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase III (pol III) through direct binding and phosphorylation of transcription factor Brf1. During interphase, Plk1 promotes tRNA and 5S rRNA expression by phosphorylating Brf1 directly on serine 450. However, this stimulatory modification is overridden at mitosis, when elevated Plk1 activity causes Brf1 phosphorylation on threonine 270 (T270), which prevents pol III recruitment. Thus, although Plk1 enhances net tRNA and 5S rRNA production, consistent with its proliferation-stimulating function, it also suppresses untimely transcription when cells divide. Genomic instability is apparent in cells with Brf1 T270 mutated to alanine to resist Plk1-directed inactivation, suggesting that chromosome segregation is vulnerable to inappropriate pol III activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    Science.gov (United States)

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner.

  15. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  16. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    Science.gov (United States)

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  17. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    Science.gov (United States)

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  18. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Ferreira

    Full Text Available Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus. Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis.

  19. Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells.

    Science.gov (United States)

    Wang, Yebo; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2016-11-28

    Human embryonic stem cells (hESCs) are used as platforms for disease study, drug screening and cell-based therapy. To facilitate these applications, it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However, the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However, certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site, probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein, LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.

  20. Rapid and specific detection of the thermostable direct hemolysin gene in Vibrio parahaemolyticus by loop-mediated isothermal amplification.

    Science.gov (United States)

    Nemoto, Jiro; Sugawara, Chiyo; Akahane, Kenji; Hashimoto, Keiji; Kojima, Tadashi; Ikedo, Masanari; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2009-04-01

    Several investigators have reported that thermostable direct hemolysin (TDH) and TDH-related hemolysin are important virulence factors of Vibrio parahaemolyticus, but it has been difficult to detect these factors rapidly in seafood and other environmental samples. A novel nucleic acid amplification method, termed the loop-mediated isothermal amplification (LAMP), which amplifies DNA with high specificity and rapidity under isothermal conditions, was applied. In this study, we designed tdh gene-specific LAMP primers for detection of TDH-producing V. parahaemolyticus. The specificity of this assay was evaluated with 32 strains of TDH-producing V. parahaemolyticus, one strain of TDH-producing Grimontia hollisae, 10 strains of TDH-nonproducing V. parahaemolyticus, and 94 strains of TDH-nonproducing bacteria, and the sensitivity was high enough to detect one cell per test. Moreover, to investigate the detection of TDH-producing V. parahaemolyticus in oysters, the LAMP assay was performed with enrichment culture in alkaline peptone water of oyster samples inoculated with TDH-producing V. parahaemolyticus and TDH-nonproducing V. parahaemolyticus and V. alginolyticus after enrichment in alkaline peptone water. These results suggest that the LAMP assay targeting tdh gene has high sensitivity and specificity and is useful to detect TDH-producing V. parahaemolyticus in oyster after enrichment.

  1. Direct and Indirect Suppression of Interleukin-6 Gene Expression in Murine Macrophages by Nuclear Orphan Receptor REV-ERBα

    Directory of Open Access Journals (Sweden)

    Shogo Sato

    2014-01-01

    Full Text Available It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6 gene expression in murine macrophages. REV-ERBα agonists, or overexpression of rev-erbα in the murine macrophage cell line RAW264 cells, suppressed the induction of il6 mRNA following a lipopolysaccharide (LPS endotoxin challenge. Also, rev-erbα overexpression decreased LPS-stimulated nuclear factor κB (NFκB activation in RAW264 cells. We showed that REV-ERBα represses il6 expression not only indirectly through an NFκB binding motif but also directly through a REV-ERBα binding motif in the murine il6 promoter region. Furthermore, peritoneal macrophages from mice lacking rev-erbα increased il6 mRNA expression. These data suggest that REV-ERBα regulates the inflammatory response of macrophages through the suppression of il6 expression. REV-ERBα may therefore be identified as a potent anti-inflammatory receptor and be a therapeutic target receptor of inflammatory diseases.

  2. Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States.

    Science.gov (United States)

    Okuda, J; Ishibashi, M; Abbott, S L; Janda, J M; Nishibuchi, M

    1997-08-01

    Urease-positive (Ure+) and urease-negative (Ure-) strains of Vibrio parahaemolyticus isolated from patients on the West Coast of the United States between 1979 and 1995 were analyzed for the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes (trh1 and trh2). The DNA colony hybridization method with the polynucleotide probes was used to determine the distribution of the genes. Of 60 Ure+ strains, 59 strains (98%) had the trh (either trh1 or trh2) gene and 54 strains (90%) carried the tdh gene. The absence of the trh gene or a related sequence in an exceptional Ure+ strain was confirmed by Southern blot analyses. The stronger correlation with the trh gene than with the tdh gene was mostly attributable to strains possessing only the trh2 gene. Of 25 Ure- strains, 20 strains (80%) had the tdh gene but none had the trh gene. These results indicate a very strong correlation between the Ure+ phenotype and the trh gene and are consistent with those reported for strains isolated in Asia. The Ure+ strains carrying the trh genes were not restricted to a unique group of the strains. The O4:K12 strains carrying the trh1 gene have predominantly been isolated since 1979. However, strains of various non-O4:K12 serovars carrying either the trh1 or the trh2 gene became predominant after 1992. In addition, analysis by the arbitrarily primed PCR method revealed two subgroups within the selected Ure+ O4:K12 strains. Hybridization tests with oligonucleotide probes demonstrated that the trh1 sequences of the West Coast strains differ to some extent from those of Asian strains. Nevertheless, a PCR method previously established to detect both the trh1 and the trh2 genes in Asian strains could detect 98% of those genes in the West Coast strains.

  3. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder.

    Science.gov (United States)

    Sarachana, Tewarit; Hu, Valerie W

    2013-05-22

    We have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). Our independent cohort studies have consistently demonstrated the reduction of RORA transcript and/or protein levels in blood-derived lymphoblasts as well as in the postmortem prefrontal cortex and cerebellum of individuals with ASD. Moreover, we have also shown that RORA has the potential to be under negative and positive regulation by androgen and estrogen, respectively, suggesting the possibility that RORA may contribute to the male bias of ASD. However, little is known about transcriptional targets of this nuclear receptor, particularly in humans. Here we identify transcriptional targets of RORA in human neuronal cells on a genome-wide level using chromatin immunoprecipitation (ChIP) with an anti-RORA antibody followed by whole-genome promoter array (chip) analysis. Selected potential targets of RORA were then validated by an independent ChIP followed by quantitative PCR analysis. To further demonstrate that reduced RORA expression results in reduced transcription of RORA targets, we determined the expression levels of the selected transcriptional targets in RORA-deficient human neuronal cells, as well as in postmortem brain tissues from individuals with ASD who exhibit reduced RORA expression. The ChIP-on-chip analysis reveals that RORA1, a major isoform of RORA protein in human brain, can be recruited to as many as 2,764 genomic locations corresponding to promoter regions of 2,544 genes across the human genome. Gene ontology analysis of this dataset of genes that are potentially directly regulated by RORA1 reveals statistically significant enrichment in biological functions negatively impacted in individuals with ASD, including neuronal differentiation, adhesion and survival, synaptogenesis, synaptic transmission and plasticity, and axonogenesis, as well as higher level functions such as

  4. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael;

    2011-01-01

    of Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly...

  5. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  6. Structure and evolution of CyI cytoplasmic actin-encoding genes in the indirect- and direct-developing sea urchins Heliocidaris tuberculata and Heliocidaris erythrogramma.

    Science.gov (United States)

    Hahn, J H; Kissinger, J C; Raff, R A

    1995-02-14

    The CyI cytoplasmic actin-encoding genes of Heliocidaris erythrogramma (He), a direct-developing sea urchin, and H. tuberculata, an indirect developer, were isolated and compared to the homologous CyI gene of another indirect developer, Strongylocentrotus purpuratus. Comparisons show that despite the differences in development, the actin gene structures and sequences are highly similar. The coding and 3' untranslated regions are conserved. The 5' He regulatory region has an inserted repeat element, but is otherwise similar to its homologues in the arrangement of presumptive transcription control elements.

  7. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry.

    Science.gov (United States)

    Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin

    2011-09-01

    A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.

  8. Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity.

    Science.gov (United States)

    Vaughan, A; Rocheleau, T; ffrench-Constant, R

    1997-11-01

    Insecticide resistance is a serious problem facing the effective control of insect vectors of disease. Insensitive acetylcholinesterase (AChE) confers resistance to organophosphorus (OP) and carbamate insecticides and is a widespread resistance mechanism in vector mosquitoes. Although the point mutations that underlie AChE insensitivity have been described from Drosophila, the Colorado potato beetle, and house flies, no resistance associated mutations have been documented from mosquitoes to date. We are therefore using a cloned acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti as a model in which to perform site directed mutagenesis in order to understand the effects of potential resistance associated mutations. The same resistance associated amino-acid replacements as found in other insects also confer OP and carbamate resistance to the mosquito enzyme. Here we describe the levels of resistance conferred by different combinations of these mutations and the effects of these mutations on the kinetics of the AChE enzyme. Over-expression of these constructs in baculovirus will facilitate purification of each of the mutant enzymes and a more detailed analysis of their associated inhibition kinetics.

  9. Directional dispersal between mid-ocean ridges: deep-ocean circulation and gene flow in Ridgeia piscesae.

    Science.gov (United States)

    Young, C R; Fujio, S; Vrijenhoek, R C

    2008-04-01

    This study examined relationships between bathymetrically induced deep-ocean currents and the dispersal of the hydrothermal vent tubeworm Ridgeia piscesae along the northeast Pacific ridge system. A robust diagnostic model of deep-ocean circulation in this region predicted strong southeasterly currents following contours of the Blanco Transform Fault, a 450-km lateral offset that separates the Gorda and Juan de Fuca ridge systems. Such currents should facilitate the southward dispersal of R. piscesae larvae. Immigration rates for populations north and south of the Blanco Transform Fault were estimated from molecular population genetic data. Mitochondrial DNA evidence revealed population subdivision across the Blanco Transform Fault, and a strong directional bias in gene flow that was consistent with predictions of the circulation model. The distribution of mitochondrial diversity between the northern and southern populations of R. piscesae suggests that the Gorda Ridge tubeworms have maintained larger effective population sizes than the northern populations, a pattern that also exists in co-occurring limpets. Together, these data suggest that the northern vent fields may experience a higher frequency of habitat turnover and consequently more rapid losses of genetic diversity.

  10. Construction of a mutant library of horseradish peroxidase gene by directed evolution and development of an in situ screening method

    Directory of Open Access Journals (Sweden)

    F.M. Mendive

    2003-03-01

    Full Text Available A process of directed evolution applied to obtain a library of mutants of horseradish peroxidase (HRP enzyme is described. We have introduced slight variations into the original DNA shuffling protocol. A DNA template was prepared by PCR amplification and digested with Dnase I during 1 hour. Dnase I products were concentrated by precipitation with isopropanol. Gel electrophoresis showed fragments of the desired size range (20-600 pb without a full-length template remaining in the reaction mixture. A high concentration of fragments was crucial for performing PCR without primers. In this case, a template concentration of 32.5 ng/mu l was appropriate. Amplification of recombinant genes in a standard PCR reaction (template dilution 1:100 produced a smear with a low yield for the full-length sequence. A single product of the correct size was obtained by PCR with nested primers separated from the previously used primers by 40 pb. In our laboratory, native HRP has been functionally expressed in a baculovirus expression vector system. The purpose is to develop the screening of the first generation of random mutants in this system. To facilitate detection of those clones that have high peroxidase activity, we developed a rapid method: after five days postinfection agarose plates with six wells were covered with DAB (3,3´-diaminobenzidine and H2O2. The appearance of brown-black stain allows visualization of up to 100 active clones/well in only 1 min.

  11. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  12. Fast-track applications: The potential for direct delivery of proteins and nucleic acids to plant cells for the discovery of gene function

    Directory of Open Access Journals (Sweden)

    Roberts Michael R

    2005-12-01

    Full Text Available Abstract In animal systems, several methods exist for the direct delivery of nucleic acids and proteins into cells for functional analysis. Until recently, these methods have not been applied to plant systems. Now, however, several preliminary reports suggest that both nucleic acids and proteins can also be delivered into plant cells by very simple, direct application. This promises to open the way for high-throughput screening for gene function in a range of plant species.

  13. The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Andreadaki, F.J.; Leer, R.J.; Pouwels, P.H.

    1996-01-01

    S-proteins are proteins which form a regular structure (S-layer) on the outside of the cell walls of many bacteria. Two S-protein-encoding genes are located in opposite directions on a 6.0-kb segment of the chromosome of Lactobacillus acidophilus ATCC 4356 bacteria. Inversion of this chromosomal seg

  14. Identification of bacteria directly from positive blood culture samples by DNA pyrosequencing of the 16S rRNA gene.

    Science.gov (United States)

    Motoshima, Maiko; Yanagihara, Katsunori; Morinaga, Yoshitomo; Matsuda, Junichi; Hasegawa, Hiroo; Kohno, Shigeru; Kamihira, Shimeru

    2012-11-01

    Rapid identification of the causative bacteria of sepsis in patients can contribute to the selection of appropriate antibiotics and improvement of patients' prognosis. Genotypic identification is an emerging technology that may provide an alternative method to, or complement, established phenotypic identification procedures. We evaluated a rapid protocol for bacterial identification based on PCR and pyrosequencing of the V1 and V3 regions of the 16S rRNA gene using DNA extracted directly from positive blood culture samples. One hundred and two positive blood culture bottles from 68 patients were randomly selected and the bacteria were identified by phenotyping and pyrosequencing. The results of pyrosequencing identification displayed 84.3 and 64.7 % concordance with the results of phenotypic identification at the genus and species levels, respectively. In the monomicrobial samples, the concordance between the results of pyrosequencing and phenotypic identification at the genus level was 87.0 %. Pyrosequencing identified one isolate in 60 % of polymicrobial samples, which were confirmed by culture analysis. Of the samples identified by pyrosequencing, 55.7 % showed consistent results in V1 and V3 targeted sequencing; other samples were identified based on the results of V1 (12.5 %) or V3 (31.8 %) sequencing alone. One isolate was erroneously identified by pyrosequencing due to high sequence similarity with another isolate. Pyrosequencing identified one isolate that was not detected by phenotypic identification. The process of pyrosequencing identification can be completed within ~4 h. The information provided by DNA-pyrosequencing for the identification of micro-organisms in positive blood culture bottles is accurate and could prove to be a rapid and useful tool in standard laboratory practice.

  15. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces.

    Science.gov (United States)

    Du, Deyao; Wang, Lu; Tian, Yuqing; Liu, Hao; Tan, Huarong; Niu, Guoqing

    2015-03-04

    Several strategies have been used to clone large DNA fragments directly from bacterial genome. Most of these approaches are based on different site-specific recombination systems consisting of a specialized recombinase and its target sites. In this study, a novel strategy based on phage ϕBT1 integrase-mediated site-specific recombination was developed, and used for simultaneous Streptomyces genome engineering and cloning of antibiotic gene clusters. This method has been proved successful for the cloning of actinorhodin gene cluster from Streptomyces coelicolor M145, napsamycin gene cluster and daptomycin gene cluster from Streptomyces roseosporus NRRL 15998 at a frequency higher than 80%. Furthermore, the system could be used to increase the titer of antibiotics as we demonstrated with actinorhodin and daptomycin, and it will be broadly applicable in many Streptomyces.

  16. Homology Directed Knockin of Point Mutations in the Zebrafish tardbp and fus Genes in ALS Using the CRISPR/Cas9 System.

    Directory of Open Access Journals (Sweden)

    Gary Alan Barclay Armstrong

    Full Text Available The methodology for site-directed editing of single nucleotides in the vertebrate genome is of considerable interest for research in biology and medicine. The clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 type II (Cas9 system has emerged as a simple and inexpensive tool for editing genomic loci of interest in a variety of animal models. In zebrafish, error-prone non-homologous end joining (NHEJ has been used as a simple method to disrupt gene function. We sought to develop a method to easily create site-specific SNPs in the zebrafish genome. Here, we report simple methodologies for using CRISPR/Cas9-mediated homology directed repair using single-stranded oligodeoxynucleotide donor templates (ssODN for site-directed single nucleotide editing, for the first time in two disease-related genes, tardbp and fus.

  17. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression.

    Science.gov (United States)

    Zunder, Rachel M; Rine, Jasper

    2012-11-01

    In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.

  18. Sequencing and identification of expressed Schistosoma mansoni genes by random selection of cDNA clones from a directional library

    Directory of Open Access Journals (Sweden)

    Glória R. Franco

    1995-04-01

    Full Text Available We have initiated a gene discovery program in Schistosoma mansoni based on the technique of Expressed Sequence Tags (ESTs, i.e. partial sequences of cDNAs obtained from single passes in automatic DNA sequencers. ESTs can be used to identify genese onf the basis of their homology whith sequences from other species deposited in DNA or protein databases. Trasncripts with sequences without matches in teh databases may represent novel parasite-specific genes. This approach has shown to be very efficient and in less than two years a broad range of novel genes has already been ascertained, more than doubling the number of known S. mansoni genes.

  19. The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Natalia Rivera-Torres

    Full Text Available With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs, as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.

  20. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps

    Directory of Open Access Journals (Sweden)

    Etchells J Peter

    2009-10-01

    Full Text Available Abstract Background The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. Results Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. Conclusion The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

  1. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  2. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression.

    Science.gov (United States)

    Scott, M G; Rosenberger, C M; Gold, M R; Finlay, B B; Hancock, R E

    2000-09-15

    Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic alpha-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.

  3. N-terminal truncated human RAG1 proteins can direct T-cell receptor but not immunoglobulin gene rearrangements

    NARCIS (Netherlands)

    J.G. Noordzij; N.S. Verkaik (Nicole); N.G. Hartwig (Nico); R. de Groot (Ronald); D.C. van Gent (Dik); J.J.M. van Dongen (Jacques)

    2000-01-01

    textabstractThe proteins encoded by RAG1 and RAG2 can initiate gene recombination by site-specific cleavage of DNA in immunoglobulin and T-cell receptor (TCR) loci. We identified a new homozygous RAG1 gene mutation (631delT) that leads to a premature stop codon in the 5

  4. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Stéphane G. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Banner, David [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Chi, Le Thi Bao [Department of Microbiology, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Carlo Urbani Centre, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Leon, Alberto J. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); Xu, Luoling; Ran, Longsi [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Huang, Stephen S.H. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Farooqui, Amber [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  5. Tumor-directed gene therapy in mice using a composite nonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine

    Directory of Open Access Journals (Sweden)

    Wu Chaoqun

    2009-04-01

    Full Text Available Abstract Background Compared with viral vectors, nonviral vectors are less immunogenic, more stable, safer and easier to replication for application in cancer gene therapy. However, nonviral gene delivery system has not been extensively used because of the low transfection efficiency and the short transgene expression, especially in vivo. It is desirable to develop a nonviral gene delivery system that can support stable genomic integration and persistent gene expression in vivo. Here, we used a composite nonviral gene delivery system consisting of the piggyBac (PB transposon and polyethylenimine (PEI for long-term transgene expression in mouse ovarian tumors. Methods A recombinant plasmid PB [Act-RFP, HSV-tk] encoding both the herpes simplex thymidine kinase (HSV-tk and the monomeric red fluorescent protein (mRFP1 under PB transposon elements was constructed. This plasmid and the PBase plasmid were injected into ovarian cancer tumor xenografts in mice by in vivo PEI system. The antitumor effects of HSV-tk/ganciclovir (GCV system were observed after intraperitoneal injection of GCV. Histological analysis and TUNEL assay were performed on the cryostat sections of the tumor tissue. Results Plasmid construction was confirmed by PCR analysis combined with restrictive enzyme digestion. mRFP1 expression could be visualized three weeks after the last transfection of pPB/TK under fluorescence microscopy. After GCV admission, the tumor volume of PB/TK group was significantly reduced and the tumor inhibitory rate was 81.96% contrasted against the 43.07% in the TK group. Histological analysis showed that there were extensive necrosis and lymphocytes infiltration in the tumor tissue of the PB/TK group but limited in the tissue of control group. TUNEL assays suggested that the transfected cells were undergoing apoptosis after GCV admission in vivo. Conclusion Our results show that the nonviral gene delivery system coupling PB transposon with PEI can be used

  6. Efficient in vivo gene transfer to xenotransplanted human skin by lentivirus-mediated, but not by AAV-directed, gene delivery

    DEFF Research Database (Denmark)

    Jakobsen, Maria Vad; Askou, Anne Louise; Dokkedahl, Karin Stenderup

    in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human......Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for treatment of skin diseases. We compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin...... skin graft, and firefly luciferase expression was observed primarily in neighboring tissue beneath or surrounding the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin...

  7. The enhancement effect of pp38 gene product on the activity of its upstream bi-directional promoter in Marek's disease virus

    Institute of Scientific and Technical Information of China (English)

    DING; Jiabo; CUI; Zhizhong; JIANG; Shijin; REDDY; Sanjay

    2006-01-01

    There was a bi-directional promoter between gene 38 kd phosphorylated protein (pp38) gene and 1.8-kb mRNA transcript gene family in the genome of Marek's disease virus (MDV). In this study, enhanced green fluorescence protein (EGFP) reporter plamids, pP(pp38)-EGFP and pP(1.8- kb)-EGFP, were constructed under this bi-directional promoter in two directions. The two plasmids were transfected into uninfected chicken embryo fibroblast (CEF), MDV clone rMd5 infected CEF (rMd5-CEF) and pp38-deleted derivative rMd5Δpp38 infected CEF (rMd5Δpp38-CEF) respectively. Transfection analysis showed that EGFP was only expressed in rMd5-CEF, and no EGFP could be detected in uninfected CEF or rMd5Δpp38-CEF, implying that pp38 was a factor influencing the activity of the promoter. The pp38-expressing recombinant plasmid pcDNA-pp38 was constructed to co- transfect CEF or rMd5Δpp38-CEF with pP(pp38)-EGFP or pP(1.8-kb)-EGFP. In this case, EGFP could be detected only in rMd5Δpp38-CEF but still not in uninfected CEF, implying that pp38 needs other protein(s) to work together for the complete trans-acting activity. Another MDV gene, 24 kd phosphorylated protein pp24 gene was cloned into pcDNA3.1 as a pp24-expressing recombinant plasmid pcDNA-pp24. When uninfected CEF was co-transfected with pcDNA-pp38, pcDNA-pp24 and EGFP expressing plasmids pP(pp38)-EGFP or pP(1.8-kb)-EGFP, the EGFP could be detected. These results indicated that pp38 and pp24 could enhance the activity of the promoter when they worked together. DNA mobility shift assay showed that pp38 would bind to the bi-directional promoter with the co-existing of pp24, although neither of them alone influenced mobility of the promoter DNA. All the above suggested that MDV pp38 could transactivate the bi-directional promoter when combined with pp24. The results also indicated that the activity of the promoter in the direction of 1.8-kb mRNA was significantly stronger than that of pp38 direction.

  8. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology

    Directory of Open Access Journals (Sweden)

    Qisheng Zuo

    2016-06-01

    Full Text Available The present study established an efficient genome editing approach for the construction of stable transgenic cell lines of the domestic chicken (Gallus gallus domesticus. Our objectives were to facilitate the breeding of high-yield, high-quality chicken strains, and to investigate gene function in chicken stem cells. Three guide RNA (gRNAs were designed to knockout the C2EIP gene, and knockout efficiency was evaluated in DF-1 chicken fibroblasts and chicken ESCs using the luciferase single-strand annealing (SSA recombination assay, T7 endonuclease I (T7EI assay, and TA clone sequencing. In addition, the polyethylenimine-encapsulated Cas9/gRNA plasmid was injected into fresh fertilized eggs. At 4.5 d later, frozen sections of the embryos were prepared, and knockout efficiency was evaluated by the T7EI assay. SSA assay results showed that luciferase activity of the vector expressing gRNA-3 was double that of the control. Results of the T7EI assay and TA clone sequencing indicated that Cas9/gRNA vector-mediated gene knockdown efficiency was approximately 27% in both DF-1 cells and ESCs. The CRISPR/Cas9 vector was also expressed in chicken embryos, resulting in gene knockdown in three of the 20 embryos (gene knockdown efficiency 15%. Taken together, our results indicate that the CRISPR/Cas9 system can mediate stable gene knockdown at the cell and embryo levels in domestic chickens.

  9. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding.

    Science.gov (United States)

    Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A

    2015-05-01

    Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans.

  10. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes.

    Science.gov (United States)

    Elías-Villalobos, Alberto; Fernández-Álvarez, Alfonso; Moreno-Sánchez, Ismael; Helmlinger, Dominique; Ibeas, José I

    2015-08-01

    Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.

  11. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2015-08-01

    Full Text Available Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.

  12. Occurrence of urease-positive Vibrio parahaemolyticus in Kanagawa, Japan, with specific reference to presence of thermostable direct hemolysin (TDH) and the TDH-related-hemolysin genes.

    Science.gov (United States)

    Osawa, R; Okitsu, T; Morozumi, H; Yamai, S

    1996-02-01

    A total of 132 strains of V. parahaemolyticus isolated from patients and from the suspected causal food items of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were examined for the ability to hydrolyze urea, with specific reference to the presence of the thermostable direct hemolysin gene (tdh) and the gene for thermostable direct hemolysin-related hemolysin (trh). Ten strains belonging to five different O-antigen serotypes were positive for urea hydrolysis (UH+), and four of these strains did not carry tdh. A total of 106 strains carried tdh, but less than 6% of them were UH+, whereas all trh-carrying strains were UH+. The evidence suggests that urea hydrolysis is not a reliable marker for identifying tdh-carrying V. parahaemolyticus strains in Japan (the Pacific Northeast) but may be a marker for trh-carrying strains.

  13. Meta-analysis of Arabidopsis KANADI1 direct target genes identifies basic growth-promoting module acting upstream of hormonal signaling pathways

    DEFF Research Database (Denmark)

    Xie, Yakun; Straub, Daniel; Eguen, Teinai Ebimienere;

    2015-01-01

    -wide datasets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we find three YUCCA genes, YUC2, YUC5 and YUC8 to be transcriptionally upregulated, which correlates with an increase in the levels of free auxin. When ectopically expressed......, KAN1 is able to transcriptionally repress these three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KAN1 is able to strongly suppress shade avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module. Hypocotyl...... extension in the shade and outgrowth of new leaves both involve auxin-synthesis and -signaling, which are under the direct control by HD-ZIPIII/KAN....

  14. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gaora Peadar Ó

    2010-10-01

    Full Text Available Abstract Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of

  15. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    Science.gov (United States)

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and

  16. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    Science.gov (United States)

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and

  17. Use of a non-radioactive hybridisation assay for direct detection of gram-negative bacteria carrying TEM beta-lactamase genes in infected urine.

    Science.gov (United States)

    Carter, G I; Towner, K J; Pearson, N J; Slack, R C

    1989-02-01

    DNA in infected urines from 81 patients with urinary tract infection was hybridised directly with a non-radioactive DNA probe specific for bacterial genes coding for TEM-type beta-lactamase. The results were assessed by means of a computerised image analysis system and compared with those obtained following isolation of the infecting organism, conventional sensitivity testing and isoelectric focusing (IEF) procedures for the detection of TEM-type beta-lactamase. Of the 27 ampicillin-resistant gram-negative organisms isolated in pure culture from the urines, 14 were shown by both hybridisation and IEF to carry a gene for TEM beta-lactamase production. Only four discordant results were obtained: three "false positive" direct hybridisation results, one due to urine pigmentation, and one, possibly, to a TEM beta-lactamase gene which was not being expressed, and one "false negative" result due to insufficient cell numbers in the urine. The system is capable of screening large numbers of samples and is applicable to any gene for which a suitable DNA probe is available.

  18. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion.

    Science.gov (United States)

    Paquette, Stéphane G; Banner, David; Chi, Le Thi Bao; Leόn, Alberto J; Xu, Luoling; Ran, Longsi; Huang, Stephen S H; Farooqui, Amber; Kelvin, David J; Kelvin, Alyson A

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.

  19. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes.

    Science.gov (United States)

    Krogan, Naden T; Marcos, Danielle; Weiner, Aaron I; Berleth, Thomas

    2016-10-01

    The regulatory effect auxin has on its own transport is critical in numerous self-organizing plant patterning processes. However, our understanding of the molecular mechanisms linking auxin signal transduction and auxin transport is still fragmentary, and important regulatory genes remain to be identified. To track a key link between auxin signaling and auxin transport in development, we established an Arabidopsis thaliana genetic background in which fundamental patterning processes in both shoot and root were essentially abolished and the expression of PIN FORMED (PIN) auxin efflux facilitators was dramatically reduced. In this background, we demonstrate that activating a steroid-inducible variant of the auxin response factor (ARF) MONOPTEROS (MP) is sufficient to restore patterning and PIN gene expression. Further, we show that MP binds to distinct promoter elements of multiple genetically defined PIN genes. Our work identifies a direct regulatory link between central, well-characterized genes involved in auxin signal transduction and auxin transport. The steroid-inducible MP system directly demonstrates the importance of this molecular link in multiple patterning events in embryos, shoots and roots, and provides novel options for interrogating the properties of self-regulated auxin-based patterning in planta. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Direct and indirect estimates of gene flow among wild and managed populations of Polaskia chichipe, an endemic columnar cactus in Central Mexico.

    Science.gov (United States)

    Otero-Arnaiz, Adriana; Casas, Alejandro; Hamrick, James L

    2005-12-01

    Microsatellite markers were used to obtain direct and indirect estimates of gene flow in populations of Polaskia chichipe under different management regimes, in order to understand the genetic consequences of gene flow in the evolutionary process of domestication. P. chichipe is a columnar cactus endemic to the Tehuacan Valley, Central Mexico, and has come under domestication for its edible fruit. Morphological, phenological, physiological, and reproductive differences, apparently attributable to artificial selection, exist between wild and managed populations, which grow sympatrically. However, strong gene flow may counteract the effects of this selection. In this study, we used paternity analysis to demonstrate that although most of the pollinations occur among individuals within the same population at distances < 40 m, pollen flow from other populations is considerable (27 +/- 5%). Heterogeneity in pollen clouds sampled by mother plants (FST = 0.12) indicated nonrandom mating, which is probably due to temporal heterogeneity in pollen movement. Spatial structure on local and regional scales is consistent with an isolation-by-distance model. The similarity of indirect, direct and demographic estimates of neighbourhood size (74-250 individuals) suggests that this genetic structure is representative of an equilibrium state. These results suggest that traditional management practices have conserved the genetic resources of this species in situ, but also that gene flow is counteracting the effect of domestication to some degree. We discuss our results in the general context of genetic exchange between cultivated and wild populations during the domestication process.

  1. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...... that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data...

  2. Direct estimation of the recombination frequency between the RB1 gene and two closely linked microsatellites using sperm typing.

    Science.gov (United States)

    Girardet, A; Lien, S; Leeflang, E P; Beaufrère, L; Tuffery, S; Munier, F; Arnheim, N; Claustres, M; Pellestor, F

    1999-01-01

    In this study, single sperm typing has been used for high-resolution recombination analysis between the retinoblastoma gene and two closely linked extragenic microsatellites (D13S284 and D13S1307). The analysis of 1198 single sperm from three donors allowed the determination of recombination fractions between RB1.20 and D13S284 and RB1.20 and D13S1307 of 0.022 and 0.033, respectively. These results show that RB1 gene and the two microsatellites are closely linked, which validates their potential use in indirect genetic diagnosis of retinoblastoma.

  3. Acquiring competence for shoot development in Arabidopsis: ARR2 directly targets A-type ARR genes that are differentially activated by CIM preincubation.

    Science.gov (United States)

    Che, Ping; Lall, Sonia; Howell, Stephen H

    2008-02-01

    Shoots can be regenerated from roots in Arabidopsis by treating root explants with cytokinin, however, shoot regeneration requires preincubation on callus induction medium (CIM) prior to induction on cytokinin-rich shoot induction medium (SIM). A cytokinin-inducible marker gene, RESPONSE REGULATOR 15 (ARR15), was identified through a "CIM dropout experiment" with similar requirements for CIM preincubation. The requirements for ARR15 contrasted to ARR5, another cytokinin-inducible ARR gene that does not require CIM preincubation. We show here that despite their differences, both ARR5 and ARR15 are direct targets of the transcriptional B-type response regulator, ARR2. This was demonstrated by identifying genes upregulated following beta estradiol induced nuclear relocation of an ARR2-estradiol receptor fusion protein. The differences in CIM preincubation requirements for ARR5 and ARR15 expression indicate an additional layer of control for these A-type ARR genes during SIM incubation. For ARR15, the CIM requirement is a transcriptional effect, because the expression of ARR15 promoter:GUS reporter gene constructs is also affected by CIM preincubation. A testable model is that transcription of ARR15, but not ARR5, is blocked by a repressor and that the effects of the repressor are relieved by CIM preincubation.

  4. Direct regulatory interaction of the eyeless protein with an eye-specific enhancer in the sine oculis gene during eye induction in Drosophila.

    Science.gov (United States)

    Niimi, T; Seimiya, M; Kloter, U; Flister, S; Gehring, W J

    1999-05-01

    The Pax-6 gene encodes a transcription factor with two DNA-binding domains, a paired and a homeodomain, and is expressed during eye morphogenesis and development of the nervous system. Pax-6 homologs have been isolated from a wide variety of organisms ranging from flatworms to humans. Since loss-of-function mutants in insects and mammals lead to an eyeless phenotype and Pax-6 orthologs from distantly related species are capable of inducing ectopic eyes in Drosophila, we have proposed that Pax-6 is a universal master control gene for eye morphogenesis. To determine the extent of evolutionary conservation of the eye morphogenetic pathway, we have begun to identify subordinate target genes of Pax-6. Previously we have shown that expression of two genes, sine oculis (so) and eyes absent (eya), is induced by eyeless (ey), the Pax-6 homolog of Drosophila. Here we present evidence from ectopic expression studies in transgenic flies, from transcription activation studies in yeast, and from gel shift assays in vitro that the EY protein activates transcription of sine oculis by direct interaction with an eye-specific enhancer in the long intron of the so gene.

  5. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver.

    Science.gov (United States)

    Fusakio, Michael E; Willy, Jeffrey A; Wang, Yongping; Mirek, Emily T; Al Baghdadi, Rana J T; Adams, Christopher M; Anthony, Tracy G; Wek, Ronald C

    2016-05-01

    Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins-PERK (PEK/EIF2AK3), IRE1, and ATF6-is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.

  6. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers.

    Science.gov (United States)

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne; Nielsen, Ronni; Madsen, Jesper Grud Skat; Mandrup, Susanne

    2015-09-01

    The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type-specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes.

  7. Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dominik Müller

    Full Text Available BACKGROUND: Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS: The newly described homeobox gene, termed lateral muscles scarcer (lms, which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs, which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE: We have identified the homeobox gene lms as a new muscle identity gene

  8. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.

    Science.gov (United States)

    Carter, C J

    2009-11-01

    Many genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind

  9. Direct 16S rRNA gene sequencing of polymicrobial culture-negative samples with analysis of mixed chromatograms

    DEFF Research Database (Denmark)

    Hartmeyer, Gitte N; Justesen, Ulrik S

    2010-01-01

    Two cases involving polymicrobial culture-negative samples were investigated by 16S rRNA gene sequencing, with analysis of mixed chromatograms. Fusobacterium necrophorum, Prevotella intermedia and Streptococcus constellatus were identified from pleural fluid in a patient with Lemierre's syndrome...

  10. The proapoptotic dp5 gene is a direct target of the MLK-JNK-c-Jun pathway in sympathetic neurons.

    Science.gov (United States)

    Towers, Emily; Gilley, Jonathan; Randall, Rebecca; Hughes, Rosie; Kristiansen, Mark; Ham, Jonathan

    2009-05-01

    The death of sympathetic neurons after nerve growth factor (NGF) withdrawal requires de novo gene expression. Dp5 was one of the first NGF withdrawal-induced genes to be identified and it encodes a proapoptotic BH3-only member of the Bcl-2 family. To study how dp5 transcription is regulated by NGF withdrawal we cloned the regulatory regions of the rat dp5 gene and constructed a series of dp5-luciferase reporter plasmids. In microinjection experiments with sympathetic neurons we found that three regions of dp5 contribute to its induction after NGF withdrawal: the promoter, a conserved region in the single intron, and sequences in the 3' untranslated region of the dp5 mRNA. A construct containing all three regions is efficiently activated by NGF withdrawal and, like the endogenous dp5, its induction requires mixed-lineage kinase (MLK) and c-Jun N-terminal kinase (JNK) activity. JNKs phosphorylate the AP-1 transcription factor c-Jun, and thereby increase its activity. We identified a conserved ATF site in the dp5 promoter that binds c-Jun and ATF2, which is critical for dp5 promoter induction after NGF withdrawal. These results suggest that part of the mechanism by which the MLK-JNK-c-Jun pathway promotes neuronal apoptosis is by activating the transcription of the dp5 gene.

  11. Direct Detection of Escherichia coli Virulence Genes by Real-Time PCR in Fecal Samples from Bats in Brazil.

    Science.gov (United States)

    Cabal, Adriana; Pereira, Maria J; Aguiar, Ludmilla M S; Domínguez, Lucas; Fonseca, Carlos; Álvarez, Julio; Drexler, Jan F; Gortázar, Christian

    2015-10-01

    Guano samples from 412 Brazilian bats were screened with real-time PCR for the virulence genes (eae, est, elt, stx1, stx2, ehxA, invA, bfpA, aggR) representing five intestinal pathotypes of Escherichia coli. From 82 pooled samples, 22% contained Escherichia coli DNA, and eae, est, bfpA, aggR were detected.

  12. Second Intron of Mouse Nestin Gene Directs its Expression in Pluripotent Embryonic Carcinoma Cells through POU Factor Binding Site

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang JIN; Li LIU; Hua ZHONG; Ke-Jing ZHANG; Yong-Feng CHEN; Wei BIAN; Le-Ping CHENG; Nai-He JING

    2006-01-01

    Nestin, an intermediate filament protein, is expressed in the neural stem cells of the developing central nervous system. This tissue-specific expression is driven by the neural stem cell-specific enhancer in the second intron of the nestin gene. In this study, we showed that the mouse nestin gene was expressed in pluripotent embryonic carcinoma (EC) P19 and F9 cells, not in the differentiated cell types. This cell typespecific expression was conferred by the enhancer in the second intron. Mutation of the conserved POU factor-binding site in the enhancer abolished the reporter gene expression in EC cells. Oct4, a Class V POU factor, was found to be coexpressed with nestin in EC cells. Electrophoretic mobility-shift assays and supershift assays showed that a unique protein-DNA complex was formed specifically with nuclear extracts of EC cells, and Oct4 protein was included. Together, these results suggest the functional relevance between the conserved POU factor-binding site and the expression of the nestin gene in pluripotent EC cells.

  13. PRDM16 sustains white fat gene expression profile in human adipocytes in direct relation with insulin action.

    Science.gov (United States)

    Moreno-Navarrete, José María; Ortega, Francisco; Moreno, María; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel

    2015-04-15

    In the present study, we aimed to evaluate the possible role of PRDM16 in human adipocytes and in whole adipose tissue according to obesity and insulin sensitivity. PRDM16 knockdown (KD) had a dual behavior. While KD in preadipocytes led to enhanced gene expression markers of adipocyte differentiation, PRDM16 KD in fully differentiated adipocytes resulted in decreased adipogenic gene expression and insulin action. In line with KD in adipocytes, PRDM16 was positively associated with the expression of several genes involved in adipogenesis, insulin signaling, mitochondrial function and brown adipocyte-related markers in whole adipose tissue from two independent cohorts. PRDM16 was decreased in obese subjects in relation with the decrease of insulin sensitivity [HOM(AIR) (cohort 1) and M clamp value (cohort 2)]. Rosiglitazone (5 µmol/l) and metformin (5 mmol/l) led to increased PRDM16 mRNA and protein levels in isolated human adipocytes and in whole adipose tissue. In conclusion, PRDM16 might contribute to maintain adipose tissue "white fat" gene expression profile and systemic metabolic homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    Science.gov (United States)

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks.

  15. Antibody directed enzyme prodrug therapy: Discovery of novel genes, isolation of novel gene variants and production of long acting drugs for efficient cancer treatment

    NARCIS (Netherlands)

    Goda, S.K.; AlQahtani, A.; Rashidi, F.A.; Dömling, A.

    2015-01-01

    Background: Cancer accounts for 13% of the mortality rate worldwide. Antibody-Directed Enzyme Prodrug Therapy (ADEPT) is a novel strategy to improve the selectivity of cancer treatment. The ADEPT uses the bacterial enzyme, glucarpidase to produce the antibody-enzyme complex. Also the glucarpidase is

  16. Direct detection of rpoB and katG gene mutations of Mycobacterium tuberculosis in clinical samples

    Directory of Open Access Journals (Sweden)

    Sunil Pandey

    2017-08-01

    Conclusions: We can conclude that genetic mutation in Mycobacterium tuberculosis can be identified directly from the clinical samples. However, we have carried this study in less sample size and to validate research on large number of sample is recommended.

  17. Role of 12 S mitochondrial gene on dimorphism and coiling direction in benthic foraminiferal species Pararotalia nipponica

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Mazumder, A.; Kurtarkar, S.R.; Nigam, R.; Ganguly, A.

    in the intricacies of the molecular properties of the protoplasm. However, molecular systematic analyses of foraminifera are yet to start in India. Here, beginning has been made in this direction, by establishing foraminiferal culture program. For that, live...

  18. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

    Science.gov (United States)

    Plouhinec, Jean-Louis; Roche, Daniel D; Pegoraro, Caterina; Figueiredo, Ana Leonor; Maczkowiak, Frédérique; Brunet, Lisa J; Milet, Cécile; Vert, Jean-Philippe; Pollet, Nicolas; Harland, Richard M; Monsoro-Burq, Anne H

    2014-02-15

    Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.

  19. HIV-1 receptor binding site-directed antibodies using a VH1-2 gene segment orthologue are activated by Env trimer immunization.

    Directory of Open Access Journals (Sweden)

    Marjon Navis

    2014-08-01

    Full Text Available Broadly neutralizing antibodies (bNAbs isolated from chronically HIV-1 infected individuals reveal important information regarding how antibodies target conserved determinants of the envelope glycoprotein (Env spike such as the primary receptor CD4 binding site (CD4bs. Many CD4bs-directed bNAbs use the same heavy (H chain variable (V gene segment, VH1-2*02, suggesting that activation of B cells expressing this allele is linked to the generation of this type of Ab. Here, we identify the rhesus macaque VH1.23 gene segment to be the closest macaque orthologue to the human VH1-2 gene segment, with 92% homology to VH1-2*02. Of the three amino acids in the VH1-2*02 gene segment that define a motif for VRC01-like antibodies (W50, N58, flanking the HCDR2 region, and R71, the two identified macaque VH1.23 alleles described here encode two. We demonstrate that immunization with soluble Env trimers induced CD4bs-specific VH1.23-using Abs with restricted neutralization breadth. Through alanine scanning and structural studies of one such monoclonal Ab (MAb, GE356, we demonstrate that all three HCDRs are involved in neutralization. This contrasts to the highly potent CD4bs-directed VRC01 class of bNAb, which bind Env predominantly through the HCDR2. Also unlike VRC01, GE356 was minimally modified by somatic hypermutation, its light (L chain CDRs were of average lengths and it displayed a binding footprint proximal to the trimer axis. These results illustrate that the Env trimer immunogen used here activates B cells encoding a VH1-2 gene segment orthologue, but that the resulting Abs interact distinctly differently with the HIV-1 Env spike compared to VRC01.

  20. Hypoxia-response element (HRE)-directed transcriptional regulation of the rat lysyl oxidase gene in response to cobalt and cadmium.

    Science.gov (United States)

    Gao, Song; Zhou, Jing; Zhao, Yinzhi; Toselli, Paul; Li, Wande

    2013-04-01

    Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least four hypoxia-response element (HRE) consensuses (5'-ACGTG-3') exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl2 (Co, 10-100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia-inducible factor (HIF)-1α at mRNA levels in cobalt (Co)-treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative-HIF-1α inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition, and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at -387/-383 relative to ATG was functionally active among four consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species, inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation.

  1. Construction and analysis of a plant transformation binary vector pBDGG harboring a bi-directional promoter fusing dual visible reporter genes

    Institute of Scientific and Technical Information of China (English)

    Chunxiao Zhang; Ying Gai; Wenqi Wang; Yanyan Zhu; Xuemei Chen; Xiangning Jiang

    2008-01-01

    The constitutive promoter of cauliflower mosaic virus 35S (CaMV 35S) is a polar unidirectional promoter and is widely used in plantgenetic engineering.In the present study,the unidirectional CaMV 35S promoter has been modified to a bi-directional promoter by fusing its minimal promoter element to the 5' end of CaMV 35S promoter in the opposite orientation.To qualitatively and quantitatively esti-mate its bi-directional Wanscriptionai function and activity,two visible reporter genes,gusA β-glucuronidase,GUS) and gfp (green fluo-rescent protein,GFP),were fused to the two ends of the promoter in bi-orientations ending with NOS terminator sequences,respectively.Stable expression of gusA and gfp genes in transgenic tobacco (Nicotiana tabacum L.) was visulized by histochemically staining for GUS and fluorescence microscopic observation under UV for GFP in transgenic plants.The expression of two reporter genes showed that the eonsuructed bi-directional promoter did have the bi-directional transcriptional function in both expected orientations.The quantitativeestimation of GUS and GFP were determined on a HITACHI F1000 Fluorescence Spectrophotometer with various wavelengths of excita-tion and emission.The GUS activity varied from 8 to 250 pmol 4-MU/min/mg protein and the GFP content varied from 0.9 to 1.8 μg/mg protein in various lines of transgenic tobacco plants.Higher GUS activity generally coupled with lower GFP content,and vice versa.

  2. Genomic signatures of local directional selection in a high gene flow marine organism, the Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Jakob Hemmer; Poulsen, Nina Aagaard;

    2009-01-01

    Background: Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene...... selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread...... archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found...

  3. Functional studies of the gene slr2049 from Synechocystis sp. PCC6803 and its site-directed mutation.

    Science.gov (United States)

    Liu, Bingjun; Chen, Sili; Zhang, Lei

    2015-06-01

    Phycobiliprotein is a homologous family of light-harvesting chromoproteins existing in cyanobacteria, red algae and cryptophytes. Phycobiliprotein is made up of phycobilin and its corresponding apophycobiliprotein, and they are covalently linked by the thioether bond with the bilin lyase. Using the software BLAST, we have found gene slr2049 in Synechocystis sp. PCC6803 homologous to the biliprotein lyase gene cpeS. This paper investigates the protein expressed by gene slr2049 to find the enzymatic activity characteristics. We cloned slr2049 and its related genes cpcB, ho1, and pcyA which are linked with the synthesis of phycocyanin. Special amino acid mutagenesis was performed on slr2049 to construct eight mutants slr2049 (H21S), slr2049 (L23S), slr2049 (A24S), slr2049 (F25S), slr2049 (W72L), slr2049 (G84S), slr2049 (R107S) and slr2049 (Y124S). These mutants were ligated with vectors pEDFDuet-1 and pET-23a to construct pCDF-cpcB-slr2049 wild-type, pCDF-cpcB-slr2049 mutants and pET-ho1-pcyA, for the purpose of protein expression and analysis. The results showed that the wild-type and mutants slr2049 (H21S), slr2049 (L23S), slr2049 (F25S), slr2049 (W72L), slr2049 (G84S), and slr2049 (Y124S) can catalyze CpcB to couple on PCB correctly and the products have unique spectral characteristics. However mutants slr2049 (A24S) and slr2049 (R107S) have no spectral characteristics. Thus, it is suggested that alanine at position 24 and arginine at position 107 are the active sites.

  4. The Diversification of Plant NBS-LRR Defense Genes Directs the Evolution of MicroRNAs That Target Them.

    Science.gov (United States)

    Zhang, Yu; Xia, Rui; Kuang, Hanhui; Meyers, Blake C

    2016-10-01

    High expression of plant nucleotide binding site leucine-rich repeat (NBS-LRR) defense genes is often lethal to plant cells, a phenotype perhaps associated with fitness costs. Plants implement several mechanisms to control the transcript level of NBS-LRR defense genes. As negative transcriptional regulators, diverse miRNAs target NBS-LRRs in eudicots and gymnosperms. To understand the evolutionary benefits of this miRNA-NBS-LRR regulatory system, we investigated the NBS-LRRs of 70 land plants, coupling this analysis with extensive small RNA data. A tight association between the diversity of NBS-LRRs and miRNAs was found. The miRNAs typically target highly duplicated NBS-LRRs In comparison, families of heterogeneous NBS-LRRs were rarely targeted by miRNAs in Poaceae and Brassicaceae genomes. We observed that duplicated NBS-LRRs from different gene families periodically gave birth to new miRNAs. Most of these newly emerged miRNAs target the same conserved, encoded protein motif of NBS-LRRs, consistent with a model of convergent evolution for these miRNAs. By assessing the interactions between miRNAs and NBS-LRRs, we found nucleotide diversity in the wobble position of the codons in the target site drives the diversification of miRNAs. Taken together, we propose a co-evolutionary model of plant NBS-LRRs and miRNAs hypothesizing how plants balance the benefits and costs of NBS-LRR defense genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex.

    Science.gov (United States)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld; Noraberg, Jens; Jensen, Niels A

    2014-05-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex.

  6. Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A.

    Science.gov (United States)

    Doering, Christopher B; Denning, Gabriela; Dooriss, Kerry; Gangadharan, Bagirath; Johnston, Jennifer M; Kerstann, Keith W; McCarty, David A; Spencer, H Trent

    2009-07-01

    Human coagulation factor VIII (fVIII) is inefficiently biosynthesized in vitro and has proven difficult to express at therapeutic levels using available clinical gene-transfer technologies. Recently, we showed that a porcine and certain hybrid human/porcine fVIII transgenes demonstrate up to 100-fold greater expression than human fVIII. In this study, we extend these results to describe the use of a humanized, high-expression, hybrid human/porcine fVIII transgene that is 89% identical to human fVIII and was delivered by lentiviral vectors (LVs) to hematopoietic stem cells for gene therapy of hemophilia A. Recombinant human immunodeficiency virus-based vectors encoding the fVIII chimera efficiently transduced human embryonic kidney (HEK)-293T cells. Cells transduced with hybrid human/porcine fVIII encoding vectors expressed fVIII at levels 6- to 100-fold greater than cells transduced with vectors encoding human fVIII. Transplantation of transduced hematopoietic stem and progenitor cells into hemophilia A mice resulted in long-term fVIII expression at therapeutic levels despite gene therapy applications for hemophilia A to significantly increase fVIII expression levels compared to what has been previously achieved.

  7. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity.

    Science.gov (United States)

    Zhang, Yiquan; Zhang, Ying; Gao, He; Zhang, Lingyu; Yin, Zhe; Huang, Xinxiang; Zhou, Dongsheng; Yang, Huiying; Yang, Wenhui; Wang, Li

    2017-03-04

    TDH, encoded by tdh gene, is a major virulent determinant of V. parahaemolyticus that controls various biological activities, such as hemolytic activity, cytotoxicity, and enterotoxicity. The hemolytic activity on Wagatsuma agar ascribed to TDH is called Kanagawa phenomenon (KP). All KP positive strains contain tdh1 and tdh2 genes, but tdh2 is predominantly responsible for KP. CalR is a regulatory protein that was originally identified as a repressor of swarming motility and T3SS1 gene expression in V. parahaemolyticus. In the present study, the regulation of tdh2 by CalR was investigated using a set of experiments including qRT-PCR, primer extension, LacZ fusion, hemolytic phenotype, EMSA, and DNase I footprinting assays. The results showed that His-CalR protected a single region from 224bp to 318bp upstream of tdh2 against DNase I digestion, and a transcriptional start site located at 42bp upstream of tdh2 was detected and its transcribed activity was inhibited by CalR. Moreover, the KP test results showed that the hemolytic activity of V. parahaemolyticus is also under negative control of CalR. The data demonstrated that CalR is a repressor of the tdh2 transcription and thereby inhibits the hemolytic activity of V. parahaemolyticus.

  8. Radiofrequency hyperthermia-enhanced herpes simplex virus-thymidine kinase/ganciclovir direct intratumoral gene therapy of esophageal squamous cancers

    Science.gov (United States)

    Shi, Yaoping; Wang, Jianfeng; Bai, Zhibin; Li, Yonggang; Qiu, Longhua; Zhai, Bo; Zhang, Feng; Yang, Xiaoming

    2016-01-01

    Despite recent advances in surgical technique and treatment strategies for esophageal cancer (EC), to effectively manage the advanced (metastatic or disseminated) and recurrent EC still remain a great challenge. The aim of this study was to determine the feasibility of using intra-esophagus radiofrequency hyperthermia to enhance local HSV-TK/ganciclovir-mediated suicide gene therapy of an innovative animal models with orthotopic esophageal squamous cancers. Human esophageal squamous cancer (ESCa) cells were labeled with lentivirus/luciferase. ESCa cells and nude rats with orthotopic ESCa were divided into in four groups (n = 6/group) and treated with: i) combination therapy of MR imaging-heating-guidewire-mediated radiofrequency hyperthermia ((RFH, 42°C) plus local HSV-TK/GCV; ii) HSV-TK/GCV alone; iii) RFH alone; and (iv) phosphate-buffered saline (PBS). Bioluminescence optical imaging and transcutaneous ultrasound imaging were used to follow up bioluminescence signal and size changes of tumors among different groups over two weeks, which were correlated with subsequent histology. We demonstrated that combination therapy of RFH with gene therapy resulted in the lowest cell proliferation (37.5±8.6%, Pbioluminescence optical imaging photon signal intensity (0.81±0.17, P<0.01) of orthotopic esophageal cancers, compared with groups treated with gene therapy alone, RFH alone and PBS. Our study indicated that intra-esophageal radiofrequency hyperthermia could enhance the HSV-TK-mediated effect on esophageal squamous cancers. PMID:27725910

  9. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  10. The construction and characterization of the bi-directional promoter between pp38 gene and 1.8-kb mRNA transcripts of Marek's disease viruses

    Directory of Open Access Journals (Sweden)

    Ding Jiabo

    2009-11-01

    Full Text Available Abstract Background Marek's disease virus (MDV has a bi-directional promoter between pp38 gene and 1.8-kb mRNA transcripts. By sequencing for the promoters from 8 different strains (CVI988, 814, GA, JM, Md5, G2, RB1B and 648A, it is found, comparing with the other 7 MDV strains, CVI988 has a 5-bp (from -628 to -632 deletion in this region, which caused a Sp1 site destroyed. In order to analysis the activity of the promoter, the complete bi-directional promoters from GA and CVI988 were, respectively, cloned into pCAT-Basic vector in both directions for the recombinants pPGA(pp38-CAT, pPGA(1.8 kb-CAT, pPCVI(pp38-CAT and pPCVI(1.8 kb-CAT. The complete promoter of GA was divided into two single-direction promoters from the replication of MDV genomic DNA, and cloned into pCAT-Basic for pdPGA(pp38-CAT and pdPGA(1.8 kb-CAT as well. The above 6 recombinants were then transfected into chicken embryo fibroblasts (CEFs infected with MDV, and the activity of chloramphenicol acetyltransferase (CAT was measured from the lysed CEFs 48 h post transfection. Results The results showed the activity of the divided promoters was decreased on both directions. In 1.8-kb mRNA direction, it is nearly down to 2.4% (19/781 of the whole promoter, while it keeps 65% (34/52 activity in pp38 direction. The deletion of Sp1 site in CVI988 causes the 20% activity decreased, and has little influence in pp38 direction. Conclusion The present study confirmed their result, and the promoter for the 1.8-kb mRNA transcripts is a much stronger promoter than that in the orientation for pp38.

  11. HSI2 Repressor Recruits MED13 and HDA6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth.

    Science.gov (United States)

    Chhun, Tory; Chong, Suet Yen; Park, Bong Soo; Wong, Eriko Chi Cheng; Yin, Jun-Lin; Kim, Mijung; Chua, Nam-Hai

    2016-08-01

    Arabidopsis HSI2 (HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE 2) which carries a EAR (ERF-associated amphiphilic repression) motif acts as a repressor of seed maturation genes and lipid biosynthesis, whereas MEDIATOR (MED) is a conserved multiprotein complex linking DNA-bound transcription factors to RNA polymerase II transcription machinery. How HSI2 executes its repressive function through MED is hitherto unknown. Here, we show that HSI2 and its homolog, HSI2-lik (HSL1), are able to form homo- and heterocomplexes. Both factors bind to the TRAP240 domain of MED13, a subunit of the MED CDK8 module. Mutant alleles of the med13 mutant show elevated seed maturation gene expression and increased lipid accumulation in cotyledons; in contrast, HSI2- or MED13-overexpressing plants display the opposite phenotypes. The overexpression phenotypes of HSI2 and MED13 are abolished in med13 and hsi2 hsl1, respectively, indicating that HSI2 and MED13 together are required for these functions. The HSI2 C-terminal region interacts with HDA6, whose overexpression also reduces seed maturation gene expression and lipid accumulation. Moreover, HSI2, MED13 and HDA6 bind to the proximal promoter and 5'-coding regions of seed maturation genes. Taken together, our results suggest that HSI2 recruits MED13 and HDA6 to suppress directly a subset of seed maturation genes post-germination. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Phylogenetic and in silico functional analyses of thermostable-direct hemolysin and tdh-related encoding genes in Vibrio parahaemolyticus and other Gram-negative bacteria.

    Science.gov (United States)

    Bhowmik, Sushanta K; Pazhani, Gururaja P; Ramamurthy, Thandavarayan

    2014-01-01

    Emergence and spread of pandemic strains of Vibrio parahaemolyticus have drawn attention to make detailed study on their genomes. The pathogenicity of V. parahaemolyticus has been associated with thermostable-direct hemolysin (TDH) and/or TDH-related hemolysin (TRH). The present study evaluated characteristics of tdh and trh genes, considering the phylogenetic and in silico functional features of V. parahaemolyticus and other bacteria. Fifty-two tdh and trh genes submitted to the GenBank were analyzed for sequence similarity. The promoter sequences of these genes were also analyzed from transcription start point to -35 regions and correlated with amino acid substitution within the coding regions. The phylogenetic analysis revealed that tdh and trh are highly distinct and also differ within the V. parahaemolyticus strains that were isolated from different geographical regions. Promoter sequence analysis revealed nucleotide substitutions and deletions at -18 and -19 positions among the pandemic, prepandemic, and nonpandemic tdh sequences. Many amino acid substitutions were also found within the signal peptide and also in the matured protein region of several TDH proteins as compared to TDH-S protein of pandemic V. parahaemolyticus. Experimental evidences are needed to recognize the importance of substitutions and deletions in the tdh and trh genes.

  13. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  14. Phylogenetic and In Silico Functional Analyses of Thermostable-Direct Hemolysin and tdh-Related Encoding Genes in Vibrio parahaemolyticus and Other Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Sushanta K. Bhowmik

    2014-01-01

    Full Text Available Emergence and spread of pandemic strains of Vibrio parahaemolyticus have drawn attention to make detailed study on their genomes. The pathogenicity of V. parahaemolyticus has been associated with thermostable-direct hemolysin (TDH and/or TDH-related hemolysin (TRH. The present study evaluated characteristics of tdh and trh genes, considering the phylogenetic and in silico functional features of V. parahaemolyticus and other bacteria. Fifty-two tdh and trh genes submitted to the GenBank were analyzed for sequence similarity. The promoter sequences of these genes were also analyzed from transcription start point to −35 regions and correlated with amino acid substitution within the coding regions. The phylogenetic analysis revealed that tdh and trh are highly distinct and also differ within the V. parahaemolyticus strains that were isolated from different geographical regions. Promoter sequence analysis revealed nucleotide substitutions and deletions at −18 and −19 positions among the pandemic, prepandemic, and nonpandemic tdh sequences. Many amino acid substitutions were also found within the signal peptide and also in the matured protein region of several TDH proteins as compared to TDH-S protein of pandemic V. parahaemolyticus. Experimental evidences are needed to recognize the importance of substitutions and deletions in the tdh and trh genes.

  15. Direct gene transfer study and transgenic plant regeneration after electroporation into mesophyll protoplasts of Pelargonium x hortorum, 'Panaché Sud'.

    Science.gov (United States)

    Hassanein, Anber; Hamama, Latifa; Loridon, Karine; Dorion, Noëlle

    2009-10-01

    Direct genetic transformation of mesophyll protoplasts was studied in Pelargonium x hortorum. Calcein and green-fluorescent protein (GFP) gene were used to set up the process. Electroporation (three electric pulses from a 33-microF capacitor in a 250-V cm(-1) electric field) was more efficient than PEG 6000 for membrane permeation, protoplast survival and cell division. Transient expression of GFP was detected in 33-36% of electroporated protoplasts after 2 days and further in colonies. A protoplast suspension conductivity of >1,500 microS cm(-1) allowed high colony formation and plant regeneration. Stable transformation was obtained using the plasmid FAJ3000 containing uidA and nptII genes. When selection (50 mg l(-1) kanamycin) was achieved 6 weeks after electroporation, regenerated shoots were able to grow and root on 100 mg l(-1) kanamycin. The maximum transformation efficiency was 4.5%, based on the number of colonies producing kanamycin-resistant rooted plants or 0.7% based on the number of cultured protoplasts. Polymerase chain reaction (PCR) analysis on in vitro micropropagated plants showed that 18 clones out of 20 contained the nptII gene, while the uidA gene was absent. These results were confirmed after PCR analyses of five glasshouse-acclimatized clones.

  16. Site-directed RNA editing by adenosine deaminase acting on RNA (ADAR1) for correction of the genetic code in gene therapy.

    Science.gov (United States)

    Azad, T A; Bhakta, S; Tsukahara, T

    2017-10-06

    Site-directed RNA editing is an important technique for correcting gene sequences and ultimately tuning protein function. In this study, we engineered the deaminase domain of adenosine deaminase acting on RNA (ADAR1) and the MS2 system to target specific adenosines, with the goal of correcting G-to-A mutations at the RNA level. For this purpose, the ADAR1 deaminase domain was fused downstream of the RNA-binding protein MS2, which has affinity for the MS2 RNA. To direct editing to specific targets, we designed guide RNAs complementary to target RNAs. The guide RNAs directed the ADAR1 deaminase to the desired editing site, where it converted adenosine to inosine. To provide proof of principle, we used an allele of EGFP bearing a mutation at the 58th amino acid (TGG), encoding Trp, into an amber (TAG) or ochre (TAA) stop codon. In HEK-293 cells, our system could convert stop codons to read-through codons, thereby turning on fluorescence. We confirmed the specificity of editing at the DNA level by restriction fragment length polymorphism (RFLP) analysis and sequencing, and at the protein level by western blotting. The editing efficiency of this enzyme system was ~5%. We believe that this system could be used to treat genetic diseases resulting from G-to-A point mutations.Gene Therapy accepted article preview online, 06 October 2017. doi:10.1038/gt.2017.90.

  17. First case of Streptococcus oligofermentans endocarditis determined based on sodA gene sequences after amplification directly from valvular samples.

    Science.gov (United States)

    Matta, Matta; Gousseff, Marie; Monsel, Fabien; Poyart, Claire; Diebold, Benoît; Podglajen, Isabelle; Mainardi, Jean-Luc

    2009-03-01

    We report the first case of infection due to Streptococcus oligofermentans, which is a recently described oral Streptococcus species. It was responsible for the endocarditis and left forearm abscess of a 43-year-old woman. Identification was made using molecular techniques performed directly from valvular and surgical samples.

  18. The conservation and application of three hypothetical protein coding gene for direct detection of Mycobacterium tuberculosis in sputum specimens.

    Directory of Open Access Journals (Sweden)

    Lianhua Qin

    Full Text Available BACKGROUND: Accurate and early diagnosis of tuberculosis (TB is of major importance in the control of TB. One of the most important technical advances in diagnosis of tuberculosis is the development of nucleic acid amplification (NAA tests. However, the choice of the target sequence remains controversial in NAA tests. Recently, interesting alternatives have been found in hypothetical protein coding sequences from mycobacterial genome. METHODOLOGY/PRINCIPAL FINDINGS: To obtain rational biomarker for TB diagnosis, the conservation of three hypothetical genes was firstly evaluated in 714 mycobacterial strains. The results showed that SCAR1 (Sequenced Characterized Amplified Region based on Rv0264c coding gene showed the highest conservation (99.8% and SCAR2 based on Rv1508c gene showed the secondary high conservation (99.7% in M. tuberculosis (MTB strains. SCAR3 based on Rv2135c gene (3.2% and IS6110 (8% showed relatively high deletion rate in MTB strains. Secondly, three SCAR markers were evaluated in 307 clinical sputum from patients in whom TB was suspected or patients with diseases other than TB. The amplification of IS6110 and 16SrRNA sequences together with both clinical and bacteriological identification was as a protocol to evaluate the efficacy of SCAR markers. The sensitivities and specificities, positive predictive value (PPV and negative predictive value (NPV of all NAA tests were higher than those of bacteriological detection. In four NAA tests, IS6110 and SCAR3 showed the highest PPV (100% and low NPV (70% and 68.8%, respectively, and SCAR1 and SCAR2 showed the relatively high PPV and NPV (97% and 82.6%, 95.6% and 88.8%, respectively. CONCLUSIONS/SIGNIFICANCE: Our result indicated that SCAR1 and SCAR2 with a high degree of sequence conservation represent efficient and promising alternatives as NAA test targets in identification of MTB. Moreover, the targets developed from this study may provide more alternative targets for the

  19. CAG repeat polymorphism in androgen receptor gene is not directly associated with polycystic ovary syndrome but influences serum testosterone levels.

    Science.gov (United States)

    Skrgatic, L; Baldani, D Pavicic; Cerne, J Z; Ferk, P; Gersak, K

    2012-02-01

    Hyperandrogenemia has been the most consistent feature of polycystic ovary syndrome (PCOS). Androgens exert their effects through androgen receptors (ARs). The expansion of the codon CAG trinucleotide repeat polymorphism in exon 1 of the AR gene represents a type of genetic alteration associated with changes in the AR gene function. The purpose of this study was to establish a possible association of the AR gene CAG repeat length polymorphism with PCOS, and its influence on clinical and biochemical androgen traits. Two hundred and fourteen Croatian women with PCOS and 209 healthy control women of reproductive age were enrolled. Phenotypic hyperandrogenism, BMI and waist to hip ratio were recorded. Hormonal profiles, fasting insulin and glucose levels were measured on cycle days 3-5. Genotyping of the CAG repeat polymorphism in the AR gene was performed. We found no significant difference in the mean CAG repeat number between the PCOS patients and controls (22.1±3.4 vs. 21.9±3.2, P=0.286). There was a positive correlation between the CAG repeat length and total testosterone (TT) in the PCOS group (R=0.225, P=0.015). A multiple linear regression model using mean CAG repeat length, BMI, age and HOMA-IR as predictors explained 8.5% (adjusted R²) of the variability in serum TT levels. In this model the CAG repeat polymorphism was found to be a significant predictor of serum TT levels in PCOS patients (P=0.015). The logistic regression analysis revealed that the CAG repeat length is not a significant predictor of hirsutism and acne status (P=0.921 and P=0.437, respectively). The model was adjusted for serum TT, free testosterone, androstendione and DHEAS levels as independent variables, which were also not found to be significant predictors of hirsutism (P=0.687, P=0.194, P=0.675 and P=0.938, respectively) or acne status (P=0.594, P=0.095, P=0.290 and P=0.151, respectively). In conclusion, the AR CAG repeat polymorphism is not a major determinant of PCOS in the

  20. PU.1 Level-Directed Chromatin Structure Remodeling at the Irf8 Gene Drives Dendritic Cell Commitment

    Directory of Open Access Journals (Sweden)

    Jörg Schönheit

    2013-05-01

    Full Text Available Dendritic cells (DCs are essential regulators of immune responses; however, transcriptional mechanisms that establish DC lineage commitment are poorly defined. Here, we report that the PU.1 transcription factor induces specific remodeling of the higher-order chromatin structure at the interferon regulatory factor 8 (Irf8 gene to initiate DC fate choice. An Irf8 reporter mouse enabled us to pinpoint an initial progenitor stage at which DCs separate from other myeloid lineages in the bone marrow. In the absence of Irf8, this progenitor undergoes DC-to-neutrophil reprogramming, indicating that DC commitment requires an active, Irf8-dependent escape from alternative myeloid lineage potential. Mechanistically, myeloid Irf8 expression depends on high PU.1 levels, resulting in local chromosomal looping and activation of a lineage- and developmental-stage-specific cis-enhancer. These data delineate PU.1 as a concentration-dependent rheostat of myeloid lineage selection by controlling long-distance contacts between regulatory elements and suggest that specific higher-order chromatin remodeling at the Irf8 gene determines DC differentiation.

  1. Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants.

    Science.gov (United States)

    Wada, Y; Ohsumi, Y; Anraku, Y

    1992-09-15

    We identified nine VAM genes (for vacuolar morphology) by genetic analyses on mutants with defective vacuolar morphologies and assembly in the yeast Saccharomyces cerevisiae. The nine VAM genes were classified into two classes according to the mutant phenotypes. The class I vam mutants (vam1, vam5, vam8, and vam9) show a few small vesicles that are stained with histochemical markers for the vacuolar compartment. They also have defects in the maturation of vacuolar marker proteins, and their growth is hypersensitive to high concentrations of CaCl2 or a temperature of 37 degrees C. There are apparent genetic overlaps among the class I vam mutations and other mutations including cls, end, pep, and vps, which have been shown to be involved in the expression of the vacuolar functions. The class II vam mutants (vam2, vam3, vam4, vam6, and vam7) contain numerous small vesicles stained with the vacuolar histochemical markers and mature forms of the vacuolar proteins and do not show any apparent growth defects in the presence of CaCl2 or at 37 degrees C.

  2. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing

    Directory of Open Access Journals (Sweden)

    Corti Stefania

    2011-03-01

    Full Text Available Abstract Background Duchenne and Becker Muscular dystrophies (DMD/BMD are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements. Methods We selected 47 patients (41 families; 35 DMD, 6 BMD without deletions and duplications in DMD gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis. This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis. Results We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients, followed by TAG (n = 7 and TAA (n = 4. We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the DMD gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65. Conclusion The analysis of our patients' sample, carrying point mutations or complex rearrangements in DMD gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects

  3. Promoters of AaGL2 and AaMIXTA-Like1 genes of Artemisia annua direct reporter gene expression in glandular and non-glandular trichomes.

    Science.gov (United States)

    Jindal, Sunita; Longchar, Bendangchuchang; Singh, Alka; Gupta, Vikrant

    2015-01-01

    Herein, we report cloning and analysis of promoters of GLABRA2 (AaGL2) homolog and a MIXTA-Like (AaMIXTA-Like1) gene from Artemisia annua. The upstream regulatory regions of AaGL2 and AaMIXTA-Like1 showed the presence of several crucial cis-acting elements. Arabidopsis and A. annua seedlings were transiently transfected with the promoter-GUS constructs using a robust agro-infiltration method. Both AaGL2 and AaMIXTA-Like1 promoters showed GUS expression preferentially in Arabidopsis single-celled trichomes and glandular as well as T-shaped trichomes of A. annua. Transgenic Arabidopsis harboring constructs in which AaGL2 or AaMIXTA-Like1 promoters would control GFP expression, showed fluorescence emanating specifically from trichome cells. Our study provides a fast and efficient method to study trichome-specific expression, and 2 promoters that have potential for targeted metabolic engineering in plants.

  4. Construction of recombinant Marek's disease virus (rMDV co-expressing AIV-H9N2-NA and NDV-F genes under control of MDV's own bi-directional promoter.

    Directory of Open Access Journals (Sweden)

    Zhenjie Zhang

    Full Text Available To qualitatively analyze and evaluate a bi-directional promoter transcriptional function in both transient and transgenic systems, several different plasmids were constructed and recombinant MDV type 1 strain GX0101 was developed to co-express a Neuraminidase (NA gene from Avian Influenza Virus H9N2 strain and a Fusion (F gene from the Newcastle disease virus (NDV. The two foreign genes, NDV-F gene and AIV-NA gene, were inserted in the plasmid driven in each direction by the bi-directional promoter. To test whether the expression of pp38/pp24 heterodimers are the required activators for the expression of the foreign genes, the recombinant plasmid pPpp38-NA/1.8kb-F containing expression cassette for the two foreign genes was co-transfected with a pp38/pp24 expression plasmid, pBud-pp38-pp24, in chicken embryo fibroblast (CEF cells. Alternatively, plasmid pPpp38-NA/1.8kb-F was transfected in GX0101-infected CEFs where the viral endogenous pp38/pp24 were expressed via virus infection. The expression of both foreign genes was activated by pp38/pp24 dimers either via virus infection, or co-expression. The CEFs transfected with pPpp38-NA/1.8kb-F alone had no expression. We chose to insert the expression cassette of Ppp38-NA/1.8kb-F in the non-essential region of GX0101ΔMeq US2 gene, and formed a new rMDV named MZC13NA/F through homologous recombination. Indirect fluorescence antibody (IFA test, ELISA and Western blot analyses indicated that F and NA genes were expressed simultaneously under control of the bi-directional promoter, but in opposite directions. The data also indicated the activity of the promoter in the 1.8-kb mRNA transcript direction was higher than that in the direction for the pp38 gene. The expression of pp38/pp24 dimers either via co-tranfection of the pBud-pp38-pp24 plasmid, or by GX0101 virus infection were critical to activate the bi-directional promoter for expression of two foreign genes in both directions. Therefore, the

  5. Establishment of a Screening System for Selection of siRNA Target Sites Directed against Hepatitis B Virus Surface Gene

    Institute of Scientific and Technical Information of China (English)

    Xiu-Min ZHOU; Ju-Sheng LIN; Yi SHI; De-An TIAN; Huan-Jun HUANG; He-Jun ZHOU; You-Xin JIN

    2005-01-01

    To study the inhibitory effects of plasmid-derived small interfering RNA (siRNA) and synthetic siRNA on the expression of the hepatitis B virus surface (HBs) gene, three plasmid-derived siRNAs and one synthetic siRNA that complement the coding region of the HBs gene were prepared. The HBs expression plasmid pHBs-EGFP was also constructed. HeLa cells were co-transfected with pHBs-EGFP and the above siRNAs. The HBs mRNA quantities were measured by reverse-transcription PCR, and the level of HBs-EGFP fusion protein was quantified by fluorescent microscope. The concentrations of the hepatitis B virus surface antigen (HBsAg) derived from the culture supernatant of transfected HepG2.2.15cells were measured by an enzyme-linked immunosorbent assay (ELISA) kit. The results showed that the three plasmid-derived siRNAs and the synthetic siRNA can effectively reduce the quantities of HBs mRNA and protein. The plasmid-derived siRNA psiRNA1 was found to be the most effective inhibitor of HBs expression. It can inhibit HBs-EGFP expression by 63.3% and suppress HBs mRNA by 75.6%. To further substantiate the above observations, psiRNA1 was transfected into HepG2.2.15 cells (an HBV secreting cell line). The transfections resulted in almost complete blockage of HBsAg production, whereas control vector transfected cells secreted high levels of HBsAg 7 days post-transfection. In conclusion, our data suggests that RNA interference (RNAi) is an efficient approach for reducing the level of HBs transcripts and proteins and for suppressing HBsAg production.

  6. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow.

    Directory of Open Access Journals (Sweden)

    Manuela Caprioli

    Full Text Available BACKGROUND: In diverse taxa, photoperiodic responses that cause seasonal physiological and behavioural shifts are controlled by genes, including the vertebrate Clock orthologues, that encode for circadian oscillator mechanisms. While the genetic network behind circadian rhythms is well described, relatively few reports exist of the phenological consequences of and selection on Clock genes in the wild. Here, we investigated variation in breeding phenology in relation to Clock genetic diversity in a long-distance migratory bird, the barn swallow (Hirundo rustica. METHODOLOGY/PRINCIPAL FINDINGS: In a sample of 922 adult barn swallows from a single population breeding in Italy we found one very common (Q(7 and three rare (Q(5, Q(6, Q(8 length variants of a functionally significant polyglutamine repeat. Rare (2.9% Q(7/Q(8 heterozygous females, but not males, bred significantly later than common (91.5% Q(7/Q(7 females, consistent with the expectation that 'long' alleles cause late breeding, as observed in a resident population of another bird species. Because breeding date depends on arrival date from migration, present results suggest that the association between breeding date and Clock might be mediated by migration phenology. In addition, fecundity selection appears to be operating against Q(7/Q(8 because late migrating/breeding swallows have fewer clutches per season, and late breeding has additional negative selection effects via reduced offspring longevity. Genotype frequencies varied marginally non-significantly with age, as Q(7/Q(8 frequency showed a 4-fold reduction in old individuals. This result suggests negative viability selection against Q(7/Q(8, possibly mediated by costs of late breeding. CONCLUSIONS/SIGNIFICANCE: This is the first study of migratory birds showing an association between breeding phenology and Clock genotype and suggesting that negative selection occurs on a phenologically deviant genotype. Low polymorphism at Clock may

  7. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes.

    Science.gov (United States)

    Iacovides, Demetris; Rizki, Gizem; Lapathitis, Georgios; Strati, Katerina

    2016-07-29

    The insufficient ability of specialized cells such as neurons, cardiac myocytes, and epidermal cells to regenerate after tissue damage poses a great challenge to treat devastating injuries and ailments. Recent studies demonstrated that a diverse array of cell types can be directly derived from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), or somatic cells by combinations of specific factors. The use of iPSCs and direct somatic cell fate conversion, or transdifferentiation, holds great promise for regenerative medicine as these techniques may circumvent obstacles related to immunological rejection and ethical considerations. However, producing iPSC-derived keratinocytes requires a lengthy two-step process of initially generating iPSCs and subsequently differentiating into skin cells, thereby elevating the risk of cellular damage accumulation and tumor formation. In this study, we describe the reprogramming of mouse embryonic fibroblasts into functional keratinocytes via the transient expression of pluripotency factors coupled with directed differentiation. The isolation of an iPSC intermediate is dispensable when using this method. Cells derived with this approach, termed induced keratinocytes (iKCs), morphologically resemble primary keratinocytes. Furthermore they express keratinocyte-specific markers, downregulate mesenchymal markers as well as the pluripotency factors Oct4, Sox2, and Klf4, and they show important functional characteristics of primary keratinocytes. iKCs can be further differentiated by high calcium administration in vitro and are capable of regenerating a fully stratified epidermis in vivo. Efficient conversion of somatic cells into keratinocytes could have important implications for studying genetic skin diseases and designing regenerative therapies to ameliorate devastating skin conditions.

  8. Transcription of Leishmania major U2 small nuclear RNA gene is directed by extragenic sequences located within a tRNA-like and a tRNA-Ala gene.

    Science.gov (United States)

    Rojas-Sánchez, Saúl; Figueroa-Angulo, Elisa; Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Manning-Cela, Rebeca G; Martínez-Calvillo, Santiago

    2016-07-19

    Leishmania and other trypanosomatid parasites possess atypical mechanisms of gene expression, including the maturation of mRNAs by trans-splicing and the involvement of RNA Polymerase III in transcription of all snRNA molecules. Since snRNAs are essential for trans-splicing, we are interested in the study of the sequences that direct their expression. Here we report the characterization of L. major U2 snRNA promoter region. All species of Leishmania possess a single U2 snRNA gene that contains a divergently-oriented tRNA-Ala gene in the upstream region. Between these two genes we found a tRNA-like sequence that possesses conserved boxes A and B. Primer extension and RT-qPCR analyses with RNA from transiently-transfected cells showed that transcription of L. major U2 snRNA is almost abolished when boxes A and B from the tRNA-like are deleted or mutated. The levels of the U2 snRNA were also highly affected when base substitutions were introduced into box B from the tRNA-Ala gene and the first nucleotides of the U2 snRNA gene itself. We also demonstrate that the tRNA-like is transcribed, generating a main transcript of around 109 bases. As pseudouridines in snRNAs are required for splicing in other organisms, we searched for this modified nucleotide in the L. major U2 snRNA. Our results show the presence of six pseudouridines in the U2 snRNA, including one in the Sm site that has not been reported in other organisms. Four different regions control the transcription of the U2 snRNA gene in L. major: boxes A and B from the neighbor tRNA-like, box B from the upstream tRNA-Ala gene and the first nucleotides of the U2 snRNA. Thus, the promoter region of L. major U2 snRNA is different from any other promoter reported for snRNAs. Pseudouridines could play important roles in L. major U2 snRNA, since they were found in functionally important regions, including the branch point recognition region and the Sm binding site.

  9. Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons.

    Science.gov (United States)

    Mayer, Christopher M; Belsham, Denise D

    2009-08-13

    Insulin plays a key role in the maintenance of nutrient homeostasis through central regulation of neuropeptides. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) are vital orexigenic peptides that are regulated by insulin, although the processes utilized are unknown. Using a hypothalamic, clonal cell line, mHypoE-46, which endogenously expresses NPY, AgRP and the insulin receptor, we studied the mechanisms involved in the regulation of the NPY/AgRP neuron by insulin. We determined that insulin has direct actions on the neurons and acts to repress NPY/AgRP gene expression through a MAPK MEK/ERK-dependent pathway. Transient transfection analysis determined that human NPY and AgRP 5' flanking gene regions were not regulated by insulin in the mouse cell line, while sequence comparison analysis indicated only a 50% sequence similarity between human and mouse NPY and AgRP 5' flanking regions. These experiments indicate that insulin acts directly on specific hypothalamic neurons to regulate neuropeptide transcription.

  10. Strict and direct transcriptional repression of the pobA gene by benzoate avoids 4-hydroxybenzoate degradation in the pollutant degrader bacterium Cupriavidus necator JMP134.

    Science.gov (United States)

    Donoso, Raúl A; Pérez-Pantoja, Danilo; González, Bernardo

    2011-06-01

    As other environmental bacteria, Cupriavidus necator JMP134 uses benzoate as preferred substrate in mixtures with 4-hydroxybenzoate, strongly inhibiting its degradation. The mechanism underlying this hierarchical use was studied. A C. necator benA mutant, defective in the first step of benzoate degradation, is unable to metabolize 4-hydroxybenzoate when benzoate is also included in the medium, indicating that this substrate and not one of its catabolic intermediates is directly triggering repression. Reverse transcription polymerase chain reaction analysis revealed that 4-hydroxybenzoate 3-hydroxylase-encoding pobA transcripts are nearly absent in presence of benzoate and a fusion of pobA promoter to lacZ reporter confirmed that benzoate drastically decreases the transcription of this gene. Expression of pobA driven by a heterologous promoter in C. necator benA mutant, allows growth on 4-hydroxybenzoate in presence of benzoate, overcoming its repressive effect. In contrast with other bacteria, regulators of benzoate catabolism do not participate in repression of 4-hydroxybenzoate degradation. Moreover, the effect of benzoate on pobA promoter can be observed in heterologous strains with the sole presence of PobR, the transcriptional activator of pobA gene, indicating that PobR is enough to fully reproduce the phenomenon. This novel mechanism for benzoate repression is probably mediated by direct action of benzoate over PobR. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Evolutionary changes in sites and timing of actin gene expression in embryos of the direct- and indirect-developing sea urchins, Heliocidaris erythrogramma and H. tuberculata.

    Science.gov (United States)

    Kissinger, J C; Raff, R A

    1998-04-01

    We describe an evolutionary comparison of expression of the actin gene families of two congeneric sea urchins. Heliocidaris tuberculata develops indirectly via a planktonic feeding pluteus that forms a juvenile rudiment after a long period of larval development. H. erythrogramma is a direct developer that initiates formation of a juvenile rudiment immediately following gastrulation. The developmental expression of each actin isoform of both species was determined by in situ hybridization. The observed expression patterns are compared with known expression patterns in a related indirect-developing sea urchin, Strongylocentrotus purpuratus. Comparisons reveal unexpected patterns of conserved and divergent expression. Cytoplasmic actin, CyIII, is expressed in the aboral ectoderm cells of the indirect developers, but is an unexpressed pseudogene in H. erythrogramma, which lacks aboral ectoderm. This change is correlated with developmental mode. Two CyII actins are expressed in S. purpuratus, and one in H. erythrogramma, but no CyII is expressed in H. tuberculata despite its great developmental similarity to S. purpuratus. CyI expression differs slightly between Heliocidaris and Strongylocentrotus with more ectodermal expression in Heliocidaris. Evolutionary changes in actin gene expression reflect both evolution of developmental mode as well as a surprising flexibility in gene expression within a developmental mode.

  12. In vitro exposure to isoprene-derived secondary organic aerosol by direct deposition and its effects on COX-2 and IL-8 gene expression

    Science.gov (United States)

    Arashiro, Maiko; Lin, Ying-Hsuan; Sexton, Kenneth G.; Zhang, Zhenfa; Jaspers, Ilona; Fry, Rebecca C.; Vizuete, William G.; Gold, Avram; Surratt, Jason D.

    2016-11-01

    Atmospheric oxidation of isoprene, the most abundant non-methane hydrocarbon emitted into Earth's atmosphere primarily from terrestrial vegetation, is now recognized as a major contributor to the global secondary organic aerosol (SOA) burden. Anthropogenic pollutants significantly enhance isoprene SOA formation through acid-catalyzed heterogeneous chemistry of epoxide products. Since isoprene SOA formation as a source of fine aerosol is a relatively recent discovery, research is lacking on evaluating its potential adverse effects on human health. The objective of this study was to examine the effect of isoprene-derived SOA on inflammation-associated gene expression in human lung cells using a direct deposition exposure method. We assessed altered expression of inflammation-related genes in human bronchial epithelial cells (BEAS-2B) exposed to isoprene-derived SOA generated in an outdoor chamber facility. Measurements of gene expression of known inflammatory biomarkers interleukin 8 (IL-8) and cyclooxygenase 2 (COX-2) in exposed cells, together with complementary chemical measurements, showed that a dose of 0.067 µg cm-2 of SOA from isoprene photooxidation leads to statistically significant increases in IL-8 and COX-2 mRNA levels. Resuspension exposures using aerosol filter extracts corroborated these findings, supporting the conclusion that isoprene-derived SOA constituents induce the observed changes in mRNA levels. The present study is an attempt to examine the early biological responses of isoprene SOA exposure in human lung cells.

  13. Familial Dysautonomia (FD Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Directory of Open Access Journals (Sweden)

    Sharon Lefler

    Full Text Available A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD, affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS. Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  14. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Science.gov (United States)

    Lefler, Sharon; Cohen, Malkiel A; Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  15. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP.

    Science.gov (United States)

    Li, Chenlong; Chen, Chen; Gao, Lei; Yang, Songguang; Nguyen, Vi; Shi, Xuejiang; Siminovitch, Katherine; Kohalmi, Susanne E; Huang, Shangzhi; Wu, Keqiang; Chen, Xuemei; Cui, Yuhai

    2015-01-01

    The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  16. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP.

    Directory of Open Access Journals (Sweden)

    Chenlong Li

    2015-01-01

    Full Text Available The chromatin remodeler BRAHMA (BRM is a Trithorax Group (TrxG protein that antagonizes the functions of Polycomb Group (PcG proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3 in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq. Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF or SWINGER (SWN. ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  17. Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice

    Science.gov (United States)

    Hayashi, Shinichiro; Manabe, Ichiro; Suzuki, Yumi; Relaix, Frédéric; Oishi, Yumiko

    2016-01-01

    Krüppel-like factor 5 (Klf5) is a zinc-finger transcription factor that controls various biological processes, including cell proliferation and differentiation. We show that Klf5 is also an essential mediator of skeletal muscle regeneration and myogenic differentiation. During muscle regeneration after injury (cardiotoxin injection), Klf5 was induced in the nuclei of differentiating myoblasts and newly formed myofibers expressing myogenin in vivo. Satellite cell-specific Klf5 deletion severely impaired muscle regeneration, and myotube formation was suppressed in Klf5-deleted cultured C2C12 myoblasts and satellite cells. Klf5 knockdown suppressed induction of muscle differentiation-related genes, including myogenin. Klf5 ChIP-seq revealed that Klf5 binding overlaps that of MyoD and Mef2, and Klf5 physically associates with both MyoD and Mef2. In addition, MyoD recruitment was greatly reduced in the absence of Klf5. These results indicate that Klf5 is an essential regulator of skeletal muscle differentiation, acting in concert with myogenic transcription factors such as MyoD and Mef2. DOI: http://dx.doi.org/10.7554/eLife.17462.001 PMID:27743478

  18. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation.

    Science.gov (United States)

    Zhang, Chi; Basta, Tamara; Jensen, Eric D; Klymkowsky, M W

    2003-12-01

    In Xenopus laevis, beta-catenin-mediated dorsal axis formation can be suppressed by overexpression of the HMG-box transcription factor XSOX3. Mutational analysis indicates that this effect is due not to the binding of XSOX3 to beta-catenin nor to its competition with beta-catenin-regulated TCF-type transcription factors for specific DNA binding sites, but rather to SOX3 binding to sites within the promoter of the early VegT- and beta-catenin-regulated dorsal-mesoderm-inducing gene Xnr5. Although B1-type SOX proteins, such as XSOX3, are commonly thought to act as transcriptional activators, XSOX3 acts as a transcriptional repressor of Xnr5 in both the intact embryo and animal caps injected with VegT RNA. Expression of a chimeric polypeptide composed of XSOX3 and a VP16 transcriptional activation domain or morpholino-induced decrease in endogenous XSOX3 polypeptide levels lead to an increase in Xnr5 expression, as does injection of an anti-XSOX3 antibody that inhibits XSOX3 DNA binding. These observations indicate that maternal XSOX3 acts in a novel manner to restrict Xnr5 expression to the vegetal hemisphere.

  19. Development of an mlrA Gene-Directed TaqMan PCR Assay for Quantitative Assessment of Microcystin-Degrading Bacteria within Water Treatment Plant Sand Filter Biofilms▿

    Science.gov (United States)

    Hoefel, Daniel; Adriansen, Caroline M. M.; Bouyssou, Magali A. C.; Saint, Christopher P.; Newcombe, Gayle; Ho, Lionel

    2009-01-01

    We report for the first time a quantitative mlrA gene-directed TaqMan PCR assay for the rapid detection of microcystin-degrading bacteria. This was applied, in combination with 16S ribosomal DNA-directed quantitative PCR and denaturing gradient gel electrophoresis, to study virgin sand filter column biofilm development and to correlate mlrA gene abundance with microcystin removal efficiency. PMID:19502429

  20. Effects of Exogenous Jasmonic Acid on Concentrations of Direct-Defense Chemicals and Expression of Related Genes in Bt(Bacillus thuringiensis)Corn(Zea mays)

    Institute of Scientific and Technical Information of China (English)

    FENG Yuan-jiao; WANG Jian-wu; LUO Shi-ming

    2007-01-01

    Bt corn is one of the top three large-scale commercialized transgenic crops around the world.It is increasingly clear that the complementary durable approaches for pest control,which combine the endogenous defense of the crop with the introduced foreign genes,are promising alternative strategies for pest resistance management and the next generation of insect-resistant transgenic crops.In the present study,we tested the inducible effects of exogenous jasmonic acid(JA) on direct-defense chemical content,Bt protein concentration,and related gene expression in the leaves of Bt corn cultivar 34B24 and non-Bt cultivar 34B23 by chemical analysis,ELISA,and RT-PCR.The results show that the expression of LOX,PR-2αMPI,and PR-1 genes in the treated leaf(the first leaf)was promoted by exogenous JA both in 34B24 and 34B23.As compared with the control,the concentration of DIMBOA in the treated leaf was significantly increased by 63 and 18% for 34B24 and 34B23,respectively.The total phenolic acid was also increased by 24 and 12% for both 34B24 and 34B23.The Bt protein content of 34B24 in the treated leaf was increased by 13% but decreased significantly by 27% in the second leaf.The induced response of 34B24 was in a systemic way and was much stronger than that of 34B23.Those findings indicated that there is a synergistic interaction between Bt gene and internally induced chemical defense system triggered by externally applied JA in Bt corn.

  1. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  2. AraC/XylS family members, HilD and HilC, directly activate virulence gene expression independently of HilA in Salmonella typhimurium.

    Science.gov (United States)

    Akbar, Samina; Schechter, Lisa M; Lostroh, C Phoebe; Lee, Catherine A

    2003-02-01

    Salmonella typhimurium is a Gram-negative enteric pathogen that can infect intestinal epithelial cells and induce inflammation of the intestinal mucosa. These processes are mediated by a type III secretion system (TTSS), which is encoded on Salmonella pathogenicity island 1 (SPI1). Previous studies showed that four SPI1-encoded transcriptional regulators, HilD, HilC, HilA and InvF, act in an ordered fashion to co-ordinately activate expression of the SPI1 TTSS. HilD and HilC derepress hilA transcription. HilA activates invF as well as SPI1 genes that encode components of the TTS apparatus. InvF then activates genes that encode proteins secreted by the SPI1 TTS apparatus. In this scheme, HilD and HilC indirectly activate expression of the SPI1 TTS apparatus and its secreted substrates by affecting hilA expression. Here, we report that HilD and HilC can also activate expression of a subset of SPI1 genes independently of HilA. Our studies show that HilD and HilC activate transcription of invF from a promoter that is far upstream of its HilA-dependent promoter. This activation is most probably through direct binding of HilD and HilC to sequences upstream and downstream of this alternative HilA-independent promoter. We conclude that HilD and HilC have a second role in SPI1 gene regulation that is separate from their role in co-ordinating expression of the SPI1 TTSS through hilA.

  3. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+

    Directory of Open Access Journals (Sweden)

    Doloff Joshua C

    2010-09-01

    Full Text Available Abstract Background Cytochrome P450-based suicide gene therapy for cancer using prodrugs such as cyclophosphamide (CPA increases anti-tumor activity, both directly and via a bystander killing mechanism. Bystander cell killing is essential for the clinical success of this treatment strategy, given the difficulty of achieving 100% efficient gene delivery in vivo using current technologies. Previous studies have shown that the pan-caspase inhibitor p35 significantly increases CPA-induced bystander killing by tumor cells that stably express P450 enzyme CYP2B6 (Schwartz et al, (2002 Cancer Res. 62: 6928-37. Methods To further develop this approach, we constructed and characterized a replication-defective adenovirus, Adeno-2B6/p35, which expresses p35 in combination with CYP2B6 and its electron transfer partner, P450 reductase. Results The expression of p35 in Adeno-2B6/p35-infected tumor cells inhibited caspase activation, delaying the death of the CYP2B6 "factory" cells that produce active CPA metabolites, and increased bystander tumor cell killing compared to that achieved in the absence of p35. Tumor cells infected with Adeno-2B6/p35 were readily killed by cisplatin and doxorubicin, indicating that p35 expression is not associated with acquisition of general drug resistance. Finally, p35 did not inhibit viral release when the replication-competent adenovirus ONYX-017 was used as a helper virus to facilitate co-replication and spread of Adeno-2B6/p35 and further increase CPA-induced bystander cell killing. Conclusions The introduction of p35 into gene therapeutic regimens constitutes an effective approach to increase bystander killing by cytochrome P450 gene therapy. This strategy may also be used to enhance other bystander cytotoxic therapies, including those involving the production of tumor cell toxic protein products.

  4. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

    Directory of Open Access Journals (Sweden)

    Jeron Andreas

    2012-12-01

    Full Text Available Abstract Background The transcription factor (TF forkhead box P3 (FOXP3 is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs. It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  5. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells.

    Science.gov (United States)

    Jeron, Andreas; Hansen, Wiebke; Ewert, Franziska; Buer, Jan; Geffers, Robert; Bruder, Dunja

    2012-12-17

    The transcription factor (TF) forkhead box P3 (FOXP3) is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs). It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP) of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip) has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs) on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin-stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  6. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Kai Qiu

    2015-07-01

    Full Text Available Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3 is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC transcription factor ORE1/NAC2 constitute a regulatory network mediating leaf senescence. However, how this network regulates chlorophyll degradation at molecular level is not yet elucidated. Here we report a feed-forward regulation of chlorophyll degradation that involves EIN3, ORE1, and chlorophyll catabolic genes (CCGs. Gene expression analysis showed that the induction of three major CCGs, NYE1, NYC1 and PAO, by ethylene was largely repressed in ein3 eil1 double mutant. Dual-luciferase assay revealed that EIN3 significantly enhanced the promoter activity of NYE1, NYC1 and PAO in Arabidopsis protoplasts. Furthermore, Electrophoretic mobility shift assay (EMSA indicated that EIN3 could directly bind to NYE1, NYC1 and PAO promoters. These results reveal that EIN3 functions as a positive regulator of CCG expression during ethylene-mediated chlorophyll degradation. Interestingly, ORE1, a senescence regulator which is a downstream target of EIN3, could also activate the expression of NYE1, NYC1 and PAO by directly binding to their promoters in EMSA and chromatin immunoprecipitation (ChIP assays. In addition, EIN3 and ORE1 promoted NYE1 and NYC1 transcriptions in an additive manner. These results suggest that ORE1 is also involved in the direct regulation of CCG transcription. Moreover, ORE1 activated the expression of ACS2, a major ethylene biosynthesis gene, and subsequently promoted ethylene production. Collectively, our work reveals that EIN3, ORE1 and CCGs constitute a coherent feed-forward loop involving in the robust regulation of ethylene-mediated chlorophyll

  7. 阿维链霉菌aveD基因的定点突变%Site-directed Mutagenesis of Streptomyces avermitilis aveD Gene

    Institute of Scientific and Technical Information of China (English)

    汤晖; 张利平

    2011-01-01

    [Objective] The aim of this study was to produce Streptomyces avermitilis strain with site-directed mutagenesis in aveD gene,and so as to provide theoretical basis for genetic breeding of S.avermitilis.[Method] PCR-driven overlap extension was conducted for the site-directed mutagenesis in aveD gene;the mutated aveD gene then was used to construct vector pDC3(pKC1139∷aveD) via molecular manipulations like in vitro enzyme digestion and ligation;the vector pDC3(pKC1139∷aveD) was then introduced to aveD deletion mutant 489 of avermectin-producing strain S.avermitilis 76-9.[Result] Mutant strain 536 of site-directed mutagenesis of S.avermitilis 76-9 was obtained by homologous recombination.The sequencing results show that the sixty-ninth base C in aveD-coding region of mutant 536 was substituted by T,and the corresponding amino acid Thr was mutated to be Ile.[Conclusion] This study laid basis for the development of strains specifically producing avermectin B.%[目的]获得aveD基因定点突变株,为阿维菌素的遗传育种提供理论依据。[方法]采用重叠延伸PCR技术对aveD基因进行定点突变,并通过体外酶切连接等分子生物学操作,构建了aveD基因的定点突变载体pDC3(pKC1139∷aveD、),导入阿维菌素(Avermectin)产生菌阿维链霉菌(Streptomyces avermitilis)76-9的aveD基因缺失突变株489中。[结果]经过同源重组,获得aveD基因定点缺失突变株536。测序结果表明突变株536,aveD基因编码区中第69位碱基C突变为T,相应的氨基酸序列第23位由Thr突变为Ile。[结论]该研究为研制生产阿维菌素B的基因工程菌奠定了基础。

  8. Group 1 Allergen Genes in Two Species of House Dust Mites, Dermatophagoides farinae and D. pteronyssinus (Acari: Pyroglyphidae: Direct Sequencing, Characterization and Polymorphism.

    Directory of Open Access Journals (Sweden)

    Rubaba Hamid Shafique

    Full Text Available Group 1 allergens of Dermatophagoides farinae (Der f 1 and D. pteronyssinus (Der p 1 dominate overall allergic responses in house dust mite allergy patients. The need for accurate identification and characterization of representative variants of group 1 allergens in any given geographic locality has been emphasized for development of appropriate allergen extracts. Regional amino acid sequence polymorphism has been described but the extent of this polymorphism is not well understood. Such data are completely absent for the USA and many other countries. Most previous studies used cDNA libraries generated by reverse transcriptase (RT-PCR and/or primers amplifying shorter fragments of this gene. Using novel species-specific primers and direct PCR, we document group 1 allergen gene sequence polymorphism in populations of D. farinae and D. pteronyssinus from the USA and Pakistan. We report two novel introns (nt pos 87 and 291 in both species, and the absence of intron 3 in Der p 1. Thirteen silent and one novel non-synonymous mutation (Tryptophan W197 to Arginine R197 were detected in D. farinae. The potential medical significance of the latter mutation is discussed. Two haplotypes of the Der f 1 gene were identified, haplotype 1 (63% was more frequent than haplotype 2 (18%. Polymorphism in Der f 1 displayed geographical localization, since both haplotypes were present in mite populations from Pakistan whereas haplotype 1 was observed only in the USA. In Der p 1, a silent mutation at nt (aa position 1011(149 and four non-synonymous mutations at positions 589(50, 935(124, 971(136, 1268(215 were observed. These mutations were reported from many other geographic regions, suggesting that polymorphism in the Der p 1 gene is panmictic. The extent of polymorphism in both genes is substantially lower than that reported previously (0.10-0.16% vs 0.31-0.49%, indicating the need for careful evaluation of potential polymerase errors in studies utilizing RT-PCR.

  9. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway.

    Science.gov (United States)

    Lynch, Jennifer; Fay, Joanna; Meehan, Maria; Bryan, Kenneth; Watters, Karen M; Murphy, Derek M; Stallings, Raymond L

    2012-05-01

    Transforming growth factor-β (TGF-β) signaling regulates many diverse cellular activities through both canonical (SMAD-dependent) and non-canonical branches, which includes the mitogen-activated protein kinase (MAPK), Rho-like guanosine triphosphatase and phosphatidylinositol-3-kinase/AKT pathways. Here, we demonstrate that miR-335 directly targets and downregulates genes in the TGF-β non-canonical pathways, including the Rho-associated coiled-coil containing protein (ROCK1) and MAPK1, resulting in reduced phosphorylation of downstream pathway members. Specifically, inhibition of ROCK1 and MAPK1 reduces phosphorylation levels of the motor protein myosin light chain (MLC) leading to a significant inhibition of the invasive and migratory potential of neuroblastoma cells. Additionally, miR-335 targets the leucine-rich alpha-2-glycoprotein 1 (LRG1) messenger RNA, which similarly results in a significant reduction in the phosphorylation status of MLC and a decrease in neuroblastoma cell migration and invasion. Thus, we link LRG1 to the migratory machinery of the cell, altering its activity presumably by exerting its effect within the non-canonical TGF-β pathway. Moreover, we demonstrate that the MYCN transcription factor, whose coding sequence is highly amplified in a particularly clinically aggressive neuroblastoma tumor subtype, directly binds to a region immediately upstream of the miR-335 transcriptional start site, resulting in transcriptional repression. We conclude that MYCN contributes to neuroblastoma cell migration and invasion, by directly downregulating miR-335, resulting in the upregulation of the TGF-β signaling pathway members ROCK1, MAPK1 and putative member LRG1, which positively promote this process. Our results provide novel insight into the direct regulation of TGF-β non-canonical signaling by miR-335, which in turn is downregulated by MYCN.

  10. Evaluation of a gene-directed enzyme-product therapy (GDEPT in human pancreatic tumor cells and their use as in vivo models for pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Juraj Hlavaty

    Full Text Available BACKGROUND: Gene-directed enzyme prodrug therapy (GDEPT is a two-step treatment protocol for solid tumors that involves the transfer of a gene encoding a prodrug-activating enzyme followed by administration of the inactive prodrug that is subsequently activated by the enzyme to its tumor toxic form. However, the establishment of such novel treatment regimes to combat pancreatic cancer requires defined and robust animal model systems. METHODS: Here, we comprehensively compared six human pancreatic cancer cell lines (PaCa-44, PANC-1, MIA PaCa-2, Hs-766T, Capan-2, and BxPc-3 in subcutaneous and orthotopical mouse models as well as in their susceptibility to different GDEPTs. RESULTS: Tumor uptake was 83% to 100% in the subcutaneous model and 60% to 100% in the orthotopical mouse model, except for Hs-766T cells, which did not grow orthotopically. Pathohistological analyses of the orthotopical models revealed an infiltrative growth of almost all tumors into the pancreas; however, the different cell lines gave rise to tumors with different morphological characteristics. All of the resultant tumors were positive for MUC-1 staining indicating their origin from glandular or ductal epithelium, but revealed scattered pan-cytokeratin staining. Transfer of the cytochrome P450 and cytosine deaminase suicide gene, respectively, into the pancreatic cancer cell lines using retroviral vector technology revealed high level infectibility of these cell lines and allowed the analysis of the sensitivity of these cells to the chemotherapeutic drugs ifosfamide and 5-fluorocytosine, respectively. CONCLUSION: These data qualify the cell lines as part of valuable in vitro and in vivo models for the use in defined preclinical studies for pancreas tumor therapy.

  11. A quantitative and direct PCR assay for the subspecies-specific detection of Clavibacter michiganensis subsp. michiganensis based on a ferredoxin reductase gene.

    Science.gov (United States)

    Cho, Min Seok; Lee, Jang Ha; Her, Nam Han; Kim, Changkug; Seol, Young-Joo; Hahn, Jang Ho; Baeg, Ji Hyoun; Kim, Hong Gi; Park, Dong Suk

    2012-06-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis is the causal agent of canker disease in tomato. Because it is very important to control newly introduced inoculum sources from commercial materials, the specific detection of this pathogen in seeds and seedlings is essential for effective disease control. In this study, a novel and efficient assay for the detection and quantitation of C. michiganensis subsp. michiganensis in symptomless tomato and red pepper seeds was developed. A pair of polymerase chain reaction (PCR) primers (Cmm141F/R) was designed to amplify a specific 141 bp fragment on the basis of a ferredoxin reductase gene of C. michiganensis subsp. michiganensis NCPPB 382. The specificity of the primer set was evaluated using purified DNA from 16 isolates of five C. michiganensis subspecies, one other Clavibacter species, and 17 other reference bacteria. The primer set amplified a single band of expected size from the genomic DNA obtained from the C. michiganensis subsp. michiganensis strains but not from the other C. michiganensis subspecies or from other Clavibacter species. The detection limit was a single cloned copy of the ferredoxin reductase gene of C. michiganensis subsp. michiganensis. In conclusion, this quantitative direct PCR assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of seeds and seedlings with a low level or latent infection of C. michiganensis subsp. michiganensis.

  12. Mouse Mammary Tumor Virus Promoter-Containing Retroviral Promoter Conversion Vectors for Gene-Directed Enzyme Prodrug Therapy are Functional in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Reinhard Klein

    2008-01-01

    Full Text Available Gene directed-enzyme prodrug therapy (GDEPT is an approach for sensitization of tumor cells to an enzymatically activated, otherwise nontoxic, prodrug. Cytochrome P450 2B1 (CYP2B1 metabolizes the prodrugs cyclophosphamide (CPA and ifosfamide (IFA to produce the cytotoxic substances phosphoramide mustard and isophosphoramide mustard as well as the byproduct acrolein. We have constructed a retroviral promoter conversion (ProCon vector for breast cancer GDEPT. The vector allows expression of CYP2B1 from the mouse mammary tumor virus (MMTV promoter known to be active in the mammary glands of transgenic animals. It is anticipated to be used for the generation of encapsulated viral vector producing cells which, when placed inside or close to a tumor, will act as suppliers of the therapeutic CYP2B1 protein as well as of the therapeutic vector itself. The generated vector was effectively packaged by virus producing cells and allowed the production of high levels of enzymatically active CYP2B1 in infected cells which sensitized them to killing upon treatment with both IFA and CPA. Determination of the respective IC50 values demonstrated that the effective IFA dose was reduced by sixteen folds. Infection efficiencies in vivo were determined using a reporter gene-bearing vector in a mammary cancer cell-derived xenograft tumor mouse model.

  13. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum.

    Science.gov (United States)

    Schönauer, Anna; Paese, Christian L B; Hilbrant, Maarten; Leite, Daniel J; Schwager, Evelyn E; Feitosa, Natália Martins; Eibner, Cornelius; Damen, Wim G M; McGregor, Alistair P

    2016-07-01

    In short-germ arthropods, posterior segments are added sequentially from a segment addition zone (SAZ) during embryogenesis. Studies in spiders such as Parasteatoda tepidariorum have provided insights into the gene regulatory network (GRN) underlying segment addition, and revealed that Wnt8 is required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and segment addition. Here, we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of even-skipped (eve) and runt-1 (run-1), at least in part via caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but probably not sufficient to regulate the expression of eve and run-1 Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods, including insects.

  14. The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Fujii, Gaku; Imamura, Sousuke; Era, Atsuko; Miyagishima, Shin-ya; Hanaoka, Mitsumasa; Tanaka, Kan

    2015-05-01

    The plant organelle chloroplast originated from the endosymbiosis of a cyanobacterial-like photosynthetic bacterium, and still retains its own genome derived from this ancestor. We have been focusing on a unicellular red alga, Cyanidioschyzon merolae, as a model photosynthetic eukaryote. In this study, we analyzed the transcriptional specificity of SIG4, which is one of four nuclear-encoded chloroplast RNA polymerase sigma factors in this alga. Accumulation of the SIG4 protein was observed in response to nitrogen depletion or high light conditions. By comparing the chloroplast transcriptomes under nitrogen depletion and SIG4-overexpressing conditions, we identified several candidate genes as SIG4 targets. Together with the results of chromatin immunoprecipitation analysis, the promoters of the psbA (encoding the D1 protein of the photosystem II reaction center) and ycf17 (encoding a protein of the early light-inducible protein family) genes were shown to be direct activation targets. The phycobilisome (PBS) CpcB protein was decreased by SIG4 overexpression, which suggests the negative involvement of SIG4 in PBS accumulation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage.

    Science.gov (United States)

    Sivapragasam, Smitha; Grove, Anne

    2016-05-01

    The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand.

  16. Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma.

    Science.gov (United States)

    Klueg, K M; Harkey, M A; Raff, R A

    1997-02-01

    Developmental processes associated with skeletogenesis differ in the direct-developing sea urchin Heliocidaris erythrogramma from that in Heliocidaris tuberculata and other indirect-developing species. In H. erythrogramma, the differences include ingression of a much higher number of mesenchyme cells, failure of the cells to form the typical ring pattern of cells prior to the onset of skeletogenesis, a significantly reduced larval skeleton, and a delay in timing of expression of the skeletogenic cell-restricted gene msp130. We report that the heterochronic change in msp130 expression is regulated at the level of transcription. By transient expression of reporter constructs containing msp130 promoter regions from direct- and indirect-developing species, we found that this evolutionary change in regulation is consistent with changes in the timing of action of trans-acting factors in skeletogenic mesenchyme cells. We further used these experiments to show that the H. erythrogramma promoter contains elements required for correct spatial expression in the primary mesenchyme cells of an indirect-developing host. We finally show that alternate processing of H. erythrogramma msp130 is thus far specific to this species and not an aspect of adult skeletogenesis.

  17. Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression.

    Science.gov (United States)

    Verkerke-van Wijk, I; Fukuzawa, M; Devreotes, P N; Schaap, P

    2001-06-01

    cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA.

  18. Assessment of the effectiveness of a nuclear-launched TMV-based replicon as a tool for foreign gene expression in plants in comparison to direct gene expression from a nuclear promoter.

    Science.gov (United States)

    Man, Michal; Epel, Bernard L

    2006-02-01

    An environmentally safe Tobacco Mosaic Virus (TMV)-based expression replicon was constructed that lacks movement protein (MP) and coat protein (CP), and which expresses the green fluorescent protein (GFP) gene from a full CP subgenomic promoter. The TMV replicon, whose cDNA was positioned between an enhanced Cauliflower Mosaic Virus 35S promoter (CaMV) and a self-cleaving hammerhead ribozyme with a downstream nopaline synthase gene polyadenylation signal [nos-poly(A)], was assessed for its effectiveness to accumulate GFP upon agroinfiltration into plant leaves compared to a control construct in which GFP was directly expressed from the enhanced CaMV 35S promoter. It was determined that individually expressing cells produced ca. 9-fold more GFP from the TMV-based replicon than from the enhanced 35S promoter. In contrast, GFP measurements from total leaf extracts determined that leaves infiltrated with the TMV-based replicon produced ca. 7-fold less GFP than the control construct. These apparently contradictory results can be explained by the low infectivity of the TMV-based replicon as it was found that the number of foci expressing GFP produced in leaves agroinfiltrated with the TMV-based replicon was ca. 66-fold lower than produced by the control.

  19. A novel needleless liquid jet injection methodology for improving direct cardiac gene delivery: An optimization of parameters, AAV mediated therapy and investigation of host responses in ischemic heart failure

    Science.gov (United States)

    Fargnoli, Anthony Samuel

    Heart disease remains the leading cause of mortality and morbidity worldwide, with 22 million new patients diagnosed annually. Essentially, all present therapies have significant cost burden to the healthcare system, yet fail to increase survival rates. One key employed strategy is the genetic reprogramming of cells to increase contractility via gene therapy, which has advanced to Phase IIb Clinical Trials for advanced heart failure patients. It has been argued that the most significant barrier preventing FDA approval are resolving problems with safe, efficient myocardial delivery, whereby direct injection in the infarct and remote tissue areas is not clinically feasible. Here, we aim to: (1) Improve direct cardiac gene delivery through the development of a novel liquid jet device approach (2) Compare the new method against traditional IM injection with two different vector constructions and evaluate outcome (3) Evaluate the host response resulting from both modes of direct cardiac injection, then advance a drug/gene combination with controlled release nanoparticle formulations.

  20. Combined real-time PCR and rpoB gene pyrosequencing for rapid identification of Mycobacterium tuberculosis and determination of rifampin resistance directly in clinical specimens.

    Science.gov (United States)

    Halse, Tanya A; Edwards, Justine; Cunningham, Phyllis L; Wolfgang, William J; Dumas, Nellie B; Escuyer, Vincent E; Musser, Kimberlee A

    2010-04-01

    Our laboratory has developed a rapid, sensitive, and specific molecular approach for detection in clinical specimens, within 48 h of receipt, of both Mycobacterium tuberculosis complex (MTBC) DNA and mutations within the 81-bp core region of the rpoB gene that are associated with rifampin (RIF) resistance. This approach, which combines an initial real-time PCR with internal inhibition assessment and a pyrosequencing assay, was validated for direct use with clinical specimens. To assess the suitability of real-time PCR for use with respiratory, nonrespiratory, acid-fast bacillus (AFB)-positive and AFB-negative specimens, we evaluated specimens received in our laboratory between 11 October 2007 and 30 June 2009. With culture used as the "gold standard," the sensitivity, specificity, and positive and negative predictive values were determined for 1,316 specimens to be as follows: for respiratory specimens, 94.7%, 99.9%, 99.6%, and 98.6%, respectively; for nonrespiratory specimens, 88.5%, 100.0%, 100.0%, and 96.9%, respectively; for AFB-positive specimens, 99.6%, 100.0%, 100.0%, and 97.7%, respectively; and for AFB-negative specimens, 75.4%, 99.9%, 98.0%, and 98.4%, respectively. PCR inhibition was determined to be minimal in this assay, occurring in 0.2% of tests. The rpoB gene pyrosequencing assay was evaluated in a similar prospective study, in which 148 clinical specimens positive for MTBC DNA by real-time PCR were tested. The final results revealed that the results of direct testing of clinical specimens by the pyrosequencing assay were 98.6% concordant with the results of conventional testing for susceptibility to RIF in liquid culture and that our assay displayed adequate sensitivity for 96.6% of the clinical specimens tested. Used together, these assays provide reliable results that aid with the initial management of patients with suspected tuberculosis prior to the availability of the results for cultured material, and they also provide the ability to predict

  1. IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications.

    Directory of Open Access Journals (Sweden)

    Karen E Johnson

    2014-11-01

    Full Text Available Interferon-γ inducible factor 16 (IFI16 is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β, and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV and herpes simplex virus (HSV-1, though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential

  2. Direct and accurate measurement of CAG repeat configuration in the ataxin-1 (ATXN-1) gene by "dual-fluorescence labeled PCR-restriction fragment length analysis".

    Science.gov (United States)

    Lin, Jiang X; Ishikawa, Kinya; Sakamoto, Masaki; Tsunemi, Taiji; Ishiguro, Taro; Amino, Takeshi; Toru, Shuta; Kondo, Ikuko; Mizusawa, Hidehiro

    2008-01-01

    Spinocerebellar ataxia type 1 (SCA1; OMIM: #164400) is an autosomal dominant cerebellar ataxia caused by an expansion of CAG repeat, which encodes polyglutamine, in the ataxin-1 (ATXN1) gene. Length of polyglutamine in the ATXN1 protein is the critical determinant of pathogenesis of this disease. Molecular diagnosis of SCA1 is usually undertaken by assessing the length of CAG repeat configuration using primers spanning this configuration. However, this conventional method may potentially lead to misdiagnosis in assessing polyglutamine-encoding CAG repeat length, since CAT interruptions may be present within the CAG repeat configuration, not only in normal controls but also in neurologically symptomatic subjects. We developed a new method for assessing actual CAG repeat numbers not interrupted by CAT sequences. Polymerase chain reaction using a primer pair labeled with two different fluorescences followed by restriction enzyme digestion with SfaNI which recognizes the sequence "GCATC(N)(5)", lengths of actual CAG repeats that encode polyglutamine were directly detected. We named this method "dual fluorescence labeled PCR-restriction fragment length analysis". We found that numbers of actual CAG repeat encoding polyglutamine do not overlap between our cohorts of normal chromosomes (n=385) and SCA1 chromosomes (n=5). We conclude that the present method is a useful way for molecular diagnosis of SCA1.

  3. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes.

    Science.gov (United States)

    Zhou, Xiaoyang; Wang, Lulu; Du, Yinan; Xie, Fei; Li, Liang; Liu, Yu; Liu, Chuanhong; Wang, Shiqiang; Zhang, Shibing; Huang, Xingxu; Wang, Yong; Wei, Hong

    2016-01-01

    Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs.

  4. The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Green, Laura K.; Storey, Mathew A. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Williams, Elsie M. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Patterson, Adam V.; Smaill, Jeff B. [Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand); Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1142 (New Zealand); Copp, Janine N.; Ackerley, David F., E-mail: david.ackerley@vuw.ac.nz [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand)

    2013-08-08

    Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the “gold standard” nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT.

  5. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism

    Science.gov (United States)

    Objectives: Newcastle disease virus (NDV), a member of the Paramxoviridae family, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU...

  6. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism

    Science.gov (United States)

    Newcastle disease virus (NDV) has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU). Based on the well-accepted “stop-start” transcr...

  7. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus.

    Science.gov (United States)

    Watanabe, T; Aonuma, H

    2014-02-01

    Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects. © 2013 The Royal Entomological Society.

  8. Evidence from enzymatic and meta-analyses does not support a direct association between USP26 gene variants and male infertility.

    Science.gov (United States)

    Zhang, W; Liu, T; Mi, Y-J; Yue, L-D; Wang, J-M; Liu, D-W; Yan, J; Tian, Q B

    2015-03-01

    Do men who carry mutations in USP26 have an increased risk of infertility? The association between mutations in USP26 gene and male infertility has been studied intensively. However, the results from different groups are controversial. In particular, biological function of the mutant proteins remains to be elucidated. In this study, we conducted a USP cleavage assay and a meta-analysis of the published literature (up to 31 May 2013) to evaluate the impact of five frequent mutations (NM_031907.1: c.363_364insACA, c.494T>C, c.1423C>T, c.1090C>T, c.1737G>A) on enzymatic activity of the USP26 and to assess the strength of the association between those mutations and male infertility. The USP cleavage assay showed that those mutations do not affect USP26 enzymatic activity. Moreover, the results of meta-analysis of ten case-control studies (in total 1716 patients and 2597 controls) revealed no significant association (P > 0.05) between USP26 mutations and male infertility. The pooled ORs were 1.58 (95% CI: 0.81, 3.10) for cluster mutations (c.363_364insACA, c.494T>C, c.1423C>T), 1.60 (95% CI: 0.93, 2.74) for c.1090 C>T and 2.64 (95% CI: 0.97, 7.20) for c.1737 G>A. Evidence from both enzymatic and meta-analyses does not support a direct association between USP26 variants and male infertility. Further research is necessary to study the biological function of USP26, which may provide clues as to the regulation of androgen receptor signalling. © 2015 American Society of Andrology and European Academy of Andrology.

  9. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway.

    Science.gov (United States)

    Ma, Lu; Hatlen, Andrea; Kelly, Laura J; Becher, Hannes; Wang, Wencai; Kovarik, Ales; Leitch, Ilia J; Leitch, Andrew R

    2015-09-02

    The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Controlling feeding behavior by chemical or gene-directed targeting in the brain: What’s so spatial about our methods?

    Directory of Open Access Journals (Sweden)

    Arshad M Khan

    2013-12-01

    Full Text Available Intracranial chemical injection (ICI methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. However, comparing injection sites with other types of location data requires careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial gene-directed injection (IGI methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics and pharmacosynthetics that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and

  11. High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing

    DEFF Research Database (Denmark)

    Martin, P; Heiskari, N; Zhou, J

    1998-01-01

    Approximately 85% of patients with Alport syndrome (hereditary nephritis) have been estimated to have mutations in the X chromosomal COL4A5 collagen gene; the remaining cases are autosomal with mutations in the COL4A3 or COL4A4 genes located on chromosome 2. In the present work, the promoter...

  12. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salman, Fadheela; Plant, Nick, E-mail: N.Plant@Surrey.ac.uk

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  13. Transcription of Leishmania major U2 small nuclear RNA gene is directed by extragenic sequences located within a tRNA-like and a tRNA-Ala gene

    National Research Council Canada - National Science Library

    Rojas-Sánchez, Saúl; Figueroa-Angulo, Elisa; Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Manning-Cela, Rebeca G; Martínez-Calvillo, Santiago

    2016-01-01

    .... Here we report the characterization of L. major U2 snRNA promoter region. All species of Leishmania possess a single U2 snRNA gene that contains a divergently-oriented tRNA-Ala gene in the upstream region...

  14. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Directory of Open Access Journals (Sweden)

    Dachs Gabi U

    2004-11-01

    Full Text Available Abstract Background Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Methods Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Results Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Conclusions Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous

  15. 17α-Ethinylestradiol (EE2) treatment of wild roach (Rutilus rutilus) during early life development disrupts expression of genes directly involved in the feedback cycle of estrogen.

    Science.gov (United States)

    Nikoleris, Lina; Hultin, Cecilia L; Hallgren, Per; Hansson, Maria C

    2016-02-01

    Fish are more sensitive to introduced disturbances from synthetic endocrine disrupting compounds during early life phases compared with mature stages. 17α-Ethinylestradiol (EE2), which is the active compound in human oral contraceptives and hormone replacement therapies, is today ever present in the effluents from sewage treatment plants. EE2 targets and interacts with the endogenous biological systems of exposed vertebrates resulting in to large extents unknown short- and long-term effects. We investigated how EE2 exposure affects expression profiles of a large number of target genes during early life of roach (Rutilus rutilus). We exposed fertilized roach eggs collected from a lake in Southern Sweden to EE2 for 12weeks together with 1+-year-old roach in aquaria. We measured the gene expression of the estrogen receptor (esr)1/2a/2b, androgen receptor (ar), vitellogenin, cytochrome P450 (cyp)19a1a/1b in fertilized eggs; newly hatched larvae; 12-week-old fry; and juvenile wild roach (1+-year-old). Results shows that an EE2 concentration as low as 0.5ng/L significantly affects gene expression during early development. Gene expression responses vary both among life stages and molecular receptors. We also show that the gene profile of the estrogen feedback cycle to a large extent depends on the relationship between the three esr genes and the two cyp19a1 genes, which are all up-regulated with age. Results indicate that a disruption of the natural activity of the dominant esr gene could lead to detrimental biological effects if EE2 exposure occurs during development, even if this exposure occurred for only a short period.

  16. Localisation of Abundant and Organ-Specific Genes Expressed in Rosa hybrida Leaves and Flower Buds by Direct In Situ RT-PCR

    Directory of Open Access Journals (Sweden)

    Agata Jedrzejuk

    2012-01-01

    Full Text Available In situ PCR is a technique that allows specific nucleic acid sequences to be detected in individual cells and tissues. In situ PCR and IS-RT-PCR are elegant techniques that can increase both sensitivity and throughput, but they are, at best, only semiquantitative; therefore, it is desirable first to ascertain the expression pattern by conventional means to establish the suitable conditions for each probe. In plants, in situ RT-PCR is widely used in the expression localisation of specific genes, including MADS-box and other function-specific genes or housekeeping genes in floral buds and other organs. This method is especially useful in small organs or during early developmental stages when the separation of particular parts is impossible. In this paper, we compared three different labelling and immunodetection methods by using in situ RT-PCR in Rosa hybrida flower buds and leaves. As target genes, we used the abundant β-actin and RhFUL gene, which is expressed only in the leaves and petals/sepals of flower buds. We used digoxygenin-11-dUTP, biotin-11-dUTP, and fluorescein-12-dUTP-labelled nucleotides and antidig-AP/ streptavidin-fluorescein-labelled antibodies. All of the used methods gave strong, specific signal and all of them may be used in localization of gene expression on tissue level in rose organs.

  17. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping

    Science.gov (United States)

    Müller, Vilhelm; Rajer, Fredrika; Frykholm, Karolin; Nyberg, Lena K.; Quaderi, Saair; Fritzsche, Joachim; Kristiansson, Erik; Ambjörnsson, Tobias; Sandegren, Linus; Westerlund, Fredrik

    2016-12-01

    Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.

  18. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge.

    Science.gov (United States)

    van Wees, S C; Luijendijk, M; Smoorenburg, I; van Loon, L C; Pieterse, C M

    1999-11-01

    Selected strains of nonpathogenic rhizobacteria from the genus Pseudomonas are capable of eliciting broad-spectrum induced systemic resistance (ISR) in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). In Arabidopsis, the ISR pathway functions independently of salicylic acid (SA) but requires responsiveness to jasmonate and ethylene. Here, we demonstrate that known defense-related genes, i.e. the SA-responsive genes PR-1, PR-2, and PR-5, the ethylene-inducible gene Hel, the ethylene- and jasmonate-responsive genes ChiB and Pdf1.2, and the jasmonate-inducible genes Atvsp, Lox1, Lox2, Pall, and Pin2, are neither induced locally in the roots nor systemically in the leaves upon induction of ISR by Pseudomonas fluorescens WCS417r. In contrast, plants infected with the virulent leaf pathogen Pseudomonas syringae pv. tomato (Pst) or expressing SAR induced by preinfecting lower leaves with the avirulent pathogen Pst(avrRpt2) exhibit elevated expression levels of most of the defense-related genes studied. Upon challenge inoculation with Pst, PR gene transcripts accumulated to a higher level in SAR-expressing plants than in control-treated and ISR-expressing plants, indicating that SAR involves potentiation of SA-responsive PR gene expression. In contrast, pathogen challenge of ISR-expressing plants led to an enhanced level of Atvsp transcript accumulation. The otherjasmonate-responsive defense-related genes studied were not potentiated during ISR, indicating that ISR is associated with the potentiation of specific jasmonate-responsive genes.

  19. Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum.

    Science.gov (United States)

    Cepeda-García, Cristina; Domínguez-Santos, Rebeca; García-Rico, Ramón O; García-Estrada, Carlos; Cajiao, Angela; Fierro, Francisco; Martín, Juan Francisco

    2014-08-01

    The transcription factor CreA is the main regulator responsible for carbon repression in filamentous fungi. CreA is a wide domain regulator that binds to regulatory elements in the promoters of target genes to repress their transcription. Penicillin biosynthesis and the expression of penicillin biosynthetic genes are subject to carbon repression. However, evidence of the participation of CreA in this regulation is still lacking, and previous studies on the promoter of the pcbC gene of Aspergillus nidulans indicated the lack of involvement of CreA in its regulation. Here we present clear evidence of the participation of CreA in carbon repression of penicillin biosynthesis and expression of the pcbAB gene, encoding the first enzyme of the pathway, in Penicillium chrysogenum. Mutations in cis of some of the putative CreA binding sites present in the pcbAB gene promoter fused to a reporter gene caused an important increase in the measured enzyme activity in glucose-containing medium, whereas activity in the medium with lactose was not affected. An RNAi strategy was used to attenuate the expression of the creA gene. Transformants expressing a small interfering RNA for creA showed higher penicillin production, and this increase was more evident when glucose was used as carbon source. These results confirm that CreA plays an important role in the regulation of penicillin biosynthesis in P. chrysogenum and opens the possibility of its utilization to improve the industrial production of this antibiotic.

  20. hebp3, a novel member of the heme-binding protein gene family, is expressed in the medaka meninges with higher abundance in females due to a direct stimulating action of ovarian estrogens.

    Science.gov (United States)

    Nakasone, Kiyoshi; Nagahama, Yoshitaka; Okubo, Kataaki

    2013-02-01

    The brains of teleost fish exhibit remarkable sexual plasticity throughout their life span. To dissect the molecular basis for the development and reversal of sex differences in the teleost brain, we screened for genes differentially expressed between sexes in the brain of medaka (Oryzias latipes). One of the genes identified in the screen as being preferentially expressed in females was found to be a new member of the heme-binding protein gene family that includes hebp1 and hebp2 and was designated here as hebp3. The medaka hebp3 is expressed in the meninges with higher abundance in females, whereas there is no expression within the brain parenchyma. This female-biased expression of hebp3 is not attributable to the direct action of sex chromosome genes but results from the transient and reversible action of estrogens derived from the ovary. Moreover, estrogens directly activate the transcription of hebp3 via a palindromic estrogen-responsive element in the hebp3 promoter. Taken together, our findings demonstrate that hebp3 is a novel transcriptional target of estrogens, with female-biased expression in the meninges. The definite but reversible sexual dimorphism of the meningeal hebp3 expression may contribute to the development and reversal of sex differences in the teleost brain.

  1. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K. (National Institutes of Health, Bethesda, MD (USA))

    1988-08-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation.

  2. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  3. Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Yin, Jia; Hoffmann, Michael; Bian, Xiaoying; Tu, Qiang; Yan, Fu; Xia, Liqiu; Ding, Xuezhi; Stewart, A Francis; Müller, Rolf; Fu, Jun; Zhang, Youming

    2015-10-13

    Linear plus linear homologous recombination-mediated recombineering (LLHR) is ideal for obtaining natural product biosynthetic gene clusters from pre-digested bacterial genomic DNA in one or two steps of recombineering. The natural product salinomycin has a potent and selective activity against cancer stem cells and is therefore a potential anti-cancer drug. Herein, we separately isolated three fragments of the salinomycin gene cluster (salO-orf18) from Streptomyces albus (S. albus) DSM41398 using LLHR and assembled them into intact gene cluster (106 kb) by Red/ET and expressed it in the heterologous host Streptomyces coelicolor (S. coelicolor) A3(2). We are the first to report a large genomic region from a Gram-positive strain has been cloned using LLHR. The successful reconstitution and heterologous expression of the salinomycin gene cluster offer an attractive system for studying the function of the individual genes and identifying novel and potential analogues of complex natural products in the recipient strain.

  4. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Directory of Open Access Journals (Sweden)

    Steven W Paugh

    2016-02-01

    Full Text Available MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16 for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.

  5. Direct detection of mecA, blaSHV , blaCTX-M , blaTEM and blaOXA genes from positive blood culture bottles by multiplex-touchdown PCR assay.

    Science.gov (United States)

    Wang, M-Y; Geng, J-L; Chen, Y-J; Song, Y; Sun, M; Liu, H-Z; Hu, C-J

    2017-02-01

    Methicillin-resistant staphylococci (MRS) and ESBL(Extended-Spectrum β-Lactamase)-producing bacteria are the most important resistant pathogens in sepsis. In this study, a new multiplex-touchdown PCR method (MT-PCR) was developed to detect rapidly and simultaneously the presence of mecA, blaSHV , blaCTX-M , blaTEM and blaOXA genes from positive blood culture bottles. The technique showed a sensitivity of 10(3 ) CFU ml(-1) for mecA detection and of 10(2)  CFU ml(-1) for other genes, and 100% specificity in the detection of all genes. All genes were detected in the spiked blood culture bottles artificially contaminated with reference strains. Three methicillin-resistant S. aureus (MRSA), two methicillin-resistant S. epidermidis (MRSE) and 32 ESBL-producing bacteria, were isolated from the clinical blood culture specimens in 48 h by standard microbiological procedures. The corresponding genes were detected directly in the three MRSA, two MRSE and 29 ESBL-producing bacteria from the clinical blood culture specimens in 4 h by MT-PCR assay. None of the blaSHV , blaCTX-M , blaTEM and blaOXA genes were detected in three other bottles with ESBL-producing bacteria because of other ESBL genotypes in the pathogens. Likewise, all bottles proven negative by culture remained negative by PCR. The proposed method was rapid, sensitive and specific, and was able to directly detect the genes of MRS and ESBL-producing bacteria from the blood culture bottles. Many studies on the development of PCR for the detection of resistance genes have already been published, including multiplex PCR methods. However, cross-amplification reactions can be a major concern in multiplex PCR methods. In this study, we developed a highly sensitive and specific multiplex-touchdown PCR assay for simultaneous detection of mecA, blaSHV , blaCTX-M , blaTEM and blaOXA genes from positive blood culture bottles, cross-amplification was absent and false-positive results were not obtained. © 2016 The

  6. Organization of immunoglobulin genes.

    Science.gov (United States)

    Tonegawa, S; Brack, C; Hozumi, N; Pirrotta, V

    1978-01-01

    The nucleotide-sequence determination of a cloned, embryonic Vlambda gene directly demonstrated that V genes are separate from a corresponding C gene in embryonic cells. Analysis by restriction enzymes of total cellular DNA from various sources strongly suggested that the two separate immunoglobulin genes become continuous during differentiation of B lymphocytes. There seems to be a strict correlation between the joining event and activation of the joined genes. Cloning of more immunoglobulin genes from embryo and plasma cells will not only provide direct demonstration of such a gene-joining event but also help in the elucidation of a possible relationship of the event to gene activation mechanisms.

  7. Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene

    Directory of Open Access Journals (Sweden)

    Stephan eSauer

    2012-11-01

    Full Text Available Ever since cloning the classic iv mutation identified the ‘left-right dynein’ (lrd gene in mice, most research on body laterality determination has focused on its function in motile cilia at the node embryonic organizer. This model is attractive, as it links chirality of cilia architecture to asymmetry development. However, lrd is also expressed in blastocysts and embryonic stem cells, where it was shown to bias the segregation of recombined sister chromatids away from each other in mitosis. These data suggested that lrd is part of a cellular mechanism that recognizes and selectively segregates sister chromatids based on their replication history: old ‘Watson’ vs. old ‘Crick’ strands. We previously proposed that the mouse left-right axis is established via an asymmetric cell division prior to/or during gastrulation. In this model, left-right dynein selectively segregates epigenetically differentiated sister chromatids harboring a hypothetical ‘left-right axis development 1’ (‘lra1’ gene during the left-right axis establishing cell division. Here, asymmetry development would be ultimately governed by the chirality of the cytoskeleton and the DNA molecule. Our model predicts that randomization of chromatid segregation in lrd mutants should produce embryos with 25% situs solitus, 25% situs inversus, and 50% embryonic death due to heterotaxia and isomerism. Here we confirmed this prediction by using two distinct lrd mutant alleles. Other than lrd, thus far Nodal gene is the most upstream function implicated in visceral organs laterality determination. We next tested whether the Nodal gene constitutes the lra1 gene hypothesized in the model by testing mutant’s effect on 50% embryonic lethality observed in lrd mutants. Since Nodal mutation did not suppress lethality, we conclude that Nodal is not equivalent to the lra1 gene. In summary, we describe the origin of 50% lethality in lrd mutant mice not yet explained by any other

  8. Direct assessment of junctional diversity in rearranged T cell receptor β chain encoding genes by combined heteroduplex and single strand conformation polymorphism (SSCP) analysis

    NARCIS (Netherlands)

    Offermans, M.T.C.; Struyk, L.; Geus, B. de; Breedveld, F.C.; Elsen, P.J. van den; Rozing, J.

    1996-01-01

    In order to define the extent of T cell heterogeneity and clonality, unique DNA sequences in the junctional region in rearranged T cell receptor (TcR) genes can be studied. For this purpose we have adapted a non-denaturing nucleic acid gel electrophoresis procedure to detect TcR junctional diversity

  9. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids

    Directory of Open Access Journals (Sweden)

    Tetsushi Sakuma

    2015-10-01

    Full Text Available Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc gene, in Chinese hamster ovary (CHO cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  10. Direct assessment of junctional diversity in rearranged T cell receptor β chain encoding genes by combined heteroduplex and single strand conformation polymorphism (SSCP) analysis

    NARCIS (Netherlands)

    Offermans, M.T.C.; Struyk, L.; Geus, B. de; Breedveld, F.C.; Elsen, P.J. van den; Rozing, J.

    1996-01-01

    In order to define the extent of T cell heterogeneity and clonality, unique DNA sequences in the junctional region in rearranged T cell receptor (TcR) genes can be studied. For this purpose we have adapted a non-denaturing nucleic acid gel electrophoresis procedure to detect TcR junctional

  11. A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk

    NARCIS (Netherlands)

    Bischoff, Rainer; Degryse, E.; Perraud, F.; Dalemans, W.; Ali-Hadji, D.; Thepot, D.; Devinoy, E.; Houdebine, L.M.; Pavirani, A.

    1992-01-01

    We have investigated whether DNA regions present in the rabbit whey acidic protein (WAP) promoter/5' flanking sequence could potentially confer, in vivo, high level expression of reporter genes. Transgenic mice were generated expressing a variant of human alpha 1-antitrypsin, which has inhibitory ac

  12. Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo.

    Directory of Open Access Journals (Sweden)

    Stefan Michelfelder

    Full Text Available Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT. Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.

  13. GmSARK启动子驱动IPT基因在拟南芥中的表达研究%Heterologous Expression of Isopentenyl Transferase(Ipt) Gene Directed by Senescence Associated Receptor Protein Kinase(SARK) Promoter in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    霍巍巍; 闫璇玲; 孙晓文; 李海燕

    2012-01-01

    [Objective] This study aimed to investigate the expression of IPT gene directed by GmSARK promoter in Arabidopsis. [ Method] IPT gene and GmSARK promoter were respectively cloned to construct plant expression vector and transform Arabidopsis. T, transgenic plant lines were detected by PPT(phosphinothricin) herbicide selection and treated under drought and dark conditions for semi-quantitive RT-PCR analysis. [ Result] GmSARK and IPT fusion gene was successfully cloned and the plant expression vector p3301 -GmSAHK-IPT was constructed. RT-PCR analysis showed that the target gene was expressed in T1 transgenic plant lines at the mRNA level. [ Conclusion] This study laid the foundation for further investigating the roles of IPT gene directed by GmSARK promoter in plant stress resistance.%[目的]对GmSARK启动子驱动IPT基因在拟南芥中的表达进行研究.[方法]分别克隆IPT基因及GmSARK基因启动子,构建它们的植物表达栽体并进行拟南芥的转化,利用PPT(phosphinothricin)除草剂筛选,检测T1代转基因植株;对T1代转基因植株进行黑暗避光和干旱处理后进行半定量RT-PCR分析.[结果]成功克隆得到了IPT基因及GmSARK基因,并构建了它们的p3301 -GmSARK-IPT植物表达载体;对T代转基因植株的RT-PCR表明,目的基因mRNA水平上有所表达.[结论]为进一步研究GmSARK启动子驱动的IPT基因在抗逆中的作用奠定了基础.

  14. Hypoxia-Response Element (HRE)–Directed Transcriptional Regulation of the Rat Lysyl Oxidase Gene in Response to Cobalt and Cadmium

    OpenAIRE

    Gao, Song; Zhou, Jing; Zhao, Yinzhi; Toselli, Paul; Li, Wande

    2012-01-01

    Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Compute...

  15. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk.

    Science.gov (United States)

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-05-21

    β-Lactoglobulin (BLG) is a major goat's milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.

  16. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis.

    Science.gov (United States)

    Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G

    1993-08-01

    The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.

  17. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene.

    Science.gov (United States)

    Hume, David A; Sasmono, Tedjo; Himes, S Roy; Sharma, Sudarshana M; Bronisz, Agnieszka; Constantin, Myrna; Ostrowski, Michael C; Ross, Ian L

    2008-05-15

    Many macrophage-specific promoters lack classical transcriptional start site elements such as TATA boxes and Sp1 sites. One example is the CSF-1 receptor (CSF-1R, CD115, c-fms), which is used as a model of the transcriptional regulation of macrophage genes. To understand the molecular basis of start site recognition in this gene, we identified cellular proteins binding specifically to the transcriptional start site (TSS) region. The mouse and human csf1r TSS were identified using cap analysis gene expression (CAGE) data. Conserved elements flanking the TSS cluster were analyzed using EMSAs to identify discrete DNA-binding factors in primary bone marrow macrophages as candidate transcriptional regulators. Two complexes were identified that bind in a highly sequence-specific manner to the mouse and human TSS proximal region and also to high-affinity sites recognized by myeloid zinc finger protein 1 (Mzf1). The murine proteins were purified by DNA affinity isolation from the RAW264.7 macrophage cell line and identified by mass spectrometry as EWS and FUS/TLS, closely related DNA and RNA-binding proteins. Chromatin immunoprecipitation experiments in bone marrow macrophages confirmed that EWS, but not FUS/TLS, was present in vivo on the CSF-1R proximal promoter in unstimulated primary macrophages. Transfection assays suggest that EWS does not act as a conventional transcriptional activator or repressor. We hypothesize that EWS contributes to start site recognition in TATA-less mammalian promoters.

  18. High expression of human se-rum albumin in milk of trans-genic mice directed by the goat b-casein gene promoter region

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We have constructed a mammary gland expression vector that contained the goat b-casein gene promoter, 5′upstream regulatory region, exons 1, 2, intron 1 as well as the human serum albumin (hALB) mini-gene (including the full-long sequences of hALB cDNA and its intron 1). Injec-tion of the vector into mouse tail veins showed that the re-combinant construct was expressed only in mammary glands. The vector was microinjected into the mouse fertilized eggs, followed by transferring the eggs into the foster mice. 33 F0 mice were obtained. Of the 33, 8 mice (5♀, 3♂) were trans-genic with hALB gene integration identified by PCR as well as Southern blot hybridization. The integration rate was 24.2% (8/33). Western blot analysis showed that 3 female transgenic mice had hALB expression in their milk. The hALB contents in milk reached 3.54, 0.21 and 3.03 g/L, re-spectively.

  19. Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells.

    Directory of Open Access Journals (Sweden)

    Dai-tze Wu

    Full Text Available The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.

  20. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing.

    Science.gov (United States)

    Finch-Savage, William E; Cadman, Cassandra S C; Toorop, Peter E; Lynn, James R; Hilhorst, Henk W M

    2007-07-01

    The depth of seed dormancy can be influenced by a number of different environmental signals, but whether a common mechanism underlies this apparently similar response has yet to be investigated. Full-genome microarrays were used for a global transcript analysis of Arabidopsis thaliana Cape Verde Island accession seeds exposed to dry after-ripening (AR), or low temperature, nitrate and light when imbibed. Germination studies showed that the sensitivity of imbibed seeds to low temperature, nitrate and light was dependent upon the length of time spent AR following harvest. Seeds had an absolute requirement for light to complete dormancy release in all conditions, but this effect required an exposure to a prior dormancy relieving environment. Principal component analyses of the expression patterns observed grouped physiological states in a way that related to the depth of seed dormancy, rather than the type of environmental exposure. Furthermore, opposite changes in transcript abundance of genes in sets associated with dormancy, or dormancy relief through AR, were also related to the depth of dormancy and common to different environments. Besides these common quantitative changes, environment-specific gene expression patterns during dormancy relief are also described. For example, higher transcript abundance for genes linked to the process of nitrate accumulation, and nitrate reduction was associated with dormancy relief. The quantity of GA3ox1 transcripts increased during dormancy relief in all conditions, in particular when dormancy relief was completed by exposure to light. This contrasts with transcripts linked to abscisic acid (ABA) synthesis, which declined. The results are consistent with a role for the ABA/gibberellic acid balance in integrating dormancy-relieving environmental signals.

  1. Direct Democracy

    DEFF Research Database (Denmark)

    Doerr, Nicole

    2013-01-01

    Direct democracy describes a theory of democracy and a form of collective decision-making in which sovereignty is directly exercised by the people. Democracy is direct if it is characterized by citizens making all decisions together with a maximum of equal participation. Direct democracy can...

  2. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template [v1; ref status: indexed, http://f1000r.es/48i

    Directory of Open Access Journals (Sweden)

    Hossein Gouran

    2014-09-01

    Full Text Available Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC, implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF. In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.

  3. Direct Involvement of ombB, omaB and omcB Genes in Extracellular Reduction of Fe(III by Geobacter sulfurreducens PCA

    Directory of Open Access Journals (Sweden)

    Yimo eLiu

    2015-10-01

    Full Text Available The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III-citrate and ferrihydrite [a poorly crystalline Fe(III oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS, a porin-like outer-membrane protein (OmbB/OmbC, a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC and an outer-membrane c-Cyt (OmcB/OmcC. The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III, however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which suggests that absence of any protein subunit eliminates function of OmaB/OmbB/OmcB protein complex. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  4. Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci

    DEFF Research Database (Denmark)

    André, C.; Larsson, L. C.; Laikre, L.;

    2010-01-01

    DNA, with one microsatellite locus, Cpa112, previously shown to be influenced by divergent selection associated with salinity, and one locus located in the major histocompatibility complex class IIA (MHC-IIA) gene, using the same individuals across analyses. Samples were collected in 2002 and 2003...... at two locations in the North Sea, one location in the Skagerrak and one location in the low-saline Baltic Sea. Levels of divergence for putatively neutral markers were generally low, with the exception of single outlier locus/sample combinations; microsatellites were the most statistically powerful...... to detect population structure in Atlantic herring (Clupea harengus), a migratory pelagic species with large effective population sizes. We compared the spatial and temporal patterns of divergence and statistical power of three traditional genetic marker types, microsatellites, allozymes and mitochondrial...

  5. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.

  6. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study.

    Science.gov (United States)

    Fiorini, Ada; Sultana, Rukhsana; Förster, Sarah; Perluigi, Marzia; Cenini, Giovanna; Cini, Chiara; Cai, Jian; Klein, Jon B; Farr, Susan A; Niehoff, Michael L; Morley, John E; Kumar, Vijaya B; Allan Butterfield, D

    2013-12-01

    Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  8. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease.

    Science.gov (United States)

    Cooper, David N; Bacolla, Albino; Férec, Claude; Vasquez, Karen M; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min

    2011-10-01

    Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. © 2011 Wiley-Liss, Inc.

  9. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  10. Directed homology

    DEFF Research Database (Denmark)

    Fahrenberg, Uli

    2004-01-01

    We introduce a new notion of directed homology for semicubical sets. We show that it respects directed homotopy and is functorial, and that it appears to enjoy some good algebraic properties. Our work has applications to higher-dimensional automata.......We introduce a new notion of directed homology for semicubical sets. We show that it respects directed homotopy and is functorial, and that it appears to enjoy some good algebraic properties. Our work has applications to higher-dimensional automata....

  11. Therapeutic induction of angiogenesis by direct myocardial administration of an adenovirus vector encoding human hepatocyte growth factor gene and its safety

    Institute of Scientific and Technical Information of China (English)

    WU Danli; ZHANG Yourong; LAO Miaofen; YUAN Lizhen; WANG Lan; HA Xiaoqin; WU Zuze(WU Cutse)

    2004-01-01

    After the study in vitro and in rats, we assessed further the effects and safety of local angiogen therapy using intramyocardial delivery of an adenovirus carrying hepatocyte growth factor gene (Ad-HGF) in a canine ischemia model. The angiogenic activity of Ad-HGF was evaluated from three aspects. First, the augmentation of collateral vessel development was assessed by angiography 30 d after surgery. The results showed that the density of collateral vessels in treated group was higher than that of control group. Secondly, infarct size was evaluated by TTC staining and image analysis. The results showed that the infarct size of treated group was smaller than that of control group. Thirdly, the myocardial regional blood flow was determined by the method of colored microspheres. The results showed that the blood flow recovered to the level before ligation in treated group, but that of the control group was lower than normal level. In addition, during the study of chronic toxicity, we tested the anti-adenovirus antibodies by neutralization method. The antibodies yielded after the fourth injection decreased slowly from peak level and disappeared 12 weeks after drug withdrawal. Overall, Ad-HGF can promote angiogenesis in ischemic myocardium and reduce infarct size.So this method may be considered as a therapeutic angiogenesis induction strategy for ischemic disease including myocardial infarction and peripheral artery disease. At the same time, Ad-HGF could induce the yield of anti-adenovirus antibodies to neutralize adenovirus, which may be the mechanism of adenovirus clearance.

  12. Stimulatory effect of sesamin on hepatic cytochrome P450 activities in Atlantic salmon (Salmo salar L.) is not directly associated with expression of genes related to xenobiotic metabolism.

    Science.gov (United States)

    Zlabek, Vladimir; Vestergren, AnnaLotta Schiller; Trattner, Sofia; Wagner, Liane; Pickova, Jana; Zamaratskaia, Galia

    2015-01-01

    1. This study examined hepatic cytochrome P450 (CYP450) response to dietary sesamin in combination with different n-6/n-3 fatty acid ratios in fish diet. Over a period of 4 months, fish were fed seven different experimental diets an n-6/n-3 FA ratio of either 0.5 or 1.0 in combination with two sesamin levels: low sesamin = 1.16 g/kg feed and high sesamin = 5.8 g/kg feed. Control diets did not contain sesamin. 2. The CYP450-associated activities of ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD), pentoxyresorufin O-depentylase (PROD), coumarin hydroxylase (COH), methoxyresorufin O-deethylase (MROD) and p-nitrophenol hydroxylase (PNPH) were significantly induced by dietary sesamin in a dose-related manner. 3. Expressions of the genes CYP1A1, CYP1A3, CYP3A, AhR1α, AhR2β, AhR2δ and PXR involved in the regulation of CYP450 activities, was not the primary source of this induction.

  13. Identification of a tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and its gene expression in worker, queen and drone heads.

    Science.gov (United States)

    Takeuchi, H; Yasuda, A; Yasuda-Kamatani, Y; Kubo, T; Nakajima, T

    2003-06-01

    Using a combination of MALDI-TOF and on-line capillary HPLC/Q-Tof mass spectroscopy, we identified and determined the amino acid sequence of a novel neuropeptide in the brain of the honeybee Apis mellifera L., termed AmTRP peptide (Apis mellifera tachykinin-related peptide), related to insect tachykinin. A cDNA for a prepro-protein (prepro-AmTRP) of AmTRP was isolated and determined to encode seven AmTRPs 1-7. Northern blot analysis indicated that the prepro-AmTRP gene is expressed differentially in the nurse bee, forager, queen and drone heads. Strong expression was detected in the queen and forager heads, while weak and almost no significant expression was detected in the nurse and drone heads, respectively. These results suggest that AmTRP peptide functions as a neuromodulator and/or hormone, associated with sex-specific or age/division of labour-selective behaviour and/or physiology of the honeybees.

  14. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment

    Science.gov (United States)

    Nguyen, Lan Huong; Gao, Mingyong; Lin, Junquan; Wu, Wutian; Wang, Jun; Chew, Sing Yian

    2017-01-01

    Spinal cord injuries (SCI) often lead to persistent neurological dysfunction due to failure in axon regeneration. Unfortunately, currently established treatments, such as direct drug administration, do not effectively treat SCI due to rapid drug clearance from our bodies. Here, we introduce a three-dimensional aligned nanofibers-hydrogel scaffold as a bio-functionalized platform to provide sustained non-viral delivery of proteins and nucleic acid therapeutics (small non-coding RNAs), along with synergistic contact guidance for nerve injury treatment. A hemi-incision model at cervical level 5 in the rat spinal cord was chosen to evaluate the efficacy of this scaffold design. Specifically, aligned axon regeneration was observed as early as one week post-injury. In addition, no excessive inflammatory response and scar tissue formation was triggered. Taken together, our results demonstrate the potential of our scaffold for neural tissue engineering applications. PMID:28169354

  15. PERFORMANCE OF CONVENTIONAL PCRs BASED ON PRIMERS DIRECTED TO NUCLEAR AND MITOCHONDRIAL GENES FOR THE DETECTION AND IDENTIFICATION OF Leishmania spp.

    Science.gov (United States)

    LOPES, Estela Gallucci; GERALDO, Carlos Alberto; MARCILI, Arlei; SILVA, Ricardo Duarte; KEID, Lara Borges; OLIVEIRA, Trícia Maria Ferreira da Silva; SOARES, Rodrigo Martins

    2016-01-01

    In visceral leishmaniasis, the detection of the agent is of paramount importance to identify reservoirs of infection. Here, we evaluated the diagnostic attributes of PCRs based on primers directed to cytochrome-B (cytB), cytochrome-oxidase-subunit II (coxII), cytochrome-C (cytC), and the minicircle-kDNA. Although PCRs directed to cytB, coxII, cytC were able to detect different species of Leishmania, and the nucleotide sequence of their amplicons allowed the unequivocal differentiation of species, the analytical and diagnostic sensitivity of these PCRs were much lower than the analytical and diagnostic sensitivity of the kDNA-PCR. Among the 73 seropositive animals, the asymptomatic dogs had spleen and bone marrow samples collected and tested; only two animals were positive by PCRs based on cytB, coxII, and cytC, whereas 18 were positive by the kDNA-PCR. Considering the kDNA-PCR results, six dogs had positive spleen and bone marrow samples, eight dogs had positive bone marrow results but negative results in spleen samples and, in four dogs, the reverse situation occurred. We concluded that PCRs based on cytB, coxII, and cytC can be useful tools to identify Leishmania species when used in combination with automated sequencing. The discordance between the results of the kDNA-PCR in bone marrow and spleen samples may indicate that conventional PCR lacks sensitivity for the detection of infected dogs. Thus, primers based on the kDNA should be preferred for the screening of infected dogs. PMID:27253743

  16. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    Science.gov (United States)

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  17. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit.

    Science.gov (United States)

    Vincent, Maxence S; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  18. Malaria resistance genes are associated with the levels of IgG subclasses directed against Plasmodium falciparum blood-stage antigens in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Afridi Sarwat

    2012-09-01

    Full Text Available Abstract Background HBB, IL4, IL12, TNF, LTA, NCR3 and FCGR2A polymorphisms have been associated with malaria resistance in humans, whereas cytophilic immunoglobulin G (IgG antibodies are thought to play a critical role in immune protection against asexual blood stages of the parasite. Furthermore, HBB, IL4, TNF, and FCGR2A have been associated with both malaria resistance and IgG levels. This suggests that some malaria resistance genes influence the levels of IgG subclass antibodies. Methods In this study, the effect of HBB, IL4, IL12, TNF, LTA, NCR3 and FCGR2A polymorphisms on the levels of IgG responses against Plasmodium falciparum blood-stage extract was investigated in 220 individuals living in Burkina Faso. The Pearson’s correlation coefficient among IgG subclasses was determined. A family-based approach was used to assess the association of polymorphisms with anti-P. falciparum IgG, IgG1, IgG2, IgG3 and IgG4 levels. Results After applying a multiple test correction, several polymorphisms were associated with IgG subclass or IgG levels. There was an association of i haemoglobin C with IgG levels; ii the FcγRIIa H/R131 with IgG2 and IgG3 levels; iii TNF-863 with IgG3 levels; iv TNF-857 with IgG levels; and, v TNF1304 with IgG3, IgG4, and IgG levels. Conclusion Taken together, the results support the hypothesis that some polymorphisms affect malaria resistance through their effect on the acquired immune response, and pave the way towards further comprehension of genetic control of an individual’s humoral response against malaria.

  19. Effect of Mas-related gene (Mrg) receptors on hyperalgesia in rats with CFA-induced inflammation via direct and indirect mechanisms.

    Science.gov (United States)

    Jiang, Jianping; Wang, Dongmei; Zhou, Xiaolong; Huo, Yuping; Chen, Tingjun; Hu, Fenjuan; Quirion, Rémi; Hong, Yanguo

    2013-11-01

    Mas oncogene-related gene (Mrg) receptors are exclusively distributed in small-sized neurons in trigeminal and dorsal root ganglia (DRG). We investigated the effects of MrgC receptor activation on inflammatory hyperalgesia and its mechanisms. A selective MrgC receptor agonist, bovine adrenal medulla peptide 8-22 (BAM8-22) or melanocyte-stimulating hormone (MSH) or the μ-opioid receptor (MOR) antagonist CTAP was administered intrathecally (i.t.) in rats injected with complete Freund's adjuvant (CFA) in one hindpaw. Thermal and mechanical nociceptive responses were assessed. Neurochemicals were measured by immunocytochemistry, Western blot, ELISA and RT-PCR. CFA injection increased mRNA for MrgC receptors in lumbar DRG. BAM8-22 or MSH, given i.t., generated instant short and delayed long-lasting attenuations of CFA-induced thermal hyperalgesia, but not mechanical allodynia. These effects were associated with decreased up-regulation of neuronal NOS (nNOS), CGRP and c-Fos expression in the spinal dorsal horn and/or DRG. However, i.t. administration of CTAP blocked the induction by BAM8-22 of delayed anti-hyperalgesia and inhibition of nNOS and CGRP expression in DRG. BAM8-22 also increased mRNA for MORs and pro-opiomelanocortin, along with β-endorphin content in the lumbar spinal cord and/or DRG. MrgC receptors and nNOS were co-localized in DRG neurons. Activation of MrgC receptors suppressed up-regulation of pronociceptive mediators and consequently inhibited inflammatory pain, because of the activation of up-regulated MrgC receptors and subsequent endogenous activity at MORs. The uniquely distributed MrgC receptors could be a novel target for relieving inflammatory pain. © 2013 The British Pharmacological Society.

  20. An internal ribosome entry site directs translation of the 3'-gene from Pelargonium flower break virus genomic RNA: implications for infectivity.

    Directory of Open Access Journals (Sweden)

    Olga Fernández-Miragall

    Full Text Available Pelargonium flower break virus (PFBV, genus Carmovirus has a single-stranded positive-sense genomic RNA (gRNA which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37 which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3'-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES. Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.

  1. An internal ribosome entry site directs translation of the 3'-gene from Pelargonium flower break virus genomic RNA: implications for infectivity.

    Science.gov (United States)

    Fernández-Miragall, Olga; Hernández, Carmen

    2011-01-01

    Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3'-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.

  2. Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood-brain barrier cells toward enhanced prostaglandin E(2) signaling.

    Science.gov (United States)

    Vasilache, Ana Maria; Qian, Hong; Blomqvist, Anders

    2015-08-01

    The cells constituting the blood-brain barrier are critical for the transduction of peripheral immune signals to the brain, but hitherto no comprehensive analysis of the signaling events that occur in these cells in response to a peripheral inflammatory stimulus has been performed. Here, we examined the inflammatory transcriptome in blood-brain barrier cells, including endothelial cells, pericytes, and perivascular macrophages, which were isolated by fluorescent-activated cell sorting, from non-immune-challenged mice and from mice stimulated by bacterial wall lipopolysaccharide. We show that endothelial cells and perivascular macrophages display distinct transcription profiles for inflammatory signaling and respond in distinct and often opposing ways to the immune stimulus. Thus, endothelial cells show induced PGE2 synthesis and transport with attenuation of PGE2 catabolism, increased expression of cytokine receptors and down-stream signaling molecules, and downregulation of adhesion molecules. In contrast, perivascular macrophages show downregulation of the synthesis of prostanoids other than PGE2 and of prostaglandin catabolism, but upregulation of interleukin-6 synthesis. Pericytes were largely unresponsive to the immune stimulation, with the exception of downregulation of proteins involved in pericyte-endothelial cell communication. While the endothelial cells account for most of the immune-induced gene expression changes in the blood-brain barrier, the response of the endothelial cells occurs in a concerted manner with that of the perivascular cells to elevate intracerebral levels of PGE2, hence emphasizing the critical role of PGE2 in immune-induced signal transduction across the blood-brain barrier.

  3. MiR-122 directly inhibits human papillomavirus E6 gene and enhances interferon signaling through blocking suppressor of cytokine signaling 1 in SiHa cells.

    Science.gov (United States)

    He, Junming; Ji, Yuting; Li, Aimei; Zhang, Qingmeng; Song, Wuqi; Li, Yujun; Huang, Hongxin; Qian, Jun; Zhai, Aixia; Yu, Xin; Zhao, Jinyun; Shang, Qinglong; Wei, Lanlan; Zhang, Fengmin

    2014-01-01

    Human Papillomavirus (HPV) 16 infection is considered as one of the significant causes of human cervical cancer. The expression of the viral oncogenes like E6 and E7 play an important role in the development of the cancer. MiR-122 has been reported to exhibit a strong relationship with hepatitis viruses and take part in several tumor development, while the effects of miR-122 on HPV infection and the HPV viral oncogenes expression still remain unexplored. In this study, using RNAhybrid software, the potential binding sites between miR-122 and HPV16 E6 and E7 mRNAs were identified. Over and loss of miR-122 function showed that miR-122 could directly bind with HPV16 E6 mRNA and significantly inhibit its expression in SiHa cells, which was further confirmed by constructing the miR-122-E6-mu to eliminate the miR-122 binding effects with E6. The increase of the expression of type I interferon (IFN) and its classical effective molecules and the phosphorylation of signal transducers and activators of transcription (STAT1) protein indicated that miR-122 might enhance type I interferon in cervical carcinoma cells, which explained the significant reduction of HPV16 E7 and E6*I mRNA expression. This might be due to the binding between miR-122 and suppressor of cytokine signaling 1 (SOCS1) mRNA, which is the suppressor of interferon signaling pathway. Moreover, it was identified that the miR-122 binding position was nt359-nt375 in SOCS1 mRNA. Taken together, this study indicated that HPV16 could be effectively inhibited by miR-122 through both direct binding with E6 mRNA and promoting SOCS1-dependent IFN signaling pathway. Thus, miR-122 may serve as a new therapeutic option for inhibiting HPV infection.

  4. MiR-122 directly inhibits human papillomavirus E6 gene and enhances interferon signaling through blocking suppressor of cytokine signaling 1 in SiHa cells.

    Directory of Open Access Journals (Sweden)

    Junming He

    Full Text Available Human Papillomavirus (HPV 16 infection is considered as one of the significant causes of human cervical cancer. The expression of the viral oncogenes like E6 and E7 play an important role in the development of the cancer. MiR-122 has been reported to exhibit a strong relationship with hepatitis viruses and take part in several tumor development, while the effects of miR-122 on HPV infection and the HPV viral oncogenes expression still remain unexplored. In this study, using RNAhybrid software, the potential binding sites between miR-122 and HPV16 E6 and E7 mRNAs were identified. Over and loss of miR-122 function showed that miR-122 could directly bind with HPV16 E6 mRNA and significantly inhibit its expression in SiHa cells, which was further confirmed by constructing the miR-122-E6-mu to eliminate the miR-122 binding effects with E6. The increase of the expression of type I interferon (IFN and its classical effective molecules and the phosphorylation of signal transducers and activators of transcription (STAT1 protein indicated that miR-122 might enhance type I interferon in cervical carcinoma cells, which explained the significant reduction of HPV16 E7 and E6*I mRNA expression. This might be due to the binding between miR-122 and suppressor of cytokine signaling 1 (SOCS1 mRNA, which is the suppressor of interferon signaling pathway. Moreover, it was identified that the miR-122 binding position was nt359-nt375 in SOCS1 mRNA. Taken together, this study indicated that HPV16 could be effectively inhibited by miR-122 through both direct binding with E6 mRNA and promoting SOCS1-dependent IFN signaling pathway. Thus, miR-122 may serve as a new therapeutic option for inhibiting HPV infection.

  5. Performance of the BD MAX™ instrument with Check-Direct CPE real-time PCR for the detection of carbapenemase genes from rectal swabs, in a setting with endemic dissemination of carbapenemase-producing Enterobacteriaceae.

    Science.gov (United States)

    Antonelli, Alberto; Arena, Fabio; Giani, Tommaso; Colavecchio, Olga Lorenza; Valeva, Stoyanka Valentinova; Paule, Suzanne; Boleij, Peter; Rossolini, Gian Maria

    2016-09-01

    Carbapenemase-producing Enterobacteriaceae (CPE) represent an increasing public health issue and the early detection of colonization by CPE can help the implementation of infection control measures among inpatients. In this study, BD MAX Check-Direct CPE screen, with two different Master Mixes (BDMix and CPMix), using the automatic BD MAX(™) instrument, was evaluated for the detection of blaKPC, blaOXA-48, blaVIM and blaNDM genes, in comparison to selective broth enrichment and direct culture from rectal swabs. Among a total of 557 rectal swabs samples, 29 (5.2%) tested positive for CPE (23 for blaKPC, 5 for blaVIM and one for blaOXA-48). The sensitivity, specificity, positive and negative likelihood ratios values were 93.1%, 97.3%, 34.5 and 0.07, for BMix, and 100%, 97.1 %, 34.5 and 0 for CPMix, respectively. Five samples were positive with molecular methods only. The turn-around time was reduced from 18-24 hours (direct culture), or 48 h (broth enrichment) to only 3 h.

  6. Direct Democracy

    DEFF Research Database (Denmark)

    Beramendi, Virginia; Ellis, Andrew; Kaufman, Bruno

    While many books on direct democracy have a regional or national approach, or simply focus on one of the many mechanisms associated with direct democracy, this Handbook delves into a global comparison of direct democracy mechanisms, including referendums, citizens' initiatives, agenda initiatives...... included as a chapter in the Handbook are possible measures for best practices of implementation, designed for those who wish to tailor direct democracy instruments to their specific needs. In order to further complement the best practices, a variety of global case studies detail the practical uses...... of direct democracy mechanisms in specific contexts. These country case studies allow for in depth discussion of particular issues, including signature collection and voter participation, campaign financing, media coverage, national variations in the usage of direct democracy procedures and national lessons...

  7. Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection.

    Science.gov (United States)

    Moore, M S; McCarroll, M G; McCann, C D; May, L; Younes, N; Jordan, J A

    2016-01-01

    Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over

  8. Direct Democracy

    DEFF Research Database (Denmark)

    Beramendi, Virginia; Ellis, Andrew; Kaufman, Bruno

    While many books on direct democracy have a regional or national approach, or simply focus on one of the many mechanisms associated with direct democracy, this Handbook delves into a global comparison of direct democracy mechanisms, including referendums, citizens' initiatives, agenda initiatives...... valuable information regarding the binding or non-binding nature of referendums, as well as issues that can be brought forth to a referendum....

  9. Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6.

    Science.gov (United States)

    Liu, Wan-Ju; Reece-Hoyes, John S; Walhout, Albertha J M; Eisenmann, David M

    2014-05-13

    Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo. We used the yeast one-hybrid (Y1H) method to screen for factors that bound to 13 fragments from the lin-39 region: twelve fragments contained sequences conserved between C. elegans and two other nematode species, while one fragment was known to drive reporter gene expression in the early embryo in cells that generate the VPCs. Sixteen transcription factors that bind to eight lin-39 genomic fragments were identified in yeast, and we characterized several factors by verifying their physical interactions in vitro, and showing that reduction of their function leads to alterations in lin-39 levels and lin-39::GFP reporter expression in vivo. Three factors, the orphan nuclear hormone receptor NHR-43, the hypodermal fate regulator LIN-26, and the GATA factor ELT-6 positively regulate lin-39 expression in the embryonic precursors to the VPCs. In particular, ELT-6 interacts with an enhancer that drives GFP expression in the early embryo, and the ELT-6 site we identified is necessary for proper embryonic expression. These three factors, along with the factors ZTF-17, BED-3 and TBX-9, also positively regulate lin-39 expression in the larval VPCs. These results significantly expand the number of factors known to directly bind and regulate lin-39 expression, identify the first factors required for lin-39 expression in the embryo, and hint at a

  10. Site-directed mutagenesis of an HLA-A3 gene identifies amino acid 152 as crucial for major-histocompatibility-complex-restricted and alloreactive cytotoxic-T-lymphocyte recognition.

    OpenAIRE

    Cowan, E P; Jelachich, M L; Coligan, J E; Biddison, W E

    1987-01-01

    Major histocompatibility complex-restricted and alloreactive cytotoxic T lymphocytes (CTL) can discriminate between the HLA-A3.1 and HLA-A3.2 antigens. HLA-A3.1 and the rare variant HLA-A3.2 have been shown to differ by two amino acids in the alpha 2 domain at positions 152 (A3.1, glutamic acid; A3.2, valine) and 156 (A3.1, leucine; A3.2, glutamine). To determine the structural basis for the ability of CTL to differentiate A3.1 from A3.2, two site-directed mutants of the HLA-A3.2 gene were pr...

  11. The PorX response regulator of the Porphyromonas gingivalis PorXY two-component system does not directly regulate the Type IX secretion genes but binds the PorL subunit.

    Directory of Open Access Journals (Sweden)

    Maxence S Vincent

    2016-08-01

    Full Text Available The Type IX secretion system (T9SS is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion of surface attachment of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY and PorX encode typical two-component system (TCS sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of the porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we showed that PorX does not bind and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  12. The ocular retardation (or{sup J}) mouse has an ochre mutation in the homeobox gene Chx10: Direct evidence for Chx10 as a major determinant of retinal development

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, R.R.; Novak, J.; Ploder, L. [Genetics Hospital for Sick Children, Toronto (Canada)] [and others

    1994-09-01

    The recessive mutation or causes microphthalmia, progressive destruction of the retina, and absence of the optic nerve. There is a significant disruption of neuroretinal differentiation and layer formation, and the number of proliferating retinal progenitor cells is dramatically reduced (by 45% at E10 & 90% at E16). To identify the or gene, we localized the or{sup J} allele (in strain 129 mice) to chromosome 12. We then positioned or by a backcross between or{sup J} and Mus castaneus, defining the distances D12Mit91-14cM-or-4cM-D12Mit6, and placing or in the same interval of chromosome 12 as Chx10. No recombinants were obtained between or and Chx10 in 170 informative progeny, establishing close linkage and making Chx10 a candidate gene for or. On the basis of its expression pattern, we proposed that Chx10 confers neuroretinal identity on the early retinal progenitors of the developing eye, and participates in retinal lamination. To allow mutation analysis of Chx10, we cloned the strain 129 Chx10 gene (5 coding exons over {approximately}30 kb). Multiple PCR amplifications and direct sequencing of axon 3 of or{sup J} mice revealed a homozygous mutation (TAC {yields} TAA) (not present in strain 129 controls) that converts Tyr 29 of the homeobox to a premature stop; this result was confirmed by restriction analysis of the PCR products, since the mutation destroys an Accl site. We conclude that (1) mutations in Chx10 cause murine ocular retardation, (2) the Chx10 homeodomain protein has a critical role in mammalian retinal formation, possibly as a transcription regulator of neuroblast differentiation and division, and (3) CHx10 mutations may cause microphthalmia in man.

  13. Comparison of high-resolution melting analysis with direct sequencing for the detection of recurrent mutations in DNA methyltransferase 3A and isocitrate dehydrogenase 1 and 2 genes in acute myeloid leukemia patients.

    Science.gov (United States)

    Gorniak, Patryk; Ejduk, Anna; Borg, Katarzyna; Makuch-Lasica, Hanna; Nowak, Grazyna; Lech-Maranda, Ewa; Prochorec-Sobieszek, Monika; Warzocha, Krzysztof; Juszczynski, Przemyslaw

    2016-02-01

    Acute myeloid leukemia (AML) cells harbor frequent mutations in genes responsible for epigenetic modifications. Increasing evidence of clinical role of DNMT3A and IDH1/2 mutations highlights the need for a robust and inexpensive test to identify these mutations in routine diagnostic work-up. Herein, we compared routinely used direct sequencing method with high-resolution melting (HRM) assay for screening DNMT3A and IDH1/2 mutations in patients with AML. We show very high concordance between HRM and Sanger sequencing (100% samples for IDH2-R140 and DNMT3-R882 mutations, 99% samples for IDH1-R132 and IDH2-R172 mutations). HRM method reported no false-negative results, suggesting that it can be used for mutations screening. Moreover, HRM displayed much higher sensitivity in comparison with DNA sequencing in all assessed loci. With Sanger sequencing, robust calls were observed when the sample contained 50% of mutant DNA in the background of wild-type DNA. In marked contrast, the detection limit of HRM improved down to 10% of mutated DNA. Given the ubiquitous presence of wild-type DNA background in bone marrow aspirates and clonal variations regarding mutant allele burden, these results favor HRM as a sensitive, specific, labor-, and cost-effective tool for screening and detection of mutations in IDH1/2 and DNMT3A genes in patients with AML.

  14. NrrA directly regulates expression of the fraF gene and antisense RNAs for fraE in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Ehira, Shigeki; Ohmori, Masayuki

    2014-05-01

    The heterocystous cyanobacterium Anabaena sp. strain PCC 7120 grows as linear multicellular filaments that can contain hundreds of cells. Heterocysts, which are specialized cells for nitrogen fixation, are regularly intercalated among photosynthetic vegetative cells, and these cells are metabolically dependent on each other. Thus, multicellularity is essential for diazotrophic growth of heterocystous cyanobacteria. In Anabaena sp. strain PCC 7120, the fraF gene, which is required to limit filament length, is induced by nitrogen deprivation. The fraF transcripts extend to the fraE gene, which lies on the opposite DNA strand and could possess dual functionality, mRNAs for fraF and antisense RNAs for fraE. In the present study, we found that NrrA, a nitrogen-regulated response regulator, directly regulated expression of fraF. Induction of fraF by nitrogen deprivation was abolished by the nrrA disruption. NrrA specifically bound to the promoter region of fraF, and recognized an inverted repeat sequence. Thus, it is concluded that NrrA controls expression of mRNAs for fraF and antisense RNAs for fraE in response to nitrogen deprivation.

  15. Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis.

    Science.gov (United States)

    Bode, Nadine J; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen; Pearson, Melanie M

    2015-06-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence.

  16. Directing Creativity

    DEFF Research Database (Denmark)

    Darsø, Lotte; Ibbotson, Piers

    2008-01-01

    In this article we argue that leaders facing complex challenges can learn from the arts, specifically that leaders can learn by examining how theatre directors direct creativity through creative constraints. We suggest that perceiving creativity as a boundary phenomenon is helpful for directing it....... Like leaders, who are caught in paradoxical situations where they have to manage production and logistics simultaneously with making space for creativity and innovation, theatre directors need to find the delicate balance between on one hand renewal of perceptions, acting and interaction...... and on the other hand getting ready for the opening night. We conclude that the art of directing creativity is linked to developing competencies of conscious presence, attention and vigilance, whereas the craft of directing creativity concerns communication, framing and choice....

  17. Future directions.

    Science.gov (United States)

    Raffa, Robert B; Tallarida, Ronald J

    2010-01-01

    The chapters of this book summarize much of what has been done and reported regarding cancer chemotherapy-related cognitive impairment. In this chapter, we point out some future directions for investigation.

  18. Directed Replacement

    CERN Document Server

    Karttunen, L

    1996-01-01

    This paper introduces to the finite-state calculus a family of directed replace operators. In contrast to the simple replace expression, UPPER -> LOWER, defined in Karttunen (ACL-95), the new directed version, UPPER @-> LOWER, yields an unambiguous transducer if the lower language consists of a single string. It transduces the input string from left to right, making only the longest possible replacement at each point. A new type of replacement expression, UPPER @-> PREFIX ... SUFFIX, yields a transducer that inserts text around strings that are instances of UPPER. The symbol ... denotes the matching part of the input which itself remains unchanged. PREFIX and SUFFIX are regular expressions describing the insertions. Expressions of the type UPPER @-> PREFIX ... SUFFIX may be used to compose a deterministic parser for a ``local grammar'' in the sense of Gross (1989). Other useful applications of directed replacement include tokenization and filtering of text streams.

  19. Directing Creativity

    DEFF Research Database (Denmark)

    Darsø, Lotte; Ibbotson, Piers

    2008-01-01

    In this article we argue that leaders facing complex challenges can learn from the arts, specifically that leaders can learn by examining how theatre directors direct creativity through creative constraints. We suggest that perceiving creativity as a boundary phenomenon is helpful for directing it....... Like leaders, who are caught in paradoxical situations where they have to manage production and logistics simultaneously with making space for creativity and innovation, theatre directors need to find the delicate balance between on one hand renewal of perceptions, acting and interaction...

  20. 高粱EPSPS基因的克隆、修饰及在玉米中的功能验证%Cloning and Site-directed Modification of Sorghum bicolor EPSPS Gene and Its Functional Validation in Maize

    Institute of Scientific and Technical Information of China (English)

    赵海铭; 宋伟彬; 赖锦盛

    2013-01-01

    针对草甘膦结合位点,对高粱5-烯醇式丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因进行4种定点修饰,将修饰后的基因分别导入到玉米中。通过对转化体的抗性鉴定,确定将高粱EPSPS基因106位的脯氨酸变为丝氨酸(P106S)能够赋予转基因玉米草甘膦抗性。在喷施4倍的草甘膦时抗性事件CL38-1不产生药害。 Southern杂交结果表明,目标基因在该转化事件中稳定遗传,转化其余3种EPSPS基因的植株对草甘膦没有足够的抗性。%According to the potential binding site of glyphosate, Sorghum 5-enolpyruvylshikimate-3-phosphate synthase(SbEPSPS) and conducted four kinds of site-directed modification were cloned. These modified SbEPSPS were introduced in maize using transgenic approach. We found that the transgenic maize with one amino acid substi-tution: proline(P106) to serine(S) of EPSPS gained glyphosate resistance. One of transgenic events CL38-1 showed glyphosate resistant after sprayed with 4-fold glyphosate. Southern blot analysis of transformant showed that the trans-gene inherited stably. Plants transformed with other three types of modified SbEPSPS genes did not show enough glyphosate resistance.

  1. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  2. Direct marketing

    Directory of Open Access Journals (Sweden)

    Čičić Muris

    2002-01-01

    Full Text Available Direct Marketing (DM is usually treated as unworthy activity, with actions at the edge of legality and activities minded cheating. Despite obvious problems regarding ethics and privacy threat, DM with its size, importance and role in a concept of integrated marketing communication deserves respect and sufficient analysis and review

  3. Cloning of IgG heavy chain variable region genes directly from rabbit peripheral blood%从兔外周血直接克隆IgG重链可变区

    Institute of Scientific and Technical Information of China (English)

    周世权; 廖智; 杨林; 周吉航; 刘晓光

    2012-01-01

    Objective To amplify IgG heavy chain variable region genes directly from rabbit peripheral blood. Methods Two pairs of PCR primers were designed according to the cDNA sequence of rabbit germline Immunoglobulin (Ig)heavy chain variable region( VH) and constant-region( CH) genes, which were obtained from IMGT/GENE-DB. With the total RNA that was extracted from rabbit peripheral blood as a template, an one-step RT-PCR reaction was done and followed by a nested-PCR. By cloning the PCR products to T vector, DNA sequencing and blasting in Bioedit software and IMGT/V-QUEST network database, the genotype of CH and three VH gene segments, V_H(IGHV), D(IGHD)and J-H (IGHJ) , were confirmed, and the specificity and compatibility of the primers were evaluated. Results A total of 25 clones were analyzed. Their DNA sequences were different from each other, and all belonged to rabbit IgG heavy chain coding genes. Their constant regions were encoded by the same allele gene, IGHG * 02. Of these 25 clones, there were 2 of 37 IGHV, 8 of 11 IGHD, and 4 of 11 IGHJ functional genes; and they assembled to 18 kinds of V_H -D-J_H combinations. [IGHV1S40 * 01 ]-[IGHD8-l * 01 ]-[IGHJ4 * 01 ] was the topmost V_H-D-J_H combinations, which appeared in 4 clones, but some differences existed some differences in sequence. Conclusion We have succeeded in amplifying IgG heavy chain variable region genes rapidly and specifically from rabbit peripheral blood, and the primers, which designed by ourselves, have displayed a relatively good compatibility, but the V_H-D-J_H combinations with IGHV1S40 * 01 or IGHV1S45 * 01 seem to be amplified preferentially.%目的 从兔外周血总RNA中直接扩增出IgG重链可变区基因.方法 先从IMGT/GENE-DB数据库中获取编码大耳白兔免疫球蛋白(Ig)重链可变区(VH)的3个胚系基因片段VH(IGHV)、D(IGHD)和JH(IGHJ),以及编码γ重链恒定区(CH)基因Cγ(IGHG)的cDNA序列,然后设计嵌套引物,以兔外周血总RNA为模板,进行RT

  4. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter.

    Science.gov (United States)

    Kraus, Richard J; Yu, Xianming; Cordes, Blue-Leaf A; Sathiamoorthi, Saraniya; Iempridee, Tawin; Nawandar, Dhananjay M; Ma, Shidong; Romero-Masters, James C; McChesney, Kyle G; Lin, Zhen; Makielski, Kathleen R; Lee, Denis L; Lambert, Paul F; Johannsen, Eric C; Kenney, Shannon C; Mertz, Janet E

    2017-06-01

    When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV's natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic

  5. Direct ELISA.

    Science.gov (United States)

    Lin, Alice V

    2015-01-01

    First described by Engvall and Perlmann, the enzyme-linked immunosorbent assay (ELISA) is a rapid and sensitive method for detection and quantitation of an antigen using an enzyme-labeled antibody. Besides routine laboratory usage, ELISA has been utilized in medical field and food industry as diagnostic and quality control tools. Traditionally performed in 96-well or 384-well polystyrene plates, the technology has expanded to other platforms with increase in automation. Depending on the antigen epitope and availability of specific antibody, there are variations in ELISA setup. The four basic formats are direct, indirect, sandwich, and competitive ELISAs. Direct ELISA is the simplest format requiring an antigen and an enzyme-conjugated antibody specific to the antigen. This chapter describes the individual steps for detection of a plate-bound antigen using a horseradish peroxidase (HRP)-conjugated antibody and luminol-based enhanced chemiluminescence (ECL) substrate. The methodological approach to optimize the assay by chessboard titration is also provided.

  6. Directing Lives

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    YANG Yang is he director of China Television PlayCenter.Before the arrival of the series Holding Hands,she filmed television plays reflecting women and marriage.Examples of her work include Niu Yuqin and Her Trees and theMidnight Trolley.The artistry and sympathy towards women inthese programmes make it obvious that they were directed by awoman.Holding Hands especially cements this connection.

  7. Strategies used for genetically modifying bacterial genome:site-directed mutagenesis, gene inactivation, and gene over-expression%题目:遗传改造细菌基因组的策略:基因定点突变、基因失活和基因过表达

    Institute of Scientific and Technical Information of China (English)

    Jian-zhong XU; Wei-guo ZHANG‡

    2016-01-01

    概该综述较为全面地概述了当前针对大肠杆菌和谷氨酸棒杆菌基因组遗传改造的各个方法的具体流程、应用范围、注意事项以及其新颖之处,比较了针对基因定点突变、基因失活和基因过表达的各个方法所存在的优缺点,同时简单地介绍了利用质粒介导基因过表达所存在的问题。此外,还介绍了四种引物设计软件,并简单分析了它们的应用范围。为拟计划开展分子生物学实验的新手对关于细菌基因组遗传改造方法做了可靠的介绍,同时也为已进行相关实验的实验员提供关于基因定点突变、基因失活和基因过表达的最新信息。%With the availability of the whole genome sequence of Escherichia coli orCorynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in un-derstanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, alow a wide variety of DNA manipu-lation. However, the over-expression of the desired gene is generaly executed via plasmid-mediation. The current review summarizes the common strategies used for geneticaly modifyingE. coli andC. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via inte-grating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators.

  8. Future direction of direct writing

    Science.gov (United States)

    Kim, Nam-Soo; Han, Kenneth N.

    2010-11-01

    Direct write technology using special inks consisting of finely dispersed metal nanoparticles in liquid is receiving an undivided attention in recent years for its wide range of applicability in modern electronic industry. The application of this technology covers radio frequency identification-tag (RFID-tag), flexible-electronics, organic light emitting diodes (OLED) display, e-paper, antenna, bumpers used in flip-chip, underfilling, frit, miniresistance applications and biological uses, artificial dental applications and many more. In this paper, the authors have reviewed various direct write technologies on the market and discussed their advantages and shortfalls. Emphasis has given on microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and ink-jet technologies. All of these technologies allow printing various patterns without employing a mask or a resist with an enhanced speed with the aid of computer. MDDW and M3D are capable of drawing patterns in three-dimension and MDDW, in particular, is capable of writing nanoinks with high viscosity. However, it is still far away for direct write to be fully implemented in the commercial arena. One of the hurdles to overcome is in manufacturing conductive inks which are chemically and physically stable, capable of drawing patterns with acceptable conductivity, and also capable of drawing patterns with acceptable adhesiveness with the substrates. The authors have briefly discussed problems involved in manufacturing nanometal inks to be used in various writing devices. There are numerous factors to be considered in manufacturing such inks. They are reducing agents, concentrations, oxidation, compact ability allowing good conductivity, and stability in suspension.

  9. Advance care directives

    Science.gov (United States)

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  10. The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel.

    Science.gov (United States)

    Ferrer, Tania; Rupp, Jason; Piper, David R; Tristani-Firouzi, Martin

    2006-05-05

    A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.2 channel reveals that the S4-S5 linker is the structural link between the voltage sensing and pore domains. In this study, we used chimeras constructed from hERG and ether-a'-go-go (EAG) channels to identify interactions between residues in the S4-S5 linker and S6 domain that were critical for stabilizing the channel in a closed state. To verify the spatial proximity of these regions, we introduced cysteines in the S4-S5 linker and at the C-terminal end of the S6 domain and then probed for the effect of oxidation. The D540C-L666C channel current decreased in an oxidizing environment in a state-dependent manner consistent with formation of a disulfide bond that locked the channel in a closed state. Disulfide bond formation also restricted movement of the voltage sensor, as measured by gating currents. Taken together, these data confirm that the S4-S5 linker directly couples voltage sensor movement to the activation gate. Moreover, rather than functioning simply as a mechanical lever, these findings imply that specific interactions between the S4-S5 linker and the activation gate stabilize the closed channel conformation.

  11. Novel Random Mutagenesis Method for Directed Evolution.

    Science.gov (United States)

    Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan

    2017-01-01

    Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.

  12. Discovering genes underlying QTL

    Energy Technology Data Exchange (ETDEWEB)

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  13. Effects of a 3 strain -based direct-fed microbial and dietary fiber concentration on growth performance and expression of genes related to absorption and metabolism of volatile fatty acids in weanling pigs.

    Science.gov (United States)

    Jaworski, N W; Owusu-Asiedu, A; Walsh, M C; McCann, J C; Loor, J J; Stein, H H

    2017-01-01

    Effects of a -based direct-fed microbial (DFM) on growth performance, plasma tumor necrosis factor ɑ (TNFɑ), relative gene expression, and intestinal VFA concentrations in weanling pigs fed low- or high-fiber diets were evaluated. Two hundred pigs (initial BW: 6.31 ± 0.73 kg) were allotted to 1 of 4 dietary treatments (5 pigs per pen and 10 pens per treatment). Treatments were arranged in a 2 × 2 factorial design with 2 diet types [low-fiber (LF) or high-fiber (HF)] and 2 concentrations of DFM (0 or 60 g DFM/t of feed). The DFM contained 1.5 × 10 cfu/g and was obtained from Danisco Animal Nutrition-DuPont Industrial Biosciences, Marlborough, UK. Phase 1 diets were fed for 2 wk post-weaning and phase 2 diets were fed over the following 29 d. Low fiber diets contained corn and soybean meal as main ingredients and HF diets contained corn, soybean meal, corn distillers dried grains with solubles (7.5 and 15.0% in phase 1 and 2, respectively), and wheat middlings (10.0%). Pigs and feed were weighed at the start and at the end of each phase, and ADG, ADFI, and G:F were calculated. At the conclusion of phase 2, blood was collected from 1 pig per pen and 1 pig per pen was sacrificed. Cecum and rectum contents were analyzed for VFA, and tissue samples were collected from the ileum, cecum, rectum, and liver to determine expression of genes related to absorption and metabolism of VFA using quantitative reverse transcription-PCR. Results indicated that feeding HF diets reduced ( ≤ 0.05) ADFI and ADG of pigs compared with feeding LF diets. Pigs fed DFM diets had improved ( ≤ 0.05) G:F compared with pigs fed non-DFM diets. Pigs fed LF diets had greater ( ≤ 0.05) BW at the end of phase 2 compared with pigs fed HF diets. The concentration of VFA in rectum contents was greater ( ≤ 0.05) in pigs fed LF diets than in pigs fed HF diets. The expression of in the rectum of pigs fed HF diets was greater ( ≤ 0.05) than for pigs fed LF diets, and pigs fed DFM

  14. Studying Genes

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Studying Genes Studying Genes Tagline (Optional) Middle/Main Content Area Other Fact Sheets What are genes? Genes are segments of DNA that contain instructions ...

  15. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway.

    Science.gov (United States)

    Goszczynski, Barbara; Captan, Vasile V; Danielson, Alicia M; Lancaster, Brett R; McGhee, James D

    2016-05-01

    The Caenorhabditis elegans vitellogenin genes are transcribed in the intestine of adult hermaphrodites but not of males. A 44-bp region from the vit-2 gene promoter is able largely to reconstitute this tissue-, stage- and sex-specific-expression. This "enhancer" contains a binding site for the DM-domain factor MAB-3, the male-specific repressor of vitellogenesis, as well as an activator site that we show is the direct target of the intestinal GATA factor ELT-2. We further show that the enhancer is directly activated by the winged-helix/forkhead-factor FKH-9, (whose gene has been shown by others to be a direct target of DAF-16), by an unknown activator binding to the MAB-3 site, and by the full C. elegans TGF-β/Sma/Mab pathway acting within the intestine. The vit-2 gene has been shown by others to be repressed by the daf-2/daf-16 insulin signaling pathway, which so strongly influences aging and longevity in C. elegans. We show that the activity of the 44 bp vit-2 enhancer is abolished by loss of daf-2 but is restored by simultaneous loss of daf-16. DAF-2 acts from outside of the intestine but DAF-16 acts both from outside of the intestine and from within the intestine where it binds directly to the same non-canonical target site that interacts with FKH-9. Activity of the 44 bp vit-2 enhancer is also inhibited by loss of the germline, in a manner that is only weakly influenced by DAF-16 but that is strongly influenced by KRI-1, a key downstream effector in the pathway by which germline loss increases C. elegans lifespan. The complex behavior of this enhancer presumably allows vitellogenin gene transcription to adjust to demands of body size, germline proliferation and nutritional state but we suggest that the apparent involvement of this enhancer in aging and longevity "pathways" could be incidental.

  16. Direct selection of expressed sequences on a YAC clone revealed proline-rich-like genes and BARE-1 sequences physically linked to the complex ¤Mla¤ powdery mildew resistance locus of barley (¤Hordeum vulgare¤ L.)

    DEFF Research Database (Denmark)

    Schwarz, G.; Michalek, W.; Jahoor, A.

    2002-01-01

    gene. Of 22 selected cDNA clones, six were re-located on the YAC by southern analysis. Two of these clones are predicted to encode members of the hydroxyproline-rich glycoprotein and proline-rich protein gene families which have been implicated in plant defense response. Four sequences showed high...... homology to the copia-like retroelement BA REI of barley, putatively involved in evolution of disease resistance loci. The high degree of clones representing barley rRNA sequences or false positives is a major disadvantage of direct selection of cDNAs in barley. (C) 2002 Elsevier Science Ireland Ltd. All...

  17. Compositional gradients in Gramineae genes

    DEFF Research Database (Denmark)

    Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin

    2002-01-01

    In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...

  18. Gene therapy for brain tumors.

    Science.gov (United States)

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  19. Gene therapy for gastric diseases.

    OpenAIRE

    Fumoto, Shintaro; Nishi, Junya; Nakamura, Junzo; Nishida, Koyo

    2008-01-01

    Gene therapy for gastric cancer and gastric ulcer is a rationalized strategy since various genes correlate with these diseases. Since gene expressions in non-target tissues/cells cause side effects, a selective gene delivery system targeted to the stomach and/or cancer must be developed. The route of vector transfer (direct injection, systemic, intraperitoneal, gastric serosal surface and oral administration) is an important issue which can determine efficacy and safety. Strategies for cancer...

  20. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa.

    Science.gov (United States)

    Riveron, Jacob M; Ibrahim, Sulaiman S; Chanda, Emmanuel; Mzilahowa, Themba; Cuamba, Nelson; Irving, Helen; Barnes, Kayla G; Ndula, Miranda; Wondji, Charles S

    2014-09-27

    Pyrethroid resistance in the major malaria vector Anopheles funestus is rapidly expanding across Southern Africa. It remains unknown whether this resistance has a unique origin with the same molecular basis or is multifactorial. Knowledge of the origin, mechanisms and evolution of resistance are crucial to designing successful resistance management strategies. Here, we established the resistance profile of a Zambian An. funestus population at the northern range of the resistance front. Similar to other Southern African populations, Zambian An. funestus mosquitoes are resistant to pyrethroids and carbamate, but in contrast to populations in Mozambique and Malawi, these insects are also DDT resistant. Genome-wide microarray-based transcriptional profiling and qRT-PCR revealed that the cytochrome P450 gene CYP6M7 is responsible for extending pyrethroid resistance northwards. Indeed, CYP6M7 is more over-expressed in Zambia [fold-change (FC) 37.7; 13.2 for qRT-PCR] than CYP6P9a (FC15.6; 8.9 for qRT-PCR) and CYP6P9b (FC11.9; 6.5 for qRT-PCR), whereas CYP6P9a and CYP6P9b are more highly over-expressed in Malawi and Mozambique. Transgenic expression of CYP6M7 in Drosophila melanogaster coupled with in vitro assays using recombinant enzymes and assessments of kinetic properties demonstrated that CYP6M7 is as efficient as CYP6P9a and CYP6P9b in conferring pyrethroid resistance. Polymorphism patterns demonstrate that these genes are under contrasting selection forces: the exceptionally diverse CYP6M7 likely evolves neutrally, whereas CYP6P9a and CYP6P9b are directionally selected. The higher variability of CYP6P9a and CYP6P9b observed in Zambia supports their lesser role in resistance in this country. Pyrethroid resistance in Southern Africa probably has multiple origins under different evolutionary forces, which may necessitate the design of different resistance management strategies.

  1. Immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Honjo, T. (Kyoto Univ. (Japan)); Alt, F.W. (Columbia Univ., Dobbs Ferry, NY (USA). Hudson Labs.); Rabbitts, T.H. (Medical Research Council, Cambridge (UK))

    1989-01-01

    This book reports on the structure, function, and expression of the genes encoding antibodies in normal and neoplastic cells. Topics covered are: B Cells; Organization and rearrangement of immunoglobin genes; Immunoglobin genes in disease; Immunoglobin gene expression; and Immunoglobin-related genes.

  2. Expression of germ cell nuclear factor in mouse germ cells and sperm during postnatal period

    Institute of Scientific and Technical Information of China (English)

    ChenXu; Zong-YaoZhou; Qiang-SuGuo; Yi-FeiWang

    2004-01-01

    Aim: To assess the spatial and temporal expression of germ cell nuclear factor (GCNF) in male mouse germ cells during postnatal development and in sperm before and after capacitation. Methods: The indirect immunofluorescence method with anti-GCNF antiserum was used to investigate the GCNF expression in mice at day 8, 10,14, 17, 20, 28, 35, 70, and 420 after birth and in sperm before and after capacitation. Results: With the proceeding of spermatogenesis, GCNF was first detected in the nuclei of spermatogonia and a few early stage primary spermatocytes at day 8, which was increased gradually at day 10 to 14 inclusive. From day 17 to day 20, the GCNF was concentrated in round spermatids, while both spermatogonia and early stage primary spermatocytes became GCNF negative. From day 28 until day 420, strong GCNF expression was shown in round spermatids and pachytene spermatocytes, while spermatogonia, early primary spermatocytes and elongating spermatids were all GCNF negative.In addition, it was also found that GCNF was localized on the acrosomal cap region of spermatozoa and there was a big change in GCNF expression during capacitation, from 98 % GCNF positive before capacitation to about 20 % positive following capacitation. The localization of GCNF in caput and cauda spermatozoa was similar. Conclusion:GCNF may play important roles in spermatogenesis, capacitation and fertilization. (Asian J Androl 2004 Sep; 6: 217-222)

  3. Construction of plasmid containing IVS-2-654 (C>T) single mutation of β-thalassemia gene by site-directed mutagenesis%定点诱变法构建β地中海贫血IVS-2-654(C>T)突变基因质粒

    Institute of Scientific and Technical Information of China (English)

    余玲玲; 田可港; 冯晶晶; 王慧燕; 郑晓群

    2012-01-01

    Objective To construct a plasmid containing IVS-2-654 (OT) single site mutation of p-thalassemia gene. Methods The plasmid DNA containing wild-type β-globin gene was used as PCR template. Plasmid containing IVS-2-654 (OT) mutation gene of β-globin was constructed by TA clone technology after site-directed mutagenesis of overlap extension PCR (OE-PCR). Results Direct DNA sequencing showed that the recombi-nant plasmid contained IVS-2-654 (OT) mutation gene of β-globin, which mutated from C to T at IVS-2-654 bp and the rest was completely identical with wide type. Conclusions The plasmid containing IVS-2-654 (C> T) mutation gene was successfully constructed, which laied the foundation for further screening studies to detect gene mutation of (Hhalassemia and other genetic diagnosis for this disease. Site-directed mutagenesisis of OE-PCR technique is simple and economic and worth of being promoted widely.%目的 构建含β地中海贫血(简称β地贫)IVS-2-654 (C>T)突变基因的质粒.方法 以含β珠蛋白野生型基因的质粒DNA为模板,采用重叠延伸PCR (OE-PCR)定点诱变后行TA克隆的方法构建含IVS-2-654 (C>T)突变基因的质粒.结果 双向测序结果表明:重组质粒的确含β地贫IVS-2-654 (C>T)突变基因,β珠蛋白IVS-2-654处的碱基已由C突变成T,其余序列与野生型完全相同,成功实现了定点诱变.结论 成功地构建了含β地贫IVS-2-654 (C>T)突变基因的质粒,进一步为该病基因诊断与筛查技术的研究奠定了实验基础;OE-PCR定点诱变法简便、经济,值得推广应用.

  4. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  5. FunGene: the Functional Gene Pipeline and Repository

    Directory of Open Access Journals (Sweden)

    Jordan A. Fish

    2013-10-01

    Full Text Available Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer.While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/ offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  6. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  7. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-{kappa}B-STAT3-directed gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu; Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-07-01

    Mitochondrial DNA depleted ({rho}{sup 0}) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-{kappa}B and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental {rho}{sup +} HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in {rho}{sup 0} cells compared to {rho}{sup +} HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, {Oota}L17{Beta}, {Oota}L18, {Oota}L19, and {Oota}L28{Beta}) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-{kappa}B and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-{kappa}B/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in {rho}{sup +} HSF, but this response was substantially decreased in {rho}{sup 0} HSF. Suppression of the IKK-NF-{kappa}B pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated {rho}{sup +} HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-{kappa}B activation was partially lost in {rho}{sup 0} HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-{kappa}B targets, further suppressing IL6

  8. In vivo suppression of vein graft disease by nonviral, electroporation-mediated, gene transfer of tissue inhibitor of metalloproteinase-1 linked to the amino terminal fragment of urokinase (TIMP-1.ATF), a cell-surface directed matrix metalloproteinase inhibitor.

    Science.gov (United States)

    Eefting, Daniel; de Vries, Margreet R; Grimbergen, Jos M; Karper, Jacco C; van Bockel, J Hajo; Quax, Paul H A

    2010-02-01

    Smooth muscle cell (SMC) migration and proliferation are important in the development of intimal hyperplasia, the major cause of vein graft failure. Proteases of the plasminogen activator (PA) system and of the matrix metalloproteinase (MMP) system are pivotal in extracellular matrix degradation and, by that, SMC migration. Previously, we demonstrated that inhibition of both protease systems simultaneously with viral gene delivery of the hybrid protein TIMP-1.ATF, consisting of the tissue inhibitor of metalloproteinase-1 (TIMP-1) and the receptor-binding amino terminal fragment (ATF) of urokinase, reduces SMC migration and neointima formation in an in vitro restenosis model using human saphenous vein cultures more efficiently than both protease systems separately. Because use of viral gene delivery is difficult in clinical application, this study used nonviral delivery of TIMP-1.ATF plasmid to reduce vein graft disease in a murine bypass model. Nonviral gene transfer by electroporation was used to avert major disadvantages of viral gene delivery, such as immune responses and short-term expression. Plasmids encoding ATF, TIMP-1, TIMP-1.ATF, or luciferase, as a control, were injected and electroporated in both calf muscles of hypercholesterolemic apolipoprotein E3-Leiden (APOE*3Leiden) mice (n = 8). One day after electroporation, a venous interposition of a donor mouse was placed into the carotid artery of a recipient mouse. In this model, vein graft thickening develops with features of accelerated atherosclerosis. Vein grafts were harvested 4 weeks after electroporation and surgery, and histologic analysis of the vessel wall was performed. Electroporation-mediated overexpression of the plasmid vectors resulted in a prolonged expression of the transgenes and resulted in a significant reduction of vein graft thickening (ATF: 36% +/- 9%, TIMP-1: 49% +/- 5%, TIMP-1.ATF: 58% +/- 5%; P ATF-treated mice. Intramuscular electroporation of TIMP-1.ATF inhibits vein graft

  9. Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis.

    Science.gov (United States)

    Bournier, Marc; Tissot, Nicolas; Mari, Stéphane; Boucherez, Jossia; Lacombe, Eric; Briat, Jean-François; Gaymard, Frédéric

    2013-08-01

    A yeast one-hybrid screening allowed the selection of PHR1 as a factor that interacted with the AtFer1 ferritin gene promoter. In mobility shift assays, PHR1 and its close homologue PHL1 (PHR1-like 1) interact with Element 2 of the AtFer1 promoter, containing a P1BS (PHR1 binding site). In a loss of function mutant for genes encoding PHR1 and PHL1 (phr1 phl1 mutant), the response of AtFer1 to phosphate starvation was completely lost, showing that the two transcription factors regulate AtFer1 expression upon phosphate starvation. This regulation does not involve the IDRS (iron-dependent regulatory sequence) present in the AtFer1 promoter and involved in the iron-dependent regulation. The phosphate starvation response of AtFer1 is not linked to the iron status of plants and is specifically initiated by phosphate deficiency. Histochemical localization of iron, visualized by Perls DAB staining, was strongly altered in a phr1 phl1 mutant, revealing that both PHR1 and PHL1 are major factors involved in the regulation of iron homeostasis.

  10. A new set of primers directed to 18S rRNA gene for molecular identification of Cryptosporidium spp. and their performance in the detection and differentiation of oocysts shed by synanthropic rodents.

    Science.gov (United States)

    Silva, Sheila O S; Richtzenhain, Leonardo J; Barros, Iracema N; Gomes, Alessandra M M C; Silva, Aristeu V; Kozerski, Noemila D; de Araújo Ceranto, Jaqueline B; Keid, Lara B; Soares, Rodrigo M

    2013-11-01

    Cryptosporidium spp. are cosmopolitan protozoa that infect fishes, reptiles, amphibians, birds and mammals. More than 20 species are recognized within this genus. Rodents are a group of abundant and ubiquitous organisms that have been considered reservoirs of Cryptosporidium for humans and livestock. The aim of this study was to design specific primers for the gene encoding 18S rRNA, potentially capable of amplifying any species or genotype of Cryptosporidium spp. and evaluate the diagnostic attributes of the nested-PCR based on such probes. The primers were designed to amplify the shortest segment as possible to maximize the sensitivity of the test, but preserving the discriminatory potential of the amplified sequences for phylogenetic inferences. The nested-PCR standardized in this study (nPCR-SH) was compared in terms of sensitivity with another similar assay (nPCR-XIAO) that has been largely used for the detection and identification of Cryptosporidium spp. worldwide. We also aimed to molecularly characterize samples of Cryptosporidum spp. isolated from synanthropic rodents using these probes. Forty-five rodents were captured in urban areas of the municipality of Umuarama, Paraná State, Brazil. Fecal samples were submitted to three molecular tests (nested-PCRs), two of them targeted to the 18S rDNA gene (nPCR-SH and nPCR-XIAO) and the third targeted to the gene encoding actin (nPCR-actin). The nPCR-SH was tested positive on samples of Cryptosporidum parvum, Cryptosporidum andersoni, Cryptosporidum meleagridis, Cryptosporidum hominis, Cryptosporidum canis, and Cryptosporidum serpentis. Sixteen samples of rodents were positive by nPCR-SH, six by nPCR-XIAO and five by nPCR-actin. Sequencing of amplified fragments allowed the identification of Cryptosporidum muris in three samples of Rattus rattus, and two genotypes of Cryptosporidium, the genotypes mouse II and III. Cryptosporidium genotype mouse II was found in one sample of Mus musculus and genotype mouse III

  11. A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF) and Liver Receptor Homolog-1 (LRH-1).

    Science.gov (United States)

    Weikum, Emily R; Tuntland, Micheal L; Murphy, Michael N; Ortlund, Eric A

    2016-10-27

    Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors, liver receptor homolog-1 and germ cell nuclear factor. Liver receptor homolog-1 is responsible for driving the expression of Oct4 where germ cell nuclear factor represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse germ cell nuclear factor DNA binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human liver receptor homolog-1 DNA binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two nuclear receptors.

  12. [Gene pool and gene geography of the USSR population].

    Science.gov (United States)

    Rychkov, Iu G; Balanovskaia, E V

    1992-01-01

    Gene pool and gene geography are discussed from the point of view of their conceptual history beginning from the original concept of A.S. Serebrovskiĭ (1928). Difference between the present-day gene geography and gene geography of gene pool is accentuated: the former only represents a portion of the latter. Historical and territorial integrity of the USSR population gene pool, in conjunction with its huge diversity, is the main problem being analysed by various means of computerized genetic cartography. Coupled with the gene frequency mapping, following methods were also used: mapping of average heterozygosity, of interpopulation differentiation, of principal component scores and mapping of geographical trend for each mapped genetic parameter. The work is based on 100 allelic genes and haplotypes from 30 independent loci studied on the average in 225 local populations. Statistical analysis of gene geographical maps is based on 3975 nodes of regular cartographic net for the USSR territory. The wind rose of systematic changes in the USSR gene pool has three main geographic orientations: W-E, SW-NE and S-N. At the same time, there are only two main systematic forces of gene pool evolution: the force of social history with predominant W-E orientation and the force of natural history with predominant S-N orientation of their actions. The heterozygosity level of gene pool declines strictly in accordance with the resultant in the SW-NE direction.

  13. Gene therapy for hemophilia.

    Science.gov (United States)

    Chuah, M K; Evens, H; VandenDriessche, T

    2013-06-01

    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia. © 2013 International Society on Thrombosis and Haemostasis.

  14. Gene therapy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005147 CNHK200-hA-a gene-viral therapeutic system and its antitumor effect on lung cancer. WANG Wei-guo(王伟国),et al. Viral & Gene Ther Center, Eastern Hepatobilli Surg Instit 2nd Milit Univ, Shanghai 200438. Chin J Oncol,2005:27(2):69-72. Objective: To develop a novel vector system, which combines the advantages of the gene therapy,

  15. Gene therapy for hemophilia.

    Science.gov (United States)

    Hortelano, G; Chang, P L

    2000-01-01

    Hemophilia A and B are X-linked genetic disorders caused by deficiency of the coagulation factors VIII and IX, respectively. Because of the health hazards and costs of current product replacement therapy, much effort is devoted to the development of gene therapy for these disorders. Approaches to gene therapy for the hemophilias include: ex vivo gene therapy in which cells from the intended recipients are explanted, genetically modified to secrete Factor VIII or IX, and reimplanted into the donor; in vivo gene therapy in which Factor VIII or IX encoding vectors are directly injected into the recipient; and non-autologous gene therapy in which universal cell lines engineered to secrete Factor VIII or IX are enclosed in immuno-protective devices before implantation into recipients. Research into these approaches is aided by the many murine and canine models available. While problems of achieving high and sustained levels of factor delivery, and issues related to efficacy, safety and cost are still to be resolved, progress in gene therapy for the hemophilias has been encouraging and is likely to reach human clinical trial in the foreseeable future.

  16. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: Different requirements for the RAD1, RAD 10, and RAD52 genes

    Energy Technology Data Exchange (ETDEWEB)

    Prado, F.; Aguilera, A. [Universidad de Sevilla (Spain)

    1995-01-01

    We have constructed novel DNA substrates (one inverted and three direct repeats) based on the same 0.6-kb repeat sequence to study deletions and inversions in Saccharomyces cerevisiae. Spontaneous deletions occur six to eight times more frequently than inversions, irrespective of the distance between the repeats. This difference can be explained by the observation that deletion events can be mediated by a recombination mechanism that can initiate within the intervening sequence of the repeats. Spontaneous and double-strand break (DSB)-induced deletions occur as RAD52-dependent and RAD52-independent events. Those deletion events initiated through a DSB in the unique intervening sequence require the Rad1/Rad10 endonuclease only if the break is distantly located from the flanking DNA repeats. We propose that deletions can occur as three types of recombination events: the conservative RAD52-dependent reciprocal exchange and the nonconservative events, one-ended invasion crossover, and single-strand annealing (SSA). We suggest that one-ended invasion is RAD52 dependent, whereas SSA is RAD52 independent. Whereas deletions, like inversions, occur through reciprocal exchange, deletions can also occur through SSA or one-ended invasion. We propose that the contribution of reciprocal exchange and one-ended invasion crossover vs. SSA events to overall spontaneous deletions is a feature specific for each repeat system, determined by the initiation event and the availability of the Rad52 protein. We discuss the role of the Rad1/Rad10 endonuclease on the initial steps of one-ended invasion crossover and SSA as a function of the location of the initiation event relative to the repeats. We also show that the frequency of recombination between repeats is the same independent of their location (whether on circular plasmids, linear minichromosomes, or natural chromosomes) and have similar RAD52 dependence. 74 refs., 5 figs., 6 tabs.

  17. Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase A cDNA to nonhuman primates.

    Science.gov (United States)

    Rosenberg, Jonathan B; Sondhi, Dolan; Rubin, David G; Monette, Sébastien; Chen, Alvin; Cram, Sara; De, Bishnu P; Kaminsky, Stephen M; Sevin, Caroline; Aubourg, Patrick; Crystal, Ronald G

    2014-09-01

    Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5 × 10(12) genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS

  18. Advancement and prospects of tumor gene therapy

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Qing-Tao Wang; He Liu; Zhen-Zhu Zhang; Wen-Lin Huang

    2011-01-01

    Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucieotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.

  19. Invariants of directed spaces

    DEFF Research Database (Denmark)

    Raussen, Martin

    2007-01-01

    Directed spaces are the objects of study within directed algebraic topology. They are characterised by spaces of directed paths associated to a source and a target, both elements of an underlying topological space. The algebraic topology of these path spaces and their connections are studied from...

  20. Ethanol Treatment Enhances Expression of Thermostable Direct Hemolysin Gene by Vibrio parahaemolyticus%乙醇促进副溶血性弧菌直接耐热溶血素的基因表达

    Institute of Scientific and Technical Information of China (English)

    吴葵; 吴清平; 张菊梅; 乐贤松

    2015-01-01

    研究乙醇对副溶血性弧菌(Vibrio parahaemolyticus)直接耐热溶血素(thermostable direct hemolysin,TDH)产生和它的编码基因tdh表达的影响.以0.5%、1.0%、2.0%、4.0%、8.0%乙醇处理2株带有tdh副溶血性弧菌ATCC33847和SZ32,研究对副溶血性弧菌有氧或者无氧生长的影响.选取1.0%乙醇处理来研究TDH产量和tdh表达变化.使用TDH抗血清试剂盒测定副溶血性弧菌培养液上清中TDH水平;使用荧光定量PCR方法分析tdh基因表达状况.低浓度(0.5%、1.0%、2.0%)乙醇存在时,副溶血弧菌菌株的生长未受到显著影响,乙醇浓度4.0%时副溶血性弧菌生长受到明显抑制,8%时未见有细菌生长.1.0%乙醇处理副溶血性弧菌培养液上清中TDH水平较未处理显著上升.胞内tdh表达水平升高,ATCC33847在有氧和无氧时分别升高到6.6倍和5.7倍,SZ32在有氧和无氧时分别升高到5.9倍和8.6倍.乙醇能够促进tdh基因表达从而使得TDH蛋白产量升高.本研究还比较了甲醇、乙醇、正丙醇对tdh表达的影响,发现它们对tdh表达均具有促进作用但相互之间没有明显差异.

  1. 六代机天线罩技术需求与发展方向分析%Technical Requirement and Development Direction Analysis of the Sixth Gene ration Fighter Antenna Cover

    Institute of Scientific and Technical Information of China (English)

    许群; 刘少斌; 王云香

    2016-01-01

    在陆海空天电五维一体的现代战争中,战斗机发挥着十分重要的作用。自从F-22A 服役以来,国外已经开始六代机的研究工作。根据美国、日本、俄罗斯等国六代机的概念方案,归纳了六代机的主要特点:高空高速、全频谱全向隐身、采用定向能武器、航电系统的高度综合化与信息网络化。分析了六代机天线罩的技术需求,总结了全频谱全向隐身天线罩、共形天线罩、耐高温天线罩、甚宽频带天线罩技术的现状,阐述了频率选择表面天线罩和共形天线罩的关键技术。%In modern warfare composed of land , sea, air, space and electromagnetism five dimension , fighter plays an important role.Since the F-22A service,foreign countries have begun the development of sixth generation fighter .According to the concept of the United States,Japan,Russia and other countries in the sixth generation fighter ,the main features of the sixth generation fighter are summarized to be high altitude and high speed ,full spectrum of omnidirectional stealth ,using directed energy weapons ,avionics system highly integrated with information technology .The technical requirements of sixth generation fighter radome are described . The application prospect of full spectrum of omnidirectional stealth antenna cover ,conformal antenna cover ,high temperature anten-na cover and wide band antenna cover is analyzed .The key technologies of frequency selective surface antenna cover and conformal antenna cover are described .

  2. Trichoderma genes

    Science.gov (United States)

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  3. 定向诱变方法研究结核分支杆菌KatG基因突变与异烟肼耐药机制的关系%The effect of point mutation of KatG gene on the catalase activity associated with INH resistance by site-directed mutagenesis

    Institute of Scientific and Technical Information of China (English)

    张文宏; 陈澍; 季朝能; 庞茂银; 邵凌云; 华正豪; 翁心华

    2001-01-01

    目的探讨结核分支杆菌KatG基因的常见点突变是否会导致与产生异烟肼耐药性相关的过氧化氢酶活性降低.方法用定向诱变方法产生耐异烟肼的结核分支杆菌中最常见的KatG基因315突变体,造成该位点从丝氨酸(AGC)到苏氨酸(ACC)的突变.随后构建含KatG基因S315T突变体的质粒,转化进入大肠杆菌并实现高表达,对表达的蛋白进行过氧化氢酶活性的测定.结果通过定向诱变方法成功获得KatG基因S315T突变体,并通过pET24b质粒转入大肠杆菌,Ka tG基因S315T突变体蛋白在大肠杆菌中得到高表达.对KatG S315T表达产物的过氧化氢酶活性进行检测,发现比野生株KatG基因表达产物酶活性下降了50%左右.结论KatG基因315位从丝氨酸(AGC)到苏氨酸(ACC)的突变造成过与异烟肼耐药产生直接相关的氧化氢酶活性的下降.%Objective To determine whether specific missense mutations in the M. Tuberculosis katG gene could result in a loss of enzymatic activity associated with resistance to isoniazid (INH).Methods The authors used site-directed mutagenesis to induce the commonest mutation S315T in the KatG gene of INH-resistant M. Tuberculosis. Furthermore, we constructed a plasmid containing katG with the S315T mutation, expressed the recombinant protein in a catalase-peroxidase-deficient strain of Escherichia coli, and assessed its enzymatic activity via detecting the release of O2 from whole-cell organisms.Results The mutated katG gene S315T was successfully obtained by site-directed mutagenesis and constructed in pET24b and transformed into E. Coli. The katG(S315T)protein was then expressed and the catalase activities of which were detected. It was found that the catalase activity of S315T katG mutant was reduced 50% compared with KatG (wt).Conclusions The results suggest that S315T leads to reducing the activity of catalase which is related with activating INH. The method to detect the gene function of Kat

  4. Detection of APC gene germline mutation in Chinese familial adenomatous polyposis by direct sequencing in combination with multiplex ligation-dependent probe amplification%直接测序联合多重连接依赖探针扩增法检测家族性腺瘤性息肉病APC基因胚系突变

    Institute of Scientific and Technical Information of China (English)

    金鹏; 崔伟佳; 盛剑秋; 付蕾; 安贺娟; 李爱琴; 张明智; 韩英; 李世荣

    2010-01-01

    目的 研究中国家族性腺瘤性息肉病(FAP)患者APC基因胚系突变的特点.方法 对来自北京、河北、河南、安徽、内蒙古、山西、福建等地区的14个FAP家系先证者用直接测序法进行APC基因突变检测,对突变检测阴性者应用多重连接依赖探针扩增(MLPA)技术进行APE基因大片段缺失检测.结果 14例先证者中9例(64.3%)检测出APC基因微小突变,其中移码突变6例,剪接区突变2例,无义突变1例;2例(14.3%)检测出APC基因大片段缺失,微小突变与大片段缺失的总检出率为78.6%.c.2336-2337insT、c.3923-3929delAAGAAAA、c.532-2A>T和c.4179-4180GAdelinsT等4个微小突变和外显子11、10A缺失、外显子15 start缺失等2个大片段缺失为首次报道.结论 中国FAP患者APC基因的胚系突变类型多样,以移码突变居多,突变位点以第15外显子居多;直接测序法联合MLPA法检测大片段缺失可提高APC基因突变的检出率.%Objective To investigate the characteristics of APC gene germline mutation in Chinese patients with familial adenomatous polyposis ( FAP). Methods The genomic DNA was extracted from peripheral venous blood drawn from probands of 14 Chinese FAP families from Beijing, Hebei, Henan,Anhui, Inner Mongolia, Shanxi and Fujian. The APC gene was amplified by PCR and underwent direct sequencing. Large fragment deletion was detected by multiplex ligation-dependent probe amplification (MLPA) only in micromutation-negative samples found by sequencing. Results APC gene micromutations were found in 9 probands and the mieromutation detection rate was 64. 3%, including 6 frameshift mutations, 2 splicing mutations and 1 nonsense mutation. Large fragment deletions of APC gene were detected in 2 probands ( 14. 3% ). The total mutation detection rate of micromutation and large fragment deletion was 78. 6%. Four novel micmromutations and 2 novel large fragment deletions were found, including c. 2336-2337insT, c. 3923-3929delAAGAAAA, c

  5. Gene Therapy.

    Science.gov (United States)

    Thorne, Barb; Takeya, Ryan; Vitelli, Francesca; Swanson, Xin

    2017-03-14

    Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.

  6. Intuitive Direction Concepts

    Directory of Open Access Journals (Sweden)

    Alexander Klippel

    2015-12-01

    Full Text Available Experiments in this article test the hypothesis that formal direction models used in artificial intelligence correspond to intuitive direction concepts of humans. Cognitively adequate formal models of spatial relations are important for information retrieval tasks, cognitive robotics, and multiple spatial reasoning applications. We detail two experiments using two objects (airplanes systematically located in relation to each other. Participants performed a grouping task to make their intuitive direction concepts explicit. The results reveal an important, so far insufficiently discussed aspect of cognitive direction concepts: Intuitive (natural direction concepts do not follow a one-size-fits-all strategy. The behavioral data only forms a clear picture after participants' competing strategies are identified and separated into categories (groups themselves. The results are important for researchers and designers of spatial formalisms as they demonstrate that modeling cognitive direction concepts formally requires a flexible approach to capture group differences.

  7. Gene Therapy

    Science.gov (United States)

    ... or improve your body's ability to fight disease. Gene therapy holds promise for treating a wide range of diseases, such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Researchers are still studying how and ...

  8. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  9. Directional radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  10. Genes V.

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, B.

    1994-12-31

    This fifth edition book encompasses a wide range of topics covering 1,272 pages. The book is arranged into nine parts with a total of 36 chapters. These nine parts include Introduction; DNA as a Store of Information; Translation; Constructing Cells; Control of Prokaryotypic Gene Expression; Perpetuation of DNA; Organization of the Eukaryotypic Genome; Eukaryotypic Transcription and RNA Processing; The Dynamic Genome; and Genes in Development.

  11. Gene: a gene-centered information resource at NCBI.

    Science.gov (United States)

    Brown, Garth R; Hem, Vichet; Katz, Kenneth S; Ovetsky, Michael; Wallin, Craig; Ermolaeva, Olga; Tolstoy, Igor; Tatusova, Tatiana; Pruitt, Kim D; Maglott, Donna R; Murphy, Terence D

    2015-01-01

    The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP.

  12. Decisions Concerning Directional Dependence

    Science.gov (United States)

    von Eye, Alexander; DeShon, Richard P.

    2012-01-01

    In this rejoinder, von Eye and DeShon discuss the decision strategies proposed in their original article ("Directional Dependence in Developmental Research," this issue), as well as the ones proposed by the authors of the commentary (Pornprasertmanit and Little, "Determining Directional Dependency in Causal Associations," this issue). In addition,…

  13. Direct current transformer

    Science.gov (United States)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  14. Directed Energy Weapons

    Science.gov (United States)

    2007-12-01

    the USD (I) staff to be afocalpointfor advocating improvement in all dimensions of directed energy intelligence. - The Director, Defense Inteligence ...staff to be afocalpoint for advocating iprovement in all dimensions of directed energy intelligence. The Director, Defense Inteligence Ageng7 should

  15. Construction of a high-efficiency multi-site-directed mutagenesis ...

    African Journals Online (AJOL)

    Construction of a high-efficiency multi-site-directed mutagenesis. ... applied to hexapeptide gene synthesis and recombinant enterokinase gene ... This method was beneficial to prepare high-quality multibase mutagenesis and also implied ...

  16. Gene therapy in the cornea.

    Science.gov (United States)

    Mohan, Rajiv R; Sharma, Ajay; Netto, Marcelo V; Sinha, Sunilima; Wilson, Steven E

    2005-09-01

    Technological advances in the field of gene therapy has prompted more than three hundred phase I and phase II gene-based clinical trials for the treatment of cancer, AIDS, macular degeneration, cardiovascular, and other monogenic diseases. Besides treating diseases, gene transfer technology has been utilized for the development of preventive and therapeutic vaccines for malaria, tuberculosis, hepatitis A, B and C viruses, AIDS, and influenza. The potential therapeutic applications of gene transfer technology are enormous. The cornea is an excellent candidate for gene therapy because of its accessibility and immune-privileged nature. In the last two decades, various viral vectors, such as adeno, adeno-associated, retro, lenti, and herpes simplex, as well as non-viral methods, were examined for introducing DNA into corneal cells in vitro, in vivo and ex vivo. Most of these studies used fluorescent or non-fluorescent marker genes to track the level and duration of transgene expression in corneal cells. However, limited studies were directed to evaluate prospects of gene-based interventions for corneal diseases or disorders such as allograft rejection, laser-induced post-operative haze, herpes simplex keratitis, and wound healing in animal models. We will review the successes and obstacles impeding gene therapy approaches used for delivering genes into the cornea.

  17. Direction and Description

    Science.gov (United States)

    Ben-Menahem, Yemima

    This paper deals with the dependence of directionality in the course of events-or our claims concerning such directionality-on the modes of description we use in speaking of the events in question. I argue that criteria of similarity and individuation play a crucial role in assessments of directionality. This is an extension of Davidson's claim regarding the difference between causal and explanatory contexts. The argument is based on a characterisation of notions of necessity and contingency that differ from their modal logic counterparts on the one hand, and from causality and chance on the other. I show that some types of directionality are perfectly compatible with both determinism and indeterminism at the microscopic level, and that there is no likelihood of, or advantage to, reducing such directionality to other laws or causal processes.

  18. Direct peroral cholangioscopy

    Science.gov (United States)

    Parsi, Mansour A

    2014-01-01

    Peroral cholangioscopy is an important tool for diagnosis and treatment of various biliary disorders. Peroral cholangioscopy can be performed by using a dedicated cholangioscope that is advanced through the accessory channel of a duodenoscope, or by direct insertion of a small-diameter endoscope into the bile duct. Direct peroral cholangioscopy refers to insertion of an ultraslim endoscope directly into the bile duct for visualization of the biliary mucosa and lumen. This approach provides a valuable and economic solution for diagnostic and therapeutic applications in the biliary tree. Compared to ductoscopy using a dedicated cholangioscope, the direct approach has several advantages and disadvantages. In this editorial, I discuss the advantages, disadvantages, and possible future developments pertaining to direct peroral cholangioscopy. PMID:24527174

  19. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes.

    Science.gov (United States)

    Hu, Jiazhi; Zhang, Yu; Zhao, Lijuan; Frock, Richard L; Du, Zhou; Meyers, Robin M; Meng, Fei-long; Schatz, David G; Alt, Frederick W

    2015-11-05

    RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Direct Conversion of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R

    1964-01-01

    Topics include: direct versus dynamic energy conversion; laws governing energy conversion; thermoelectricity; thermionic conversion; magnetohydrodynamic conversion; chemical batteries; the fuel cell; solar cells; nuclear batteries; and advanced concepts including ferroelectric conversion and thermomagnetic conversion.

  1. Direct sale in USA

    OpenAIRE

    Koula, Alexandr

    2014-01-01

    This thesis deals with direct sales. The thesis discuss the connection between theoretical part of my personal experience as a door to door sales person in the US, describing a sales process, using a techniques of direct sales and communication skills in practice. It stresses the importance of understanding the basic concepts of personality and communication. The main objective of this work is a suggestion to improve the sales manual for increasing sales success of door to door sales persons ...

  2. Directed GF-spaces

    Directory of Open Access Journals (Sweden)

    F.G. Arenas

    2001-10-01

    Full Text Available In this paper we introduce the concept of directed fractal structure, which is a generalization of the concept of fractal structure (introduced by the authors. We study the relation with transitive quasiuniformities and inverse limits of posets. We define the concept of GF-compactification and apply it to prove that the Stone-Cech compactification can be obtained as the GF-compactification of the directed fractal structure associated to the Pervin quasi-uniformity.

  3. Transcriptomic and genetic analysis of direct interspecies electron transfer

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Summers, Zarath M

    2013-01-01

    The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the elect......The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens....... These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments....

  4. Brains, genes, and primates.

    Science.gov (United States)

    Izpisua Belmonte, Juan Carlos; Callaway, Edward M; Caddick, Sarah J; Churchland, Patricia; Feng, Guoping; Homanics, Gregg E; Lee, Kuo-Fen; Leopold, David A; Miller, Cory T; Mitchell, Jude F; Mitalipov, Shoukhrat; Moutri, Alysson R; Movshon, J Anthony; Okano, Hideyuki; Reynolds, John H; Ringach, Dario; Sejnowski, Terrence J; Silva, Afonso C; Strick, Peter L; Wu, Jun; Zhang, Feng

    2015-05-06

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward.

  5. DREB genes

    African Journals Online (AJOL)

    Unipar

    2015-03-12

    Mar 12, 2015 ... to AP2/ERF family, dehydration-responsive element-binding protein (DREB) genes, (CitsERF01 to ... Protein sequences of DREB subfamilies belonging to group I, .... position 37, and it was present in consensus in all protein.

  6. What Is Direct-to-Consumer Genetic Testing?

    Science.gov (United States)

    ... MENU Toggle navigation Home Page Search Share: Email Facebook Twitter Home Health Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Help Me Understand Genetics Genetic Testing What is direct-to-consumer genetic testing? What is direct-to-consumer genetic ...

  7. Electrohydrodynamic direct-writing

    Science.gov (United States)

    Huang, Yongan; Bu, Ningbin; Duan, Yongqing; Pan, Yanqiao; Liu, Huimin; Yin, Zhouping; Xiong, Youlun

    2013-11-01

    The electrohydrodynamic (EHD) direct-writing technique can be used to print solid/liquid straight/serpentine nanofibers onto a large-area substrate, in a direct, continuous, and controllable manner. It is a high-efficiency and cost-effective solution-processable technique to satisfy increasing demands of large-area micro/nano-manufacturing. It is ground-breaking to direct-write sub-100 nm fibers on a rigid/flexible substrate using organic materials. A comprehensive review is presented on the research and developments related to the EHD direct-writing technique and print heads. Many developments have been presented to improve the controllability of the electrospun fibers to form high-resolution patterns and devices. EHD direct-writing is characterized by its non-contact, additive and reproducible processing, high resolution, and compatibility with organic materials. It combines dip-pen, inkjet, and electrospinning by providing the feasibility of controllable electrospinning for sub-100 nm nanofabrication, and overcomes the drawbacks of conventional electron-beam lithography, which is relatively slow, complicated and expensive.

  8. Spatial gene expression quantification in changing morphologies

    NARCIS (Netherlands)

    Botman, D.

    2016-01-01

    In systems biology, an organisms’ behavior is explained from the interactions among individual components such as genes and proteins. With few exceptions, interactions among genes and proteins are not measured directly and are therefore inferred from the observed output of a biological system. A net

  9. Targeted gene repair – in the arena

    OpenAIRE

    2003-01-01

    The development of targeted gene repair is under way and, despite some setbacks, shows promise as an alternative form of gene therapy. This approach uses synthetic DNA molecules to activate and direct the cell’s inherent DNA repair systems to correct inborn errors. The progress of this technique and its therapeutic potential are discussed in relation to the treatment of genetic diseases.

  10. Direct conversion technology

    Energy Technology Data Exchange (ETDEWEB)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  11. Directional loudness perception

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka

    reaches the listener affect its perceived loudness. The results obtained in a series of listening experiments show that loudness depends considerably on direction for a variety of sound stimuli. Furthermore, these directional dependencies could be largely accounted for by determining binaural at......Loudness, the perceived intensity of sound, is a fundamental attribute in psychoacoustics. An immense body of literature on loudness has been accumulated, and based on the reported findings, models for predicting loudness from monophonic, acoustical measurements of sound pressure have been...... developed. The research and modeling of loudness have mainly been concerned with the temporal and spectral aspects of sounds, while the spatial aspects have mostly been overlooked. This PhD thesis investigates the spatial aspects of loudness perception, namely, how does the direction from which a sound...

  12. Gene functional similarity search tool (GFSST

    Directory of Open Access Journals (Sweden)

    Russo James J

    2006-03-01

    Full Text Available Abstract Background With the completion of the genome sequences of human, mouse, and other species and the advent of high throughput functional genomic research technologies such as biomicroarray chips, more and more genes and their products have been discovered and their functions have begun to be understood. Increasing amounts of data about genes, gene products and their functions have been stored in databases. To facilitate selection of candidate genes for gene-disease research, genetic association studies, biomarker and drug target selection, and animal models of human diseases, it is essential to have search engines that can retrieve genes by their functions from proteome databases. In recent years, the development of Gene Ontology (GO has established structured, controlled vocabularies describing gene functions, which makes it possible to develop novel tools to search genes by functional similarity. Results By using a statistical model to measure the functional similarity of genes based on the Gene Ontology directed acyclic graph, we developed a novel Gene Functional Similarity Search Tool (GFSST to identify genes with related functions from annotated proteome databases. This search engine lets users design their search targets by gene functions. Conclusion An implementation of GFSST which works on the UniProt (Universal Protein Resource for the human and mouse proteomes is available at GFSST Web Server. GFSST provides functions not only for similar gene retrieval but also for gene search by one or more GO terms. This represents a powerful new approach for selecting similar genes and gene products from proteome databases according to their functions.

  13. Gene based therapies for kidney regeneration.

    Science.gov (United States)

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-11-05

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.

  14. Modelling directional solidification

    Science.gov (United States)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    This grant, NAG8-831, was a continuation of a previous grant, NAG8-541. The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis in the recently completed grant was on determining the influence of perturbations on directional solidification of InSb and InSb-GaSb alloys. In particular, the objective was to determine the influence of spin-up/spin-down (ACRT), electric current pulses and vibrations on compositional homogeneity and grain size.

  15. The direction of time

    CERN Document Server

    Reichenbach, Hans

    1999-01-01

    Ever a source of philosophical conjecture and debate, the concept of time represents the beating heart of physics. This final work by the distinguished physicist Hans Reichenbach represents the culmination and integration of a lifetime's philosophical contributions and inquiries into the analysis of time. The result is an outstanding overview of such qualitative, or topological, attributes of time as order and direction.Beginning with a discussion of the emotive significance of time, Reichenbach turns to an examination of the time order of mechanics, the time direction of thermodynamics and m

  16. Incretin secretion: direct mechanisms

    DEFF Research Database (Denmark)

    Balk-Møller, Emilie; Holst, Jens Juul; Kuhre, Rune Ehrenreich

    2014-01-01

    The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are secreted from gastro-intestinal K- and L-cells, respectively, and play an important role in post-prandial blood glucose regulation. They do this by direct stimulation of the pancreatic β...... enzyme responsible for incretin degradation (dipeptidyl peptidase-4) is inhibited (drugs are already on the market) while the secretion of endogenous GLP-1 secretion is stimulated at the same time may prove particularly rewarding. In this section we review current knowledge on the mechanisms for direct...

  17. Direct policy search

    DEFF Research Database (Denmark)

    Heidrich-Meisner, V.; Igel, Christian

    2010-01-01

    process. Exploration is realized by stochastic perturbations, which can be applied at different levels. When considering direct policy search in the space of neural network policies, exploration can be applied on the synaptic level or on the level of neuronal activity. We propose neuroevolution strategies...... (NeuroESs) for direct policy search in RL. Learning using NeuroESs can be interpreted as modelling of extrinsic perturbations on the level of synaptic weights. In contrast, policy gradient methods (PGMs) can be regarded as intrinsic perturbation of neuronal activity. We compare these two approaches...

  18. [New direct restorative materials].

    Science.gov (United States)

    Hickel, R; Dasch, W; Janda, R; Tyas, M; Anusavice, K

    1999-04-01

    People worldwide have become increasingly aware of the potential adverse effects on the environment, of pollution control and of toxic effects of food, drugs and biomaterials. Amalgam and its potential toxic side effects (still scientifically unproven) continue to be discussed with increasing controversy by the media in some countries. Consequently, new direct restorative materials are now being explored by dentists, materials scientists and patients who are searching for the so-called 'amalgam substitute' or 'amalgam alternative'. From a critical point of view some of the new direct restorative materials are good with respect in aesthetics, but all material characteristics must be considered, such as mechanical properties, biological effects, and longterm clinical behaviour.

  19. Endothelial Genes

    Science.gov (United States)

    2005-06-01

    8217Department of Surgery, Division of Oncology , and 2Department of BRCA-l and BRCA-2 (breast cancer susceptibility genes), Pathology, University of...Suppression subtractive hybridization re- Cancer: principles and practice of oncology . Philadelphia: Lippincott- vealed an RNA sequence (GenBank accession...Lippman ME. Cancer of the breast: molecular biology angiogenesis in sarcomas and carcinomas. Clin Cancer Res 1999;5: of breast cancer. In: DeVita VT

  20. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  1. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    Science.gov (United States)

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  2. Directions for further research

    DEFF Research Database (Denmark)

    Minsaas, Atle; Psaraftis, Harilaos N.

    2015-01-01

    chapter of this book we discuss directions for further research in this area. We do so by taking stock of (1) related recommendations of project SuperGreen, and (2) related activities mainly in European research. Links between research and policy-making as two activities that should go hand in hand...

  3. Advanced directives: open issues

    Directory of Open Access Journals (Sweden)

    Gabriella Negrini

    2013-05-01

    Full Text Available BACKGROUND In Italy Advanced directives have not been regulated by law yet. Moreover, there is a confusion of concepts: advanced directives, refusal of treatment, medical futility and euthanasia are not synonymous.DISCUSSION The following aspects are then discussed: object of directives; elapse of time between their expression and their application; knowledge of the directives and their obligatory nature. The refusal of a treatment that can save a person’s life is a critical subject. There are different ethical points of view: according to lay ethics, the patient’s self-determination prevails; the religious viewpoint, instead, says that life is a gift which we cannot dispose of. In any case, the patient will be confronted with the professional autonomy of the doctor. Should the doctor save a patient’s life in any case or should he achieve best clinical practice, in respect of his will? The doctor should interpret the patient’s will but with caution and judgment. An exemption from responsibility should be provided by law for doctors who respect patient’s living will.

  4. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  5. Direct vision internal urethrotomy

    DEFF Research Database (Denmark)

    Jakobsen, H; Willumsen, H; Søndergaard Jensen, L

    1984-01-01

    During a five-year period, direct vision internal urethrotomy was used for the treatment of urethral strictures in 34 men. After the primary operation the patients were followed for an average period of 29 months (range 3-73 months). During this period 53% of the patients were found to have one...

  6. Directed and diode percolation

    Science.gov (United States)

    Redner, S.

    1982-03-01

    We study the novel percolation phenomena that occur in random-lattice networks consisting of resistor-like and diode-like bonds. Resistor bonds connect or "transmit information" in either direction along their length, while diodes connect in one direction only. We first treat the special case of directed bond percolation, in which the diodes are aligned along a preferred axis. Mean-field theory shows that clusters become extremely anisotropic near the percolation transition and that their shapes are characterized by two correlation lengths, one parallel and one transverse to the preferred axis. These lengths diverge with exponents ν∥=1 and ν⊥=12, respectively, from which we can show that the upper critical dimension for this system must be five. We also treat a more general random network on the square lattice containing resistors and diodes of arbitrary orientation. Duality arguments are applied to obtain exact results for the location of phase transitions in this system. We then use a position-space renormalization-group approach to map out the phase diagram and calculate critical exponents. This system has an isotropic percolating phase, and phases which percolate in only one direction. Novel types of transitions occur between these phases, in which the diode orientation plays a fundamental role. These percolating phases meet with the nonpercolating phase along a line of multicritical points, where concentration and orientational fluctuations are simultaneously critical.

  7. The Directed Case Method.

    Science.gov (United States)

    Cliff, William H.; Curtin, Leslie Nesbitt

    2000-01-01

    Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)

  8. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  9. Gene doping: gene delivery for olympic victory

    OpenAIRE

    2012-01-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted...

  10. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  11. Antiemetic research: future directions

    DEFF Research Database (Denmark)

    Olver, Ian; Molassiotis, Alexander; Aapro, Matti

    2011-01-01

    the impact of nausea on work capacity. New antiemetic drugs may be targeted at different receptors, such as opioid, cannabinoid and peptide YY receptors. New research is needed into determining the extent of corticosteroid use. The emetic potential of a range of newer cytotoxics particularly when used...... and vomiting may combine algorithms based on observed prognostic factors relating to the patient and the anticancer therapy, the identification of the genes that code for receptors, and pharmacogenetic studies of the metabolism of drugs. Design issues for future trials include standardising the emetic stimulus...

  12. Gene set analysis using variance component tests

    Science.gov (United States)

    2013-01-01

    Background Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. Results We propose to model the effects of