WorldWideScience

Sample records for gbm instrument onboard

  1. Digibaro pressure instrument onboard the Phoenix Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  2. The XGS instrument on-board THESEUS

    International Nuclear Information System (INIS)

    Fuschino, F.; Baldazzi, G.; Rignanese, L. P.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Frontera, F.; Fiorini, M.; Uslenghi, M.; Evangelista, Y.; Feroci, M.; Elmi, I.; Rachevski, A.; Zampa, G.; Zampa, N.; Vacchi, A.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-01-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated. (paper)

  3. The XGS instrument on-board THESEUS

    Science.gov (United States)

    Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-10-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.

  4. Onboard calibration and monitoring for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2012-01-01

    The SWIFT (Stratospheric Wind Interferometer for Transport studies) instrument is a proposed space-based field-widened Doppler Michelson interferometer designed to measure stratospheric winds and ozone densities using a passive optical technique called Doppler Michelson imaging interferometry. The onboard calibration and monitoring procedures for the SWIFT instrument are described in this paper. Sample results of the simulations of onboard calibration measurements are presented and discussed. This paper also discusses the results of the derivation of the calibrations and monitoring requirements for the SWIFT instrument. SWIFT's measurement technique and viewing geometry are briefly described. The reference phase calibration and filter monitoring for the SWIFT instrument are two of the main critical design issues. In this paper it is shown that in order to meet SWIFT's science requirements, Michelson interferometer optical path difference monitoring corresponding to a phase calibration accuracy of ∼10 −3 radians, filter passband monitoring corresponding to phase accuracy of ∼5 × 10 −3 radians and a thermal stability of 10 −3 K s −1 are required. (paper)

  5. SuperAGILE onboard electronics and ground test instrumentation

    International Nuclear Information System (INIS)

    Pacciani, Luigi; Morelli, Ennio; Rubini, Alda; Mastropietro, Marcello; Porrovecchio, Geiland; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Lazzarotto, Francesco; Rapisarda, Massimo; Soffitta, Paolo

    2007-01-01

    In this paper we describe the electronics of the SuperAGILE X-ray imager on-board AGILE satellite and the instrumentation developed to test and improve the Front-End and digital electronics of the flight model of the imager. Although the working principle of the instrument is very well established, and the conceptual scheme simple, the budget and mechanical constraints of the AGILE small mission made necessary the introduction of new elements in SuperAGILE, regarding both the mechanics and the electronics. In fact the instrument is contained in a ∼44x44x16cm 3 volume, but the required performance is quite ambitious, leading us to equip a sensitive area of ∼1350cm 2 with 6144 Silicon μstrips detectors with a pitch of 121μm and a total length of ∼18.2cm. The result is a very light and power-cheap imager with a good sensitivity (∼15mCrab in 1 day in 15-45keV), high angular resolution (6arcmin) and gross spectral resolution. The test-equipment is versatile, and can be easily modified to test FEE based on self-triggered, data-driven and sparse-readout ASICs such as XA family chips

  6. Onboard Blackbody Calibrator Component Development for IR Remote Sensing Instrumentation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this study is to apply and to provide a reliable, stable durable onboard blackbody calibrator to future Earth Science missions by infusing the new...

  7. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    Science.gov (United States)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  8. The CFRP primary structure of the MIRI instrument onboard the James Webb Space Telescope

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J

    2004-01-01

    The design of the Primary Structure of the Mid Infra-Red Instrument (MIRI) onboard the NASA/ESA James Webb Space Telescope will be presented. The main design driver is the energy flow from the 35 K "hot" satellite interface to the 7 K "cold" MIRI interface. Carbon fibre reinforced plastic (CFRP...

  9. The Fermi GBM catalog (Paciesas+, 2012) [Dataset

    NARCIS (Netherlands)

    Paciesas, W.S.; Meegan, C.A.; von Kienlin, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burgess, J.M.; Chaplin, V.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; H. Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kippen, R.M.; Kouveliotou, C.; Lichti, G.; Lin, L.; McBreen, S.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.

    2012-01-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11 on a mission to study the universe at high energies. The onboard Gamma-ray Burst Monitor (GBM) trigger system for detecting GRBs was first enabled on 2008 July 12. In this paper, we provide a catalog of GRBs that triggered the GBM

  10. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    Science.gov (United States)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  11. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  12. Plans for Selection and In-Situ Investigation of Return Samples by the Supercam Instrument Onboard the Mars 2020 Rover

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Mangold, N.; Anderson, R.; Beyssac, O.; Bonal, L.; Clegg, S.; Cousin, A.; DeFlores, L.; Dromart, G.; Fisher, W.; Forni, O.; Fouchet, T.; Gasnault, O.; Grotzinger, J.; Johnson, J.; Martinez-Frias, J.; McLennan, S.; Meslin, P.-Y.; Montmessin, F.; Poulet, F.; Rull, F.; Sharma, S.

    2018-04-01

    The SuperCam instrument onboard Rover 2020 still provides a complementary set of analyses with IR reflectance and Raman spectroscopy for mineralogy, LIBS for chemistry, and a color imager in order to investigate in-situ samples to return.

  13. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  14. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  15. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Science.gov (United States)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  16. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  17. The Accuracy of GBM GRB Localizations

    Science.gov (United States)

    Briggs, Michael Stephen; Connaughton, V.; Meegan, C.; Hurley, K.

    2010-03-01

    We report an study of the accuracy of GBM GRB localizations, analyzing three types of localizations: those produced automatically by the GBM Flight Software on board GBM, those produced automatically with ground software in near real time, and localizations produced with human guidance. The two types of automatic locations are distributed in near real-time via GCN Notices; the human-guided locations are distributed on timescale of many minutes or hours using GCN Circulars. This work uses a Bayesian analysis that models the distribution of the GBM total location error by comparing GBM locations to more accurate locations obtained with other instruments. Reference locations are obtained from Swift, Super-AGILE, the LAT, and with the IPN. We model the GBM total location errors as having systematic errors in addition to the statistical errors and use the Bayesian analysis to constrain the systematic errors.

  18. Inter-instrument calibration using magnetic field data from Flux Gate Magnetometer (FGM) and Electron Drift Instrument (EDI) onboard Cluster

    Science.gov (United States)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2013-07-01

    We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  19. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  20. INTEGRATED ON-BOARD COMPUTING SYSTEMS: PRESENT SITUATION REVIEW AND DEVELOPMENT PROSPECTS ANALYSIS IN THE AVIATION INSTRUMENT-MAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    P. P. Paramonov

    2013-03-01

    Full Text Available The article deals with present situation review and analysis of development prospects for integrated on-board computing systems, used in the aviation instrument-making industry. The main attention is paid to the projects carried out in the framework of an integrated modular avionics. Hierarchical levels of module design, crates (onboard systems and aviation complexes are considered in detail. Examples of the existing products of our country and from abroad and their brief technical characteristics are given and voluminous bibliography on the subject matter as well.

  1. Software design for the VIS instrument onboard the Euclid mission: a multilayer approach

    Science.gov (United States)

    Galli, E.; Di Giorgio, A. M.; Pezzuto, S.; Liu, S. J.; Giusi, G.; Li Causi, G.; Farina, M.; Cropper, M.; Denniston, J.; Niemi, S.

    2014-07-01

    The Euclid mission scientific payload is composed of two instruments: a VISible Imaging Instrument (VIS) and a Near Infrared Spectrometer and Photometer instrument (NISP). Each instrument has its own control unit. The Instrument Command and Data Processing Unit (VI-CDPU) is the control unit of the VIS instrument. The VI-CDPU is connected directly to the spacecraft by means of a MIL-STD-1553B bus and to the satellite Mass Memory Unit via a SpaceWire link. All the internal interfaces are implemented via SpaceWire links and include 12 high speed lines for the data provided by the 36 focal plane CCDs readout electronics (ROEs) and one link to the Power and Mechanisms Control Unit (VI-PMCU). VI-CDPU is in charge of distributing commands to the instrument sub-systems, collecting their housekeeping parameters and monitoring their health status. Moreover, the unit has the task of acquiring, reordering, compressing and transferring the science data to the satellite Mass Memory. This last feature is probably the most challenging one for the VI-CDPU, since stringent constraints about the minimum lossless compression ratio, the maximum time for the compression execution and the maximum power consumption have to be satisfied. Therefore, an accurate performance analysis at hardware layer is necessary, which could delay too much the design and development of software. In order to mitigate this risk, in the multilayered design of software we decided to design a middleware layer that provides a set of APIs with the aim of hiding the implementation of the HW connected layer to the application one. The middleware is built on top of the Operating System layer (which includes the Real-Time OS that will be adopted) and the onboard Computer Hardware. The middleware itself has a multi-layer architecture composed of 4 layers: the Abstract RTOS Adapter Layer (AOSAL), the Speci_c RTOS Adapter Layer (SOSAL), the Common Patterns Layer (CPL), the Service Layer composed of two subgroups which

  2. The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission

    Science.gov (United States)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim

    2017-10-01

    Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and

  3. High-energy transients with Fermi/GBM

    International Nuclear Information System (INIS)

    Gruber, David

    2012-01-01

    For most of mankind's history, astronomy was performed on-ground in the optical energy range. It was only when space-based missions, built more than 50 years ago, detected photons with mind-boggling energies that the exploration of the violent Universe really began. These γ-ray photons still provide us with an unprecedented wealth of information for the most energetic processes taking place in the cosmos. Faithful to the olympic slogan ''higher, faster, further'', an increasing armada of γ-ray satellites was built and launched over the last couple of decades with Fermi being the youngest of its kind. In this thesis, I use data from the Gamma-Ray Burst Monitor (GBM) onboard the Fermi satellite. The focus of this work lies on three very different classes of high-energy astrophysical transients: Gamma-Ray Bursts (GRBs), solar flares and Soft Gamma Repeaters (SGRs). In Chapter 2, I present GRB 091024A, a burst of very long duration in γ-rays where optical data could be acquired well during its active phase. The optical light curve shows very intriguing features which I subsequently interpret as the so called ''optical flash'', a fundamental property of the ''fireball'' model. Although predicted by the latter model, only a handful of GRBs show such a behavior, making them interesting transients to study. Furthermore, I present the fundamental temporal and spectral properties of 47 GBM-detected GRBs with known redshifts. As GRBs explode at cosmological distances it is of uttermost importance to study them in their restframe to get a better understanding of their emission mechanisms. I confirm several correlations already found in the past together with an intriguing connection between redshift and the peak energy (E peak ) of GRBs. Although this correlation is heavily influenced by instrumental effects, it is not unexpected from other experimental results, giving it more credibility. Finally, I present the results of the search for untriggered GRBs in GBM data. This

  4. The Fermi Gamma-ray Burst Monitor Instrument

    International Nuclear Information System (INIS)

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-01-01

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing γ-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view (≥8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  5. Using GRB 080723B to cross-calibrate Fermi/GBM and INTEGRAL

    International Nuclear Information System (INIS)

    Kienlin, A. von; Briggs, M. S.; Connoughton, V.; Preece, R. D.; McBreen, S.; Sazonov, Sergey; Tsygankov, Sergey; Wilson-Hodge, C. A.

    2009-01-01

    On July 23, 2008 GRB 080723B, a bright GRB lasting about 105 s was detected by the INTEGRAL burst alert system. This burst was also detected by the Fermi Gamma-ray burst monitor. At this time no Fermi/GBM GCN notices were distributed to the public because Fermi was still in commissioning phase. The simultaneous detection of a bright GRB by both satellites gives us the opportunity to cross-calibrate the GBM with the already well-calibrated instruments on-board INTEGRAL, the Spectrometer SPI and the Imager IBIS. Time-resolved spectroscopy of this long and structured GRB is of special importance because Fermi was slewing during the GRB was still ongoing. In this paper we present a first and still preliminary analysis of the GBM spectra and compare them to those obtained by SPI for the same selection of time intervals. A more accurate cross-calibration will be forthcoming when the improved in-flight calibration of GBM is available and the corresponding data and responses can be reprocessed.

  6. Search for Gravitational Wave Counterparts with Fermi GBM

    Science.gov (United States)

    Hui, C. M.

    2017-01-01

    The progenitor of short gamma-ray bursts (GRBs) is believed to be the merger of two compact objects. This type of events will also produce gravitational waves. Since the gravitational waves discovery by LIGO, the search for a joint detection with an electromagnetic counterpart has been ongoing. Fermi GBM detects approximately 40 short GRBs per year, and we have been expanding our search looking for faint events in the GBM data that did not trigger onboard.

  7. The pre-flight calibration setup of the instrument SIMBIO-SYS onboard the mission BepiColombo

    Science.gov (United States)

    Poulet, F.; Rodriguez-Ferreira, J.; Arondel, A.; Dassas, K.; Eng, P.; Lami, P.; Langevin, Y.; Longval, Y.; Pradel, P.; Dami, M.

    2015-11-01

    BepiColombo, an European Space Agency (ESA) mission being conducted in cooperation with the Japan space agency, will explore Mercury with a set of eleven instruments onboard the spacecraft Mercury Planetary Orbiter (MPO). Among them, SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument that will provide images and spectra in the 400-2000 nm wavelength range of the entire surface of Mercury. Pre-flight calibration of the SYMBIO-SYS instrument is mandatory for reliable scientific interpretation of images and spectra returned from the planet Mercury. This paper presents the calibration device designed and implemented for the specific requirements of this instrument. It mainly consists of a thermal vacuum chamber simulating the space environment, an optical bench collecting calibration sources and optical elements that simulate the conditions of Mercury observations, mechanical interfaces used for positioning the three channels inside the vacuum chamber, thermal interfaces to explore the operating temperatures, computer interfaces that allow to communicate with both the instrument and the calibration elements and synchronize the calibrations sequences with the status of the calibration device. As the major goal is the characterization of the radiometric performances of the three channels of SIMBIO-SYS, radiometric performances of the test setup evaluated by simulations and measurements are emphasized.

  8. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  9. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.; O'Byrne, Sean B.; Neely, Andrew J.; Buttsworth, David R.; Balage, Sudantha

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  10. All-Sky Monitoring of Variable Sources with Fermi GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; Finger, Mark H.; Jenke, Pater; Rodi, James C.; Baumgartner, Wayne H.; hide

    2011-01-01

    This slide presentation reviews the monitoring of variable sources with the Fermi Gamma Ray Burst Monitor (GBM). It reviews the use of the Earth Occultation technique, the observations of the Crab Nebula with the GBM, and the comparison with other satellite's observations. The instruments on board the four satellites indicate a decline in the Crab from 2008-2010.

  11. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    Science.gov (United States)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity

  12. Status of the Instrument Control Unit for EPD on-board Solar Orbiter

    Science.gov (United States)

    Sánchez Prieto, Sebastián; Da Silva, Antonio; Rodriguez Polo, Oscar; Parra Espada, Pablo; Gutierrez Molina, Oscar; Fernandez Salgado, Javier

    Solar Orbiter is the next heliospheric mission sponsored by ESA. The launch is planned for 2017 and it will be as close as 0.28 AU from the Sun. One of the instruments for Solar Orbiter is the Energetic Particle Detector (EPD) responsible for measuring energies from 2 keV to 200 MeV/n. EPD consists of four detectors, Electron Proton Telescope (EPT), High Energy Telescope (HET), SupraThermal Electrons, Ions, & Neutrals (STEIN), and Suprathermal Ion Spectrograph (SIS), plus the Instrument Control Unit called ICU. The Space Research Group of the University of Alcalá in Spain is the responsible for developing the ICU. In this work we present the development status of the ICU after the Critical Design Review. We also address the planned activities for the next year including the development of the Engineering and Qualification Model (EQM) and Flight Model (PM). Special focus is paid to the software and verification & validation activities.

  13. Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster

    Science.gov (United States)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2014-01-01

    We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  14. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  15. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  16. The DCU: the detector control unit of the SAFARI instrument onboard SPICA

    Science.gov (United States)

    Clénet, A.; Ravera, L.; Bertrand, B.; Cros, A.; Hou, R.; Jackson, B. D.; van Leeuwen, B. J.; Van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.; Ta, N.

    2012-09-01

    The SpicA FAR infrared Instrument (SAFARI) is a European instrument for the infrared domain telescope SPICA, a JAXA space mission. The SAFARI detectors are Transistor Edge Sensors (TES) arranged in 3 matrixes. The TES front end electronic is based on Superconducting Quantum Interference Devices (SQUIDs) and it does the readout of the 3500 detectors with Frequency Division Multiplexing (FDM) type architecture. The Detector Control Unit (DCU), contributed by IRAP, manages the readout of the TES by computing and providing the AC-bias signals (1 - 3 MHz) to the TES and by computing the demodulation of the returning signals. The SQUID being highly non-linear, the DCU has also to provide a feedback signal to increase the SQUID dynamic. Because of the propagation delay in the cables and the processing time, a classic feedback will not be stable for AC-bias frequencies up to 3 MHz. The DCU uses a specific technique to compensate for those delays: the BaseBand FeedBack (BBFB). This digital data processing is done for the 3500 pixels in parallel. Thus, to keep the DCU power budget within its allocation we have to specifically optimize the architecture of the digital circuit with respect to the power consumption. In this paper we will mainly present the DCU architecture. We will particularly focus on the BBFB technique used to linearize the SQUID and on the optimization done to reduce the power consumption of the digital processing circuit.

  17. Detection of gamma-ray bursts with the ECLAIRs instrument onboard the space mission SVOM

    International Nuclear Information System (INIS)

    Antier-Farfar, Sarah

    2016-01-01

    Discovered in the early 1970's, gamma-ray bursts (GRBs) are amazing cosmic phenomena appearing randomly on the sky and releasing large amounts of energy mainly through gamma-ray emission. Although their origin is still under debate, they are believed to be produced by some of the most violent explosions in the Universe leading to the formation of stellar black-holes. GRBs are detected by their prompt emission, an intense short burst of gamma-rays (from a few milliseconds to few minutes), and are followed by a lived-afterglow emission observed on longer timescales from the X-ray to the radio domain. My thesis participates to the development of the SVOM mission, which a Chinese-French mission to be launched in 2021, devoted to the study of GRBs and involving space and ground instruments. My work is focussed on the main instrument ECLAIRs, a hard X-ray coded mask imaging camera, in charge of the near real-time detection and localization of the prompt emission of GRBs. During my thesis, I studied the scientific performances of ECLAIRs and in particular the number of GRBs expected to be detected by ECLAIRs and their characteristics. For this purpose, I performed simulations using the prototypes of the embedded trigger algorithms combined with the model of the ECLAIRs instrument. The input data of the simulations include a background model and a synthetic population of gamma-ray bursts generated from existing catalogs (CGRO, HETE-2, Fermi and Swift). As a result, I estimated precisely the ECLAIRs detection efficiency of the algorithms and I predicted the number of GRBs to be detected by ECLAIRs: 40 to 70 GRBs per year. Moreover, the study highlighted that ECLAIRs will be particularly sensitive to the X-ray rich GRB population. My thesis provided additional studies about the localization performance, the rate of false alarm and the characteristics of the triggers of the algorithms. Finally, I also proposed two new methods for the detection of GRBs.The preliminary

  18. Three years of Transients with Fermi GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument, sensitive between 8 keV and 40 MeV, with a primary objective of supporting the Large Area Telescope (LAT) in observations of Gamma-Ray Bursts (GRBs). Both instruments are part of the Fermi Gamma-ray Space Telescope. Together, the GBM and LAT instruments have provided ground-breaking measurements of GRBs that have, after 10 years of focus on GRB afterglows, inspired renewed interest in the prompt emission phase of GRBs and the physical mechanisms that fuel them. In addition to GRB science, GBM has made significant contributions to the astrophysics of galactic transient sources including long-term variations in the Crab nebula, spin state transitions in accretion powered pulsars, state transitions in black hole X-ray binaries, and unprecedented time-resolved spectral studies of soft gamma-ray repeater bursts. Closer to home, GBM also contributes to solar flare and terrestrial gamma flash science.

  19. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  20. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  1. High-energy transients with Fermi/GBM

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, David

    2012-10-09

    For most of mankind's history, astronomy was performed on-ground in the optical energy range. It was only when space-based missions, built more than 50 years ago, detected photons with mind-boggling energies that the exploration of the violent Universe really began. These {gamma}-ray photons still provide us with an unprecedented wealth of information for the most energetic processes taking place in the cosmos. Faithful to the olympic slogan ''higher, faster, further'', an increasing armada of {gamma}-ray satellites was built and launched over the last couple of decades with Fermi being the youngest of its kind. In this thesis, I use data from the Gamma-Ray Burst Monitor (GBM) onboard the Fermi satellite. The focus of this work lies on three very different classes of high-energy astrophysical transients: Gamma-Ray Bursts (GRBs), solar flares and Soft Gamma Repeaters (SGRs). In Chapter 2, I present GRB 091024A, a burst of very long duration in {gamma}-rays where optical data could be acquired well during its active phase. The optical light curve shows very intriguing features which I subsequently interpret as the so called ''optical flash'', a fundamental property of the ''fireball'' model. Although predicted by the latter model, only a handful of GRBs show such a behavior, making them interesting transients to study. Furthermore, I present the fundamental temporal and spectral properties of 47 GBM-detected GRBs with known redshifts. As GRBs explode at cosmological distances it is of uttermost importance to study them in their restframe to get a better understanding of their emission mechanisms. I confirm several correlations already found in the past together with an intriguing connection between redshift and the peak energy (E{sub peak}) of GRBs. Although this correlation is heavily influenced by instrumental effects, it is not unexpected from other experimental results, giving it more credibility

  2. Study of the coma of comet 67P/Churyumov-Gerasimenko based on the ROSINA/RTOF instrument onboard Rosetta

    Science.gov (United States)

    Hoang, M.; Garnier, P.; Lasue, J.; Reme, H.; Altwegg, K.; Balsiger, H. R.; Bieler, A. M.; Calmonte, U.; Fiethe, B.; Galli, A.; Gasc, S.; Gombosi, T. I.; Jäckel, A.; Mall, U.; Le Roy, L.; Rubin, M.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.

    2015-12-01

    The ROSETTA spacecraft of ESA is in the environment of comet 67P/Churyumov-Gerasimenko since August 2014. Among the experiments onboard the spacecraft, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers (DFMS and RTOF) to analyze the composition of neutrals and ions, and a pressure sensor (COPS) to monitor the density and velocity of neutrals in the coma [1]. We will here analyze and discuss the data of the ROSINA/RTOF instrument during the comet escort phase. The Reflectron-type Time-Of-Flight (RTOF) mass spectrometer possesses a wide mass range and a high temporal resolution [1,2]. It was designed to measure cometary neutral gas as well as cometary ions. A detailed description of the main volatiles (H2O, CO2, CO) dynamics and of the heterogeneities of the coma will then be provided. The influence of various parameters on the coma measurements is investigated on a statistical basis, with the parameters being distance to the comet, heliocentric distance, longitude and latitude of nadir point. Our analysis of the northern hemisphere summer season shows the presence of water vapor mostly in the illuminated northern hemisphere near the neck region with cyclic diurnal variations whereas CO2 was confined to the cold southern hemisphere with a more spatially homogeneous composition, in agreement with previous observations of 67P [2] or Hartley 2 [3]. A comparison will also be provided with the COPS total density and DFMS abundance measurements. [1] Balsiger et al., "ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis", Space Sci. Rev., 2007. [2] Scherer et al., "A novel principle for an ion mirror design in time-of-flight mass spectrometry," Int. Jou. Mass Spectr., 2006. [3] Hässig et al., "Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko", Science, 2015. [4] A'Hearn et al., "EPOXI at comet Hartley 2", Science, 2011.

  3. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    Science.gov (United States)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    gamma ray events and the problem is to detect and reject the much more voluminous cosmic ray projections, so that the remaining science data can be telemetered to the ground over the constrained communication link. The state-of-the-art in cosmic rays detection and rejection does not provide an adequate computational solution. This paper presents a novel approach to the AdEPT on-board data processing burdened with the CR detection top pole bottleneck problem. This paper is introducing the data processing object, demonstrates object segmentation and distribution for processing among many processing elements (PEs) and presents solution algorithm for the processing bottleneck - the CR-Algorithm. The algorithm is based on the a priori knowledge that a CR pierces the entire instrument pressure vessel. This phenomenon is also the basis for a straightforward CR simulator, allowing the CR-Algorithm performance testing. Parallel processing of the readout image's (2(N+M) - 4) peripheral voxels is detecting all CRs, resulting in O(n) computational complexity. This algorithm near real-time performance is making AdEPT class spaceflight instruments feasible.

  4. Time-Domain Astronomy with the Fermi GBM

    Science.gov (United States)

    Hui, C. M.

    2017-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument sensitive to energies from 8 keV to 40 MeV. Over the past 8 years of operation, the GBM has detected over 240 gamma-ray bursts per year and provided timely GCN notices with localization to few-degree accuracy for follow-up observations. In addition to GRBs, Galactic transients, solar flares, and terrestrial gamma-ray flashes have also been observed. In recent years we have also been searching the continuous GBM data for electromagnetic counterpart to astrophysical neutrinos and gravitational wave events, as these are believed to be associated with gamma-ray bursts. With continuous data downlink every few hours and a temporal resolution of 2 microseconds, GBM is well suited for observing transients and supporting EM follow-up in the era of multi-messenger astronomy.

  5. Fermi GBM: Highlights from the First Year

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2009-01-01

    The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.

  6. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Science.gov (United States)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  7. Observations of Accreting Pulsars with the FERMI-GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) on-board Fermi comprises 12 NaI detectors spanning the 8-1000 keV band and 2 BGO detectors spanning the 100 keV to 40 MeV band. These detectors view the entire unocculted sky, providing long (approximately 40 ks/day) observations of accreting pulsars daily, which allow long-term monitoring of spin-frequencies and pulsed uxes via epoch-folded searches plus daily blind searches for new pulsars. Phase averaged uxes can be measured using the Earth occultation technique. In this talk I will present highlights of GBM accretion-powered pulsar monitoring such as the discovery of a torque reversal in 4U1626-67, a high-energy QPO in A0535+26, and evidence for a stable accretion disk in OAO 1657-415.

  8. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    Science.gov (United States)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  9. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  10. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  11. Caliste-SO X-ray micro-camera for the STIX instrument on-board Solar Orbiter space mission

    International Nuclear Information System (INIS)

    Meuris, A.; Hurford, G.; Bednarzik, M.; Limousin, O.; Gevin, O.; Le Mer, I.; Martignac, J.; Horeau, B.; Grimm, O.; Resanovic, R.; Krucker, S.; Orleański, P.

    2012-01-01

    The Spectrometer Telescope for Imaging X-rays (STIX) is an instrument on the Solar-Orbiter space mission that performs hard X-ray imaging spectroscopy of solar flares. It consists of 32 collimators with grids and 32 spectrometer units called Caliste-SO for indirect Fourier-transform imaging. Each Caliste-SO device integrates a 1 cm 2 CdTe pixel sensor with a low-noise low-power analog front-end ASIC and circuits for supply regulation and filtering. The ASIC named IDeF-X HD is designed by CEA/Irfu (France) whereas CdTe-based semiconductor detectors are provided by the Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute (Switzerland). The design of the hybrid, based on 3D Plus technology (France), is well suited for STIX spectroscopic requirements (1 keV FWHM at 6 keV, 4 keV low-level threshold) and system constraints (4 W power and 5 kg mass). The performance of the sub-assemblies and the design of the first Caliste-SO prototype are presented.

  12. Fermi GBM: Results from the First Year +

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2009-01-01

    Gamma-ray Burst Monitor (GBM) has performed well in the first year+. GBM triggers 353 Gamma-ray Bursts (GRBs), 168 SGR events, 18 TGFs, and 1 solar flare to date. Short GRBs appear contracted in time and shifted to higher energy than long GRBs. Pulsed persistent emission from SGR 1550-5418 detected. TGFs are shorter, have higher average photon energies, and much higher count rates than GRBs. GBM monitoring of accreting pulsars provides long-term spin-histories. GBM Earth occultation monitoring complements Swift.

  13. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    Science.gov (United States)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  14. Time Domain Astronomy with Fermi GBM in the Multi-messenger Era

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Fermi GBM team, GBM-LIGO team

    2018-01-01

    As the Multi-Messenger era begins with detections of gravitational waves with LIGO/Virgo and neutrinos with IceCube, the Fermi Gamma-ray Burst Monitor (GBM) provides context observations of gamma-ray transients between 8 keV and 40 MeV. Fermi GBM has a wide field of view, high uptime, and both in-orbit triggering and high time resolution continuous data enabling offline searches for weaker transients. GBM detects numerous gamma-ray bursts (GRBs), soft gamma-ray repeaters, X-ray bursters, solar flares and terrestrial gamma-ray flashes. Longer timescale transients, predominantly in our galaxy so far, are detected using the Earth occultation technique and epoch-folding for periodic sources. The GBM team has developed two ground-based searches to enhance detections of faint transients, especially short GRBs. The targeted search uses the time and location of an event detected with another instrument to coherently search the GBM data, increasing the sensitivity to a transient. The untargeted search agnostically searches the GBM data for all directions and times to find weaker transients. This search finds about 80 short GRBs per year, adding to the 40 per year triggered on-orbit. With its large field of view, high duty cycle and increasingly sophisticated detection methods, Fermi GBM is expected to have a major role in the Multi-Messenger era.

  15. Opposing roles of PGD2 in GBM.

    Science.gov (United States)

    Ferreira, Matthew Thomas; Gomes, Renata Nascimento; Panagopoulos, Alexandros Theodoros; de Almeida, Fernando Gonçalves; Veiga, José Carlos Esteves; Colquhoun, Alison

    2018-01-01

    The World Health Organization classifies glioblastoma (GBM) as a grade IV astrocytoma. Despite the advances in chemotherapy, surgery, and radiation treatments that improve a patient's length of survival, the overall trajectory of the disease remains unchanged. GBM cells produce significant levels of various types of bioactive lipids. Prostaglandin D 2 (PGD 2 ) influences both pro- and anti-tumorigenic activities in the cell; however, its role in GBM is unclear. Therefore, this study aimed to identify the impact of PGD 2 on GBM cell activities in vitro. First we looked to identify the presence of the PGD 2 synthesis pathway through RT-PCR, immunohistochemistry, and HPLC-MS/MS in three GBM cell lines. Then, to observe PGD 2 's effects on cell count and apoptosis/mitosis (Hoechst 33342 stain), and migration (Transwell Assay), the cells were treated in vitro with physiological (1μM) concentrations of PGD 2 over 72h. HPLC-MS/MS was used to identify the lipid composition of patients with either Grade II/III gliomas or GBM. We identified the presence of endogenous PGD 2 with its corresponding enzymes and receptors. Exogenous PGD 2 both increased cell count (GBM. Our study demonstrates that prostaglandin D 2 possesses a dynamic, concentration-dependent effect in GBM cell activities. The increase of PGD 2 production in GBM patients suggests a pro-tumorigenic role of PGD 2 in glioma growth and invasion. Therefore, prostaglandin signaling in GBM requires further investigation to identify new targets for more effective therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Magnetar Observations with Fermi/GBM

    Science.gov (United States)

    Kouveliotou, Chryssa

    2009-01-01

    NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.

  17. Fermi GBM Observations of Terrestrial Gamma Flashes

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  18. Fermi GBM Observations During the Second Observing Run of LIGO/Virgo

    Science.gov (United States)

    Goldstein, Adam; Fermi-GBM

    2018-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) is a prolific detector of gamma-ray bursts (GRBs) and detects more short duration GRBs than any other instrument currently in operation. Short GRBs are thought to be associated with the mergers of binary neutron star systems (or neutron star-black hole systems), and are therefore considered likely counterparts to gravitational-wave detections from LIGO/Virgo. We report on the GBM observations during the second observing run of LIGO/Virgo and detail the physical and astrophysical insights that might be gleaned from a joint detection of a short GRB and a gravitational-wave source.

  19. Photospheric Emission in the Joint GBM and Konus Prompt Spectra of GRB 120323A

    Energy Technology Data Exchange (ETDEWEB)

    Guiriec, S.; Kouveliotou, C. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Gehrels, N.; McEnery, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hartmann, D. H., E-mail: sylvain.guiriec@nasa.gov [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics (United States)

    2017-09-10

    GRB 120323A is a very intense short gamma -ray burst (GRB) detected simultaneously during its prompt γ -ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Wind satellite. GBM and Konus operate in the keV–MeV regime; however, the GBM range is broader toward both the low and the high parts of the γ -ray spectrum. Analyses of such bright events provide a unique opportunity to check the consistency of the data analysis as well as cross-calibrate the two instruments. We performed time-integrated and coarse time-resolved spectral analysis of GRB 120323A prompt emission. We conclude that the analyses of GBM and Konus data are only consistent when using a double-hump spectral shape for both data sets; in contrast, the single hump of the empirical Band function, traditionally used to fit GRB prompt emission spectra, leads to significant discrepancies between GBM and Konus analysis results. Our two-hump model is a combination of a thermal-like and a non-thermal component. We interpret the first component as a natural manifestation of the jet photospheric emission.

  20. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Science.gov (United States)

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  1. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2017-01-01

    Full Text Available The natural radiation environment in Low Earth Orbit (LEO differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR, as well as of protons and electrons trapped in the Earth’s radiation belts (Van Allen belts. Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments “Dose Distribution within the ISS (DOSIS” (2009–2011 and “Dose Distribution within the ISS 3D (DOSIS 3D” (2012–onwards onboard the Columbus Laboratory of the International Space Station (ISS use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL and passive radiation detector packages (PDP and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments’ changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016

  2. Setup of an interface for operation of IAGOS (In-service Aircraft Global Observing System) CORE instruments onboard the IAGOS CARIBIC platform.

    Science.gov (United States)

    Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas

    2017-04-01

    The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25

  3. THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS

    International Nuclear Information System (INIS)

    Bhat, P. Narayana; Meegan, Charles A.; Briggs, Michael S.; Burns, Eric; Chaplin, Vandiver; Fitzpatrick, Gerard; Jenke, Peter A.; Von Kienlin, Andreas; Greiner, Jochen; Paciesas, William S.; Cleveland, William H.; Connaughton, Valerie; Burgess, J. Michael; Collazzi, Andrew C.; Diekmann, Anne M.; Gibby, Melissa H.; Giles, Misty M.; Goldstein, Adam M.; Kippen, R. Marc; Kouveliotou, Chryssa

    2016-01-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two γ -ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50–300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [Nai[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  4. THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, P. Narayana; Meegan, Charles A.; Briggs, Michael S.; Burns, Eric; Chaplin, Vandiver; Fitzpatrick, Gerard; Jenke, Peter A. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Von Kienlin, Andreas; Greiner, Jochen [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Paciesas, William S.; Cleveland, William H.; Connaughton, Valerie [Universities Space Research Association, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Burgess, J. Michael [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Collazzi, Andrew C. [SciTec Inc., 100 Wall Street, Princeton NJ, 08540 (United States); Diekmann, Anne M.; Gibby, Melissa H.; Giles, Misty M. [Jacobs Technology, Inc., Huntsville, Alabama (United States); Goldstein, Adam M. [ZP12 Astrophysics Office, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kippen, R. Marc [Los Alamos National Laboratory, MS B244, P.O. Box 1663, Los Alamos, NM 87545 (United States); Kouveliotou, Chryssa [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); and others

    2016-04-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two γ -ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50–300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [Nai[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  5. Fermi/GBM Results of Magnetars

    Science.gov (United States)

    Kouveliotou, chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11,2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501 +4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR Jl550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP IEI547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.

  6. Magnetic field fluctuations measurement onboard ESA/JUICE mission by search-coil magnetometer: SCM instrument as a part of RPWI consortium

    Science.gov (United States)

    Retinò, A.; Chust, T.; Mansour, M.; Canu, P.; Sahraoui, F.; Le Contel, O.; Alison, D.; Sou, G.; Varizat, L.; Techer, J.-D.; Jeandet, A.; Geyskens, N.; Chariet, M.; Cecconi, B.; Bergman, J.; Wahlund, J.-E.; Santolik, O.; Soucek, J.; Dougherty, M.

    2017-09-01

    The JUpiter ICy moons Explorer (JUICE) mission is planned for launch in 2022 with arrival at Jupiter in 2029 and will spend at least three years making detailed observations of Jupiter's system. The Radio and Plasma Wave Investigation (RPWI) consortium will carry the most advanced set of electric and magnetic fields sensors ever flown therein, which will allow to characterize the plasma wave environment and the radio emission of Jupiter and its icy moons in great detail. The Search Coil Magnetometer (SCM) will provide high-quality measurements of the magnetic field fluctuations' vector for RPWI. Here we present the technical features of the SCM instrument and we discuss its scientific objectives.

  7. Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.

    Science.gov (United States)

    Binder, Zev A; Wilson, Kelli M; Salmasi, Vafi; Orr, Brent A; Eberhart, Charles G; Siu, I-Mei; Lim, Michael; Weingart, Jon D; Quinones-Hinojosa, Alfredo; Bettegowda, Chetan; Kassam, Amin B; Olivi, Alessandro; Brem, Henry; Riggins, Gregory J; Gallia, Gary L

    2016-01-01

    Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.

  8. Dust Measurements Onboard the Deep Space Gateway

    Science.gov (United States)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  9. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    Science.gov (United States)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  10. Mechanical Properties of the Surface Material of Comet 67P/Churyumov-Gerasimenko Measured By the Casse Instrument Onboard the Philae Lander

    Science.gov (United States)

    Knapmeyer, M.; Fischer, H. H.; Seidensticker, K. J.; Arnold, W.; Faber, C.; Möhlmann, D.; Thiel, K.

    2014-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  11. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  12. A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    Science.gov (United States)

    Ukwatta, T. N.; Linnemann, J. T.; Tollefson, K.; Abeysekara, A. U.; Bhat, P. N.; Sonbas, E.; Gehrels, N.

    2011-01-01

    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateur astronomers around the world. The results of a Monte Carlo simulation to investigate the feasibility of the project are presented.

  13. Fermi GBM Observations of LIGO Gravitational-Wave Event Gw150914

    Science.gov (United States)

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Zhang, B.-B.; Camp, J.; Christensen, N.; Hui, C. M.; Jenke, P.; hide

    2016-01-01

    With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational-wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4 s after the GW event, with a false-alarm probability of 0.0022 (2.9(sigma)). This weak transient lasting 1 s was not detected by any other instrument and does not appear to be connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short gamma-ray burst (GRB) arriving at a large angle to the direction in which Fermi was pointing where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, then this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1 keV and 10 MeV of 1.8(sup +1.5, sub -1.0) x 10(exp 49) erg/s. Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short GRBs.

  14. Diagnosis and classification of Goodpasture's disease (anti-GBM).

    Science.gov (United States)

    Hellmark, Thomas; Segelmark, Mårten

    2014-01-01

    Goodpasture's disease or anti-glomerular basement membrane disease (anti-GBM-disease) is included among immune complex small vessel vasculitides. The definition of anti-GBM disease is a vasculitis affecting glomerular capillaries, pulmonary capillaries, or both, with GBM deposition of anti-GBM autoantibodies. The disease is a prototype of autoimmune disease, where the patients develop autoantibodies that bind to the basement membranes and activate the classical pathway of the complement system, which start a neutrophil dependent inflammation. The diagnosis of anti-GBM disease relies on the detection of anti-GBM antibodies in conjunction with glomerulonephritis and/or alveolitis. Overt clinical symptoms are most prominent in the glomeruli where the inflammation usually results in a severe rapidly progressive glomerulonephritis. Despite modern treatment less than one third of the patients survive with a preserved kidney function after 6 months follow-up. Frequencies vary from 0.5 to 1 cases per million inhabitants per year and there is a strong genetic linkage to HLA-DRB1(∗)1501 and DRB1(∗)1502. Essentially, anti-GBM disease is now a preferred term for what was earlier called Goodpasture's syndrome or Goodpasture's disease; anti-GBM disease is now classified as small vessel vasculitis caused by in situ immune complex formation; the diagnosis relies on the detection of anti-GBM in tissues or circulation in conjunction with alveolar or glomerular disease; therapy is effective only when detected at an early stage, making a high degree of awareness necessary to find these rare cases; 20-35% have anti-GBM and MPO-ANCA simultaneously, which necessitates testing for anti-GBM whenever acute test for ANCA is ordered in patients with renal disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  17. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  18. In search of druggable targets for GBM amino acid metabolism

    NARCIS (Netherlands)

    Panosyan, Eduard H.; Lin, Henry J.; Koster, Jan; Lasky, Joseph L.

    2017-01-01

    Background: Amino acid (AA) pathways may contain druggable targets for glioblastoma (GBM). Literature reviews and GBM database (http://r2.amc.nl) analyses were carried out to screen for such targets among 95 AA related enzymes. Methods: First, we identified the genes that were differentially

  19. The InterPlanetary Network Supplement to the Second Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Svinkin, D. S. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Pal’shin, V. D. [Vedeneeva 2-31, St. Petersburg (Russian Federation); Briggs, M. S.; Meegan, C. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W.; Fellows, C.; Harshman, K. [University of Arizona, Department of Planetary Sciences, Tucson, Arizona 85721 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von, E-mail: khurley@ssl.berkeley.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 (Germany); and others

    2017-04-01

    InterPlanetary Network (IPN) data are presented for the gamma-ray bursts in the second Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 462 bursts in that catalog between 2010 July 12 and 2012 July 11, 428, or 93%, were observed by at least 1 other instrument in the 9-spacecraft IPN. Of the 428, the localizations of 165 could be improved by triangulation. For these bursts, triangulation gives one or more annuli whose half-widths vary between about 2.′3° and 16°, depending on the peak flux, fluence, time history, arrival direction, and the distance between the spacecraft. We compare the IPN localizations with the GBM 1 σ , 2 σ , and 3 σ error contours and find good agreement between them. The IPN 3 σ error boxes have areas between about 8 square arcminutes and 380 square degrees, and are an average of 2500 times smaller than the corresponding GBM 3 σ localizations. We identify four bursts in the IPN/GBM sample whose origins were given as “uncertain,” but may in fact be cosmic. This leads to an estimate of over 99% completeness for the GBM catalog.

  20. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  1. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  2. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  3. The Successful Synergy of Swift and Fermi/GBM in Magnetars

    Science.gov (United States)

    Kouveliotou, Chryssa

    2011-01-01

    The magnetar rate of discovery has increased dramatically in the last decade. Five sources were discovered in the last three years alone as a result of the very efficient synergy among three X- and .gamma-ray instruments on NASA satellites: the Swift/Burst Alert Telescope (BAT), the Fermi/Gamma ray Burst Monitor (GBM), and the Rossi X-Ray Timing Explorer; RXTE/Proportional Counter Array (PCA). To date, there are approx. 25 magnetar candidates, of which two are (one each) in the Large and Small Magellanic Cloud and the rest reside on the Galactic plane of our Milky Way. I will discuss here the main properties of the Magnetar Population and the common projects that can be achieved with the synergy of Swift and GBM.

  4. Statistical properties of Fermi GBM GRBs' spectra

    Science.gov (United States)

    Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt

    2018-03-01

    Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.

  5. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  6. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  7. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  8. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  9. THE FERMI –GBM THREE-YEAR X-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [CSPAR, SPA University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Connaughton, V.; Camero-Arranz, A.; Finger, M. H. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Department of Physics, Suleyman Demirel University, 32260, Isparta (Turkey); Wilson-Hodge, C. A. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  10. Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features.

    Science.gov (United States)

    Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L

    2015-11-18

    Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.

  11. GBM Observations of Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Briggs, M. S.; Fishman, G. J.; Connaughton, V.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C.; Chaplin, V. L.; Kippen, R. M.; vonKienlin, A.; hide

    2010-01-01

    The TGF detection rate of Gamma-ray Burst Monitor (GBM) has been increased twice since launch. The most recent improvement is from a new operating mode in which data for individual photons are down-linked for selected portions of the orbit, enabling a more sensitive ground-based search for TGFs. The new search has increased the TGF detection rate and is finding TGFs more than five times fainter than the TGFs of the previous GBM sample. We summarize the properties of the original GBM TGF sample and compare to the less intense TGFs now being detected. In addition to gamma-ray TGFs, GBM is observing distant TGFs from the propagation of charged particles along geomagnetic field lines. Strong 511 keV annihilation lines have been observed, demonstrating that both electrons and positrons are present in the particle beams. Spectral fits to these electron/positron TGFs will be shown.

  12. Magnetar Observations in the Swift-Fermi/GBM Era

    Science.gov (United States)

    Kouveliotou, Chryssa

    2010-01-01

    NASA's Fermi Observatory was launched June 11, 2008; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. Since then, and against all odds, GBM recorded over 600 bursts from 4 SGRs. Of these four sources, only one was an old magnetar: SGR J1806+20. SGR J0501+4516, was discovered with Swift and extensively monitored with GBM. A source originally classified as AXP 1E1547.0-5408 exhibited SGR-like bursting behavior and we reclassified it as SGR J1550-5418. Finally, GBM discovered SGR J0418+5729 on 2009 June. Finally, on March 2010, a third new magnetar was discovered with Swift, SGR J1833-0832. I report below on the current status of the field and on several results combining multi-satellite and ground-based data

  13. GBM secretome induces transient transformation of human neural precursor cells.

    Science.gov (United States)

    Venugopal, Chitra; Wang, X Simon; Manoranjan, Branavan; McFarlane, Nicole; Nolte, Sara; Li, Meredith; Murty, Naresh; Siu, K W Michael; Singh, Sheila K

    2012-09-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.

  14. Rapid Diagnostics of Onboard Sequences

    Science.gov (United States)

    Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.

    2012-01-01

    Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command

  15. Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events

    Science.gov (United States)

    Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.

    2012-01-01

    The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.

  16. Podocyte Depletion in Thin GBM and Alport Syndrome.

    Science.gov (United States)

    Wickman, Larysa; Hodgin, Jeffrey B; Wang, Su Q; Afshinnia, Farsad; Kershaw, David; Wiggins, Roger C

    2016-01-01

    The proximate genetic cause of both Thin GBM and Alport Syndrome (AS) is abnormal α3, 4 and 5 collagen IV chains resulting in abnormal glomerular basement membrane (GBM) structure/function. We previously reported that podocyte detachment rate measured in urine is increased in AS, suggesting that podocyte depletion could play a role in causing progressive loss of kidney function. To test this hypothesis podometric parameters were measured in 26 kidney biopsies from 21 patients aged 2-17 years with a clinic-pathologic diagnosis including both classic Alport Syndrome with thin and thick GBM segments and lamellated lamina densa [n = 15] and Thin GBM cases [n = 6]. Protocol biopsies from deceased donor kidneys were used as age-matched controls. Podocyte depletion was present in AS biopsies prior to detectable histologic abnormalities. No abnormality was detected by light microscopy at 70% podocyte depletion. Low level proteinuria was an early event at about 25% podocyte depletion and increased in proportion to podocyte depletion. These quantitative data parallel those from model systems where podocyte depletion is the causative event. This result supports a hypothesis that in AS podocyte adherence to the GBM is defective resulting in accelerated podocyte detachment causing progressive podocyte depletion leading to FSGS-like pathologic changes and eventual End Stage Kidney Disease. Early intervention to reduce podocyte depletion is projected to prolong kidney survival in AS.

  17. Quantitative Magnetization Transfer in Monitoring Glioblastoma (GBM) Response to Therapy.

    Science.gov (United States)

    Mehrabian, Hatef; Myrehaug, Sten; Soliman, Hany; Sahgal, Arjun; Stanisz, Greg J

    2018-02-06

    Quantitative magnetization transfer (qMT) was used as a biomarker to monitor glioblastoma (GBM) response to chemo-radiation and identify the earliest time-point qMT could differentiate progressors from non-progressors. Nineteen GBM patients were recruited and MRI-scanned before (Day 0 ), two weeks (Day 14 ), and four weeks (Day 28 ) into the treatment, and one month after the end of the treatment (Day 70 ). Comprehensive qMT data was acquired, and a two-pool MT model was fit to the data. Response was determined at 3-8 months following the end of chemo-radiation. The amount of magnetization transfer ([Formula: see text]) was significantly lower in GBM compared to normal appearing white matter (p GBM are more sensitive to treatment effects compared to clinically used metrics. qMT could assess tumor aggressiveness and identify early progressors even before the treatment. Changes in qMT parameters within the first 14 days of the treatment were capable of separating early progressors from non-progressors, making qMT a promising biomarker to guide adaptive radiotherapy for GBM.

  18. Visualizing molecular profiles of glioblastoma with GBM-BioDP.

    Directory of Open Access Journals (Sweden)

    Orieta Celiku

    Full Text Available Validation of clinical biomarkers and response to therapy is a challenging topic in cancer research. An important source of information for virtual validation is the datasets generated from multi-center cancer research projects such as The Cancer Genome Atlas project (TCGA. These data enable investigation of genetic and epigenetic changes responsible for cancer onset and progression, response to cancer therapies, and discovery of the molecular profiles of various cancers. However, these analyses often require bulk download of data and substantial bioinformatics expertise, which can be intimidating for investigators. Here, we report on the development of a new resource available to scientists: a data base called Glioblastoma Bio Discovery Portal (GBM-BioDP. GBM-BioDP is a free web-accessible resource that hosts a subset of the glioblastoma TCGA data and enables an intuitive query and interactive display of the resultant data. This resource provides visualization tools for the exploration of gene, miRNA, and protein expression, differential expression within the subtypes of GBM, and potential associations with clinical outcome, which are useful for virtual biological validation. The tool may also enable generation of hypotheses on how therapies impact GBM molecular profiles, which can help in personalization of treatment for optimal outcome. The resource can be accessed freely at http://gbm-biodp.nci.nih.gov (a tutorial is included.

  19. THE FIVE YEAR FERMI/GBM MAGNETAR BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Collazzi, A. C. [SciTec, Inc., 100 Wall Street, Princeton, NJ 08540 (United States); Kouveliotou, C.; Horst, A. J. van der; Younes, G. A. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Kaneko, Y.; Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Lin, L. [François Arago Centre, APC, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris (France); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Finger, M. H. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Chaplin, V. L. [School of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, TN 37232 (United States); Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Watts, A. L. [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H., E-mail: acollazzi@scitec.com [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2015-05-15

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550–5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  20. Anti-GBM disease and ANCA during dengue infection.

    Science.gov (United States)

    Lizarraga, Karlo J; Florindez, Jorge A; Daftarian, Pirouz; Andrews, David M; Ortega, Luis M; Mendoza, Jair Munoz; Contreras, Gabriel N; Nayer, Ali

    2015-02-01

    Anti-glomerular basement membrane (GBM) disease is a severe inflammatory renal disorder due to pathogenic autoantibodies directed mainly against the α3 chain of type IV collagen. In ~1/4 of patients with anti-GBM disease, antineutrophil cytoplasmic antibodies (ANCA) predominantly with myeloperoxidase (MPO) specificity can be detected. Although the inciting stimuli leading to the development of an immune response against the type IV collagen and neutrophils are unknown, evidence indicates that both genetic and environmental factors play a role. Of note, molecular mimicry between self-antigens and nonself-antigens such as antigenic determinants of microorganisms has been implicated in the pathogenesis of anti-GBM disease and ANCA-associated vasculitis. A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue can be complicated by acute renal failure, proteinuria, hematuria and glomerulonephritis. We present a 66-year-old woman who was diagnosed with dengue infection and rapidly progressive glomerulonephritis during an outbreak of dengue in Honduras in the summer of 2013. Renal biopsy revealed severe crescentic glomerulonephritis. Immunofluorescence examination demonstrated strong linear IgG deposition along glomerular capillary walls. Serologic tests demonstrated antibodies against GBM, MPO and platelet glycoproteins. The patient was diagnosed with anti-GBM disease associated with p-ANCA with MPO specificity. Despite heavy immunosuppression and plasmapheresis, IgG titers against dengue virus continued to rise confirming the diagnosis of acute dengue infection. We present the first reported case of anti-GBM disease associated with p-ANCA with MPO specificity during dengue infection. This report calls for a heightened awareness of autoimmunity leading to crescentic glomerulonephritis in patients with dengue infection.

  1. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  2. Predicting Outcome in Patients with Anti-GBM Glomerulonephritis.

    Science.gov (United States)

    van Daalen, Emma E; Jennette, J Charles; McAdoo, Stephen P; Pusey, Charles D; Alba, Marco A; Poulton, Caroline J; Wolterbeek, Ron; Nguyen, Tri Q; Goldschmeding, Roel; Alchi, Bassam; Griffiths, Meryl; de Zoysa, Janak R; Vincent, Beula; Bruijn, Jan A; Bajema, Ingeborg M

    2018-01-06

    Large studies on long-term kidney outcome in patients with anti-glomerular basement membrane (anti-GBM) GN are lacking. This study aimed to identify clinical and histopathologic parameters that predict kidney outcome in these patients. This retrospective analysis included a total of 123 patients with anti-GBM GN between 1986 and 2015 from six centers worldwide. Their kidney biopsy samples were classified according to the histopathologic classification for ANCA-associated GN. Clinical data such as details of treatment were retrieved from clinical records. The primary outcome parameter was the occurrence of ESRD. Kidney survival was analyzed using the log-rank test and Cox regression analyses. The 5-year kidney survival rate was 34%, with an improved rate observed among patients diagnosed after 2007 ( P =0.01). In patients with anti-GBM GN, histopathologic class and kidney survival were associated ( P GBM GN. Kidney outcome has improved during recent years; the success rate doubled after 2007. This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2017_11_21_CJASNPodcast_18_1_v.mp3. Copyright © 2018 by the American Society of Nephrology.

  3. The AGILE on-board Kalman filter

    International Nuclear Information System (INIS)

    Giuliani, A.; Cocco, V.; Mereghetti, S.; Pittori, C.; Tavani, M.

    2006-01-01

    On-board reduction of particle background is one of the main challenges of space instruments dedicated to gamma-ray astrophysics. We present in this paper a discussion of the method and main simulation results of the on-board background filter of the Gamma-Ray Imaging Detector (GRID) of the AGILE mission. The GRID is capable of detecting and imaging with optimal point spread function gamma-ray photons in the range 30MeV-30GeV. The AGILE planned orbit is equatorial, with an altitude of 550km. This is an optimal orbit from the point of view of the expected particle background. For this orbit, electrons and positrons of kinetic energies between 20MeV and hundreds of MeV dominate the particle background, with significant contributions from high-energy (primary) and low-energy protons, and gamma-ray albedo-photons. We present here the main results obtained by extensive simulations of the on-board AGILE-GRID particle/photon background rejection algorithms based on a special application of Kalman filter techniques. This filter is applied (Level-2) sequentially after other data processing techniques characterizing the Level-1 processing. We show that, in conjunction with the Level-1 processing, the adopted Kalman filtering is expected to reduce the total particle/albedo-photon background rate to a value (=<10-30Hz) that is compatible with the AGILE telemetry. The AGILE on-board Kalman filter is also effective in reducing the Earth-albedo-photon background rate, and therefore contributes to substantially increase the AGILE exposure for celestial gamma-ray sources

  4. Onboard Autonomous Corrections for Accurate IRF Pointing.

    Science.gov (United States)

    Jorgensen, J. L.; Betto, M.; Denver, T.

    2002-05-01

    Over the past decade, the Noise Equivalent Angle (NEA) of onboard attitude reference instruments, has decreased from tens-of-arcseconds to the sub-arcsecond level. This improved performance is partly due to improved sensor-technology with enhanced signal to noise ratios, partly due to improved processing electronics which allows for more sophisticated and faster signal processing. However, the main reason for the increased precision, is the application of onboard autonomy, which apart from simple outlier rejection also allows for removal of "false positive" answers, and other "unexpected" noise sources, that otherwise would degrade the quality of the measurements (e.g. discrimination between signals caused by starlight and ionizing radiation). The utilization of autonomous signal processing has also provided the means for another onboard processing step, namely the autonomous recovery from lost in space, where the attitude instrument without a priori knowledge derive the absolute attitude, i.e. in IRF coordinates, within fractions of a second. Combined with precise orbital state or position data, the absolute attitude information opens for multiple ways to improve the mission performance, either by reducing operations costs, by increasing pointing accuracy, by reducing mission expendables, or by providing backup decision information in case of anomalies. The Advanced Stellar Compass's (ASC) is a miniature, high accuracy, attitude instrument which features fully autonomous operations. The autonomy encompass all direct steps from automatic health checkout at power-on, over fully automatic SEU and SEL handling and proton induced sparkle removal, to recovery from "lost in space", and optical disturbance detection and handling. But apart from these more obvious autonomy functions, the ASC also features functions to handle and remove the aforementioned residuals. These functions encompass diverse operators such as a full orbital state vector model with automatic cloud

  5. The Second Fermi GBM Gamma-Ray Burst Catalog: The First Four Years

    NARCIS (Netherlands)

    von Kienlin, A.; Meegan, C.A.; Paciesas, W.S.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burgess, J.M.; Byrne, D.; Chaplin, V.; Cleveland, W.; Connaughton, V.; Collazzi, A.C.; Fitzpatrick, G.; Foley, S.; Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kouveliotou, C.; Layden, E.; McBreen, S.; McGlynn, S.; Pelassa, V.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.A.; Xiong, S.; Younes, G.; Yu, H-F.

    2014-01-01

    This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information

  6. 40 CFR 180.1097 - GBM-ROPE; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false GBM-ROPE; exemption from the... Exemptions From Tolerances § 180.1097 GBM-ROPE; exemption from the requirement of a tolerance. The grape berry moth pheromone (GBM-ROPE) containing the active ingredients (Z)-9-dedecenyl acetate and (Z)-11...

  7. Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE.

    Science.gov (United States)

    Alexander, Brian M; Ba, Sujuan; Berger, Mitchel S; Berry, Donald A; Cavenee, Webster K; Chang, Susan M; Cloughesy, Timothy F; Jiang, Tao; Khasraw, Mustafa; Li, Wenbin; Mittman, Robert; Poste, George H; Wen, Patrick Y; Yung, W K Alfred; Barker, Anna D

    2018-02-15

    Glioblastoma (GBM) is a deadly disease with few effective therapies. Although much has been learned about the molecular characteristics of the disease, this knowledge has not been translated into clinical improvements for patients. At the same time, many new therapies are being developed. Many of these therapies have potential biomarkers to identify responders. The result is an enormous amount of testable clinical questions that must be answered efficiently. The GBM Adaptive Global Innovative Learning Environment (GBM AGILE) is a novel, multi-arm, platform trial designed to address these challenges. It is the result of the collective work of over 130 oncologists, statisticians, pathologists, neurosurgeons, imagers, and translational and basic scientists from around the world. GBM AGILE is composed of two stages. The first stage is a Bayesian adaptively randomized screening stage to identify effective therapies based on impact on overall survival compared with a common control. This stage also finds the population in which the therapy shows the most promise based on clinical indication and biomarker status. Highly effective therapies transition in an inferentially seamless manner in the identified population to a second confirmatory stage. The second stage uses fixed randomization to confirm the findings from the first stage to support registration. Therapeutic arms with biomarkers may be added to the trial over time, while others complete testing. The design of GBM AGILE enables rapid clinical testing of new therapies and biomarkers to speed highly effective therapies to clinical practice. Clin Cancer Res; 24(4); 737-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for

  9. The validity of EORTC GBM prognostic calculator on survival of GBM patients in the West of Scotland.

    Science.gov (United States)

    Teo, Mario; Clark, Brian; MacKinnon, Mairi; Stewart, Willie; Paul, James; St George, Jerome

    2014-06-01

    It is now accepted that the addition of temozolomide to radiotherapy in the treatment of patients with newly diagnosed glioblastoma multiforme (GBM) significantly improves survival. In 2008, a subanalysis of the original study data was performed, and an online "GBM Calculator" was made available on the European Organisation for Research and Treatment of Cancer (EORTC) website allowing users to estimate patients' survival outcomes. We tested this calculator against actual local survival data to validate its use in our patients. Prospectively collected clinical data were analysed on 105 consecutive patients receiving concurrent chemoradiotherapy following surgical treatment of GBM between December 2004 and February 2009. Using the EORTC online calculator, survival outcomes were generated for these patients and compared with their actual survival. The median overall survival for the entire cohort was 15.3 months (range 2.8-50.5 months), with 1-year and 2-year overall survival of 65.7% and 19%, respectively. This is in comparison to the median overall predictive survival of 21.3 months, with 1-year and 2-year survival of 95% and 39.5%, respectively. Case by case analysis also showed that the survival was overestimated in nearly 80% of patients. Subgroup analyses showed similar overestimation of patients' survival, except calculator Model 3 which utilised MGMT status. Use of the EORTC GBM prognostic calculator would have overestimated the survival of the majority of our patients with GBM. Uncertainty exists as to the cause of overestimation in the cohort although local socioeconomic factors might play a role. The different calculator models yielded different outcomes and the "best" predictor of survival for the cohort under study utilised the tumour MGMT status. We would strongly encourage similar local studies of validity testing prior to employing the online prognostic calculator for other population groups.

  10. Surprisal analysis of Glioblastoma Multiform (GBM) microRNA dynamics unveils tumor specific phenotype.

    Science.gov (United States)

    Zadran, Sohila; Remacle, Francoise; Levine, Raphael

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer -specific phenotypic state. Utilizing global miRNA microarray expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature. MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by monitoring the dynamics of miRNAs present in patients' biopsy samples. We anticipate that the GBM-specific thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the development of future therapeutics for GBM.

  11. Imp2 regulates GBM progression by activating IGF2/PI3K/Akt pathway.

    Science.gov (United States)

    Mu, Qingchun; Wang, Lijun; Yu, Fengbo; Gao, Haijun; Lei, Ting; Li, Peiwen; Liu, Pengfei; Zheng, Xu; Hu, Xitong; Chen, Yong; Jiang, Zhenfeng; Sayari, Arash J; Shen, Jia; Huang, Haiyan

    2015-01-01

    Glioblastomas multiforme (GBM) are the most frequently occurring malignant brain cancers. Treatment for GBM consists of surgical resection and subsequent adjuvant radiation therapy and chemotherapy. Despite this, GBM patient survival is limited to 12-15 months, and researchers are continually trying to develop improved therapy options. Insulin-like growth factor 2 mRNA-binding protein 2 (Imp2) is known to be upregulated in many cancers and is known to regulate the signaling activity of insulin-like growth factor 2 (IGF2). However, relatively little is known about its role in malignant development of GBM. In this study, we first found Imp2 is upregulated in GBM tissues by using clinical samples and public database search. Studies with loss and gain of Imp2 expression in in vitro GBM cell culture system demonstrated the role of Imp2 in promoting GBM cell proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT). Additionally, our results show that Imp2 regulates the activity of IGF2, which further activates PI3K/Akt signaling, thereby to promote GBM malignancy. Inhibition of Imp2 was also found to sensitize GBM to temozolomide treatment. These observations add to the current knowledge of GBM biology, and may prove useful in development of more effective GBM therapy.

  12. GBM Observations of Be X-Ray Binary Outbursts

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  13. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  14. Direction Dependent Background Fitting for the Fermi GBM Data

    OpenAIRE

    Szécsi, Dorottya; Bagoly, Zsolt; Kóbori, József; Horváth, István; Balázs, Lajos G.

    2013-01-01

    We present a method for determining the background of Fermi GBM GRBs using the satellite positional information and a physical model. Since the polynomial fitting method typically used for GRBs is generally only indicative of the background over relatively short timescales, this method is particularly useful in the cases of long GRBs or those which have Autonomous Repoint Request (ARR) and a background with much variability on short timescales. We give a Direction Dependent Background Fitting...

  15. Advanced Hybrid On-Board Data Processor - SpaceCube 2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop advanced on-board processing to meet the requirements of the Decadal Survey missions: advanced instruments (hyper-spectral, SAR, etc) require advanced...

  16. Impact of oligodendroglial component in glioblastoma (GBM-O): Is the outcome favourable than glioblastoma?

    Science.gov (United States)

    Goda, Jayant S; Lewis, Shirley; Agarwal, Aditi; Epari, Sridhar; Churi, Shraddha; Padmavati, A; Gupta, Tejpal; Shetty, Prakash; Moiyadi, Aliasgar; Jalali, Rakesh

    2015-08-01

    Prognosis of patients with glioblastoma with oligodendroglial component (GBM-O) is not well defined. We report our experience of patients of GBM-O treated at our center. Between January 2007 and August 2013, out of 817 consecutive patients with glioblastoma (GBM), 74 patients with GBM-O were identified in our prospectively maintained database. An experienced neuropathologist revaluated the histopathology of all these 74 patients and the diagnosis of GBM-O was eventually confirmed in 57 patients. Patients were uniformly treated with maximal safe resection followed by focal radiotherapy with concurrent and adjuvant temozolamide (TMZ). At a median follow up of 16 months, median overall survival (OS) and progression free survival (PFS) of the entire cohort was 23 months and 13 months respectively. Near total excision was performed in 30/57 (52.6%). On univariate analysis, age GBM-O patients with a similarly treated cohort of 105 GBM patients during the same period revealed significantly better median OS in favour of GBM-O (p = 0.01). Our experience suggests patients with GBM-O have a more favourable clinical outcome as compared to GBM. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Glioblastoma with oligodendroglioma component (GBM-O): molecular genetic and clinical characteristics.

    Science.gov (United States)

    Appin, Christina L; Gao, Jingjing; Chisolm, Candace; Torian, Mike; Alexis, Dianne; Vincentelli, Cristina; Schniederjan, Matthew J; Hadjipanayis, Costas; Olson, Jeffrey J; Hunter, Stephen; Hao, Chunhai; Brat, Daniel J

    2013-07-01

    Glioblastoma (GBM) is an aggressive primary brain tumor with an average survival of approximately 1 year. A recently recognized subtype, glioblastoma with oligodendroglioma component (GBM-O), was designated by the World Health Organization (WHO) in 2007. We investigated GBM-Os for their clinical and molecular characteristics as compared to other forms of GBM. Tissue samples were used to determine EGFR, PTEN, and 1p and 19q status by fluorescence in situ hybridization (FISH); p53 and mutant IDH1 protein expression by immunohistochemistry (IHC); and MGMT promoter status by methylation-specific polymerase chain reaction (PCR). GBM-Os accounted for 11.9% of all GBMs. GBM-Os arose in younger patients compared to other forms of GBMs (50.7 years vs. 58.7 years, respectively), were more frequently secondary neoplasms, had a higher frequency of IDH1 mutations and had a lower frequency of PTEN deletions. Survival was longer in patients with GBM-Os compared to those with other GBMs, with median survivals of 16.2 and 8.1 months, respectively. Most of the survival advantage for GBM-O appeared to be associated with a younger age at presentation. Among patients with GBM-O, younger age at presentation and 1p deletion were most significant in conferring prolonged survival. Thus, GBM-O represents a subset of GBMs with distinctive morphologic, clinical and molecular characteristics. © 2013 The Authors; Brain Pathology © 2013 International Society of Neuropathology.

  18. The Interplanetary Network Supplement to the Fermi GBM Catalog - An AO-2 and AO-3 Guest Investigator Project

    Science.gov (United States)

    Hurley, K.; Briggs, M.; Connaughton, V.; Meegan, C.; von Kienlin, A.; Rau, A.; Zhang, X.; Golenetskii, S.; Aptekar, R.; Mazets, E.; hide

    2012-01-01

    In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.

  19. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    Science.gov (United States)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  20. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool.

    Science.gov (United States)

    Manterola, Lorea; Guruceaga, Elizabeth; Gállego Pérez-Larraya, Jaime; González-Huarriz, Marisol; Jauregui, Patricia; Tejada, Sonia; Diez-Valle, Ricardo; Segura, Victor; Samprón, Nicolás; Barrena, Cristina; Ruiz, Irune; Agirre, Amaia; Ayuso, Angel; Rodríguez, Javier; González, Alvaro; Xipell, Enric; Matheu, Ander; López de Munain, Adolfo; Tuñón, Teresa; Zazpe, Idoya; García-Foncillas, Jesús; Paris, Sophie; Delattre, Jean Yves; Alonso, Marta M

    2014-04-01

    Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults, and its prognosis remains dismal despite intensive research and therapeutic advances. Diagnostic biomarkers would be clinically meaningful to allow for early detection of the tumor and for those cases in which surgery is contraindicated or biopsy results are inconclusive. Recent findings show that GBM cells release microvesicles that contain a select subset of cellular proteins and RNA. The aim of this hypothesis-generating study was to assess the diagnostic potential of miRNAs found in microvesicles isolated from the serum of GBM patients. To control disease heterogeneity, we used patients with newly diagnosed GBM. In the discovery stage, PCR-based TaqMan Low Density Arrays followed by individual quantitative reverse transcriptase polymerase chain reaction were used to test the differences in the miRNA expression levels of serum microvesicles among 25 GBM patients and healthy controls paired by age and sex. The detected noncoding RNAs were then validated in another 50 GBM patients. We found that the expression levels of 1 small noncoding RNA (RNU6-1) and 2 microRNAs (miR-320 and miR-574-3p) were significantly associated with a GBM diagnosis. In addition, RNU6-1 was consistently an independent predictor of a GBM diagnosis. Altogether our results uncovered a small noncoding RNA signature in microvesicles isolated from GBM patient serum that could be used as a fast and reliable differential diagnostic biomarker.

  1. Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells.

    Science.gov (United States)

    Mukherjee, Sumit; Baidoo, Juliet N E; Sampat, Samay; Mancuso, Andrew; David, Lovena; Cohen, Leah S; Zhou, Shuiqin; Banerjee, Probal

    2018-01-18

    Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (μM): 32:8:100 (termed 32 μM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.

  2. Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM and GBM Stem Cells

    Directory of Open Access Journals (Sweden)

    Sumit Mukherjee

    2018-01-01

    Full Text Available Glioblastoma (GBM is a deadly brain tumor with a current mean survival of 12–15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E from green tea and resveratrol (R from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin to achieve superior potency against HPV+ tumors than C alone at C:E:R (μM: 32:8:100 (termed 32 μM+ TriCurin. We have now prepared liposomal TriCurin (TrLp and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.

  3. Testing the Isotropic Universe Using the Gamma-Ray Burst Data of Fermi/GBM

    Science.gov (United States)

    Řípa, Jakub; Shafieloo, Arman

    2017-12-01

    The sky distribution of gamma-ray bursts (GRBs) has been intensively studied by various groups for more than two decades. Most of these studies test the isotropy of GRBs based on their sky number density distribution. In this work, we propose an approach to test the isotropy of the universe through inspecting the isotropy of the properties of GRBs such as their duration, fluences, and peak fluxes at various energy bands and different timescales. We apply this method on the Fermi/Gamma-ray Burst Monitor (GBM) data sample containing 1591 GRBs. The most noticeable feature we found is near the Galactic coordinates l≈ 30^\\circ , b≈ 15^\\circ , and radius r≈ 20^\\circ {--}40^\\circ . The inferred probability for the occurrence of such an anisotropic signal (in a random isotropic sample) is derived to be less than a percent in some of the tests while the other tests give results consistent with isotropy. These are based on the comparison of the results from the real data with the randomly shuffled data samples. Considering the large number of statistics we used in this work (some of which are correlated with each other), we can anticipate that the detected feature could be a result of statistical fluctuations. Moreover, we noticed a considerably low number of GRBs in this particular patch, which might be due to some instrumentation or observational effects that can consequently affect our statistics through some systematics. Further investigation is highly desirable in order to clarify this result, e.g., utilizing a larger future Fermi/GBM data sample as well as data samples of other GRB missions and also looking for possible systematics.

  4. New On-board Microprocessors

    Science.gov (United States)

    Weigand, R.

    Two new processor devices have been developed for the use on board of spacecrafts. An 8-bit 8032-microcontroller targets typical controlling applications in instruments and sub-systems, or could be used as a main processor on small satellites, whereas the LEON 32-bit SPARC processor can be used for high performance controlling and data processing tasks. The ADV80S32 is fully compliant to the Intel 80x1 architecture and instruction set, extended by additional peripherals, 512 bytes on-chip RAM and a bootstrap PROM, which allows downloading the application software using the CCSDS PacketWire pro- tocol. The memory controller provides a de-multiplexed address/data bus, and allows to access up to 16 MB data and 8 MB program RAM. The peripherals have been de- signed for the specific needs of a spacecraft, such as serial interfaces compatible to RS232, PacketWire and TTC-B-01, counters/timers for extended duration and a CRC calculation unit accelerating the CCSDS TM/TC protocol. The 0.5 um Atmel manu- facturing technology (MG2RT) provides latch-up and total dose immunity; SEU fault immunity is implemented by using SEU hardened Flip-Flops and EDAC protection of internal and external memories. The maximum clock frequency of 20 MHz allows a processing power of 3 MIPS. Engineering samples are available. For SW develop- ment, various SW packages for the 8051 architecture are on the market. The LEON processor implements a 32-bit SPARC V8 architecture, including all the multiply and divide instructions, complemented by a floating-point unit (FPU). It includes several standard peripherals, such as timers/watchdog, interrupt controller, UARTs, parallel I/Os and a memory controller, allowing to use 8, 16 and 32 bit PROM, SRAM or memory mapped I/O. With on-chip separate instruction and data caches, almost one instruction per clock cycle can be reached in some applications. A 33-MHz 32-bit PCI master/target interface and a PCI arbiter allow operating the device in a plug-in card

  5. L-shell bifurcation of electron outer belt at the recovery phase of geomagnetic storm as observed by STEP-F and SphinX instruments onboard the CORONAS-Photon satellite

    Science.gov (United States)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Podgorski, Piotr

    2016-07-01

    Radiation belts and sporadically arising volumes comprising enhanced charged particle fluxes in the Earth's magnetosphere are typically studied by space-borne telescopes, semiconductor, scintillation, gaseous and other types of detectors. Ambient and internal electron bremsstrahlung in hard X-ray arises as a result of interaction of precipitating particles with the atmosphere (balloon experiments) and with the satellite's housings and instrument boxes (orbital experiments). Theses emissions provide a number of new information on the physics of radiation belts. The energies of primary electrons and their spectra responsible for measured X-ray emissions remain usually unknown. Combined measurements of particle fluxes, and their bremsstrahlung by individual satellite instruments placed next to each other provide insight to respective processes. The satellite telescope of electrons and protons STEP-F and the solar X-ray spectrophotometer SphinX were placed in close proximity to each other aboard CORONAS-Photon, the low, circular and highly inclined orbit satellite. Based on joint analysis of the data we detected new features in the high energy particle distributions of the Earth's magnetosphere during deep minimum of solar activity [1-3]. In this research the bifurcation of Van Allen outer electron radiation belt during the weak geomagnetic storm and during passage of interplanetary shock are discussed. Outer belt bifurcation and growth of electron fluxes in a wide energy range were recorded by both instruments during the recovery phase of May 8, 2009 substorm. STEP-F recorded also barely perceptible outer belt splitting on August 5, 2009, after arrival of interplanetary shock to the Earth's magnetosphere bowshock. The STEP-F and SphinX data are compared with the space weather indexes, and with relativistic electron fluxes observed at geostationary orbit. We discuss possible mechanism of the phenomena consisting in the splitting of drift shells because of Earth

  6. Lunar Penetrating Radar onboard the Chang'e-3 mission

    Science.gov (United States)

    Fang, Guang-You; Zhou, Bin; Ji, Yi-Cai; Zhang, Qun-Ying; Shen, Shao-Xiang; Li, Yu-Xi; Guan, Hong-Fei; Tang, Chuan-Jun; Gao, Yun-Ze; Lu, Wei; Ye, Sheng-Bo; Han, Hai-Dong; Zheng, Jin; Wang, Shu-Zhi

    2014-12-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.

  7. Instrument Response Modeling and Simulation for the GLAST Burst Monitor

    International Nuclear Information System (INIS)

    Kippen, R. M.; Hoover, A. S.; Wallace, M. S.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.; Wilson-Hodge, C. A.; Kouveliotou, C.; Lichti, G. G.; Kienlin, A. von; Steinle, H.; Diehl, R.; Greiner, J.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Paciesas, W. S.; Bhat, P. N.

    2007-01-01

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset, and is being extensively validated against calibrated experimental GBM data. We discuss the architecture of the GBM simulation and modeling system and describe how its products will be used for analysis of observed GBM data. Companion papers describe the status of validating the system

  8. The Fermi-GBM Gamma-Ray Burst Catalogs: The First Six Years

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Full Text Available Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM has triggered and located on average approximately two gamma-ray bursts (GRBs every three days. Here we present the main results from the latest two catalogs provided by the Fermi-GBM science team, namely the third GBM GRB catalog [1] and the first GBM time-resolved spectral catalog [2]. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected bursts. It comprises 1405 triggers identified as GRBs. For each one, location and main characteristics of the prompt emission, the duration, the peak flux and the fluence are derived. The GBM time-resolved spectral catalog presents high-quality time-resolved spectral analysis with high temporal and spectral resolution of the brightest bursts observed by Fermi GBM in a shorter period than the former catalog, namely four years. It comprises 1491 spectra from 81 bursts. Distributions of parameters, statistics of the parameter populations, parameter-parameter and parameter-uncertainty correlations, and their exact values are obtained.

  9. The Fermi GBM Gamma-Ray Burst Catalog: The First Two Years

    NARCIS (Netherlands)

    Paciesas, W.S.; Meegan, C.A.; von Kienlin, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; M. Burgess, J.; Chaplin, V.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; H. Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kippen, R.M.; Kouveliotou, C.; Lichti, G.; Lin, L.; McBreen, S.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.

    2012-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered

  10. Accumulation of worn-out GBM material substantially contributes to mesangial matrix expansion in diabetic nephropathy

    NARCIS (Netherlands)

    Kriz, Wilhelm; Loewen, Jana; Federico, Giuseppina; van den Born, Jacob; Groene, Elisabeth; Groene, Hermann Josef

    2017-01-01

    Thickening of the glomerular basement membrane (GBM) and expansion of the mesangial matrix are hallmarks of diabetic nephropathy (DN), generally considered to emerge from different sites of overproduction: GBM components from podocytes and mesangial matrix from mesangial cells. Reevaluation of 918

  11. Onboard autonomous mineral detectors for Mars rovers

    Science.gov (United States)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  12. Apparent diffusion coefficient in glioblastoma with PNET-like components, a GBM variant.

    Science.gov (United States)

    Ali, Saad; Joseph, Nancy M; Perry, Arie; Barajas, Ramon F; Cha, Soonmee

    2014-09-01

    Glioblastoma (GBM) with primitive neuroectodermal tumor (PNET)-like (GBM-PNET) components is a rare variant of GBM. Recent studies describe PNET-like clinical behavior in these patients-with significantly increased propensity for CSF dissemination and a benefit of "PNET-like" chemotherapy. The imaging appearance of GBM-PNET is not well-described and given areas of marked cellularity in the PNET components one might expect significantly reduced diffusion on MRI. The purpose of this study is to quantitatively evaluate the diffusion characteristics in GBM-PNET and compare them with conventional GBMs. Nine patients with surgical specimens yielding GBM-PNET were identified from the UCSF Pathology files. MR images of these patients were reviewed retrospectively. DWI (diffusion-weighted imaging) sequences were analyzed with multiple regions of interests placed within the tumor, and ADC (apparent diffusion coefficient) values were measured. Results were compared to previously published ADC values in pathology-proven conventional GBM cases from our institution. Reduced ADC was seen in GBM-PNET (mean 581 × 10(-6) mm(2)/s, range 338-817) compared to previously published mean of 1,030 × 10(-6) mm(2)/s in the enhancing components of conventional GBMs. We report substantially reduced ADC values in GBM-PNETs compared to conventional GBMs. If demonstrated in a larger sample, when areas of marked reduced diffusion are seen in a suspected GBM, MRI may appropriately direct tissue sampling and can advocate a thorough search for PNET-like components on histopathology. These patients may have a higher chance of developing CSF dissemination and may benefit from "PNET-like" platinum-based chemotherapy.

  13. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    Science.gov (United States)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  14. Optimization of Planck-LFI on-board data handling

    Energy Technology Data Exchange (ETDEWEB)

    Maris, M; Galeotta, S; Frailis, M; Zacchei, A; Fogliani, S; Gasparo, F [INAF-OATs, Via G.B. Tiepolo 11, 34131 Trieste (Italy); Tomasi, M; Bersanelli, M [Universita di Milano, Dipartimento di Fisica, Via G. Celoria 16, 20133 Milano (Italy); Miccolis, M [Thales Alenia Space Italia S.p.A., S.S. Padana Superiore 290, 20090 Vimodrone (Italy); Hildebrandt, S; Chulani, H; Gomez, F [Instituto de Astrofisica de Canarias (IAC), C/o Via Lactea, s/n E38205 - La Laguna, Tenerife (Spain); Rohlfs, R; Morisset, N; Binko, P [ISDC Data Centre for Astrophysics, University of Geneva, ch. d' Ecogia 16, 1290 Versoix (Switzerland); Burigana, C; Butler, R C; Cuttaia, F; Franceschi, E [INAF-IASF Bologna, Via P. Gobetti, 101, 40129 Bologna (Italy); D' Arcangelo, O, E-mail: maris@oats.inaf.i [IFP-CNR, via Cozzi 53, 20125 Milano (Italy)

    2009-12-15

    To asses stability against 1/f noise, the Low Frequency Instrument (LFI) on-board the Planck mission will acquire data at a rate much higher than the data rate allowed by the science telemetry bandwith of 35.5 Kbps. The data are processed by an on-board pipeline, followed on-ground by a decoding and reconstruction step, to reduce the volume of data to a level compatible with the bandwidth while minimizing the loss of information. This paper illustrates the on-board processing of the scientific data used by Planck/LFI to fit the allowed data-rate, an intrinsecally lossy process which distorts the signal in a manner which depends on a set of five free parameters (N{sub aver}, r{sub 1}, r{sub 2}, q, O) for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the on-board processing as a function of these parameters. It describes the method of tuning the on-board processing chain to cope with the limited bandwidth while keeping to a minimum the signal distortion. Tuning is sensitive to the statistics of the signal and has to be constantly adapted during flight. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, pre-launch tests or data taken in flight from LFI operating in a special diagnostic acquisition mode. All the needed optimization steps are performed by an automated tool, OCA2, which simulates the on-board processing, explores the space of possible combinations of parameters, and produces a set of statistical indicators, among them: the compression rate C{sub r} and the processing noise epsilon{sub Q}. For Planck/LFI it is required that C{sub r} = 2.4 while, as for other systematics, epsilon{sub Q} would have to be less than 10% of rms of the instrumental white noise. An analytical model is developed that is able to extract most of the relevant information on the processing errors and the compression rate as a function of the signal

  15. The on-board tailpipe emissions measurement system (TOTEMS) : proof\\0x2010 of\\0x2010concept.

    Science.gov (United States)

    2009-06-03

    An on-board tailpipe emissions instrumentation system was designed, assembled and tested as proof-of-concept : for the University of Vermonts Transportation Research Center (TRC) Signature Project #2 real-world vehicle : emissions data colle...

  16. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    Science.gov (United States)

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  17. VizieR Online Data Catalog: Short GRBs with Fermi GBM and Swift BAT (Burns+, 2016)

    Science.gov (United States)

    Burns, E.; Connaughton, V.; Zhang, B.-B.; Lien, A.; Briggs, M. S.; Goldstein, A.; Pelassa, V.; Troja, E.

    2018-01-01

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. (4 data files).

  18. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.

    Science.gov (United States)

    Kulkarni, Shreya; Goel-Bhattacharya, Surbhi; Sengupta, Sejuti; Cochran, Brent H

    2018-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as CDK4, KIF11 , and RAN , the screen also identified new genes that have not been previously implicated in GBM stem cell biology. The importance of the serum and glucocorticoid-regulated kinase 1 (SGK1) for cellular survival was validated in multiple patient-derived GBM stem cell lines using shRNA, CRISPR, and pharmacologic inhibitors. However, SGK1 depletion and inhibition has little effect on traditional serum grown glioma lines and on differentiated GBM-SCs indicating its specific importance in GBM stem cell survival. Implications: This study identifies genes required for the growth and survival of GBM stem cells under both normoxic and hypoxic conditions and finds SGK1 as a novel potential drug target for GBM. Mol Cancer Res; 16(1); 103-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. GBM-associated mutations and altered protein expression are more common in young patients.

    Science.gov (United States)

    Ferguson, Sherise D; Xiu, Joanne; Weathers, Shiao-Pei; Zhou, Shouhao; Kesari, Santosh; Weiss, Stephanie E; Verhaak, Roeland G; Hohl, Raymond J; Barger, Geoffrey R; Reddy, Sandeep K; Heimberger, Amy B

    2016-10-25

    Geriatric glioblastoma (GBM) patients have a poorer prognosis than younger patients, but IDH1/2 mutations (more common in younger patients) confer a favorable prognosis. We compared key GBM molecular alterations between an elderly (age ≥ 70) and younger (18 GBM cohort compared to the older cohort (P GBM cohort, younger patients had significantly more mutations in PDGFRA, PTPN11, SMARCA4, BRAF and TP53. GBMs from 178 elderly patients and 197 young patients were analyzed using DNA sequencing, immunohistochemistry, in situ hybridization, and MGMT-methylation assay to ascertain mutational and amplification/expressional status. Significant molecular differences occurred in GBMs from elderly and young patients. Except for the older cohort's more frequent PTEN mutation and MGMT methylation, younger patients had a higher frequency of potential therapeutic targets.

  20. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  1. Dismantling of the EB experiment: Experimental research on the retrieved GBM and bentonite blocks

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang-Feng, E-mail: jeafliu@hotmail.com [State Key Laboratory for Geomchanics & Deep Underground Engineering, and School of Mechanics and Civil Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116 (China); Laboratoire de Méchanique de Lille (LML), and École Centrale de Lille, BP 48, F-59651 Villeneuve d’Ascq Cedex (France); Skoczylas, Frédéric [Laboratoire de Méchanique de Lille (LML), and École Centrale de Lille, BP 48, F-59651 Villeneuve d’Ascq Cedex (France); Talandier, Jean [ANDRA, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Pu, Hai [State Key Laboratory for Geomchanics & Deep Underground Engineering, and School of Mechanics and Civil Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116 (China)

    2016-04-15

    Graphical abstract: - Highlights: • We present a demonstration of a new concept of HLW (high-level waste) repositories. • The hydro-mechanical characteristics of GBM and blocks were determined. • The water retention curves (WRCs) of GBM and blocks were presented. • The effective gas permeability of the GBM and blocks were measured. • The homogeneity of the GBM and blocks were investigated. - Abstract: The Engineered Barrier Emplacement Experiment in Opalinus Clay (EB experiment) was a full-scale test for the demonstration of a new concept of high-level waste (HLW) repositories in horizontal drifts in the Opalinus Clay formation. After 10.5 years of hydration, the EB experiment was dismantled in autumn 2012. Samples obtained from the granular bentonite material (GBM), and bentonite blocks were sent to a laboratory for further analysis. The bentonite samples analyzed at the Laboratory of Mechanic of Lille (LML) were obtained from the CMT1, CMT2, CMT3 and RW sections. Their physical states were determined, as were their effective gas permeability and swelling capacity at different relative humidity (RH) levels. The results indicate that the water contents of the GBM determined in the laboratory ranged between 25.63% and 44.88% and that the dry densities ranged between 1.13 and 1.44 g/cm{sup 3}. The blocks had water contents similar to (or slightly higher than) those of the GBM, and their dry densities had decreased from an initial value of 1.69 g/cm{sup 3} to values close to 1.30 g/cm{sup 3}, which were similar to the average values found in the GBM. The effective gas permeabilities of the GBM samples were within the range of 1.50 × 10{sup −22} m{sup 2} and 1.03 × 10{sup −17} m{sup 2}, whereas, the corresponding values of the samples obtained from the blocks were between 2.20 × 10{sup −21} m{sup 2} and 5.12 × 10{sup −21} m{sup 2}. The permeability values are primarily related to the dry densities and water contents of the samples. Contact with

  2. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance.

    Science.gov (United States)

    Lee, Jin-Ku; Chang, Nakho; Yoon, Yeup; Yang, Heekyoung; Cho, Heejin; Kim, Eunhee; Shin, Yongjae; Kang, Wonyoung; Oh, Young Taek; Mun, Gyeong In; Joo, Kyeung Min; Nam, Do-Hyun; Lee, Jeongwu

    2016-01-01

    Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Validation of an imageable surgical resection animal model of Glioblastoma (GBM).

    Science.gov (United States)

    Sweeney, Kieron J; Jarzabek, Monika A; Dicker, Patrick; O'Brien, Donncha F; Callanan, John J; Byrne, Annette T; Prehn, Jochen H M

    2014-08-15

    Glioblastoma (GBM) is the most common and malignant primary brain tumour having a median survival of just 12-18 months following standard therapy protocols. Local recurrence, post-resection and adjuvant therapy occurs in most cases. U87MG-luc2-bearing GBM xenografts underwent 4.5mm craniectomy and tumour resection using microsurgical techniques. The cranial defect was repaired using a novel modified cranial window technique consisting of a circular microscope coverslip held in place with glue. Immediate post-operative bioluminescence imaging (BLI) revealed a gross total resection rate of 75%. At censor point 4 weeks post-resection, Kaplan-Meier survival analysis revealed 100% survival in the surgical group compared to 0% in the non-surgical cohort (p=0.01). No neurological defects or infections in the surgical group were observed. GBM recurrence was reliably imaged using facile non-invasive optical bioluminescence (BLI) imaging with recurrence observed at week 4. For the first time, we have used a novel cranial defect repair method to extend and improve intracranial surgical resection methods for application in translational GBM rodent disease models. Combining BLI and the cranial window technique described herein facilitates non-invasive serial imaging follow-up. Within the current context we have developed a robust methodology for establishing a clinically relevant imageable GBM surgical resection model that appropriately mimics GBM recurrence post resection in patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics.

    Science.gov (United States)

    St-Coeur, Patrick-Denis; Poitras, Julie J; Cuperlovic-Culf, Miroslava; Touaibia, Mohamed; Morin, Pier

    2015-10-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Current therapeutic approach to treat this malignancy involves a combination of surgery, radiotherapy and chemotherapy with temozolomide. Numerous mechanisms contributing to inherent and acquired resistance to this chemotherapeutic agent have been identified and can lead to treatment failure. This study undertook a metabolomics-based approach to characterize the metabolic profiles observed in temozolomide-sensitive and temozolomide-resistant GBM cell lines as well as in a small sub-set of primary GBM tumors. This approach was also utilized to explore the metabolic changes modulated upon cell treatment with temozolomide and lomeguatrib, an MGMT inhibitor with temozolomide-sensitizing potential. Metabolites previously explored for their potential role in chemoresistance including glucose, citrate and isocitrate demonstrated elevated levels in temozolomide-resistant GBM cells. In addition, a signature of metabolites comprising alanine, choline, creatine and phosphorylcholine was identified as up-regulated in sensitive GBM cell line across different treatments. These results present the metabolic profiles associated with temozolomide response in selected GBM models and propose interesting leads that could be leveraged for the development of therapeutic or diagnostic tools to impact temozolomide response in GBMs.

  5. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xue; Kan, Shifeng; Liu, Zhen [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Guang [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 (Singapore); Zhang, Xiaoyan [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Chen, Yingyu [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Peking University Center for Human Disease Genomics, Beijing 100191 (China); Bai, Yun, E-mail: baiyun@bjmu.edu.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.

  6. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors.

    Science.gov (United States)

    Roy, Laurent-Olivier; Poirier, Marie-Belle; Fortin, David

    2018-04-08

    Glioblastoma (GBM) represents the most common and aggressive malignant primary brain tumors in adults. Response to standard treatment is transitory and the survival of clinical trial cohorts are little more than 14 months. GBM are characterized by excessive proliferation, invasiveness, and radio-/chemoresistance features; which are strongly upregulated by transforming growth factor-beta (TGF-β). We hypothesized that TGF-β gene expression could correlate with overall survival (OS) and serve as a prognostic biomarker. TGF-β₁ and -β₂ expression were analyzed by qPCR in 159 GBM tumor specimens. Kaplan-Meier and multivariate analyses were used to correlate expression with OS and progression-free survival (PFS). In GBM, TGF-β₁ and -β₂ levels were 33- and 11-fold higher respectively than in non-tumoral samples. Kaplan-Meier and multivariate analyses revealed that high to moderate expressions of TGF-β₁ significantly conferred a strikingly poorer OS and PFS in newly diagnosed patients. Interestingly, at relapse, neither isoforms had meaningful impact on clinical evolution. We demonstrate that TGF-β₁ is the dominant isoform in newly diagnosed GBM rather than the previously acknowledged TGF-β₂. We believe our study is the first to unveil a significant relationship between TGF-β₁ expression and OS or PFS in newly diagnosed GBM. TGF-β₁ could serve as a prognostic biomarker or target affecting treatment planning and patient follow-up.

  7. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors

    Directory of Open Access Journals (Sweden)

    Laurent-Olivier Roy

    2018-04-01

    Full Text Available Glioblastoma (GBM represents the most common and aggressive malignant primary brain tumors in adults. Response to standard treatment is transitory and the survival of clinical trial cohorts are little more than 14 months. GBM are characterized by excessive proliferation, invasiveness, and radio-/chemoresistance features; which are strongly upregulated by transforming growth factor-beta (TGF-β. We hypothesized that TGF-β gene expression could correlate with overall survival (OS and serve as a prognostic biomarker. TGF-β1 and -β2 expression were analyzed by qPCR in 159 GBM tumor specimens. Kaplan–Meier and multivariate analyses were used to correlate expression with OS and progression-free survival (PFS. In GBM, TGF-β1 and -β2 levels were 33- and 11-fold higher respectively than in non-tumoral samples. Kaplan–Meier and multivariate analyses revealed that high to moderate expressions of TGF-β1 significantly conferred a strikingly poorer OS and PFS in newly diagnosed patients. Interestingly, at relapse, neither isoforms had meaningful impact on clinical evolution. We demonstrate that TGF-β1 is the dominant isoform in newly diagnosed GBM rather than the previously acknowledged TGF-β2. We believe our study is the first to unveil a significant relationship between TGF-β1 expression and OS or PFS in newly diagnosed GBM. TGF-β1 could serve as a prognostic biomarker or target affecting treatment planning and patient follow-up.

  8. Onboard Short Term Plan Viewer

    Science.gov (United States)

    Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason

    2011-01-01

    Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.

  9. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  10. On-board system for physical and microphysical measurements

    International Nuclear Information System (INIS)

    Ravaut, M.; Allet, C.; Dole, B.; Gribkoff, A.; Schibler, P.; Charpentier, C.

    1981-10-01

    This report presents the system of physical and microphysical measurement instrumentation on board the HUREL-DUBOIS HD 34 aircraft, built in cooperation with the Institut National d'Astronomie et de Geophysique (I.N.A.G.) and the Institut Geographique National (I.G.N.). The feasibility study of the system was carried out in the first half of 1978 and took shape in an on-site proving campaign in November 1979. As a result, the on-board system was able to participate in the BUGEY experimental campaign of March 1980, a glimpse of which is given in this report [fr

  11. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).

    Science.gov (United States)

    Elkamhawy, Ahmed; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Kim, Hyeon Young; Heo, Jin-Chul; Park, Woo-Kyu; Lee, Chong-Ock; Yang, Heekyoung; Kim, Kang Ho; Nam, Do-Hyun; Seol, Ho Jun; Cho, Heeyeong; Roh, Eun Joo

    2015-10-20

    Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC₅₀ values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. On-board Data Mining

    Science.gov (United States)

    Tanner, Steve; Stein, Cara; Graves, Sara J.

    Networks of remote sensors are becoming more common as technology improves and costs decline. In the past, a remote sensor was usually a device that collected data to be retrieved at a later time by some other mechanism. This collected data were usually processed well after the fact at a computer greatly removed from the in situ sensing location. This has begun to change as sensor technology, on-board processing, and network communication capabilities have increased and their prices have dropped. There has been an explosion in the number of sensors and sensing devices, not just around the world, but literally throughout the solar system. These sensors are not only becoming vastly more sophisticated, accurate, and detailed in the data they gather but they are also becoming cheaper, lighter, and smaller. At the same time, engineers have developed improved methods to embed computing systems, memory, storage, and communication capabilities into the platforms that host these sensors. Now, it is not unusual to see large networks of sensors working in cooperation with one another. Nor does it seem strange to see the autonomous operation of sensorbased systems, from space-based satellites to smart vacuum cleaners that keep our homes clean and robotic toys that help to entertain and educate our children. But access to sensor data and computing power is only part of the story. For all the power of these systems, there are still substantial limits to what they can accomplish. These include the well-known limits to current Artificial Intelligence capabilities and our limited ability to program the abstract concepts, goals, and improvisation needed for fully autonomous systems. But it also includes much more basic engineering problems such as lack of adequate power, communications bandwidth, and memory, as well as problems with the geolocation and real-time georeferencing required to integrate data from multiple sensors to be used together.

  13. Performance of two strategies for urgent ANCA and anti-GBM analysis in vasculitis.

    Science.gov (United States)

    de Joode, Anoek A E; Roozendaal, Caroline; van der Leij, Marcel J; Bungener, Laura B; Sanders, Jan Stephan F; Stegeman, Coen A

    2014-02-01

    In anti-neutrophil cytoplasmic antibodies (ANCA) associated small vessel vasculitis (AAV), rapid testing for ANCA and anti-glomerular basement membrane (GBM) antibodies may be beneficial for therapeutic purpose. We analysed the diagnostic performance of two rapid ANCA and anti-GBM test methods in 260 patients with suspected AAV. Between January 2004 and November 2010, we analysed 260 samples by qualitative Dotblot (Biomedical Diagnostics); retrospective analysis followed with directly coated highly sensitive automated Phadia ELiA and ELiA anti-GBM. Results were related to the final clinical diagnosis and compared with routine capture ELISA. Seventy-four patients had a final diagnosis of AAV (n=62) or anti-GBM disease (n=12). Both Dotblot and ELiA detected all 12 cases of anti-GBM disease; 2 false positive results were found. Dotblot detected ANCA in 56 of 62 AAV patients (sensitivity 90%, NPV 97%), and showed 5 false positives (specificity 97%, PPV 90%). The Phadia ELiA anti-PR3(s) or anti-MPO(s) was positive in 57 of 62 AAV patients (sensitivity 92%, NPV 97%), and had 5 false positives (specificity 97%, PPV 88%). Routine capture ELISA was equally accurate (sensitivity 94%, specificity 97%, PPV 88%, NPV 98%). The Dotblot and Phadia ELiA on anti-GBM, anti-PR3(s) and anti-MPO(s) performed excellently; results were almost identical to routine ELISA. When suspicion of AAV or anti-GBM disease is high and diagnosis is urgently needed, both tests are very powerful for rapid serological diagnosis. Further studies have to confirm the test performances in samples routinely presented for ANCA testing and in follow-up of positive patients. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  14. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  15. Aerial Logistics Management for Carrier Onboard Delivery

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY by Samuel L. Chen September 2016...AND SUBTITLE AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY 5. FUNDING NUMBERS 6. AUTHOR(S) Samuel L. Chen 7. PERFORMING ORGANIZATION NAME(S...delivery (COD) is the use of aircraft to transport people and cargo from a forward logistics site (FLS) to a carrier strike group (CSG). The goal of

  16. Paradox of Migration in Kolkata: A Megacity in GBM Delta

    Science.gov (United States)

    Das, S.; Hazra, S.; Ghosh, T.

    2015-12-01

    Contrary to other coastal cities (Mumbai, Chennai, Bhubaneswar etc.) in India, Kolkata, the largest city of India until 1990, has been showing a persistent trend of out-migration over the last decade. The situation is more paradoxical when compared to Dhaka in Bangladesh, the other coastal city in Ganga-Brahmaputra-Meghna (GBM) delta. Exacerbating impacts of Climate Change like accelerated sea level rise, impact of cyclones, rising temperature and high rainfall events and waterlogging, vis-à-vis the density of poor population in slums, Kolkata has been assessed as one of the most vulnerable cities of the world. However, Kolkata has long been a preferred destination for migrants for its port based economy, existence of industrial belt with labour intensive industries. The city and its surrounding districts attracted a massive influx of trans-border migrants when India and Bangladesh gained Independence in 1947 and 1971 respectively. The paper attempts to explore reasons behind the present trend of depopulation in the erstwhile preferred migration destination. This paper distinguishes between 'Kolkata City' (census district) with 4.5 million residents and 'Kolkata Megacity' which encompasses also the peri-urban areas and home to almost 14.1 million people according to Census 2011. Analysing migration as an ongoing research activity under DECCMA project, an overall 'in-migration' pattern can be deciphered in Kolkata 'megacity'. On the contrary, the Kolkata 'city' located right in the heart of the megacity exhibits negative net migration (-5.11%) i.e. high 'out-migration'. Plausible causes can be movement of people from Kolkata 'city' to peri-urban areas and satellite towns (urban to urban migration) probably due to closure of labour intensive industries, comparatively lower land prices, availability of space and accommodation, lower costs of living, development of different modes of commutation and communication. Further growth of population in the Kolkata Megacity

  17. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review.

    Science.gov (United States)

    Anjum, Komal; Shagufta, Bibi Ibtesam; Abbas, Syed Qamar; Patel, Seema; Khan, Ishrat; Shah, Sayed Asmat Ali; Akhter, Najeeb; Hassan, Syed Shams Ul

    2017-08-01

    Glioblastoma multiforme (GBM) is the deadliest form of heterogeneous brain cancer. It affects an enormous number of patients every year and the survival is approximately 8 to 15 months. GBM has driven by complex signaling pathways and considered as a most challenging to treat. Standard treatment of GBM includes surgery, radiation therapy, chemotherapy and also the combined treatment. This review article described inter and intra- tumor heterogeneity of GMB. In addition, recent chemotherapeutic agents, with their mechanism of action have been defined. FDA-approved drugs also been focused over here and most importantly highlighting some natural and synthetic and novel anti- glioma agents, that are the main focus of researchers nowadays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. The Fermi GBM and LAT follow-up of GW150914

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Here we present observations by the Fermi Gamma-Ray BurstMonitor (GBM [1] and by the Large Area Telescope (LAT [2] of the LIGO Gravitational Wave event GW150914, which has been associated to the merger of two stellar-mass BHs. We report the presence of a weak transient event in GBM data, close in time to the LIGO one. We discuss the characteristics of this GBM transient, which are consistent with a weak short GRB arriving at a large angle to the direction in which Fermi was pointing. Furthermore, we report LAT upper limits (ULs for GW150914, and we present the strategy for follow-up observations of GW events with the LAT.

  19. Performance evaluation of a novel chemiluminescence assay for detection of anti-GBM antibodies: an international multicenter study.

    Science.gov (United States)

    Mahler, Michael; Radice, Antonella; Sinico, Renato A; Damoiseaux, Jan; Seaman, Andrea; Buckmelter, Kristen; Vizjak, Alenka; Buchner, Carol; Binder, Walter L; Fritzler, Marvin J; Cui, Zhao

    2012-01-01

    Autoantibodies to the non-collagen region (NC1) of the alpha-3 subunit of collagen IV represent a serological hallmark in the diagnosis of Goodpasture's syndrome (GPS). The objective of our study was to carefully analyze the performance characteristics of a novel anti-glomerular basement membrane (GBM) chemiluminescence immunoassay (CIA). Sera from patients with GPS (n = 90) were collected from four clinical centers. Samples from different disease groups (n = 397) and healthy individuals (n = 400) were used as controls. All samples were tested for anti-GBM antibodies by a rapid, random access CIA (QUANTA Flash™ GBM). Most of the samples were also tested using other methods including different commercial anti-GBM IgG assays and research assays for anti-GBM IgA and IgM. The sensitivity and specificity of the novel CIA was 95.6% [95% confidence interval (CI) 89.0-98.8%] and 99.6% (95% CI 98.9-99.9%), respectively. Receiver operating characteristic analysis showed good discrimination between GPS patients and controls. The area under the curve was 0.98 (CI 0.96-1.0). The three anti-GBM antibody-positive samples from the control group were from two healthy individuals and one human immunodeficiency virus (HIV)-infected patient. All three individuals had low levels of anti-GBM antibodies [20, 24 and 25 chemiluminescent unit (CU), cutoff 20 CU]. When the results of the new CIA were compared to other methods, good agreement was observed: 95.8% (kappa = 0.92) versus EliA™ GBM, 97.4% (kappa = 0.95) versus both BINDAZYME™ Anti-GBM and QUANTA Lite® GBM. Anti-GBM IgA was detectable in low concentrations in patients with GPS and was associated with anti-GBM IgG but was less useful in discriminating GPS patients and controls. No discrimination was found for anti-GBM IgM. The novel QUANTA Flash™ GBM CIA demonstrated good sensitivity and specificity and had good agreement with other methods. Our data confirm that ∼5% of patients with GPS do not have detectable levels of

  20. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

    Science.gov (United States)

    Ge, Haitao; Mu, Luyan; Jin, Linchun; Yang, Changlin; Chang, Yifan Emily; Long, Yu; DeLeon, Gabriel; Deleyrolle, Loic; Mitchell, Duane A; Kubilis, Paul S; Lu, Dunyue; Qi, Jiping; Gu, Yunhe; Lin, Zhiguo; Huang, Jianping

    2017-10-01

    Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM. © 2017 UICC.

  1. Fermi/GBM Observations of SGRJ0501 + 4516 Bursts

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; hide

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGRJ0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We find that the T(sub 90) durations of the bursts can be fit with a log-normal distribution with a mean value of approx. 123 ms. We also estimate for the first time event durations of Soft Gamma Repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T(sub 90)s estimated in count space (following a log-normal distribution with a mean value of approx. 124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two black body functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E(sub peak) decreases with energy flux (and fluence) to a minimum of approx. 30 keV at F = 8.7 x 10(exp -6)erg/sq cm/s, increasing steadily afterwards. Two more sources exhibit a similar trend: SGRs J1550 - 5418 and 1806 - 20. The isotropic luminosity, L(sub iso), corresponding to these flux values is roughly similar for all sources (0.4 - l.5 x 10(exp 40) erg/s.

  2. Automation of On-Board Flightpath Management

    Science.gov (United States)

    Erzberger, H.

    1981-01-01

    The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.

  3. Using Onboard Telemetry for MAVEN Orbit Determination

    Science.gov (United States)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  4. Rituximab for the treatment of refractory simultaneous anti-glomerular basement membrane (anti-GBM) and membranous nephropathy.

    Science.gov (United States)

    Bandak, Ghassan; Jones, Bruce A; Li, Jian; Yee, Jerry; Umanath, Kausik

    2014-02-01

    Antibody-mediated anti-glomerular basement membrane (anti-GBM) disease occurs rarely in the presence of another B-cell disorder, membranous nephropathy. The coexistence of these two autoimmune disorders would be anticipated to require differing, specific therapies targeted to each disease process. We describe a case of concomitant membranous nephropathy and anti-GBM disease in which conventional therapy, including steroids, plasmapheresis and cyclophosphamide, failed to attenuate the anti-GBM disease, yet responded to an alternative treatment of rituximab. This B-cell directed, monoclonal, chimeric antibody treatment substantially reduced anti-GBM antibody titers and led to discontinuation of plasmapheresis, while maintaining the remission of membranous nephropathy and anti-GBM disease.

  5. Onboard Processing on PWE OFA/WFC (Onboard Frequency Analyzer/Waveform Capture) aboard the ERG (ARASE) Satellite

    Science.gov (United States)

    Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.

  6. Analysis of single nucleotide variants of HFE gene and association to survival in The Cancer Genome Atlas GBM data.

    Science.gov (United States)

    Lee, Sang Y; Zhu, Junjia; Salzberg, Anna C; Zhang, Bo; Liu, Dajiang J; Muscat, Joshua E; Langan, Sara T; Connor, James R

    2017-01-01

    Human hemochromatosis protein (HFE) is involved in iron metabolism. Two major HFE polymorphisms, H63D and C282Y, have been associated with an increased risk of cancers. Previously, we reported decreased gender effects in overall survival based on H63D or C282Y HFE polymorphisms patients with glioblastoma multiforme (GBM). However, the effect of other single nucleotide variation (SNV) in the HFE gene on the cancer development and progression has not been systematically studied. To expand our finding in a larger sample, and to identify other HFE SNV, we analyzed the frequency of somatic SNV in HFE gene and its relationship to survival in GBM patients using The Cancer Genome Atlas (TCGA) GBM (Caucasian only) database. We found 9 SNVs with increased frequency in blood normal of TCGA GBM patients compared to the 1000Genome. Among 9 SNVs, 7 SNVs were located in the intron and 2 SNVs (i.e., H63D, C282Y) in the exon of HFE gene. The statistical analysis demonstrated that blood normal samples of TCGA GBM have more H63D (p = 0.0002, 95% Confidence interval (CI): 0.2119-0.3223) or C282Y (p = 0.0129, 95% CI: 0.0474-0.1159) HFE polymorphisms than 1000Genome. The Kaplan-Meier survival curve for the 264 GBM samples revealed no difference between wild type (WT) HFE and H63D, and WT HFE and C282Y GBM patients. In addition, there was no difference in the survival of male/female GBM patients based on HFE genotype. There was no correlation between HFE expression and survival. In conclusion, the current results suggest that somatic HFE polymorphisms do not impact GBM patients' survival in the TCGA data set of GBM.

  7. Analysis of single nucleotide variants of HFE gene and association to survival in The Cancer Genome Atlas GBM data.

    Directory of Open Access Journals (Sweden)

    Sang Y Lee

    Full Text Available Human hemochromatosis protein (HFE is involved in iron metabolism. Two major HFE polymorphisms, H63D and C282Y, have been associated with an increased risk of cancers. Previously, we reported decreased gender effects in overall survival based on H63D or C282Y HFE polymorphisms patients with glioblastoma multiforme (GBM. However, the effect of other single nucleotide variation (SNV in the HFE gene on the cancer development and progression has not been systematically studied. To expand our finding in a larger sample, and to identify other HFE SNV, we analyzed the frequency of somatic SNV in HFE gene and its relationship to survival in GBM patients using The Cancer Genome Atlas (TCGA GBM (Caucasian only database. We found 9 SNVs with increased frequency in blood normal of TCGA GBM patients compared to the 1000Genome. Among 9 SNVs, 7 SNVs were located in the intron and 2 SNVs (i.e., H63D, C282Y in the exon of HFE gene. The statistical analysis demonstrated that blood normal samples of TCGA GBM have more H63D (p = 0.0002, 95% Confidence interval (CI: 0.2119-0.3223 or C282Y (p = 0.0129, 95% CI: 0.0474-0.1159 HFE polymorphisms than 1000Genome. The Kaplan-Meier survival curve for the 264 GBM samples revealed no difference between wild type (WT HFE and H63D, and WT HFE and C282Y GBM patients. In addition, there was no difference in the survival of male/female GBM patients based on HFE genotype. There was no correlation between HFE expression and survival. In conclusion, the current results suggest that somatic HFE polymorphisms do not impact GBM patients' survival in the TCGA data set of GBM.

  8. Fermi/GBM Update on the Orbital Ephemeris of Swift J0243.6+6124

    Science.gov (United States)

    Jenke, P.; Wilson-Hodge, C. A.; Malacaria, C.

    2018-02-01

    Using Fermi/GBM data between MJD 58098 and 58154 (2017 December 11 to 2018 February 5) in the 12-50 keV range, we determine a new orbital ephemeris for the newly discovered (ATEL #10809) Be X-ray binary Swift J0243.6+6124.

  9. IMPLICATIONS OF THE TENTATIVE ASSOCIATION BETWEEN GW150914 AND A FERMI -GBM TRANSIENT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Yuan, Qiang; Jin, Zhi-Ping; Fan, Yi-Zhong; Liu, Si-Ming; Wei, Da-Ming [Key Laboratory of dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Science, Nanjing 210008 (China); Zhang, Fu-Wen, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn, E-mail: fwzhang@glut.edu.cn [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2016-08-10

    The merger-driven gamma-ray bursts (GRBs) and their associated gravitational-wave (GW) radiation, if both are successfully detected, have some far-reaching implications, including, for instance: (i) the statistical comparison of the physical properties of the short/long-short GRBs with and without GW detection can test the general origin model; (ii) revealing the physical processes taking place at the central engine; (iii) measuring the velocity of the gravitational wave directly/accurately. In this work, we discuss these implications in the case of a possible association of GW150914/Gamma-ray Burst Monitor (GBM) transient 150914. We compared GBM transient 150914 with other SGRBs and found that such an event may be a distinct outlier in some statistical diagrams, possibly due to its specific binary black hole merger origin. However, the presence of a “new” group of SGRBs with “unusual” physical parameters is also possible. If the outflow of GBM transient 150914 was launched by the accretion onto the nascent black hole, the magnetic activity rather than the neutrino process is likely responsible for the energy extraction, and the accretion disk mass is estimated to be ∼10{sup −5} M {sub ⊙}. The GW150914/GBM transient 150914 association, if confirmed, would provide the first opportunity to directly measure the GW velocity, and its departure from the speed of the light should be within a factor of ∼10{sup −17}.

  10. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.

    2017-12-01

    The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.

  11. Immunoadsorption in Anti-GBM Glomerulonephritis: Case Report in a Child and Literature Review.

    Science.gov (United States)

    Dorval, Guillaume; Lion, Mathilde; Guérin, Sophie; Krid, Saoussen; Galmiche-Rolland, Louise; Salomon, Rémi; Boyer, Olivia

    2017-11-01

    Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a rare autoimmune disease that is characterized by rapidly progressive glomerulonephritis that may be associated with pulmonary hemorrhage. Anti-GBM GN is caused by autoantibodies (classically type G immunoglobulin) directed against the α3 subunit of type IV collagen. Without any appropriate treatment, the disease is generally fulminant, and patient and kidney survival is poor. The current guidelines recommend the use of plasma exchanges and immunosuppressive drugs. Immunoadsorption (IA) can remove pathogenic IgGs from the circulation and do not require plasma infusions, contrary to plasma exchanges. IA has seldom been used in adult patients with good tolerance and efficiency. We report herein the first pediatric case successfully treated with IA combined with immunosuppressive drugs in a 7-year-old girl who presented acute kidney injury (estimated glomerular filtration rate 38 mL/minute/1.73 m 2 ). A kidney biopsy revealed numerous >80% glomerular crescents and linear IgG deposits along the glomerular basement membrane. Ten IA sessions led to rapid and sustained clearance of autoantibodies and improvement of kidney function until 21 months after onset (glomerular filtration rate 87 mL/minute/1.73 m 2 ). No adverse effect was noted. This report adds to the growing body of evidence suggesting IA as a therapeutic alternative to plasma exchanges in anti-GBM GN. The other 27 published pediatric cases of anti-GBM GN are reviewed. Copyright © 2017 by the American Academy of Pediatrics.

  12. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Taka; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT's spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade.

  13. The Clinical and Immunologic Features of Patients With Combined Anti-GBM Disease and Castleman Disease.

    Science.gov (United States)

    Gu, Qiu-Hua; Jia, Xiao-Yu; Hu, Shui-Yi; Wang, Su-Xia; Zou, Wan-Zhong; Cui, Zhao; Zhao, Ming-Hui

    2018-06-01

    Patients with both anti-glomerular basement membrane (anti-GBM) disease and Castleman disease have been rarely reported. In this study, we report 3 patients with this combination. They had immunologic features similar to patients with classic anti-GBM disease. Sera from the 3 patients recognized the noncollagenous (NC) domain of the α3 chain of type IV collagen (α3(IV)NC1) and its 2 major epitopes, EA and EB. All 4 immunogloblin G (IgG) subclasses against α3(IV)NC1 were detectable, with predominance of IgG1. In one patient with lymph node biopsy specimens available, sporadic plasma cells producing α3(IV)NC1-IgG were found, suggesting a causal relationship between the 2 diseases. One patient, who achieved remission with antibody clearance and normalization of serum creatinine and interleukin 6 concentrations after plasma exchange and 3 cycles of chemotherapy, experienced recurrence of anti-GBM antibodies and an increase in interleukin 6 concentration after chemotherapy discontinuation because of adverse effects, but both returned to normal after another cycle of chemotherapy. This clinical course and the pathologic findings support the hypothesis that the Castleman disease-associated tumor cells are the source of the anti-GBM autoantibodies. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. The Latest Space-Borne Observations of TGFs from Fermi-GBM

    Science.gov (United States)

    Fishman, Gerald J.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is detecting about two TGFs per week. This rate has increased by a factor of approx.eight since launch when flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Weaker, un-triggered TGFs are now also being observed about once per day over selected low-latitude regions Americas. The high efficiency and time resolution (2 s) of GBM allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. TGFs are observed to be shorter than previously thought, with an average duration of approx.100 micro-s. The absolute times of TGFs are known to approx.10 micro-s, allowing accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The events are observed in the thick bismuth germanate (BGO) scintillation detectors of GBM with photon energies above 40 MeV. Other new results on the temporal and spectral characteristics of TGFs will be presented, along with properties of several electron-positron TGF events that have been identified.

  15. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Takanori; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT/s spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade

  16. Rituximab in anti-GBM disease: A retrospective study of 8 patients.

    Science.gov (United States)

    Touzot, Maxime; Poisson, Johanne; Faguer, Stanislas; Ribes, David; Cohen, Pascal; Geffray, Loic; Anguel, Nadia; François, Helene; Karras, Alexandre; Cacoub, Patrice; Durrbach, Antoine; Saadoun, David

    2015-06-01

    Anti-glomerular basement membrane (GBM) disease is a rare autoantibody-mediated disorder presenting as rapidly progressive glomerulonephritis, and often with pulmonary hemorrhage. Antibody removal with plasmapheresis and immunosuppressive drugs are the cornerstones of the treatment. Data regarding the use of specific B-cell depleting therapy such as rituximab are lacking. We conducted a retrospective observational study of 8 patients with severe and/or refractory GBM disease that received rituximab therapy. Eight patients (2 men, 6 women) with a mean age of 26 ± 13.1 years old were included. Seven had severe renal involvement [median creatinin level was 282 μmol/l, range (65-423)] requiring high immunosuppressive or plasmapheresis dependent, and two had relapse of pulmonary hemorrhage including one with renal failure. Patients received an initial immunosuppressive treatment including steroid and cyclosphosphamide (n = 8) and plasmapheresis (n = 5). Except one late relapse, rituximab therapy was started within two months after diagnosis. All patients except one received 4 weekly dose of rituximab (375 mg(2)). Anti-GBM antibodies were still present in 6/8 patients, at rituximab initiation. Complete remission was observed in 7 out of 8 patients, mostly 3 months after rituximab therapy. After a mean follow-up of 25.6 months (range 4-93), patient and renal survival were 100% and 75% respectively, but rituximab use did not improve GFR. Anti-GBM antibodies remained negative for all patients during follow-up. Only one patient developed a severe bacterial infection but no opportunistic or viral infections were reported. Rituximab may represent an additional and/or alternative therapy in the induction treatment of anti-GBM disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).

    Science.gov (United States)

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P

    2016-02-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  18. MGMT inactivation and clinical response in newly diagnosed GBM patients treated with Gliadel.

    Science.gov (United States)

    Grossman, Rachel; Burger, Peter; Soudry, Ethan; Tyler, Betty; Chaichana, Kaisorn L; Weingart, Jon; Olivi, Alessandro; Gallia, Gary L; Sidransky, David; Quiñones-Hinojosa, Alfredo; Ye, Xiaobu; Brem, Henry

    2015-12-01

    We examined the relationship between the O(6)-methylguanine-methyltransferase (MGMT) methylation status and clinical outcomes in newly diagnosed glioblastoma multiforme (GBM) patients who were treated with Gliadel wafers (Eisai, Tokyo, Japan). MGMT promoter methylation has been associated with increased survival among patients with GBM who are treated with various alkylating agents. MGMT promoter methylation, in DNA from 122 of 160 newly diagnosed GBM patients treated with Gliadel, was determined by a quantitative methylation-specific polymerase chain reaction, and was correlated with overall survival (OS) and recurrence-free survival (RFS). The MGMT promoter was methylated in 40 (32.7%) of 122 patients. The median OS was 13.5 months (95% confidence interval [CI] 11.0-14.5) and RFS was 9.4 months (95% CI 7.8-10.2). After adjusting for age, Karnofsky performance score, extent of resection, temozolomide (TMZ) and radiation therapy (RT), the newly diagnosed GBM patients with MGMT methylation had a 15% reduced mortality risk, compared to patients with unmethylated MGMT (hazard ratio 0.85; 95% CI 0.56-1.31; p=0.46). The patients aged over 70 years with MGMT methylation had a significantly longer median OS of 13.5 months, compared to 7.6 months in patients with unmethylated MGMT (p=0.027). A significant difference was also found in older patients, with a median RFS of 13.1 versus 7.6 months for methylated and unmethylated MGMT groups, respectively (p=0.01). Methylation of the MGMT promoter in newly diagnosed GBM patients treated with Gliadel, RT and TMZ, was associated with significantly improved OS compared to the unmethylated population. In elderly patients, methylation of the MGMT promoter was associated with significantly better OS and RFS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  20. Calibration of the radiation monitor onboard Akebono using Geant4

    Science.gov (United States)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  1. Tumour cell dormancy as a contributor to the reduced survival of GBM patients who received standard therapy.

    Science.gov (United States)

    Tong, Luqing; Yi, Li; Liu, Peidong; Abeysekera, Iruni Roshanie; Hai, Long; Li, Tao; Tao, Zhennan; Ma, Haiwen; Xie, Yang; Huang, Yubao; Yu, Shengping; Li, Jiabo; Yuan, Feng; Yang, Xuejun

    2018-07-01

    Glioblastoma multiforme (GBM) is a fatal cancer with varying life expectancy, even for patients undergoing the same standard therapy. Identification of differentially expressed genes in GBM patients with different survival rates may benefit the development of effective therapeutic strategies. In the present study, key pathways and genes correlated with survival in GBM patients were screened with bioinformatic analysis. Included in the study were 136 eligible patients who had undertaken surgical resection of GBM followed by temozolomide (TMZ) chemoradiation and long-term therapy with TMZ. A total of 383 differentially expressed genes (DEGs) related to GBM survival were identified. Gene Ontology and pathway enrichment analysis as well as hub gene screening and module analysis were performed. As expected, angiogenesis and migration of GBM cells were closely correlated with a poor prognosis. Importantly, the results also indicated that cell dormancy was an essential contributor to the reduced survival of GBM patients. Given the lack of specific targeted genes and pathways known to be involved in tumour cell dormancy, we proposed enriched candidate genes related to the negative regulation of cell proliferation, signalling pathways regulating pluripotency of stem cells and neuroactive ligand-receptor interaction, and 3 hub genes (FTH1, GRM1 and DDIT3). Maintaining persistent cell dormancy or preventing tumour cells from entering dormancy during chemoradiation should be a promising therapeutic strategy.

  2. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    Science.gov (United States)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  3. TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric GBM Segmentation in the TCGA-GBM Dataset: Prognosis and Correlation with VASARI Features

    International Nuclear Information System (INIS)

    Rios Velazquez, E; Meier, R; Dunn, W; Gutman, D; Alexander, B; Wiest, R; Reyes, M; Bauer, S; Aerts, H

    2015-01-01

    Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showed high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research

  4. TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric GBM Segmentation in the TCGA-GBM Dataset: Prognosis and Correlation with VASARI Features

    Energy Technology Data Exchange (ETDEWEB)

    Rios Velazquez, E [Dana-Farber Cancer Institute | Harvard Medical School, Boston, MA (United States); Meier, R [Institute for Surgical Technology and Biomechanics, Bern, NA (Switzerland); Dunn, W; Gutman, D [Emory University School of Medicine, Atlanta, GA (United States); Alexander, B [Dana- Farber Cancer Institute, Brigham and Womens Hospital, Harvard Medic, Boston, MA (United States); Wiest, R; Reyes, M [Institute for Surgical Technology and Biomechanics, University of Bern, Bern, NA (Switzerland); Bauer, S [Institute for Surgical Technology and Biomechanics, Support Center for Adva, Bern, NA (Switzerland); Aerts, H [Dana-Farber/Brigham Womens Cancer Center, Boston, MA (United States)

    2015-06-15

    Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showed high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research.

  5. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I.

    Science.gov (United States)

    Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen

    2011-11-15

    The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.

  6. DW-MRI as a Predictive Biomarker of Radiosensitization of GBM through Targeted Inhibition of Checkpoint Kinases.

    Science.gov (United States)

    Williams, Terence M; Galbán, Stefanie; Li, Fei; Heist, Kevin A; Galbán, Craig J; Lawrence, Theodore S; Holland, Eric C; Thomae, Tami L; Chenevert, Thomas L; Rehemtulla, Alnawaz; Ross, Brian D

    2013-04-01

    The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.

  7. Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B

    2014-01-01

    Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously

  8. Fresh water generators onboard a floating platform

    International Nuclear Information System (INIS)

    Tewari, P.K.; Verma, R.K.; Misra, B.M.; Sadhulkan, H.K.

    1997-01-01

    A dependable supply of fresh water is essential for any ocean going vessel. The operating and maintenance personnel on offshore platforms and marine structures also require a constant and regular supply of fresh water to meet their essential daily needs. A seawater thermal desalination unit onboard delivers good quality fresh water from seawater. The desalination units developed by Bhabha Atomic Research Centre (BARC) suitable for ocean going vessels and offshore platforms have been discussed. Design considerations of such units with reference to floating platforms and corrosive environments have been presented. The feasibility of coupling a low temperature vacuum evaporation (LTVE) desalination plant suitable for an onboard floating platform to a PHWR nuclear power plant has also been discussed. (author). 1 ref., 3 figs, 2 tabs

  9. On-boarding the Middle Manager.

    Science.gov (United States)

    OʼConnor, Mary

    The trend of promoting clinical experts into management roles continues. New middle managers need a transitional plan that includes support, mentoring, and direction from senior leaders, including the chief nursing officer (CNO). This case study demonstrates how the CNO of one organization collaborated with a faculty member colleague to develop and implement a yearlong personalized on-boarding program for a group of new nurse middle managers.

  10. Autonomous onboard optical processor for driving aid

    Science.gov (United States)

    Attia, Mondher; Servel, Alain; Guibert, Laurent

    1995-01-01

    We take advantage of recent technological advances in the field of ferroelectric liquid crystal silicon back plane optoelectronic devices. These are well suited to perform massively parallel processing tasks. That choice enables the design of low cost vision systems and allows the implementation of an on-board system. We focus on transport applications such as road sign recognition. Preliminary in-car experimental results are presented.

  11. Lunar Penetrating Radar onboard the Chang'e-3 mission

    International Nuclear Information System (INIS)

    Fang Guang-You; Zhou Bin; Ji Yi-Cai; Zhang Qun-Ying; Shen Shao-Xiang; Li Yu-Xi; Guan Hong-Fei; Tang Chuan-Jun; Gao Yun-Ze; Lu Wei; Ye Sheng-Bo; Han Hai-Dong; Zheng Jin; Wang Shu-Zhi

    2014-01-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed

  12. Neil Hayes, M.D., M.P.H., Explains TCGA Findings on GBM Subtypes - TCGA

    Science.gov (United States)

    New findings by researchers at UNC Lineberger Comprehensive Cancer Center suggest that the most common form of malignant brain cancer in adults, glioblastoma multiforme (GBM), is probably not a single disease but a set of diseases, each with a distinct underlying molecular disease process. The study was published by Cell Press in the January issue of the journal Cancer Cell and the researchers are part of the The Cancer Genome Atlas.

  13. Glioblastoma multiforme (GBM) in the elderly: initial treatment strategy and overall survival.

    Science.gov (United States)

    Glaser, Scott M; Dohopolski, Michael J; Balasubramani, Goundappa K; Flickinger, John C; Beriwal, Sushil

    2017-08-01

    The EORTC trial which solidified the role of external beam radiotherapy (EBRT) plus temozolomide (TMZ) in the management of GBM excluded patients over age 70. Randomized studies of elderly patients showed that hypofractionated EBRT (HFRT) alone or TMZ alone was at least equivalent to conventionally fractionated EBRT (CFRT) alone. We sought to investigate the practice patterns and survival in elderly patients with GBM. We identified patients age 65-90 in the National Cancer Data Base (NCDB) with histologically confirmed GBM from 1998 to 2012 and known chemotherapy and radiotherapy status. We analyzed factors predicting treatment with EBRT alone vs. EBRT plus concurrent single-agent chemotherapy (CRT) using multivariable logistic regression. Similarly, within the EBRT alone cohort we compared CFRT (54-65 Gy at 1.7-2.1 Gy/fraction) to HFRT (34-60 Gy at 2.5-5 Gy/fraction). Multivariable Cox proportional hazards model (MVA) with propensity score adjustment was used to compare survival. A total of 38,862 patients were included. Initial treatments for 1998 versus 2012 were: EBRT alone = 50 versus 10%; CRT = 6 versus 50%; chemo alone = 1.6% (70% single-agent) versus 3.2% (94% single-agent). Among EBRT alone patients, use of HFRT (compared to CFRT) increased from 13 to 41%. Numerous factors predictive for utilization of CRT over EBRT alone and for HFRT over CFRT were identified. Median survival and 1-year overall survival were higher in the CRT versus EBRT alone group at 8.6 months vs. 5.1 months and 36.0 versus 15.7% (p GBM patients in the United States, CRT is the most common initial treatment and appears to offer a survival advantage over EBRT alone. Adoption of hypofractionation has increased over time but continues to be low.

  14. The post-surgical era of GBM: How molecular biology has impacted on our clinical management. A review.

    Science.gov (United States)

    Monticelli, M; Zeppa, P; Zenga, F; Altieri, R; Mammi, M; Bertero, L; Castellano, I; Cassoni, P; Melcarne, A; La Rocca, G; Sabatino, G; Ducati, A; Garbossa, D

    2018-07-01

    Glioblastoma (GBM) is the most common glioma in adults, with incidence increasing by 3% per year. According to the World Health Organization Classification of Central Nervous System Tumors, GBM is considered a grade IV tumor due to its malignant behavior. The aim of this review is to summarize the main biological aspects of GBM. In particular, we focused our attention on those alterations which have been proven to have an impact on patients' outcome, mainly in terms of overall survival (OS), or on the tumor response to therapies. We have also analyzed the cellular biology and the interactions between GBM and the surrounding environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. ON THE FERMI -GBM EVENT 0.4 s AFTER GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, J.; Yu, H.-F. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching (Germany); Burgess, J. M. [Oskar Klein Centre for Cosmoparticle Physics, SE-106 91 Stockholm (Sweden); Savchenko, V., E-mail: jcg@mpe.mpg.de, E-mail: sptfung@mpe.mpg.de, E-mail: jamesb@kth.se, E-mail: savchenk@apc.in2p3.fr [Francois Arago Centre, APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire Paris, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France)

    2016-08-20

    In view of the recent report by Connaughton et al., we analyze continuous time-tagged event (TTE) data of Fermi -gamma-ray burst monitor (GBM) around the time of the gravitational-wave event GW 150914. We find that after proper accounting for low-count statistics, the GBM transient event at 0.4 s after GW 150914 is likely not due to an astrophysical source, but consistent with a background fluctuation, removing the tension between the INTEGRAL /ACS non-detection and GBM. Additionally, reanalysis of other short GRBs shows that without proper statistical modeling the fluence of faint events is over-predicted, as verified for some joint GBM–ACS detections of short GRBs. We detail the statistical procedure to correct these biases. As a result, faint short GRBs, verified by ACS detections, with significances in the broadband light curve even smaller than that of the GBM–GW150914 event are recovered as proper non-zero source, while the GBM–GW150914 event is consistent with zero fluence.

  16. Experimental anti-GBM disease as a tool for studying spontaneous lupus nephritis.

    Science.gov (United States)

    Fu, Yuyang; Du, Yong; Mohan, Chandra

    2007-08-01

    Lupus nephritis is an immune-mediated disease, where antibodies and T cells both play pathogenic roles. Since spontaneous lupus nephritis in mouse models takes 6-12 months to manifest, there is an urgent need for a mouse model that can be used to delineate the pathogenic processes that lead to immune nephritis, over a quicker time frame. We propose that the experimental anti-glomerular basement membrane (GBM) disease model might be a suitable tool for uncovering some of the molecular steps underlying lupus nephritis. This article reviews the current evidence that supports the use of the experimental anti-GBM nephritis model for studying spontaneous lupus nephritis. Importantly, out of about 25 different molecules that have been specifically examined in the experimental anti-GBM model and also spontaneous lupus nephritis, all influence both diseases concordantly, suggesting that the experimental model might be a useful tool for unraveling the molecular basis of spontaneous lupus nephritis. This has important clinical implications, both from the perspective of genetic susceptibility as well as clinical therapeutics.

  17. Farewell to GBM-O: Genomic and transcriptomic profiling of glioblastoma with oligodendroglioma component reveals distinct molecular subgroups.

    Science.gov (United States)

    Hinrichs, Benjamin H; Newman, Scott; Appin, Christina L; Dunn, William; Cooper, Lee; Pauly, Rini; Kowalski, Jeanne; Rossi, Michael R; Brat, Daniel J

    2016-01-13

    Glioblastoma with oligodendroglioma component (GBM-O) was recognized as a histologic pattern of glioblastoma (GBM) by the World Health Organization (WHO) in 2007 and is distinguished by the presence of oligodendroglioma-like differentiation. To better understand the genetic underpinnings of this morphologic entity, we performed a genome-wide, integrated copy number, mutational and transcriptomic analysis of eight (seven primary, primary secondary) cases. Three GBM-O samples had IDH1 (p.R132H) mutations; two of these also demonstrated 1p/19q co-deletion and had a proneural transcriptional profile, a molecular signature characteristic of oligodendroglioma. The additional IDH1 mutant tumor lacked 1p/19q co-deletion, harbored a TP53 mutation, and overall, demonstrated features most consistent with IDH mutant (secondary) GBM. Finally, five tumors were IDH wild-type (IDHwt) and had chromosome seven gains, chromosome 10 losses, and homozygous 9p deletions (CDKN2A), alterations typical of IDHwt (primary) GBM. IDHwt GBM-Os also demonstrated EGFR and PDGFRA amplifications, which correlated with classical and proneural expression subtypes, respectively. Our findings demonstrate that GBM-O is composed of three discrete molecular subgroups with characteristic mutations, copy number alterations and gene expression patterns. Despite displaying areas that morphologically resemble oligodendroglioma, the current results indicate that morphologically defined GBM-O does not correspond to a particular genetic signature, but rather represents a collection of genetically dissimilar entities. Ancillary testing, especially for IDH and 1p/19q, should be used for determining these molecular subtypes.

  18. Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM

    International Nuclear Information System (INIS)

    Chaplin, Vandiver; Bhat, Narayana; Briggs, Michael S.; Connaughton, Valerie

    2013-01-01

    Pulse-pileup affects most photon counting systems and occurs when photon detections occur faster than the detector's shaping and recovery time. At high input rates, shaped pulses interfere and the source spectrum, as well as intensity information, get distorted. For instruments using bipolar pulse shaping there are two aspects to consider: ‘peak’ and ‘tail’ pileup effects, which raise and lower the measured energy, respectively. Peak effects have been extensively modeled in the past. Tail effects have garnered less attention due to increased complexity. We leverage previous work to derive an accurate, semi-analytical prediction for peak and tail pileup including high order effects. We use the pulse shape of the detectors of the Fermi Gamma-ray Burst Monitor. The measured spectrum is calculated by expressing exposure time with a state-space expansion of overlapping pileup states and is valid up to very high rates. The model correctly predicts deadtime and pileup losses, and energy-dependent losses due to tail subtraction (sub-threshold) effects. We discuss total losses in terms of the true rate of photon detections versus the recorded count rate. -- Highlights: • A derivation of pulse-pileup spectral and intensity distortion is presented. • Applies to bipolar shaping instruments in general, but is calculated for Fermi-GBM. • Exposure time is partitioned with pulse widths as states of a Poisson process. • Each state has an associated energy distribution function for peak and tail pileup. • The total spectrum is the union of pulse states and their associated spectra

  19. Comparison of MODIS and VIIRS On-board Blackbody Performance

    Science.gov (United States)

    Xiong, Jack; Butler, Jim; Wu, Aisheng; Chiang, Vincent; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    MODIS has 16 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 14.4 microns. MODIS TEBs are calibrated on-orbit by a v-grooved blackbody (BB) on a scan-by-scan basis. The BB temperatures are measured by a set of 12 thennistors. As expected, the BB temperature uncertainty and stability have direct impact on the quality of TEB calibration and, therefore, the quality of the science products derived from TEB observations. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. Their on-board BB performance has been satisfactory in meeting the TEB calibration requirements. The first VIIRS, launched on-board the Suomi NPP spacecraft on October 28, 2011, has successfully completed its initial Intensive Calibration and Validation (ICV) phase. VIIRS has 7 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 12.4 microns. Designed with strong MODIS heritage, VIIRS uses a similar BB for its TEB calibration. Like MODIS, VIIRS BB is nominally controlled at a pre-determined temperature (set point). Periodically, a BB Warm-Up and Cool-Down (WUCD) operation is performed, during which the BB temperatures vary from instrument ambient (temperature) to 315K. This paper examines NPP VIIRS BB on-orbit performance. It focuses on its BB temperature scan-to-scan variations at nominally controlled temperature as well as during its WUCD operation and their impact on TEB calibration uncertainty. Comparisons of VIIRS (NPP) and MODIS (Terra and Aqua) BB on-orbit performance and lessons learned for future improvements are also presented in this paper.

  20. Variant allele frequency enrichment analysis in vitro reveals sonic hedgehog pathway to impede sustained temozolomide response in GBM.

    Science.gov (United States)

    Biswas, Nidhan K; Chandra, Vikas; Sarkar-Roy, Neeta; Das, Tapojyoti; Bhattacharya, Rabindra N; Tripathy, Laxmi N; Basu, Sunandan K; Kumar, Shantanu; Das, Subrata; Chatterjee, Ankita; Mukherjee, Ankur; Basu, Pryiadarshi; Maitra, Arindam; Chattopadhyay, Ansuman; Basu, Analabha; Dhara, Surajit

    2015-01-21

    Neoplastic cells of Glioblastoma multiforme (GBM) may or may not show sustained response to temozolomide (TMZ) chemotherapy. We hypothesize that TMZ chemotherapy response in GBM is predetermined in its neoplastic clones via a specific set of mutations that alter relevant pathways. We describe exome-wide enrichment of variant allele frequencies (VAFs) in neurospheres displaying contrasting phenotypes of sustained versus reversible TMZ-responses in vitro. Enrichment of VAFs was found on genes ST5, RP6KA1 and PRKDC in cells showing sustained TMZ-effect whereas on genes FREM2, AASDH and STK36, in cells showing reversible TMZ-effect. Ingenuity pathway analysis (IPA) revealed that these genes alter cell-cycle, G2/M-checkpoint-regulation and NHEJ pathways in sustained TMZ-effect cells whereas the lysine-II&V/phenylalanine degradation and sonic hedgehog (Hh) pathways in reversible TMZ-effect cells. Next, we validated the likely involvement of the Hh-pathway in TMZ-response on additional GBM neurospheres as well as on GBM patients, by extracting RNA-sequencing-based gene expression data from the TCGA-GBM database. Finally, we demonstrated TMZ-sensitization of a TMZ non-responder neurosphere in vitro by treating them with the FDA-approved pharmacological Hh-pathway inhibitor vismodegib. Altogether, our results indicate that the Hh-pathway impedes sustained TMZ-response in GBM and could be a potential therapeutic target to enhance TMZ-response in this malignancy.

  1. Study Protocol: Early Stereotactic Gamma Knife Radiosurgery to Residual Tumor After Surgery of Newly Diagnosed Glioblastoma (Gamma-GBM).

    Science.gov (United States)

    Brehmer, Stefanie; Grimm, Mario Alexander; Förster, Alex; Seiz-Rosenhagen, Marcel; Welzel, Grit; Stieler, Florian; Wenz, Frederik; Groden, Christoph; Mai, Sabine; Hänggi, Daniel; Giordano, Frank Anton

    2018-04-24

    Glioblastoma (GBM) is the most common malignant brain tumor in adult patients. Tumor recurrence commonly occurs around the resection cavity, especially after subtotal resection (STR). Consequently, the extent of resection correlates with overall survival (OS), suggesting that depletion of postoperative tumor remnants will improve outcome. To assess safety and efficacy of adding stereotactic radiosurgery (SRS) to the standard treatment of GBM in patients with postoperative residual tumor. Gamma-GBM is a single center, open-label, prospective, single arm, phase II study that includes patients with newly diagnosed GBM (intraoperative via frozen sections) who underwent STR (residual tumor will be identified by native and contrast enhanced T1-weighted magnetic resonance imaging scans). All patients will receive SRS with 15 Gy (prescribed to the 50% isodose enclosing all areas of residual tumor) early (within 24-72 h) after surgery. Thereafter, all patients undergo standard-of-care therapy for GBM (radiochemotherapy with 60 Gy external beam radiotherapy [EBRT] plus concomitant temozolomide and 6 cycles of adjuvant temozolomide chemotherapy). The primary outcome is median progression-free survival, secondary outcomes are median OS, occurrence of radiation induced acute (3 mo post-SRS) neurotoxicity and incidence of symptomatic radionecrosis. We expect to detect efficacy and safety signals by the immediate application of SRS to standard-of-care therapy in newly diagnosed GBM. Early postoperative SRS to areas of residual tumor could bridge the therapeutic gap between surgery and adjuvant therapies.

  2. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    Science.gov (United States)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  3. On-Board Rendezvous Targeting for Orion

    Science.gov (United States)

    Weeks, Michael W.; DSouza, Christopher N.

    2010-01-01

    The Orion On-board GNC system is among the most complex ever developed for a space mission. It is designed to operate autonomously (independent of the ground). The rendezvous system in particular was designed to operate on the far side of the moon, and in the case of loss-of-communications with the ground. The vehicle GNC system is designed to retarget the rendezvous maneuvers, given a mission plan. As such, all the maneuvers which will be performed by Orion, have been designed and are being incorporated into the flight code.

  4. Method of optimization onboard communication network

    Science.gov (United States)

    Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.

    2018-02-01

    In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.

  5. On-board processing for telecommunications satellites

    Science.gov (United States)

    Nuspl, P. P.; Dong, G.

    1991-01-01

    In this decade, communications satellite systems will probably face dramatic challenges from alternative transmission means. To balance and overcome such competition, and to prepare for new requirements, INTELSAT has developed several on-board processing techniques, including Satellite-Switched TDMA (SS-TDMA), Satellite-Switched FDMA (SS-FDMA), several Modulators/Demodulators (Modem), a Multicarrier Multiplexer and Demodulator MCDD), an International Business Service (IBS)/Intermediate Data Rate (IDR) BaseBand Processor (BBP), etc. Some proof-of-concept hardware and software were developed, and tested recently in the INTELSAT Technical Laboratories. These techniques and some test results are discussed.

  6. Orienting and Onboarding Clinical Nurse Specialists: A Process Improvement Project.

    Science.gov (United States)

    Garcia, Mayra G; Watt, Jennifer L; Falder-Saeed, Karie; Lewis, Brennan; Patton, Lindsey

    Clinical nurse specialists (CNSs) have a unique advanced practice role. This article describes a process useful in establishing a comprehensive orientation and onboarding program for a newly hired CNS. The project team used the National Association of Clinical Nurse Specialists core competencies as a guide to construct a process for effectively onboarding and orienting newly hired CNSs. Standardized documents were created for the orientation process including a competency checklist, needs assessment template, and professional evaluation goals. In addition, other documents were revised to streamline the orientation process. Standardizing the onboarding and orientation process has demonstrated favorable results. As of 2016, 3 CNSs have successfully been oriented and onboarded using the new process. Unique healthcare roles require special focus when onboarding and orienting into a healthcare system. The use of the National Association of Clinical Nurse Specialists core competencies guided the project in establishing a successful orientation and onboarding process for newly hired CNSs.

  7. Identifying Onboarding Heuristics for Free-to-Play Mobile Games

    DEFF Research Database (Denmark)

    Thomsen, Line Ebdrup; Weigert Petersen, Falko; Drachen, Anders

    2016-01-01

    a set of heuristics for the design of onboarding phases in mobile games is presented. The heuristics are identified by a lab-based mixed-methods experiment, utilizing lightweight psycho-physiological measures together with self-reported player responses, across three titles that cross the genres...... of puzzle games, base builders and arcade games, and utilize different onboarding phase design approaches. Results showcase how heuristics can be used to design engaging onboarding phases in mobile games....

  8. Selective anti-tumor activity of the novel fluoropyrimidine polymer F10 towards G48a orthotopic GBM tumors.

    Science.gov (United States)

    Gmeiner, William H; Lema-Tome, Carla; Gibo, Denise; Jennings-Gee, Jamie; Milligan, Carol; Debinski, Waldemar

    2014-02-01

    F10 is a novel anti-tumor agent with minimal systemic toxicity in vivo and which displays strong cytotoxicity towards glioblastoma (GBM) cells in vitro. Here we investigate the cytotoxicity of F10 towards GBM cells and evaluate the anti-tumor activity of locally-administered F10 towards an orthotopic xenograft model of GBM. The effects of F10 on thymidylate synthase (TS) inhibition and Topoisomerase 1 (Top1) cleavage complex formation were evaluated using TS activity assays and in vivo complex of enzyme bioassays. Cytotoxicity of F10 towards normal brain was evaluated using cortices from embryonic (day 18) mice. F10 displays minimal penetrance of the blood-brain barrier and was delivered by intra-cerebral (i.c.) administration and prospective anti-tumor response towards luciferase-expressing G48a human GBM tumors in nude mice was evaluated using IVIS imaging. Histological examination of tumor and normal brain tissue was used to assess the selectivity of anti-tumor activity. F10 is cytotoxic towards G48a, SNB-19, and U-251 MG GBM cells through dual targeting of TS and Top1. F10 is not toxic to murine primary neuronal cultures. F10 is well-tolerated upon i.c. administration and induces significant regression of G48a tumors that is dose-dependent. Histological analysis from F10-treated mice revealed tumors were essentially completely eradicated in F10-treated mice while vehicle-treated mice displayed substantial infiltration into normal tissue. F10 displays strong efficacy for GBM treatment with minimal toxicity upon i.c. administration establishing F10 as a promising drug-candidate for treating GBM in human patients.

  9. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    Science.gov (United States)

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  10. Flight Hardware Virtualization for On-Board Science Data Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  11. Routinely used immunoassays do not detect circulating anti-GBM antibodies against native NC1 hexamer and EA epitope of the α3 chain of type IV collagen.

    Science.gov (United States)

    Clavarino, Giovanna; Gauthier, Arnaud; Hellmark, Thomas; Carron, Pierre-Louis; Giovannini, Diane; Colliard, Sophie; Dragon-Durey, Marie-Agnès; Segelmark, Mårten; Cesbron, Jean-Yves; Dumestre-Pérard, Chantal

    2018-04-12

    Detection of circulating anti-GBM antibodies has a key role for the diagnosis of Goodpasture syndrome but immunoassays using purified or recombinant alpha3(IV)NC1 as antigen do not recognize all anti-GBM antibodies. We show that anti-GBM antibodies directed against epitopes in their native conformation or cryptic epitopes are detected by indirect immunofluorescence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SU-F-R-04: Radiomics for Survival Prediction in Glioblastoma (GBM)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Molitoris, J; Bhooshan, N; Choi, W; Lu, W; Mehta, M; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States); Tan, S [Huazhong University of Science & Technology, Wuhan (China); Giacomelli, I; Scartoni, D [University of Florence, Florence (Italy); Gzell, C [Northern Sydney Cancer Centre, Sydney (Australia)

    2016-06-15

    Purpose: To develop a quantitative radiomics approach for survival prediction of glioblastoma (GBM) patients treated with chemoradiotherapy (CRT). Methods: 28 GBM patients who received CRT at our institution were retrospectively studied. 255 radiomic features were extracted from 3 gadolinium-enhanced T1 weighted MRIs for 2 regions of interest (ROIs) (the surgical cavity and its surrounding enhancement rim). The 3 MRIs were at pre-treatment, 1-month and 3-month post-CRT. The imaging features comprehensively quantified the intensity, spatial variation (texture), geometric property and their spatial-temporal changes for the 2 ROIs. 3 demographics features (age, race, gender) and 12 clinical parameters (KPS, extent of resection, whether concurrent temozolomide was adjusted/stopped and radiotherapy related information) were also included. 4 Machine learning models (logistic regression (LR), support vector machine (SVM), decision tree (DT), neural network (NN)) were applied to predict overall survival (OS) and progression-free survival (PFS). The number of cases and percentage of cases predicted correctly were collected and AUC (area under the receiver operating characteristic (ROC) curve) were determined after leave-one-out cross-validation. Results: From univariate analysis, 27 features (1 demographic, 1 clinical and 25 imaging) were statistically significant (p<0.05) for both OS and PFS. Two sets of features (each contained 24 features) were algorithmically selected from all features to predict OS and PFS. High prediction accuracy of OS was achieved by using NN (96%, 27 of 28 cases were correctly predicted, AUC = 0.99), LR (93%, 26 of 28 cases were correctly predicted, AUC = 0.95) and SVM (93%, 26 of 28 cases were correctly predicted, AUC = 0.90). When predicting PFS, NN obtained the highest prediction accuracy (89%, 25 of 28 cases were correctly predicted, AUC = 0.92). Conclusion: Radiomics approach combined with patients’ demographics and clinical parameters can

  13. An Event Observed as a Terrestrial Gamma-ray Flash (TGF) and a Terrestrial Electron Beam (TEB) by Fermi GBM

    Science.gov (United States)

    Stanbro, M.; Briggs, M. S.; Cramer, E.; Dwyer, J. R.; Roberts, O.

    2017-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are sub-ms, intense flashes of gamma-rays. They are due to the acceleration of electrons with relativistic energies in thunderstorms that emit gamma-rays via bremsstrahlung. When these photons reach the upper atmosphere, they can produce secondary electrons and positrons that escape the atmosphere and propagate along the Earth's magnetic field line. Space instruments can detect these charged particles, known as Terrestrial Electron Beams (TEBs), after traveling thousands of kilometers from the thunderstorm. We present an event that was observed by the Fermi Gamma-ray Burst Monitor (GBM) as both a TGF and a TEB. To our knowledge this is the first such event that has ever been observed. We interpret the first pulse as a TGF with a duration of 0.2 ms. After 0.5 ms a second pulse is seen with a duration of 2 ms that we interpret as a TEB. Confirming this interpretation, a third pulse is seen 90 ms later, which is understood as a TEB magnetic mirror pulse. The World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN) detected a sferic, under the spacecraft footprint and within the southern magnetic footprint that is simultaneous with the first pulse. Along with the sferic, this unique observation allows us for the first time to test TGF and TEB models for the same event. We present Monte Carlo simulations of the first two pulses, including pitch angles for electrons and positrons, to see if the models can consistently describe the TGF/TEB spectra and time profiles originating from the same source.

  14. Size of shell universe in light of Fermi GBM transient associated with GW150914

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2016-12-01

    Full Text Available The possible burst occurred in location and temporal consistence with gravitational wave event GW150914, as reported by Fermi GBM, offers a new way of constraining models with extra dimensions. Using the time delay in arrival of the gamma ray transient observed by Fermi Gamma-ray Burst Monitor (GMB relative to the gravitational waves event triggered by the LIGO detectors we investigate the size of the spherical brane-universe expanding in multi-dimensional space–time. It is shown that a joint observation of gravitational waves in association with gamma ray burst can provide a very stringent bound on the spatial curvature of the brain.

  15. Size of shell universe in light of Fermi GBM transient associated with GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Gogberashvili, Merab, E-mail: gogber@gmail.com [Department of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia (United States); Department of High Energy Physics, Andronikashvili Institute of Physics, Tbilisi 0177, Georgia (United States); Sakharov, Alexander S., E-mail: Alexandre.Sakharov@cern.ch [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Physics Department, Manhattan College, 4513 Manhattan College Parkway, Riverdale, NY 10471 (United States); Experimental Physics Department, CERN, CH-1211 Genève 23 (Switzerland); Sarkisyan-Grinbaum, Edward K., E-mail: sedward@cern.ch [Experimental Physics Department, CERN, CH-1211 Genève 23 (Switzerland); Department of Physics, The University of Texas at Arlington, 502 Yates Street, Box 19059, Arlington, TX 76019 (United States)

    2016-12-10

    The possible burst occurred in location and temporal consistence with gravitational wave event GW150914, as reported by Fermi GBM, offers a new way of constraining models with extra dimensions. Using the time delay in arrival of the gamma ray transient observed by Fermi Gamma-ray Burst Monitor (GMB) relative to the gravitational waves event triggered by the LIGO detectors we investigate the size of the spherical brane-universe expanding in multi-dimensional space–time. It is shown that a joint observation of gravitational waves in association with gamma ray burst can provide a very stringent bound on the spatial curvature of the brain.

  16. Glioblastoma (GBM) effects on quantitative MRI of contralateral normal appearing white matter.

    Science.gov (United States)

    Mehrabian, Hatef; Lam, Wilfred W; Myrehaug, Sten; Sahgal, Arjun; Stanisz, Greg J

    2018-03-28

    The objective was to investigate (with quantitative MRI) whether the normal appearing white matter (NAWM) of glioblastoma (GBM) patients on the contralateral side (cNAWM) was different from NAWM of healthy controls. Thirteen patients with newly diagnosed GBM and nine healthy age-matched controls were MRI-scanned with quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), and transverse relaxation time (T 2 )-mapping. MRI scans were performed after surgery and before chemo-radiation treatment. Comprehensive qMT, CEST, T 2 data were acquired. A two-pool MT model was fit to qMT data in transient state, to calculate MT model parameters [Formula: see text]. CEST signal was isolated by removing the contributions from the MT and direct water saturation, and CEST signal was calculated for Amide (CEST Amide ), Amine (CEST Amine ) and nuclear overhauser effect, NOE (CEST NOE ). There was no difference between GBM patients and normal controls in the qMT properties of the macromolecular pool [Formula: see text]. However, their free water pool spectrum was different (1/R a T 2a , patient  = 28.1 ± 3.9, 1/R a T 2a , control  = 25.0 ± 1.1, p = 0.03). This difference could be attributed to the difference in their T 2 time ([Formula: see text] = 83 ± 4, [Formula: see text] = 88 ± 1, p = 0.004). CEST signals were statistically significantly different with the CEST Amide having the largest difference between the two cohorts (CEST Amide,patient  = 2.8 ± 0.4, CEST Amide,control  = 3.4 ± 0.5, p = 0.009). CEST in cNAWM of GBM patients was lower than healthy controls which could be caused by modified brain metabolism due to tumor cell infiltration. There was no difference in MT properties of the patients and controls, however, the differences in free water pool properties were mainly due to reduced T 2 in cNAWM of the patients (resulting from structural changes and increased cellularity).

  17. Role of extent of resection on quality of life in patients with newly diagnosed GBM.

    Science.gov (United States)

    Choudry, Usama Khalid; Shaikh, Huzaifa Ismail; Nisar, Areeba; Khan, Saad Akhtar; Shamim, Muhammad Shahzad

    2018-01-01

    Glioblastomas known for their adverse outcomes are most reportedly managed by surgical resection. Studies on the impact of (Extent of Resection) EOR against Quality of Life (QOL) are very limited. We have collected data from recent studies in this review to extract a general consensus among the neurosurgeons regarding the EOR. Key parameters like functional independence, neurocognitive improvements and global health status have been explored in the context of QOL. The currently available data suggests that an increased EOR may help improve QOL in GBM patients. With the help of recent advancements it may be possible to attain a better extent of resection while operating on GBMs.

  18. CXCR4 expression varies significantly among different subtypes of glioblastoma multiforme (GBM) and its low expression or hypermethylation might predict favorable overall survival.

    Science.gov (United States)

    Ma, Xinlong; Shang, Feng; Zhu, Weidong; Lin, Qingtang

    2017-09-01

    CXCR4 is an oncogene in glioblastoma multiforme (GBM) but the mechanism of its dysregulation and its prognostic value in GBM have not been fully understood. Bioinformatic analysis was performed by using R2 and the UCSC Xena browser based on data from GSE16011 in GEO datasets and in GBM cohort in TCGA database (TCGA-GBM). Kaplan Meier curves of overall survival (OS) were generated to assess the association between CXCR4 expression/methylation and OS in patients with GBM. GBM patients with high CXCR4 expression had significantly worse 5 and 10 yrs OS (p GBM subtypes, there was an inverse relationship between overall DNA methylation and CXCR4 expression. CXCR4 expression was significantly lower in CpG island methylation phenotype (CIMP) group than in non CIMP group. Log rank test results showed that patients with high CXCR4 methylation (first tertile) had significantly better 5 yrs OS (p = 0.038). CXCR4 expression is regulated by DNA methylation in GBM and its low expression or hypermethylation might indicate favorable OS in GBM patients.

  19. Data processing in Software-type Wave-Particle Interaction Analyzer onboard the Arase satellite

    Science.gov (United States)

    Hikishima, Mitsuru; Kojima, Hirotsugu; Katoh, Yuto; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Miyoshi, Yoshizumi; Asamura, Kazushi; Takashima, Takeshi; Yokota, Shoichiro; Kitahara, Masahiro; Matsuda, Shoya

    2018-05-01

    The software-type wave-particle interaction analyzer (S-WPIA) is an instrument package onboard the Arase satellite, which studies the magnetosphere. The S-WPIA represents a new method for directly observing wave-particle interactions onboard a spacecraft in a space plasma environment. The main objective of the S-WPIA is to quantitatively detect wave-particle interactions associated with whistler-mode chorus emissions and electrons over a wide energy range (from several keV to several MeV). The quantity of energy exchanges between waves and particles can be represented as the inner product of the wave electric-field vector and the particle velocity vector. The S-WPIA requires accurate measurement of the phase difference between wave and particle gyration. The leading edge of the S-WPIA system allows us to collect comprehensive information, including the detection time, energy, and incoming direction of individual particles and instantaneous-wave electric and magnetic fields, at a high sampling rate. All the collected particle and waveform data are stored in the onboard large-volume data storage. The S-WPIA executes calculations asynchronously using the collected electric and magnetic wave data, data acquired from multiple particle instruments, and ambient magnetic-field data. The S-WPIA has the role of handling large amounts of raw data that are dedicated to calculations of the S-WPIA. Then, the results are transferred to the ground station. This paper describes the design of the S-WPIA and its calculations in detail, as implemented onboard Arase.[Figure not available: see fulltext.

  20. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells.

    Science.gov (United States)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-01-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  1. Downregulation of ZMYND11 induced by miR-196a-5p promotes the progression and growth of GBM.

    Science.gov (United States)

    Yang, Ji-Peng; Yang, Jian-Kai; Li, Chen; Cui, Zhi-Qiang; Liu, Hong-Jiang; Sun, Xiao-Feng; Geng, Shao-Mei; Lu, Sheng-Kui; Song, Jian; Guo, Cheng-Yong; Jiao, Bao-Hua

    2017-12-16

    ZMYND11 (zinc finger MYND-type containing 11) has been widely regarded to be involved in a variety of cancers as a potential suppressor. However, the biological role and mechanism of ZMYND11 in glioblastoma multiform (GBM) remain unknown. In this study, we found that ZMYND11 expression was remarkably decreased in GBM tissues from 20 cases and cell line (U87) compared to normal brain tissue from 10 cases (P GBM tissue and U87 cells by changing the expression level of miR-196a-5p with lentivirus and plasmid vector. Furthermore, we demonstrated that decreased ZMYND11 could reverse suppressive effect of downregulated miR-196a-5p on U87 by rescue experiment. Taken together, ZMYND11 was demonstrated to be a potential and extremely promising suppressor of GBM, while miRNA-196a-5p was quite an important target of treatment of GBM. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Overview of Green Building Material (GBM Policies and Guidelines with Relevance to Indoor Air Quality Management in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2017-12-01

    Full Text Available The objective of this paper was to offer a preliminary overview of Taiwan’s success in green building material (GBM efforts through legal systems and promotion measures, which are relevant to the contribution to indoor air quality (IAQ due to sustainability and health issues. In the first part of the paper, the IAQ regulations are summarized to highlight the second nation (i.e., Taiwan around the world in IAQ management by the law. In addition, the permissible exposure limits (PEL in Taiwan for airborne hazardous substances were first promulgated in 1974 to deal with occupational health issues in the workplace environment. In the second part of the paper, the developing status of the GBM in Taiwan is analyzed to unravel its connection with the Indoor Air Quality Management Act (IAQMA, promulgated on 23 November 2011. By the end of September 2017, a total of 645 GBM labels have been conferred, covering over 5000 green products. Due to the effectiveness of source control, the healthy GBM occupies most of the market, accounting for about 75%. The IAQMA, which took force in November 2012, is expected to significantly increase the use of healthy GBM in new building construction and remodeling, especially in low formaldehyde (HCHO/volatile organic compound (VOC-emitting products.

  3. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  4. The hard x-ray imager onboard IXO

    Science.gov (United States)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  5. On-board aircrew dosimetry using a semiconductor spectrometer

    CERN Document Server

    Spurny, F

    2002-01-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise these fields. The spectrometer has been in use since spring 2000 on more than 130 return flights to monitor and characterise the on-board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level event, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (7 refs).

  6. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...

  7. Defense Threat Reduction Agency > Careers > Onboarding > Special Programs

    Science.gov (United States)

    Development Work/Life Programs Onboarding Onboarding Overview Before You Report Sponsor Program Getting Here , programs, and practices to help our employees and Service members balance work and family responsibilities . We have put in place family-friendly Work/Life programs and policies designed to create a more

  8. MODELING THE AFTERGLOW OF THE POSSIBLE FERMI -GBM EVENT ASSOCIATED WITH GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Morsony, Brian J. [Department of Astronomy, University of Maryland, 1113 Physical Sciences Complex, College Park, MD 20742-2421 (United States); Workman, Jared C. [Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO 81501 (United States); Ryan, Dominic M., E-mail: morsony@astro.umd.edu [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720-3411 (United States)

    2016-07-10

    We model the possible afterglow of the Fermi Gamma-ray Burst Monitor (GBM) event associated with LIGO detection GW150914, under the assumption that the gamma-rays are produced by a short GRB-like relativistic outflow. We model GW150914-GBM as both a weak, on-axis short GRB and normal short GRB seen far off-axis. Given the large uncertainty in the position of GW150914, we determine that the best chance of finding the afterglow is with ASKAP or possibly the Murchinson Widefield Array (MWA), with the flux from an off-axis short GRB reaching 0.2–4 mJy (0.12–16 mJy) at 150 MHz (863.5 MHz) by 1–12 months after the initial event. At low frequencies, the source would evolve from a hard to soft spectrum over several months. The radio afterglow would be detectable for several months to years after it peaks, meaning the afterglow may still be detectable and increasing in brightness NOW (2016 mid-July). With a localization from the MWA or ASKAP, the afterglow would be detectable at higher radio frequencies with the ATCA and in X-rays with Chandra or XMM .

  9. FERMI GBM OBSERVATIONS OF V404 CYG DURING ITS 2015 OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A.; Veres, P.; Briggs, M. S.; Burns, E. [University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Wilson-Hodge, C. A.; Hui, M. [Marshall Space Flight Center, Huntsville, AL 35812 (United States); Homan, Jeroen [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Connaughton, V.; Finger, M. H., E-mail: peter.a.jenke@nasa.gov [Universities Space Research Association, Huntsville, AL 35805 (United States)

    2016-07-20

    V404 Cygni was discovered in 1989 by the Ginga X-ray satellite during its only previously observed X-ray outburst and soon after confirmed as a black hole binary. On 2015 June 15, the Gamma-ray Burst Monitor (GBM) triggered on a new outburst of V404 Cygni. We present 13 days of GBM observations of this outburst, including Earth occultation flux measurements and spectral and temporal analysis. The Earth occultation fluxes reached 30 Crab with detected emission to 100 keV and determined, via hardness ratios, that the source was in a hard state. At high luminosity, spectral analysis between 8 and 300 keV showed that the electron temperature decreased with increasing luminosity. This is expected if the protons and electrons are in thermal equilibrium during an outburst with the electrons cooled by the Compton scattering of softer seed photons from the disk. However, the implied seed photon temperatures are unusually high, suggesting a contribution from another source, such as the jet. No evidence of state transitions is seen during this time period. The temporal analysis reveals power spectra that can be modeled with two or three strong, broad Lorentzians, similar to the power spectra of black hole binaries in their hard state.

  10. Experimental anti-GBM nephritis as an analytical tool for studying spontaneous lupus nephritis.

    Science.gov (United States)

    Du, Yong; Fu, Yuyang; Mohan, Chandra

    2008-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that results in immune-mediated damage to multiple organs. Among these, kidney involvement is the most common and fatal. Spontaneous lupus nephritis (SLN) in mouse models has provided valuable insights into the underlying mechanisms of human lupus nephritis. However, SLN in mouse models takes 6-12 months to manifest; hence there is clearly the need for a mouse model that can be used to unveil the pathogenic processes that lead to immune nephritis over a shorter time frame. In this article more than 25 different molecules are reviewed that have been studied both in the anti-glomerular basement membrane (anti-GBM) model and in SLN and it was found that these molecules influence both diseases in a parallel fashion, suggesting that the two disease settings share common molecular mechanisms. Based on these observations, the authors believe the experimental anti-GBM disease model might be one of the best tools currently available for uncovering the downstream molecular mechanisms leading to SLN.

  11. MODELING THE AFTERGLOW OF THE POSSIBLE FERMI -GBM EVENT ASSOCIATED WITH GW150914

    International Nuclear Information System (INIS)

    Morsony, Brian J.; Workman, Jared C.; Ryan, Dominic M.

    2016-01-01

    We model the possible afterglow of the Fermi Gamma-ray Burst Monitor (GBM) event associated with LIGO detection GW150914, under the assumption that the gamma-rays are produced by a short GRB-like relativistic outflow. We model GW150914-GBM as both a weak, on-axis short GRB and normal short GRB seen far off-axis. Given the large uncertainty in the position of GW150914, we determine that the best chance of finding the afterglow is with ASKAP or possibly the Murchinson Widefield Array (MWA), with the flux from an off-axis short GRB reaching 0.2–4 mJy (0.12–16 mJy) at 150 MHz (863.5 MHz) by 1–12 months after the initial event. At low frequencies, the source would evolve from a hard to soft spectrum over several months. The radio afterglow would be detectable for several months to years after it peaks, meaning the afterglow may still be detectable and increasing in brightness NOW (2016 mid-July). With a localization from the MWA or ASKAP, the afterglow would be detectable at higher radio frequencies with the ATCA and in X-rays with Chandra or XMM .

  12. Seroadaptive Strategies of Gay & Bisexual Men (GBM) with the Highest Quartile Number of Sexual Partners in Vancouver, Canada.

    Science.gov (United States)

    Card, Kiffer G; Lachowsky, Nathan J; Cui, Zishan; Sereda, Paul; Rich, Ashleigh; Jollimore, Jody; Howard, Terry; Birch, Robert; Carter, Allison; Montaner, Julio; Moore, David; Hogg, Robert S; Roth, Eric Abella

    2017-05-01

    Despite continued research among men with more sexual partners, little information exists on their seroadaptive behavior. Therefore, we examined seroadaptive anal sex strategies among 719 Vancouver gay and bisexual men (GBM) recruited using respondent-driven sampling. We provide descriptive, bivariable, and multivariable adjusted statistics, stratified by HIV status, for the covariates of having ≥7 male anal sex partners in the past 6 months (Population fourth quartile versus <7). Sensitivity Analysis were also performed to assess the robustness of this cut-off. Results suggest that GBM with more sexual partners are more likely to employ seroadaptive strategies than men with fewer partners. These strategies may be used in hopes of offsetting risk, assessing needs for subsequent HIV testing, and balancing personal health with sexual intimacy. Further research is needed to determine the efficacy of these strategies, assess how GBM perceive their efficacy, and understand the social and health impacts of their widespread uptake.

  13. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    Science.gov (United States)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  14. ON-BOARD COMPUTER SYSTEM FOR KITSAT-1 AND 2

    Directory of Open Access Journals (Sweden)

    H. S. Kim

    1996-06-01

    Full Text Available KITSAT-1 and 2 are microsatellites weighting 50kg and all the on-board data are processed by the on-board computer system. Hence, these on-board computers require to be highly reliable and be designed with tight power consumption, mass and size constraints. On-board computer(OBC systems for KITSAT-1 and 2 are also designed with a simple flexible hardware for reliability and software takes more responsibility than hardware. KITSAT-1 and 2 on-board computer system consist of OBC 186 as the primary OBC and OBC80 as its backup. OBC186 runs spacecraft operating system (SCOS which has real-time multi-tasking capability. Since their launch, OBC186 and OBC80 have been operating successfully until today. In this paper, we describe the development of OBC186 hardware and software and analyze its in-orbit operation performance.

  15. Identification of a novel set of genes reflecting different in vivo invasive patterns of human GBM cells

    Directory of Open Access Journals (Sweden)

    Monticone Massimiliano

    2012-08-01

    Full Text Available Abstract Background Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting. We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type or highly diffuse single tumor cell infiltration (HD-type. Methods We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM. Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. Results Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. Conclusions This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting. Massimiliano Monticone and Antonio Daga contributed equally to this work

  16. Identification of a novel set of genes reflecting different in vivo invasive patterns of human GBM cells.

    Science.gov (United States)

    Monticone, Massimiliano; Daga, Antonio; Candiani, Simona; Romeo, Francesco; Mirisola, Valentina; Viaggi, Silvia; Melloni, Ilaria; Pedemonte, Simona; Zona, Gianluigi; Giaretti, Walter; Pfeffer, Ulrich; Castagnola, Patrizio

    2012-08-17

    Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma) experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting.We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type) or highly diffuse single tumor cell infiltration (HD-type). We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM). Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting.Massimiliano Monticone and Antonio Daga contributed equally to this work.

  17. Characterization of Metabolic, Diffusion, and Perfusion Properties in GBM: Contrast-Enhancing versus Non-Enhancing Tumor.

    Science.gov (United States)

    Autry, Adam; Phillips, Joanna J; Maleschlijski, Stojan; Roy, Ritu; Molinaro, Annette M; Chang, Susan M; Cha, Soonmee; Lupo, Janine M; Nelson, Sarah J

    2017-12-01

    Although the contrast-enhancing (CE) lesion on T 1 -weighted MR images is widely used as a surrogate for glioblastoma (GBM), there are also non-enhancing regions of infiltrative tumor within the T 2 -weighted lesion, which elude radiologic detection. Because non-enhancing GBM (Enh-) challenges clinical patient management as latent disease, this study sought to characterize ex vivo metabolic profiles from Enh- and CE GBM (Enh+) samples, alongside histological and in vivo MR parameters, to assist in defining criteria for estimating total tumor burden. Fifty-six patients with newly diagnosed GBM received a multi-parametric pre-surgical MR examination. Targets for obtaining image-guided tissue samples were defined based on in vivo parameters that were suspicious for tumor. The actual location from where tissue samples were obtained was recorded, and half of each sample was analyzed for histopathology while the other half was scanned using HR-MAS spectroscopy. The Enh+ and Enh- tumor samples demonstrated comparable mitotic activity, but also significant heterogeneity in microvascular morphology. Ex vivo spectroscopic parameters indicated similar levels of total choline and N-acetylaspartate between these contrast-based radiographic subtypes of GBM, and characteristic differences in the levels of myo-inositol, creatine/phosphocreatine, and phosphoethanolamine. Analysis of in vivo parameters at the sample locations were consistent with histological and ex vivo metabolic data. The similarity between ex vivo levels of choline and NAA, and between in vivo levels of choline, NAA and nADC in Enh+ and Enh- tumor, indicate that these parameters can be used in defining non-invasive metrics of total tumor burden for patients with GBM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Urinary cystatin C as a renal biomarker and its immunohistochemical localization in anti-GBM glomerulonephritis rats.

    Science.gov (United States)

    Togashi, Yuko; Imura, Naoko; Miyamoto, Yohei

    2013-11-01

    The usefulness of urinary cystatin C for the early detection of renal damage in anti-glomerular basement membrane (GBM) glomerulonephritis rats was investigated and compared to other biomarkers (β2-microglobulin, calbindin, clusterin, epidermal growth factor (EGF), alpha-glutathione S-transferase (GST-α), mu-glutathione S-transferase (GST-μ), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin, tissue inhibitor of metalloprotease-1 (TIMP-1), and vascular endothelial growth factor (VEGF)). Urinary levels of cystatin C increased in anti-GBM glomerulonephritis rats, whereas the conventional markers, plasma creatinine and UN did not, demonstrating its usefulness for the early detection of renal damage associated with anti-GBM glomerulonephritis. As well as cystatin C, urinary β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL also had the potential to detect renal damage associated with anti-GBM glomerulonephritis. Furthermore, the immunohistochemical localization of cystatin C in the kidney was examined. Cystatin C expression was mainly observed in the proximal renal tubules in anti-GBM glomerulonephritis rats, and its expression barely changed with the progression of glomerulonephritis. Cystatin C expression was also observed in the tubular lumen of the cortex and medulla when glomerulonephritis was marked, which was considered to be characteristic of renal damage. In conclusion, urinary cystatin C, β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL could be useful biomarkers of renal damage in anti-GBM glomerulonephritis rats. Immunohistochemical cystatin C expression in the proximal renal tubules was barely changed by the progression of glomerulonephritis, but it was newly observed in the tubular lumen when renal damage was apparent. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  19. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines.

    Science.gov (United States)

    Balça-Silva, Joana; Matias, Diana; do Carmo, Anália; Girão, Henrique; Moura-Neto, Vivaldo; Sarmento-Ribeiro, Ana Bela; Lopes, Maria Celeste

    2015-04-01

    Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Identification of a novel set of genes reflecting different in vivo invasive patterns of human GBM cells

    International Nuclear Information System (INIS)

    Monticone, Massimiliano; Giaretti, Walter; Pfeffer, Ulrich; Daga, Antonio; Candiani, Simona; Romeo, Francesco; Mirisola, Valentina; Viaggi, Silvia; Melloni, Ilaria; Pedemonte, Simona; Zona, Gianluigi

    2012-01-01

    Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma) experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting. We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type) or highly diffuse single tumor cell infiltration (HD-type). We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM). Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting. Massimiliano Monticone and Antonio Daga contributed equally to this work

  1. Olea europaea leaf extract improves the treatment response of GBM stem cells by modulating miRNA expression.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Budak, Ferah; Sahin, Saliha; Cecener, Gulsah; Egeli, Unal; Taskapılıoglu, Mevlut Ozgur; Kocaeli, Hasan; Tolunay, Sahsine; Malyer, Hulusi; Demir, Cevdet; Tumen, Gulendam

    2014-01-01

    The stem-like cells of Glioblastoma multiforme (GBM) tumors (GSCs) are one of the important determinants of recurrence and drug resistance. The aims of the current study were to evaluate the anticancer effect of Olea europaea leaf extract (OLE) on GBM cell lines, the association between OLE and TMZ responses, and the effect of OLE and the OLE-TMZ combination in GSCs and to clarify the molecular mechanism of this effect on the expression of miRNAs related to cell death. The anti-proliferative activity of OLE and the effect of the OLE-TMZ combination were tested in the T98G, U-138MG and U-87MG GBM cell lines using WST-1 assay. The mechanism of cell death was analyzed with Annexin V/FITC and TUNEL assays. The effects of OLE on the expression levels of miR-181b, miR-153, miR-145 and miR-137 and potential mRNA targets were analyzed in GSCs using RT-qPCR. OLE exhibited anti-proliferative effects via apoptosis and necrosis in the GBM cell lines. In addition, OLE significantly induced the expression of miR-153, miR-145, and miR-137 and decreased the expression of the target genes of these miRNAs in GSCs (p GBM cells with different TMZ responses, and this effect is synergistically increased when the cells are treated with a combination of OLE and TMZ. This is the first study to indicate that OLE may interfere with the pluripotency of GSCs by modulating miRNA expression. Further studies are required, but we suggest that OLE may have a potential for advanced therapeutic cancer drug studies in GBM.

  2. SOCS3 promoter hypermethylation is a favorable prognosticator and a novel indicator for G-CIMP-positive GBM patients.

    Science.gov (United States)

    Feng, Ying; Wang, Zheng; Bao, Zhaoshi; Yan, Wei; You, Gan; Wang, Yinyan; Hu, Huimin; Zhang, Wei; Zhang, Quangeng; Jiang, Tao

    2014-01-01

    Hypermethylation of the suppressor of cytokine signaling 3(SOCS3) promoter has been reported to predict a poor prognosis in several cancers including glioblastoma multiforme (GBM). We explored the function of SOCS3 promoter hypermethylation in GBM cohorts, including analysis of the CpG island methylator phenotype (CIMP), when a large number of gene loci are simultaneously hypermethylated. A whole genome promoter methylation profile was performed in a cohort of 33 GBM samples, with 13 long-term survivors (LTS; overall survival ≥ 18 months) and 20 short-term survivors (STS; overall survival ≤ 9 months). The SOCS3 promoter methylation status was compared between the two groups. In addition, we investigated the relationship of SOCS3 promoter methylation and G-CIMP status. Interestingly, in our present study, we found that SOCS3 promoter methylation was statistically significantly higher in the 13 LTS than that in the 20 STS. Furthermore, high SOCS3 promoter methylation detected via pyro-sequencing predicted a better prognosis in an independent cohort containing 62 GBM patients. This correlation was validated by the dataset from the Cancer Genome Atlas(TCGA) and the Chinese Cancer Genome Atlas(CGGA). In addition, we found that hypermethylation of the SOCS3 promoter was tightly associated with the G-CIMP-positive GBM patients. Using a total of 359 clinical samples, we demonstrate that SOCS3 promoter hypermethylation status has a favorable prognostic value in GBM patients because of whole genome methylation status. Particularly, the hypermethylation of the SOCS3 promoter indicates positive G-CIMP status.

  3. Characterization of Metabolic, Diffusion, and Perfusion Properties in GBM: Contrast-Enhancing versus Non-Enhancing Tumor

    Directory of Open Access Journals (Sweden)

    Adam Autry

    2017-12-01

    Full Text Available BACKGROUND: Although the contrast-enhancing (CE lesion on T1-weighted MR images is widely used as a surrogate for glioblastoma (GBM, there are also non-enhancing regions of infiltrative tumor within the T2-weighted lesion, which elude radiologic detection. Because non-enhancing GBM (Enh− challenges clinical patient management as latent disease, this study sought to characterize ex vivo metabolic profiles from Enh− and CE GBM (Enh+ samples, alongside histological and in vivo MR parameters, to assist in defining criteria for estimating total tumor burden. Methods: Fifty-six patients with newly diagnosed GBM received a multi-parametric pre-surgical MR examination. Targets for obtaining image-guided tissue samples were defined based on in vivo parameters that were suspicious for tumor. The actual location from where tissue samples were obtained was recorded, and half of each sample was analyzed for histopathology while the other half was scanned using HR-MAS spectroscopy. Results: The Enh+ and Enh− tumor samples demonstrated comparable mitotic activity, but also significant heterogeneity in microvascular morphology. Ex vivo spectroscopic parameters indicated similar levels of total choline and N-acetylaspartate between these contrast-based radiographic subtypes of GBM, and characteristic differences in the levels of myo-inositol, creatine/phosphocreatine, and phosphoethanolamine. Analysis of in vivo parameters at the sample locations were consistent with histological and ex vivo metabolic data. CONCLUSIONS: The similarity between ex vivo levels of choline and NAA, and between in vivo levels of choline, NAA and nADC in Enh+ and Enh− tumor, indicate that these parameters can be used in defining non-invasive metrics of total tumor burden for patients with GBM.

  4. SOCS3 promoter hypermethylation is a favorable prognosticator and a novel indicator for G-CIMP-positive GBM patients.

    Directory of Open Access Journals (Sweden)

    Ying Feng

    Full Text Available Hypermethylation of the suppressor of cytokine signaling 3(SOCS3 promoter has been reported to predict a poor prognosis in several cancers including glioblastoma multiforme (GBM. We explored the function of SOCS3 promoter hypermethylation in GBM cohorts, including analysis of the CpG island methylator phenotype (CIMP, when a large number of gene loci are simultaneously hypermethylated.A whole genome promoter methylation profile was performed in a cohort of 33 GBM samples, with 13 long-term survivors (LTS; overall survival ≥ 18 months and 20 short-term survivors (STS; overall survival ≤ 9 months. The SOCS3 promoter methylation status was compared between the two groups. In addition, we investigated the relationship of SOCS3 promoter methylation and G-CIMP status.Interestingly, in our present study, we found that SOCS3 promoter methylation was statistically significantly higher in the 13 LTS than that in the 20 STS. Furthermore, high SOCS3 promoter methylation detected via pyro-sequencing predicted a better prognosis in an independent cohort containing 62 GBM patients. This correlation was validated by the dataset from the Cancer Genome Atlas(TCGA and the Chinese Cancer Genome Atlas(CGGA. In addition, we found that hypermethylation of the SOCS3 promoter was tightly associated with the G-CIMP-positive GBM patients.Using a total of 359 clinical samples, we demonstrate that SOCS3 promoter hypermethylation status has a favorable prognostic value in GBM patients because of whole genome methylation status. Particularly, the hypermethylation of the SOCS3 promoter indicates positive G-CIMP status.

  5. VizieR Online Data Catalog: New spectral lag measurements of 50 Fermi/GBM GRBs (Shao+, 2017)

    Science.gov (United States)

    Shao, L.; Zhang, B.-B.; Wang, F.-R.; Wu, X.-F.; Cheng, Y.-H.; Zhang, Xi; Yu, B.-Y.; Xi, B.-J.; Wang, X.; Feng, H.-X.; Zhang, M.; Xu, D.

    2018-03-01

    This work made extensive use of the data from the Gamma-Ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. For the first step, we searched in the official GBM online burst catalog (Gruber+ 2014ApJS..211...12G ; von Kienlin+ 2014, J/ApJS/211/13) for bright bursts with a total fluence F>5x10-6erg/cm-2 in 10-1000keV. See section 2 for the details on the sample selection. (1 data file).

  6. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  7. Memory-Efficient Onboard Rock Segmentation

    Science.gov (United States)

    Burl, Michael C.; Thompson, David R.; Bornstein, Benjamin J.; deGranville, Charles K.

    2013-01-01

    Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering

  8. MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter

    Science.gov (United States)

    Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.

  9. miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM.

    Science.gov (United States)

    Yue, Sihai; Wang, Lihua; Zhang, Hui; Min, Youhui; Lou, Yongli; Sun, Hongshan; Jiang, Yu; Zhang, Wenjin; Liang, Aming; Guo, Yongkun; Chen, Ping; Lv, Guowei; Wang, Liuxiang; Zong, Qinghua; Li, Yong

    2015-09-01

    Invasion and migration of glioblastoma multiforme (GBM) is a multistep process and an important phenotype that causes this disease to invade surrounding tissues in the brain. Recent studies have highlighted that miRNAs play a pivotal role in controlling GBM cell plasticity. In this report, we used wound healing and transwell assays to identify a novel role of miR-139-5p in inhibition of GBM cell migration and invasion. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-139-5p inhibited expression of ZEB1 and ZEB2, which are master regulators of tumor metastasis. MiR-139-5p specifically interacts with the 3'-UTR regions of ZEB1 and ZEB2, attenuating their expression in GBM cells. To corroborate this finding, we rescued ZEB1 and ZEB2 expression and found partial but significant increases in miR-139-5p-suppressed invasion of GBM cells. The biological relevance of our study was validated by analyzing levels of miR-139-5p in GBM tissue. We found that its expression significantly downregulated compared to normal tissue and shorter overall survival rates in patients with lower miR-139-5p expression. These results confirm that miR-139-5p suppresses GBM migration and invasion and highlight its potential as a biomarker and therapeutic target for treating GBM.

  10. Circulating gamma delta T cells are activated and depleted during progression of high-grade gliomas: Implications for gamma delta T cell therapy of GBM

    Science.gov (United States)

    Glioblastoma multiforme (GBM) remains frustratingly impervious to any existing therapy. We have previously shown that GBM is sensitive to recognition and lysis by ex vivo activated gamma delta T cells, a minor subset of lymphocytes that innately recognize autologous stress-associated target antigens...

  11. IBIS: the imager on-board integral

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Lebrun, F.; Goldwurm, A.; Laurent, P.; Mirabel, I.F.; Vigroux, L.; Di Cocco, G.; Labanti, C.; Bird, A.J.; Broenstad, K.; La Rosa, G.; Sacco, B.; Quadrini, E.M.; Ramsey, B.; Weisskopf, M.C.; Reglero, V.; Sabau, L.; Staubert, R.; Zdziarski, A.A.

    2003-01-01

    The IBIS telescope is the high angular resolution gamma-ray imager on-board the INTEGRAL Observatory, successfully launched from Baikonur (Kazakhstan) on October 2002. This medium size ESA project, planned for a 2 year mission with possible extension to 5, is devoted to the observation of the gamma-ray sky in the energy range from 3 keV to 10 MeV (Winkler 2001). The IBIS imaging system is based on two independent solid state detector arrays optimised for low (15-1000 keV) and high (0.175-10.0 MeV) energies surrounded by an active VETO System. This high efficiency shield is essential to minimise the background induced by high energy particles in the highly ex-centric out of van Allen belt orbit. A Tungsten Coded Aperture Mask, 16 mm thick and ∼ 1 squared meter in dimension is the imaging device. The IBIS telescope will serve the scientific community at large providing a unique combination of unprecedented high energy wide field imaging capability coupled with broad band spectroscopy and high resolution timing over the energy range from X to gamma rays. To date the IBIS telescope is working nominally in orbit since more than 9 month. (authors)

  12. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  13. Survey of the effect of doxorubicin and flavonoid extract of white Morus alba leaf on apoptosis induction in a-172 GBM cell line.

    Science.gov (United States)

    Dabili, Sheyda; Fallah, Soudabeh; Aein, Mojdeh; Vatannejad, Akram; Panahi, Ghodratollah; Fadaei, Reza; Moradi, Nariman; Shojaii, Asie

    2018-02-20

    In this study, the effect of doxorubicin, flavonoid extract of white Morus alba leaf (MFE) and a combination of doxorubicin and flavonoid extract on Bax and Bcl2 levels and caspase 3 activity of cancer A-172 GBM cell line was investigated. Bax/Bcl2 levels of treated A-172 GBM cell line with flavonoid extract of white mulberry leaf were estimated by ELISA methods. Caspase 3 activity of treated A-172 GBM cells was determined by calorimetric assay. The flow cytometry assessment was used to estimate the apoptosis percent of treated A-172 GBM cells. Treatment of A-172 GBM cells with MFE, doxorubicin and a combination of MFE and doxorubicin caused a significant decrease in Bcl2 level and an increase in Bax level. The apoptosis percent of treated cells were also elevated significantly. Present results suggest that concomitant use of herbal medicine and chemotherapy may be an effective alternative method for the treatment of cancers.

  14. Reactive Goal Decomposition Hierarchies for On-Board Autonomy

    Science.gov (United States)

    Hartmann, L.

    2002-01-01

    to state and environment and in general can terminate the execution of a decomposition and attempt a new decomposition at any level in the hierarchy. This goal decomposition system is suitable for workstation, microprocessor and fpga implementation and thus is able to support the full range of prototyping activities, from mission design in the laboratory to development of the fpga firmware for the flight system. This approach is based on previous artificial intelligence work including (1) Brooks' subsumption architecture for robot control, (2) Firby's Reactive Action Package System (RAPS) for mediating between high level automated planning and low level execution and (3) hierarchical task networks for automated planning. Reactive goal decomposition hierarchies can be used for a wide variety of on-board autonomy applications including automating low level operation sequences (such as scheduling prerequisite operations, e.g., heaters, warm-up periods, monitoring power constraints), coordinating multiple spacecraft as in formation flying and constellations, robot manipulator operations, rendez-vous, docking, servicing, assembly, on-orbit maintenance, planetary rover operations, solar system and interstellar probes, intelligent science data gathering and disaster early warning. Goal decomposition hierarchies can support high level fault tolerance. Given models of on-board resources and goals to accomplish, the decomposition hierarchy could allocate resources to goals taking into account existing faults and in real-time reallocating resources as new faults arise. Resources to be modeled include memory (e.g., ROM, FPGA configuration memory, processor memory, payload instrument memory), processors, on-board and interspacecraft network nodes and links, sensors, actuators (e.g., attitude determination and control, guidance and navigation) and payload instruments. A goal decomposition hierarchy could be defined to map mission goals and tasks to available on-board resources. As

  15. Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the Creutz Cellular Automaton

    Science.gov (United States)

    Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez

    2017-11-01

    Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.

  16. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  17. Galectin-9 ameliorates anti-GBM glomerulonephritis by inhibiting Th1 and Th17 immune responses in mice.

    Science.gov (United States)

    Zhang, Qian; Luan, Hong; Wang, Le; He, Fan; Zhou, Huan; Xu, Xiaoli; Li, Xingai; Xu, Qing; Niki, Toshiro; Hirashima, Mitsuomi; Xu, Gang; Lv, Yongman; Yuan, Jin

    2014-04-15

    Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a Th1- and Th17-predominant autoimmune disease. Galectin-9 (Gal-9), identified as the ligand of Tim-3, functions in diverse biological processes and leads to the apoptosis of CD4(+)Tim-3(+) T cells. It is still unclear how Gal-9 regulates the functions of Th1 and Th17 cells and prevents renal injury in anti-GBM GN. In this study, Gal-9 was administered to anti-GBM GN mice for 7 days. We found that Gal-9 retarded the increase of Scr, ameliorated renal tubular injury, and reduced the formation of crescents. The infiltration of Th1 and Th17 cells into the spleen and kidneys significantly decreased in Gal-9-treated nephritic mice. The reduced infiltration of Th1 and Th17 cells might be associated with the downregulation of CCL-20, CXCL-9, and CXCL-10 mRNAs in the kidney. In parallel, the blood levels of IFN-γ and IL-17A declined in Gal-9-treated nephritic mice at days 21 and 28. In addition, an enhanced Th2 cell-mediated immune response was observed in the kidneys of nephritic mice after a 7-day injection of Gal-9. In conclusion, the protective role of Gal-9 in anti-GBM GN is associated with the inhibition of Th1 and Th17 cell-mediated immune responses and enhanced Th2 immunity in the kidney.

  18. DISTRIBUTION OF GBM HEPARAN-SULFATE PROTEOGLYCAN CORE PROTEIN AND SIDE-CHAINS IN HUMAN GLOMERULAR-DISEASES

    NARCIS (Netherlands)

    VANDENBORN, J; VANDENHEUVEL, LPWJ; BAKKER, MAH; VEERKAMP, JH; ASSMANN, KJM; WEENING, JJ; BERDEN, JHM

    Using monoclonal antibodies (mAbs) recognizing either the core protein or the heparan sulfate (HS) side chain of human GBM heparan sulfate proteoglycan (HSPG), we investigated their glomerular distribution on cryostat sections of human kidney tissues. The study involved 95 biopsies comprising twelve

  19. VizieR Online Data Catalog: The Fermi-GBM three-year X-ray burst catalog (Jenke+, 2016)

    Science.gov (United States)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2018-03-01

    Gamma-ray Burst Monitor (GBM) is an all-sky monitor whose primary objective is to extend the energy range over which gamma-ray bursts are observed in the Large Area Telescope on Fermi (Meegan et al. 2009ApJ...702..791M). GBM consists of 12 NaI detectors with a diameter of 12.7 cm and a thickness of 1.27 cm and two bismuth germanate (BGO) detectors with a diameter and thickness of 12.7 cm. GBM has three continuous data types: CTIME data with nominal 0.256 s time resolution and 8-channel spectral resolution used for event detection and localization, CSPEC data with nominal 4.096 s time resolution and 128-channel spectral resolution, which are used for spectral modeling, and CTTE (continuous-time tagged event) data with time stamps (2 μs precision) on individual events at full 128-channel spectral resolution, which were made available in 2012 November. The Fermi-GBM X-ray Burst Monitor relies on daily inspection of CTIME channel 1 (12-25 keV) data and began operations on 2010 March 12. (3 data files).

  20. A low-latency pipeline for GRB light curve and spectrum using Fermi/GBM near real-time data

    Science.gov (United States)

    Zhao, Yi; Zhang, Bin-Bin; Xiong, Shao-Lin; Long, Xi; Zhang, Qiang; Song, Li-Ming; Sun, Jian-Chao; Wang, Yuan-Hao; Li, Han-Cheng; Bu, Qing-Cui; Feng, Min-Zi; Li, Zheng-Heng; Wen, Xing; Wu, Bo-Bing; Zhang, Lai-Yu; Zhang, Yong-Jie; Zhang, Shuang-Nan; Shao, Jian-Xiong

    2018-05-01

    Rapid response and short time latency are very important for Time Domain Astronomy, such as the observations of Gamma-ray Bursts (GRBs) and electromagnetic (EM) counterparts of gravitational waves (GWs). Based on near real-time Fermi/GBM data, we developed a low-latency pipeline to automatically calculate the temporal and spectral properties of GRBs. With this pipeline, some important parameters can be obtained, such as T 90 and fluence, within ∼ 20 min after the GRB trigger. For ∼ 90% of GRBs, T 90 and fluence are consistent with the GBM catalog results within 2σ errors. This pipeline has been used by the Gamma-ray Bursts Polarimeter (POLAR) and the Insight Hard X-ray Modulation Telescope (Insight-HXMT) to follow up the bursts of interest. For GRB 170817A, the first EM counterpart of GW events detected by Fermi/GBM and INTEGRAL/SPI-ACS, the pipeline gave T 90 and spectral information 21 min after the GBM trigger, providing important information for POLAR and Insight-HXMT observations.

  1. Food and nutrition security trends and challenges in the Ganges Brahmaputra Meghna (GBM delta

    Directory of Open Access Journals (Sweden)

    Arnout van Soesbergen

    2017-09-01

    Full Text Available The population of the Ganges Brahmaputra Meghna (GBM delta is highly vulnerable to food insecurity and malnutrition due to the specific environmental, climatic and human development factors affecting agricultural production and fisheries. To better understand the impacts of climate and environmental change on food security and nutrition in this delta, this study combines spatially explicit data from the 2007 and 2011 Bangladesh Demographic and Health Survey (BDHS with a standard satellite remotely sensed vegetation greenness index (Normalised Difference Vegetation Index, NDVI, used as a proxy for rice production. The strength of association between NDVI and child nutrition in this tropical mega-delta were tested, showing correlations between two widely used indicators of child malnutrition; stunting and wasting, and deviations from a 10 year mean NDVI (anomalies for rice crop growing seasons – regarded as critical to individual children’s early lives. For children surveyed in 2007 we found that the likelihood of being stunted decreased with increased NDVI as a measure of food production. Similarly, for children surveyed in 2011, the likelihood of being wasted reduced with increased NDVI. However, regression results for stunting in 2011 and wasting in 2007 were not statistically significant. Our findings suggest that NDVI can be regarded as indicative of climatic variability and periods of low food production but is only partly successful as an indicator of climate related impacts on child nutrition in the GBM delta. Furthermore, our study highlights some of the uncertainties and challenges with linking environmental indicators such as the NDVI with household survey data across spatial and temporal scales.

  2. CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI

    Directory of Open Access Journals (Sweden)

    Matthew S. Brown

    2009-11-01

    Full Text Available The goal of this study was to develop a computer-aided therapeutic response (CADrx system for early prediction of drug treatment response for glioblastoma multiforme (GBM brain tumors with diffusion weighted (DW MR images. In conventional Macdonald assessment, tumor response is assessed nine weeks or more post-treatment. However, we will investigate the ability of DW-MRI to assess response earlier, at five weeks post treatment. The apparent diffusion coefficient (ADC map, calculated from DW images, has been shown to reveal changes in the tumor’s microenvironment preceding morphologic tumor changes. ADC values in treated brain tumors could theoretically both increase due to the cell kill (and thus reduced cell density and decrease due to inhibition of edema. In this study, we investigated the effectiveness of features that quantify changes from pre- and post-treatment tumor ADC histograms to detect treatment response. There are three parts to this study: first, tumor regions were segmented on T1w contrast enhanced images by Otsu’s thresholding method, and mapped from T1w images onto ADC images by a 3D region of interest (ROI mapping tool using DICOM header information; second, ADC histograms of the tumor region were extracted from both pre- and five weeks post-treatment scans, and fitted by a two-component Gaussian mixture model (GMM. The GMM features as well as standard histogram-based features were extracted. Finally, supervised machine learning techniques were applied for classification of responders or non-responders. The approach was evaluated with a dataset of 85 patients with GBM under chemotherapy, in which 39 responded and 46 did not, based on tumor volume reduction. We compared adaBoost, random forest and support vector machine classification algorithms, using ten-fold cross validation, resulting in the best accuracy of 69.41% and the corresponding area under the curve (Az of 0.70.

  3. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    International Nuclear Information System (INIS)

    Wang, Chao; Cao, Shouqiang; Yan, Ying; Ying, Qiao; Jiang, Tao; Xu, Ke; Wu, Anhua

    2010-01-01

    Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells in vitro. RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells in vitro with MTT assays and matrigel transwell assay respectively. RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion in vitro. Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy

  4. Predictors of renal and patient outcomes in anti-GBM disease: clinicopathologic analysis of a two-centre cohort.

    Science.gov (United States)

    Alchi, Bassam; Griffiths, Meryl; Sivalingam, Murugan; Jayne, David; Farrington, Ken

    2015-05-01

    Patients with anti-glomerular basement membrane (GBM) disease are at increased risk of morbidity and mortality from renal failure, pulmonary haemorrhage or complications of treatment. One-third also have circulating anti-neutrophil cytoplasmic antibodies (ANCA). The aim of this study was to determine the clinicopathologic predictors of patient and renal outcomes in anti-GBM disease with or without ANCA. Retrospective review of 43 patients diagnosed with anti-GBM disease over 20 years in two centres, including nine with dual anti-GBM and ANCA positivity. Renal biopsies from 27 patients were scored for the presence of active and chronic lesions. Dual-positive patients were almost 20 years older than those with anti-GBM positivity alone (P = 0.003). The overall 1-year patient and renal survivals were 88 and 16%, respectively. Oligoanuria at diagnosis was the strongest predictor of mortality; none of the 16 patients without oligoanuria died. In a Cox regression model excluding oligoanuria, age was the only other independent predictor of survival. Pulmonary haemorrhage and dialysis dependence did not influence mortality. Thirty-five of the forty-three (81%) patients required dialysis at presentation, including all nine dual-positive patients. Of them, only two (5.7%) regained renal function at 1 year. By logistic regression, oligoanuria at diagnosis and percentage of crescents were independent predictors of dialysis independence at 3 months. However, in biopsied patients, the presence of crescents (>75%) added little to the presence of oligoanuria in predicting dialysis independence. Histological activity and chronicity indices did not predict renal outcome. Two of the nine (22%) dual-positive patients relapsed compared with none of the anti-GBM alone patients. Seven patients received kidney transplants without disease recurrence. Oligoanuria is the strongest predictor of patient and renal survival while percentage of glomerular crescents is the only pathologic

  5. Event processing in X-IFU detector onboard Athena.

    Science.gov (United States)

    Ceballos, M. T.; Cobos, B.; van der Kuurs, J.; Fraga-Encinas, R.

    2015-05-01

    The X-ray Observatory ATHENA was proposed in April 2014 as the mission to implement the science theme "The Hot and Energetic Universe" selected by ESA for L2 (the second Large-class mission in ESA's Cosmic Vision science programme). One of the two X-ray detectors designed to be onboard ATHENA is X-IFU, a cryogenic microcalorimeter based on Transition Edge Sensor (TES) technology that will provide spatially resolved high-resolution spectroscopy. X-IFU will be developed by a consortium of European research institutions currently from France (leadership), Italy, The Netherlands, Belgium, UK, Germany and Spain. From Spain, IFCA (CSIC-UC) is involved in the Digital Readout Electronics (DRE) unit of the X-IFU detector, in particular in the Event Processor Subsytem. We at IFCA are in charge of the development and implementation in the DRE unit of the Event Processing algorithms, designed to recognize, from a noisy signal, the intensity pulses generated by the absorption of the X-ray photons, and lately extract their main parameters (coordinates, energy, arrival time, grade, etc.) Here we will present the design and performance of the algorithms developed for the event recognition (adjusted derivative), and pulse grading/qualification as well as the progress in the algorithms designed to extract the energy content of the pulses (pulse optimal filtering). IFCA will finally have the responsibility of the implementation on board in the (TBD) FPGAs or micro-processors of the DRE unit, where this Event Processing part will take place, to fit into the limited telemetry of the instrument.

  6. LAT Onboard Science: Gamma-Ray Burst Identification

    International Nuclear Information System (INIS)

    Kuehn, Frederick; Hughes, Richard; Smith, Patrick; Winer, Brian; Bonnell, Jerry; Norris, Jay; Ritz, Steven; Russell, James

    2007-01-01

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the on-ground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified

  7. MAXIMIZATION OF DNA DAMAGE TO MGMT(+ EGFR(+ GBM CELLS USING OPTIMAL COMBINATION OF TEMOZOLOMIDE-ANTI EGFR MONOCLONAL ANTIBODY NIMOTUZUMAB

    Directory of Open Access Journals (Sweden)

    M. A. M. Inggas

    2015-09-01

    Full Text Available Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor in adultswith dismal prognosis due to the unavailability of an effective therapy. Up to now, there had been no definitive studies published on EGFR inhibition therapy as a chemosensitizer for GBM therapy using Temozolomide (TMZ. This study aims to reveal the most effective method and timing to administer TMZ-anti EGFR targeted therapy which causes maximal DNA damage on GBM cells.Methods: Various regimens of anti EGFR monoclonal antibody Nimotuzumab (NMZ was administered in different combinations with TMZ, performed on U87MG MGMT(+ EGFR(+ cells. The effectiveness of the combinations were evaluated by measuring yH2AX levels which reflects the degree of DNA damage. One-way Anova and LSD tests were performed to determine the effects of each treatment with p<0.05. Results and discussion: the mean SD of yH2AX of each treatment was: 11,90±1,25 for the control group; 29.33±1.91 for NMZ alone; 28.13±1.58 for TMZ alone; 41.53±3.51 for concurrent use; 35.67 ±2.65 for NMZ after 24 hours TMZ; 31.87±2.94 for NMZ after 48 hours TMZ; 39.57±4.2 for TMZ after 24 hours NMZ; and 35.93 ±3.56 for TMZ after 48 hours NMZ. The administration of TMZ concurrent with or after 24 hours NMZ gives the highest amount of DNA damage to GBM cells. Conclusion: The administration of Nimotuzumab targeted therapy up to 24 hours before Temozolomide chemotherapy has been proven to be effective in maximizing the amount of DNA damage done to GBM cells in vitro. 

  8. A survival analysis of GBM patients in the West of Scotland pre- and post-introduction of the Stupp regime.

    Science.gov (United States)

    Teo, Mario; Martin, Sean; Owusu-Agyemang, Kevin; Nowicki, Stefan; Clark, Brian; Mackinnon, Mairi; Stewart, Willie; Paul, James; St George, Jerome

    2014-06-01

    It is now accepted that the concomitant administration of temozolomide with radiotherapy (Stupp regime), in the treatment of patients with newly diagnosed glioblastoma multiforme (GBM), significantly improves survival and this practice has been adopted locally since 2004. However, survival outcomes in cancer can vary in different population groups, and outcomes can be affected by a number of local factors including socioeconomic status. In the West of Scotland, we have one of the worse socioeconomic status and overall health record for a western European country. With the ongoing reorganisation and rationalisation in the National Health Service, the addition of prolonged courses of chemotherapy to patients' management significantly adds to the financial burden of a cash stripped NHS. A survival analysis in patients with GBM was therefore performed, comparing outcomes of pre- and post-introduction of the Stupp regime, to justify the current practice. Prospectively collected clinical data were analysed in 105 consecutive patients receiving concurrent chemoradiotherapy (Stupp regime) following surgical treatment of GBM between December 2004 and February 2009. This was compared to those of 106 consecutive GBM patients who had radical radiotherapy (pre-Stupp regime) post-surgery between January 2001 and February 2006. The median overall survival for the post-Stupp cohort was 15.3 months (range, 2.83-50.5 months), with 1-year and 2-year overall survival rates of 65.7% and 19%, respectively. This was in comparison with the median overall pre-Stupp survival of 10.7 months, with 1-year and 2-year survival rates of 42.6% and 12%, respectively (log-rank test, p GBM patients in the West of Scotland.

  9. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study.

    Science.gov (United States)

    Deuschl, Cornelius; Moenninghoff, Christoph; Goericke, Sophia; Kirchner, Julian; Köppen, Susanne; Binse, Ina; Poeppel, Thorsten D; Quick, Harald H; Forsting, Michael; Umutlu, Lale; Herrmann, Ken; Hense, Joerg; Schlamann, Marc

    2017-08-01

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM.

  10. Saponin 1 Induces Apoptosis and Suppresses NF-κB-Mediated Survival Signaling in Glioblastoma Multiforme (GBM)

    Science.gov (United States)

    Tang, Chi; Li, Bo; Wang, Yuangang; Gao, Zhenhui; Luo, Peng; Yin, Anan; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-01-01

    Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM. PMID:24278406

  11. Saponin 1 induces apoptosis and suppresses NF-κB-mediated survival signaling in glioblastoma multiforme (GBM.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells and human hepatocellular carcinoma (Hep-G2 cells. Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP family members,(e.g., survivin and XIAP by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.

  12. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Deuschl, Cornelius [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Duisburg (Germany); Moenninghoff, Christoph; Goericke, Sophia; Forsting, Michael; Umutlu, Lale [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Kirchner, Julian [University Hospital Duesseldorf, Institute of Diagnostic and Interventional Radiology, Duesseldorf (Germany); Koeppen, Susanne [University Hospital Essen, Department of Neurology, Essen (Germany); Binse, Ina; Poeppel, Thorsten D.; Herrmann, Ken [University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Duisburg (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Hense, Joerg [University Hospital Essen, Department of Medical Oncology, West German Cancer Center, Essen (Germany); Schlamann, Marc [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Giessen, Department of Neuroradiology, Essen (Germany)

    2017-08-15

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM. (orig.)

  13. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  14. An Onboard ISS Virtual Reality Trainer

    Science.gov (United States)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  15. Arctic summer school onboard an icebreaker

    Science.gov (United States)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  16. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis.

    Science.gov (United States)

    Zhang, Jing; Jiang, Huawei; Shao, Jiaofang; Mao, Ruifang; Liu, Jie; Ma, Yingying; Fang, Xuefeng; Zhao, Na; Zheng, Shu; Lin, Biaoyang

    2014-11-01

    SOX4 is a transcription factor required for tissue development and differentiation in vertebrates. Overexpression of SOX4 has been reported in many cancers including glioblastoma multiforme (GBM), however, the underlying mechanism of actions has not been studied. In this study, we investigated the role of SOX4 in GBM. Kaplan-Meier analysis was performed to assess the association between SOX4 expression levels and survival times in primary GBM samples. Cre/lox P system was used to generate gain or loss of SOX4 in GBM cells, and microarray analysis uncovered the regulation network of SOX4 in GBM cells. High SOX4 expression was significantly associated with good prognosis of primary GBMs. SOX4 inhibited the growth of GBM cell line LN229, A172G and U87MG, partly via the activation of p53-p21 signaling and down-regulation of phosphorylated AKT1. Gene expression profiling and subsequent gene ontology analysis showed that SOX4 influenced several key pathways including the Wnt/ beta-catenin and TGF-beta signaling pathways. Our study found that SOX4 acts as a tumor suppressor in GBM cells by induce cell cycle arrest and inhibiting cell growth.

  17. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    Science.gov (United States)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  18. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  19. Investigating tumor perfusion by hyperpolarized (13) C MRI with comparison to conventional gadolinium contrast-enhanced MRI and pathology in orthotopic human GBM xenografts

    DEFF Research Database (Denmark)

    Park, Ilwoo; von Morze, Cornelius; Lupo, Janine M

    2016-01-01

    glioblastoma (GBM) model for the characterization of tumor perfusion and compared with standard Gd-based dynamic susceptibility contrast (DSC) MRI data and immunohistochemical analysis from resected brains. Distinct HMCP perfusion characteristics were observed within the GBM tumors compared with contralateral...... for tumor that exhibited high levels of hyperpolarized HMCP signal. The results from this study have demonstrated that hyperpolarized HMCP data can be used as an indicator of tumor perfusion in an orthotopic xenograft model for GBM. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc....

  20. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  1. On-board target acquisition for CHEOPS

    Science.gov (United States)

    Loeschl, P.; Ferstl, R.; Kerschbaum, F.; Ottensamer, R.

    2016-07-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is the first ESA S-class and exoplanetary follow-up mission headed for launch in 2018. It will perform ultra-high-precision photometry of stars hosting confirmed exoplanets on a 3-axis stabilised sun-synchronous orbit that is optimised for uninterrupted observations at minimum stray light and thermal variations. Nevertheless, due to the satellites structural design, the alignment of the star trackers and the payload instrument telescope is affected by thermo-elastic deformations. This causes a high pointing uncertainty, which requires the payload instrument to provide an additional acquisition system for distinct target identification. Therefor a star extraction software and two star identification algorithms, originally designed for star trackers, were adapted and optimised for the special case of CHEOPS. In order to evaluate these algorithms reliability, thousands of random star configurations were analysed in Monte-Carlo simulations. We present the implemented identification methods and their performance as well as recommended parameters that guarantee a successful identification under all conditions.

  2. Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning

    Science.gov (United States)

    Officer, Rick; Clarke, Maurice; Reid, David G.; Brophy, Deirdre

    2017-01-01

    Boosted Regression Trees. Excellent for data-poor spatial management but hard to use Marine resource managers and scientists often advocate spatial approaches to manage data-poor species. Existing spatial prediction and management techniques are either insufficiently robust, struggle with sparse input data, or make suboptimal use of multiple explanatory variables. Boosted Regression Trees feature excellent performance and are well suited to modelling the distribution of data-limited species, but are extremely complicated and time-consuming to learn and use, hindering access for a wide potential user base and therefore limiting uptake and usage. BRTs automated and simplified for accessible general use with rich feature set We have built a software suite in R which integrates pre-existing functions with new tailor-made functions to automate the processing and predictive mapping of species abundance data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the gbm.auto R package suite makes this powerful statistical modelling technique more accessible to potential users in the ecological and modelling communities. The package and its documentation allow the user to generate maps of predicted abundance, visualise the representativeness of those abundance maps and to plot the relative influence of explanatory variables and their relationship to the response variables. Databases of the processed model objects and a report explaining all the steps taken within the model are also generated. The package includes a previously unavailable Decision Support Tool which combines estimated escapement biomass (the percentage of an exploited population which must be retained each year to conserve it) with the predicted abundance maps to generate maps showing the location and size of habitat that should be protected to conserve the target stocks (candidate MPAs), based on stakeholder priorities, such as the minimisation of fishing effort displacement. Gbm

  3. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A.; Roberts, O. J.; Connaughton, V. [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Veres, P.; Briggs, M. S.; Hamburg, R.; Preece, R. D.; Poolakkil, S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Burns, E.; Racusin, J.; Canton, T. Dal [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kocevski, D.; Wilson-Hodge, C. A.; Hui, C. M.; Littenberg, T. [Astrophysics Office, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Christensen, N.; Broida, J. [Physics and Astronomy, Carleton College, MN 55057 (United States); Siellez, K. [Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Blackburn, L., E-mail: Adam.M.Goldstein@nasa.gov [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); and others

    2017-10-20

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  4. Testing the anisotropy in the angular distribution of Fermi/GBM gamma-ray bursts

    Science.gov (United States)

    Tarnopolski, M.

    2017-12-01

    Gamma-ray bursts (GRBs) were confirmed to be of extragalactic origin due to their isotropic angular distribution, combined with the fact that they exhibited an intensity distribution that deviated strongly from the -3/2 power law. This finding was later confirmed with the first redshift, equal to at least z = 0.835, measured for GRB970508. Despite this result, the data from CGRO/BATSE and Swift/BAT indicate that long GRBs are indeed distributed isotropically, but the distribution of short GRBs is anisotropic. Fermi/GBM has detected 1669 GRBs up to date, and their sky distribution is examined in this paper. A number of statistical tests are applied: nearest neighbour analysis, fractal dimension, dipole and quadrupole moments of the distribution function decomposed into spherical harmonics, binomial test and the two-point angular correlation function. Monte Carlo benchmark testing of each test is performed in order to evaluate its reliability. It is found that short GRBs are distributed anisotropically in the sky, and long ones have an isotropic distribution. The probability that these results are not a chance occurrence is equal to at least 99.98 per cent and 30.68 per cent for short and long GRBs, respectively. The cosmological context of this finding and its relation to large-scale structures is discussed.

  5. Restriction spectrum imaging of bevacizumab-related necrosis in a patient with GBM

    Directory of Open Access Journals (Sweden)

    Nikdokht eFarid

    2013-09-01

    Full Text Available Importance:With the increasing use of antiangiogenic agents in the treatment of high grade gliomas, we are becoming increasingly aware of distinctive imaging findings seen in a subset of patients treated with these agents. Of particular interest is the development of regions of marked and persistent restricted diffusion. We describe a case with histopathologic validation, confirming that this region of restricted diffusion represents necrosis and not viable tumor. Observations:We present a case report of a 52-year-old man with GBM treated with temozolomide, radiation, and concurrent bevacizumab following gross total resection. The patient underwent sequential MRI's which included restriction-spectrum imaging (RSI, an advanced diffusion-weighted imaging (DWI technique, and MR perfusion. Following surgery, the patient developed an area of restricted diffusion on RSI which became larger and more confluent over the next several months. Marked signal intensity on RSI and very low cerebral blood volume (CBV on MR perfusion led us to favor bevacizumab-related necrosis over recurrent tumor. Subsequent histopathologic evaluation confirmed coagulative necrosis.Conclusions and Relevance:Our report increases the number of pathologically-proven cases of bevacizumab-related necrosis in the literature from three to four. Furthermore, our case demonstrates this phenomenon on RSI, which has been shown to have good sensitivity to restricted diffusion.

  6. Test of the Weak Equivalence Principle using LIGO observations of GW150914 and Fermi observations of GBM transient 150914

    Directory of Open Access Journals (Sweden)

    Molin Liu

    2017-07-01

    Full Text Available About 0.4 s after the Laser Interferometer Gravitational-Wave Observatory (LIGO detected a transient gravitational-wave (GW signal GW150914, the Fermi Gamma-ray Burst Monitor (GBM also found a weak electromagnetic transient (GBM transient 150914. Time and location coincidences favor a possible association between GW150904 and GBM transient 150914. Under this possible association, we adopt Fermi's electromagnetic (EM localization and derive constraints on possible violations of the Weak Equivalence Principle (WEP from the observations of two events. Our calculations are based on four comparisons: (1 The first is the comparison of the initial GWs detected at the two LIGO sites. From the different polarizations of these initial GWs, we obtain a limit on any difference in the parametrized post-Newtonian (PPN parameter Δγ≲10−10. (2 The second is a comparison of GWs and possible EM waves. Using a traditional super-Eddington accretion model for GBM transient 150914, we again obtain an upper limit Δγ≲10−10. Compared with previous results for photons and neutrinos, our limits are five orders of magnitude stronger than those from PeV neutrinos in blazar flares, and seven orders stronger than those from MeV neutrinos in SN1987A. (3 The third is a comparison of GWs with different frequencies in the range [35 Hz, 250 Hz]. (4 The fourth is a comparison of EM waves with different energies in the range [1 keV, 10 MeV]. These last two comparisons lead to an even stronger limit, Δγ≲10−8. Our results highlight the potential of multi-messenger signals exploiting different emission channels to strengthen existing tests of the WEP.

  7. On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914

    Science.gov (United States)

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Christensen, N.; Hui, C. M.; Kocevski, D.; Littenberg, T.; McEnery, J. E.; Racusin, J.; Shawhan, P.; Veitch, J.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Giles, M. M.; Gibby, M. H.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O. J.; Stanbro, M.; Veres, P.

    2018-01-01

    The weak transient detected by the Fermi Gamma-ray Burst Monitor (GBM) 0.4 s after GW150914 has generated much speculation regarding its possible association with the black hole binary merger. Investigation of the GBM data by Connaughton et al. revealed a source location consistent with GW150914 and a spectrum consistent with a weak, short gamma-ray burst. Greiner et al. present an alternative technique for fitting background-limited data in the low-count regime, and call into question the spectral analysis and the significance of the detection of GW150914-GBM presented in Connaughton et al. The spectral analysis of Connaughton et al. is not subject to the limitations of the low-count regime noted by Greiner et al. We find Greiner et al. used an inconsistent source position and did not follow the steps taken in Connaughton et al. to mitigate the statistical shortcomings of their software when analyzing this weak event. We use the approach of Greiner et al. to verify that our original spectral analysis is not biased. The detection significance of GW150914-GBM is established empirically, with a false-alarm rate (FAR) of ∼ {10}-4 Hz. A post-trials false-alarm probability (FAP) of 2.2× {10}-3 (2.9σ ) of this transient being associated with GW150914 is based on the proximity in time to the gravitational-wave event of a transient with that FAR. The FAR and the FAP are unaffected by the spectral analysis that is the focus of Greiner et al.

  8. Discontinuation of Hemodialysis in a Patient with Anti-GBM Disease by the Treatment with Corticosteroids and Plasmapheresis despite Several Predictors for Dialysis-Dependence

    Directory of Open Access Journals (Sweden)

    Yoshihide Fujigaki

    2017-01-01

    Full Text Available A 26-year-old man highly suspected of having antiglomerular basement membrane (GBM disease was treated with corticosteroid pulse therapy 9 days after initial infection-like symptoms with high procalcitonin value. The patient required hemodialysis the next day of the treatment due to oliguria. In addition to corticosteroid therapy, plasmapheresis was introduced and the patient could discontinue hemodialysis 43 days after the treatment. Kidney biopsy after initiation of hemodialysis confirmed anti-GBM disease with 86.3% crescent formation. Physician should keep in mind that active anti-GBM disease shows even high procalcitonin value in the absence of infection. To pursue recovery of renal function, the challenge of the immediate and persistent treatment with high-dose corticosteroids plus plasmapheresis for highly suspected anti-GBM disease is vitally important despite the presence of reported predictors for dialysis-dependence including oliguria and requiring hemodialysis at presentation.

  9. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  10. Onboard Decision Making For a New Class of AUV Science

    Science.gov (United States)

    Rajan, K.; McGann, C.; Py, F.; Thomas, H.; Henthorn, R.; McEwen, R.

    2007-12-01

    Autonomous Underwater Vehicles (AUVs) are an increasingly important tool for oceanographic research. They routinely and cost effectively sample the water column at depths far beyond what humans are capable of visiting. However, control of these platforms has relied on fixed sequences for execution of pre-planned actions limiting their effectiveness for measuring dynamic and episodic ocean phenomenon. At the Monterey Bay Aquarium Research Institute (MBARI), we are developing an advanced Artificial Intelligence (AI) based control system to enable our AUV's to dynamically adapt to the environment by deliberating in-situ about mission plans while tracking onboard resource consumption, dealing with plan failures by allowing dynamic re-planning and being cognizant of vehicle health and safety in the course of executing science plans. Existing behavior-based approaches require an operator to script plans a priori while anticipating where and how the vehicle will transect the water column. While adequate for current needs to do routine pre-defined transects, it has limited flexibility in dealing with opportunistic science needs, is unable to deal with uncertainty in the oceanic environment and puts undue burden on the mission operators to manage complex interactions between behaviors. Our approach, informed by a decades worth of experience in intelligent control of NASA spacecraft, uses a constraint-based representation to manage mission goals, react to exogenous or endogenous failure conditions, respond to sensory feedback by using AI-based search techniques to sort thru a space of likely responses and picking one which is satisfies the completion of mission goals. The system encapsulates the long-standing notion of a sense-deliberate-act cycle at the heart of a control loop and reflects the goal-oriented nature of control allowing operators to specify abstract mission goals rather than detailed command sequences. To date we have tested T- REX (the Teleo

  11. On-board event processing algorithms for a CCD-based space borne X-ray spectrometer

    International Nuclear Information System (INIS)

    Chun, H.J.; Bowles, J.A.; Branduardi-Raymont, G.; Gowen, R.A.

    1996-01-01

    This paper describes two alternative algorithms which are applied to reduce the telemetry requirements for a Charge Coupled Device (CCD) based, space-borne, X-ray spectrometer by on-board reconstruction of the X-ray events split over two or more adjacent pixels. The algorithms have been developed for the Reflection Grating Spectrometer (RGS) on the X-ray multi-mirror (XMM) mission, the second cornerstone project in the European Space Agency's Horizon 2000 programme. The overall instrument and some criteria which provide the background of the development of the algorithms, implemented in Tartan ADA on an MA31750 microprocessor, are described. The on-board processing constraints and requirements are discussed, and the performances of the algorithms are compared. Test results are presented which show that the recursive implementation is faster and has a smaller executable file although it uses more memory because of its stack requirements. (orig.)

  12. Spacelab-3 (STS-51B) Onboard Photograph

    Science.gov (United States)

    1985-01-01

    The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew performed research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. In this photograph, astronaut Don Lind observes the mercuric iodide growth experiment through a microscope at the vapor crystal growth furnace. The goals of this investigation were to grow near-perfect single crystals of mercuric iodide and to gain improved understanding of crystal growth by a vapor process. Mercuric iodide crystals have practical use as sensitive x-ray and gamma-ray detectors, and in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and in astronomical instruments. Managed by the Marshall Space Flight Center, Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Orbiter Challenger on April 29, 1985.

  13. Anti-GBM disease after nephrectomy for xanthogranulomatous pyelonephritis in a patient expressing HLA DR15 major histocompatibility antigens: a case report.

    Science.gov (United States)

    O'Hagan, Emma; Mallett, Tamara; Convery, Mairead; McKeever, Karl

    2015-01-01

    Antiglomerular basement membrane (anti-GBM) antibody disease is uncommon in the pediatric population. There are no cases in the literature describing the development of anti-GBM disease following XGP or nephrectomy. We report the case of a 7-year-old boy with no past history of urological illness, treated with antimicrobials and nephrectomy for diffuse, unilateral xanthogranulomatous pyelonephritis (XGP). Renal function and ultrasound scan of the contralateral kidney postoperatively were normal. Three months later, the child represented in acute renal failure with rapidly progressive glomerulonephritis requiring hemodialysis. Renal biopsy showed severe crescentic glomerulonephritis with 95% of glomeruli demonstrating circumferential cellular crescents. Strong linear IgG staining of the glomerular basement membranes was present, in keeping with anti-GBM disease. Circulating anti-GBM antibodies were positive. Treatment with plasma exchange, methylprednisolone, and cyclophosphamide led to normalization of anti-GBM antibody titers. Frequency of hemodialysis was reduced as renal function improved, and he is currently independent of dialysis with estimated glomerular filtration rate 20.7 mls/min/1.73 m 2 . Case studies in the adult literature have reported the development of a rapidly progressive anti-GBM antibody-induced glomerulonephritis following renal surgery where patients expressed HLA DR2/HLA DR15 major histocompatibility (MHC) antigens. Of note, our patient also expresses the HLA DR15 MHC antigen.

  14. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna (GBM) basin

    Science.gov (United States)

    Masood, M.; Yeh, P. J.-F.; Hanasaki, N.; Takeuchi, K.

    2014-06-01

    The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basins and might ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on basin-scale hydrology by using well-constrained hydrologic modelling has rarely been conducted for GBM basins due to the lack of data for model calibration and validation. In this study, a macro-scale hydrologic model H08 has been applied regionally over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution (~0.5 km) DEM data for accurate river networks delineation. The model has been calibrated via analyzing model parameter sensitivity and validated based on a long-term observed daily streamflow data. The impact of climate change on not only the runoff, but also the basin-scale hydrology including evapotranspiration, soil moisture and net radiation have been assessed in this study through three time-slice experiments; present-day (1979-2003), near-future (2015-2039) and far-future (2075-2099) periods. Results shows that, by the end of 21st century (a) the entire GBM basin is projected to be warmed by ~3°C (b) the changes of mean precipitation are projected to be +14.0, +10.4, and +15.2%, and the changes of mean runoff to be +14, +15, and +18% in the Brahmaputra, Ganges and Meghna basin respectively (c) evapotranspiration is predicted to increase significantly for the entire GBM basins (Brahmaputra: +14.4%, Ganges: +9.4%, Meghna: +8.8%) due to increased net radiation (Brahmaputra: +6%, Ganges: +5.9%, Meghna: +3.3%) as well as warmer air temperature. Changes of hydrologic variables will be larger in dry season (November-April) than that in wet season (May-October). Amongst three basins, Meghna shows the largest hydrological

  15. High-G Survivability of an Unpotted Onboard Recorder

    Science.gov (United States)

    2017-10-01

    UNCLASSIFIED UNCLASSIFIED AD-E403 949 Technical Report ARMET-TR-16081 HIGH -G SURVIVABILITY OF AN UNPOTTED ONBOARD RECORDER...Arsenal, New Jersey UNCLASSIFIED UNCLASSIFIED The views, opinions, and/or findings contained in this report are those...documentation. The citation in this report of the names of commercial firms or commercially available products or services does not constitute

  16. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  17. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  18. Proteolysis breaks tolerance toward intact α345(IV) collagen, eliciting novel anti-GBM autoantibodies specific for α345NC1 hexamers

    Science.gov (United States)

    Olaru, Florina; Wang, Xu-Ping; Luo, Wentian; Ge, Linna; Miner, Jeffrey H; Kleinau, Sandra; Geiger, Xochiquetzal J.; Wasiluk, Andrew; Heidet, Laurence; Kitching, A. Richard; Borza, Dorin-Bogdan

    2012-01-01

    Goodpasture disease is an autoimmune kidney disease mediated by autoAbs against NC1 monomers of α3(IV) collagen that bind to the glomerular basement membrane (GBM), usually causing rapidly progressive glomerulonephritis. We identified a novel type of human IgG4-restricted anti-GBM autoAbs associated with mild non-progressive glomerulonephritis, which specifically targeted α345NC1 hexamers but not α3NC1 monomers. The mechanisms eliciting these anti-GBM autoAbs were investigated in mouse models recapitulating this phenotype. Wild type and FcγRIIB−/− mice immunized with autologous murine GBM NC1 hexamers produced mouse IgG1-restricted autoAbs specific for α345NC1 hexamers, which bound to the GBM in vivo but did not cause glomerulonephritis. In these mice, intact collagen IV from murine GBM was not immunogenic. However, in Col4a3−/− Alport mice, both intact collagen IV and NC1 hexamers from murine GBM elicited IgG antibodies specific for α3α4α5NC1 hexamers, which were not subclass restricted. As heterologous antigen in COL4A3-humanized mice, murine GBM NC1 hexamers elicited mouse IgG1, IgG2a and IgG2b autoAbs specific for α345NC1 hexamers and induced anti-GBM Ab glomerulonephritis. These findings indicate that tolerance toward autologous intact α3α4α5(IV) collagen is established in hosts expressing this antigen, even though autoreactive B cells specific for α345NC1 hexamers are not purged from their repertoire. Proteolysis selectively breaches this tolerance by generating autoimmunogenic α3α4α5NC1 hexamers. This provides a mechanism eliciting autoAbs specific for α345NC1 hexamers, which are restricted to non-inflammatory IgG subclasses and non-nephritogenic. In Alport syndrome, lack of tolerance toward α3α4α5(IV) collagen promotes production of alloantibodies to α345NC1 hexamers, including pro-inflammatory IgG subclasses which mediate post-transplant anti-GBM nephritis. PMID:23303673

  19. On-Board Mining in the Sensor Web

    Science.gov (United States)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  20. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  1. Patients double-seropositive for ANCA and anti-GBM antibodies have varied renal survival, frequency of relapse, and outcomes compared to single-seropositive patients.

    Science.gov (United States)

    McAdoo, Stephen P; Tanna, Anisha; Hrušková, Zdenka; Holm, Lisa; Weiner, Maria; Arulkumaran, Nishkantha; Kang, Amy; Satrapová, Veronika; Levy, Jeremy; Ohlsson, Sophie; Tesar, Vladimir; Segelmark, Mårten; Pusey, Charles D

    2017-09-01

    Co-presentation with both ANCA and anti-GBM antibodies is thought to be relatively rare. Current studies of such 'double-positive' cases report small numbers and variable outcomes. To study this further we retrospectively analyzed clinical features and long-term outcomes of a large cohort of 568 contemporary patients with ANCA-associated vasculitis, 41 patients with anti-GBM disease, and 37 double-positive patients with ANCA and anti-GBM disease from four European centers. Double-positive patients shared characteristics of ANCA-associated vasculitis (AAV), such as older age distribution and longer symptom duration before diagnosis, and features of anti-GBM disease, such as severe renal disease and high frequency of lung hemorrhage at presentation. Despite having more evidence of chronic injury on renal biopsy compared to patients with anti-GBM disease, double-positive patients had a greater tendency to recover from being dialysis-dependent after treatment and had intermediate long-term renal survival compared to the single-positive patients. However, overall patient survival was similar in all three groups. Predictors of poor patient survival included advanced age, severe renal failure, and lung hemorrhage at presentation. No single-positive anti-GBM patients experienced disease relapse, whereas approximately half of surviving patients with AAV and double-positive patients had recurrent disease during a median follow-up of 4.8 years. Thus, double-positive patients have a truly hybrid disease phenotype, requiring aggressive early treatment for anti-GBM disease, and careful long-term follow-up and consideration for maintenance immunosuppression for AAV. Since double-positivity appears common, further work is required to define the underlying mechanisms of this association and define optimum treatment strategies. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Identifying Onboarding Heuristics for Free-to-Play Mobile Games: A Mixed Methods Approach

    DEFF Research Database (Denmark)

    Thomsen, Line Ebdrup; Weigert Petersen, Falko; Mirza-Babaei, Pejman

    2016-01-01

    The onboarding phase of Free-to-Play mobile games, covering the first few minutes of play, typically sees a substantial retention rate amongst players. It is therefore crucial to the success of these games that the onboarding phase promotes engagement to the widest degree possible. In this paper ...... of puzzle games, base builders and arcade games, and utilize different onboarding phase design approaches. Results showcase how heuristics can be used to design engaging onboarding phases in mobile games....

  3. Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning.

    Directory of Open Access Journals (Sweden)

    Simon Dedman

    Full Text Available Marine resource managers and scientists often advocate spatial approaches to manage data-poor species. Existing spatial prediction and management techniques are either insufficiently robust, struggle with sparse input data, or make suboptimal use of multiple explanatory variables. Boosted Regression Trees feature excellent performance and are well suited to modelling the distribution of data-limited species, but are extremely complicated and time-consuming to learn and use, hindering access for a wide potential user base and therefore limiting uptake and usage.We have built a software suite in R which integrates pre-existing functions with new tailor-made functions to automate the processing and predictive mapping of species abundance data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the gbm.auto R package suite makes this powerful statistical modelling technique more accessible to potential users in the ecological and modelling communities. The package and its documentation allow the user to generate maps of predicted abundance, visualise the representativeness of those abundance maps and to plot the relative influence of explanatory variables and their relationship to the response variables. Databases of the processed model objects and a report explaining all the steps taken within the model are also generated. The package includes a previously unavailable Decision Support Tool which combines estimated escapement biomass (the percentage of an exploited population which must be retained each year to conserve it with the predicted abundance maps to generate maps showing the location and size of habitat that should be protected to conserve the target stocks (candidate MPAs, based on stakeholder priorities, such as the minimisation of fishing effort displacement.By bridging the gap between advanced statistical methods for species distribution modelling and conservation science, management and policy, these

  4. The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Xing WK

    2015-06-01

    Full Text Available Wei-kang Xing,1 Chuan Shao,2 Zhen-yu Qi,1 Chao Yang,1 Zhong Wang1 1Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 2Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China Background: Standard treatment for high-grade glioma (HGG includes surgery followed by radiotherapy and/or chemotherapy. Insertion of carmustine wafers into the resection cavity as a treatment for malignant glioma is currently a controversial topic among neurosurgeons. Our meta-analysis focused on whether carmustine wafer treatment could significantly benefit the survival of patients with newly diagnosed glioblastoma multiforme (GBM.Method: We searched the PubMed and Web of Science databases without any restrictions on language using the keywords “Gliadel wafers”, “carmustine wafers”, “BCNU wafers”, or “interstitial chemotherapy” in newly diagnosed GBM for the period from January 1990 to March 2015. Randomized controlled trials (RCTs and cohort studies/clinical trials that compared treatments designed with and without carmustine wafers and which reported overall survival or hazard ratio (HR or survival curves were included in this study. Moreover, the statistical analysis was conducted by the STATA 12.0 software.Results: Six studies including two RCTs and four cohort studies, enrolling a total of 513 patients (223 with and 290 without carmustine wafers, matched the selection criteria. Carmustine wafers showed a strong advantage when pooling all the included studies (HR =0.63, 95% confidence interval (CI =0.49–0.81; P=0.019. However, the two RCTs did not show a statistical increase in survival in the group with carmustine wafer compared to the group without it (HR =0.51, 95% CI =0.18–1.41; P=0.426, while the cohort studies demonstrated a significant survival increase (HR =0.59, 95% CI =0.44–0.79; P<0.0001.Conclusion

  5. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  6. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells.

    Science.gov (United States)

    Hsu, Sanford P C; Kuo, John S; Chiang, Hsin-Chien; Wang, Hsin-Ell; Wang, Yu-Shan; Huang, Cheng-Chung; Huang, Yi-Chun; Chi, Mau-Shin; Mehta, Minesh P; Chi, Kwan-Hwa

    2018-01-23

    Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo . Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation.

  7. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    Science.gov (United States)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  8. Development of Onboard Computer Complex for Russian Segment of ISS

    Science.gov (United States)

    Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.

    1998-01-01

    Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.

  9. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  10. Development of on-board fuel metering and sensing system

    Science.gov (United States)

    Hemanth, Y.; Manikanta, B. S. S.; Thangaraja, J.; Bharanidaran, R.

    2017-11-01

    Usage of biodiesel fuels and their blends with diesel fuel has a potential to reduce the tailpipe emissions and reduce the dependence on crude oil imports. Further, biodiesel fuels exhibit favourable greenhouse gas emission and energy balance characteristics. While fossil fuel technology is well established, the technological implications of biofuels particularly biodiesel is not clearly laid out. Hence, the objective is to provide an on-board metering control in selecting the different proportions of diesel and bio-diesel blends. An on-board fuel metering system is being developed using PID controller, stepper motors and a capacitance sensor. The accuracy was tested with the blends of propanol-1, diesel and are found to be within 1.3% error. The developed unit was tested in a twin cylinder diesel engine with biodiesel blended diesel fuel. There was a marginal increase (5%) in nitric oxide and 14% increase in smoke emission with 10% biodiesel blended diesel at part load conditions.

  11. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    Totemeier, A.; Jevremovic, T.; Hounshel, D.

    2004-01-01

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  12. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    Science.gov (United States)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  13. Experimental study on ceramic membrane technology for onboard oxygen generation

    OpenAIRE

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  14. MOBS - A modular on-board switching system

    Science.gov (United States)

    Berner, W.; Grassmann, W.; Piontek, M.

    The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.

  15. STS-59 crewmembers in training for onboard Earth observations

    Science.gov (United States)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  16. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  17. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  18. Weather-enabled future onboard surveillance and navigation systems

    Science.gov (United States)

    Mutuel, L.; Baillon, B.; Barnetche, B.; Delpy, P.

    2009-09-01

    With the increasing traffic and the development of business trajectories, there is a widespread need to anticipate any adverse weather conditions that could impact the performance of the flight or to use of atmospheric parameters to optimize trajectories. Current sensors onboard air transport are challenged to provide the required service, while new products for business jets and general aviation open the door to innovative assimilation of weather information in onboard surveillance and navigation. The paper aims at surveying current technology available to air transport aircraft and pointing out their shortcomings in view of the modernization proposed in SESAR and NextGen implementation plans. Foreseen innovations are then illustrated via results of ongoing research like FLYSAFE or standardization efforts, in particular meteorological datalink services and impact on Human-Machine Interface. The paper covers the operational need to avoid adverse weather like thunderstorm, icing, turbulence, windshear and volcanic ash, but also the requirement to control in 4D the trajectory through the integration of wind and temperature grids in the flight management. The former will lead to enhanced surveillance systems onboard the aircraft with new displays and new alerting schemes, ranging from targeted information supporting better re-planning to auto-escape strategies. The latter will be standard in next generation flight management systems. Finally both will rely on ATM products that will also assimilate weather information so that situational awareness is shared and decision is collaborative.

  19. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  20. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  1. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  2. GRAVITATIONAL-WAVE OBSERVATIONS MAY CONSTRAIN GAMMA-RAY BURST MODELS: THE CASE OF GW150914–GBM

    Energy Technology Data Exchange (ETDEWEB)

    Veres, P. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805 (United States); Preece, R. D. [Dept. of Space Science, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805 (United States); Goldstein, A.; Connaughton, V. [Universities Space Research Association, 320 Sparkman Dr. Huntsville, AL 35806 (United States); Mészáros, P. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Burns, E., E-mail: peter.veres@uah.edu [Physics Dept., University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805 (United States)

    2016-08-20

    The possible short gamma-ray burst (GRB) observed by Fermi /GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (∼10{sup −3} cm{sup −3}) and a high Lorentz factor (∼2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford–Znajek model. If future joint observations confirm the GW–short-GRB association we can provide similar but more detailed tests for prompt emission models.

  3. The IPV-GBM scale: a new scale to measure intimate partner violence among gay and bisexual men.

    Science.gov (United States)

    Stephenson, Rob; Finneran, Catherine

    2013-01-01

    The paper describes the creation of a new scale to measure intimate partner violence (IPV) among gay and bisexual men. Seven focus group discussions were held with gay and bisexual men, focusing on defining intimate partner violence: 30 forms of IPV were identified. A venue-recruited sample of 912 gay and bisexual men was surveyed, examining definitional understanding and recent experiences of each of the 30 forms of IPV. Participants were also asked questions from the CDC definition of intimate partner violence and the short-form of the Conflicts Tactics Scale (CTS2S). Factor analysis of responses to the definitional questions was used to create the IPV-GBM scale, and the prevalence of intimate partner violence was compared with that identified by the CDC and CTS2S measures of intimate partner violence. A 23-item scale, with 5 unique domains, was created, with strong internal reliability (Cronbach Alpha >.90). The IPV-GBM scale mirrored both the CDC and CTS2S definitions of intimate partner violence, but contained additional domains such as controlling violence, monitoring behaviors, emotional violence, and HIV-related violence. The new scale identified a significantly higher prevalence of IPV than either of the more commonly used measures. The results presented here provide encouraging evidence for a new, more accurate measure of intimate partner violence among gay and bisexual men in the U.S.

  4. The IPV-GBM scale: a new scale to measure intimate partner violence among gay and bisexual men.

    Directory of Open Access Journals (Sweden)

    Rob Stephenson

    Full Text Available The paper describes the creation of a new scale to measure intimate partner violence (IPV among gay and bisexual men.Seven focus group discussions were held with gay and bisexual men, focusing on defining intimate partner violence: 30 forms of IPV were identified. A venue-recruited sample of 912 gay and bisexual men was surveyed, examining definitional understanding and recent experiences of each of the 30 forms of IPV. Participants were also asked questions from the CDC definition of intimate partner violence and the short-form of the Conflicts Tactics Scale (CTS2S. Factor analysis of responses to the definitional questions was used to create the IPV-GBM scale, and the prevalence of intimate partner violence was compared with that identified by the CDC and CTS2S measures of intimate partner violence.A 23-item scale, with 5 unique domains, was created, with strong internal reliability (Cronbach Alpha >.90. The IPV-GBM scale mirrored both the CDC and CTS2S definitions of intimate partner violence, but contained additional domains such as controlling violence, monitoring behaviors, emotional violence, and HIV-related violence. The new scale identified a significantly higher prevalence of IPV than either of the more commonly used measures.The results presented here provide encouraging evidence for a new, more accurate measure of intimate partner violence among gay and bisexual men in the U.S.

  5. Applied Questions of Onboard Laser Radar Equipment Development

    Directory of Open Access Journals (Sweden)

    E. I. Starovoitov

    2015-01-01

    Full Text Available During development of the spacecraft laser radar systems (LRS it is a problem to make a choice of laser sources and photo-detectors both because of their using specifics in onboard equipment and because of the limited number of domestic and foreign manufacturers.Previous publications did not consider in detail the accuracy versus laser pulse repetition frequency, the impact of photo-detector sensitivity and dynamic range on the LRS characteristics, and the power signal-protected photo-detector against overload.The objective of this work is to analyze how the range, accuracy, and reliability of onboard LRS depend on different types of laser sources and photo-detectors, and on availability of electromechanical optical attenuator.The paper describes design solutions that are used to compensate for a decreased sensitivity of photo-detector and an impact of these changes on the LRS characteristics.It is shown that due to the high pulse repetition frequency a fiber laser is the preferred type of a laser source in onboard LRS, which can be used at ranges less than 500 m for two purposes: determining the orientation of the passive spacecraft with the accuracy of 0.3 and measuring the range rate during the rendezvous of spacecrafts with an accuracy of 0.003... 0.006 m/s.The work identifies the attenuation level of the optical attenuator versus measured range. In close proximity to a diffusely reflecting passive spacecraft and a corner reflector this attenuator protects photo-detector. It is found that the optical attenuator is advisable to apply when using the photo-detector based on an avalanche photodiode. There is no need in optical attenuator (if a geometric factor is available in the case of sounding corner reflector when a photo-detector based on pin-photodiode is used. Exclusion of electromechanical optical attenuator can increase the reliability function of LRS from Р (t = 0.9991 to Р (t = 0.9993.The results obtained in this work can be used

  6. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.

    Science.gov (United States)

    Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian

    2013-10-14

    MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.

  7. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Science.gov (United States)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  8. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery.

    Science.gov (United States)

    Carlson, Brett L; Pokorny, Jenny L; Schroeder, Mark A; Sarkaria, Jann N

    2011-03-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors are then used to establish short-term explant cultures or intracranial xenografts. This unit describes detailed procedures for establishment, maintenance, and utilization of a primary GBM xenograft panel for the purpose of using them as tumor models for basic or translational studies.

  9. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  10. Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express

    Science.gov (United States)

    Aoki, S.; Sato, Y.; Giuranna, M.; Wolkenberg, P.; Sato, T. M.; Nakagawa, H.; Kasaba, Y.

    2018-03-01

    We have investigated mesospheric CO2 ice clouds on Mars through analysis of near-infrared spectra acquired by Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEx) from MY 27 to MY 32. With the highest spectral resolution achieved thus far in the relevant spectral range among remote-sensing experiments orbiting Mars, PFS enables precise identification of the scattering peak of CO2 ice at the bottom of the 4.3 μm CO2 band. A total of 111 occurrences of CO2 ice cloud features have been detected over the period investigated. Data from the OMEGA imaging spectrometer onboard MEx confirm all of PFS detections from times when OMEGA operated simultaneously with PFS. The spatial and seasonal distributions of the CO2 ice clouds detected by PFS are consistent with previous observations by other instruments. We find CO2 ice clouds between Ls = 0° and 140° in distinct longitudinal corridors around the equatorial region (± 20°N). Moreover, CO2 ice clouds were preferentially detected at the observational LT range between 15-16 h in MY 29. However, observational biases prevent from distinguishing local time dependency from inter-annual variation. PFS also enables us to investigate the shape of mesospheric CO2 ice cloud spectral features in detail. In all cases, peaks were found between 4.240 and 4.265 μm. Relatively small secondary peaks were occasionally observed around 4.28 μm (8 occurrences). These spectral features cannot be reproduced using our radiative transfer model, which may be because the available CO2 ice refractive indices are inappropriate for the mesospheric temperatures of Mars, or because of the assumption in our model that the CO2 ice crystals are spherical and composed by pure CO2 ice.

  11. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  12. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  13. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  14. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  15. Biological quarantine on international waters: an initiative for onboard protocols

    Science.gov (United States)

    Takano, Yoshinori; Yano, Hajime; Funase, Ryu; Sekine, Yasuhito; Takai, Ken

    2012-07-01

    The research vessel Chikyu is expanding new frontiers in science, technology, and international collaboration through deep-sea expedition. The Chikyu (length: 210 m, gross tonnage: 56752 tons) has advanced and comprehensive scientific research facilities. One of the scientific purposes of the vessel is to investigate into unexplored biosphere (i.e., undescribed extremophiles) on the Earth. Therefore, "the onboard laboratory" provides us systematic microbiological protocols with a physical containment situation. In parallel, the onboard equipments provide sufficient space for fifty scientists and technical support staff. The helicopter deck also supports various logistics through transporting by a large scale helicopter (See, http://www.jamstec.go.jp/chikyu/eng/). Since the establishment of Panel on Planetary Protection (PPP) in Committee on Space Research (COSPAR), we have an international consensus about the development and promulgation of planetary protection knowledge, policy, and plans to prevent the harmful effects of biological contamination on the Earth (e.g., Rummel, 2002). However, the matter to select a candidate location of initial quarantine at BSL4 level is often problematic. To answer the key issue, we suggest that international waters can be a meaningful option with several advantages to conduct initial onboard-biological quarantine investigation. Hence, the research vessel Chikyu is promising for further PPP requirements (e.g., Enceladus sample return project: Tsou et al., 2012). Rummel, J., Seeking an international consensus in planetary protection: COSPAR's planetary protection panel. Advances in Space Research, 30, 1573-1575 (2002). Tsou, P. et al. LIFE: Life Investigation For Enceladus - A Sample Return Mission Concept in Search for Evidence of Life. Astrobiology, in press.

  16. Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars

    Science.gov (United States)

    Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.

    2011-12-01

    Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development

  17. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    Science.gov (United States)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system

  18. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  19. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  20. SU-F-R-17: Advancing Glioblastoma Multiforme (GBM) Recurrence Detection with MRI Image Texture Feature Extraction and Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, V; Ruan, D; Nguyen, D; Kaprealian, T; Chin, R; Sheng, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To test the potential of early Glioblastoma Multiforme (GBM) recurrence detection utilizing image texture pattern analysis in serial MR images post primary treatment intervention. Methods: MR image-sets of six time points prior to the confirmed recurrence diagnosis of a GBM patient were included in this study, with each time point containing T1 pre-contrast, T1 post-contrast, T2-Flair, and T2-TSE images. Eight Gray-level co-occurrence matrix (GLCM) texture features including Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Sum-Average, and Variance were calculated from all images, resulting in a total of 32 features at each time point. A confirmed recurrent volume was contoured, along with an adjacent non-recurrent region-of-interest (ROI) and both volumes were propagated to all prior time points via deformable image registration. A support vector machine (SVM) with radial-basis-function kernels was trained on the latest time point prior to the confirmed recurrence to construct a model for recurrence classification. The SVM model was then applied to all prior time points and the volumes classified as recurrence were obtained. Results: An increase in classified volume was observed over time as expected. The size of classified recurrence maintained at a stable level of approximately 0.1 cm{sup 3} up to 272 days prior to confirmation. Noticeable volume increase to 0.44 cm{sup 3} was demonstrated at 96 days prior, followed by significant increase to 1.57 cm{sup 3} at 42 days prior. Visualization of the classified volume shows the merging of recurrence-susceptible region as the volume change became noticeable. Conclusion: Image texture pattern analysis in serial MR images appears to be sensitive to detecting the recurrent GBM a long time before the recurrence is confirmed by a radiologist. The early detection may improve the efficacy of targeted intervention including radiosurgery. More patient cases will be included to create a generalizable

  1. On-board cryogenic system for magnetic levitation of trains

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, S A.W.; Kneuer, R; Stephan, A

    1975-02-01

    An experimental car based on electrodynamic levitation with superconducting magnets was developed and manufactured with an on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. Processes and components are discussed, and a brief description of the first results for the whole system under simulation conditions is given.

  2. On-board image compression for the RAE lunar mission

    Science.gov (United States)

    Miller, W. H.; Lynch, T. J.

    1976-01-01

    The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cu cm and consumes 0.4 W.

  3. MARES: Navigation, Control and On-board Software

    OpenAIRE

    Aníbal Matos; Nuno Cruz

    2009-01-01

    MARES, or Modular Autonomous Robot for Environment Sampling, is a 1.5m long AUV, designed and built by the Ocean Systems Group. The vehicle can be programmed to follow predefined trajectories, while collecting relevant data with the onboard sensors. MARES can dive up to 100m deep, and unlike similar-sized systems, has vertical thrusters to allow for purely vertical motion in the water column. Forward velocity can be independently defined, from 0 to 2 m/s. Major application areas include pollu...

  4. On-board cryogenic system for magnetic levitation of trains

    International Nuclear Information System (INIS)

    Asztalos, St.; Baldus, W.; Kneuer, R.; Stephan, A.

    1974-01-01

    An experimental car based on electrodynamic levitation with superconducting magnets has been developed and manufactured by AEG, BBC, Siemens and other partners, together with Linde AG as the firm responsible for the on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotatable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. This paper reports on processes and components. A brief description of the first results for the whole system under simulation conditions is given. (author)

  5. Applying CASE Tools for On-Board Software Development

    Science.gov (United States)

    Brammer, U.; Hönle, A.

    For many space projects the software development is facing great pressure with respect to quality, costs and schedule. One way to cope with these challenges is the application of CASE tools for automatic generation of code and documentation. This paper describes two CASE tools: Rhapsody (I-Logix) featuring UML and ISG (BSSE) that provides modeling of finite state machines. Both tools have been used at Kayser-Threde in different space projects for the development of on-board software. The tools are discussed with regard to the full software development cycle.

  6. ANCA-GBM dot-blot : Evaluation of an assay in the differential diagnosis of patients presenting with rapidly progressive glomerulonephritis

    NARCIS (Netherlands)

    Rutgers, Abraham; Damoiseaux, Jan; Roozendaal, Caroline; Limburg, Pieter C; Stegeman, Coen A; Tervaert, Jan Willem Cohen

    Rapidly progressive glomerulonephritis (RPGN) is characterized by rapid and progressive loss of renal function and the presence of crescentic glomerulonephritis (CGN). Early diagnosis and appropriate treatment is mandatory to prevent death and/or renal failure. We have evaluated an ANCA-GBM dot-blot

  7. Combinatorial Drug Testing in 3D Microtumors Derived from GBM Patient-Derived Xenografts Reveals Cytotoxic Synergy in Pharmacokinomics-informed Pathway Interactions.

    Science.gov (United States)

    Gilbert, Ashley N; Anderson, Joshua C; Duarte, Christine W; Shevin, Rachael S; Langford, Catherine P; Singh, Raj; Gillespie, G Yancey; Willey, Christopher D

    2018-05-30

    Glioblastoma multiforme (GBM), the most common form of primary malignant brain cancer in adults, is a devastating disease for which effective treatment has remained elusive for over 75 years. One reason for the minimal progress during this time is the lack of accurate preclinical models to represent the patient's tumor's in vivo environment, causing a disconnect in drug therapy effectiveness between the laboratory and clinic. While patient-derived xenografts (PDX's or xenolines) are excellent human tumor representations, they are not amenable to high throughput testing. Therefore, we developed a miniaturized xenoline system (microtumors) for drug testing. Nineteen GBM xenolines were profiled for global kinase (kinomic) activity revealing actionable kinase targets associated with intracranial tumor growth rate. Kinase inhibitors for these targets (WP1066, selumetinib, crizotinib, and cediranib) were selected for single and combination therapy using a fully human-derived three-dimensional (3D) microtumor model of GBM xenoline cells embedded in HuBiogel for subsequent molecular and phenotype assays. GBM microtumors closely resembled orthotopically-implanted tumors based on immunohistochemical analysis and displayed kinomic and morphological diversity. Drug response testing could be reproducibly performed in a 96-well format identifying several synergistic combinations. Our findings indicate that 3D microtumors can provide a suitable high-throughput model for combination drug testing.

  8. A PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance.

    Science.gov (United States)

    Yan, Xiaoyan; Zhang, Chuanbao; Liang, Tingyu; Yang, Fan; Wang, Haoyuan; Wu, Fan; Wang, Wen; Wang, Zheng; Cheng, Wen; Xu, Jiangnan; Jiang, Tao; Chen, Jing; Ding, Yaozhong

    2017-10-17

    Collagen XVII expression has recently been demonstrated to be correlated with the tumor malignance. While Collagen XVII is known to be widely distributed in neurons of the human brain, its precise role in pathogenesis of glioblastoma multiforme (GBM) is unknown. In this study, we identified and characterized a new PTEN-COL17A1 fusion gene in GMB using transcriptome sequencing. Although fusion gene did not result in measurable fusion protein production, its presence is accompanied with high levels of COL17A1 expression, revealed a novel regulatory mechanism of Collagen XVII expression by PTEN-COL17A1 gene fusion. Knocked down Collagen XVII expression in glioma cell lines resulted in decreased tumor invasiveness, along with significant reduction of MMP9 expression, while increased Collagen XVII expression promotes invasive activities of glioma cells and associated with GBM recurrences. Together, our results uncovered a new PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance, and demonstrated that COL17A1 could serve as a useful prognostic biomarker and therapeutic targets for GBM.

  9. Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-kappaB in immune complex kidney disease.

    Science.gov (United States)

    Kim, Ju Han; Ha, Il Soo; Hwang, Chang-Il; Lee, Young-Ju; Kim, Jihoon; Yang, Seung-Hee; Kim, Yon Su; Cao, Yun Anna; Choi, Sangdun; Park, Woong-Yang

    2004-11-01

    Immune complexes may cause an irreversible onset of chronic renal disease. Most patients with chronic renal disease undergo a final common pathway, marked by glomerulosclerosis and interstitial fibrosis. We attempted to draw a molecular map of anti-glomerular basement membrane (GBM) glomerulonephritis in mice using oligonucleotide microarray technology. Kidneys were harvested at days 1, 3, 7, 11, and 16 after inducing glomerulonephritis by using anti-GBM antibody. In parallel with examining the biochemical and histologic changes, gene expression profiles were acquired against five pooled control kidneys. Gene expression levels were cross-validated by either reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, or immunohistochemistry. Pathologic changes in anti-GBM glomerulonephritis were confirmed in both BALB/c and C57BL/6 strains. Among the 13,680 spotted 65mer oligonucleotides, 1112 genes showing significant temporal patterns by permutation analysis of variance (ANOVA) with multiple testing correction [false discovery ratio (FDR) mouse anti-GBM glomerulonephritis model, providing a comprehensive overview on the mechanism governing the initiation and the progression of inflammatory renal disease.

  10. On-board data management study for EOPAP

    Science.gov (United States)

    Davisson, L. D.

    1975-01-01

    The requirements, implementation techniques, and mission analysis associated with on-board data management for EOPAP were studied. SEASAT-A was used as a baseline, and the storage requirements, data rates, and information extraction requirements were investigated for each of the following proposed SEASAT sensors: a short pulse 13.9 GHz radar, a long pulse 13.9 GHz radar, a synthetic aperture radar, a multispectral passive microwave radiometer facility, and an infrared/visible very high resolution radiometer (VHRR). Rate distortion theory was applied to determine theoretical minimum data rates and compared with the rates required by practical techniques. It was concluded that practical techniques can be used which approach the theoretically optimum based upon an empirically determined source random process model. The results of the preceding investigations were used to recommend an on-board data management system for (1) data compression through information extraction, optimal noiseless coding, source coding with distortion, data buffering, and data selection under command or as a function of data activity, (2) for command handling, (3) for spacecraft operation and control, and (4) for experiment operation and monitoring.

  11. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    Science.gov (United States)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  12. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    Directory of Open Access Journals (Sweden)

    Nicolas M Bertagnolli

    Full Text Available To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  13. Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters.

    Science.gov (United States)

    Chandra, Vikas; Das, Tapojyoti; Gulati, Puneet; Biswas, Nidhan K; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N; Deb, Sumit; Saha, Suniti K; Chowdhury, Anup K; Ghosh, Subhashish; Rudin, Charles M; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.

  14. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  15. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  16. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  17. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    Science.gov (United States)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  18. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  19. A Chimeric Antibody against ACKR3/CXCR7 in Combination with TMZ Activates Immune Responses and Extends Survival in Mouse GBM Models.

    Science.gov (United States)

    Salazar, Nicole; Carlson, Jeffrey C; Huang, Kexin; Zheng, Yayue; Oderup, Cecilia; Gross, Julia; Jang, Andrew D; Burke, Thomas M; Lewén, Susanna; Scholz, Alexander; Huang, Serina; Nease, Leona; Kosek, Jon; Mittelbronn, Michel; Butcher, Eugene C; Tu, Hua; Zabel, Brian A

    2018-05-02

    Glioblastoma (GBM) is the least treatable type of brain tumor, afflicting over 15,000 people per year in the United States. Patients have a median survival of 16 months, and over 95% die within 5 years. The chemokine receptor ACKR3 is selectively expressed on both GBM cells and tumor-associated blood vessels. High tumor expression of ACKR3 correlates with poor prognosis and potential treatment resistance, making it an attractive therapeutic target. We engineered a single chain FV-human FC-immunoglobulin G1 (IgG 1 ) antibody, X7Ab, to target ACKR3 in human and mouse GBM cells. We used hydrodynamic gene transfer to overexpress the antibody, with efficacy in vivo. X7Ab kills GBM tumor cells and ACKR3-expressing vascular endothelial cells by engaging the cytotoxic activity of natural killer (NK) cells and complement and the phagocytic activity of macrophages. Combining X7Ab with TMZ allows the TMZ dosage to be lowered, without compromising therapeutic efficacy. Mice treated with X7Ab and in combination with TMZ showed significant tumor reduction by MRI and longer survival overall. Brain-tumor-infiltrating leukocyte analysis revealed that X7Ab enhances the activation of M1 macrophages to support anti-tumor immune response in vivo. Targeting ACKR3 with immunotherapeutic monoclonal antibodies (mAbs) in combination with standard of care therapies may prove effective in treating GBM. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    Science.gov (United States)

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  1. Flight Hardware Virtualization for On-Board Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  2. Possibilities of reduction of the on-board energy for an innovative subway

    OpenAIRE

    Allègre, A-L.; Barrade, P.; Delarue, P.; Bouscayrol, A.; Chattot, E.; El-Fassi, S.

    2009-01-01

    An innovative subway has been proposed using supercapacitors as energy source. In this paper, are presented different possibilities to reduce on-board stored energy in order to downsize the on-board energy storage subsystem. Special attention is paid to the influence of a feeding rail extension or a downward slope at the beginning of the interstation on the on-board stored energy. A map is built to facilitate the selection of the solution which leads to reduce the on-board energy.

  3. Safe Onboard Guidance and Control Under Probabilistic Uncertainty

    Science.gov (United States)

    Blackmore, Lars James

    2011-01-01

    An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.

  4. Onboard monitoring of fatigue damage rates in the hull girder

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    2011-01-01

    Most new advanced ships have extensive data collection systems to be used for continuous monitoring of engine and hull performance, for voyage performance evaluation etc. Such systems could be expanded to include also procedures for stress monitoring and for decision support, where the most...... critical wave-induced ship extreme responses and fatigue damage accumulation can be estimated for hypothetical changes in ship course and speed in the automatically estimated wave environment.The aim of this paper is to outline a calculation procedure for fatigue damage rate prediction in hull girders...... taking into account whipping stresses. It is conceptually shown how such a method, which integrates onboard estimation of sea states, can be used to deduce decision support with respect to the accumulated fatigue damage in the hull girder.The paper firstly presents a set of measured full-scale wave...

  5. Estimation of waves and ship responses using onboard measurements

    DEFF Research Database (Denmark)

    Montazeri, Najmeh

    This thesis focuses on estimation of waves and ship responses using ship-board measurements. This is useful for development of operational safety and performance efficiency in connection with the broader concept of onboard decision support systems. Estimation of sea state is studied using a set...... of measured ship responses, a parametric description of directional wave spectra (a generalised JONSWAP model) and the transfer functions of the ship responses. The difference between the spectral moments of the measured ship responses and the corresponding theoretically calculated moments formulates a cost...... information. The model is tested on simulated data based on known unimodal and bimodal wave scenarios. The wave parameters in the output are then compared with the true wave parameters. In addition to the numerical experiments, two sets of full-scale measurements from container ships are analysed. Herein...

  6. A new model for understanding teamwork onboard: the shipmate model.

    Science.gov (United States)

    Espevik, Roar; Olsen, Olav Kjellevold

    2013-01-01

    The increasing complexity onboard a ship underline the importance of crews that are able to coordinate and cooperate with each other to facilitate task objectives through a shared understanding of resources (e.g. team members' knowledge, skills and experience), the crew's goals, and the constrains under which they work. Rotation of personnel through 24/7 shift-work schedules and replacements often put crews ina position of having little or no previous history as a team. Findings from 3 studies indicated that unfamiliar teams used less efficient coordination strategies which reduced efficiency and increased levels of stress in situations where team members where experts on task, distributed or unknown to task and environment.Implications for staffing, safety and training are discussed.

  7. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    James K. Archibald

    2006-12-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  8. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Fife WadeS

    2007-01-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  9. Anti-glomerular basement membrane (anti-GBM) disease accompanied by vasculitis that was not positive for antineutrophil cytoplasmic antibodies to myeloperoxidase and proteinase 3: a report of two cases and the incidence of anti-GBM disease at one institution.

    Science.gov (United States)

    Nakabayashi, Kimimasa; Fujioka, Yasunori; Arimura, Yoshihiro; Fukuoka, Toshihito; Marumo, Tomohumi; Umino, Michiru; Kamiya, Yasushi; Okai, Takahiro; Tsurumaki, Shigeru; Nagasawa, Toshihiko; Yamada, Akira

    2011-08-01

    Anti-glomerular basement membrane (anti-GBM) disease is thought to be distinct from vasculitis. In contrast, there have been several papers suggesting the presence of angiitis in cases that were positive for anti-GBM antibody (Ab), as well as for either myeloperoxidase (MPO)- or proteinase 3 (PR3)-anti-neutrophil cytoplasmic antibody (ANCA) (Group I). We experienced four patients who had anti-GBM Abs, but not MPO- and PR3-ANCA (Group II), and two of these patients were found to have vasculitis. Therefore, we performed an in-depth study on these two patients. The patients with anti-GBM disease were isolated from 578 cases whose renal tissues were examined, and they were categorized into two groups. We have already published the data about Group I. We then proceeded to study two vasculitic patients in Group II clinically, pathologically, and serologically. The anti-GBM Ab and ANCA levels were detected by enzyme-linked immunosorbent assays. Renal specimens were studied by routine staining as well as immunohistochemical investigations of CD31 and type IV collagen. The total number of patients with anti-GBM disease was 7 (7/578 = 1.2%), with 3 patients belonging to Group I and 4 patients belonging to Group II. Two patients in Group II were diagnosed to have vasculitis, but the remaining 2 patients did not. One vasculitic patient was complicated by pulmonary hemorrhage, while the other vasculitic patient displayed peripheral neuropathy as well as a small cavity lesion in the lung. The latter patient was found to be positive for perinuclear (p)-ANCA, but not for any other ANCA subsets. The renal pathology in the two vasculitic patients showed crescentic glomerulonephritis (CSGN) and immunoglobulin (Ig) G linear deposits along the glomerular capillary loops. The former patient showed fibrinoid angiitis in an afferent arteriole as well as peritubular capillaritis. The latter patient demonstrated peritubular capillaritis. These peritubular capillaritides were diagnosed by

  10. Imaging design of the wide field x-ray monitor onboard the HETE satellite

    International Nuclear Information System (INIS)

    Zand, J.J.M. In'T; Fenimore, E.E.; Kawai, N.; Yoshida, A.; Matsuoka, M.; Yamauchi, M.

    1994-01-01

    The High Energy Transient Experiment (HETE), to be launched in 1995, will study Gamma-Ray Bursts in an unprecendented wide wavelength range from Gamma- and X-ray to UV wavelengths. The X-ray range (2 to 25 keV) will be covered by 2 perpendicularly oriented 1-dimensional coded aperture cameras. These instruments cover a wide field of view of 2 sr and thus have a relatively large potential to locate GRBs to a fraction of a degree, which is an order of magnitude better than BATSE. The imaging design of these coded aperture cameras relates to the design of the coded apertures and the decoding algorithm. The aperture pattern is to a large extent determined by the high background in this wide field application and the low number of pattern elements (∼100) in each direction. The result is a random pattern with an open fraction of 33%. The onboard decoding algorithm is dedicated to the localization of a single point source

  11. Validation of double Langmuir probe in-orbit performance onboard a nano-satellite

    Science.gov (United States)

    Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu

    2018-03-01

    Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.

  12. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    Science.gov (United States)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  13. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    Science.gov (United States)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  14. Agile deployment and code coverage testing metrics of the boot software on-board Solar Orbiter's Energetic Particle Detector

    Science.gov (United States)

    Parra, Pablo; da Silva, Antonio; Polo, Óscar R.; Sánchez, Sebastián

    2018-02-01

    In this day and age, successful embedded critical software needs agile and continuous development and testing procedures. This paper presents the overall testing and code coverage metrics obtained during the unit testing procedure carried out to verify the correctness of the boot software that will run in the Instrument Control Unit (ICU) of the Energetic Particle Detector (EPD) on-board Solar Orbiter. The ICU boot software is a critical part of the project so its verification should be addressed at an early development stage, so any test case missed in this process may affect the quality of the overall on-board software. According to the European Cooperation for Space Standardization ESA standards, testing this kind of critical software must cover 100% of the source code statement and decision paths. This leads to the complete testing of fault tolerance and recovery mechanisms that have to resolve every possible memory corruption or communication error brought about by the space environment. The introduced procedure enables fault injection from the beginning of the development process and enables to fulfill the exigent code coverage demands on the boot software.

  15. TruckWeight wireless onboard scale helps oilfield services fleet find profit, compliance

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-05-15

    This article presented a wireless scale that measures temperature and pressure changes in a vehicle's air suspension. The instrument is being used by Alberta-based Rusch Inc., an operator of tank trucks and pup trailers which haul potassium chloride solution, methanol, frac oil, crude oil and other fluids. Made by TruckWeight Inc., the Smart Scale relays data to a handheld receiver using a low-powered safe radio transmitter. It is designed so its power output is not high enough to ignite gases in the atmosphere near wellheads. The information from the Smart Scale is interpreted by a small computer in a handheld receiver. The axle weight and gross vehicle weight measurement is accurate to within 150 pounds. Rusch trucks operate on steep grades all year, encountering soft ground in the summer, and frozen terrain in the winter. When loading is done in the bush, it is impossible to reliably weigh the trucks, whose licensed gross combination weight is 51,300 kilograms. In Alberta, an overweight fine can trigger an audit of a company's safety record and operating practices. Running overweight also places stress on axles, suspensions, wheel-end components tires and brakes. Therefore, adhering to the rated weight is essential. In 2006, Rusch Inc. installed the Smart Scale wireless on-board scale for trucks, tractors and trailers with air suspension. The scale includes a sensor with an integrated antenna and DOT fittings for the vehicle's airline. While the truck is being loaded, the scale produces readings every 3 seconds. This maintenance-free instrument is accurate in temperature extremes ranging from -40 F to 158 F and uses common AA batteries. It is waterproof, weatherproof, shock resistant and non-corrosive. The cost to equip a tractor and trailer with a Smart Scale is $1,590 US, half the cost of a hard-wired scale. 5 figs.

  16. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications

    Science.gov (United States)

    Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew

    2009-01-01

    Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.

  17. 49 CFR 395.15 - Automatic on-board recording devices.

    Science.gov (United States)

    2010-10-01

    ... information concerning on-board system sensor failures and identification of edited data. Such support systems... driving today; (iv) Total hours on duty for the 7 consecutive day period, including today; (v) Total hours...-driver operation; (7) The on-board recording device/system identifies sensor failures and edited data...

  18. An overview of CAFE credits and incorporation of the benefits of on-board carbon capture.

    Science.gov (United States)

    2014-05-01

    This report discusses the application of Corporate Average Fuel Economy (CAFE) : credits that are currently available to vehicle manufacturers in the U.S., and the implications of : on-board carbon capture and sequestration (on-board CCS) on fu...

  19. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.

    Science.gov (United States)

    Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R

    2015-01-01

    Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.

  20. Staying connected: Service-specific orientation can be successfully achieved using a mobile application for onboarding care providers.

    Science.gov (United States)

    Chreiman, Kristen M; Prakash, Priya S; Martin, Niels D; Kim, Patrick K; Mehta, Samir; McGinnis, Kelly; Gallagher, John J; Reilly, Patrick M

    2017-01-01

    everyday tasks (16, 53.3%). Fifteen (50%) of the respondents stated that the app made the transition to the trauma service easier. Twenty-five (83.3%) stated it was valuable knowing about departmental events and announcements, and 17 (56.7%) felt more connected to the division. The evolution of mobile technology is rapidly becoming fundamental in medical education and training. We found that integrating a service-specific mobile application improved the learner's experience when transitioning to a new service and was a valuable onboarding instrument. Level of evidence IV.

  1. TU-CD-BRB-04: Automated Radiomic Features Complement the Prognostic Value of VASARI in the TCGA-GBM Dataset

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, E Rios [Dana-Farber Cancer Institute | Harvard Medical School, Boston, MA (United States); Narayan, V [Dana-Farber Cancer Institute, Brigham and Womens Hospital, Harvard Medic, Boston, MA (United States); Grossmann, P [Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA (United States); Dunn, W; Gutman, D [Emory University School of Medicine, Atlanta, GA (United States); Aerts, H [Dana-Farber/Brigham Womens Cancer Center, Boston, MA (United States)

    2015-06-15

    Purpose: To compare the complementary prognostic value of automated Radiomic features to that of radiologist-annotated VASARI features in TCGA-GBM MRI dataset. Methods: For 96 GBM patients, pre-operative MRI images were obtained from The Cancer Imaging Archive. The abnormal tumor bulks were manually defined on post-contrast T1w images. The contrast-enhancing and necrotic regions were segmented using FAST. From these sub-volumes and the total abnormal tumor bulk, a set of Radiomic features quantifying phenotypic differences based on the tumor intensity, shape and texture, were extracted from the post-contrast T1w images. Minimum-redundancy-maximum-relevance (MRMR) was used to identify the most informative Radiomic, VASARI and combined Radiomic-VASARI features in 70% of the dataset (training-set). Multivariate Cox-proportional hazards models were evaluated in 30% of the dataset (validation-set) using the C-index for OS. A bootstrap procedure was used to assess significance while comparing the C-Indices of the different models. Results: Overall, the Radiomic features showed a moderate correlation with the radiologist-annotated VASARI features (r = −0.37 – 0.49); however that correlation was stronger for the Tumor Diameter and Proportion of Necrosis VASARI features (r = −0.71 – 0.69). After MRMR feature selection, the best-performing Radiomic, VASARI, and Radiomic-VASARI Cox-PH models showed a validation C-index of 0.56 (p = NS), 0.58 (p = NS) and 0.65 (p = 0.01), respectively. The combined Radiomic-VASARI model C-index was significantly higher than that obtained from either the Radiomic or VASARI model alone (p = <0.001). Conclusion: Quantitative volumetric and textural Radiomic features complement the qualitative and semi-quantitative annotated VASARI feature set. The prognostic value of informative qualitative VASARI features such as Eloquent Brain and Multifocality is increased with the addition of quantitative volumetric and textural features from the

  2. First light of Cassis: the stereo surface imaging system onboard the exomars TGO

    Science.gov (United States)

    Gambicorti, L.; Piazza, D.; Pommerol, A.; Roloff, V.; Gerber, M.; Ziethe, R.; El-Maarry, M. R.; Weigel, T.; Johnson, M.; Vernani, D.; Pelo, E.; Da Deppo, V.; Cremonese, G.; Ficai Veltroni, I.; Thomas, N.

    2017-09-01

    The Colour and Stereo Surface Imaging System (CaSSIS) camera was launched on 14 March 2016 onboard the ExoMars Trace Gas Orbiter (TGO) and it is currently in cruise to Mars. The CaSSIS high resolution optical system is based on a TMA telescope (Three Mirrors Anastigmatic configuration) with a 4th powered folding mirror compacting the CFRP (Carbon Fiber Reinforced Polymer) structure. The camera EPD (Entrance Pupil Diameter) is 135 mm and the focal length is 880 mm, giving an F# 6.5 system; the wavelength range covered by the instrument is 400-1100 nm. The optical system is designed to have distortion of less than 2%, and a worst case Modulation Transfer Function (MTF) of 0.3 at the detector Nyquist spatial frequency (i.e. 50 lp/mm). The Focal Plane Assembly (FPA), including the detector, is a spare from the Simbio-Sys instrument of the Italian Space Agency (ASI). Simbio-Sys will fly on ESA's BepiColombo mission to Mercury in 2018. The detector, developed by Raytheon Vision Systems, is a 2k×2k hybrid Si-PIN array with 10 μm-pixel pitch. The detector allows snap shot operation at a read-out rate of 5 Mpx/s with 14-bit resolution. CaSSIS will operate in a push-frame mode with a Filter Strip Assembly (FSA), placed directly above the detector sensitive area, selecting 4 colour bands. The scale at a slant angle of 4.6 m/px from the nominal orbit is foreseen to produce frames of 9.4 km × 6.3 km on the Martian surface, and covering a Field of View (FoV) of 1.33° cross track × 0.88° along track. The University of Bern was in charge of the full instrument integration as well as the characterisation of the focal plane of CaSSIS. The paper will present an overview of CaSSIS and the optical performance of the telescope and the FPA. The preliminary results of the on-ground calibration campaign and the first light obtained during the commissioning and pointing campaign (April 2016) will be described in detail. The instrument is acquiring images with an average Point Spread

  3. Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.

    Science.gov (United States)

    Shevtsova, Valentina

    Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid

  4. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  5. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  6. Improving BDS Autonomous Orbit Determination Performance Using Onboard Accelerometers

    Directory of Open Access Journals (Sweden)

    QIAO Jing

    2017-05-01

    Full Text Available Autonomous orbit determination is a crucial step for GNSS development to improve GNSS vulnerability, integrity, reliability and robustness. The newly launched BeiDou (BD satellites are capable of conducting satellite to satellite tracking (SST, which can be used for autonomous orbit determination. However, using SST data only, the BD satellite system (BDS will have whole constellation rotation in the absence of absolute constraints from ground or other celestial body over time, due to various force perturbations. The perturbations can be categorized into conservative forces and non-conservative forces. The conservative forces, such as the Earth non-spherical perturbations, tidal perturbation, the solar, lunar and other third-body perturbations, can be precisely modeled with latest force models. The non-conservative forces (i.e. Solar Radiation Pressure (SRP, on the other hand, are difficult to be modeled precisely, which are the main factors affecting satellite orbit determination accuracy. In recent years, accelerometers onboard satellites have been used to directly measure the non-conservative forces for gravity recovery and atmosphere study, such as GRACE, CHAMP, and GOCE missions. This study investigates the feasibility to use accelerometers onboard BD satellites to improve BD autonomous orbit determination accuracy and service span. Using simulated BD orbit and SST data, together with the error models of existing space-borne accelerometers, the orbit determination accuracy for BD constellation is evaluated using either SST data only or SST data with accelerometers. An empirical SRP model is used to extract non-conservative forces. The simulation results show that the orbit determination accuracy using SST with accelerometers is significantly better than that with SST data only. Assuming 0.33 m random noises and decimeter level signal transponder system biases in SST data, IGSO and MEO satellites decimeter level orbit accuracy can be

  7. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  8. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express

    Science.gov (United States)

    Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.

    2018-01-01

    The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.

  9. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  10. Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma.

    Science.gov (United States)

    Barone, Amy; Sengupta, Rajarshi; Warrington, Nicole M; Smith, Erin; Wen, Patrick Y; Brekken, Rolf A; Romagnoli, Barbara; Douglas, Garry; Chevalier, Eric; Bauer, Michael P; Dembowsky, Klaus; Piwnica-Worms, David; Rubin, Joshua B

    2014-10-30

    Glioblastoma recurrence involves the persistence of a subpopulation of cells with enhanced tumor-initiating capacity (TIC) that reside within the perivascular space, or niche (PVN). Anti-angiogenic therapies may prevent the formation of new PVN but have not prevented recurrence in clinical trials, suggesting they cannot abrogate TIC activity. We hypothesized that combining anti-angiogenic therapy with blockade of PVN function would have superior anti-tumor activity. We tested this hypothesis in an established intracranial xenograft model of GBM using a monoclonal antibody specific for murine and human VEGF (mcr84) and a Protein Epitope Mimetic (PEM) CXCR4 antagonist, POL5551. When doses of POL5551 were increased to overcome an mcr84-induced improvement in vascular barrier function, combinatorial therapy significantly inhibited intracranial tumor growth and improved survival. Anti-tumor activity was associated with significant changes in tumor cell proliferation and apoptosis, and a reduction in the numbers of perivascular cells expressing the TIC marker nestin. A direct effect on TICs was demonstrated for POL5551, but not mcr84, in three primary patient-derived GBM isolates. These findings indicate that targeting the structure and function of the PVN has superior anti-tumor effect and provide a strong rationale for clinical evaluation of POL5551 and Avastin in patients with GBM.

  11. Anti-hLAMP2-antibodies and dual positivity for anti-GBM and MPO-ANCA in a patient with relapsing pulmonary-renal syndrome

    Directory of Open Access Journals (Sweden)

    Kistler Thomas

    2011-06-01

    Full Text Available Abstract Background Pulmonary-renal syndrome associated with anti-glomerular basement membrane (GBM antibodies, also known as Goodpasture's syndrome, is a rare but acute and life-threatening condition. One third of patients presenting as anti-GBM antibody positive pulmonary-renal syndrome or rapidly progressive glomerulonephritis are also tested positive for anti-neutrophil cytoplasmic antibodies (ANCA. Whilst anti-GBM disease is considered a non-relapsing condition, the long-term course of double-positive patients is less predictable. Case Presentation We report a patient with such dual positivity, who presented with pulmonary hemorrhage, crescentic glomerulonephritis and membranous nephropathy. Plasmapheresis in combination with immunosuppresive therapy led to a rapid remission but the disease relapsed after two years. The serum of the patient was tested positive for antibodies to human lysosomal membrane protein 2 (hLAMP2, a novel autoantigen in patients with active small-vessel vasculitis (SVV. The anti-hLAMP2 antibody levels correlated positively with clinical disease activity in this patient. Conclusion We hypothesize that this antibody may indicate a clinical course similar to ANCA-associated vasculitis in double-positive patients. However, this needs to be confirmed on comprehensive patient cohorts.

  12. Epidermal growth factor receptor (EGFR mutation status and Rad51 determine the response of glioblastoma (GBM to multimodality therapy with cetuximab, temozolomide and radiation

    Directory of Open Access Journals (Sweden)

    Phyllis Rachelle Wachsberger

    2013-02-01

    Full Text Available Purpose: EGFR amplification and mutation (i.e., EGFRvIII are found in 40% of primary GBM tumors and are believed to contribute to tumor development and therapeutic resistance. This study was designed to investigate how EGFR mutational status modulates response to multimodality treatment with cetuximab, an anti-EGFR inhibitor, the chemotherapeutic agent, temozolamide (TMZ and radiation therapy (RT Methods and Materials: In vitro and in vivo experiments were performed on two isogenic U87 GBM cell lines: one overexpressing wildtype EGFR (U87wtEGFR and the other overexpressing EGFRvIII (U87EGFRvIII. Results: Xenografts harboring EGFRvIII were more sensitive to TMZ alone and TMZ in combination with RT and/or cetuximab than xenografts expressing wtEGFR. In vitro experiments demonstrated that U87EGFRvIII-expressing tumors appear to harbor defective DNA homologous recombination repair in the form of Rad51 processing, Conclusions: The difference in sensitivity between EGFR-expressing and EGFRvIII-expressing tumors to combined modality treatment may help in the future tailoring of GBM therapy to subsets of patients expressing more or less of the EGFR mutant.

  13. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  14. Radiation environment measurements with the cosmic ray experiments on-board the KITSAT-1 and PoSAT-1 micro-satellites

    International Nuclear Information System (INIS)

    Underwood, C.I.; Brock, D.J.; Williams, P.S.; Kim, S.; Dilao, R.; Santos, P.R.; Brito, M.C.; Dyer, C.S.; Sims, A.J.

    1994-01-01

    The success of the Cosmic Radiation Environment and Dosimetry (CREDO) experiment carried on-board the UoSAT-3 micro-satellite (launched in 1990) has lead to the development of a new instrument called the Cosmic-Ray Experiment (CRE) which has flown on-board the KITSAT-1 and PoSAT-1 micro-satellites, launched in 1992 and 1993 respectively. The results from both CRE instruments show excellent agreement with those of CREDO for the galactic cosmic-ray environment. However, there are some differences in the CRE and CREDO response to the trapped proton environment of the South Atlantic Anomaly which can be explained by the differences in the detector response time. The fit between the flight results and predictions from the standard models is generally good, but some differences are noted. The CRE and CREDO instruments should provide continuous coverage of the near-Earth radiation environment across a complete solar cycle. This is important in view of the dynamic nature of the radiation environment - as amply demonstrated by the results from the CRRES spacecraft

  15. Neon dewar for the X-ray spectrometer onboard Suzaku

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, R. [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Sagamihara 229-8510 (Japan)]. E-mail: fujimoto@isas.jaxa.jp; Mitsuda, K. [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Sagamihara 229-8510 (Japan); Hirabayashi, M. [Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Sobiraki-cho, Niihama 792-8588 (Japan); Narasaki, K. [Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Sobiraki-cho, Niihama 792-8588 (Japan); Breon, S. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Boyle, R. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Di Pirro, M. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Volz, S.M. [NASA Headquarters, Washington, DC 20546-0001 (United States); Kelley, R.L. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States)

    2006-04-15

    The X-ray spectrometer (XRS) onboard Suzaku is the first X-ray microcalorimeter array in orbit. The sensor array is operated at 60mK, which is attained by an adiabatic demagnetization refrigerator and superfluid liquid helium. The neon dewar is a vacuum-insulated container for the XRS. The requirements for the XRS dewar are to maintain the detector and the cryogenic system under the mechanical environment at launch ({approx}15G), and to attain a lifetime of 3 years in a near-earth orbit. It is characterized with adoptions of solid neon as the second cryogen and a mechanical cooler, design optimization of the support straps for the neon tank to reduce the heat load as much as possible, and shock absorbers to mitigate the mechanical environment at launch. Microphonics from the mechanical cooler was one of the concerns for the detector performance, but the ground test results proved that they do not interfere with the detector. After about 1 month in orbit, its thermal performance showed that the dewar potentially achieves its design goals.

  16. Cosmic radiation dosimetry onboard aircrafts at the brazilian airspace

    International Nuclear Information System (INIS)

    Federico, Claudio Antonio

    2011-01-01

    The objective of this work is the establishment of a dosimetric system for the aircrew in the domestic territory. A technique to perform measurements of ambient dose equivalent in aircrafts was developed. An active detector was evaluated for onboard aircraft use, testing its adequacy to this specific type of measurement as well as its susceptibility to the magnetic and electromagnetic interferences. The equipment was calibrated in standard radiation beams and in a special field of the European Laboratory CERN, that reproduces with great proximity the real spectrum in aircraft flight altitudes; it was also tested in several flights, in an Brazilian Air Force's aircraft. The results were evaluated and compared with those obtained from several computational programs for cosmic radiation estimates, with respect to its adequacy for use in the South American region. The program CARI-6 was selected to evaluate the estimated averaged effective doses for the aircrew who operate in this region. A statistical distribution of aircrew effective doses in South America and Caribe was made, and the results show that a great part of this aircrew members are subjected to annual effective doses that exceed the dose limits for the members of the public. Additionally, a preliminary passive dosemeter, based in thermoluminescent detectors, was proposed; international collaborations with United Kingdom and Italy were established for joint measurements of the ambient equivalent doses in aircrafts. (author)

  17. Design of an onboard battery charger for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Heckford, Simon

    2001-07-01

    This report describes the design of an on-board battery charger for an electric car. There are already various battery charger units on the market. However, these are not specifically designed for this application, and consequently do not provide an ideal solution. Because these products are not specific to one application, and instead opt to cover a variety of briefs, they are not ideal. They also tend to be heavier and more expensive than if the charger was built specifically for one purpose. The main design considerations were that the charger should be compact and lightweight. It was also specified that the design should be able to operate using either the single-phase or three-phase AC supply. Before the design process for the battery charger could commence, it was necessary for the author to get an appreciation of power electronics, since he had no previous experience in the subject. The author focused his attention on areas of the subject most valuable to the project, including becoming familiar with the principle behind battery chargers. Once the required knowledge was obtained, the author could begin designing the charger. The majority of the design was actually undertaken using two software packages called MATLAB and Simulink, whilst also using the knowledge acquired. Regular discussions were had with the project team in order to ensure that the correct methodology was being used and a suitable design was duly developed. Possible further work was identified which could not be carried out within the time constraints of this project.

  18. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab

    Science.gov (United States)

    Shen, Yunze; Guo, Shuangsheng; Zhao, Pisheng; Wang, Longji; Wang, Xiaoxia; Li, Jian; Bian, Qiang

    2018-03-01

    Lettuce was grown in a space vegetable cultivation facility onboard the Tiangong Ⅱ Spacelab during October 18 to November 15, 2016, in order to testify the key cultivating technology in CELSS under spaceflight microgravity condition. Potable water was used for irrigation of rooting substrate and the SRF (slowly released fertilizer) offered mineral nutrition for plant growth. Water content and electric conductivity in rooting substrate were measured based on FDR(frequency domain reflectometry) principle applied first in spaceflight. Lettuce germinated with comparative growth vigor as the ground control, showing that the plants appeared to be not stressed by the spaceflight environment. Under microgravity, lettuce grew taller and showed deeper green color than the ground control. In addition, the phototropism of the on-orbit plants was more remarkable. The nearly 30-d spaceflight test verified the seed fixation technology and water& nutrition management technology, which manifests the feasibility of FDR being used for measuring moisture content and electric conductivity in rooting zone under microgravity. Furthermore, the edibility of the space-grown vegetable was proved, providing theoretical support for astronaut to consume the space vegetable in future manned spaceflight.

  19. Autonomous Onboard Science Data Analysis for Comet Missions

    Science.gov (United States)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  20. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  1. Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1 pathway.

    Science.gov (United States)

    Song, Yang; Chen, Yong; Li, Yunqian; Lyu, Xiaoyan; Cui, Jiayue; Cheng, Ye; Zhao, Liyan; Zhao, Gang

    2018-01-23

    Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults. In spite of advances in diagnosis and therapy, the prognosis is still relatively poor. The invasive property of GBM is the major cause of death in patients. Epithelial-to-mesenchymal transition-like process (EMT-like process) is considered to play an important role in the invasive property. Metformin has been reported as a regulator of EMT-like process. In this study, we confirmed that metformin inhibited TGF-β1-induced EMT-like process and EMT-associated migration and invasion in LN18 and U87 GBM cells. Our results also showed that metformin significantly suppressed self-renewal capacity of glioblastoma stem cells (GSCs), and expression of stem cell markers Bmi1, Sox2 and Musashi1, indicating that metformin can inhibit cancer stem-like properties of GBM cells. We further clarified that metformin specifically inhibited TGF-β1 activated AKT, the downstream molecular mTOR and the leading transcription factor ZEB1. Taken together, our data demonstrate that metformin inhibits TGF-β1-induced EMT-like process and cancer stem-like properties in GBM cells via AKT/mTOR/ZEB1 pathway and provide evidence of metformin for further clinical investigation targeted GBM.

  2. Fault-tolerant NAND-flash memory module for next-generation scientific instruments

    Science.gov (United States)

    Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar

    2015-10-01

    Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.

  3. CoMA, an instrument for the detailed in-situ analysis of collected cometary particulates

    International Nuclear Information System (INIS)

    Kissel, J.; Fechtig, H.; Jessberger, E.K.; Krueger, F.R.; Niemczyk, N.; Schaefer, G.; Zscheeg, H.

    1988-01-01

    The proposal for CoMA, a pulsed time-of-flight SIMS instrument to be flown onboard CRAF to rendezvous with a comet, had been accepted by NASA in October 1986. After several attempts it seems that funding by BMFT for the instrument pre-development phase can be obtained. Apart from that we made first essential progress in producing the primary ion pulses from an indium liquid metal ion source. Those pulses are needed to operate CoMA. (orig.)

  4. Observation sequences and onboard data processing of Planet-C

    Science.gov (United States)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  5. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  6. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM.

    Directory of Open Access Journals (Sweden)

    Hikmat Assi

    Full Text Available Cellular microenvironments, particularly those found in tumors, elicit a tolerogenic DC phenotype which can attenuate immune responses. Central to this process is the STAT3-mediated signaling cascade. As a transcription factor and oncogene, STAT3 promotes the expression of genes which allow tumor cells to proliferate, migrate and evade apoptosis. More importantly, activation of STAT3 in tumor infiltrating immune cells has been shown to be responsible, in part, for their immune-suppressed phenotype. The ability of STAT3 to orchestrate a diverse set of immunosuppressive instructions has made it an attractive target for cancer vaccines. Using a conditional hematopoietic knockout mouse model of STAT3, we evaluated the impact of STAT3 gene ablation on the differentiation of dendritic cells from bone marrow precursors. We also assessed the impact of STAT3 deletion on phagocytosis, maturation, cytokine secretion and antigen presentation by GM-CSF derived DCs in vitro. In addition to in vitro studies, we compared the therapeutic efficacy of DC vaccination using STAT3 deficient DCs to wild type counterparts in an intracranial mouse model of GBM. Our results indicated the following pleiotropic functions of STAT3: hematopoietic cells which lacked STAT3 were unresponsive to Flt3L and failed to differentiate as DCs. In contrast, STAT3 was not required for GM-CSF induced DC differentiation as both wild type and STAT3 null bone marrow cells gave rise to similar number of DCs. STAT3 also appeared to regulate the response of GM-CSF derived DCs to CpG. STAT3 null DCs expressed high levels of MHC-II, secreted more IL-12p70, IL-10, and TNFα were better antigen presenters in vitro. Although STAT3 deficient DCs displayed an enhanced activated phenotype in culture, they elicited comparable therapeutic efficacy in vivo compared to their wild type counterparts when utilized in vaccination paradigms in mice bearing intracranial glioma tumors.

  7. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM.

    Science.gov (United States)

    Assi, Hikmat; Espinosa, Jaclyn; Suprise, Sarah; Sofroniew, Michael; Doherty, Robert; Zamler, Daniel; Lowenstein, Pedro R; Castro, Maria G

    2014-01-01

    Cellular microenvironments, particularly those found in tumors, elicit a tolerogenic DC phenotype which can attenuate immune responses. Central to this process is the STAT3-mediated signaling cascade. As a transcription factor and oncogene, STAT3 promotes the expression of genes which allow tumor cells to proliferate, migrate and evade apoptosis. More importantly, activation of STAT3 in tumor infiltrating immune cells has been shown to be responsible, in part, for their immune-suppressed phenotype. The ability of STAT3 to orchestrate a diverse set of immunosuppressive instructions has made it an attractive target for cancer vaccines. Using a conditional hematopoietic knockout mouse model of STAT3, we evaluated the impact of STAT3 gene ablation on the differentiation of dendritic cells from bone marrow precursors. We also assessed the impact of STAT3 deletion on phagocytosis, maturation, cytokine secretion and antigen presentation by GM-CSF derived DCs in vitro. In addition to in vitro studies, we compared the therapeutic efficacy of DC vaccination using STAT3 deficient DCs to wild type counterparts in an intracranial mouse model of GBM. Our results indicated the following pleiotropic functions of STAT3: hematopoietic cells which lacked STAT3 were unresponsive to Flt3L and failed to differentiate as DCs. In contrast, STAT3 was not required for GM-CSF induced DC differentiation as both wild type and STAT3 null bone marrow cells gave rise to similar number of DCs. STAT3 also appeared to regulate the response of GM-CSF derived DCs to CpG. STAT3 null DCs expressed high levels of MHC-II, secreted more IL-12p70, IL-10, and TNFα were better antigen presenters in vitro. Although STAT3 deficient DCs displayed an enhanced activated phenotype in culture, they elicited comparable therapeutic efficacy in vivo compared to their wild type counterparts when utilized in vaccination paradigms in mice bearing intracranial glioma tumors.

  8. Boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM), using the epithermal neutron beam at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chadha, Manjeet; Capala, Jacek; Coderre, Jeffrey A.; Elowitz, Eric H.; Joel, Darrel D.; Hungyuan, B. Liu; Slatkin, Daniel N.; Chanana, Arjun D.

    1996-01-01

    Objective: BNCT is a binary treatment modality based on the nuclear reactions that occur when boron ( 10 B) is exposed to thermal neutrons. Preclinical studies have demonstrated the therapeutic efficacy of p-boronophenylalanine (BPA)-based BNCT. The objective of the Phase I/II trial was to evaluate BPA-fructose (BPA-F) as a boron delivery agent for GBM and to study the feasibility and safety of a single-fraction of BNCT. Materials and Methods: The trial design required i) a BPA-F biodistribution study performed at the time of craniotomy; and ii) BNCT within 4 weeks of the craniotomy. From September 94 to July 95, 10 patients with biopsy proven GBM were treated. All but 1 patient underwent a biodistribution study receiving IV BPA-F at the time of craniotomy. Multiple tissue samples and concurrent blood and urine samples were collected for evaluation of the boron concentration and clearance kinetics. For BNCT all patients received 250 mg/kgm of BPA-F (IV infusion over 2 hrs) followed by neutron irradiation. The blood 10 B concentration during irradiation was used to calculate the time of neutron exposure. The 3D treatment planning was done using the BNCT treatment planning software developed at the Idaho National Engineering Laboratory. The BNCT dose is expressed as the sum of the physical dose components corrected for both the RBE and the 10 B localization factor with the unit Gy-Eq. The photon-equivalent dose, where the thermal neutron fluence reaches a maximum, is the peak-dose equivalent. A single-fraction of BNCT was delivered prescribing 10.5 Gy-Eq (9 patients) and 13.8 Gy-Eq (1 patient) as the peak dose-equivalent to the normal brain. The peak dose rate was kept below 27 cGy-Eq/min. Results: Biodistribution data: The maximum blood 10 B concentration was observed at the end of the infusion and scaled as a linear function of the administered dose. The 10 B concentration in the scalp and in the GBM tissue was higher than in blood by 1.5 x and at least 3.5 x

  9. An Experiment in Radiation Measurement Using the Depron Instrument

    Science.gov (United States)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  10. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    International Nuclear Information System (INIS)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs

  11. ``High energy Electron exPeriment (HEP)'' onboard the ERG satellite

    Science.gov (United States)

    Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.

  12. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    Energy Technology Data Exchange (ETDEWEB)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs.

  13. Performance assessment of an onboard monitoring system for CMV drivers : a field operational test : research brief.

    Science.gov (United States)

    2016-11-01

    The primary goal of an onboard monitoring system (OBMS) is to enhance driver performance and safety. OBMSs are employed with the expectation that feedback provided concurrently (via flashing feedback lights in the vehicle) and cumulatively (via coach...

  14. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  15. CNES studies for on-board implementation via HLS tools of a cloud-detection module for selective compression

    Science.gov (United States)

    Camarero, R.; Thiebaut, C.; Dejean, Ph.; Speciel, A.

    2010-08-01

    Future CNES high resolution instruments for remote sensing missions will lead to higher data-rates because of the increase in resolution and dynamic range. For example, the ground resolution improvement has induced a data-rate multiplied by 8 from SPOT4 to SPOT5 [1] and by 28 to PLEIADES-HR [2]. Innovative "smart" compression techniques will be then required, performing different types of compression inside a scene, in order to reach higher global compression ratios while complying with image quality requirements. This socalled "selective compression", allows important compression gains by detecting and then differently compressing the regions-of-interest (ROI) and non-interest in the image (e.g. higher compression ratios are assigned to the non-interesting data). Given that most of CNES high resolution images are cloudy [1], significant mass-memory and transmission gain could be reached by just detecting and suppressing (or compressing significantly) the areas covered by clouds. Since 2007, CNES works on a cloud detection module [3] as a simplification for on-board implementation of an already existing module used on-ground for PLEIADES-HR album images [4]. The different steps of this Support Vector Machine classifier have already been analyzed, for simplification and optimization, during this on-board implementation study: reflectance computation, characteristics vector computation (based on multispectral criteria) and computation of the SVM output. In order to speed up the hardware design phase, a new approach based on HLS [5] tools is being tested for the VHDL description stage. The aim is to obtain a bit-true VDHL design directly from a high level description language as C or Matlab/Simulink [6].

  16. High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

    Science.gov (United States)

    Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.

    2015-12-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  17. Contiguous polarisation spectra of the Earth from 300-850 nm measured by GOME-2 onboard MetOp-A

    Science.gov (United States)

    Tilstra, L. G.; Lang, R.; Munro, R.; Aben, I.; Stammes, P.

    2013-12-01

    In this paper we present the first contiguous high-resolution spectra of the Earth's polarisation observed by a satellite instrument. The measurements of the Stokes fraction Q/I are performed by the spectrometer GOME-2 onboard the MetOp-A satellite. Polarisation measurements by GOME-2 are performed by onboard polarisation measurement devices (PMDs) and the high-resolution measurements discussed in this paper are taken in the special "PMD RAW" mode of operation. The spectral resolution of these PMD RAW polarisation measurements varies from 3 nm in the ultraviolet (UV) to 35 nm in the near-infrared wavelength range. We first compare measurements of the polarisation from cloud-free scenes with radiative transfer calculations for a number of cases. We find good agreement but also a spectral discrepancy at 800 nm, which we attribute to remaining imperfections in the calibration key data. Secondly, we study the polarisation of scenes with special scattering geometries that normally lead to near-zero Q/I. The GOME-2 polarisation spectra indeed show this behaviour and confirm the existence of the small discrepancy found earlier. Thirdly, we study the Earth polarisation for a variety of scenes. This provides a blueprint of Q/I over land and sea surfaces for various degrees of cloud cover. Fourthly, we compare the spectral dependence of measurements of Q/I in the UV with the generalised distribution function that was proposed in the past (Schutgens and Stammes, 2002) to describe the shape of the UV polarisation spectrum. The GOME-2 data confirm that these functions match the spectral behaviour captured by the GOME-2 PMD RAW mode.

  18. Contiguous polarisation spectra of the Earth from 300 to 850 nm measured by GOME-2 onboard MetOp-A

    Science.gov (United States)

    Tilstra, L. G.; Lang, R.; Munro, R.; Aben, I.; Stammes, P.

    2014-07-01

    In this paper we present the first contiguous high-resolution spectra of the Earth's polarisation observed by a satellite instrument. The measurements of the Stokes fraction Q/I are performed by the spectrometer GOME-2 onboard the MetOp-A satellite. Polarisation measurements by GOME-2 are performed by onboard polarisation measurement devices (PMDs) and the high-resolution measurements discussed in this paper are taken in the special "PMD RAW" mode of operation. The spectral resolution of these PMD RAW polarisation measurements varies from 3 nm in the ultraviolet (UV) to 35 nm in the near-infrared wavelength range. We first compare measurements of the polarisation from cloud-free scenes with radiative transfer calculations for a number of cases. We find good agreement but also a spectral discrepancy at 800 nm, which we attribute to remaining imperfections in the calibration key data. Secondly, we study the polarisation of scenes with special scattering geometries that normally lead to near-zero Q/I. The GOME-2 polarisation spectra indeed show this behaviour and confirm the existence of the small discrepancy found earlier. Thirdly, we study the Earth polarisation for a variety of scenes. This provides a blueprint of Q/I over land and sea surfaces for various degrees of cloud cover. Fourthly, we compare the spectral dependence of measurements of Q/I in the UV with the generalised distribution function proposed by Schutgens and Stammes (2002) to describe the shape of the UV polarisation spectrum. The GOME-2 data confirm that these functions match the spectral behaviour captured by the GOME-2 PMD RAW mode.

  19. Serial analysis of 3D H-1 MRSI for patients with newly diagnosed GBM treated with combination therapy that includes bevacizumab.

    Science.gov (United States)

    Nelson, Sarah J; Li, Yan; Lupo, Janine M; Olson, Marram; Crane, Jason C; Molinaro, Annette; Roy, Ritu; Clarke, Jennifer; Butowski, Nicholas; Prados, Michael; Cha, Soonmee; Chang, Susan M

    2016-10-01

    Interpretation of changes in the T1- and T2-weighted MR images from patients with newly diagnosed glioblastoma (GBM) treated with standard of care in conjunction with anti-angiogenic agents is complicated by pseudoprogression and pseudoresponse. The hypothesis being tested in this study was that 3D H-1 magnetic resonance spectroscopic imaging (MRSI) provides estimates of levels of choline, creatine, N-acetylaspartate (NAA), lactate and lipid that change in response to treatment and that metrics describing these characteristics are associated with survival. Thirty-one patients with newly diagnosed GBM and being treated with radiation therapy (RT), temozolomide, erlotinib and bevacizumab were recruited to receive serial MR scans that included 3-D lactate edited MRSI at baseline, mid-RT, post-RT and at specific follow-up time points. The data were processed to provide estimates of metrics representing changes in metabolite levels relative to normal appearing brain. Cox proportional hazards analysis was applied to examine the relationship of these parameters with progression free survival (PFS) and overall survival (OS). There were significant reductions in parameters that describe relative levels of choline to NAA and creatine, indicating that the treatment caused a decrease in tumor cellularity. Changes in the levels of lactate and lipid relative to the NAA from contralateral brain were consistent with vascular normalization. Metabolic parameters from the first serial follow-up scan were associated with PFS and OS, when accounting for age and extent of resection. Integrating metabolic parameters into the assessment of patients with newly diagnosed GBM receiving therapies that include anti-angiogenic agents may be helpful for tracking changes in tumor burden, resolving ambiguities in anatomic images caused by non-specific treatment effects and for predicting outcome.

  20. Characterization of biological features of a rat F98 GBM model: A PET-MRI study with [18F]FAZA and [18F]FDG

    International Nuclear Information System (INIS)

    Belloli, Sara; Brioschi, Andrea; Politi, Letterio Salvatore; Ronchetti, Francesca; Calderoni, Sara; Raccagni, Isabella; Pagani, Antonella; Monterisi, Cristina; Zenga, Francesco; Zara, Gianpaolo; Fazio, Ferruccio; Mauro, Alessandro

    2013-01-01

    Introduction: The prognosis of malignant gliomas remains largely unsatisfactory for the intrinsic characteristics of the pathology and for the delayed diagnosis. Multimodal imaging based on PET and MRI may assess the dynamics of disease onset and progression allowing the validation of preclinical models of glioblastoma multiforme (GBM). The aim of this study was the characterization of a syngeneic rat model of GBM using combined in vivo imaging and immunohistochemistry. Methods: Four groups of Fischer rats were implanted in a subcortical region with increasing concentration of rat glioma F98 cells and weekly monitored with Gd-MR, [ 18 F]FDG- and [ 18 F]FAZA-PET starting one week after surgery. Different targets were evaluated on post mortem brain specimens using immunohistochemistry: VEGF, GFAP, HIF-1α, Ki-67 and nestin. Results: Imaging results indicated that tumor onset but not progression was related to the number of F98 cells. Hypoxic regions identified with [ 18 F]FAZA and high-glucose metabolism regions recognized with [ 18 F]FDG were located respectively in the core and in external areas of the tumor, with partial overlap and remodeling during disease progression. Histological and immunohistochemical analysis confirmed PET/MRI results and revealed that our model resumes biological characteristics of human GBM. IHC and PET studies showed that necrotic regions, defined on the basis of [ 18 F]FDG uptake reduction, may include hypoxic clusters of vital tumor tissue identified with [ 18 F]FAZA. This last information is particularly relevant for the identification of the target volume during image-guided radiotherapy. Conclusions: In conclusion, the combined use of PET and MRI allows in vivo monitoring of the biological modification of F98 lesions during tumor progression

  1. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  2. Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  3. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity.

    Science.gov (United States)

    Schijns, Virgil E J C; Pretto, Chrystel; Devillers, Laurent; Pierre, Denis; Hofman, Florence M; Chen, Thomas C; Mespouille, Pascal; Hantos, Peter; Glorieux, Philippe; Bota, Daniela A; Stathopoulos, Apostolos

    2015-05-28

    Glioblastoma multiforme (GBM) patients have a poor prognosis. After tumor recurrence statistics suggest an imminent death within 1-4.5 months. Supportive preclinical data, from a rat model, provided the rational for a prototype clinical vaccine preparation, named Gliovac (or ERC 1671) composed of autologous antigens, derived from the patient's surgically removed tumor tissue, which is administered together with allogeneic antigens from glioma tissue resected from other GBM patients. We now report the first results of the Gliovac treatment for treatment-resistant GBM patients. Nine (9) recurrent GBM patients, after standard of care treatment, including surgery radio- and chemotherapy temozolomide, and for US patients, also bevacizumab (Avastin™), were treated under a compassionate use/hospital exemption protocol. Gliovac was given intradermally, together with human GM-CSF (Leukine(®)), and preceded by a regimen of regulatory T cell-depleting, low-dose cyclophosphamide. Gliovac administration in patients that have failed standard of care therapies showed minimal toxicity and enhanced overall survival (OS). Six-month (26 weeks) survival for the nine Gliovac patients was 100% versus 33% in control group. At week 40, the published overall survival was 10% if recurrent, reoperated patients were not treated. In the Gliovac treated group, the survival at 40 weeks was 77%. Our data suggest that Gliovac has low toxicity and a promising efficacy. A phase II trial has recently been initiated in recurrent, bevacizumab naïve GBM patients (NCT01903330). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. TECHNICAL MAINTENANCE EFFICIENCY OF THE AIRCRAFT MAINTENANCE-FREE ON-BOARD SYSTEM BETWEEN SCHEDULED MAINTENANCES

    Directory of Open Access Journals (Sweden)

    A. M. Bronnikov

    2017-01-01

    Full Text Available The avionics concept of the maintenance-free on-board equipment implies the absence of necessity to maintain onboard systems between scheduled maintenance, preserving the required operational and technical characteristics; it should be achieved by automatic diagnosis of the technical condition and the application of active means of ensuring a failsafe design, allowing to change the structure of the system to maintain its functions in case of failure. It is supposed that such equipment will reduce substantially and in the limit eliminate traditional maintenance of aircraft between scheduled maintenance, ensuring maximum readiness for use, along with improving safety. The paper proposes a methodology for evaluating the efficiency of maintenance-free between scheduled maintenance aircraft system with homogeneous redundancy. The excessive redundant elements allow the system to accumulate failures which are repaired during the routine maintenance. If the number of failures of any reserve is approaching a critical value, the recovery of the on-board system (elimination of all failures is carried out between scheduled maintenance by conducting rescue and recovery operations. It is believed that service work leads to the elimination of all failures and completely updates the on-board system. The process of system operational status changes is described with the discrete-continuous model in the flight time. The average losses in the sorties and the average cost of operation are used as integrated efficiency indicators of system operation. For example, the evaluation of the operation efficiency of formalized on-board system with homogeneous redundancy demonstrates the efficiency of the proposed methodology and the possibility of its use while analyzing the efficiency of the maintenance-free operation equipment between scheduled periods. As well as a comparative analysis of maintenance-free operation efficiency of the on-board system with excessive

  5. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... geometry of the geostationary Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager sensor across the African continent and compare it to a normalized view geometry. We use the modified geometric projection model that estimates the scene thermal infrared radiance from a surface covered...

  6. Design of the on-board application software for the instrument control unit of Euclid-NISP

    Science.gov (United States)

    Ligori, Sebastiano; Corcione, Leonardo; Capobianco, Vito; Valenziano, Luca

    2014-08-01

    In this paper we describe the main requirements driving the development of the Application software of the ICU of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software will be based on a real-time operating system and will interface with all the subunits of NISP, as well as the CMDU of the spacecraft for the Telecommand and Housekeeping management. We briefly detail the services (following the PUS standard) that will be made available, and also possible commonalities in the approach with the ASW of the VIS CDPU, which could make the development effort more efficient; this approach could also make easier the maintenance of the SW during the mission. The development plan of the ASW and the next milestones foreseen are described, together with the architectural design approach and the development environment we are setting up.

  7. Quotation for the Delivery of the Star Sensor Instrument to Fly On-board the CHAMP Satellite

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Nielsen, Rene Bøje; Liebe, Carl Christian

    The quotation give as comphrehensive description of a dual head star camera, its operation, physical and electrical interfaces.......The quotation give as comphrehensive description of a dual head star camera, its operation, physical and electrical interfaces....

  8. Satellite instrument provides nighttime sensing capability

    Science.gov (United States)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  9. HTML 5 Displays for On-Board Flight Systems

    Science.gov (United States)

    Silva, Chandika

    2016-01-01

    During my Internship at NASA in the summer of 2016, I was assigned to a project which dealt with developing a web-server that would display telemetry and other system data using HTML 5, JavaScript, and CSS. By doing this, it would be possible to view the data across a variety of screen sizes, and establish a standard that could be used to simplify communication and software development between NASA and other countries. Utilizing a web- approach allowed us to add in more functionality, as well as make the displays more aesthetically pleasing for the users. When I was assigned to this project my main task was to first establish communication with the current display server. This display server would output data from the on-board systems in XML format. Once communication was established I was then asked to create a dynamic telemetry table web page that would update its header and change as new information came in. After this was completed, certain minor functionalities were added to the table such as a hide column and filter by system option. This was more for the purpose of making the table more useful for the users, as they can now filter and view relevant data. Finally my last task was to create a graphical system display for all the systems on the space craft. This was by far the most challenging part of my internship as finding a JavaScript library that was both free and contained useful functions to assist me in my task was difficult. In the end I was able to use the JointJs library and accomplish the task. With the help of my mentor and the HIVE lab team, we were able to establish stable communication with the display server. We also succeeded in creating a fully dynamic telemetry table and in developing a graphical system display for the advanced modular power system. Working in JSC for this internship has taught me a lot about coding in JavaScript and HTML 5. I was also introduced to the concept of developing software as a team, and exposed to the different

  10. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  11. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  12. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    International Nuclear Information System (INIS)

    Held, Mareike

    2016-01-01

    This dissertation focuses on the use of on-board imaging systems as the basis for treatment planning, presenting an additional application for on-board images. A clinical workflow is developed to simulate, plan, and deliver a simple radiation oncology treatment rapidly, using 3D patient scans. The work focuses on an on-line dose planning and delivery process based on on-board images entirely performed with the patient set up on the treatment couch of the linear accelerator. This potentially reduces the time between patient simulation and treatment to about 30 minutes. The basis for correct dose calculation is the accurate image gray scale to tissue density calibration. The gray scale, which is defined in CT Numbers, is dependent on the energy spectrum of the beam. Therefore, an understanding of the physics characteristics of each on-board system is required to evaluate the impact on image quality, especially regarding the underlying cause of image noise, contrast, and non-uniformity. Modern on-board imaging systems, including kV and megavoltage (MV) cone beam (CB) CT as well as MV CT, are characterized in terms of image quality and stability. A library of phantom and patient CT images is used to evaluate the dose calculation accuracy for the on-board images. The dose calculation objective is to stay within 5% local dose differences compared to standard kV CT dose planning. The objective is met in many treatment cases. However, dose calculation accuracy depends on the anatomical treatment site. While on-board CT-based treatments of the head and extremities are predictable within 5% on all systems, lung tissue and air cavities may create local dose discrepancies of more than 5%. The image quality varies between the tested units. Consequently, the CT number-to-density calibration is defined independently for each system. In case of some imaging systems, the CT numbers of the images are dependent on the protocol used for on-board imaging, which defines the imaging dose

  13. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Mareike

    2016-03-23

    This dissertation focuses on the use of on-board imaging systems as the basis for treatment planning, presenting an additional application for on-board images. A clinical workflow is developed to simulate, plan, and deliver a simple radiation oncology treatment rapidly, using 3D patient scans. The work focuses on an on-line dose planning and delivery process based on on-board images entirely performed with the patient set up on the treatment couch of the linear accelerator. This potentially reduces the time between patient simulation and treatment to about 30 minutes. The basis for correct dose calculation is the accurate image gray scale to tissue density calibration. The gray scale, which is defined in CT Numbers, is dependent on the energy spectrum of the beam. Therefore, an understanding of the physics characteristics of each on-board system is required to evaluate the impact on image quality, especially regarding the underlying cause of image noise, contrast, and non-uniformity. Modern on-board imaging systems, including kV and megavoltage (MV) cone beam (CB) CT as well as MV CT, are characterized in terms of image quality and stability. A library of phantom and patient CT images is used to evaluate the dose calculation accuracy for the on-board images. The dose calculation objective is to stay within 5% local dose differences compared to standard kV CT dose planning. The objective is met in many treatment cases. However, dose calculation accuracy depends on the anatomical treatment site. While on-board CT-based treatments of the head and extremities are predictable within 5% on all systems, lung tissue and air cavities may create local dose discrepancies of more than 5%. The image quality varies between the tested units. Consequently, the CT number-to-density calibration is defined independently for each system. In case of some imaging systems, the CT numbers of the images are dependent on the protocol used for on-board imaging, which defines the imaging dose

  14. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  15. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  16. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  17. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  18. Background simulations for the Large Area Detector onboard LOFT

    DEFF Research Database (Denmark)

    Campana, Riccardo; Feroci, Marco; Ettore, Del Monte

    2013-01-01

    and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of similar to 10 m(2) at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment...... is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design...... an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than...

  19. Invited Article: Deep Impact instrument calibration

    International Nuclear Information System (INIS)

    Klaasen, Kenneth P.; Mastrodemos, Nickolaos; A'Hearn, Michael F.; Farnham, Tony; Groussin, Olivier; Ipatov, Sergei; Li Jianyang; McLaughlin, Stephanie; Sunshine, Jessica; Wellnitz, Dennis; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Thomas, Peter; Hampton, Donald; Lisse, Carey

    2008-01-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [∼1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of ∼9 pixels. The charge coupled device (CCD) read noise is ∼1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to ∼1%. Spectrometer read noise is ∼2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to ∼10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of ∼2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to ∼0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  20. Invited Article: Deep Impact instrument calibration.

    Science.gov (United States)

    Klaasen, Kenneth P; A'Hearn, Michael F; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Farnham, Tony; Groussin, Olivier; Hampton, Donald; Ipatov, Sergei; Li, Jianyang; Lisse, Carey; Mastrodemos, Nickolaos; McLaughlin, Stephanie; Sunshine, Jessica; Thomas, Peter; Wellnitz, Dennis

    2008-09-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [ approximately 1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of approximately 9 pixels. The charge coupled device (CCD) read noise is approximately 1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to approximately 1%. Spectrometer read noise is approximately 2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to approximately 10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of approximately 2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to approximately 0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  1. On-board landmark navigation and attitude reference parallel processor system

    Science.gov (United States)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  2. Evaluation of the use of on-board spacecraft energy storage for electric propulsion missions

    Science.gov (United States)

    Poeschel, R. L.; Palmer, F. M.

    1983-01-01

    On-board spacecraft energy storage represents an under utilized resource for some types of missions that also benefit from using relatively high specific impulse capability of electric propulsion. This resource can provide an appreciable fraction of the power required for operating the electric propulsion subsystem in some missions. The most probable mission requirement for utilization of this energy is that of geostationary satellites which have secondary batteries for operating at high power levels during eclipse. The study summarized in this report selected four examples of missions that could benefit from use of electric propulsion and on-board energy storage. Engineering analyses were performed to evaluate the mass saved and economic benefit expected when electric propulsion and on-board batteries perform some propulsion maneuvers that would conventionally be provided by chemical propulsion. For a given payload mass in geosynchronous orbit, use of electric propulsion in this manner typically provides a 10% reduction in spacecraft mass.

  3. New control method of on-board ATP system of Shinkansen trains

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, N.; Watanabe, T. [Railway Technical Research Inst. (Japan)

    2000-07-01

    We studied a new control method of the on-board automatic train protection (ATP) system for Shinkansen trains to shorten the operation time and not to degrade ride comfort at changes in deceleration of the train, while maintaining the safety and reliability of the present ATP signal system. We propose a new on-board pattern brake control system based on the present ATP data without changing the wayside equipment. By simulating the ATP braking of the proposed control method, we succeeded in shortening the operation time by 48 seconds per one station in comparison with the present ATP brake control system. This paper reports the concept of the system and simulation results of the on-board pattern. (orig.)

  4. Implementing Temperature Supervision for the ALICE CRU Card Using the Onboard Microcontroller

    CERN Document Server

    Perez Bernabeu, Ruben

    2017-01-01

    We report on the first implementation of the thermal supervisory firmware for the onboard microcontroller on the ALICE CRU card. The Common Readout Unit (CRU) is a custom PCI Express FPGA card developed by “Centre Physique des Particules de Marseille” in collaboration of LHCb and ALICE. While the main effort has been focused on the development of the FPGA firmware that implements all the communication needs, there are several independent design tasks identified to ensure the safe operation of the CRU card under all possible conditions. One such task is to implement a robust local (on-board) temperature monitoring and safeguarding subsystem based on ATmega128 microcontroller. It will autonomously prevent the thermal damage of the card even if the remote HW monitoring and controlling functions (integrated in DCS) failed for any reason. Consequently, our main goal in this project will be implementing the temperature supervision using the onboard microcontroller.

  5. Data Products From Particle Detectors On-Board NOAA's Newest Space Weather Monitor

    Science.gov (United States)

    Kress, B. T.; Rodriguez, J. V.; Onsager, T. G.

    2017-12-01

    NOAA's newest Geostationary Operational Environmental Satellite, GOES-16, was launched on 19 November 2016. Instrumentation on-board GOES-16 includes the new Space Environment In-Situ Suite (SEISS), which has been collecting data since 8 January 2017. SEISS is composed of five magnetospheric particle sensor units: an electrostatic analyzer for measuring 30 eV - 30 keV ions and electrons (MPS-LO), a high energy particle sensor (MPS-HI) that measures keV to MeV electrons and protons, east and west facing Solar and Galactic Proton Sensor (SGPS) units with 13 differential channels between 1-500 MeV, and an Energetic Heavy Ion Sensor (EHIS) that measures 30 species of heavy ions (He-Ni) in five energy bands in the 10-200 MeV/nuc range. Measurement of low energy magnetospheric particles by MPS-LO and heavy ions by EHIS are new capabilities not previously flown on the GOES system. Real-time data from GOES-16 will support space weather monitoring and first-principles space weather modeling by NOAA's Space Weather Prediction Center (SWPC). Space weather level 2+ data products under development at NOAA's National Centers for Environmental Information (NCEI) include the Solar Energetic Particle (SEP) Event Detection algorithm. Legacy components of the SEP event detection algorithm (currently produced by SWPC) include the Solar Radiation Storm Scales. New components will include, e.g., event fluences. New level 2+ data products also include the SEP event Linear Energy Transfer (LET) Algorithm, for transforming energy spectra from EHIS into LET spectra, and the Density and Temperature Moments and Spacecraft Charging algorithm. The moments and charging algorithm identifies electron and ion signatures of spacecraft surface (frame) charging in the MPS-LO fluxes. Densities and temperatures from MPS-LO will also be used to support a magnetopause crossing detection algorithm. The new data products will provide real-time indicators of potential radiation hazards for the satellite

  6. Wide-Field Gamma-Spectrometer BDRG: GRB Monitor On-Board the Lomonosov Mission

    Science.gov (United States)

    Svertilov, S. I.; Panasyuk, M. I.; Bogomolov, V. V.; Amelushkin, A. M.; Barinova, V. O.; Galkin, V. I.; Iyudin, A. F.; Kuznetsova, E. A.; Prokhorov, A. V.; Petrov, V. L.; Rozhkov, G. V.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Jeong, S.; Kim, M. B.

    2018-02-01

    The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the wide-field optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90° from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ˜ 2°. Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of \\varnothing 130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities. The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ˜ 500 Mb per day, including ˜ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ˜ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.

  7. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  8. A Comprehensive Onboarding and Orientation Plan for Neurocritical Care Advanced Practice Providers.

    Science.gov (United States)

    Langley, Tamra M; Dority, Jeremy; Fraser, Justin F; Hatton, Kevin W

    2018-06-01

    As the role of advanced practice providers (APPs) expands to include increasingly complex patient care within the intensive care unit, the educational needs of these providers must also be expanded. An onboarding process was designed for APPs in the neurocritical care service line. Onboarding for new APPs revolved around 5 specific areas: candidate selection, proctor assignment, 3-phased orientation process, remediation, and mentorship. To ensure effective training for APPs, using the most time-conscious approach, the backbone of the process is a structured curriculum. This was developed and integrated within the standard orientation and onboarding process. The curriculum design incorporated measurable learning goals, objective assessments of phased goal achievements, and opportunities for remediation. The neurocritical care service implemented an onboarding process in 2014. Four APPs (3 nurse practitioners and 1 physician assistant) were employed by the department before the implementation of the orientation program. The length of employment ranged from 1 to 4 years. Lack of clinical knowledge and/or sufficient training was cited as reasons for departure from the position in 2 of the 4 APPs, as either self-expression or peer evaluation. Since implementation of this program, 12 APPs have completed the program, of which 10 remain within the division, creating an 83% retention rate. The onboarding process, including a 3-phased, structured orientation plan for neurocritical care, has increased APP retention since its implementation. The educational model, along with proctoring and mentorship, has improved clinical knowledge and increased nurse practitioner retention. A larger-scale study would help to support the validity of this onboarding process.

  9. Instrument performance and simulation verification of the POLAR detector

    Science.gov (United States)

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rybka, D.; Sun, J. C.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wang, Y. H.; Wen, X.; Wu, B. B.; Wu, X.; Xiao, H. L.; Xiong, S. L.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zhao, Y.

    2017-11-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.

  10. Instrument Performance and Simulation Verification of the POLAR Detector

    OpenAIRE

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.

    2017-01-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induce...

  11. Chang?E-5T Orbit Determination Using Onboard GPS Observations

    OpenAIRE

    Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin

    2017-01-01

    In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang?E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard G...

  12. Development and application of an emitter for research of an on-board ultraviolet polarimeter

    Science.gov (United States)

    Nevodovskyi, P. V.; Geraimchuk, M. D.; Vidmachenko, A. P.; Ivakhiv, O. V.

    2018-05-01

    In carrying out of the work a layout of on-board small-sized ultraviolet polarimeter (UVP) was created. UVP is the device, which provides an implementation of passive remote studies of stratospheric aerosol from the board of the microsatellite of the Earth by the method of polarimetry. For carrying out of tests and the research of polarimetric equipment, a special stand was created at MAO of NAS of Ukraine. In its composition is an ultraviolet emitter. Emitter is one of the main components of a special stand for the study of on-board ultraviolet polarimeters.

  13. An Interactive Multi-instrument Database of Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Sadykov, Viacheslav M; Kosovichev, Alexander G; Oria, Vincent; Nita, Gelu M [Center for Computational Heliophysics, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2017-07-01

    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ -rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/). The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability of observations by a particular set of instruments. Currently, the data from three primary flare lists ( Geostationary Operational Environmental Satellites , RHESSI , and HEK) and a variety of other event catalogs ( Hinode , Fermi GBM, Konus- W IND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs ( IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.

  14. Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas

    Directory of Open Access Journals (Sweden)

    Garcia Juan L

    2010-08-01

    Full Text Available Abstract Background Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM. Methods Eight fresh, primary and non cultured GBMs were used in order to study the gene expression signatures from its CD133 positive and negative populations isolated by FACS-sorting. Dataset was generated with Affymetrix U133 Plus 2 arrays and analysed using the software of the Affymetrix Expression Console. In addition, genomic analysis of these tumours was carried out by CGH arrays, FISH studies and MLPA; Results Gene expression analysis of CD133+ vs. CD133- cell population from each tumour showed that CD133+ cells presented common characteristics in all glioblastoma samples (up-regulation of genes involved in angiogenesis, permeability and down-regulation of genes implicated in cell assembly, neural cell organization and neurological disorders. Furthermore, unsupervised clustering of gene expression led us to distinguish between two groups

  15. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  16. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  17. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, M., E-mail: ohno@hep01.hepl.hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y. [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); and others

    2016-09-21

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5–80 keV) and soft gamma-rays (60–600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector. - Highlights: • A detail of development of signal processing system for ASTRO-H is presented. • Digital filer with FPGA instead of discrete analog circuit is applied. • Expected performance is verified after integration of the satellite.

  18. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Science.gov (United States)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  19. Development of porous plug phase separator and superfluid film flow suppression system for the Soft X-ray Spectrometer onboard ASTRO-H

    Science.gov (United States)

    Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya; Yamaguchi, Hiroya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter; the SXS Team

    2012-04-01

    ASTRO-H is the sixth Japanese astronomy satellite scheduled for launch in 2014. The Soft X-ray Spectrometer instrument is onboard ASTRO-H. This is a 6 × 6 array of X-ray microcalorimeters with an energy resolution of gravity, a porous plug phase separator made of sintered stainless is used. Since the vapor mass flow rate is only 29 μg/s, any additional superfluid film loss influences the lifetime of the liquid helium. Therefore, a film flow suppression system consisting of an orifice, a heat exchanger, and knife edge devices is adopted based on the design used for the X-ray Spectrometer onboard Suzaku. The film flow will be suppressed to <2 μg/s, sufficiently smaller than the vapor flow rate. In the present investigation, the design and ground experiments of a helium vent system composed of the porous plug and film flow suppression system are presented. The results show that the phase separation and the film flow suppression are satisfactorily achieved.

  20. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  1. Development of an on-board H2 storage and recovery system based on lithium borohydride.

    Science.gov (United States)

    2014-02-28

    Alkali metal borohydrides based on sodium and lithium, NaBH4 and LiBH4, have been evaluated as a potential hydrogen storage and recovery system for on-board vehicle use. The borohydride salts could be dissolved in water, followed by a hydrolytic reac...

  2. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard ...

    Indian Academy of Sciences (India)

    M. C. RAMADEVI

    MS received 1 September 2017; accepted 19 December 2017; published online 10 February 2018. Abstract. Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the ..... 31(2–3), 99. Ramadevi M. C., Seetha S., Babu V. C., Ashoka B. N., Sreeku- mar P. 2006, Optimization of Gas Proportional Coun-.

  3. On-board conversion of methanol to dimethyl ether as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H; Heinzelmann, G; Struis, R; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytic dehydration of methanol to dimethyl ether was investigated for application on-board a methanol fuelled vehicle. Several catalysts have been tested in a fixed bed reactor. Our approach is to develop a small and efficient reactor converting liquid MeOH under pressure and at low reaction temperatures. (author) 2 figs., 5 refs.

  4. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Science.gov (United States)

    2010-07-01

    ... on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist... the unset readiness code(s) in question may be issued a passing certificate without being required to... lit malfunction indicator light (MIL) must be failed, though setting the unset readiness flags in...

  5. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    Science.gov (United States)

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  6. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.

    2000-01-01

    between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  7. THE DEVELOPMENT OF METHOD AND ON-BOARD DEVICES FOR COLLISION AVOIDANCE WHEN OVERTAKING

    Directory of Open Access Journals (Sweden)

    Podryhalo, M.

    2013-06-01

    Full Text Available A method for improving the safety of overtaking maneuver by using the on-board collision avoidance system, which has an increased assessment reliability of safety of vehicles overtaking that move in the same direction is offered. The proposed system takes into account the main factors that affect the overtaking maneuver.

  8. STOL terminal area operating systems (aircraft and onboard avionics, ATC, navigation aids)

    Science.gov (United States)

    Burrous, C.; Erzberger, H.; Johnson, N.; Neuman, F.

    1974-01-01

    Operational procedures and systems onboard the STOL aircraft which are required to enable the aircraft to perform acceptably in restricted airspace in all types of atmospheric conditions and weather are discussed. Results of simulation and flight investigations to establish operational criteria are presented.

  9. Functional requirements for onboard management of space shuttle consumables, volume 1

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  10. A novel approach for navigational guidance of ships using onboard monitoring systems

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2011-01-01

    A novel approach and conceptual ideas are outlined for risk-based navigational guidance of ships using decision support systems in combination with onboard, in-service monitoring systems. The guidance has as the main objective to advise on speed and/or course changes; in particular with focus...

  11. Evaluating the Onboarding Phase of Free-toPlay Mobile Games

    DEFF Research Database (Denmark)

    Weigert Petersen, Falko; Thomsen, Line Ebdrup; Mirza-Babaei, Pejman

    2017-01-01

    . This paper presents a study utilizing a lab-based mixed-methods approach in providing insights for evaluating the user experience of onboarding phases in mobile games. This includes an investigation into the contribution of physiological measures (Heart-Rate Variability and Galvanic Skin Conductance) as well...

  12. CALIBRATION OF MODIFIED LIULIN DETECTOR FOR COSMIC RADIATION MEASUREMENTS ON-BOARD AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kyselová, Dagmar; Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Uchihori, Y.; Kitamura, H.; Ploc, Ondřej

    2015-01-01

    Roč. 164, č. 4 (2015), s. 489-492 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Liulin detector * on-board aircraft * cosmic radiation measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  13. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    Science.gov (United States)

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  14. Data systems and computer science space data systems: Onboard networking and testbeds

    Science.gov (United States)

    Dalton, Dan

    1991-01-01

    The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: justification; technology challenges; program description; and state-of-the-art assessment.

  15. Validation of multi-channel scanning microwave radiometer on-board Oceansat-1

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Harikrishnan, M.

    Sea surface temperature (SST), sea surface wind speed (WS) and columnar water vapour (WV) derived from Multi-frequency Scanning Microwave Radiometer (MSMR) sensor on-board IRS-P4 (Oceansat-1) were validated against the in situ measurements from ship...

  16. On-Board File Management and Its Application in Flight Operations

    Science.gov (United States)

    Kuo, N.

    1998-01-01

    In this paper, the author presents the minimum functions required for an on-board file management system. We explore file manipulation processes and demonstrate how the file transfer along with the file management system will be utilized to support flight operations and data delivery.

  17. Human Resources Management: Onboarding Program and Trainer's Guide for Charter School Employees

    Science.gov (United States)

    Cook, Jeannette

    2016-01-01

    The applied dissertation project focused on the development of a comprehensive onboarding program and Trainer's Guide specifically developed for charter school management employees. Charter school education has grown significantly in the last several decades with over 6,100 charter schools that are currently serving students nationwide. Formal or…

  18. Onboard Flow Sensing For Downwash Detection and Avoidance On Small Quadrotor Helicopters

    Science.gov (United States)

    2015-01-01

    onboard computers, one for flight stabilization and a Linux computer for sensor integration and control calculations . The Linux computer runs Robot...Hirokawa, D. Kubo , S. Suzuki, J. Meguro, and T. Suzuki. Small uav for immediate hazard map generation. In AIAA Infotech@Aerospace Conf, May 2007. 8F

  19. SE83-9 'Chix in Space' student experimenter monitors STS-29 onboard activity

    Science.gov (United States)

    1989-01-01

    Student experimenter John C. Vellinger watches monitor in the JSC Mission Control Center (MCC) Bldg 30 Customer Support Room (CSR) during the STS-29 mission. Crewmembers are working with his Student Experiment (SE) 83-9 Chicken Embryo Development in Space or 'Chix in Space' onboard Discovery, Orbiter Vehicle (OV) 103. The student's sponsor is Kentucky Fried Chicken (KFC).

  20. Investigation of atmospheric high-energy phenomena onboard International Space Station: microsatellite ''Chibis-AI'' and VHF interferometer ''Kite''

    International Nuclear Information System (INIS)

    Dolgonosov, M.; Gotlib, V.; Karedin, V.; Kosov, A.; Nazarov, V.; Zelenyi, L.; Klimov, S.

    2017-01-01

    Space Research Institute of the RAS is gradually developing its own program of the space-born experiments to study high- energy process in the terrestrial atmosphere. Terrestrial Gamma-ray Flashes (TGFS) and Compact Intracloud Discharges (CIDs) are among principal goals of the scientific research of the program. To conduct research is supposed to produce new «instruments»: microsatellite «ChibiS-AI» and VHF interferometer «Kite» aboard International Space Station. Microsatellite ”Chibis-AI” will be constructed on the platform originally designed at the Special Engineering Department of Space Research Institute of the Russian Academy of Sciences in 2011. It's forerunner «Chibis-M» was successfully launched in 2012. Expected date of «Chibis-AI» launch is 2019. The principal idea underlying design of the scientific payload of the microsatellite ”Chibis-AI” is the joint observations of the TGF and CID emissions by different detectors installed onboard: Radio Frequency Analyzer (RFA) and Neutron and Gamma spectrometer (N GS). RFA contained two passbands in the range 15-26 and 26-48 MHZ with a digitization at 96 megasamples/s. NGS is based on LaBr3(Ce3+) crystal with the maximum achievable today spectral resolution and efficiency of gamma rays in the energy range 100 Kev - 10 MeV among scintillation crystals. The microsatellite orbit will be circular with inclination 51° with initial elevation above sea level around 550 km. VHF interferometer «Kite» to be installed in 2019-2020 aboard 188. To implement interferometric scheme 4 antennas will be installed on the 188 surface. The passband of the instrument will be ∼50-100 MHZ. Technical details of both experiments, its current stage and features as well results of the previous experiment «Chibis-M» will be discussed. (author)

  1. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  2. Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Kameda, S.; Suzuki, H.; Takamatsu, T.; Cho, Y.; Yasuda, T.; Yamada, M.; Sawada, H.; Honda, R.; Morota, T.; Honda, C.; Sato, M.; Okumura, Y.; Shibasaki, K.; Ikezawa, S.; Sugita, S.

    2017-07-01

    The optical navigation camera telescope (ONC-T) is a telescopic framing camera with seven colors onboard the Hayabusa2 spacecraft launched on December 3, 2014. The main objectives of this instrument are to optically navigate the spacecraft to asteroid Ryugu and to conduct multi-band mapping the asteroid. We conducted performance tests of the instrument before its installation on the spacecraft. We evaluated the dark current and bias level, obtained data on the dependency of the dark current on the temperature of the charge-coupled device (CCD). The bias level depends strongly on the temperature of the electronics package but only weakly on the CCD temperature. The dark-reference data, which is obtained simultaneously with observation data, can be used for estimation of the dark current and bias level. A long front hood is used for ONC-T to reduce the stray light at the expense of flatness in the peripheral area of the field of view (FOV). The central area in FOV has a flat sensitivity, and the limb darkening has been measured with an integrating sphere. The ONC-T has a wheel with seven bandpass filters and a panchromatic glass window. We measured the spectral sensitivity using an integrating sphere and obtained the sensitivity of all the pixels. We also measured the point-spread function using a star simulator. Measurement results indicate that the full width at half maximum is less than two pixels for all the bandpass filters and in the temperature range expected in the mission phase except for short periods of time during touchdowns.

  3. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ...” means air carrier employees and their family members and persons traveling onboard a commercial aircraft...), air carrier employees, their family members, and persons onboard for the safety of the flight are...) Date of birth; (iii) Place of birth (city, state—if applicable, country); (iv) Gender (F = female; M...

  4. USING THE INFORMATION OF ON-BOARD DIAGNOSTIC SYSTEMS IN DETERMINING THE TECHNICAL STATE OF THE LOCOMOTIVE

    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar

    2008-12-01

    Full Text Available The issues of increase of efficiency of information processing by оn-board systems of diagnostics of locomotives are considered. The examples of information processing by the on-board system of diagnostics of electric locomotives DE1 are presented. The suggestions on improvement of systematization and processing of information by on-board systems of diagnostics are given.

  5. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  6. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  7. A study on the real-time reliability of on-board equipment of train control system

    Science.gov (United States)

    Zhang, Yong; Li, Shiwei

    2018-05-01

    Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.

  8. Using Small Capacity Fuel Cells Onboard Drones for Battery Cooling: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Shayok Mukhopadhyay

    2018-06-01

    Full Text Available Recently, quadrotor-based drones have attracted a lot of attention because of their versatility, which makes them an ideal medium for a variety of applications, e.g., personal photography, surveillance, and the delivery of lightweight packages. The flight duration of a drone is limited by its battery capacity. Increasing the payload capacity of a drone requires more current to be supplied by the battery onboard a drone. Elevated currents through a Li-ion battery can increase the battery temperature, thus posing a significant risk of fire or explosion. Li-ion batteries are suited for drone applications, due to their high energy density. There have been attempts to use hydrogen fuel cells onboard drones. Fuel cell stacks and fuel tank assemblies can have a high energy to weight ratio. So, they may be able to power long duration drone flights, but such fuel cell stacks and associated systems, are usually extremely expensive. Hence, this work proposes the novel use of a less expensive, low capacity, metal hydride fuel stick-powered fuel cell stack as an auxiliary power supply onboard a drone. A primary advantage of this is that the fuel sticks can be used to cool the batteries, and a side effect is that this slightly reduces the burden on the onboard Li-ion battery and provides a small increment in flight time. This work presents the results of an experimental study which shows the primary effect (i.e., decrease in battery temperature and the secondary side effect (i.e., a small increment in flight time obtained by using a fuel cell stack. In this work, a metal hydride fuel stick powered hydrogen fuel cell is used along with a Li-ion battery onboard a drone.

  9. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    International Nuclear Information System (INIS)

    Burns, Eric; Briggs, Michael S.; Connaughton, Valerie; Zhang, Bin-Bin; Lien, Amy; Goldstein, Adam; Pelassa, Veronique; Troja, Eleonora

    2016-01-01

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors

  10. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Eric; Briggs, Michael S. [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Connaughton, Valerie [Universities Space Research Association, Science and Technology Institute, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Zhang, Bin-Bin [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Lien, Amy [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Goldstein, Adam [NASA Postdoctoral Program, Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pelassa, Veronique [Smithsonian Astrophysical Observatory, P.O. Box 97, Amado, AZ 85645 (United States); Troja, Eleonora, E-mail: eb0016@uah.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors.

  11. Development and implementation of a new onboard diagnosis method for automotive lithium-ion-batteries; Entwicklung und Implementierung einer neuen Onboard-Diagnosemethode fuer Lithium-Ionen-Fahrzeugbatterien

    Energy Technology Data Exchange (ETDEWEB)

    Brill, Michael

    2012-11-01

    The author of the contribution under consideration reports on a onboard diagnosis for lithium ion accumulators which determines the actual state of aging of a high voltage drive battery during the normal usage of hybrid vehicles and electrically driven vehicles. Due to the limited computing time and storages resources in the battery control unit a combined process is shown which analyses the state of aging of the total battery as a unit and additionally the scattering of the battery cells. Furthermore the procedure is design to supply an optimal result with the available measurement signals.

  12. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry