WorldWideScience

Sample records for gaussian random fields

  1. Gaussian likelihood inference on data from trans-Gaussian random fields with Matérn covariance function

    KAUST Repository

    Yan, Yuan; Genton, Marc G.

    2017-01-01

    Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.

  2. Gaussian likelihood inference on data from trans-Gaussian random fields with Matérn covariance function

    KAUST Repository

    Yan, Yuan

    2017-07-13

    Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.

  3. Statistics of peaks of Gaussian random fields

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bond, J.R.; Kaiser, N.; Szalay, A.S.; Stanford Univ., CA; California Univ., Berkeley; Cambridge Univ., England; Fermi National Accelerator Lab., Batavia, IL)

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of upcrossing points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima. 67 references

  4. Path integral methods for primordial density perturbations - sampling of constrained Gaussian random fields

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1987-01-01

    Path integrals may be used to describe the statistical properties of a random field such as the primordial density perturbation field. In this framework the probability distribution is given for a Gaussian random field subjected to constraints such as the presence of a protovoid or supercluster at a specific location in the initial conditions. An algorithm has been constructed for generating samples of a constrained Gaussian random field on a lattice using Monte Carlo techniques. The method makes possible a systematic study of the density field around peaks or other constrained regions in the biased galaxy formation scenario, and it is effective for generating initial conditions for N-body simulations with rare objects in the computational volume. 21 references

  5. A note on moving average models for Gaussian random fields

    DEFF Research Database (Denmark)

    Hansen, Linda Vadgård; Thorarinsdottir, Thordis L.

    The class of moving average models offers a flexible modeling framework for Gaussian random fields with many well known models such as the Matérn covariance family and the Gaussian covariance falling under this framework. Moving average models may also be viewed as a kernel smoothing of a Lévy...... basis, a general modeling framework which includes several types of non-Gaussian models. We propose a new one-parameter spatial correlation model which arises from a power kernel and show that the associated Hausdorff dimension of the sample paths can take any value between 2 and 3. As a result...

  6. A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, I. [IMSIA, UMR EDF-ENSTA-CNRS-CEA 9219, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France); Ferré, G., E-mail: gregoire.ferre@ponts.org [CERMICS – Ecole des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2 (France); Poirion, F. [Department of Structural Dynamics and Aeroelasticity, ONERA, BP 72, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex (France); Benoit, M. [Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), UMR 7342 (CNRS, Aix-Marseille Université, Ecole Centrale Marseille), 49 rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13 (France)

    2016-06-01

    In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated by applications to earthquakes (seismic ground motion) and sea states (wave heights).

  7. Chemical Distances for Percolation of Planar Gaussian Free Fields and Critical Random Walk Loop Soups

    Science.gov (United States)

    Ding, Jian; Li, Li

    2018-06-01

    We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.

  8. Multi-fidelity Gaussian process regression for prediction of random fields

    International Nuclear Information System (INIS)

    Parussini, L.; Venturi, D.; Perdikaris, P.; Karniadakis, G.E.

    2017-01-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  9. Multi-fidelity Gaussian process regression for prediction of random fields

    Energy Technology Data Exchange (ETDEWEB)

    Parussini, L. [Department of Engineering and Architecture, University of Trieste (Italy); Venturi, D., E-mail: venturi@ucsc.edu [Department of Applied Mathematics and Statistics, University of California Santa Cruz (United States); Perdikaris, P. [Department of Mechanical Engineering, Massachusetts Institute of Technology (United States); Karniadakis, G.E. [Division of Applied Mathematics, Brown University (United States)

    2017-05-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  10. Inflation in random Gaussian landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-05-01

    We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer from potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.

  11. Model correction factor method for reliability problems involving integrals of non-Gaussian random fields

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  12. Stochastic generation of explicit pore structures by thresholding Gaussian random fields

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, Jeffrey D., E-mail: jhyman@lanl.gov [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Computational Earth Science, Earth and Environmental Sciences (EES-16), and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Winter, C. Larrabee, E-mail: winter@email.arizona.edu [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721-0011 (United States)

    2014-11-15

    We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. -- Graphical abstract: -- Highlights: •An efficient method to stochastically generate realistic pore structures is provided. •Samples are generated by applying a level threshold to a Gaussian field realization. •Two user prescribed quantities determine the topology and geometry of the pore space. •Multiple pore structures and preferential flow directions can be produced. •A pore space based on Berea sandstone is generated.

  13. Integration of non-Gaussian fields

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Mohr, Gunnar; Hoffmeyer, Pernille

    1996-01-01

    The limitations of the validity of the central limit theorem argument as applied to definite integrals of non-Gaussian random fields are empirically explored by way of examples. The purpose is to investigate in specific cases whether the asymptotic convergence to the Gaussian distribution is fast....... and Randrup-Thomsen, S. Reliability of silo ring under lognormal stochastic pressure using stochastic interpolation. Proc. IUTAM Symp., Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, San Antonio, TX, USA, June 1993 (eds.: P. D. Spanos & Y.-T. Wu) pp. 134-162. Springer, Berlin...

  14. Gaussian processes and constructive scalar field theory

    International Nuclear Information System (INIS)

    Benfatto, G.; Nicolo, F.

    1981-01-01

    The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)

  15. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  16. GAUSSIAN RANDOM FIELD: PHYSICAL ORIGIN OF SERSIC PROFILES

    International Nuclear Information System (INIS)

    Cen, Renyue

    2014-01-01

    While the Sersic profile family provides adequate fits for the surface brightness profiles of observed galaxies, its physical origin is unknown. We show that if the cosmological density field is seeded by random Gaussian fluctuations, as in the standard cold dark matter model, galaxies with steep central profiles have simultaneously extended envelopes of shallow profiles in the outskirts, whereas galaxies with shallow central profiles are accompanied by steep density profiles in the outskirts. These properties are in accord with those of the Sersic profile family. Moreover, galaxies with steep central profiles form their central regions in smaller denser subunits that possibly merge subsequently, which naturally leads to the formation of bulges. In contrast, galaxies with shallow central profiles form their central regions in a coherent fashion without significant substructure, a necessary condition for disk galaxy formation. Thus, the scenario is self-consistent with respect to the correlation between observed galaxy morphology and the Sersic index. We further predict that clusters of galaxies should display a similar trend, which should be verifiable observationally

  17. Characterisation of random Gaussian and non-Gaussian stress processes in terms of extreme responses

    Directory of Open Access Journals (Sweden)

    Colin Bruno

    2015-01-01

    Full Text Available In the field of military land vehicles, random vibration processes generated by all-terrain wheeled vehicles in motion are not classical stochastic processes with a stationary and Gaussian nature. Non-stationarity of processes induced by the variability of the vehicle speed does not form a major difficulty because the designer can have good control over the vehicle speed by characterising the histogram of instantaneous speed of the vehicle during an operational situation. Beyond this non-stationarity problem, the hard point clearly lies in the fact that the random processes are not Gaussian and are generated mainly by the non-linear behaviour of the undercarriage and the strong occurrence of shocks generated by roughness of the terrain. This non-Gaussian nature is expressed particularly by very high flattening levels that can affect the design of structures under extreme stresses conventionally acquired by spectral approaches, inherent to Gaussian processes and based essentially on spectral moments of stress processes. Due to these technical considerations, techniques for characterisation of random excitation processes generated by this type of carrier need to be changed, by proposing innovative characterisation methods based on time domain approaches as described in the body of the text rather than spectral domain approaches.

  18. Prediction of Geological Subsurfaces Based on Gaussian Random Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Petter

    1997-12-31

    During the sixties, random functions became practical tools for predicting ore reserves with associated precision measures in the mining industry. This was the start of the geostatistical methods called kriging. These methods are used, for example, in petroleum exploration. This thesis reviews the possibilities for using Gaussian random functions in modelling of geological subsurfaces. It develops methods for including many sources of information and observations for precise prediction of the depth of geological subsurfaces. The simple properties of Gaussian distributions make it possible to calculate optimal predictors in the mean square sense. This is done in a discussion of kriging predictors. These predictors are then extended to deal with several subsurfaces simultaneously. It is shown how additional velocity observations can be used to improve predictions. The use of gradient data and even higher order derivatives are also considered and gradient data are used in an example. 130 refs., 44 figs., 12 tabs.

  19. Mean anisotropy of homogeneous Gaussian random fields and anisotropic norms of linear translation-invariant operators on multidimensional integer lattices

    Directory of Open Access Journals (Sweden)

    Phil Diamond

    2003-01-01

    Full Text Available Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

  20. Discretisation Schemes for Level Sets of Planar Gaussian Fields

    Science.gov (United States)

    Beliaev, D.; Muirhead, S.

    2018-01-01

    Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.

  1. Partial summations of stationary sequences of non-Gaussian random variables

    DEFF Research Database (Denmark)

    Mohr, Gunnar; Ditlevsen, Ove Dalager

    1996-01-01

    The distribution of the sum of a finite number of identically distributed random variables is in many cases easily determined given that the variables are independent. The moments of any order of the sum can always be expressed by the moments of the single term without computational problems...... of convergence of the distribution of a sum (or an integral) of mutually dependent random variables to the Gaussian distribution. The paper is closely related to the work in Ditlevsen el al. [Ditlevsen, O., Mohr, G. & Hoffmeyer, P. Integration of non-Gaussian fields. Prob. Engng Mech 11 (1996) 15-23](2)....... lognormal variables or polynomials of standard Gaussian variables. The dependency structure is induced by specifying the autocorrelation structure of the sequence of standard Gaussian variables. Particularly useful polynomials are the Winterstein approximations that distributionally fit with non...

  2. Random scalar fields and hyperuniformity

    Science.gov (United States)

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  3. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  4. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-07-15

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  5. On the Shaker Simulation of Wind-Induced Non-Gaussian Random Vibration

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available Gaussian signal is produced by ordinary random vibration controllers to test the products in the laboratory, while the field data is usually non-Gaussian. Two methodologies are presented in this paper for shaker simulation of wind-induced non-Gaussian vibration. The first methodology synthesizes the non-Gaussian signal offline and replicates it on the shaker in the Time Waveform Replication (TWR mode. A new synthesis method is used to model the non-Gaussian signal as a Gaussian signal multiplied by an amplitude modulation function (AMF. A case study is presented to show that the synthesized non-Gaussian signal has the same power spectral density (PSD, probability density function (PDF, and loading cycle distribution (LCD as the field data. The second methodology derives a damage equivalent Gaussian signal from the non-Gaussian signal based on the fatigue damage spectrum (FDS and the extreme response spectrum (ERS and reproduces it on the shaker in the closed-loop frequency domain control mode. The PSD level and the duration time of the derived Gaussian signal can be manipulated for accelerated testing purpose. A case study is presented to show that the derived PSD matches the damage potential of the non-Gaussian environment for both fatigue and peak response.

  6. A novel approach to assess the treatment response using Gaussian random field in PET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mengdie [Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China and Center for Advanced Medical Imaging Science, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Guo, Ning [Center for Advanced Medical Imaging Science, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Hu, Guangshu; Zhang, Hui, E-mail: hzhang@mail.tsinghua.edu.cn, E-mail: li.quanzheng@mgh.harvard.edu [Department of Biomedical Engineering, Tsinghua University, Beijing 100084 (China); El Fakhri, Georges; Li, Quanzheng, E-mail: hzhang@mail.tsinghua.edu.cn, E-mail: li.quanzheng@mgh.harvard.edu [Center for Advanced Medical Imaging Science, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2016-02-15

    Purpose: The assessment of early therapeutic response to anticancer therapy is vital for treatment planning and patient management in clinic. With the development of personal treatment plan, the early treatment response, especially before any anatomically apparent changes after treatment, becomes urgent need in clinic. Positron emission tomography (PET) imaging serves an important role in clinical oncology for tumor detection, staging, and therapy response assessment. Many studies on therapy response involve interpretation of differences between two PET images, usually in terms of standardized uptake values (SUVs). However, the quantitative accuracy of this measurement is limited. This work proposes a statistically robust approach for therapy response assessment based on Gaussian random field (GRF) to provide a statistically more meaningful scale to evaluate therapy effects. Methods: The authors propose a new criterion for therapeutic assessment by incorporating image noise into traditional SUV method. An analytical method based on the approximate expressions of the Fisher information matrix was applied to model the variance of individual pixels in reconstructed images. A zero mean unit variance GRF under the null hypothesis (no response to therapy) was obtained by normalizing each pixel of the post-therapy image with the mean and standard deviation of the pretherapy image. The performance of the proposed method was evaluated by Monte Carlo simulation, where XCAT phantoms (128{sup 2} pixels) with lesions of various diameters (2–6 mm), multiple tumor-to-background contrasts (3–10), and different changes in intensity (6.25%–30%) were used. The receiver operating characteristic curves and the corresponding areas under the curve were computed for both the proposed method and the traditional methods whose figure of merit is the percentage change of SUVs. The formula for the false positive rate (FPR) estimation was developed for the proposed therapy response

  7. Super-resolving random-Gaussian apodized photon sieve.

    Science.gov (United States)

    Sabatyan, Arash; Roshaninejad, Parisa

    2012-09-10

    A novel apodized photon sieve is presented in which random dense Gaussian distribution is implemented to modulate the pinhole density in each zone. The random distribution in dense Gaussian distribution causes intrazone discontinuities. Also, the dense Gaussian distribution generates a substantial number of pinholes in order to form a large degree of overlap between the holes in a few innermost zones of the photon sieve; thereby, clear zones are formed. The role of the discontinuities on the focusing properties of the photon sieve is examined as well. Analysis shows that secondary maxima have evidently been suppressed, transmission has increased enormously, and the central maxima width is approximately unchanged in comparison to the dense Gaussian distribution. Theoretical results have been completely verified by experiment.

  8. MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY

    Directory of Open Access Journals (Sweden)

    Pablo Gregori

    2014-03-01

    Full Text Available This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF, tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.

  9. Non-Gaussian statistics, classical field theory, and realizable Langevin models

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1995-11-01

    The direct-interaction approximation (DIA) to the fourth-order statistic Z ∼ left-angle λψ 2 ) 2 right-angle, where λ is a specified operator and ψ is a random field, is discussed from several points of view distinct from that of Chen et al. [Phys. Fluids A 1, 1844 (1989)]. It is shown that the formula for Z DIA already appeared in the seminal work of Martin, Siggia, and Rose (Phys. Rev. A 8, 423 (1973)] on the functional approach to classical statistical dynamics. It does not follow from the original generalized Langevin equation (GLE) of Leith [J. Atmos. Sd. 28, 145 (1971)] and Kraichnan [J. Fluid Mech. 41, 189 (1970)] (frequently described as an amplitude representation for the DIA), in which the random forcing is realized by a particular superposition of products of random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections (''spurious vertices'') is described. It is shown how to derive an improved representation, that realizes cumulants through O(ψ 4 ), by adding to the GLE a particular non-Gaussian correction. A Markovian approximation Z DIA M to Z DIA is derived. Both Z DIA and Z DIA M incorrectly predict a Gaussian kurtosis for the steady state of a solvable three-mode example

  10. Entropy of level-cut random Gaussian structures at different volume fractions.

    Science.gov (United States)

    Marčelja, Stjepan

    2017-10-01

    Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.

  11. Entropy of level-cut random Gaussian structures at different volume fractions

    Science.gov (United States)

    Marčelja, Stjepan

    2017-10-01

    Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.

  12. Area of isodensity contours in Gaussian and non-Gaussian fields

    International Nuclear Information System (INIS)

    Ryden, B.S.

    1988-01-01

    The area of isodensity contours in a smoothed density field can be measured by the contour-crossing statistic N1, the number of times per unit length that a line drawn through the density field pierces an isodensity contour. The contour-crossing statistic distinguishes between Gaussian and non-Gaussian fields and provides a measure of the effective slope of the power spectrum. The statistic is easy to apply and can be used on pencil beams and slices as well as on a three-dimensional field. 10 references

  13. Random Fields

    Science.gov (United States)

    Vanmarcke, Erik

    1983-03-01

    Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.

  14. Off-Axis Gaussian Beams with Random Displacement in Atmospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Yahya Baykal

    2006-10-01

    Full Text Available Our recent work in which we study the propagation of the general Hermite-sinusoidal-Gaussian laser beams in wireless broadband access telecommunication systems is elaborated in this paper to cover the special case of an off-axis Gaussian beam. We mainly investigate the propagation characteristics in atmospheric turbulence of an off-axis Gaussian beam possessing Gaussian distributed random displacement parameters. Our interest is to search for different types of laser beams that will improve the performance of a wireless broadband access system when atmospheric turbulence is considered. Our formulation is based on the basic solution of the second order mutual coherence function evaluated at the receiver plane. For fixed turbulence strength, the coherence length calculated at the receiver plane is found to decrease as the variance of the random displacement is increased. It is shown that as the turbulence becomes stronger, coherence lengths due to off-axis Gaussian beams tend to approach the same value, irrespective of the variance of the random displacement. As expected, the beam spreading is found to be pronounced for larger variance of displacement parameter. Average intensity profiles when atmospheric turbulence is present are plotted for different values of the variance of the random displacement parameter of the off-axis Gaussian beam.

  15. Supplementary Material for: Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-01-01

    We propose a new class of transGaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States. Supplementary materials for this article are available online.

  16. Detecting the presence of a magnetic field under Gaussian and non-Gaussian noise by adaptive measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian

    2017-06-15

    Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.

  17. Subquantum nonlocal correlations induced by the background random field

    Energy Technology Data Exchange (ETDEWEB)

    Khrennikov, Andrei, E-mail: Andrei.Khrennikov@lnu.s [International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Vaexjoe (Sweden); Institute of Information Security, Russian State University for Humanities, Moscow (Russian Federation)

    2011-10-15

    We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).

  18. Subquantum nonlocal correlations induced by the background random field

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2011-01-01

    We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).

  19. Level sets and extrema of random processes and fields

    CERN Document Server

    Azais, Jean-Marc

    2009-01-01

    A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics a...

  20. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Jardak, Seifallah

    2014-09-01

    Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.

  1. Polynomial Chaos Acceleration for the Bayesian Inference of Random Fields with Gaussian Priors and Uncertain Covariance Hyper-Parameters

    KAUST Repository

    Le Maitre, Olivier

    2015-01-07

    We address model dimensionality reduction in the Bayesian inference of Gaussian fields, considering prior covariance function with unknown hyper-parameters. The Karhunen-Loeve (KL) expansion of a prior Gaussian process is traditionally derived assuming fixed covariance function with pre-assigned hyperparameter values. Thus, the modes strengths of the Karhunen-Loeve expansion inferred using available observations, as well as the resulting inferred process, dependent on the pre-assigned values for the covariance hyper-parameters. Here, we seek to infer the process and its the covariance hyper-parameters in a single Bayesian inference. To this end, the uncertainty in the hyper-parameters is treated by means of a coordinate transformation, leading to a KL-type expansion on a fixed reference basis of spatial modes, but with random coordinates conditioned on the hyper-parameters. A Polynomial Chaos (PC) expansion of the model prediction is also introduced to accelerate the Bayesian inference and the sampling of the posterior distribution with MCMC method. The PC expansion of the model prediction also rely on a coordinates transformation, enabling us to avoid expanding the dependence of the prediction with respect to the covariance hyper-parameters. We demonstrate the efficiency of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data.

  2. Phase statistics in non-Gaussian scattering

    International Nuclear Information System (INIS)

    Watson, Stephen M; Jakeman, Eric; Ridley, Kevin D

    2006-01-01

    Amplitude weighting can improve the accuracy of frequency measurements in signals corrupted by multiplicative speckle noise. When the speckle field constitutes a circular complex Gaussian process, the optimal function of amplitude weighting is provided by the field intensity, corresponding to the intensity-weighted phase derivative statistic. In this paper, we investigate the phase derivative and intensity-weighted phase derivative returned from a two-dimensional random walk, which constitutes a generic scattering model capable of producing both Gaussian and non-Gaussian fluctuations. Analytical results are developed for the correlation properties of the intensity-weighted phase derivative, as well as limiting probability densities of the scattered field. Numerical simulation is used to generate further probability densities and determine optimal weighting criteria from non-Gaussian fields. The results are relevant to frequency retrieval in radiation scattered from random media

  3. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  4. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    Science.gov (United States)

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  5. EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Snodin, A. P. [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-08-20

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.

  6. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.

    Science.gov (United States)

    Jiang, Z; Chen, W; Burkhart, C

    2013-11-01

    Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  7. Supplementary Material for: Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new class of transGaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States. Supplementary materials for this article are available online.

  8. Direct test of the Gaussian auxiliary field ansatz in nonconserved order parameter phase ordering dynamics

    Science.gov (United States)

    Yeung, Chuck

    2018-06-01

    The assumption that the local order parameter is related to an underlying spatially smooth auxiliary field, u (r ⃗,t ) , is a common feature in theoretical approaches to non-conserved order parameter phase separation dynamics. In particular, the ansatz that u (r ⃗,t ) is a Gaussian random field leads to predictions for the decay of the autocorrelation function which are consistent with observations, but distinct from predictions using alternative theoretical approaches. In this paper, the auxiliary field is obtained directly from simulations of the time-dependent Ginzburg-Landau equation in two and three dimensions. The results show that u (r ⃗,t ) is equivalent to the distance to the nearest interface. In two dimensions, the probability distribution, P (u ) , is well approximated as Gaussian except for small values of u /L (t ) , where L (t ) is the characteristic length-scale of the patterns. The behavior of P (u ) in three dimensions is more complicated; the non-Gaussian region for small u /L (t ) is much larger than that in two dimensions but the tails of P (u ) begin to approach a Gaussian form at intermediate times. However, at later times, the tails of the probability distribution appear to decay faster than a Gaussian distribution.

  9. Perturbative Gaussianizing transforms for cosmological fields

    Science.gov (United States)

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  10. Equivalent non-Gaussian excitation method for response moment calculation of systems under non-Gaussian random excitation

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2015-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the moments up to the fourth order of the response of systems under non-Gaussian random excitation. The excitation is prescribed by the probability density and power spectrum. Moment equations for the response can be derived from the stochastic differential equations for the excitation and the system. However, the moment equations are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation. In the proposed method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by the second-order polynomial. In order to demonstrate the validity of the method, a linear system to non-Gaussian excitation with generalized Gaussian distribution is analyzed. The results show the method is applicable to non-Gaussian excitation with the widely different kurtosis and bandwidth. (author)

  11. ANALYSIS AND VALIDATION OF GRID DEM GENERATION BASED ON GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    F. J. Aguilar

    2016-06-01

    Full Text Available Digital Elevation Models (DEMs are considered as one of the most relevant geospatial data to carry out land-cover and land-use classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field (GMRF to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a set of LiDAR data (0.87 points/m2 provided by the Spanish Government (PNOA Programme over a complex working area mainly covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the original points (from 10% to up to 99% of points removed. In every case, the remaining points (scattered observed points were used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM whose accuracy was assessed by means of the set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known Triangulation with Linear Interpolation (TLI. Finally, the GMRF method was applied to a real-world case consisting of filling the LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM. Regarding accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the DEM uncertainty and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.

  12. Initial conditions for slow-roll inflation in a random Gaussian landscape

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-07-01

    In the landscape perspective, our Universe begins with a quantum tunneling from an eternally-inflating parent vacuum, followed by a period of slow-roll inflation. We investigate the tunneling process and calculate the probability distribution for the initial conditions and for the number of e-folds of slow-roll inflation, modeling the landscape by a small-field one-dimensional random Gaussian potential. We find that such a landscape is fully consistent with observations, but the probability for future detection of spatial curvature is rather low, P ∼ 10{sup −3}.

  13. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Ahmed, Sajid

    2016-01-13

    Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.

  14. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Ahmed, Sajid; Alouini, Mohamed-Slim; Jardak, Seifallah

    2016-01-01

    Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.

  15. Tunnelling through a Gaussian random barrier

    International Nuclear Information System (INIS)

    Bezak, Viktor

    2008-01-01

    A thorough analysis of the tunnelling of electrons through a laterally inhomogeneous rectangular barrier is presented. The barrier height is defined as a statistically homogeneous Gaussian random function. In order to simplify calculations, we assume that the electron energy is low enough in comparison with the mean value of the barrier height. The randomness of the barrier height is defined vertically by a constant variance and horizontally by a finite correlation length. We present detailed calculations of the angular probability density for the tunnelled electrons (i.e. for the scattering forwards). The tunnelling manifests a remarkably diffusive character if the wavelength of the electrons is comparable with the correlation length of the barrier

  16. Gaussian random-matrix process and universal parametric correlations in complex systems

    International Nuclear Information System (INIS)

    Attias, H.; Alhassid, Y.

    1995-01-01

    We introduce the framework of the Gaussian random-matrix process as an extension of Dyson's Gaussian ensembles and use it to discuss the statistical properties of complex quantum systems that depend on an external parameter. We classify the Gaussian processes according to the short-distance diffusive behavior of their energy levels and demonstrate that all parametric correlation functions become universal upon the appropriate scaling of the parameter. The class of differentiable Gaussian processes is identified as the relevant one for most physical systems. We reproduce the known spectral correlators and compute eigenfunction correlators in their universal form. Numerical evidence from both a chaotic model and weakly disordered model confirms our predictions

  17. Response moments of dynamic systems under non-Gaussian random excitation by the equivalent non-Gaussian excitation method

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2016-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the response moments up to the 4th order of dynamic systems under non-Gaussian random excitation. The non-Gaussian excitation is prescribed by the probability density and the power spectrum, and is described by an Ito stochastic differential equation. Generally, moment equations for the response, which are derived from the governing equations for the excitation and the system, are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation even though the system is linear. In the equivalent non-Gaussian excitation method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by a quadratic polynomial. In numerical examples, a linear system subjected to nonGaussian excitations with bimodal and Rayleigh distributions is analyzed by using the present method. The results show that the method yields the variance, skewness and kurtosis of the response with high accuracy for non-Gaussian excitation with the widely different probability densities and bandwidth. The statistical moments of the equivalent non-Gaussian excitation are also investigated to describe the feature of the method. (paper)

  18. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  19. Some Metric Properties of Planar Gaussian Free Field

    Science.gov (United States)

    Goswami, Subhajit

    In this thesis we study the properties of some metrics arising from two-dimensional Gaussian free field (GFF), namely the Liouville first-passage percolation (Liouville FPP), the Liouville graph distance and an effective resistance metric. In Chapter 1, we define these metrics as well as discuss the motivations for studying them. Roughly speaking, Liouville FPP is the shortest path metric in a planar domain D where the length of a path P is given by ∫Pe gammah(z)|dz| where h is the GFF on D and gamma > 0. In Chapter 2, we present an upper bound on the expected Liouville FPP distance between two typical points for small values of gamma (the near-Euclidean regime). A similar upper bound is derived in Chapter 3 for the Liouville graph distance which is, roughly, the minimal number of Euclidean balls with comparable Liouville quantum gravity (LQG) measure whose union contains a continuous path between two endpoints. Our bounds seem to be in disagreement with Watabiki's prediction (1993) on the random metric of Liouville quantum gravity in this regime. The contents of these two chapters are based on a joint work with Jian Ding. In Chapter 4, we derive some asymptotic estimates for effective resistances on a random network which is defined as follows. Given any gamma > 0 and for eta = {etav}v∈Z2 denoting a sample of the two-dimensional discrete Gaussian free field on Z2 pinned at the origin, we equip the edge ( u, v) with conductance egamma(etau + eta v). The metric structure of effective resistance plays a crucial role in our proof of the main result in Chapter 4. The primary motivation behind this metric is to understand the random walk on Z 2 where the edge (u, v) has weight egamma(etau + etav). Using the estimates from Chapter 4 we show in Chapter 5 that for almost every eta, this random walk is recurrent and that, with probability tending to 1 as T → infinity, the return probability at time 2T decays as T-1+o(1). In addition, we prove a version of subdiffusive

  20. Generalized Whittle-Matern random field as a model of correlated fluctuations

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    This paper considers a generalization of the Gaussian random field with covariance function of the Whittle-Matern family. Such a random field can be obtained as the solution to the fractional stochastic differential equation with two fractional orders. Asymptotic properties of the covariance functions belonging to this generalized Whittle-Matern family are studied, which are used to deduce the sample path properties of the random field. The Whittle-Matern field has been widely used in modeling geostatistical data such as sea beam data, wind speed, field temperature and soil data. In this paper we show that the generalized Whittle-Matern field provides a more flexible model for wind speed data

  1. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory

    Science.gov (United States)

    Pato, Mauricio P.; Oshanin, Gleb

    2013-03-01

    We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.

  2. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory

    International Nuclear Information System (INIS)

    Pato, Mauricio P; Oshanin, Gleb

    2013-01-01

    We study the probability distribution function P (β) n (w) of the Schmidt-like random variable w = x 2 1 /(∑ j=1 n x 2 j /n), where x j , (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P (β) n (w) converges to the Marčenko–Pastur form, i.e. is defined as P n (β) (w)∼√((4 - w)/w) for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P (β=2) n (w) which are valid for arbitrary n and analyse their behaviour. (paper)

  3. Gaussian free field in the background of correlated random clusters, formed by metallic nanoparticles

    Science.gov (United States)

    Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein

    2018-05-01

    The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.

  4. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    Science.gov (United States)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  5. Gaussian width bounds with applications to arithmetic progressions in random settings

    NARCIS (Netherlands)

    J. Briët (Jop); S. Gopi (Sivakanth)

    2017-01-01

    textabstractMotivated by two problems on arithmetic progressions (APs)—concerning large deviations for AP counts in random sets and random differences in Szemer´edi’s theorem— we prove upper bounds on the Gaussian width of the image of the n-dimensional Boolean hypercube under a mapping ψ : Rn →

  6. Extended q -Gaussian and q -exponential distributions from gamma random variables

    Science.gov (United States)

    Budini, Adrián A.

    2015-05-01

    The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.

  7. A characterization of Markovian homogeneous multicomponent Gaussian fields

    International Nuclear Information System (INIS)

    Ekhaguere, G.O.S.

    1980-01-01

    Necessary and sufficient conditions are given for a certain class of homogeneous multicomponent Gaussian generalized stochastic fields to possess a Markov property equivalent to Nelson's. The class of Markov fields so characterized has a as a cubclass the class of Markov fields which lead by Nelson's Reconstruction Theorem to some covariant (free) quantum fields. (orig.)

  8. Gaussian random bridges and a geometric model for information equilibrium

    Science.gov (United States)

    Mengütürk, Levent Ali

    2018-03-01

    The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.

  9. Anomalous diffusion and Levy random walk of magnetic field lines in three dimensional turbulence

    International Nuclear Information System (INIS)

    Zimbardo, G.; Veltri, P.; Basile, G.; Principato, S.

    1995-01-01

    The transport of magnetic field lines is studied numerically where three dimensional (3-D) magnetic fluctuations, with a power law spectrum, and periodic over the simulation box are superimposed on an average uniform magnetic field. The weak and the strong turbulence regime, δB∼B 0 , are investigated. In the weak turbulence case, magnetic flux tubes are separated from each other by percolating layers in which field lines undergo a chaotic motion. In this regime the field lines may exhibit Levy, rather than Gaussian, random walk, changing from Levy flights to trapped motion. The anomalous diffusion laws left-angle Δx 2 i right-angle ∝s α with α>1 and α<1, are obtained for a number of cases, and the non-Gaussian character of the field line random walk is pointed out by computing the kurtosis. Increasing the fluctuation level, and, therefore stochasticity, normal diffusion (α congruent 1) is recovered and the kurtoses reach their Gaussian value. However, the numerical results show that neither the quasi-linear theory nor the two dimensional percolation theory can be safely extrapolated to the considered 3-D strong turbulence regime. copyright 1995 American Institute of Physics

  10. Reduced Wiener Chaos representation of random fields via basis adaptation and projection

    Energy Technology Data Exchange (ETDEWEB)

    Tsilifis, Panagiotis, E-mail: tsilifis@usc.edu [Department of Mathematics, University of Southern California, Los Angeles, CA 90089 (United States); Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Ghanem, Roger G., E-mail: ghanem@usc.edu [Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089 (United States)

    2017-07-15

    A new characterization of random fields appearing in physical models is presented that is based on their well-known Homogeneous Chaos expansions. We take advantage of the adaptation capabilities of these expansions where the core idea is to rotate the basis of the underlying Gaussian Hilbert space, in order to achieve reduced functional representations that concentrate the induced probability measure in a lower dimensional subspace. For a smooth family of rotations along the domain of interest, the uncorrelated Gaussian inputs are transformed into a Gaussian process, thus introducing a mesoscale that captures intermediate characteristics of the quantity of interest.

  11. Integrals of random fields treated by the model correction factor method

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  12. Non-Gaussianity from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Figueroa, Daniel G.; Caldwell, Robert R.; Kamionkowski, Marc

    2010-01-01

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k 1 ≅2k 2 ≅2k 3 ) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k 1 ≅k 2 >>k 3 ), and the equilateral bispectrum, which peaks at k 1 ≅k 2 ≅k 3 . We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.

  13. Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions

    International Nuclear Information System (INIS)

    Akıncı, Ümit

    2012-01-01

    The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.

  14. PHYSICS OF NON-GAUSSIAN FIELDS AND THE COSMOLOGICAL GENUS STATISTIC

    International Nuclear Information System (INIS)

    James, J. Berian

    2012-01-01

    We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity that appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.

  15. Generating functionals for quantum field theories with random potentials

    International Nuclear Information System (INIS)

    Jain, Mudit; Vanchurin, Vitaly

    2016-01-01

    We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.

  16. Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile

    Science.gov (United States)

    Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.

    2012-09-01

    Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

  17. Suppression of thermal noise in a non-Markovian random velocity field

    International Nuclear Information System (INIS)

    Ueda, Masahiko

    2016-01-01

    We study the diffusion of Brownian particles in a Gaussian random velocity field with short memory. By extending the derivation of an effective Fokker–Planck equation for the Lanvegin equation with weakly colored noise to a random velocity-field problem, we find that the effect of thermal noise on particles is suppressed by the existence of memory. We also find that the renormalization effect for the relative diffusion of two particles is stronger than that for single-particle diffusion. The results are compared with those of molecular dynamics simulations. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  18. Signed zeros of Gaussian vector fields - density, correlation functions and curvature

    CERN Document Server

    Foltin, G

    2003-01-01

    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.

  19. Super-Gaussian transport theory and the field-generating thermal instability in laser–plasmas

    International Nuclear Information System (INIS)

    Bissell, J J; Ridgers, C P; Kingham, R J

    2013-01-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser–plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density n e , which we associate with a novel heat-flow q n ∝∇n e . Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇T e × ∇n e field generation mechanism by ∼30% (where T e is the electron temperature), and the diffusive and Righi–Leduc heat-flows by ∼80 and ∼90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux q n are checked against kinetic simulation using the Vlasov–Fokker–Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields. (paper)

  20. Super-Gaussian transport theory and the field-generating thermal instability in laser-plasmas

    Science.gov (United States)

    Bissell, J. J.; Ridgers, C. P.; Kingham, R. J.

    2013-02-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser-plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density ne, which we associate with a novel heat-flow qn∝∇ne. Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇Te × ∇ne field generation mechanism by ˜30% (where Te is the electron temperature), and the diffusive and Righi-Leduc heat-flows by ˜80 and ˜90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux qn are checked against kinetic simulation using the Vlasov-Fokker-Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields.

  1. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    DEFF Research Database (Denmark)

    Berg, Jacob; Natarajan, Anand; Mann, Jakob

    2016-01-01

    taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...

  2. MINIMUM ENTROPY DECONVOLUTION OF ONE-AND MULTI-DIMENSIONAL NON-GAUSSIAN LINEAR RANDOM PROCESSES

    Institute of Scientific and Technical Information of China (English)

    程乾生

    1990-01-01

    The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.

  3. Topological recursion for Gaussian means and cohomological field theories

    Science.gov (United States)

    Andersen, J. E.; Chekhov, L. O.; Norbury, P.; Penner, R. C.

    2015-12-01

    We introduce explicit relations between genus-filtrated s-loop means of the Gaussian matrix model and terms of the genus expansion of the Kontsevich-Penner matrix model (KPMM), which is the generating function for volumes of discretized (open) moduli spaces M g,s disc (discrete volumes). Using these relations, we express Gaussian means in all orders of the genus expansion as polynomials in special times weighted by ancestor invariants of an underlying cohomological field theory. We translate the topological recursion of the Gaussian model into recurrence relations for the coefficients of this expansion, which allows proving that they are integers and positive. We find the coefficients in the first subleading order for M g,1 for all g in three ways: using the refined Harer-Zagier recursion, using the Givental-type decomposition of the KPMM, and counting diagrams explicitly.

  4. Preprocessing of 18F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution

    Directory of Open Access Journals (Sweden)

    Fermín Segovia

    2017-10-01

    Full Text Available 18F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson's disease (PD that allows us to examine postsynaptic dopamine D2/3 receptors. Like other neuroimaging modalities used for PD diagnosis, most of the total intensity of 18F-DMFP-PET images is concentrated in the striatum. However, other regions can also be useful for diagnostic purposes. An appropriate delimitation of the regions of interest contained in 18F-DMFP-PET data is crucial to improve the automatic diagnosis of PD. In this manuscript we propose a novel methodology to preprocess 18F-DMFP-PET data that improves the accuracy of computer aided diagnosis systems for PD. First, the data were segmented using an algorithm based on Hidden Markov Random Field. As a result, each neuroimage was divided into 4 maps according to the intensity and the neighborhood of the voxels. The maps were then individually normalized so that the shape of their histograms could be modeled by a Gaussian distribution with equal parameters for all the neuroimages. This approach was evaluated using a dataset with neuroimaging data from 87 parkinsonian patients. After these preprocessing steps, a Support Vector Machine classifier was used to separate idiopathic and non-idiopathic PD. Data preprocessed by the proposed method provided higher accuracy results than the ones preprocessed with previous approaches.

  5. Holographic non-Gaussianities in general single-field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Isono, Hiroshi [Department of Physics, Faculty of Science,Chulalongkorn University, Bangkok 10330 (Thailand); Noumi, Toshifumi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics,Kobe University, Kobe 657-8501 (Japan); Shiu, Gary [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics, University of Wisconsin-Madison,Madison, WI 53706 (United States); Wong, Sam S.C.; Zhou, Siyi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong)

    2016-12-07

    We use holographic techniques to compute inflationary non-Gaussianities for general single-field inflation, including models with a non-trivial sound speed. In this holographic approach, the inflationary dynamics is captured by a relevant deformation of the dual conformal field theory (CFT) in the UV, while the inflationary correlators are computed by conformal perturbation theory. In this paper, we discuss the effects of higher derivative operators, such as (∂{sub μ}ϕ∂{sup μ}ϕ){sup m}, which are known to induce a non-trivial sound speed and source potentially large non-Gaussianities. We compute the full inflationary bispectra from the deformed CFT correlators. We also discuss the squeezed limit of the bispectra from the viewpoint of operator product expansions. As is generic in the holographic description of inflation, our power spectrum is blue tilted in the UV region. We extend our bispectrum computation to the IR region by resumming the conformal perturbations to all orders. We provide a self-consistent setup which reproduces a red tilted power spectrum, as well as all possible bispectrum shapes in the slow-roll regime.

  6. Mode-field half-widths of Gaussian approximation for the fundamental mode of two kinds of optical waveguides

    International Nuclear Information System (INIS)

    Lian-Huang, Li; Fu-Yuan, Guo

    2009-01-01

    This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field. Then, it presents a new method where the mode-field half-width of Gaussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed

  7. Non-gaussianity from the trispectrum and vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon

    2010-01-01

    We use the δN formalism to study the trispectrum T ζ of the primordial curvature perturbation ζ when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, τ NL , is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f NL , and the level of statistical anisotropy in the power spectrum, g ζ . Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on τ NL from WMAP, for generic inflationary models, is done.

  8. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  9. Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models

    Science.gov (United States)

    Wen, Xian-Huan; Gómez-Hernández, J. Jaime

    1998-03-01

    The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than

  10. Non-gaussianity from the trispectrum and vector field perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela-Toledo, Cesar A., E-mail: cavalto@ciencias.uis.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Rodriguez, Yeinzon, E-mail: yeinzon.rodriguez@uan.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Centro de Investigaciones, Universidad Antonio Narino, Cra 3 Este 47A-15, Bogota D.C. (Colombia)

    2010-03-01

    We use the deltaN formalism to study the trispectrum T{sub z}eta of the primordial curvature perturbation zeta when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, tau{sub NL}, is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f{sub NL}, and the level of statistical anisotropy in the power spectrum, g{sub z}eta. Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on tau{sub NL} from WMAP, for generic inflationary models, is done.

  11. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles.

    Science.gov (United States)

    Frydel, Derek; Ma, Manman

    2016-06-01

    Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, h_{λ}(r,r^{'}), in which interactions λu(r,r^{'}) are gradually switched on as λ changes from 0 to 1. The function h_{λ}(r,r^{'}) is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure c_{λ}(r,r^{'})≈-λβu(r,r^{'}), known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.

  12. New Results On the Sum of Two Generalized Gaussian Random Variables

    KAUST Repository

    Soury, Hamza

    2015-01-01

    We propose in this paper a new method to compute the characteristic function (CF) of generalized Gaussian (GG) random variable in terms of the Fox H function. The CF of the sum of two independent GG random variables is then deduced. Based on this results, the probability density function (PDF) and the cumulative distribution function (CDF) of the sum distribution are obtained. These functions are expressed in terms of the bivariate Fox H function. Next, the statistics of the distribution of the sum, such as the moments, the cumulant, and the kurtosis, are analyzed and computed. Due to the complexity of bivariate Fox H function, a solution to reduce such complexity is to approximate the sum of two independent GG random variables by one GG random variable with suitable shape factor. The approximation method depends on the utility of the system so three methods of estimate the shape factor are studied and presented.

  13. New Results on the Sum of Two Generalized Gaussian Random Variables

    KAUST Repository

    Soury, Hamza

    2016-01-06

    We propose in this paper a new method to compute the characteristic function (CF) of generalized Gaussian (GG) random variable in terms of the Fox H function. The CF of the sum of two independent GG random variables is then deduced. Based on this results, the probability density function (PDF) and the cumulative distribution function (CDF) of the sum distribution are obtained. These functions are expressed in terms of the bivariate Fox H function. Next, the statistics of the distribution of the sum, such as the moments, the cumulant, and the kurtosis, are analyzed and computed. Due to the complexity of bivariate Fox H function, a solution to reduce such complexity is to approximate the sum of two independent GG random variables by one GG random variable with suitable shape factor. The approximation method depends on the utility of the system so three methods of estimate the shape factor are studied and presented [1].

  14. New Results on the Sum of Two Generalized Gaussian Random Variables

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2016-01-01

    We propose in this paper a new method to compute the characteristic function (CF) of generalized Gaussian (GG) random variable in terms of the Fox H function. The CF of the sum of two independent GG random variables is then deduced. Based on this results, the probability density function (PDF) and the cumulative distribution function (CDF) of the sum distribution are obtained. These functions are expressed in terms of the bivariate Fox H function. Next, the statistics of the distribution of the sum, such as the moments, the cumulant, and the kurtosis, are analyzed and computed. Due to the complexity of bivariate Fox H function, a solution to reduce such complexity is to approximate the sum of two independent GG random variables by one GG random variable with suitable shape factor. The approximation method depends on the utility of the system so three methods of estimate the shape factor are studied and presented [1].

  15. Encrypted data stream identification using randomness sparse representation and fuzzy Gaussian mixture model

    Science.gov (United States)

    Zhang, Hong; Hou, Rui; Yi, Lei; Meng, Juan; Pan, Zhisong; Zhou, Yuhuan

    2016-07-01

    The accurate identification of encrypted data stream helps to regulate illegal data, detect network attacks and protect users' information. In this paper, a novel encrypted data stream identification algorithm is introduced. The proposed method is based on randomness characteristics of encrypted data stream. We use a l1-norm regularized logistic regression to improve sparse representation of randomness features and Fuzzy Gaussian Mixture Model (FGMM) to improve identification accuracy. Experimental results demonstrate that the method can be adopted as an effective technique for encrypted data stream identification.

  16. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    Science.gov (United States)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  17. A brain MRI bias field correction method created in the Gaussian multi-scale space

    Science.gov (United States)

    Chen, Mingsheng; Qin, Mingxin

    2017-07-01

    A pre-processing step is needed to correct for the bias field signal before submitting corrupted MR images to such image-processing algorithms. This study presents a new bias field correction method. The method creates a Gaussian multi-scale space by the convolution of the inhomogeneous MR image with a two-dimensional Gaussian function. In the multi-Gaussian space, the method retrieves the image details from the differentiation of the original image and convolution image. Then, it obtains an image whose inhomogeneity is eliminated by the weighted sum of image details in each layer in the space. Next, the bias field-corrected MR image is retrieved after the Υ correction, which enhances the contrast and brightness of the inhomogeneity-eliminated MR image. We have tested the approach on T1 MRI and T2 MRI with varying bias field levels and have achieved satisfactory results. Comparison experiments with popular software have demonstrated superior performance of the proposed method in terms of quantitative indices, especially an improvement in subsequent image segmentation.

  18. Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    Directory of Open Access Journals (Sweden)

    Ronghui ZHENG

    2017-12-01

    Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test

  19. Non-Gaussian path integration in self-interacting scalar field theories

    International Nuclear Information System (INIS)

    Kaya, Ali

    2004-01-01

    In self-interacting scalar field theories kinetic expansion is an alternative way of calculating the generating functional for Green's functions where the zeroth order non-Gaussian path integral becomes diagonal in x-space and reduces to the product of an ordinary integral at each point which can be evaluated exactly. We discuss how to deal with such functional integrals and propose a new perturbative expansion scheme which combines the elements of the kinetic expansion with the usual perturbation theory techniques. It is then shown that, when the cutoff dependences of the bare parameters in the potential are chosen to have a well defined non-Gaussian path integral without the kinetic term, the theory becomes trivial in the continuum limit

  20. MCEM algorithm for the log-Gaussian Cox process

    OpenAIRE

    Delmas, Celine; Dubois-Peyrard, Nathalie; Sabbadin, Regis

    2014-01-01

    Log-Gaussian Cox processes are an important class of models for aggregated point patterns. They have been largely used in spatial epidemiology (Diggle et al., 2005), in agronomy (Bourgeois et al., 2012), in forestry (Moller et al.), in ecology (sightings of wild animals) or in environmental sciences (radioactivity counts). A log-Gaussian Cox process is a Poisson process with a stochastic intensity depending on a Gaussian random eld. We consider the case where this Gaussian random eld is ...

  1. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    OpenAIRE

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan

    2012-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the ...

  2. Gaussian Mixture Random Coefficient model based framework for SHM in structures with time-dependent dynamics under uncertainty

    Science.gov (United States)

    Avendaño-Valencia, Luis David; Fassois, Spilios D.

    2017-12-01

    The problem of vibration-based damage diagnosis in structures characterized by time-dependent dynamics under significant environmental and/or operational uncertainty is considered. A stochastic framework consisting of a Gaussian Mixture Random Coefficient model of the uncertain time-dependent dynamics under each structural health state, proper estimation methods, and Bayesian or minimum distance type decision making, is postulated. The Random Coefficient (RC) time-dependent stochastic model with coefficients following a multivariate Gaussian Mixture Model (GMM) allows for significant flexibility in uncertainty representation. Certain of the model parameters are estimated via a simple procedure which is founded on the related Multiple Model (MM) concept, while the GMM weights are explicitly estimated for optimizing damage diagnostic performance. The postulated framework is demonstrated via damage detection in a simple simulated model of a quarter-car active suspension with time-dependent dynamics and considerable uncertainty on the payload. Comparisons with a simpler Gaussian RC model based method are also presented, with the postulated framework shown to be capable of offering considerable improvement in diagnostic performance.

  3. Non-Gaussianity at tree and one-loop levels from vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon; Lyth, David H.

    2009-01-01

    We study the spectrum P ζ and bispectrum B ζ of the primordial curvature perturbation ζ when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree-level terms [both (either) in P ζ and (or) in B ζ ] and vice versa. The level of non-Gaussianity in the bispectrum, f NL , is calculated and related to the level of statistical anisotropy in the power spectrum, g ζ . For very small amounts of statistical anisotropy in the power spectrum, the level of non-Gaussianity may be very high, in some cases exceeding the current observational limit.

  4. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah

    2012-11-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  5. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  6. Non-Gaussianities in a two-field generalization of natural inflation

    Science.gov (United States)

    Riquelme M., Simon

    2018-04-01

    We describe a two-field model that generalizes natural inflation, in which the inflaton is the pseudo-Goldstone boson of an approximate symmetry that is spontaneously broken, and the radial mode is dynamical. We analyze how the dynamics fundamentally depends on the mass of the radial mode and calculate/estimate the non-Gaussianities arising from such a scenario.

  7. Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis.

    Science.gov (United States)

    Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg

    2016-12-13

    We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.

  8. Extreme of random field over rectangle with application to concrete rupture stresses

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2000-01-01

    to time consuming simulation procedures. This paperrevives a conceptually simple approach that gives surprisingly good results in particular for wide band typesof random processes and fields. The closed form formulas obtained for smooth Gaussian fieldsover rectangles contain size effects both with respect...... to the area of the rectangle and the side lengths of therectangle. Published rupture stress data for plain concrete beams illustrate the applicability of the derivedclosed form extreme value distributions as models for distributions of rupture stresses related to weakest linkmechanisms....

  9. Gaussian free fields at the integer quantum Hall plateau transition

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, R., E-mail: roberto.bondesan@phys.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Wieczorek, D.; Zirnbauer, M.R. [Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany)

    2017-05-15

    In this work we put forward an effective Gaussian free field description of critical wavefunctions at the transition between plateaus of the integer quantum Hall effect. To this end, we expound our earlier proposal that powers of critical wave intensities prepared via point contacts behave as pure scaling fields obeying an Abelian operator product expansion. Our arguments employ the framework of conformal field theory and, in particular, lead to a multifractality spectrum which is parabolic. We also derive a number of old and new identities that hold exactly at the lattice level and hinge on the correspondence between the Chalker–Coddington network model and a supersymmetric vertex model.

  10. A programmable Gaussian random pulse generator for automated performance measurements

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1989-01-01

    This paper describes a versatile random signal generator which produces logic pulses with a Gaussian distribution for the pulse spacing. The average rate at the pulse generator output can be software-programmed, which makes it useful in performing automated measurements of dead time and CPU time performance of data acquisition systems and modules over a wide range of data rates. Hardware and software components are described and data on the input-output characteristics and the statistical properties of the pulse generator are given. Typical applications are discussed together with advantages over using radioactive test sources. Results obtained from an automated performance run on a VAX 11/785 data acquisition system are presented. (orig.)

  11. Analysis of multi-species point patterns using multivariate log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Guan, Yongtao; Jalilian, Abdollah

    Multivariate log Gaussian Cox processes are flexible models for multivariate point patterns. However, they have so far only been applied in bivariate cases. In this paper we move beyond the bivariate case in order to model multi-species point patterns of tree locations. In particular we address t...... of the data. The selected number of common latent fields provides an index of complexity of the multivariate covariance structure. Hierarchical clustering is used to identify groups of species with similar patterns of dependence on the common latent fields.......Multivariate log Gaussian Cox processes are flexible models for multivariate point patterns. However, they have so far only been applied in bivariate cases. In this paper we move beyond the bivariate case in order to model multi-species point patterns of tree locations. In particular we address...... the problems of identifying parsimonious models and of extracting biologically relevant information from the fitted models. The latent multivariate Gaussian field is decomposed into components given in terms of random fields common to all species and components which are species specific. This allows...

  12. New constraints on modelling the random magnetic field of the MW

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Marcus C.; Nielaba, Peter [Department of Physics, University of Konstanz, Universitätsstr. 10, D-78457 Konstanz (Germany); Beck, Alexander M.; Dolag, Klaus [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Beck, Rainer [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany); Strong, Andrew W., E-mail: marcus.beck@uni-konstanz.de, E-mail: abeck@usm.uni-muenchen.de, E-mail: rbeck@mpifr-bonn.mpg.de, E-mail: dolag@usm.uni-muenchen.de, E-mail: aws@mpe.mpg.de, E-mail: peter.nielaba@uni-konstanz.de [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85748 Garching (Germany)

    2016-05-01

    We extend the description of the isotropic and anisotropic random component of the small-scale magnetic field within the existing magnetic field model of the Milky Way from Jansson and Farrar, by including random realizations of the small-scale component. Using a magnetic-field power spectrum with Gaussian random fields, the NE2001 model for the thermal electrons and the Galactic cosmic-ray electron distribution from the current GALPROP model we derive full-sky maps for the total and polarized synchrotron intensity as well as the Faraday rotation-measure distribution. While previous work assumed that small-scale fluctuations average out along the line-of-sight or which only computed ensemble averages of random fields, we show that these fluctuations need to be carefully taken into account. Comparing with observational data we obtain not only good agreement with 408 MHz total and WMAP7 22 GHz polarized intensity emission maps, but also an improved agreement with Galactic foreground rotation-measure maps and power spectra, whose amplitude and shape strongly depend on the parameters of the random field. We demonstrate that a correlation length of 0≈22 pc (05 pc being a 5σ lower limit) is needed to match the slope of the observed power spectrum of Galactic foreground rotation-measure maps. Using multiple realizations allows us also to infer errors on individual observables. We find that previously-used amplitudes for random and anisotropic random magnetic field components need to be rescaled by factors of ≈0.3 and 0.6 to account for the new small-scale contributions. Our model predicts a rotation measure of −2.8±7.1 rad/m{sup 2} and 04.4±11. rad/m{sup 2} for the north and south Galactic poles respectively, in good agreement with observations. Applying our model to deflections of ultra-high-energy cosmic rays we infer a mean deflection of ≈3.5±1.1 degree for 60 EeV protons arriving from CenA.

  13. Estimators for local non-Gaussianities

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.; Zaldarriaga, M.

    2006-05-01

    We study the Likelihood function of data given f NL for the so-called local type of non-Gaussianity. In this case the curvature perturbation is a non-linear function, local in real space, of a Gaussian random field. We compute the Cramer-Rao bound for f NL and show that for small values of f NL the 3- point function estimator saturates the bound and is equivalent to calculating the full Likelihood of the data. However, for sufficiently large f NL , the naive 3-point function estimator has a much larger variance than previously thought. In the limit in which the departure from Gaussianity is detected with high confidence, error bars on f NL only decrease as 1/ln N pix rather than N pix -1/2 as the size of the data set increases. We identify the physical origin of this behavior and explain why it only affects the local type of non- Gaussianity, where the contribution of the first multipoles is always relevant. We find a simple improvement to the 3-point function estimator that makes the square root of its variance decrease as N pix -1/2 even for large f NL , asymptotically approaching the Cramer-Rao bound. We show that using the modified estimator is practically equivalent to computing the full Likelihood of f NL given the data. Thus other statistics of the data, such as the 4-point function and Minkowski functionals, contain no additional information on f NL . In particular, we explicitly show that the recent claims about the relevance of the 4-point function are not correct. By direct inspection of the Likelihood, we show that the data do not contain enough information for any statistic to be able to constrain higher order terms in the relation between the Gaussian field and the curvature perturbation, unless these are orders of magnitude larger than the size suggested by the current limits on f NL . (author)

  14. Extremes of random fields over arbitrary domains with application to concrete rupture stresses

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2004-01-01

    function class is studied for Gaussian processes in earlier works by the author and it has been obtained explicitly for Gaussian fields on rectangular domains in the plane. Simulation studies show that rather good predictions are obtained for sufficiently smooth wide band Gaussian processes and fields...

  15. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.

    Science.gov (United States)

    Lukin, Igor P

    2016-04-20

    The orbital angular momentum of vortex Bessel-Gaussian beams propagating in turbulent atmosphere is studied theoretically. The field of an optical beam is determined through the solution of the paraxial wave equation for a randomly inhomogeneous medium with fluctuations of the refraction index of the turbulent atmosphere. Peculiarities in the behavior of the total power of the vortex Bessel-Gaussian beam at the receiver (or transmitter) are examined. The dependence of the total power of the vortex Bessel-Gaussian beam on optical beam parameters, namely, the transverse wave number of optical radiation, amplitude factor radius, and, especially, topological charge of the optical beam, is analyzed in detail. It turns out that the mean value of the orbital angular momentum of the vortex Bessel-Gaussian beam remains constant during propagation in the turbulent atmosphere. It is shown that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam propagating in turbulent atmosphere calculated with the "mean-intensity" approximation is equal to zero identically. Thus, it is possible to declare confidently that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam in turbulent atmosphere is not very large.

  16. Anomalous particle diffusion and Levy random walk of magnetic field lines in three dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, G.

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters like the fluctuation level ? B/B0, the ratio between the particle Larmor radius and the turbulence correlation lengths, and the turbulence anisotropy. In this presentation, we review the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B0 = B0ez and a Fourier representation for magnetic fluctuations, with wavectors forming any angle with respect to B0. The energy density spectrum is a power law, and in k space the constant amplitude surfaces are ellipsoids, described by the correlation lengths lx, ly, lz, which quantify the anisotropy of turbulence. For magnetic field lines, we find that transport perpendicular to the background field depends on the Kubo number R = ? B B0 lz lx . For small Kubo numbers, R ? 1, we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which can be described as a Levy random walk. Increasing the Kubo number, i.e., the fluctuation level ? B/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field heavily depends on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, ? B/B0 ? 0.5 ?1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case lz/lx ? 1, with Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is

  17. Connectivity ranking of heterogeneous random conductivity models

    Science.gov (United States)

    Rizzo, C. B.; de Barros, F.

    2017-12-01

    To overcome the challenges associated with hydrogeological data scarcity, the hydraulic conductivity (K) field is often represented by a spatial random process. The state-of-the-art provides several methods to generate 2D or 3D random K-fields, such as the classic multi-Gaussian fields or non-Gaussian fields, training image-based fields and object-based fields. We provide a systematic comparison of these models based on their connectivity. We use the minimum hydraulic resistance as a connectivity measure, which it has been found to be strictly correlated with early time arrival of dissolved contaminants. A computationally efficient graph-based algorithm is employed, allowing a stochastic treatment of the minimum hydraulic resistance through a Monte-Carlo approach and therefore enabling the computation of its uncertainty. The results show the impact of geostatistical parameters on the connectivity for each group of random fields, being able to rank the fields according to their minimum hydraulic resistance.

  18. Gaussian processes for machine learning.

    Science.gov (United States)

    Seeger, Matthias

    2004-04-01

    Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.

  19. Non-Gaussianity in two-field inflation beyond the slow-roll approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Gabriel; Tent, Bartjan van, E-mail: gabriel.jung@th.u-psud.fr, E-mail: bartjan.van-tent@th.u-psud.fr [Laboratoire de Physique Théorique (UMR 8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bâtiment 210, 91405 Orsay Cedex (France)

    2017-05-01

    We use the long-wavelength formalism to investigate the level of bispectral non-Gaussianity produced in two-field inflation models with standard kinetic terms. Even though the Planck satellite has so far not detected any primordial non-Gaussianity, it has tightened the constraints significantly, and it is important to better understand what regions of inflation model space have been ruled out, as well as prepare for the next generation of experiments that might reach the important milestone of Δ f {sub NL}{sup local}=1. We derive an alternative formulation of the previously derived integral expression for f {sub NL}, which makes it easier to physically interpret the result and see which types of potentials can produce large non-Gaussianity. We apply this to the case of a sum potential and show that it is very difficult to satisfy simultaneously the conditions for a large f {sub NL} and the observational constraints on the spectral index n {sub s} . In the case of the sum of two monomial potentials and a constant we explicitly show in which small region of parameter space this is possible, and we show how to construct such a model. Finally, the new general expression for f {sub NL} also allows us to prove that for the sum potential the explicit expressions derived within the slow-roll approximation remain valid even when the slow-roll approximation is broken during the turn of the field trajectory (as long as only the ε slow-roll parameter remains small).

  20. The Gaussian streaming model and convolution Lagrangian effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.

  1. Hessian eigenvalue distribution in a random Gaussian landscape

    Science.gov (United States)

    Yamada, Masaki; Vilenkin, Alexander

    2018-03-01

    The energy landscape of multiverse cosmology is often modeled by a multi-dimensional random Gaussian potential. The physical predictions of such models crucially depend on the eigenvalue distribution of the Hessian matrix at potential minima. In particular, the stability of vacua and the dynamics of slow-roll inflation are sensitive to the magnitude of the smallest eigenvalues. The Hessian eigenvalue distribution has been studied earlier, using the saddle point approximation, in the leading order of 1/ N expansion, where N is the dimensionality of the landscape. This approximation, however, is insufficient for the small eigenvalue end of the spectrum, where sub-leading terms play a significant role. We extend the saddle point method to account for the sub-leading contributions. We also develop a new approach, where the eigenvalue distribution is found as an equilibrium distribution at the endpoint of a stochastic process (Dyson Brownian motion). The results of the two approaches are consistent in cases where both methods are applicable. We discuss the implications of our results for vacuum stability and slow-roll inflation in the landscape.

  2. Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Leermakers, F.A.M.; Stuart, M.A.C.

    2006-01-01

    To describe adsorption of globular protein molecules in a polyelectrolyte brush we use the strong-stretching approximation of the Edwards self-consistent field equation, combined with corrections for a non-Gaussian brush. To describe chemical potentials in this mixture of (globular) species of

  3. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager

    2013-01-01

    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...

  4. Vanishing of local non-Gaussianity in canonical single field inflation

    Science.gov (United States)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We study the production of observable primordial local non-Gaussianity in two opposite regimes of canonical single field inflation: attractor (standard single field slow-roll inflation) and non attractor (ultra slow-roll inflation). In the attractor regime, the standard derivation of the bispectrum's squeezed limit using co-moving coordinates gives the well known Maldacena's consistency relation fNL = 5 (1‑ns) / 12. On the other hand, in the non-attractor regime, the squeezed limit offers a substantial violation of this relation given by fNL = 5/2. In this work we argue that, independently of whether inflation is attractor or non-attractor, the size of the observable primordial local non-Gaussianity is predicted to be fNLobs = 0 (a result that was already understood to hold in the case of attractor models). To show this, we follow the use of the so-called Conformal Fermi Coordinates (CFC), recently introduced in the literature. These coordinates parametrize the local environment of inertial observers in a perturbed FRW spacetime, allowing one to identify and compute gauge invariant quantities, such as n-point correlation functions. Concretely, we find that during inflation, after all the modes have exited the horizon, the squeezed limit of the 3-point correlation function of curvature perturbations vanishes in the CFC frame, regardless of the inflationary regime. We argue that such a cancellation should persist after inflation ends.

  5. Scaled unscented transform Gaussian sum filter: Theory and application

    KAUST Repository

    Luo, Xiaodong

    2010-05-01

    In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT) (Julier and Uhlmann (2004) [16]), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf (Arulampalam et al. (2002) [7]). In applications, a potential problem of a Gaussian sum filter is that the number of Gaussian distributions may increase very rapidly. To this end, we also propose an auxiliary algorithm to conduct pdf re-approximation so that the number of Gaussian distributions can be reduced. With the auxiliary algorithm, in principle the SUT-GSF can achieve almost the same computational speed as the SUKF if the SUT-GSF is implemented in parallel. As an example, we will use the SUT-GSF to assimilate a 40-dimensional system due to

  6. Markov random field and Gaussian mixture for segmented MRI-based partial volume correction in PET

    International Nuclear Information System (INIS)

    Bousse, Alexandre; Thomas, Benjamin A; Erlandsson, Kjell; Hutton, Brian F; Pedemonte, Stefano; Ourselin, Sébastien; Arridge, Simon

    2012-01-01

    In this paper we propose a segmented magnetic resonance imaging (MRI) prior-based maximum penalized likelihood deconvolution technique for positron emission tomography (PET) images. The model assumes the existence of activity classes that behave like a hidden Markov random field (MRF) driven by the segmented MRI. We utilize a mean field approximation to compute the likelihood of the MRF. We tested our method on both simulated and clinical data (brain PET) and compared our results with PET images corrected with the re-blurred Van Cittert (VC) algorithm, the simplified Guven (SG) algorithm and the region-based voxel-wise (RBV) technique. We demonstrated our algorithm outperforms the VC algorithm and outperforms SG and RBV corrections when the segmented MRI is inconsistent (e.g. mis-segmentation, lesions, etc) with the PET image. (paper)

  7. Non-Gaussianity and statistical anisotropy from vector field populated inflationary models

    CERN Document Server

    Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2010-01-01

    We present a review of vector field models of inflation and, in particular, of the statistical anisotropy and non-Gaussianity predictions of models with SU(2) vector multiplets. Non-Abelian gauge groups introduce a richer amount of predictions compared to the Abelian ones, mostly because of the presence of vector fields self-interactions. Primordial vector fields can violate isotropy leaving their imprint in the comoving curvature fluctuations zeta at late times. We provide the analytic expressions of the correlation functions of zeta up to fourth order and an analysis of their amplitudes and shapes. The statistical anisotropy signatures expected in these models are important and, potentially, the anisotropic contributions to the bispectrum and the trispectrum can overcome the isotropic parts.

  8. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions

    DEFF Research Database (Denmark)

    Yura, Harold; Hanson, Steen Grüner

    2012-01-01

    with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative...

  9. Electron acceleration by longitudinal electric field of a gaussian laser beam

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi; Sugihara, Ryo; Shimoda, Koichi.

    1991-11-01

    It is shown that the longitudinal electric field of a transverse magnetic mode of a Gaussian laser beam accelerates an electron to an ultra-relativistic energy. The electron is captured and accelerated in a length of the order of the Rayleigh range. The ultimate energy increment of the electron with a single laser beam is given by the product of transverse field intensity and the beam waist, and can be of the order of 100MeV. This fact implies that a multi-stage acceleration enables TeV-order-acceleration in a length of a few kilometers with the present state of the art. (author)

  10. Random source generating far field with elliptical flat-topped beam profile

    International Nuclear Information System (INIS)

    Zhang, Yongtao; Cai, Yangjian

    2014-01-01

    Circular and rectangular multi-Gaussian Schell-model (MGSM) sources which generate far fields with circular and rectangular flat-topped beam profiles were introduced just recently (Sahin and Korotkova 2012 Opt. Lett. 37 2970; Korotkova 2014 Opt. Lett. 39 64). In this paper, a random source named an elliptical MGSM source is introduced. An analytical expression for the propagation factor of an elliptical MGSM beam is derived. Furthermore, an analytical propagation formula for an elliptical MGSM beam passing through a stigmatic ABCD optical system is derived, and its propagation properties in free space are studied. It is interesting to find that an elliptical MGSM source generates a far field with an elliptical flat-topped beam profile, being qualitatively different from that of circular and rectangular MGSM sources. The ellipticity and the flatness of the elliptical flat-topped beam profile in the far field are determined by the initial coherence widths and the beam index, respectively. (paper)

  11. Limit theorems for functionals of Gaussian vectors

    Institute of Scientific and Technical Information of China (English)

    Hongshuai DAI; Guangjun SHEN; Lingtao KONG

    2017-01-01

    Operator self-similar processes,as an extension of self-similar processes,have been studied extensively.In this work,we study limit theorems for functionals of Gaussian vectors.Under some conditions,we determine that the limit of partial sums of functionals of a stationary Gaussian sequence of random vectors is an operator self-similar process.

  12. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    Science.gov (United States)

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  13. Gaussian vector fields on triangulated surfaces

    DEFF Research Database (Denmark)

    Ipsen, John H

    2016-01-01

    proven to be very useful to resolve the complex interplay between in-plane ordering of membranes and membrane conformations. In the present work we have developed a procedure for realistic representations of Gaussian models with in-plane vector degrees of freedoms on a triangulated surface. The method...

  14. Incorporating covariance estimation uncertainty in spatial sampling design for prediction with trans-Gaussian random fields

    Directory of Open Access Journals (Sweden)

    Gunter eSpöck

    2015-05-01

    Full Text Available Recently, Spock and Pilz [38], demonstratedthat the spatial sampling design problem forthe Bayesian linear kriging predictor can betransformed to an equivalent experimentaldesign problem for a linear regression modelwith stochastic regression coefficients anduncorrelated errors. The stochastic regressioncoefficients derive from the polar spectralapproximation of the residual process. Thus,standard optimal convex experimental designtheory can be used to calculate optimal spatialsampling designs. The design functionals ̈considered in Spock and Pilz [38] did nottake into account the fact that kriging isactually a plug-in predictor which uses theestimated covariance function. The resultingoptimal designs were close to space-fillingconfigurations, because the design criteriondid not consider the uncertainty of thecovariance function.In this paper we also assume that thecovariance function is estimated, e.g., byrestricted maximum likelihood (REML. Wethen develop a design criterion that fully takesaccount of the covariance uncertainty. Theresulting designs are less regular and space-filling compared to those ignoring covarianceuncertainty. The new designs, however, alsorequire some closely spaced samples in orderto improve the estimate of the covariancefunction. We also relax the assumption ofGaussian observations and assume that thedata is transformed to Gaussianity by meansof the Box-Cox transformation. The resultingprediction method is known as trans-Gaussiankriging. We apply the Smith and Zhu [37]approach to this kriging method and show thatresulting optimal designs also depend on theavailable data. We illustrate our results witha data set of monthly rainfall measurementsfrom Upper Austria.

  15. Field dose radiation determination by active learning with Gaussian Process for autonomous robot guiding

    International Nuclear Information System (INIS)

    Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A.

    2017-01-01

    This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)

  16. Field dose radiation determination by active learning with Gaussian Process for autonomous robot guiding

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A., E-mail: danilonai1992@poli.ufrj.br, E-mail: paulo@lmp.ufrj.br, E-mail: cmnap@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)

  17. On the representation of the diffracted field of Hermite-Gaussian modes in an alien basis and the young diffraction principle

    International Nuclear Information System (INIS)

    Smirnov, V.N.; Strokovskii, G.A.

    1994-01-01

    An analytical form of expansion coefficients of a diffracted field for an arbitrary Hermite-Gaussian beam in an alien Hermite-Gaussian basis is obtained. A possible physical interpretation of the well-known Young phenomenological diffraction principle and experiments on diffraction of Hermite-Gaussian beams of the lowest types (n = 0 - 5) from half-plane are discussed. The case of nearly homogenous expansion corresponding to misalignment and mismatch of optical systems is also analyzed. 7 refs., 2 figs

  18. Quantum Field Theory of Black-Swan Events

    Science.gov (United States)

    Kleinert, H.

    2014-05-01

    Free and weakly interacting particles are described by a second-quantized nonlinear Schrödinger equation, or relativistic versions of it. They describe Gaussian random walks with collisions. By contrast, the fields of strongly interacting particles are governed by effective actions, whose extremum yields fractional field equations. Their particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong windgusts, monster or rogue waves, earthquakes, and financial crashes. While earthquakes may destroy entire cities, the latter have the potential of devastating entire economies.

  19. Gaussian free turbulence: structures and relaxation in plasma models

    International Nuclear Information System (INIS)

    Gruzinov, A.V.

    1993-01-01

    Free-turbulent relaxation in two-dimensional MHD, the degenerate Hasegawa-Mima equation and a two-dimensional microtearing model are studied. The Gibbs distributions of these three systems can be completely analyzed, due to the special structure of their invariants and due to the existence of ultraviolet catastrophe. The free-turbulent field is seen to be a sum of a certain coherent structure (statistical attractor) and Gaussian random noise. Two-dimensional current layers are shown to be statistical attractors in 2D MHD. (author)

  20. Numerical solution of second-order stochastic differential equations with Gaussian random parameters

    Directory of Open Access Journals (Sweden)

    Rahman Farnoosh

    2014-07-01

    Full Text Available In this paper, we present the numerical solution of ordinary differential equations (or SDEs, from each orderespecially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysisfor second-order equations in specially case of scalar linear second-order equations (damped harmonicoscillators with additive or multiplicative noises. Making stochastic differential equations system from thisequation, it could be approximated or solved numerically by different numerical methods. In the case oflinear stochastic differential equations system by Computing fundamental matrix of this system, it could becalculated based on the exact solution of this system. Finally, this stochastic equation is solved by numericallymethod like E.M. and Milstein. Also its Asymptotic stability and statistical concepts like expectationand variance of solutions are discussed.

  1. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  2. Some continual integrals from gaussian forms

    International Nuclear Information System (INIS)

    Mazmanishvili, A.S.

    1985-01-01

    The result summary of continual integration of gaussian functional type is given. The summary contains 124 continual integrals which are the mathematical expectation of the corresponding gaussian form by the continuum of random trajectories of four types: real-valued Ornstein-Uhlenbeck process, Wiener process, complex-valued Ornstein-Uhlenbeck process and the stochastic harmonic one. The summary includes both the known continual integrals and the unpublished before integrals. Mathematical results of the continual integration carried in the work may be applied in the problem of the theory of stochastic process, approaching to the finding of mean from gaussian forms by measures generated by the pointed stochastic processes

  3. Tachyon mediated non-Gaussianity

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Leblond, Louis; Kumar, Jason

    2008-01-01

    We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.

  4. Laguerre Gaussian beam multiplexing through turbulence

    CSIR Research Space (South Africa)

    Trichili, A

    2014-08-17

    Full Text Available We analyze the effect of atmospheric turbulence on the propagation of multiplexed Laguerre Gaussian modes. We present a method to multiplex Laguerre Gaussian modes using digital holograms and decompose the resulting field after encountering a...

  5. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen.

    Science.gov (United States)

    Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng

    2011-09-12

    In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.

  6. Primordial non-Gaussianities in single field inflationary models with non-trivial initial states

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Sina; Flanagan, Éanna É., E-mail: sb933@cornell.edu, E-mail: eef3@cornell.edu [Department of Physics, Cornell University, Ithaca, NY 14853 (United States)

    2014-10-01

    We compute the non-Gaussianities that arise in single field, slow roll inflationary models arising from arbitrary homogeneous initial states, as well as subleading contributions to the power spectrum. Non Bunch-Davies vacuum initial states can arise if the transition to the single field, slow roll inflation phase occurs only shortly before observable modes left the horizon. They can also arise from new physics at high energies that has been integrated out. Our general result for the bispectrum exhibits several features that were previously seen in special cases.

  7. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    Science.gov (United States)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  8. Excursion probabilities of non-homogeneous Gaussian scalar fields based on maxima considerations

    DEFF Research Database (Denmark)

    Nielsen, Michael Havbro Faber; Rackwitz, R.

    1988-01-01

    Many uncertain natural or technical phenomena are most realistically described by random fields. A typical example of a random field is the load effect in a floor slab which is loaded by a spatially distributed gravity load. Other examples of random fields include the sea-level around off-shore p...

  9. On the Distribution of Indefinite Quadratic Forms in Gaussian Random Variables

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2015-10-30

    © 2015 IEEE. In this work, we propose a unified approach to evaluating the CDF and PDF of indefinite quadratic forms in Gaussian random variables. Such a quantity appears in many applications in communications, signal processing, information theory, and adaptive filtering. For example, this quantity appears in the mean-square-error (MSE) analysis of the normalized least-meansquare (NLMS) adaptive algorithm, and SINR associated with each beam in beam forming applications. The trick of the proposed approach is to replace inequalities that appear in the CDF calculation with unit step functions and to use complex integral representation of the the unit step function. Complex integration allows us then to evaluate the CDF in closed form for the zero mean case and as a single dimensional integral for the non-zero mean case. Utilizing the saddle point technique allows us to closely approximate such integrals in non zero mean case. We demonstrate how our approach can be extended to other scenarios such as the joint distribution of quadratic forms and ratios of such forms, and to characterize quadratic forms in isotropic distributed random variables.We also evaluate the outage probability in multiuser beamforming using our approach to provide an application of indefinite forms in communications.

  10. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2018-02-01

    Full Text Available Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  11. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Science.gov (United States)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  12. Polarization dynamics and polarization time of random three-dimensional electromagnetic fields

    International Nuclear Information System (INIS)

    Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.

    2010-01-01

    We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.

  13. Imprint of primordial non-Gaussianity on dark matter halo profiles

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Dodelson, Scott; Riotto, Antonio

    2013-09-01

    We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by using the semi-analytical model introduced recently by Dalal {\\it et al.} which relates the peaks of the initial linear density field to the final density profile of dark matter halos. Models with primordial non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian corrections to the peak profile and derive the statistics of the peaks of non-Gaussian density field. In the context of the semi-analytic model for halo profiles, currently allowed values for primordial non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-percent level except in the very innermost regions.

  14. A comparison on the propagation characteristics of focused Gaussian beam and fundamental Gaussian beam in vacuum

    International Nuclear Information System (INIS)

    Liu Shixiong; Guo Hong; Liu Mingwei; Wu Guohua

    2004-01-01

    Propagation characteristics of focused Gaussian beam (FoGB) and fundamental Gaussian beam (FuGB) propagating in vacuum are investigated. Based on the Fourier transform and the angular spectral analysis, the transverse component and the second-order approximate longitudinal component of the electric field are obtained in the paraxial approximation. The electric field components, the phase velocity and the group velocity of FoGB are compared with those of FuGB. The spot size of FoGB is also discussed

  15. A generalized non-Gaussian consistency relation for single field inflation

    Science.gov (United States)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We show that a perturbed inflationary spacetime, driven by a canonical single scalar field, is invariant under a special class of coordinate transformations together with a field reparametrization of the curvature perturbation in co-moving gauge. This transformation may be used to derive the squeezed limit of the 3-point correlation function of the co-moving curvature perturbations valid in the case that these do not freeze after horizon crossing. This leads to a generalized version of Maldacena's non-Gaussian consistency relation in the sense that the bispectrum squeezed limit is completely determined by spacetime diffeomorphisms. Just as in the case of the standard consistency relation, this result may be understood as the consequence of how long-wavelength modes modulate those of shorter wavelengths. This relation allows one to derive the well known violation to the consistency relation encountered in ultra slow-roll, where curvature perturbations grow exponentially after horizon crossing.

  16. Gaussian mixtures on tensor fields for segmentation: applications to medical imaging.

    Science.gov (United States)

    de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos

    2011-01-01

    In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    International Nuclear Information System (INIS)

    Pal, Suvajit; Sinha, Sudarson Sekhar; Ganguly, Jayanta; Ghosh, Manas

    2013-01-01

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r 0 ). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role

  18. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina, Jan; Peřina, J.; Miranowicz, A.

    2016-01-01

    Roč. 94, č. 1 (2016), 1-15, č. článku 013807. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-mode Gaussian fields * optical parametric processes Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  19. Fields on a random lattice

    International Nuclear Information System (INIS)

    Itzykson, C.

    1983-10-01

    We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case

  20. Matter bounce cosmology with a generalized single field: non-Gaussianity and an extended no-go theorem

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-Bin; Cai, Yi-Fu [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Quintin, Jerome [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada); Wang, Dong-Gang, E-mail: lyb2166@mail.ustc.edu.cn, E-mail: jquintin@physics.mcgill.ca, E-mail: wdgang@strw.leidenuniv.nl, E-mail: yifucai@ustc.edu.cn [Leiden Observatory, Leiden University, 2300 RA Leiden (Netherlands)

    2017-03-01

    We extend the matter bounce scenario to a more general theory in which the background dynamics and cosmological perturbations are generated by a k -essence scalar field with an arbitrary sound speed. When the sound speed is small, the curvature perturbation is enhanced, and the tensor-to-scalar ratio, which is excessively large in the original model, can be sufficiently suppressed to be consistent with observational bounds. Then, we study the primordial three-point correlation function generated during the matter-dominated contraction stage and find that it only depends on the sound speed parameter. Similar to the canonical case, the shape of the bispectrum is mainly dominated by a local form, though for some specific sound speed values a new shape emerges and the scaling behaviour changes. Meanwhile, a small sound speed also results in a large amplitude of non-Gaussianities, which is disfavored by current observations. As a result, it does not seem possible to suppress the tensor-to-scalar ratio without amplifying the production of non-Gaussianities beyond current observational constraints (and vice versa). This suggests an extension of the previously conjectured no-go theorem in single field nonsingular matter bounce cosmologies, which rules out a large class of models. However, the non-Gaussianity results remain as a distinguishable signature of matter bounce cosmology and have the potential to be detected by observations in the near future.

  1. Variational Infinite Hidden Conditional Random Fields

    NARCIS (Netherlands)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja; Ghahramani, Zoubin

    2015-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of

  2. Large deviations for Gaussian processes in Hoelder norm

    International Nuclear Information System (INIS)

    Fatalov, V R

    2003-01-01

    Some results are proved on the exact asymptotic representation of large deviation probabilities for Gaussian processes in the Hoeder norm. The following classes of processes are considered: the Wiener process, the Brownian bridge, fractional Brownian motion, and stationary Gaussian processes with power-law covariance function. The investigation uses the method of double sums for Gaussian fields

  3. Gibbs perturbations of a two-dimensional gauge field

    International Nuclear Information System (INIS)

    Petrova, E.N.

    1981-01-01

    Small Gibbs perturbations of random fields have been investigated up to now for a few initial fields only. Among them there are independent fields, Gaussian fields and some others. The possibility for the investigation of Gibbs modifications of a random field depends essentially on the existence of good estimates for semiinvariants of this field. This is the reason why the class of random fields for which the investigation of Gibbs perturbations with arbitrary potential of bounded support is possible is rather small. The author takes as initial a well-known model: a two-dimensional gauge field. (Auth.)

  4. Sums and Gaussian vectors

    CERN Document Server

    Yurinsky, Vadim Vladimirovich

    1995-01-01

    Surveys the methods currently applied to study sums of infinite-dimensional independent random vectors in situations where their distributions resemble Gaussian laws. Covers probabilities of large deviations, Chebyshev-type inequalities for seminorms of sums, a method of constructing Edgeworth-type expansions, estimates of characteristic functions for random vectors obtained by smooth mappings of infinite-dimensional sums to Euclidean spaces. A self-contained exposition of the modern research apparatus around CLT, the book is accessible to new graduate students, and can be a useful reference for researchers and teachers of the subject.

  5. A New Multi-Gaussian Auto-Correlation Function for the Modeling of Realistic Shot Peened Random Rough Surfaces

    International Nuclear Information System (INIS)

    Hassan, W.; Blodgett, M.

    2006-01-01

    Shot peening is the primary surface treatment used to create a uniform, consistent, and reliable sub-surface compressive residual stress layer in aero engine components. A by-product of the shot peening process is random surface roughness that can affect the measurements of the resulting residual stresses and therefore impede their NDE assessment. High frequency eddy current conductivity measurements have the potential to assess these residual stresses in Ni-base super alloys. However, the effect of random surface roughness is expected to become significant in the desired measurement frequency range of 10 to 100 MHz. In this paper, a new Multi-Gaussian (MG) auto-correlation function is proposed for modeling the resulting pseudo-random rough profiles. Its use in the calculation of the Apparent Eddy Current Conductivity (AECC) loss due to surface roughness is demonstrated. The numerical results presented need to be validated with experimental measurements

  6. Kernel-Correlated Levy Field Driven Forward Rate and Application to Derivative Pricing

    Energy Technology Data Exchange (ETDEWEB)

    Bo Lijun [Xidian University, Department of Mathematics (China); Wang Yongjin [Nankai University, School of Business (China); Yang Xuewei, E-mail: xwyangnk@yahoo.com.cn [Nanjing University, School of Management and Engineering (China)

    2013-08-01

    We propose a term structure of forward rates driven by a kernel-correlated Levy random field under the HJM framework. The kernel-correlated Levy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.

  7. Non-Gaussian signatures arising from warm inflation driven by geometric tachyon

    International Nuclear Information System (INIS)

    Bhattacharjee, Anindita; Deshamukhya, Atri

    2014-01-01

    In a warm inflationary scenario, the initial seeds of density perturbation arise from thermal fluctuations of the inflaton field. These fluctuations in principle have Gaussian distribution. In a Gaussian distribution the density perturbation can be expressed as the two point correlation function. Thus if in an inflationary model the density perturbation is expressed as correlation function of order higher than two, these fluctuations are non-Gaussian in nature. A simple inflationary model containing single scalar field, slow roll, canonical kinetic term and vacuum initial state can produce a tiny amount of non-Gaussianity which are very small to be detected by any experiment. Non-Gaussianity can also arise in inflationary models containing multiple scalar fields. For an inflationary scenario with single scalar field, non-Gaussianity can be expressed in terms of bi-spectrum however for multi field Inflation, it is expressed in terms of trispectrum etc. In this piece of work, the warm inflationary scenario, driven by a D3 brane due to the presence of a stack of k coincident NS 5 branes is considered and the non-Gaussian effects in such an inflationary scenario has been analysed by measuring the bispectrum of the gravitational field fluctuations generated during the warm inflation in strong dissipative regime. The bi-spectrum of the Inflation is expressed in terms of the parameter f NL and it is seen that the value of f NL parameter lies well within the limit observed by WMAP7

  8. Gaussian limit of compact spin systems

    International Nuclear Information System (INIS)

    Bellissard, J.; Angelis, G.F. de

    1981-01-01

    It is shown that the Wilson and Wilson-Villain U(1) models reproduce, in the low coupling limit, the gaussian lattice approximation of the Euclidean electromagnetic field. By the same methods it is also possible to prove that the plane rotator and the Villain model share a common gaussian behaviour in the low temperature limit. (Auth.)

  9. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    International Nuclear Information System (INIS)

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  10. Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion

    Science.gov (United States)

    Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin

    2018-02-01

    Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.

  11. Nonclassicality by Local Gaussian Unitary Operations for Gaussian States

    Directory of Open Access Journals (Sweden)

    Yangyang Wang

    2018-04-01

    Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.

  12. Detectability of the effect of Inflationary non-Gaussianity on halo bias

    CERN Document Server

    Verde, Licia

    2009-01-01

    We consider the description of the clustering of halos for physically-motivated types of non-Gaussian initial conditions. In particular we include non-Gaussianity of the type arising from single field slow-roll, multi fields, curvaton (local type), higher-order derivative-type (equilateral), vacuum-state modifications (enfolded-type) and horizon-scale GR corrections type. We show that large-scale halo bias is a very sensitive tool to probe non-Gaussianity, potentially leading, for some planned surveys, to a detection of non-Gaussianity arising from horizon-scale GR corrections.

  13. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    Science.gov (United States)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  14. Galaxy bias and primordial non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Assassi, Valentin; Baumann, Daniel [DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.

  15. Galaxy bias and primordial non-Gaussianity

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian

    2015-01-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation

  16. Kernel-Correlated Lévy Field Driven Forward Rate and Application to Derivative Pricing

    International Nuclear Information System (INIS)

    Bo Lijun; Wang Yongjin; Yang Xuewei

    2013-01-01

    We propose a term structure of forward rates driven by a kernel-correlated Lévy random field under the HJM framework. The kernel-correlated Lévy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure

  17. Subcritical Multiplicative Chaos for Regularized Counting Statistics from Random Matrix Theory

    Science.gov (United States)

    Lambert, Gaultier; Ostrovsky, Dmitry; Simm, Nick

    2018-05-01

    For an {N × N} Haar distributed random unitary matrix U N , we consider the random field defined by counting the number of eigenvalues of U N in a mesoscopic arc centered at the point u on the unit circle. We prove that after regularizing at a small scale {ɛN > 0}, the renormalized exponential of this field converges as N \\to ∞ to a Gaussian multiplicative chaos measure in the whole subcritical phase. We discuss implications of this result for obtaining a lower bound on the maximum of the field. We also show that the moments of the total mass converge to a Selberg-like integral and by taking a further limit as the size of the arc diverges, we establish part of the conjectures in Ostrovsky (Nonlinearity 29(2):426-464, 2016). By an analogous construction, we prove that the multiplicative chaos measure coming from the sine process has the same distribution, which strongly suggests that this limiting object should be universal. Our approach to the L 1-phase is based on a generalization of the construction in Berestycki (Electron Commun Probab 22(27):12, 2017) to random fields which are only asymptotically Gaussian. In particular, our method could have applications to other random fields coming from either random matrix theory or a different context.

  18. Effects of hydrogen-like impurity and electromagnetic field on quantum transition of an electron in a Gaussian potential with QD thickness

    Science.gov (United States)

    Xin, Wei; Zhao, Yu-Wei; Sudu; Eerdunchaolu

    2018-05-01

    Considering Hydrogen-like impurity and the thickness effect, the eigenvalues and eigenfunctions of the electronic ground and first exited states in a quantum dot (QD) are derived by using the Lee-Low-Pins-Pekar variational method with the harmonic and Gaussian potentials as the transverse and longitudinal confinement potentials, respectively. A two-level system is constructed on the basis of those two states, and the electronic quantum transition affected by an electromagnetic field is discussed in terms of the two-level system theory. The results indicate the Gaussian potential reflects the real confinement potential more accurately than the parabolic one; the influence of the thickness of the QD on the electronic transition probability is interesting and significant, and cannot be ignored; the electronic transition probability Γ is influenced significantly by some physical quantities, such as the strength of the electron-phonon coupling α, the electric-field strength F, the magnetic-field cyclotron frequency ωc , the barrier height V0 and confinement range L of the asymmetric Gaussian potential, suggesting the transport and optical properties of the QD can be manipulated further though those physical quantities.

  19. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.; Parker, Brent C.; Price, Michael J. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States) and Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States) and Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 (United States)

    2011-12-15

    Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of the higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge

  20. Tridiagonal realization of the antisymmetric Gaussian β-ensemble

    International Nuclear Information System (INIS)

    Dumitriu, Ioana; Forrester, Peter J.

    2010-01-01

    The Householder reduction of a member of the antisymmetric Gaussian unitary ensemble gives an antisymmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of (q i ), the first components of the eigenvectors. Three proofs are given. One involves an inductive construction based on bordering of a family of random matrices which are shown to have the same distributions as the antisymmetric tridiagonal matrices. This proof uses the Dixon-Anderson integral from Selberg integral theory. A second proof involves the explicit computation of the Jacobian for the change of variables between real antisymmetric tridiagonal matrices, its eigenvalues, and (q i ). The third proof maps matrices from the antisymmetric Gaussian β-ensemble to those realizing particular examples of the Laguerre β-ensemble. In addition to these proofs, we note some simple properties of the shooting eigenvector and associated Pruefer phases of the random matrices.

  1. Gaussian statistics for palaeomagnetic vectors

    Science.gov (United States)

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to

  2. Gaussian statistics for palaeomagnetic vectors

    Science.gov (United States)

    Love, J. J.; Constable, C. G.

    2003-03-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to

  3. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    International Nuclear Information System (INIS)

    Zhang Hong; Li Guo-Hua

    2016-01-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier–Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. (paper)

  4. Stochastic space interval as a link between quantum randomness and macroscopic randomness?

    Science.gov (United States)

    Haug, Espen Gaarder; Hoff, Harald

    2018-03-01

    For many stochastic phenomena, we observe statistical distributions that have fat-tails and high-peaks compared to the Gaussian distribution. In this paper, we will explain how observable statistical distributions in the macroscopic world could be related to the randomness in the subatomic world. We show that fat-tailed (leptokurtic) phenomena in our everyday macroscopic world are ultimately rooted in Gaussian - or very close to Gaussian-distributed subatomic particle randomness, but they are not, in a strict sense, Gaussian distributions. By running a truly random experiment over a three and a half-year period, we observed a type of random behavior in trillions of photons. Combining our results with simple logic, we find that fat-tailed and high-peaked statistical distributions are exactly what we would expect to observe if the subatomic world is quantized and not continuously divisible. We extend our analysis to the fact that one typically observes fat-tails and high-peaks relative to the Gaussian distribution in stocks and commodity prices and many aspects of the natural world; these instances are all observable and documentable macro phenomena that strongly suggest that the ultimate building blocks of nature are discrete (e.g. they appear in quanta).

  5. Fitting the Fractional Polynomial Model to Non-Gaussian Longitudinal Data

    Directory of Open Access Journals (Sweden)

    Ji Hoon Ryoo

    2017-08-01

    Full Text Available As in cross sectional studies, longitudinal studies involve non-Gaussian data such as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate exponential families. A number of statistical tools have thus been developed to deal with non-Gaussian longitudinal data, including analytic techniques to estimate parameters in both fixed and random effects models. However, as yet growth modeling with non-Gaussian data is somewhat limited when considering the transformed expectation of the response via a linear predictor as a functional form of explanatory variables. In this study, we introduce a fractional polynomial model (FPM that can be applied to model non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting two empirical binary and count data models. The results clearly show the efficiency and flexibility of the FPM for such applications.

  6. Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields

    Directory of Open Access Journals (Sweden)

    Martin Schlather

    2015-02-01

    Full Text Available Modeling of and inference on multivariate data that have been measured in space, such as temperature and pressure, are challenging tasks in environmental sciences, physics and materials science. We give an overview over and some background on modeling with cross- covariance models. The R package RandomFields supports the simulation, the parameter estimation and the prediction in particular for the linear model of coregionalization, the multivariate Matrn models, the delay model, and a spectrum of physically motivated vector valued models. An example on weather data is considered, illustrating the use of RandomFields for parameter estimation and prediction.

  7. IMAGE ENHANCEMENT AND SPECKLE REDUCTION OF FULL POLARIMETRIC SAR DATA BY GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    M. Mahdian

    2013-09-01

    Full Text Available In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF, which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  8. Non-Gaussianity from tachyonic preheating in hybrid inflation

    International Nuclear Information System (INIS)

    Barnaby, Neil; Cline, James M.

    2007-01-01

    In a previous work we showed that large non-Gaussianities and nonscale-invariant distortions in the cosmic microwave background power spectrum can be generated in hybrid inflation models, due to the contributions of the tachyon (waterfall) field to the second order curvature perturbation. Here we clarify, correct, and extend those results. We show that large non-Gaussianity occurs only when the tachyon remains light throughout inflation, whereas n=4 contamination to the spectrum is the dominant effect when the tachyon is heavy. We find constraints on the parameters of warped-throat brane-antibrane inflation from non-Gaussianity. For F-term and D-term inflation models from supergravity, we obtain nontrivial constraints from the spectral distortion effect. We also establish that our analysis applies to complex tachyon fields

  9. Non-Gaussian conductivity fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2010-01-01

    A theoretical study is presented on the statistical properties of conductivity fluctuations caused by concentration and mobility fluctuations of the current carriers. It is established that mobility fluctuations result from random deviations in the thermal equilibrium distribution of the carriers. It is shown that mobility fluctuations have generation-recombination and shot components which do not satisfy the requirements of the central limit theorem, in contrast to the current carrier's concentration fluctuation and intraband component of the mobility fluctuation. It is shown that in general the mobility fluctuation consist of thermal (or intraband) Gaussian and non-thermal (or generation-recombination, shot, etc.) non-Gaussian components. The analyses of theoretical results and experimental data from literature show that the statistical properties of mobility fluctuation and of 1/f-noise fully coincide. The deviation from Gaussian statistics of the mobility or 1/f fluctuations goes hand in hand with the magnitude of non-thermal noise (generation-recombination, shot, burst, pulse noises, etc.).

  10. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  11. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  12. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    Science.gov (United States)

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  13. Bell inequalities for random fields

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Peter [Physics Department, Yale University, CT 06520 (United States)

    2006-06-09

    The assumptions required for the derivation of Bell inequalities are not satisfied for random field models in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  14. Bell inequalities for random fields

    OpenAIRE

    Morgan, Peter

    2004-01-01

    The assumptions required for the derivation of Bell inequalities are not usually satisfied for random fields in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  15. Lectures on random interfaces

    CERN Document Server

    Funaki, Tadahisa

    2016-01-01

    Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book. Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers. Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hyd...

  16. Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model with second-order field equations.

    Science.gov (United States)

    Gao, Xian; Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi

    2011-11-18

    We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most general single-field inflation model with second-order field equations. It is shown that the most general cubic action for the tensor perturbation h(ij) is composed only of two contributions, one with two spacial derivatives and the other with one time derivative on each h(ij). The former is essentially identical to the cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could open a new clue to the identification of inflationary gravitational waves in observations of cosmic microwave background anisotropies as well as direct detection experiments.

  17. Using Geometrical Properties for Fast Indexation of Gaussian Vector Quantizers

    Directory of Open Access Journals (Sweden)

    Vassilieva EA

    2007-01-01

    Full Text Available Vector quantization is a classical method used in mobile communications. Each sequence of samples of the discretized vocal signal is associated to the closest -dimensional codevector of a given set called codebook. Only the binary indices of these codevectors (the codewords are transmitted over the channel. Since channels are generally noisy, the codewords received are often slightly different from the codewords sent. In order to minimize the distortion of the original signal due to this noisy transmission, codevectors indexed by one-bit different codewords should have a small mutual Euclidean distance. This paper is devoted to this problem of index assignment of binary codewords to the codevectors. When the vector quantizer has a Gaussian structure, we show that a fast index assignment algorithm based on simple geometrical and combinatorial considerations can improve the SNR at the receiver by 5dB with respect to a purely random assignment. We also show that in the Gaussian case this algorithm outperforms the classical combinatorial approach in the field.

  18. Interconversion of pure Gaussian states requiring non-Gaussian operations

    Science.gov (United States)

    Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.

    2015-01-01

    We analyze the conditions under which local operations and classical communication enable entanglement transformations between bipartite pure Gaussian states. A set of necessary and sufficient conditions had been found [G. Giedke et al., Quant. Inf. Comput. 3, 211 (2003)] for the interconversion between such states that is restricted to Gaussian local operations and classical communication. Here, we exploit majorization theory in order to derive more general (sufficient) conditions for the interconversion between bipartite pure Gaussian states that goes beyond Gaussian local operations. While our technique is applicable to an arbitrary number of modes for each party, it allows us to exhibit surprisingly simple examples of 2 ×2 Gaussian states that necessarily require non-Gaussian local operations to be transformed into each other.

  19. Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, Gaetano

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, δB/B 0 , the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B 0 = B 0 e z and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B 0 . The energy density spectrum is a power law, and in k space it is described by the correlation lengths l x , l y , l z , which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R (δB/B 0 ) (l z /l x ). For small Kubo numbers, R 0 , or the ratio l z /l x , we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, δB/B 0 ≅ 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l z /l x ≤ 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l z /l x > 1 normal Gaussian diffusion is found. A possible expression for generalized double diffusion is discussed

  20. Additivity properties of a Gaussian channel

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth

    2004-01-01

    The Amosov-Holevo-Werner conjecture implies the additivity of the minimum Renyi entropies at the output of a channel. The conjecture is proven true for all Renyi entropies of integer order greater than two in a class of Gaussian bosonic channel where the input signal is randomly displaced or where it is coupled linearly to an external environment

  1. Mean-field Ensemble Kalman Filter

    KAUST Repository

    Law, Kody

    2015-01-07

    A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for d < 2 . The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  2. Random walk loop soups and conformal loop ensembles

    NARCIS (Netherlands)

    van de Brug, T.; Camia, F.; Lis, M.

    2016-01-01

    The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a

  3. Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies.

    Science.gov (United States)

    Palacios, Julia A; Minin, Vladimir N

    2013-03-01

    Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.

  4. Multi-variate joint PDF for non-Gaussianities: exact formulation and generic approximations

    CERN Document Server

    Verde, Licia; Heavens, Alan F; Jimenez, Raul; Matarrese, Sabino

    2013-01-01

    We provide an exact expression for the multi-variate joint probability distribution function of non-Gaussian fields primordially arising from local transformations of a Gaussian field. This kind of non-Gaussianity is generated in many models of inflation. We apply our expression to the non- Gaussianity estimation from Cosmic Microwave Background maps and the halo mass function where we obtain analytical expressions. We also provide analytic approximations and their range of validity. For the Cosmic Microwave Background we give a fast way to compute the PDF which is valid up to 7{\\sigma} for fNL values (both true and sampled) not ruled out by current observations, which consists of expressing the PDF as a combination of bispectrum and trispectrum of the temperature maps. The resulting expression is valid for any kind of non-Gaussianity and is not limited to the local type. The above results may serve as the basis for a fully Bayesian analysis of the non-Gaussianity parameter.

  5. Vacuum instability in a random electric field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.

    1984-01-01

    The reaction of the vacuum on an intense spatially homogeneous random electric field is investigated. It is shown that a stochastic electric field always causes a breakdown of the boson vacuum, and the number of pairs of particles which are created by the electric field increases exponentially in time. For the choice of potential field in the form of a dichotomic random process we find in explicit form the dependence of the average number of pairs of particles on the time of the action of the source of the stochastic field. For the fermion vacuum the average number of pairs of particles which are created by the field in the lowest order of perturbation theory in the amplitude of the random field is independent of time

  6. Crossover between the Gaussian orthogonal ensemble, the Gaussian unitary ensemble, and Poissonian statistics.

    Science.gov (United States)

    Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter

    2017-11-01

    Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.

  7. Non-gaussian turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  8. Stable Lévy motion with inverse Gaussian subordinator

    Science.gov (United States)

    Kumar, A.; Wyłomańska, A.; Gajda, J.

    2017-09-01

    In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.

  9. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-01-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core–shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field. (paper)

  10. Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport

    Science.gov (United States)

    Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.

    2017-04-01

    Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain

  11. Non-Gaussian Stochastic Radiation Transfer in Finite Planar Media with Quadratic Scattering

    International Nuclear Information System (INIS)

    Sallah, M.

    2016-01-01

    The stochastic radiation transfer is considered in a participating planar finite continuously fluctuating medium characterized by non-Gaussian variability. The problem is considered for diffuse-reflecting boundaries with quadratic Rayleigh scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions that are represented by the probability-density function (PDF) of the solution process. RVT algorithm applies a simple integral transformation to the input stochastic process (the extinction function of the medium). This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the radiation transfer equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity, transmissivity and partial heat fluxes at the medium boundaries. Numerical results are represented graphically for different non-Gaussian probability distribution functions that compared with the corresponding Gaussian PDF.

  12. A Gaussian graphical model approach to climate networks

    International Nuclear Information System (INIS)

    Zerenner, Tanja; Friederichs, Petra; Hense, Andreas; Lehnertz, Klaus

    2014-01-01

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately

  13. A Gaussian graphical model approach to climate networks

    Energy Technology Data Exchange (ETDEWEB)

    Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  14. Quantum Information Protocols with Gaussian States of Light

    DEFF Research Database (Denmark)

    Jacobsen, Christian Scheffmann

    and hardware for secure quantum key distribution. These technologies directly exploit quantum effects, and indeed this is where they offer advantages to classical products. This thesis deals with the development and implementation of quantum information protocols that utilize the rather inexpensive resource......Quantum cryptography is widely regarded as the most mature field within the context of quantum information in the sense that its application and development has produced companies that base their products on genuine quantum mechanical principles. Examples include quantum random number generators...... of Gaussian states. A quantum information protocol is essentially a sequence of state exchanges between some number of parties and a certain ordering of quantum mechanical unitary operators performed by these parties. An example of this is the famous BB84 protocol for secret key generation, where photons...

  15. Non-gaussianity versus nonlinearity of cosmological perturbations.

    Science.gov (United States)

    Verde, L

    2001-06-01

    Following the discovery of the cosmic microwave background, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us toward a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, nonlinear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but galaxies might not be faithful tracers of the underlying mass distribution. The relationship between fluctuations in the mass and in the galaxies distribution (bias), is often assumed to be local, but could well be nonlinear. Moreover, galaxy catalogues use the redshift as third spatial coordinate: the resulting redshift-space map of the galaxy distribution is nonlinearly distorted by peculiar velocities. Nonlinear gravitational evolution, biasing, and redshift-space distortion introduce non-gaussianity, even in an initially gaussian fluctuation field. I investigate the statistical tools that allow us, in principle, to disentangle the above different effects, and the observational datasets we require to do so in practice.

  16. Inflation with a graceful exit in a random landscape

    International Nuclear Information System (INIS)

    Pedro, F.G.; Westphal, A.

    2016-11-01

    We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N<<10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.

  17. Inflation with a graceful exit in a random landscape

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, F.G. [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Westphal, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2016-11-15

    We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N<<10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.

  18. Inflation with a graceful exit in a random landscape

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, F.G. [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Westphal, A. [Deutsches Elektronen-Synchrotron DESY, Theory Group,D-22603 Hamburg (Germany)

    2017-03-30

    We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N≪10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.

  19. Smooth random surfaces from tight immersions?

    International Nuclear Information System (INIS)

    Baillie, C.F.; Johnston, D.A.

    1994-01-01

    We investigate actions for dynamically triangulated random surfaces that consist of a Gaussian or area term plus the modulus of the Gaussian curvature and compare their behavior with both Gaussian plus extrinsic curvature and ''Steiner'' actions

  20. Asymptotics of sums of lognormal random variables with Gaussian copula

    DEFF Research Database (Denmark)

    Asmussen, Søren; Rojas-Nandayapa, Leonardo

    2008-01-01

    Let (Y1, ..., Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let Xi = eYi, Sn = X1 + ⋯ + Xn. The asymptotics of P (Sn > x) as n → ∞ are shown to be the same as for the independent case with the same lognormal marginals. In part...

  1. Spatial Behaviour of Singularities in Fractal- and Gaussian Speckle Fields

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Alexander P.; Maksimyak, Peter P.

    2009-01-01

    Peculiarities of the spatial behaviour of the dislocation lines resulting from scattering of coherent radiation from random and fractal rough surfaces are studied. The technique of optical correlation is proposed for diagnostics of phase singularities in a complex speckle field by comparing...

  2. Controllable gaussian-qubit interface for extremal quantum state engineering.

    Science.gov (United States)

    Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro

    2010-06-18

    We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.

  3. Scaled unscented transform Gaussian sum filter: Theory and application

    KAUST Repository

    Luo, Xiaodong; Moroz, Irene M.; Hoteit, Ibrahim

    2010-01-01

    the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form

  4. Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field

    Science.gov (United States)

    Das, Joydip; Mondal, Shrabani; Bag, Bidhan Chandra

    2017-10-01

    In the present study, we have proposed the Fokker-Planck equation in a simple way for a Langevin equation of motion having ordinary derivative (OD), the Gaussian random force and a generalized frictional memory kernel. The equation may be associated with or without conservative force field from harmonic potential. We extend this method for a charged Brownian particle in the presence of a magnetic field. Thus, the present method is applicable for a Langevin equation of motion with OD, the Gaussian colored thermal noise and any kind of linear force field that may be conservative or not. It is also simple to apply this method for the colored Gaussian noise that is not related to the damping strength.

  5. Large non-Gaussianity from two-component hybrid inflation

    International Nuclear Information System (INIS)

    Byrnes, Christian T.; Choi, Ki-Young; Hall, Lisa M.H.

    2009-01-01

    We study the generation of non-Gaussianity in models of hybrid inflation with two inflaton fields, (2-brid inflation). We analyse the region in the parameter and the initial condition space where a large non-Gaussianity may be generated during slow-roll inflation which is generally characterised by a large f NL , τ NL and a small g NL . For certain parameter values we can satisfy τ NL >> f NL 2 . The bispectrum is of the local type but may have a significant scale dependence. We show that the loop corrections to the power spectrum and bispectrum are suppressed during inflation, if one assume that the fields follow a classical background trajectory. We also include the effect of the waterfall field, which can lead to a significant change in the observables after the waterfall field is destabilised, depending on the couplings between the waterfall and inflaton fields

  6. Non-Gaussian Methods for Causal Structure Learning.

    Science.gov (United States)

    Shimizu, Shohei

    2018-05-22

    Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.

  7. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...

  8. Gaussian entanglement revisited

    Science.gov (United States)

    Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo

    2018-02-01

    We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.

  9. Convergence of posteriors for discretized log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge

    2004-01-01

    In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....

  10. The random field Blume-Capel model revisited

    Science.gov (United States)

    Santos, P. V.; da Costa, F. A.; de Araújo, J. M.

    2018-04-01

    We have revisited the mean-field treatment for the Blume-Capel model under the presence of a discrete random magnetic field as introduced by Kaufman and Kanner (1990). The magnetic field (H) versus temperature (T) phase diagrams for given values of the crystal field D were recovered in accordance to Kaufman and Kanner original work. However, our main goal in the present work was to investigate the distinct structures of the crystal field versus temperature phase diagrams as the random magnetic field is varied because similar models have presented reentrant phenomenon due to randomness. Following previous works we have classified the distinct phase diagrams according to five different topologies. The topological structure of the phase diagrams is maintained for both H - T and D - T cases. Although the phase diagrams exhibit a richness of multicritical phenomena we did not found any reentrant effect as have been seen in similar models.

  11. Solvation in atomic liquids: connection between Gaussian field theory and density functional theory

    Directory of Open Access Journals (Sweden)

    V. Sergiievskyi

    2017-12-01

    Full Text Available For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and classical density functional theory. We show that Chandler's results concerning the solvation of a hard core of arbitrary shape can be recovered by either minimising a linearised HNC functional using an auxiliary Lagrange multiplier field to impose a vanishing density inside the core, or by minimising this functional directly outside the core — indeed a simpler procedure. Those equivalent approaches are compared to two other variants of DFT, either in the HNC, or partially linearised HNC approximation, for the solvation of a Lennard-Jones solute of increasing size in a Lennard-Jones solvent. Compared to Monte-Carlo simulations, all those theories give acceptable results for the inhomogeneous solvent structure, but are completely out-of-range for the solvation free-energies. This can be fixed in DFT by adding a hard-sphere bridge correction to the HNC functional.

  12. Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    International Nuclear Information System (INIS)

    Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry

    2006-01-01

    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H 2 O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)

  13. Statistics of peaks in cosmological nonlinear density fields

    International Nuclear Information System (INIS)

    Suginohara, Tatsushi; Suto, Yasushi.

    1990-06-01

    Distribution of the high-density peaks in the universe is examined using N-body simulations. Nonlinear evolution of the underlying density field significantly changes the statistical properties of the peaks, compared with the analytic results valid for the random Gaussian field. In particular, the abundances and correlations of the initial density peaks are discussed in the context of biased galaxy formation theory. (author)

  14. Solitons in a random force field

    International Nuclear Information System (INIS)

    Bass, F.G.; Konotop, V.V.; Sinitsyn, Y.A.

    1985-01-01

    We study the dynamics of a soliton of the sine-Gordon equation in a random force field in the adiabatic approximation. We obtain an Einstein-Fokker equation and find the distribution function for the soliton parameters which we use to evaluate its statistical characteristics. We derive an equation for the averaged functions of the soliton parameters. We determine the limits of applicability of the delta-correlated in time random field approximation

  15. How Gaussian can our Universe be?

    Energy Technology Data Exchange (ETDEWEB)

    Cabass, G. [Physics Department and INFN, Università di Roma ' ' La Sapienza' ' , P.le Aldo Moro 2, 00185, Rome (Italy); Pajer, E. [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Schmidt, F., E-mail: giovanni.cabass@roma1.infn.it, E-mail: e.pajer@uu.nl, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-01-01

    Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of k {sub ℓ}{sup 2}/ k {sub s} {sup 2}, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × ( n {sub s}−1).

  16. How Gaussian can our Universe be?

    Science.gov (United States)

    Cabass, G.; Pajer, E.; Schmidt, F.

    2017-01-01

    Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of kl2/ks2, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × (ns-1).

  17. Thermodynamical properties of random spin-1/2 XY chain with Dzyaloshinskii-Moriya interaction

    International Nuclear Information System (INIS)

    Derzhko, O.; Krokhmalskii, T.; Verkholyak, T.

    1995-07-01

    For computation of the equilibrium statistical properties of finite spin-1/2 XY chains with Dzyaloshinskii-Moriya interaction the suggested earlier approach (JMMM 140-144 (1995) 1623) is generalized. It is applied for calculation of transverse dynamical susceptibility of spin-1/2 Ising chain in non-random and random Gaussian transverse field with Dzyaloshinskii-Moriya interaction. (author). 7 refs, 2 figs

  18. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they

  19. Detector point of view of reactor internal vibrations under Gaussian coloured random forces - the problem of fitting neutron noise experimental data

    International Nuclear Information System (INIS)

    Arnal, R.S.; Martin, G.V.; Gonzalez, J.L.M.-C.

    1988-01-01

    This paper studies the local vibrations of reactor components driven by Gaussian coloured and white forces, when nonlinear vibrations arise. We study also the important problem of noise sources, modelization and the noise propagation through the neutron field using the discrete ordinates transport theory. Finally, we study the effect of the neutron field upon the PSD (power spectral density) of the noise source and we analyse the problem of fitting neutron noise experimental data to perform pattern recognition analysis. (author)

  20. Primordial non-Gaussian features from DBI Galileon inflation

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Pal, Supratik

    2015-01-01

    We have studied primordial non-Gaussian features of a model of potential-driven single field DBI Galileon inflation. We have computed the bispectrum from the three-point correlation function considering all possible cross correlations between the scalar and tensor modes of the proposed setup. Further, we have computed the trispectrum from a four-point correlation function considering the contribution from contact interaction, and scalar and graviton exchange diagrams in the in-in picture. Finally we have obtained the non-Gaussian consistency conditions from the four-point correlator, which results in partial violation of the Suyama-Yamaguchi four-point consistency relation. This further leads to the conclusion that sufficient primordial non-Gaussianities can be obtained from DBI Galileon inflation. (orig.)

  1. Magnetic field line random walk in non-axisymmetric turbulence

    International Nuclear Information System (INIS)

    Tautz, R.C.; Lerche, I.

    2011-01-01

    Including a random component of a magnetic field parallel to an ambient field introduces a mean perpendicular motion to the average field line. This effect is normally not discussed because one customarily chooses at the outset to ignore such a field component in discussing random walk and diffusion of field lines. A discussion of the basic effect is given, indicating that any random magnetic field with a non-zero helicity will lead to such a non-zero perpendicular mean motion. Several exact analytic illustrations are given of the effect as well as a simple numerical illustration. -- Highlights: → For magnetic field line random walk all magnetic field components are important. → Non-vanishing magnetic helicity leads to mean perpendicular motion. → Analytically exact stream functions illustrate that the novel transverse effect exists.

  2. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  3. Uniqueness conditions for finitely dependent random fields

    International Nuclear Information System (INIS)

    Dobrushin, R.L.; Pecherski, E.A.

    1981-01-01

    The authors consider a random field for which uniqueness and some additional conditions guaranteeing that the correlations between the variables of the field decrease rapidly enough with the distance between the values of the parameter occur. The main result of the paper states that in such a case uniqueness is true for any other field with transition probabilities sufficiently close to those of the original field. Then they apply this result to some ''degenerate'' classes of random fields for which one can check this condition of correlation to decay, and thus obtain some new conditions of uniqueness. (Auth.)

  4. A Note on Functional Averages over Gaussian Ensembles

    Directory of Open Access Journals (Sweden)

    Gabriel H. Tucci

    2013-01-01

    Full Text Available We find a new formula for matrix averages over the Gaussian ensemble. Let H be an n×n Gaussian random matrix with complex, independent, and identically distributed entries of zero mean and unit variance. Given an n×n positive definite matrix A and a continuous function f:ℝ+→ℝ such that ∫0∞‍e-αt|f(t|2dt0, we find a new formula for the expectation [Tr(f(HAH*]. Taking f(x=log(1+x gives another formula for the capacity of the MIMO communication channel, and taking f(x=(1+x-1 gives the MMSE achieved by a linear receiver.

  5. Prequantum classical statistical field theory: background field as a source of everything?

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2011-01-01

    Prequantum classical statistical field theory (PCSFT) is a new attempt to consider quantum mechanics (QM) as an emergent phenomenon, cf. with De Broglie's 'double solution' approach, Bohmian mechanics, stochastic electrodynamics (SED), Nelson's stochastic QM and its generalization by Davidson, 't Hooft's models and their development by Elze. PCSFT is a comeback to a purely wave viewpoint on QM, cf. with early Schrodinger. There is no quantum particles at all, only waves. In particular, photons are simply wave-pulses of the classical electromagnetic field, cf. SED. Moreover, even massive particles are special 'prequantum fields': the electron field, the neutron field, and so on. PCSFT claims that (sooner or later) people will be able to measure components of these fields: components of the 'photonic field' (the classical electromagnetic field of low intensity), electronic field, neutronic field, and so on. At the moment we are able to produce quantum correlations as correlations of classical Gaussian random fields. In this paper we are interested in mathematical and physical reasons of usage of Gaussian fields. We consider prequantum signals (corresponding to quantum systems) as composed of a huge number of wave-pulses (on very fine prequantum time scale). We speculate that the prequantum background field (the field of 'vacuum fluctuations') might play the role of a source of such pulses, i.e., the source of everything.

  6. Analog model for quantum gravity effects: phonons in random fluids.

    Science.gov (United States)

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  7. Biasing and the search for primordial non-Gaussianity beyond the local type

    Energy Technology Data Exchange (ETDEWEB)

    Gleyzes, Jérôme; De Putter, Roland; Doré, Olivier [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Green, Daniel, E-mail: jerome.l.gleyzes@jpl.nasa.gov, E-mail: rdputter@caltech.edu, E-mail: drgreen@cita.utoronto.ca, E-mail: olivier.p.dore@jpl.nasa.gov [Department of Physics, University of California, 366 LeConte hall, Berkeley, CA 94720 (United States)

    2017-04-01

    Primordial non-Gaussianity encodes valuable information about the physics of inflation, including the spectrum of particles and interactions. Significant improvements in our understanding of non-Gaussanity beyond Planck require information from large-scale structure. The most promising approach to utilize this information comes from the scale-dependent bias of halos. For local non-Gaussanity, the improvements available are well studied but the potential for non-Gaussianity beyond the local type, including equilateral and quasi-single field inflation, is much less well understood. In this paper, we forecast the capabilities of large-scale structure surveys to detect general non-Gaussianity through galaxy/halo power spectra. We study how non-Gaussanity can be distinguished from a general biasing model and where the information is encoded. For quasi-single field inflation, significant improvements over Planck are possible in some regions of parameter space. We also show that the multi-tracer technique can significantly improve the sensitivity for all non-Gaussianity types, providing up to an order of magnitude improvement for equilateral non-Gaussianity over the single-tracer measurement.

  8. Scalable Gaussian Processes and the search for exoplanets

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.

  9. Adaptive Laguerre-Gaussian variant of the Gaussian beam expansion method.

    Science.gov (United States)

    Cagniot, Emmanuel; Fromager, Michael; Ait-Ameur, Kamel

    2009-11-01

    A variant of the Gaussian beam expansion method consists in expanding the Bessel function J0 appearing in the Fresnel-Kirchhoff integral into a finite sum of complex Gaussian functions to derive an analytical expression for a Laguerre-Gaussian beam diffracted through a hard-edge aperture. However, the validity range of the approximation depends on the number of expansion coefficients that are obtained by optimization-computation directly. We propose another solution consisting in expanding J0 onto a set of collimated Laguerre-Gaussian functions whose waist depends on their number and then, depending on its argument, predicting the suitable number of expansion functions to calculate the integral recursively.

  10. An R Package for a General Class of Inverse Gaussian Distributions

    Directory of Open Access Journals (Sweden)

    Victor Leiva

    2007-03-01

    Full Text Available The inverse Gaussian distribution is a positively skewed probability model that has received great attention in the last 20 years. Recently, a family that generalizes this model called inverse Gaussian type distributions has been developed. The new R package named ig has been designed to analyze data from inverse Gaussian type distributions. This package contains basic probabilistic functions, lifetime indicators and a random number generator from this model. Also, parameter estimates and diagnostics analysis can be obtained using likelihood methods by means of this package. In addition, goodness-of-fit methods are implemented in order to detect the suitability of the model to the data. The capabilities and features of the ig package are illustrated using simulated and real data sets. Furthermore, some new results related to the inverse Gaussian type distribution are also obtained. Moreover, a simulation study is conducted for evaluating the estimation method implemented in the ig package.

  11. Revisiting non-Gaussianity from non-attractor inflation models

    Science.gov (United States)

    Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei

    2018-05-01

    Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.

  12. Local features with large spiky non-Gaussianities during inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan; Khosravi, Shahram; Sasaki, Misao

    2012-01-01

    We provide a dynamical mechanism to generate localized features during inflation. The local feature is due to a sharp waterfall phase transition which is coupled to the inflaton field. The key effect is the contributions of waterfall quantum fluctuations which induce a sharp peak on the curvature perturbation which can be as large as the background curvature perturbation from inflaton field. Due to non-Gaussian nature of waterfall quantum fluctuations a large spike non-Gaussianity is produced which is narrowly peaked at modes which leave the Hubble radius at the time of phase transition. The large localized peaks in power spectrum and bispectrum can have interesting consequences on CMB anisotropies

  13. Productive interactions: heavy particles and non-Gaussianity

    International Nuclear Information System (INIS)

    Flauger, Raphael; Mirbabayi, Mehrdad; Senatore, Leonardo; Silverstein, Eva

    2017-01-01

    We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇ 1/2 , much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structure of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.

  14. Productive interactions: heavy particles and non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, The University of Texas at Austin, Austin, TX, 78712 (United States); Mirbabayi, Mehrdad [Institute for Advanced Study, Princeton, NJ 08540 (United States); Senatore, Leonardo; Silverstein, Eva, E-mail: flauger@physics.ucsd.edu, E-mail: mehrdadm@ias.edu, E-mail: senatore@stanford.edu, E-mail: evas@slac.stanford.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-10-01

    We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇{sup 1/2}, much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structure of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.

  15. Realistic continuous-variable quantum teleportation with non-Gaussian resources

    International Nuclear Information System (INIS)

    Dell'Anno, F.; De Siena, S.; Illuminati, F.

    2010-01-01

    We present a comprehensive investigation of nonideal continuous-variable quantum teleportation implemented with entangled non-Gaussian resources. We discuss in a unified framework the main decoherence mechanisms, including imperfect Bell measurements and propagation of optical fields in lossy fibers, applying the formalism of the characteristic function. By exploiting appropriate displacement strategies, we compute analytically the success probability of teleportation for input coherent states and two classes of non-Gaussian entangled resources: two-mode squeezed Bell-like states (that include as particular cases photon-added and photon-subtracted de-Gaussified states), and two-mode squeezed catlike states. We discuss the optimization procedure on the free parameters of the non-Gaussian resources at fixed values of the squeezing and of the experimental quantities determining the inefficiencies of the nonideal protocol. It is found that non-Gaussian resources enhance significantly the efficiency of teleportation and are more robust against decoherence than the corresponding Gaussian ones. Partial information on the alphabet of input states allows further significant improvement in the performance of the nonideal teleportation protocol.

  16. Gaussian Process-Mixture Conditional Heteroscedasticity.

    Science.gov (United States)

    Platanios, Emmanouil A; Chatzis, Sotirios P

    2014-05-01

    Generalized autoregressive conditional heteroscedasticity (GARCH) models have long been considered as one of the most successful families of approaches for volatility modeling in financial return series. In this paper, we propose an alternative approach based on methodologies widely used in the field of statistical machine learning. Specifically, we propose a novel nonparametric Bayesian mixture of Gaussian process regression models, each component of which models the noise variance process that contaminates the observed data as a separate latent Gaussian process driven by the observed data. This way, we essentially obtain a Gaussian process-mixture conditional heteroscedasticity (GPMCH) model for volatility modeling in financial return series. We impose a nonparametric prior with power-law nature over the distribution of the model mixture components, namely the Pitman-Yor process prior, to allow for better capturing modeled data distributions with heavy tails and skewness. Finally, we provide a copula-based approach for obtaining a predictive posterior for the covariances over the asset returns modeled by means of a postulated GPMCH model. We evaluate the efficacy of our approach in a number of benchmark scenarios, and compare its performance to state-of-the-art methodologies.

  17. Rightfulness of Summation Cut-Offs in the Albedo Problem with Gaussian Fluctuations of the Density of Scatterers

    Science.gov (United States)

    Selim, M. M.; Bezák, V.

    2003-06-01

    The one-dimensional version of the radiative transfer problem (i.e. the so-called rod model) is analysed with a Gaussian random extinction function (x). Then the optical length X = 0 Ldx(x) is a Gaussian random variable. The transmission and reflection coefficients, T(X) and R(X), are taken as infinite series. When these series (and also when the series representing T 2(X), T 2(X), R(X)T(X), etc.) are averaged, term by term, according to the Gaussian statistics, the series become divergent after averaging. As it was shown in a former paper by the authors (in Acta Physica Slovaca (2003)), a rectification can be managed when a `modified' Gaussian probability density function is used, equal to zero for X > 0 and proportional to the standard Gaussian probability density for X > 0. In the present paper, the authors put forward an alternative, showing that if the m.s.r. of X is sufficiently small in comparison with & $bar X$ ; , the standard Gaussian averaging is well functional provided that the summation in the series representing the variable T m-j (X)R j (X) (m = 1,2,..., j = 1,...,m) is truncated at a well-chosen finite term. The authors exemplify their analysis by some numerical calculations.

  18. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    Science.gov (United States)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  19. A theory of solving TAP equations for Ising models with general invariant random matrices

    DEFF Research Database (Denmark)

    Opper, Manfred; Çakmak, Burak; Winther, Ole

    2016-01-01

    We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....

  20. Resource theory of non-Gaussian operations

    Science.gov (United States)

    Zhuang, Quntao; Shor, Peter W.; Shapiro, Jeffrey H.

    2018-05-01

    Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition, and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.

  1. Gaussian-state entanglement in a quantum beat laser

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Nha, Hyunchul; Zubairy, M. Suhail

    2011-01-01

    Recently quantum beat lasers have been considered as a source of entangled radiation [S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, Phys. Rev. A 77, 062308 (2008)]. We investigate and quantify the entanglement of this system when the initial cavity modes are prepared in a Gaussian two-mode state, one being a nonclassical state and the other a thermal state. It is investigated how the output entanglement varies with the nonclassicality of the input Gaussian state, thermal noise, and the strength of the driving field.

  2. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    Science.gov (United States)

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  3. Properties and simulation of α-permanental random fields

    DEFF Research Database (Denmark)

    Møller, Jesper; Rubak, Ege Holger

    An α-permanental random field is briefly speaking a model for a collection of random variables with positive associations, where α is a positive number and the probability generating function is given in terms of a covariance or more general function so that density and moment expressions are given...... by certain α-permanents. Though such models possess many appealing probabilistic properties, many statisticians seem unaware of  α-permanental random fields and their potential applications. The purpose of this paper is first to summarize useful probabilistic results using the simplest possible setting......, and second to study stochastic constructions and simulation techniques, which should provide a useful basis for discussing the statistical aspects in future work. The paper also discusses some examples of  α-permanental random fields....

  4. Accelerating Sequential Gaussian Simulation with a constant path

    Science.gov (United States)

    Nussbaumer, Raphaël; Mariethoz, Grégoire; Gravey, Mathieu; Gloaguen, Erwan; Holliger, Klaus

    2018-03-01

    Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational cost associated with determining the kriging weights. This problem is compounded by the fact that often many realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this problem is to keep the same simulation path for all realizations. This results in identical neighbourhood configurations and hence the kriging weights only need to be determined once and can then be re-used in all subsequent realizations. This approach is generally not recommended because it is expected to result in correlation between the realizations. Here, we challenge this common preconception and make the case for the use of a constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate reproduction of the covariance structure as well as computational efficiency.

  5. On osp(2|2) conformal field theories

    International Nuclear Information System (INIS)

    Ding Xiangmao; Gould, Mark D; Mewton, Courtney J; Zhang Yaozhong

    2003-01-01

    We study the conformal field theories corresponding to current superalgebras osp(2|2) (1) k and osp(2|2) (2) k . We construct the free field realizations, screen currents and primary fields of these current superalgebras at general level k. All the results for osp(2|2) (2) k are new, and the results for the primary fields of osp(2|2) (1) k also seem to be new. Our results are expected to be useful in the supersymmetric approach to Gaussian disordered systems such as the random bond Ising model and the Dirac model

  6. Critical ratios in harbor porpoises (Phocoena phocoena) for tonal signals between 0.315 and 150 kHz in random Gaussian white noise.

    Science.gov (United States)

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Au, Whitlow W L; Terhune, John M; de Jong, Christ A F

    2009-09-01

    A psychoacoustic behavioral technique was used to determine the critical ratios (CRs) of two harbor porpoises for tonal signals with frequencies between 0.315 and 150 kHz, in random Gaussian white noise. The masked 50% detection hearing thresholds were measured using a "go/no-go" response paradigm and an up-down staircase psychometric method. CRs were determined at one masking noise level for each test frequency and were similar in both animals. For signals between 0.315 and 4 kHz, the CRs were relatively constant at around 18 dB. Between 4 and 150 kHz the CR increased gradually from 18 to 39 dB ( approximately 3.3 dB/octave). Generally harbor porpoises can detect tonal signals in Gaussian white noise slightly better than most odontocetes tested so far. By combining the mean CRs found in the present study with the spectrum level of the background noise levels at sea, the basic audiogram, and the directivity index, the detection threshold levels of harbor porpoises for tonal signals in various sea states can be calculated.

  7. Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures

    KAUST Repository

    Huser, Raphaël

    2017-06-23

    Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.

  8. Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures

    KAUST Repository

    Huser, Raphaë l; Opitz, Thomas; Thibaud, Emeric

    2017-01-01

    Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.

  9. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  10. Random eigenvalue problems revisited

    Indian Academy of Sciences (India)

    statistical distributions; linear stochastic systems. 1. ... dimensional multivariate Gaussian random vector with mean µ ∈ Rm and covariance ... 5, the proposed analytical methods are applied to a three degree-of-freedom system and the ...... The joint pdf ofω1 andω3 is however close to a bivariate Gaussian density function.

  11. Continuous-variable quantum teleportation with non-Gaussian resources

    International Nuclear Information System (INIS)

    Dell'Anno, F.; De Siena, S.; Albano, L.; Illuminati, F.

    2007-01-01

    We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount of non-Gaussianity

  12. Lifting Primordial Non-Gaussianity Above the Noise

    NARCIS (Netherlands)

    Welling, Yvette; Woude, Drian van der; Pajer, Enrico

    2016-01-01

    Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen

  13. A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families

    KAUST Repository

    Dutta, Subhajit

    2014-07-28

    Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.

  14. A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families

    KAUST Repository

    Dutta, Subhajit; Genton, Marc G.

    2014-01-01

    Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.

  15. Diffraction study of duty-cycle error in ferroelectric quasi-phase-matching gratings with Gaussian beam illumination

    Science.gov (United States)

    Dwivedi, Prashant Povel; Kumar, Challa Sesha Sai Pavan; Choi, Hee Joo; Cha, Myoungsik

    2016-02-01

    Random duty-cycle error (RDE) is inherent in the fabrication of ferroelectric quasi-phase-matching (QPM) gratings. Although a small RDE may not affect the nonlinearity of QPM devices, it enhances non-phase-matched parasitic harmonic generations, limiting the device performance in some applications. Recently, we demonstrated a simple method for measuring the RDE in QPM gratings by analyzing the far-field diffraction pattern obtained by uniform illumination (Dwivedi et al. in Opt Express 21:30221-30226, 2013). In the present study, we used a Gaussian beam illumination for the diffraction experiment to measure noise spectra that are less affected by the pedestals of the strong diffraction orders. Our results were compared with our calculations based on a random grating model, demonstrating improved resolution in the RDE estimation.

  16. Multipoint propagators for non-Gaussian initial conditions

    International Nuclear Information System (INIS)

    Bernardeau, Francis; Sefusatti, Emiliano; Crocce, Martin

    2010-01-01

    We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.

  17. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    Science.gov (United States)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  18. Quantum information with Gaussian states

    International Nuclear Information System (INIS)

    Wang Xiangbin; Hiroshima, Tohya; Tomita, Akihisa; Hayashi, Masahito

    2007-01-01

    Quantum optical Gaussian states are a type of important robust quantum states which are manipulatable by the existing technologies. So far, most of the important quantum information experiments are done with such states, including bright Gaussian light and weak Gaussian light. Extending the existing results of quantum information with discrete quantum states to the case of continuous variable quantum states is an interesting theoretical job. The quantum Gaussian states play a central role in such a case. We review the properties and applications of Gaussian states in quantum information with emphasis on the fundamental concepts, the calculation techniques and the effects of imperfections of the real-life experimental setups. Topics here include the elementary properties of Gaussian states and relevant quantum information device, entanglement-based quantum tasks such as quantum teleportation, quantum cryptography with weak and strong Gaussian states and the quantum channel capacity, mathematical theory of quantum entanglement and state estimation for Gaussian states

  19. Improving the gaussian effective potential: quantum mechanics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Thomaz, M.T.; Lemos, N.A.

    1990-08-01

    In order to gain intuition for variational problems in field theory, we analyze variationally the quantum-mechanical anharmonic oscillator [(V(x)sup(k) - sub(2) x sup(2) + sup(λ) - sub(4) λ sup(4)]. Special attention is paid to improvements to the Gaussian effective potential. (author)

  20. When non-Gaussian states are Gaussian: Generalization of nonseparability criterion for continuous variables

    International Nuclear Information System (INIS)

    McHugh, Derek; Buzek, Vladimir; Ziman, Mario

    2006-01-01

    We present a class of non-Gaussian two-mode continuous-variable states for which the separability criterion for Gaussian states can be employed to detect whether they are separable or not. These states reduce to the two-mode Gaussian states as a special case

  1. On the ability to discriminate Gaussian-noise tokens or random tone-burst complexes

    NARCIS (Netherlands)

    Goossens, T.L.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    2008-01-01

    This study investigated factors that influence a listeners' ability to discriminate Gaussian-noise stimuli in a same-different discrimination paradigm. The first experiment showed that discrimination ability increased with bandwidth for noise durations up to 100 ms. Duration had a nonmonotonic

  2. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.

    Science.gov (United States)

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and

  3. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.

    Directory of Open Access Journals (Sweden)

    Arne F Meyer

    Full Text Available Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to

  4. Relativistic effects and primordial non-Gaussianity in the galaxy bias

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2011-01-01

    When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated

  5. Post-Gaussian Effective Potential of Double sine-Gordon Field

    International Nuclear Information System (INIS)

    Cai Weiran; Lou Senyue

    2005-01-01

    In the framework of the functional integral formalism, we calculate the effective potential of the double sine-Gordon (DsG) model up to the second order with an optimized expansion and the Coleman's normal-ordering prescription. Within the range of convergence, we make a comparison among the classical and the effective potential of the first and second order. The numerical analysis shows that the DsG post-Gaussian EP possesses some fine global properties and makes a substantial and a concordant quantum correction to the features of the classical potential.

  6. The Stochastic Galerkin Method for Darcy Flow Problem with Log-Normal Random

    Czech Academy of Sciences Publication Activity Database

    Beres, Michal; Domesová, Simona

    2017-01-01

    Roč. 15, č. 2 (2017), s. 267-279 ISSN 1336-1376 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : Darcy flow * Gaussian random field * Karhunen-Loeve decomposition * polynomial chaos * Stochastic Galerkin method Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://advances.utc.sk/index.php/AEEE/article/view/2280

  7. Rotating quantum Gaussian packets

    International Nuclear Information System (INIS)

    Dodonov, V V

    2015-01-01

    We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)

  8. Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise

    Energy Technology Data Exchange (ETDEWEB)

    Kenfack, Lionel Tenemeza, E-mail: kenfacklionel300@gmail.com [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Tchoffo, Martin; Fai, Lukong Cornelius [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Fouokeng, Georges Collince [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE), Institut Universitaire de la Côte, BP 3001 Douala (Cameroon)

    2017-04-15

    We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.

  9. Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise

    International Nuclear Information System (INIS)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince

    2017-01-01

    We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.

  10. Random Assignment: Practical Considerations from Field Experiments.

    Science.gov (United States)

    Dunford, Franklyn W.

    1990-01-01

    Seven qualitative issues associated with randomization that have the potential to weaken or destroy otherwise sound experimental designs are reviewed and illustrated via actual field experiments. Issue areas include ethics and legality, liability risks, manipulation of randomized outcomes, hidden bias, design intrusiveness, case flow, and…

  11. Fractional statistics in 2+1 dimensions through the Gaussian model

    International Nuclear Information System (INIS)

    Murthy, G.

    1986-01-01

    The free massless field in 2+1 dimensions is written as an ''integral'' over free massless fields in 1+1 dimensions. Taking the operators with fractional dimension in the Gaussian model as a springboard we construct operators with fractional statistics in the former theory

  12. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody

    2016-05-03

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  13. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody; Tembine, Hamidou; Tempone, Raul

    2016-01-01

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  14. Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels

    International Nuclear Information System (INIS)

    Monras, Alex; Illuminati, Fabrizio

    2011-01-01

    We present a comprehensive analysis of the performance of different classes of Gaussian states in the estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states, the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for both parameters two-mode squeezed vacuum states are more efficient than coherent, thermal, or single-mode squeezed states. This suggests that at high-energy regimes, two-mode squeezed vacuum states are optimal within the Gaussian setup. This optimality result indicates a stronger form of compatibility for the estimation of the two parameters. Indeed, not only the minimum variance can be achieved at fixed probe states, but also the optimal state is common to both parameters. Additionally, we explore numerically the performance of non-Gaussian states for particular parameter values to find that maximally entangled states within d-dimensional cutoff subspaces (d≤6) perform better than any randomly sampled states with similar energy. However, we also find that states with very similar performance and energy exist with much less entanglement than the maximally entangled ones.

  15. Efficient Incorporation of Markov Random Fields in Change Detection

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Nielsen, Allan Aasbjerg; Carstensen, Jens Michael

    2009-01-01

    of noise, implying that the pixel-wise classifier is also noisy. There is thus a need for incorporating local homogeneity constraints into such a change detection framework. For this modelling task Markov Random Fields are suitable. Markov Random Fields have, however, previously been plagued by lack...

  16. Non-Gaussian probability distributions of solar wind fluctuations

    Directory of Open Access Journals (Sweden)

    E. Marsch

    Full Text Available The probability distributions of field differences ∆x(τ=x(t+τ-x(t, where the variable x(t may denote any solar wind scalar field or vector field component at time t, have been calculated from time series of Helios data obtained in 1976 at heliocentric distances near 0.3 AU. It is found that for comparatively long time lag τ, ranging from a few hours to 1 day, the differences are normally distributed according to a Gaussian. For shorter time lags, of less than ten minutes, significant changes in shape are observed. The distributions are often spikier and narrower than the equivalent Gaussian distribution with the same standard deviation, and they are enhanced for large, reduced for intermediate and enhanced for very small values of ∆x. This result is in accordance with fluid observations and numerical simulations. Hence statistical properties are dominated at small scale τ by large fluctuation amplitudes that are sparsely distributed, which is direct evidence for spatial intermittency of the fluctuations. This is in agreement with results from earlier analyses of the structure functions of ∆x. The non-Gaussian features are differently developed for the various types of fluctuations. The relevance of these observations to the interpretation and understanding of the nature of solar wind magnetohydrodynamic (MHD turbulence is pointed out, and contact is made with existing theoretical concepts of intermittency in fluid turbulence.

  17. Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.

    Science.gov (United States)

    Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M

    2009-04-03

    We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

  18. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    International Nuclear Information System (INIS)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  19. The properties of the dark matter halo distribution in non-Gaussian scenarios

    International Nuclear Information System (INIS)

    Carbone, C.; Branchini, E.; Dolag, K.; Grossi, M.; Iannuzzi, F.; Matarrese, S.; Moscardini, L.; Verde, L.

    2009-01-01

    The description of halo abundance and clustering for non-Gaussian initial conditions has recently received renewed interest, motivated by the forthcoming large galaxy and cluster surveys, which can potentially detect primordial non-Gaussianity of the local form with a non-Gaussianity parameter |f NL | of order unity. This is particularly exciting because, while the simplest single-field slow-roll models of inflation predict a primordial |f NL | NL of large-scale structures that are expected to be above the predicted detection threshold [C. Carbone, L. Verde, and S. Matarrese, ApJL 684 (2008) L1]. We present tests on N-body simulations of analytical formulae describing the halo abundance and clustering for non-Gaussian initial conditions. In particular, when we calibrate the analytic non-Gaussian mass function of [S. Matarrese, L. Verde, L. and R. Jimenez, ApJL 541 (2000) 10] and [M. LoVerde, A. Miller, S. Shandera and L. Verde, JCAP 04 (2008) 014] and the analytic description of halo clustering for non-Gaussian initial conditions on N-body simulations, we find excellent agreement between the simulations and the analytic predictions if we make the substitutions δ c →δ c x√(q) and δ c →δ c xq where q≅0.75, in the density threshold for gravitational collapse and in the non-Gaussian fractional correction to the halo bias, respectively. We discuss the implications of these corrections on present and forecasted primordial non-Gaussianity constraints. We confirm that the non-Gaussian halo bias offers a robust and highly competitive test of primordial non-Gaussianity.

  20. Tail behaviour of Gaussian processes with applications to the Brownian pillow

    NARCIS (Netherlands)

    A.J. Koning (Alex); V. Protassov (Vladimir)

    2001-01-01

    textabstractIn this paper we investigate the tail behaviour of a random variable S which may be viewed as a functional T of a zero mean Gaussian process X, taking special interest in the situation where X obeys the structure which is typical for limiting processes ocurring in nonparametric testing

  1. Non-Gaussianity and cross-scale coupling in interplanetary magnetic field turbulence during a rope-rope magnetic reconnection event

    Science.gov (United States)

    Miranda, Rodrigo A.; Schelin, Adriane B.; Chian, Abraham C.-L.; Ferreira, José L.

    2018-03-01

    In a recent paper (Chian et al., 2016) it was shown that magnetic reconnection at the interface region between two magnetic flux ropes is responsible for the genesis of interplanetary intermittent turbulence. The normalized third-order moment (skewness) and the normalized fourth-order moment (kurtosis) display a quadratic relation with a parabolic shape that is commonly observed in observational data from turbulence in fluids and plasmas, and is linked to non-Gaussian fluctuations due to coherent structures. In this paper we perform a detailed study of the relation between the skewness and the kurtosis of the modulus of the magnetic field |B| during a triple interplanetary magnetic flux rope event. In addition, we investigate the skewness-kurtosis relation of two-point differences of |B| for the same event. The parabolic relation displays scale dependence and is found to be enhanced during magnetic reconnection, rendering support for the generation of non-Gaussian coherent structures via rope-rope magnetic reconnection. Our results also indicate that a direct coupling between the scales of magnetic flux ropes and the scales within the inertial subrange occurs in the solar wind.

  2. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  3. Comparison of halo detection from noisy weak lensing convergence maps with Gaussian smoothing and MRLens treatment

    International Nuclear Information System (INIS)

    Jiao Yangxiu; Shan Huanyuan; Fan Zuhui

    2011-01-01

    Taking into account the noise from intrinsic ellipticities of source galaxies, we study the efficiency and completeness of halo detections from weak lensing convergence maps. Particularly, with numerical simulations, we compare the Gaussian filter with the so called MRLens treatment based on the modification of the Maximum Entropy Method. For a pure noise field without lensing signals, a Gaussian smoothing results in a residual noise field that is approximately Gaussian in terms of statistics if a large enough number of galaxies are included in the smoothing window. On the other hand, the noise field after the MRLens treatment is significantly non-Gaussian, resulting in complications in characterizing the noise effects. Considering weak-lensing cluster detections, although the MRLens treatment effectively deletes false peaks arising from noise, it removes the real peaks heavily due to its inability to distinguish real signals with relatively low amplitudes from noise in its restoration process. The higher the noise level is, the larger the removal effects are for the real peaks. For a survey with a source density n g ∼ 30 arcmin -2 , the number of peaks found in an area of 3 x 3 deg 2 after MRLens filtering is only ∼ 50 for the detection threshold κ = 0.02, while the number of halos with M > 5 x 10 13 M circleddot and with redshift z ≤ 2 in the same area is expected to be ∼ 530. For the Gaussian smoothing treatment, the number of detections is ∼ 260, much larger than that of the MRLens. The Gaussianity of the noise statistics in the Gaussian smoothing case adds further advantages for this method to circumvent the problem of the relatively low efficiency in weak-lensing cluster detections. Therefore, in studies aiming to construct large cluster samples from weak-lensing surveys, the Gaussian smoothing method performs significantly better than the MRLens treatment.

  4. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    Directory of Open Access Journals (Sweden)

    David O. Smallwood

    1997-01-01

    Full Text Available The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general case of matching a target probability density function using a zero memory nonlinear (ZMNL function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.

  5. Perturbative corrections for approximate inference in gaussian latent variable models

    DEFF Research Database (Denmark)

    Opper, Manfred; Paquet, Ulrich; Winther, Ole

    2013-01-01

    Expectation Propagation (EP) provides a framework for approximate inference. When the model under consideration is over a latent Gaussian field, with the approximation being Gaussian, we show how these approximations can systematically be corrected. A perturbative expansion is made of the exact b...... illustrate on tree-structured Ising model approximations. Furthermore, they provide a polynomial-time assessment of the approximation error. We also provide both theoretical and practical insights on the exactness of the EP solution. © 2013 Manfred Opper, Ulrich Paquet and Ole Winther....

  6. Simple form for the Gaussian equations in curved space

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Paz, J.P.

    1988-01-01

    We show that the variational Gaussian equations for λphi 4 theory in an arbitrary background gravitational field admit a simple form, which allows the use of a Schwinger-DeWitt-type expansion in order to renormalize them

  7. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  8. An approximate fractional Gaussian noise model with computational cost

    KAUST Repository

    Sø rbye, Sigrunn H.; Myrvoll-Nilsen, Eirik; Rue, Haavard

    2017-01-01

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood

  9. Language Recognition Using Latent Dynamic Conditional Random Field Model with Phonological Features

    Directory of Open Access Journals (Sweden)

    Sirinoot Boonsuk

    2014-01-01

    Full Text Available Spoken language recognition (SLR has been of increasing interest in multilingual speech recognition for identifying the languages of speech utterances. Most existing SLR approaches apply statistical modeling techniques with acoustic and phonotactic features. Among the popular approaches, the acoustic approach has become of greater interest than others because it does not require any prior language-specific knowledge. Previous research on the acoustic approach has shown less interest in applying linguistic knowledge; it was only used as supplementary features, while the current state-of-the-art system assumes independency among features. This paper proposes an SLR system based on the latent-dynamic conditional random field (LDCRF model using phonological features (PFs. We use PFs to represent acoustic characteristics and linguistic knowledge. The LDCRF model was employed to capture the dynamics of the PFs sequences for language classification. Baseline systems were conducted to evaluate the features and methods including Gaussian mixture model (GMM based systems using PFs, GMM using cepstral features, and the CRF model using PFs. Evaluated on the NIST LRE 2007 corpus, the proposed method showed an improvement over the baseline systems. Additionally, it showed comparable result with the acoustic system based on i-vector. This research demonstrates that utilizing PFs can enhance the performance.

  10. Virial expansion for almost diagonal random matrices

    International Nuclear Information System (INIS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E

    2003-01-01

    Energy level statistics of Hermitian random matrices H-circumflex with Gaussian independent random entries H i≥j is studied for a generic ensemble of almost diagonal random matrices with (vertical bar H ii vertical bar 2 ) ∼ 1 and (vertical bar H i≠j vertical bar 2 ) bF(vertical bar i - j vertical bar) parallel 1. We perform a regular expansion of the spectral form-factor K(τ) = 1 + bK 1 (τ) + b 2 K 2 (τ) + c in powers of b parallel 1 with the coefficients K m (τ) that take into account interaction of (m + 1) energy levels. To calculate K m (τ), we develop a diagrammatic technique which is based on the Trotter formula and on the combinatorial problem of graph edges colouring with (m + 1) colours. Expressions for K 1 (τ) and K 2 (τ) in terms of infinite series are found for a generic function F(vertical bar i - j vertical bar ) in the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and in the crossover between them (the almost unitary Gaussian ensemble). The Rosenzweig-Porter and power-law banded matrix ensembles are considered as examples

  11. Chimera states in Gaussian coupled map lattices

    Science.gov (United States)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  12. Operation of a quasi-optical gyrotron with a gaussian output coupler

    Energy Technology Data Exchange (ETDEWEB)

    Hogge, J.P.; Tran, T.M.; Paris, P.J.; Tran, M.Q. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-03-01

    The operation of a 92 GHz quasi-optical gyrotron (QOG) having a resonator formed by a spherical mirror and a diffraction grating placed in -1 order Littrow mount is presented. A power of 150 kW with a gaussian output pattern was measured. The gaussian content in the output was 98% with less than 1% of depolarization. By optimizing the magnetic field at fixed frequency, a maximum efficiency of 15% was reached. (author) 12 figs., 2 tabs., 22 refs.

  13. Phase transitions in the random field Ising model in the presence of a transverse field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Chakrabarti, B.K. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Stinchcombe, R.B. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Department of Physics, Oxford (United Kingdom)

    1996-09-07

    We have studied the phase transition behaviour of the random field Ising model in the presence of a transverse (or tunnelling) field. The mean field phase diagram has been studied in detail, and in particular the nature of the transition induced by the tunnelling (transverse) field at zero temperature. Modified hyper-scaling relation for the zero-temperature transition has been derived using the Suzuki-Trotter formalism and a modified 'Harris criterion'. Mapping of the model to a randomly diluted antiferromagnetic Ising model in uniform longitudinal and transverse field is also given. (author)

  14. Beam shape coefficients of the most general focused Gaussian laser beam for light scattering applications

    International Nuclear Information System (INIS)

    Lock, James A.

    2013-01-01

    The vector wave equation for electromagnetic waves, when subject to a number of constraints corresponding to propagation of a monochromatic beam, reduces to a pair of inhomogeneous differential equations describing the transverse electric and transverse magnetic polarized beam components. These differential equations are solved analytically to obtain the most general focused Gaussian beam to order s 4 , where s is the beam confinement parameter, and various properties of the most general Gaussian beam are then discussed. The radial fields of the most general Gaussian beam are integrated to obtain the on-axis beam shape coefficients of the generalized Lorenz–Mie theory formalism of light scattering. The beam shape coefficients are then compared with those of the localized Gaussian beam model and the Davis–Barton fifth-order symmetrized beam. -- Highlights: ► Derive the differential equation for the most general Gaussian beam. ► Solve the differential equation for the most general Gaussian beam. ► Determine the properties of the most general Gaussian beam. ► Determine the beam shape coefficients of the most general Gaussian beam

  15. Vortices in Gaussian beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available , t0)} = P(du, dv) {FR{g(u, v, t0)}} Replacement: u→ du = t− t0 i2 ∂ ∂u′ v → dv = t− t0 i2 ∂ ∂v′ CSIR National Laser Centre – p.13/30 Differentiation i.s.o integration Evaluate the integral over the Gaussian beam (once and for all). Then, instead... . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...

  16. Hunting for primordial non-Gaussianity in the cosmic microwave background

    International Nuclear Information System (INIS)

    Komatsu, Eiichiro

    2010-01-01

    Since the first limit on the (local) primordial non-Gaussianity parameter, f NL , was obtained from the Cosmic Background Explorer (COBE) data in 2002, observations of the cosmic microwave background (CMB) have been playing a central role in constraining the amplitudes of various forms of non-Gaussianity in primordial fluctuations. The current 68% limit from the 7-year data of the Wilkinson Microwave Anisotropy Probe (WMAP) is f NL = 32 ± 21, and the Planck satellite is expected to reduce the uncertainty by a factor of 4 in a few years from now. If f NL >> 1 is found by Planck with high statistical significance, all single-field models of inflation would be ruled out. Moreover, if the Planck satellite finds f NL ∼ 30, then it would be able to test a broad class of multi-field models using the 4-point function (trispectrum) test of τ NL ≥ (6f NL /5) 2 . In this paper, we review the methods (optimal estimator), results (WMAP 7-year) and challenges (secondary anisotropy, second-order effect and foreground) of measuring primordial non-Gaussianity from the CMB data, present a science case for the trispectrum and conclude with future prospects.

  17. Random field assessment of nanoscopic inhomogeneity of bone.

    Science.gov (United States)

    Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu

    2010-12-01

    Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Baysian estimation of P(X > x) from a small sample of Gaussian data

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2017-01-01

    The classical statistical uncertainty problem of estimation of upper tail probabilities on the basis of a small sample of observations of a Gaussian random variable is considered. Predictive posterior estimation is discussed, adopting the standard statistical model with diffuse priors of the two...

  19. Quantifying the non-Gaussianity in the EoR 21-cm signal through bispectrum

    Science.gov (United States)

    Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh; Watkinson, Catherine A.; Bharadwaj, Somnath; Mellema, Garrelt

    2018-05-01

    The epoch of reionization (EoR) 21-cm signal is expected to be highly non-Gaussian in nature and this non-Gaussianity is also expected to evolve with the progressing state of reionization. Therefore the signal will be correlated between different Fourier modes (k). The power spectrum will not be able capture this correlation in the signal. We use a higher order estimator - the bispectrum - to quantify this evolving non-Gaussianity. We study the bispectrum using an ensemble of simulated 21-cm signal and with a large variety of k triangles. We observe two competing sources driving the non-Gaussianity in the signal: fluctuations in the neutral fraction (x_{H I}) field and fluctuations in the matter density field. We find that the non-Gaussian contribution from these two sources varies, depending on the stage of reionization and on which k modes are being studied. We show that the sign of the bispectrum works as a unique marker to identify which among these two components is driving the non-Gaussianity. We propose that the sign change in the bispectrum, when plotted as a function of triangle configuration cos θ and at a certain stage of the EoR can be used as a confirmative test for the detection of the 21-cm signal. We also propose a new consolidated way to visualize the signal evolution (with evolving \\bar{x}_{H I} or redshift), through the trajectories of the signal in a power spectrum and equilateral bispectrum i.e. P(k) - B(k, k, k) space.

  20. Gaussian and 1/N approximations in semiclassical cosmology

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Paz, J.P.

    1989-01-01

    We study the λphi 4 theory and the interacting O(N) model in a curved background using the Gaussian approximation for the former and the large-N approximation for the latter. We obtain the renormalized version of the semiclassical Einstein equations having in mind a future application of these models to investigate the physics of the very early Universe. We show that, while the Gaussian approximation has two different phases, in the large-N limit only one is present. The different features of the two phases are analyzed at the level of the effective field equations. We discuss the initial-value problem and find the initial conditions that make the theory renormalizable. As an example, we study the de Sitter self-consistent solutions of the semiclassical Einstein equations. Finally, for an identically zero mean value of the field we find the evolution equations for the classical field Ω(x) = (λ 2 >)/sup 1/2/ and the spacetime metric. They are very similar to the ones obtained by replacing the classical potential by the one-loop effective potential in the classical equations but do not have the drawbacks of the one-loop approximation

  1. AUTONOMOUS GAUSSIAN DECOMPOSITION

    International Nuclear Information System (INIS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes

  2. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  3. Random walks, critical phenomena, and triviality in quantum field theory

    International Nuclear Information System (INIS)

    Fernandez, R.; Froehlich, J.; Sokal, A.D.

    1992-01-01

    The subject of this book is equilibrium statistical mechanics - in particular the theory of critical phenomena - and quantum field theory. A general review of the theory of critical phenomena in spin systems, field theories, and random-walk and random-surface models is presented. Among the more technical topics treated in this book, the central theme is the use of random-walk representations as a tool to derive correlation inequalities. The consequences of these inequalities for critical-exponent theory and the triviality question in quantum field theory are expounded in detail. The book contains some previously unpublished results. It addresses both the researcher and the graduate student in modern statistical mechanics and quantum field theory. (orig.)

  4. Non-Gaussianities in multifield DBI inflation with a waterfall phase transition

    Science.gov (United States)

    Kidani, Taichi; Koyama, Kazuya; Mizuno, Shuntaro

    2012-10-01

    We study multifield Dirac-Born-Infeld (DBI) inflation models with a waterfall phase transition. This transition happens for a D3 brane moving in the warped conifold if there is an instability along angular directions. The transition converts the angular perturbations into the curvature perturbation. Thanks to this conversion, multifield models can evade the stringent constraints that strongly disfavor single field ultraviolet (UV) DBI inflation models in string theory. We explicitly demonstrate that our model satisfies current observational constraints on the spectral index and equilateral non-Gaussianity as well as the bound on the tensor to scalar ratio imposed in string theory models. In addition, we show that large local type non-Gaussianity is generated together with equilateral non-Gaussianity in this model.

  5. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    Science.gov (United States)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  6. Gaussian point count statistics for families of curves over a fixed finite field

    OpenAIRE

    Kurlberg, Par; Wigman, Igor

    2010-01-01

    We produce a collection of families of curves, whose point count statistics over F_p becomes Gaussian for p fixed. In particular, the average number of F_p points on curves in these families tends to infinity.

  7. General immunity and superadditivity of two-way Gaussian quantum cryptography.

    Science.gov (United States)

    Ottaviani, Carlo; Pirandola, Stefano

    2016-03-01

    We consider two-way continuous-variable quantum key distribution, studying its security against general eavesdropping strategies. Assuming the asymptotic limit of many signals exchanged, we prove that two-way Gaussian protocols are immune to coherent attacks. More precisely we show the general superadditivity of the two-way security thresholds, which are proven to be higher than the corresponding one-way counterparts in all cases. We perform the security analysis first reducing the general eavesdropping to a two-mode coherent Gaussian attack, and then showing that the superadditivity is achieved by exploiting the random on/off switching of the two-way quantum communication. This allows the parties to choose the appropriate communication instances to prepare the key, accordingly to the tomography of the quantum channel. The random opening and closing of the circuit represents, in fact, an additional degree of freedom allowing the parties to convert, a posteriori, the two-mode correlations of the eavesdropping into noise. The eavesdropper is assumed to have no access to the on/off switching and, indeed, cannot adapt her attack. We explicitly prove that this mechanism enhances the security performance, no matter if the eavesdropper performs collective or coherent attacks.

  8. Multi-brid inflation and non-gaussianity

    International Nuclear Information System (INIS)

    Sasaki, Misao

    2008-01-01

    We consider a class of multi-component hybrid inflation models whose evolution may be analytically solved under the slow-roll approximation. We call it multi-brid inflation (or n-brid inflation where n stands for the number of inflaton fields). As an explicit example, we consider a two-brid inflation model, in which the inflaton potentials are of exponential type and a waterfall field that terminates inflation has the standard quartic potential with two minima. Using the δN formalism, we derive an expression for the curvature perturbation valid to full nonlinear order. Then we give an explicit expression for the curvature perturbation to second order in the inflaton perturbation. We find that the final from of the curvature perturbation depends crucially on how the inflation ends. Using this expression, we present closed analytical expressions for the spectrum of the curvature perturbation Ps(k), the spectral index n s , the tensor to scalar ratio r, and the non-Gaussian parameter f NL local , in terms of the model parameters. We find that a wide range of the parameter space (n s , r, f NL local ) can be covered by varying the model parameters within a physically reasonable range. In particular, for plausible values of the model parameters, we may have a large non-Gaussianity f NL local ∼10-100. This is in sharp contrast to the case of single-field hybrid inflation in which these parameters are tightly constrained. (author)

  9. Geometry of Gaussian quantum states

    International Nuclear Information System (INIS)

    Link, Valentin; Strunz, Walter T

    2015-01-01

    We study the Hilbert–Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert–Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert–Schmidt measure. (paper)

  10. Correlation diagnostics of random spatially nonuniform optical fields

    International Nuclear Information System (INIS)

    Angel'skii, O.V.

    1992-01-01

    This review examines some questions concerning the capabilities of interference and polarization-interference correlation diagnostics of the amplitude-phase characteristics of random optical fields for the purpose of identifying these fields and then studying the corresponding objects. The diagnostics of random phase objects is discussed separately in the case in which the phase dispersion of the inhomogeneities is less than and greater than one. The outlook is promising for the use of the correlation dimensionality of chaos in a field as a diagnostic parameter. It is also shown that the use of interference principles for a parallel processing of large data files can substantially increase the speed of processing systems. 32 refs., 8 figs

  11. Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering

    Institute of Scientific and Technical Information of China (English)

    FENG Yu-hu

    2005-01-01

    By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.

  12. Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture

    International Nuclear Information System (INIS)

    Ji, Se-Wan; Nha, Hyunchul; Kim, M S

    2015-01-01

    It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements. (paper)

  13. Parametric Level Statistics in Random Matrix Theory: Exact Solution

    International Nuclear Information System (INIS)

    Kanzieper, E.

    1999-01-01

    During recent several years, the theory of non-Gaussian random matrix ensembles has experienced a sound progress motivated by new ideas in quantum chromodynamics (QCD) and mesoscopic physics. Invariant non-Gaussian random matrix models appear to describe universal features of low-energy part of the spectrum of Dirac operator in QCD, and electron level statistics in normal conducting-superconducting hybrid structures. They also serve as a basis for constructing the toy models of universal spectral statistics expected at the edge of the metal-insulator transition. While conventional spectral statistics has received a detailed study in the context of RMT, quite a bit is known about parametric level statistics in non-Gaussian random matrix models. In this communication we report about exact solution to the problem of parametric level statistics in unitary invariant, U(N), non-Gaussian ensembles of N x N Hermitian random matrices with either soft or strong level confinement. The solution is formulated within the framework of the orthogonal polynomial technique and is shown to depend on both the unfolded two-point scalar kernel and the level confinement through a double integral transformation which, in turn, provides a constructive tool for description of parametric level correlations in non-Gaussian RMT. In the case of soft level confinement, the formalism developed is potentially applicable to a study of parametric level statistics in an important class of random matrix models with finite level compressibility expected to describe a disorder-induced metal-insulator transition. In random matrix ensembles with strong level confinement, the solution presented takes a particular simple form in the thermodynamic limit: In this case, a new intriguing connection relation between the parametric level statistics and the scalar two-point kernel of an unperturbed ensemble is demonstrated to emerge. Extension of the results obtained to higher-order parametric level statistics is

  14. A Campbell random process

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1993-02-01

    The Campbell process is a stationary random process which can have various correlation functions, according to the choice of an elementary response function. The statistical properties of this process are presented. A numerical algorithm and a subroutine for generating such a process is built up and tested, for the physically interesting case of a Campbell process with Gaussian correlations. The (non-Gaussian) probability distribution appears to be similar to the Gamma distribution

  15. Non-Gaussian signatures in the cosmic background radiation from warm inflation

    International Nuclear Information System (INIS)

    Gupta, S.; Heavens, A.F.; Berera, A.; Matarrese, S.

    2002-01-01

    We calculate the bispectrum of the gravitational field fluctuations generated during warm inflation, where dissipation of the vacuum potential during inflation is the mechanism for structure formation. The bispectrum is nonzero because of the self-interaction of the scalar field. We compare the predictions with those of standard, or 'supercooled', inflationary models, and consider the detectability of these levels of non-Gaussianity in the bispectrum of the cosmic microwave background. We find that the levels of non-Gaussianity for warm and supercooled inflation are comparable, and overridden by the contribution to the bispectrum due to other physical effects. We also conclude that the resulting bispectrum values will be undetectable in the cosmic microwave background for both the MAP and Planck Surveyor satellites

  16. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  17. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres). This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1–1.6 μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide

  18. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres). This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1–1.6 μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide

  19. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  20. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  1. No Eigenvalues Outside the Limiting Support of Generally Correlated Gaussian Matrices

    KAUST Repository

    Kammoun, Abla; Alouini, Mohamed-Slim

    2016-01-01

    This paper investigates the behaviour of the spectrum of generally correlated Gaussian random matrices whose columns are zero-mean independent vectors but have different correlations, under the specific regime where the number of their columns and that of their rows grow at infinity with the same pace. Following the approach proposed in [1], we prove that under some mild conditions, there is no eigenvalue outside the limiting support of generally correlated Gaussian matrices. As an outcome of this result, we establish that the smallest singular value of these matrices is almost surely greater than zero. From a practical perspective, this control of the smallest singular value is paramount to applications from statistical signal processing and wireless communication, in which this kind of matrices naturally arise.

  2. No Eigenvalues Outside the Limiting Support of Generally Correlated Gaussian Matrices

    KAUST Repository

    Kammoun, Abla

    2016-05-04

    This paper investigates the behaviour of the spectrum of generally correlated Gaussian random matrices whose columns are zero-mean independent vectors but have different correlations, under the specific regime where the number of their columns and that of their rows grow at infinity with the same pace. Following the approach proposed in [1], we prove that under some mild conditions, there is no eigenvalue outside the limiting support of generally correlated Gaussian matrices. As an outcome of this result, we establish that the smallest singular value of these matrices is almost surely greater than zero. From a practical perspective, this control of the smallest singular value is paramount to applications from statistical signal processing and wireless communication, in which this kind of matrices naturally arise.

  3. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    Science.gov (United States)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  4. Numerical modeling of Gaussian beam propagation and diffraction in inhomogeneous media based on the complex eikonal equation

    Science.gov (United States)

    Huang, Xingguo; Sun, Hui

    2018-05-01

    Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.

  5. The use of random walk in field theory

    International Nuclear Information System (INIS)

    Brydges, D.

    1984-01-01

    Ferromagnetic spin systems and gauge theories where the gauge group is topologically a sphere, e.g. Z 2 , U(1) and SU(2) are related to the theory of random walk and random surfaces respectively. I survey some applications of this theme to the phi 4 field theories. (orig.)

  6. Efficient Training Methods for Conditional Random Fields

    National Research Council Canada - National Science Library

    Sutton, Charles A

    2008-01-01

    .... In this thesis, I investigate efficient training methods for conditional random fields with complex graphical structure, focusing on local methods which avoid propagating information globally along the graph...

  7. Treatment of non-Gaussian tails of multiple Coulomb scattering in track fitting with a Gaussian-sum filter

    International Nuclear Information System (INIS)

    Strandlie, A.; Wroldsen, J.

    2006-01-01

    If any of the probability densities involved in track fitting deviate from the Gaussian assumption, it is plausible that a non-linear estimator which better takes the actual shape of the distribution into account can do better. One such non-linear estimator is the Gaussian-sum filter, which is adequate if the distributions under consideration can be approximated by Gaussian mixtures. The main purpose of this paper is to present a Gaussian-sum filter for track fitting, based on a two-component approximation of the distribution of angular deflections due to multiple scattering. In a simulation study within a linear track model the Gaussian-sum filter is shown to be a competitive alternative to the Kalman filter. Scenarios at various momenta and with various maximum number of components in the Gaussian-sum filter are considered. Particularly at low momenta the Gaussian-sum filter yields a better estimate of the uncertainties than the Kalman filter, and it is also slightly more precise than the latter

  8. Palm distributions for log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus Plenge

    2017-01-01

    This paper establishes a remarkable result regarding Palm distributions for a log Gaussian Cox process: the reduced Palm distribution for a log Gaussian Cox process is itself a log Gaussian Cox process that only differs from the original log Gaussian Cox process in the intensity function. This new...... result is used to study functional summaries for log Gaussian Cox processes....

  9. Optimal covariance selection for estimation using graphical models

    OpenAIRE

    Vichik, Sergey; Oshman, Yaakov

    2011-01-01

    We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...

  10. High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.

    Science.gov (United States)

    Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei

    2017-07-01

    Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.

  11. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  12. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  13. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  14. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Science.gov (United States)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  15. Breaking Gaussian incompatibility on continuous variable quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kiukas, Jukka, E-mail: jukka.kiukas@aber.ac.uk [Department of Mathematics, Aberystwyth University, Penglais, Aberystwyth, SY23 3BZ (United Kingdom); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-08-15

    We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.

  16. Entropy estimates for simple random fields

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    1995-01-01

    We consider the problem of determining the maximum entropy of a discrete random field on a lattice subject to certain local constraints on symbol configurations. The results are expected to be of interest in the analysis of digitized images and two dimensional codes. We shall present some examples...... of binary and ternary fields with simple constraints. Exact results on the entropies are known only in a few cases, but we shall present close bounds and estimates that are computationally efficient...

  17. Time-domain least-squares migration using the Gaussian beam summation method

    Science.gov (United States)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  18. CMB constraints on running non-Gaussianity

    OpenAIRE

    Oppizzi, Filippo; Liguori, Michele; Renzi, Alessandro; Arroja, Frederico; Bartolo, Nicola

    2017-01-01

    We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\\rm NL}$ running spectral index, $n_{\\rm NG}$, using WMAP 9-year data. Our final bounds (68\\% C.L.) read $-0.3< n_{\\rm NG}

  19. The potts chain in a random field: an exact solution

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.; Santos, Raimundo R. dos.

    1984-01-01

    An exact solution is presented for the one-dimensional q-state Potts model in a quenched random field. The ferromagnetic phase is unstable against any small random field perturbation. The correlation function and the Edwards-Anderson order parameter Q are discussed. For finite q only the phase with Q ≠ 0 is present. (Author) [pt

  20. Fluctuation relations with intermittent non-Gaussian variables.

    Science.gov (United States)

    Budini, Adrián A

    2011-12-01

    Nonequilibrium stationary fluctuations may exhibit a special symmetry called fluctuation relations (FRs). Here, we show that this property is always satisfied by the subtraction of two random and independent variables related by a thermodynamiclike change of measure. Taking one of them as a modulated Poisson process, it is demonstrated that intermittence and FRs are compatible properties that may coexist naturally. Strong non-Gaussian features characterize the probability distribution and its generating function. Their associated large deviation functions develop a "kink" at the origin and a plateau regime respectively. Application of this model in different stationary nonequilibrium situations is discussed.

  1. Markov Random Fields on Triangle Meshes

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas

    2010-01-01

    In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process label...

  2. Hybrid algorithm of ensemble transform and importance sampling for assimilation of non-Gaussian observations

    Directory of Open Access Journals (Sweden)

    Shin'ya Nakano

    2014-05-01

    Full Text Available A hybrid algorithm that combines the ensemble transform Kalman filter (ETKF and the importance sampling approach is proposed. Since the ETKF assumes a linear Gaussian observation model, the estimate obtained by the ETKF can be biased in cases with nonlinear or non-Gaussian observations. The particle filter (PF is based on the importance sampling technique, and is applicable to problems with nonlinear or non-Gaussian observations. However, the PF usually requires an unrealistically large sample size in order to achieve a good estimation, and thus it is computationally prohibitive. In the proposed hybrid algorithm, we obtain a proposal distribution similar to the posterior distribution by using the ETKF. A large number of samples are then drawn from the proposal distribution, and these samples are weighted to approximate the posterior distribution according to the importance sampling principle. Since the importance sampling provides an estimate of the probability density function (PDF without assuming linearity or Gaussianity, we can resolve the bias due to the nonlinear or non-Gaussian observations. Finally, in the next forecast step, we reduce the sample size to achieve computational efficiency based on the Gaussian assumption, while we use a relatively large number of samples in the importance sampling in order to consider the non-Gaussian features of the posterior PDF. The use of the ETKF is also beneficial in terms of the computational simplicity of generating a number of random samples from the proposal distribution and in weighting each of the samples. The proposed algorithm is not necessarily effective in case that the ensemble is located distant from the true state. However, monitoring the effective sample size and tuning the factor for covariance inflation could resolve this problem. In this paper, the proposed hybrid algorithm is introduced and its performance is evaluated through experiments with non-Gaussian observations.

  3. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process

    OpenAIRE

    Rios, Gonzalo; Tobar, Felipe

    2018-01-01

    Gaussian processes (GPs) are Bayesian nonparametric generative models that provide interpretability of hyperparameters, admit closed-form expressions for training and inference, and are able to accurately represent uncertainty. To model general non-Gaussian data with complex correlation structure, GPs can be paired with an expressive covariance kernel and then fed into a nonlinear transformation (or warping). However, overparametrising the kernel and the warping is known to, respectively, hin...

  4. Cosmological information in Gaussianized weak lensing signals

    Science.gov (United States)

    Joachimi, B.; Taylor, A. N.; Kiessling, A.

    2011-11-01

    Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non

  5. Non-Gaussian halo assembly bias

    International Nuclear Information System (INIS)

    Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro

    2010-01-01

    The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively

  6. Initial conditions for inflation and the energy scale of SUSY-breaking from the (nearly) gaussian sky

    CERN Document Server

    Álvarez-Gaumé, Luis; Jimenez, Raul

    We show how general initial conditions for small field inflation can be obtained in multi-field models. This is provided by non-linear angular friction terms in the inflaton that provide a phase of non-slow-roll inflation before the slow-roll inflation phase. This in turn provides a natural mechanism to star small-field slow-roll at nearly zero velocity for arbitrary initial conditions. We also show that there is a relation between the scale of SUSY breaking sqrt (f) and the amount of non-gaussian fluctuations generated by the inflaton. In particular, we show that in the local non-gaussian shape there exists the relation sqrt (f) = 10^{13} GeV sqrt (f_NL). With current observational limits from Planck, and adopting the minimum amount of non-gaussian fluctuations allowed by single-field inflation, this provides a very tight constraint for the SUSY breaking energy scale sqrt (f) = 3-7 x 10^{13} GeV at 95% confidence. Further limits, or detection, from next year's Planck polarisation data will further tighten th...

  7. Randomized central limit theorems: A unified theory.

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-08-01

    The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles' aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles' extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic-scaling all ensemble components by a common deterministic scale. However, there are "random environment" settings in which the underlying scaling schemes are stochastic-scaling the ensemble components by different random scales. Examples of such settings include Holtsmark's law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)-in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes-and present "randomized counterparts" to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.

  8. Level density of random matrices for decaying systems

    International Nuclear Information System (INIS)

    Haake, F.; Izrailev, F.; Saher, D.; Sommers, H.-J.

    1991-01-01

    Analytical and numerical results for the level density of a certain class of random non-Hermitian matrices H=H+iΓ are presented. The conservative part H belongs to the Gaussian orthogonal ensemble while the damping piece Γ is quadratic in Gaussian random numbers and may describe the decay of resonances through various channels. In the limit of a large matrix dimension the level density assumes a surprisingly simple dependence on the relative strength of the damping and the number of channels. 18 refs.; 4 figs

  9. On plasma stability under anisotropic random electric field influence

    International Nuclear Information System (INIS)

    Rabich, L.N.; Sosenko, P.P.

    1987-01-01

    The influence of anisotropic random field on plasma stability is studied. The thresholds and instability increments are obtained. The stabilizing influence of frequency missmatch and external magnetic field is pointed out

  10. An approximate fractional Gaussian noise model with computational cost

    KAUST Repository

    Sørbye, Sigrunn H.

    2017-09-18

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood-based approach is ${\\\\mathcal O}(n^{2})$, exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational cost increases to ${\\\\mathcal O}(n^{3})$. This paper presents an approximate fGn model of ${\\\\mathcal O}(n)$ computational cost, both with direct or indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of independent first-order autoregressive processes, fitting the parameters of the approximation to match the autocorrelation function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate fit using only four components. The performance of the approximate fGn model is demonstrated in simulations and two real data examples.

  11. The random walk model of intrafraction movement

    International Nuclear Information System (INIS)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-01-01

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction Gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-Gaussian corrections from the random walk model. (paper)

  12. The random walk model of intrafraction movement.

    Science.gov (United States)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-04-07

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-gaussian corrections from the random walk model.

  13. Generalized Fokker-Planck equations for coloured, multiplicative Gaussian noise

    International Nuclear Information System (INIS)

    Cetto, A.M.; Pena, L. de la; Velasco, R.M.

    1984-01-01

    With the help of Novikov's theorem, it is possible to derive a master equation for a coloured, multiplicative, Gaussian random process; the coefficients of this master equation satisfy a complicated auxiliary integro-differential equation. For small values of the Kubo number, the master equation reduces to an approximate generalized Fokker-Planck equation. The diffusion coefficient is explicitly written in terms of correlation functions. Finally, a straightforward and elementary second order perturbative treatment is proposed to derive the same approximate Fokker-Planck equation. (author)

  14. From plane waves to local Gaussians for the simulation of correlated periodic systems

    International Nuclear Information System (INIS)

    Booth, George H.; Tsatsoulis, Theodoros; Grüneis, Andreas; Chan, Garnet Kin-Lic

    2016-01-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  15. From plane waves to local Gaussians for the simulation of correlated periodic systems

    Energy Technology Data Exchange (ETDEWEB)

    Booth, George H., E-mail: george.booth@kcl.ac.uk [Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Chan, Garnet Kin-Lic [Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  16. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems.

    Science.gov (United States)

    Krohling, Renato A; Coelho, Leandro dos Santos

    2006-12-01

    In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.

  17. Quantum beamstrahlung from gaussian bunches

    International Nuclear Information System (INIS)

    Chen, P.

    1987-08-01

    The method of Baier and Katkov is applied to calculate the correction terms to the Sokolov-Ternov radiation formula due to the variation of the magnetic field strength along the trajectory of a radiating particle. We carry the calculation up to the second order in the power expansion of B tau/B, where tau is the formation time of radiation. The expression is then used to estimate the quantum beamstrahlung average energy loss from e + e - bunches with gaussian distribution in bunch currents. We show that the effect of the field variation is to reduce the average energy loss from previous calculations based on the Sokolov-Ternov formula or its equivalent. Due to the limitation of our method, only an upper bound of the reduction is obtained. 18 refs

  18. A ferromagnetic chain in a random weak field

    Science.gov (United States)

    Avgin, I.

    1996-10-01

    The harmonic magnon modes in a Heisenberg ferromagnetic chain in a random weak field are studied. The Lyapunov exponent for the uniform ( k = 0) mode is computed using the coherent potential approximation (CPA) in the weak-disorder limit. The CPA results are compared with the numerical and weak-disorder expansions of various random systems. We have found that the inverse localization length and the integrated density of states have anomalous power law behaviour as reported earlier. The CPA also reproduces the dispersion law for the same system, calculated by Pimentel and Stinchcombe using the real space renormalization scaling technique. A brief comment is also made for the uniform weak-field case.

  19. Joint Conditional Random Field Filter for Multi-Object Tracking

    Directory of Open Access Journals (Sweden)

    Luo Ronghua

    2011-03-01

    Full Text Available Object tracking can improve the performance of mobile robot especially in populated dynamic environments. A novel joint conditional random field Filter (JCRFF based on conditional random field with hierarchical structure is proposed for multi-object tracking by abstracting the data associations between objects and measurements to be a sequence of labels. Since the conditional random field makes no assumptions about the dependency structure between the observations and it allows non-local dependencies between the state and the observations, the proposed method can not only fuse multiple cues including shape information and motion information to improve the stability of tracking, but also integrate moving object detection and object tracking quite well. At the same time, implementation of multi-object tracking based on JCRFF with measurements from the laser range finder on a mobile robot is studied. Experimental results with the mobile robot developed in our lab show that the proposed method has higher precision and better stability than joint probabilities data association filter (JPDAF.

  20. Amnestically Induced Persistence in Random Walks

    Science.gov (United States)

    Cressoni, J. C.; da Silva, Marco Antonio Alves; Viswanathan, G. M.

    2007-02-01

    We study how the Hurst exponent α depends on the fraction f of the total time t remembered by non-Markovian random walkers that recall only the distant past. We find that otherwise nonpersistent random walkers switch to persistent behavior when inflicted with significant memory loss. Such memory losses induce the probability density function of the walker’s position to undergo a transition from Gaussian to non-Gaussian. We interpret these findings of persistence in terms of a breakdown of self-regulation mechanisms and discuss their possible relevance to some of the burdensome behavioral and psychological symptoms of Alzheimer’s disease and other dementias.

  1. Diffusion of charged particles in strong large-scale random and regular magnetic fields

    International Nuclear Information System (INIS)

    Mel'nikov, Yu.P.

    2000-01-01

    The nonlinear collision integral for the Green's function averaged over a random magnetic field is transformed using an iteration procedure taking account of the strong random scattering of particles on the correlation length of the random magnetic field. Under this transformation the regular magnetic field is assumed to be uniform at distances of the order of the correlation length. The single-particle Green's functions of the scattered particles in the presence of a regular magnetic field are investigated. The transport coefficients are calculated taking account of the broadening of the cyclotron and Cherenkov resonances as a result of strong random scattering. The mean-free path lengths parallel and perpendicular to the regular magnetic field are found for a power-law spectrum of the random field. The analytical results obtained are compared with the experimental data on the transport ranges of solar and galactic cosmic rays in the interplanetary magnetic field. As a result, the conditions for the propagation of cosmic rays in the interplanetary space and a more accurate idea of the structure of the interplanetary magnetic field are determined

  2. Positive random fields for modeling material stiffness and compliance

    DEFF Research Database (Denmark)

    Hasofer, Abraham Michael; Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob

    1998-01-01

    Positive random fields with known marginal properties and known correlation function are not numerous in the literature. The most prominent example is the log\\-normal field for which the complete distribution is known and for which the reciprocal field is also lognormal. It is of interest to supp...

  3. Non-Gaussian nature of glassy dynamics by cage to cage motion

    International Nuclear Information System (INIS)

    Vorselaars, Bart; Lyulin, Alexey V.; Michels, M. A. J.; Karatasos, K.

    2007-01-01

    A model based on a single Brownian particle moving in a periodic effective field is used to understand the non-Gaussian dynamics in glassy systems of cage escape and subsequent recaging, often thought to be caused by a heterogeneous glass structure. The results are compared to molecular-dynamics simulations of systems with varying complexity: quasi-two-dimensional colloidlike particles, atactic polystyrene, and a dendritic glass. The model nicely describes generic features of all three topologically different systems, in particular around the maximum of the non-Gaussian parameter. This maximum is a measure for the average distance between cages

  4. Localization for random Schroedinger operators with correlated potentials

    Energy Technology Data Exchange (ETDEWEB)

    Von Dreifus, H [Princeton Univ., NJ (USA). Dept. of Physics; Klein, A [California Univ., Irvine (USA). Dept. of Mathematics

    1991-08-01

    We prove localization at high disorder or low energy for lattice Schroedinger operators with random potentials whose values at different lattice sites are correlated over large distances. The class of admissible random potentials for our multiscale analysis includes potentials with a stationary Gaussian distribution whose covariance function C(x,y) decays as vertical strokex-yvertical stroke{sup -{theta}}, where {theta}>0 can be arbitrarily small, and potentials whose probability distribution is a completely analytical Gibbs measure. The result for Gaussian potentials depends on a multivariable form of Nelson's best possible hypercontractive estimate. (orig.).

  5. Implementation and application of the gaussian decomposition software for NaI gamma-ray spectrometry data

    International Nuclear Information System (INIS)

    Zeng Lihui; Wang Nanping; Tian Gui

    2012-01-01

    In order to extract the information of peaks in different energy from the data of overlapping peaks in environmental gamma spectrometer, a spectrum data Gaussian decomposition software was designed based on least-square Gaussian fitting method. The interface of this software is friendly, it can complete the decomposition of overlapping peaks in gamma spectrometer quickly by the way of man-machines interactive. The result of field measured data decomposed by this software indicates that the Gaussian decomposition software can efficiently extract 137 Cs spectra from over lapping peaks, which has significance to estimate the human nuclide contamination in the environment. (authors)

  6. Implementation and application of the gaussian decomposition software for NaI gamma-ray spectrometry data

    International Nuclear Information System (INIS)

    Zeng Lihui; Wang Nanping Tian Gui

    2011-01-01

    In order to extract the information of peaks in different energy from the data of overlapping peaks in environmental gamma spectrometer, a spectrum data Gaussian decomposition soft is designed based on least- square Gaussian fitting method. The interface of this software is friendly, it can complete the decomposition of overlapping peaks in gamma spectrometer quickly by the way of man-machines interactive. The result that applied gamma spectrometry to data analysis in the field measurement indicates that the Gaussian decomposition soft can efficiently extract 137 Cs from overlapping peaks which has significance to assess the human nuclide contamination of environment. (authors)

  7. The transition of a Gaussian chain end-grafted at a penetrable surface

    NARCIS (Netherlands)

    Skvortsov, A.M.; Klusken, L.I.; Male, van J.; Leermakers, F.A.M.

    2000-01-01

    A Gaussian chain at a liquid–liquid interface is considered. The solvents are represented by an external potential field u that has a constant value in one half-space and is zero elsewhere. One end of the chain is fixed at the boundary where the external potential field changes its value. For this

  8. A detailed statistical representation of the local structure of optical vortices in random wavefields

    International Nuclear Information System (INIS)

    Lindgren, Georg

    2012-01-01

    The statistical properties near phase singularities in a complex wavefield are here studied by means of the conditional distributions of the real and imaginary Gaussian components, given a common zero crossing point. The exact distribution is expressed as a Slepian model, where a regression term provides the main structure, with parameters given by the gradients of the Gaussian components at the singularity, and Gaussian non-stationary residuals that provide local variability. This technique differs from the linearization (Taylor expansion) technique commonly used. The empirically and theoretically verified elliptic eccentricity of the intensity contours in the vortex core is a property of the regression term, but with different normalization compared to the classical theory. The residual term models the statistical variability around these ellipses. The radii of the circular contours of the current magnitude are similarly modified by the new regression expansion and also here the random deviations are modeled by the residual field. (paper)

  9. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    Science.gov (United States)

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2015-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  10. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    Science.gov (United States)

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  11. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    Science.gov (United States)

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  12. Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Full Text Available The combination of positron emission tomography (PET and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient (DSC was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  13. UV-protected (natural) inflation: primordial fluctuations and non-gaussian features

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano; Watanabe, Yuki, E-mail: cristiano.germani@physik.lmu.de, E-mail: yuki.watanabe@physik.lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-University, Theresienstrasse 37, 80333 Munich (Germany)

    2011-07-01

    We consider the UV-protected inflation, where the inflaton potential is obtained by quantum (one-loop) breaking of a global symmetry into a discrete symmetry. In this model, all coupling scales are sub-Planckian. This is achieved by coupling the inflaton kinetic term to the Einstein tensor such that the friction is enhanced gravitationally at high energies. In this respect, this new interaction makes virtually any potential adequate for inflation while keeping the system perturbative unitary. We show that even if the gravitationally enhanced friction intrinsically contains new nonlinearities, the UV-protected inflation (and any similar models) behaves as a single field scenario with red tilted spectrum and potentially detectable gravitational waves. Interestingly enough, we find that non-Gaussianity of the curvature perturbations in the local form are completely dominated by the nonlinear gauge transformation from the spatially flat to uniform-field gauge and/or by parity violating interactions of the inflaton and gauge bosons. In particular, the parity violating interactions may produce detectable non-Gaussianity.

  14. Analytic matrix elements with shifted correlated Gaussians

    DEFF Research Database (Denmark)

    Fedorov, D. V.

    2017-01-01

    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....

  15. Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel

    Using theory on (conditionally) Gaussian processes with stationary increments developed in Barndorff-Nielsen et al. (2009, 2011), this paper presents a general semiparametric approach to conducting inference on the fractal index, α, of a time series. Our setup encompasses a large class of Gaussian...

  16. Specific heat of the Ising linear chain in a Random field

    International Nuclear Information System (INIS)

    Silva, P.R.; Sa Barreto, F.C. de

    1984-01-01

    Starting from correlation identities for the Ising model the effect of a random field on the one dimension version of the model is studied. Explicit results for the magnetization, the two-particle correlation function and the specific heat are obtained for an uncorrelated distribution of the random fields. (Author) [pt

  17. Entanglement in Gaussian matrix-product states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Ericsson, Marie

    2006-01-01

    Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states

  18. Large non-Gaussianity in non-minimal inflation

    CERN Document Server

    Gong, Jinn-Ouk

    2011-01-01

    We consider a simple inflation model with a complex scalar field coupled to gravity non-minimally. Both the modulus and the angular directions of the complex scalar are slowly rolling, leading to two-field inflation. The modulus direction becomes flat due to the non-minimal coupling, and the angular direction becomes a pseudo-Goldstone boson from a small breaking of the global U(1) symmetry. We show that large non-Gaussianity can be produced during slow-roll inflation under a reasonable assumption on the initial condition of the angular direction. This scenario may be realized in particle physics models such as the Standard Model with two Higgs doublets.

  19. The Gaussian cell two-point 'energy-like' equation : application to large-scale galaxy redshift and peculiar motion surveys

    NARCIS (Netherlands)

    Zaroubi, S; Branchini, E

    2005-01-01

    We introduce a simple linear equation relating the line-of-sight peculiar-velocity and density contrast correlation functions. The relation, which we call the Gaussian cell two-point 'energy-like' equation, is valid at the distant-observer limit and requires Gaussian smoothed fields. In the variance

  20. Non-Gaussianity from isocurvature perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)

    2008-11-15

    We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.

  1. Handbook of Gaussian basis sets

    International Nuclear Information System (INIS)

    Poirier, R.; Kari, R.; Csizmadia, I.G.

    1985-01-01

    A collection of a large body of information is presented useful for chemists involved in molecular Gaussian computations. Every effort has been made by the authors to collect all available data for cartesian Gaussian as found in the literature up to July of 1984. The data in this text includes a large collection of polarization function exponents but in this case the collection is not complete. Exponents for Slater type orbitals (STO) were included for completeness. This text offers a collection of Gaussian exponents primarily without criticism. (Auth.)

  2. The finite-temperature Gaussian effective potential from a variational principle

    International Nuclear Information System (INIS)

    Haugerud, H.; Ravndal, F.

    1990-08-01

    Writing the partition function for a scalar quantum field theory as a functional integral, it follows that the finite-temperature Gaussian effective potential is an upper limit to the free energy of the system. Explicit results are given for the anharmonic oscillator at finite temperature. 5 refs., 2 figs

  3. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy.

    Science.gov (United States)

    Antonov, N V; Kostenko, M M

    2014-12-01

    The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.

  4. A statistical theory on the turbulent diffusion of Gaussian puffs

    International Nuclear Information System (INIS)

    Mikkelsen, T.; Larsen, S.E.; Pecseli, H.L.

    1982-12-01

    The relative diffusion of a one-dimensional Gaussian cloud of particles is related to a two-particle covariance function in a homogeneous and stationary field of turbulence. A simple working approximation is suggested for the determination of this covariance function in terms of entirely Eulerian fields. Simple expressions are derived for the growth of the puff's standard deviation for diffusion times that are small compared to the integral time scale of the turbulence. (Auth.)

  5. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise

    International Nuclear Information System (INIS)

    Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2011-01-01

    We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.

  6. Trapping, percolation, and anomalous diffusion of particles in a two-dimensional random field

    International Nuclear Information System (INIS)

    Avellaneda, M.; Apelian, C.; Elliott, F. Jr.

    1993-01-01

    The authors analyze the advection of particles in a velocity field with Hamiltonian H(x,y) = bar V 1 y-bar V 2 x + W 1 (y) - W 2 (x), where W i , i=1,2, are random functions with stationary, independent increments. In the absence of molecular diffusion, the particle dynamics are sensitive to the streamline topology, which depends on the mean-to-fluctuations ratio p=max(|bar V 1 |/bar U;|bar V 2 |/bar U), with bar U = [|W' 1 | 2 ] 1/2 = rms fluctuations. The model is exactly solvable for p≥1 and well suited for Monte Carlo simulations for all p. Statistics are considered of streamlines for p=0, deriving power laws for the escape probability and the length of escaping trajectories for a box of size L much-gt 1. Also obtained is a characterization of the statistical topography of the Hamiltonian. The large-scale transport is studied of advected particles with p > 0. For 0 -v/2 [x(t) - (x(t))] and t -v/2 [y(t) - (y(t))]. The large-scale motions are Fickian (v=1) or superdiffusive (v=3/2) with a non-Gaussian coarse-grained probability, according to the direction of the mean velocity relative to the underlying lattice. These results are obtained analytically for p≥1 and extended to the regime 0 1 , bar V 2 ) for which stagnation regions in the flow exist. The results are compared with existing predictions on the topology of streamlines based on percolation theory and with mean-field calculations of effective diffusivities. 29 refs., 15 figs., 7 tabs

  7. Statistical analysis of the ratio of electric and magnetic fields in random fields generators

    NARCIS (Netherlands)

    Serra, R.; Nijenhuis, J.

    2013-01-01

    In this paper we present statistical models of the ratio of random electric and magnetic fields in mode-stirred reverberation chambers. This ratio is based on the electric and magnetic field statistics derived for ideal reverberation conditions. It provides a further performance indicator for

  8. Searching for non-Gaussianity in the WMAP data

    International Nuclear Information System (INIS)

    Bernui, A.; Reboucas, M. J.

    2009-01-01

    Some analyses of recent cosmic microwave background (CMB) data have provided hints that there are deviations from Gaussianity in the WMAP CMB temperature fluctuations. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early universe, it is important to employ alternative indicators in order to determine whether the reported non-Gaussianity is of cosmological origin, and/or extract further information that may be helpful for identifying its causes. We propose two new non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, which provide a measure of departure from Gaussianity on large angular scales. A distinctive feature of these indicators is that they provide sky maps of non-Gaussianity of the CMB temperature data, thus allowing a possible additional window into their origins. Using these indicators, we find no significant deviation from Gaussianity in the three and five-year WMAP Internal Linear Combination (ILC) map with KQ75 mask, while the ILC unmasked map exhibits deviation from Gaussianity, quantifying therefore the WMAP team recommendation to employ the new mask KQ75 for tests of Gaussianity. We also use our indicators to test for Gaussianity the single frequency foreground unremoved WMAP three and five-year maps, and show that the K and Ka maps exhibit a clear indication of deviation from Gaussianity even with the KQ75 mask. We show that our findings are robust with respect to the details of the method.

  9. Remarks on non-Gaussian fluctuations of the inflaton and constancy of ζ outside the horizon

    International Nuclear Information System (INIS)

    Mahajan, N; Rangarajan, R

    2014-01-01

    We have pointed out that the non-Gaussianity arising from cubic self interactions of the inflaton field is proportional to ξN e . For scales of interest N e = 60, and for models such as new inflation, natural inflation, and running mass inflation ξ is large compared to the slow roll parameter. Therefore, the contribution from self interactions should not be outrightly ignored while retaining other terms in the non-Gaussianity parameter f NL . But the N e dependent term seems to imply the growth of non-Gaussianities outside the horizon. Therefore, we have briefly discussed the issue of the constancy of correlations of the curvature perturbation ζ outside the horizon. We have then presented our results on the 3-point function of ζ k , and found that the N e dependent contribution to f NL from self interactions of the inflaton field is cancelled by contributions from other terms associated with non-linearities in cosmological perturbation theory

  10. Reproducing kernel Hilbert spaces of Gaussian priors

    NARCIS (Netherlands)

    Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.

    2008-01-01

    We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described

  11. The spectral dimension of random trees

    International Nuclear Information System (INIS)

    Destri, Claudio; Donetti, Luca

    2002-01-01

    We present a simple yet rigorous approach to the determination of the spectral dimension of random trees, based on the study of the massless limit of the Gaussian model on such trees. As a by-product, we obtain evidence in favour of a new scaling hypothesis for the Gaussian model on generic bounded graphs and in favour of a previously conjectured exact relation between spectral and connectivity dimensions on more general tree-like structures

  12. Gaussian process regression analysis for functional data

    CERN Document Server

    Shi, Jian Qing

    2011-01-01

    Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

  13. Comparison of Gaussian and non-Gaussian Atmospheric Profile Retrievals from Satellite Microwave Data

    Science.gov (United States)

    Kliewer, A.; Forsythe, J. M.; Fletcher, S. J.; Jones, A. S.

    2017-12-01

    The Cooperative Institute for Research in the Atmosphere at Colorado State University has recently developed two different versions of a mixed-distribution (lognormal combined with a Gaussian) based microwave temperature and mixing ratio retrieval system as well as the original Gaussian-based approach. These retrieval systems are based upon 1DVAR theory but have been adapted to use different descriptive statistics of the lognormal distribution to minimize the background errors. The input radiance data is from the AMSU-A and MHS instruments on the NOAA series of spacecraft. To help illustrate how the three retrievals are affected by the change in the distribution we are in the process of creating a new website to show the output from the different retrievals. Here we present initial results from different dynamical situations to show how the tool could be used by forecasters as well as for educators. However, as the new retrieved values are from a non-Gaussian based 1DVAR then they will display non-Gaussian behaviors that need to pass a quality control measure that is consistent with this distribution, and these new measures are presented here along with initial results for checking the retrievals.

  14. Restoration of dimensional reduction in the random-field Ising model at five dimensions

    Science.gov (United States)

    Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2017-04-01

    The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D equality at all studied dimensions.

  15. 2 × 2 random matrix ensembles with reduced symmetry: from Hermitian to PT -symmetric matrices

    International Nuclear Information System (INIS)

    Gong Jiangbin; Wang Qinghai

    2012-01-01

    A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity–time (PT)-symmetric matrices. To illustrate the main idea, we first study 2 × 2 complex Hermitian matrix ensembles with O(2)-invariant constraints, yielding novel level-spacing statistics such as singular distributions, the half-Gaussian distribution, distributions interpolating between the GOE (Gaussian orthogonal ensemble) distribution and half-Gaussian distributions, as well as the gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2 × 2 PT-symmetric matrix ensembles with real eigenvalues. In particular, PT-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of PT-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian unitary ensemble) statistics or the ‘truncated-GUE’ statistics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  16. Gaussian operations and privacy

    International Nuclear Information System (INIS)

    Navascues, Miguel; Acin, Antonio

    2005-01-01

    We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states

  17. Role of random electric fields in relaxors

    Science.gov (United States)

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  18. The intermittency of vector fields and random-number generators

    Science.gov (United States)

    Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.

    2017-09-01

    We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.

  19. Solute concentration at a well in non-Gaussian aquifers under constant and time-varying pumping schedule

    Science.gov (United States)

    Libera, Arianna; de Barros, Felipe P. J.; Riva, Monica; Guadagnini, Alberto

    2017-10-01

    Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing transmissivity) on contaminant transport. We explore the joint influence of diverse (a) groundwater pumping schedules (constant and variable in time) and (b) representations of the stochastic heterogeneous transmissivity (T) field on temporal histories of solute concentrations observed at an extraction well. The stochastic nature of T is rendered by modeling its natural logarithm, Y = ln T, through a typical Gaussian representation and the recently introduced Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-dependent non-Gaussian features of the main statistics of Y and its (spatial) increments, which have been documented in a variety of studies. We rely on numerical Monte Carlo simulations and compute the temporal evolution at the well of low order moments of the solute concentration (C), as well as statistics of the peak concentration (Cp), identified as the environmental performance metric of interest in this study. We show that the pumping schedule strongly affects the pattern of the temporal evolution of the first two statistical moments of C, regardless the nature (Gaussian or non-Gaussian) of the underlying Y field, whereas the latter quantitatively influences their magnitude. Our results show that uncertainty associated with C and Cp estimates is larger when operating under a transient extraction scheme than under the action of a uniform withdrawal schedule. The probability density function (PDF) of Cp displays a long positive tail in the presence of time-varying pumping schedule. All these aspects are magnified in the presence of non-Gaussian Y fields. Additionally, the PDF of Cp displays a bimodal shape for all types of pumping

  20. Geometry of perturbed Gaussian states and quantum estimation

    International Nuclear Information System (INIS)

    Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A

    2011-01-01

    We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)

  1. Emergent randomness in the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Garraway, B M; Stenholm, S

    2008-01-01

    We consider the well-known Jaynes-Cummings model and ask if it can display randomness. As a solvable Hamiltonian system, it does not display chaotic behaviour in the ordinary sense. Here, however, we look at the distribution of values taken up during the total time evolution. This evolution is determined by the eigenvalues distributed as the square roots of integers and leads to a seemingly erratic behaviour. That this may display a random Gaussian value distribution is suggested by an exactly provable result by Kac. In order to reach our conclusion we use the Kac model to develop tests for the emergence of a Gaussian. Even if the consequent double limits are difficult to evaluate numerically, we find definite indications that the Jaynes-Cummings case also produces a randomness in its value distributions. Numerical methods do not establish such a result beyond doubt, but our conclusions are definite enough to suggest strongly an unexpected randomness emerging in a dynamic time evolution

  2. Halo shapes, initial shear field, and cosmic web

    International Nuclear Information System (INIS)

    Rossi, G

    2014-01-01

    The ellipsoidal collapse model, combined with the excursion set theory, allows one to estimate the shapes of dark matter halos as seen in high-resolution numerical simulations. The same theoretical framework predicts a quasi-universal behaviour for the conditional axis ratio distributions at later times, set by initial conditions and unaltered by non-linear evolution. The formalism for halo shapes is also useful in making the connection with the initial shear field of the cosmic web, which plays a crucial role in the formation of large-scale structures. The author has briefly discussed the basic aspects of the modelling, as well as the implications of a new formula for the constrained eigenvalues of the initial shear field, given the fact that positions are peaks or dips in the corresponding density field – and not random locations. This formula leads to a new generalized excursion set algorithm for peaks in Gaussian random fields. The results highlighted, here, are relevant for a number of applications, especially for weak lensing studies and for devising algorithms to find and classify structures in the cosmic web

  3. Exact simulation of Brown-Resnick random fields at a finite number of locations

    DEFF Research Database (Denmark)

    Dieker, Ton; Mikosch, Thomas Valentin

    2015-01-01

    We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure.......We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure....

  4. Non-Gaussianity in island cosmology

    International Nuclear Information System (INIS)

    Piao Yunsong

    2009-01-01

    In this paper we fully calculate the non-Gaussianity of primordial curvature perturbation of the island universe by using the second order perturbation equation. We find that for the spectral index n s ≅0.96, which is favored by current observations, the non-Gaussianity level f NL seen in an island will generally lie between 30 and 60, which may be tested by the coming observations. In the landscape, the island universe is one of anthropically acceptable cosmological histories. Thus the results obtained in some sense mean the coming observations, especially the measurement of non-Gaussianity, will be significant to clarify how our position in the landscape is populated.

  5. Monogamy inequality for distributed gaussian entanglement.

    Science.gov (United States)

    Hiroshima, Tohya; Adesso, Gerardo; Illuminati, Fabrizio

    2007-02-02

    We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.

  6. Holographic non-Gaussianity

    International Nuclear Information System (INIS)

    McFadden, Paul; Skenderis, Kostas

    2011-01-01

    We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f NL equil. = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work

  7. A method for the generation of random multiple Coulomb scattering angles

    International Nuclear Information System (INIS)

    Campbell, J.R.

    1995-06-01

    A method for the random generation of spatial angles drawn from non-Gaussian multiple Coulomb scattering distributions is presented. The method employs direct numerical inversion of cumulative probability distributions computed from the universal non-Gaussian angular distributions of Marion and Zimmerman. (author). 12 refs., 3 figs

  8. White Gaussian Noise - Models for Engineers

    Science.gov (United States)

    Jondral, Friedrich K.

    2018-04-01

    This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.

  9. Non-Gaussianity from inflation: theory and observations

    Science.gov (United States)

    Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A.

    2004-11-01

    This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.

  10. Random matrix ensembles for PT-symmetric systems

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew

    2015-01-01

    Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)

  11. Perturbation theory for the effective diffusion constant in a medium of random scatterers

    International Nuclear Information System (INIS)

    Dean, D S; Drummond, I T; Horgan, R R; Lefevre, A

    2004-01-01

    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random medium. The random medium contains point scatterers of density ρ uniformly distributed throughout the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis, we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalization group approach based on thinning out the scatterers; this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme, its predictions are confronted with results obtained by numerical simulation

  12. Optimal cloning of mixed Gaussian states

    International Nuclear Information System (INIS)

    Guta, Madalin; Matsumoto, Keiji

    2006-01-01

    We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states

  13. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    Science.gov (United States)

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  14. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti

    2014-01-01

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect

  15. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  16. Critical behavior in a random field classical Heisenberg model for amorphous systems

    International Nuclear Information System (INIS)

    Albuquerque, Douglas F. de; Alves, Sandro Roberto L.; Arruda, Alberto S. de

    2005-01-01

    By using the differential operator technique and the effective field theory scheme, the critical behavior of amorphous classical Heisenberg ferromagnet of spin-1/2 in a random field is studied. The phase diagram in the T-H and T-α planes on a simple cubic lattice for a cluster with two spins is obtained. Tricritical points, reentrant phenomena and influence of the random field and amorphization on the transition temperature are discussed

  17. Parametric estimation of covariance function in Gaussian-process based Kriging models. Application to uncertainty quantification for computer experiments

    International Nuclear Information System (INIS)

    Bachoc, F.

    2013-01-01

    The parametric estimation of the covariance function of a Gaussian process is studied, in the framework of the Kriging model. Maximum Likelihood and Cross Validation estimators are considered. The correctly specified case, in which the covariance function of the Gaussian process does belong to the parametric set used for estimation, is first studied in an increasing-domain asymptotic framework. The sampling considered is a randomly perturbed multidimensional regular grid. Consistency and asymptotic normality are proved for the two estimators. It is then put into evidence that strong perturbations of the regular grid are always beneficial to Maximum Likelihood estimation. The incorrectly specified case, in which the covariance function of the Gaussian process does not belong to the parametric set used for estimation, is then studied. It is shown that Cross Validation is more robust than Maximum Likelihood in this case. Finally, two applications of the Kriging model with Gaussian processes are carried out on industrial data. For a validation problem of the friction model of the thermal-hydraulic code FLICA 4, where experimental results are available, it is shown that Gaussian process modeling of the FLICA 4 code model error enables to considerably improve its predictions. Finally, for a meta modeling problem of the GERMINAL thermal-mechanical code, the interest of the Kriging model with Gaussian processes, compared to neural network methods, is shown. (author) [fr

  18. MULTITEMPORAL CROP TYPE CLASSIFICATION USING CONDITIONAL RANDOM FIELDS AND RAPIDEYE DATA

    Directory of Open Access Journals (Sweden)

    T. Hoberg

    2012-09-01

    Full Text Available The task of crop type classification with multitemporal imagery is nowadays often done applying classifiers that are originally developed for single images like support vector machines (SVM. These approaches do not model temporal dependencies in an explicit way. Existing approaches that make use of temporal dependencies are in most cases quite simple and based on rules. Approaches that integrate temporal dependencies to statistical models are very rare and at an early stage of development. Here our approach CRFmulti, based on conditional random fields (CRF, should make a contribution. Conditional random fields consider context knowledge among neighboring primitives in the same way as Markov random fields (MRF do. Furthermore conditional random fields handle the feature vectors of the neighboring primitives and not only the class labels. Additional to taking spatial context into account, we present an approach for multitemporal data processing where a temporal association potential has been integrated to the common CRF approach to model temporal dependencies. The classification works on pixel ‐level using spectral image features, whereas all available single images are taken separately. For our experiments a high resolution RapidEye satellite data set of 2010 consisting of 4 images made during the whole vegetation period from April to October is taken. Six crop type categories are distinguished, namely grassland, corn, winter crop, rapeseed, root crops and other crops. To evaluate the potential of the new conditional random field approach the classification result is compared to a manual reference on pixel‐ and on object‐level. Additional a SVM approach is applied under the same conditions and should serve as a benchmark.

  19. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    Energy Technology Data Exchange (ETDEWEB)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il [Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Lomakin, V., E-mail: vlomakin@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii) furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.

  20. Properties of a random bond Ising chain in a magnetic field

    International Nuclear Information System (INIS)

    Landau, D.P.; Blume, M.

    1976-01-01

    The Ising chain with random bonds in a magnetic field H = -Σ/sub i/J/sub i/sigma/sub i/sigma/sub i + l/ - hΣ/sub i/sigma/sub i/, where J/sub i/ = +- 1 at random, and Σ/sub i/J/sub i/ = 0, represents a model of a magnetic glass, or of heteropolymer melting. Calculations of the thermodynamic properties of the chain as a function of field strength and temperature have been performed by Monte Carlo techniques. These results are compared with perturbation calculations for small and large values of h/T. The Monte Carlo results show, in agreement with the perturbation calculations, that the field-induced magnetization is generally smaller for the random bond model than for a chain of noninteracting spins. As T → 0 the magnetization approaches the result for noninteracting spins

  1. A Multi-threaded Version of Field II

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    A multi-threaded version of Field II has been developed, which automatically can use the multi-core capabil- ities of modern CPUs. The memory allocation routines were rewritten to minimize the number of dynamic allocations and to make pre-allocations possible for each thread. This ensures...... that the simulation job can be automatically partitioned and the interdependence between threads minimized. The new code has been compared to Field II version 3.22, October 27, 2013 (latest free-ware version). A 64 element 5 MHz focused array transducer was simulated. One million point scatterers randomly distributed...... in a plane of 20 x 50 mm (width x depth) with random Gaussian amplitudes were simulated using the command calc scat . Dual Intel Xeon CPU E5-2630 2.60 GHz CPUs were used under Ubuntu Linux 10.02 and Matlab version 2013b. Each CPU holds 6 cores with hyper-threading, corresponding to a total of 24 hyper...

  2. Information geometry of Gaussian channels

    International Nuclear Information System (INIS)

    Monras, Alex; Illuminati, Fabrizio

    2010-01-01

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  3. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    Science.gov (United States)

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    each component weight during the nonlinear propagation stage an approximation of the true pdf can be successfully reconstructed. Particle filtering (PF) methods have gained popularity recently for solving nonlinear estimation problems due to their straightforward approach and the processing capabilities mentioned above. The basic concept behind PF is to represent any pdf as a set of random samples. As the number of samples increases, they will theoretically converge to the exact, equivalent representation of the desired pdf. When the estimated qth moment is needed, the samples are used for its construction allowing further analysis of the pdf characteristics. However, filter performance deteriorates as the dimension of the state vector increases. To overcome this problem Ref. [5] applies a marginalization technique for PF methods, decreasing complexity of the system to one linear and another nonlinear state estimation problem. The marginalization theory was originally developed by Rao and Blackwell independently. According to Ref. [6] it improves any given estimator under every convex loss function. The improvement comes from calculating a conditional expected value, often involving integrating out a supportive statistic. In other words, Rao-Blackwellization allows for smaller but separate computations to be carried out while reaching the main objective of the estimator. In the case of improving an estimator's variance, any supporting statistic can be removed and its variance determined. Next, any other information that dependents on the supporting statistic is found along with its respective variance. A new approach is developed here by utilizing the strengths of the adaptive Gaussian sum propagation in Ref. [2] and a marginalization approach used for PF methods found in Ref. [7]. In the following sections a modified filtering approach is presented based on a special state-space model within nonlinear systems to reduce the dimensionality of the optimization problem in

  4. Spectral properties of embedded Gaussian unitary ensemble of random matrices with Wigner's SU(4) symmetry

    International Nuclear Information System (INIS)

    Vyas, Manan; Kota, V.K.B.

    2010-01-01

    For m fermions in Ω number of single particle orbitals, each fourfold degenerate, we introduce and analyze in detail embedded Gaussian unitary ensemble of random matrices generated by random two-body interactions that are SU(4) scalar [EGUE(2)-SU(4)]. Here the SU(4) algebra corresponds to the Wigner's supermultiplet SU(4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU(4) ensemble is U(4Ω) contains U(Ω) x SU(4). Exploiting the Wigner-Racah algebra of the embedding algebra, analytical expression for the ensemble average of the product of any two m particle Hamiltonian matrix elements is derived. Using this, formulas for a special class of U(Ω) irreducible representations (irreps) {4 r , p}, p = 0, 1, 2, 3 are derived for the ensemble averaged spectral variances and also for the covariances in energy centroids and spectral variances. On the other hand, simplifying the tabulations of Hecht for SU(Ω) Racah coefficients, numerical calculations are carried out for general U(Ω) irreps. Spectral variances clearly show, by applying Jacquod and Stone prescription, that the EGUE(2)-SU(4) ensemble generates ground state structure just as the quadratic Casimir invariant (C 2 ) of SU(4). This is further corroborated by the calculation of the expectation values of C 2 [SU(4)] and the four periodicity in the ground state energies. Secondly, it is found that the covariances in energy centroids and spectral variances increase in magnitude considerably as we go from EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU(4) implying that the differences in ensemble and spectral averages grow with increasing symmetry. Also for EGUE(2)-SU(4) there are, unlike for GUE, non-zero cross-correlations in energy centroids and spectral variances defined over spaces with different particle numbers and/or U(Ω) [equivalently SU(4)] irreps. In the dilute limit defined by Ω → ∞, r >> 1 and r/Ω → 0, for the {4 r , p} irreps, we have derived analytical

  5. Nuclear magnetic resonance of randomly diluted magnetic materials

    International Nuclear Information System (INIS)

    Magon, C.J.

    1985-01-01

    The temperature dependence of the nuclear relaxation rates and line shapes of the F O resonance in the diluted antiferromagnet Fe x Zn 1-x F 2 and Mn x Zn 1-x F 2 are studied over a large temperature range T N 1 ) of the F O nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 ≤ x ≤ 0.8. The temperature dependence of 1/T 1 for T N 1 data near T N was used to study Random Field Effects on the critical behavior of Mn .65 Zn . 3 5 F 2 , for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T N depressed substantially with field only for H o || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F O NMR was studied in Fe .6 Zn .4 F 2 above T N . The experimental results agree with Heller's calculation of the NMR line broadening by Random Field Effects. With H o || C the line shape changes from Gaussian towards Lozentzian for t -2 and below T N its line width increase qualitatively following the increase in the sublattice magnetization. (author)

  6. An efficient estimator for Gibbs random fields

    Czech Academy of Sciences Publication Activity Database

    Janžura, Martin

    2014-01-01

    Roč. 50, č. 6 (2014), s. 883-895 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Gibbs random field * efficient estimator * empirical estimator Subject RIV: BA - General Mathematics Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2015/SI/janzura-0441325.pdf

  7. Digital servo control of random sound fields

    Science.gov (United States)

    Nakich, R. B.

    1973-01-01

    It is necessary to place number of sensors at different positions in sound field to determine actual sound intensities to which test object is subjected. It is possible to determine whether specification is being met adequately or exceeded. Since excitation is of random nature, signals are essentially coherent and it is impossible to obtain true average.

  8. Quantifying predictability through information theory: small sample estimation in a non-Gaussian framework

    International Nuclear Information System (INIS)

    Haven, Kyle; Majda, Andrew; Abramov, Rafail

    2005-01-01

    Many situations in complex systems require quantitative estimates of the lack of information in one probability distribution relative to another. In short term climate and weather prediction, examples of these issues might involve the lack of information in the historical climate record compared with an ensemble prediction, or the lack of information in a particular Gaussian ensemble prediction strategy involving the first and second moments compared with the non-Gaussian ensemble itself. The relative entropy is a natural way to quantify the predictive utility in this information, and recently a systematic computationally feasible hierarchical framework has been developed. In practical systems with many degrees of freedom, computational overhead limits ensemble predictions to relatively small sample sizes. Here the notion of predictive utility, in a relative entropy framework, is extended to small random samples by the definition of a sample utility, a measure of the unlikeliness that a random sample was produced by a given prediction strategy. The sample utility is the minimum predictability, with a statistical level of confidence, which is implied by the data. Two practical algorithms for measuring such a sample utility are developed here. The first technique is based on the statistical method of null-hypothesis testing, while the second is based upon a central limit theorem for the relative entropy of moment-based probability densities. These techniques are tested on known probability densities with parameterized bimodality and skewness, and then applied to the Lorenz '96 model, a recently developed 'toy' climate model with chaotic dynamics mimicking the atmosphere. The results show a detection of non-Gaussian tendencies of prediction densities at small ensemble sizes with between 50 and 100 members, with a 95% confidence level

  9. Dynamical chaos of non-Abelian gauge fields

    International Nuclear Information System (INIS)

    Matinyan, S.G.

    1985-01-01

    The review studies a special class of Yang--Mills fields: spatially homogeneous fields (classical Yang--Mills mechanics), which have no analog in linear Abelian electrodynamics. Computer and analytic approaches show that such fields possess dynamical stochasticity, on the basis of which it may be asserted that the classical Yang--Mills equations without external sources constitute a nonintegrable system. The Higgs mechanism eliminates this stochasticity, and at a certain value of the vacuum expectation of the scalar field there is a phase transition of the disorder-order (confinement-deconfinement) type. The system with external sources apparently behaves similarly. The connection between this stochasticity and the mechanism of dimensional reduction in macroscopic systems and with the color-confinement phenomenon is considered. It is shown that the presence in the vacuum of random (Gaussian) currents leads to confinement of the fields generated by these currents. Attention is drawn to the possible manifestation of the stochasticity of the classical fields in multiparticle hadron-production processes. Such manifestation reflects universal stochastic features characteristic of systems of very different natures (statistics of the counting of thermoelectrons from random sources and photoelectrons from laser radiation that passes through a liquid in the critical state, developed turbulence in hydrodynamics, stellar systems, and KNO scaling in multiparticle production)

  10. Quantum key distribution using continuous-variable non-Gaussian states

    Science.gov (United States)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  11. Infinite conditional random fields for human behavior analysis

    NARCIS (Netherlands)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja

    Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF

  12. Implications for Primordial Non-Gaussianity ($f_{NL}$) from weak lensing masses of high-z galaxy clusters

    CERN Document Server

    Jimenez, Raul

    2009-01-01

    The recent weak lensing measurement of the dark matter mass of the high-redshift galaxy cluster XMMUJ2235.3-2557 of (8.5 +- 1.7) x 10^{14} Msun at z=1.4, indicates that, if the cluster is assumed to be the result of the collapse of dark matter in a primordial gaussian field in the standard LCDM model, then its abundance should be 3-10 if the non-Gaussianity parameter f^local_NL is in the range 150-200. This value is comparable to the limit for f_NL obtained by current constraints from the CMB. We conclude that mass determination of high-redshift, massive clusters can offer a complementary probe of primordial non-gaussianity.

  13. Linking network usage patterns to traffic Gaussianity fit

    NARCIS (Netherlands)

    de Oliveira Schmidt, R.; Sadre, R.; Melnikov, Nikolay; Schönwälder, Jürgen; Pras, Aiko

    Gaussian traffic models are widely used in the domain of network traffic modeling. The central assumption is that traffic aggregates are Gaussian distributed. Due to its importance, the Gaussian character of network traffic has been extensively assessed by researchers in the past years. In 2001,

  14. Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review

    Science.gov (United States)

    Falsone, G.

    2018-03-01

    In this paper a review of the literature works devoted to the study of stochastic differential equations (SDEs) subjected to Gaussian and non-Gaussian white noises and to fractional Brownian noises is given. In these cases, particular attention must be paid in treating the SDEs because the classical rules of the differential calculus, as the Newton-Leibnitz one, cannot be applied or are applicable with many difficulties. Here all the principal approaches solving the SDEs are reported for any kind of noise, highlighting the negative and positive properties of each one and making the comparisons, where it is possible.

  15. Stochastic geometry, spatial statistics and random fields models and algorithms

    CERN Document Server

    2015-01-01

    Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.

  16. Stable Parameter Estimation for Autoregressive Equations with Random Coefficients

    Directory of Open Access Journals (Sweden)

    V. B. Goryainov

    2014-01-01

    Full Text Available In recent yearsthere has been a growing interest in non-linear time series models. They are more flexible than traditional linear models and allow more adequate description of real data. Among these models a autoregressive model with random coefficients plays an important role. It is widely used in various fields of science and technology, for example, in physics, biology, economics and finance. The model parameters are the mean values of autoregressive coefficients. Their evaluation is the main task of model identification. The basic method of estimation is still the least squares method, which gives good results for Gaussian time series, but it is quite sensitive to even small disturbancesin the assumption of Gaussian observations. In this paper we propose estimates, which generalize the least squares estimate in the sense that the quadratic objective function is replaced by an arbitrary convex and even function. Reasonable choice of objective function allows you to keep the benefits of the least squares estimate and eliminate its shortcomings. In particular, you can make it so that they will be almost as effective as the least squares estimate in the Gaussian case, but almost never loose in accuracy with small deviations of the probability distribution of the observations from the Gaussian distribution.The main result is the proof of consistency and asymptotic normality of the proposed estimates in the particular case of the one-parameter model describing the stationary process with finite variance. Another important result is the finding of the asymptotic relative efficiency of the proposed estimates in relation to the least squares estimate. This allows you to compare the two estimates, depending on the probability distribution of innovation process and of autoregressive coefficients. The results can be used to identify an autoregressive process, especially with nonGaussian nature, and/or of autoregressive processes observed with gross

  17. Phase conjugation with random fields and with deterministic and random scatterers

    International Nuclear Information System (INIS)

    Gbur, G.; Wolf, E.

    1999-01-01

    The theory of distortion correction by phase conjugation, developed since the discovery of this phenomenon many years ago, applies to situations when the field that is conjugated is monochromatic and the medium with which it interacts is deterministic. In this Letter a generalization of the theory is presented that applies to phase conjugation of partially coherent waves interacting with either deterministic or random weakly scattering nonabsorbing media. copyright 1999 Optical Society of America

  18. Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey

    Science.gov (United States)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III

    2002-05-01

    We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian

  19. Gaussian maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio

    2009-12-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .

  20. Gaussian maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano

    2009-01-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.

  1. Energy conservation law for randomly fluctuating electromagnetic fields

    International Nuclear Information System (INIS)

    Gbur, G.; Wolf, E.; James, D.

    1999-01-01

    An energy conservation law is derived for electromagnetic fields generated by any random, statistically stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced spectral changes. The results are illustrated by an example. copyright 1999 The American Physical Society

  2. Consistency relation and inflaton field redefinition in the δN formalism

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@apctp.org [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Department of Physics, Postech, Pohang 37673 (Korea, Republic of); Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-06-10

    We compute for general single-field inflation the intrinsic non-Gaussianity due to the self-interactions of the inflaton field in the squeezed limit. We recover the consistency relation in the context of the δN formalism, and argue that there is a particular field redefinition that makes the intrinsic non-Gaussianity vanishing, thus improving the estimate of the local non-Gaussianity using the δN formalism.

  3. Loop corrections to primordial non-Gaussianity

    Science.gov (United States)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  4. Variational Gaussian approximation for Poisson data

    Science.gov (United States)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  5. Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam.

    Science.gov (United States)

    Nicolas, F; Coëtmellec, S; Brunel, M; Allano, D; Lebrun, D; Janssen, A J E M

    2005-11-01

    The authors have studied the diffraction pattern produced by a particle field illuminated by an elliptic and astigmatic Gaussian beam. They demonstrate that the bidimensional fractional Fourier transformation is a mathematically suitable tool to analyse the diffraction pattern generated not only by a collimated plane wave [J. Opt. Soc. Am A 19, 1537 (2002)], but also by an elliptic and astigmatic Gaussian beam when two different fractional orders are considered. Simulations and experimental results are presented.

  6. Phase space structure of generalized Gaussian cat states

    International Nuclear Information System (INIS)

    Nicacio, Fernando; Maia, Raphael N.P.; Toscano, Fabricio; Vallejos, Raul O.

    2010-01-01

    We analyze generalized Gaussian cat states obtained by superposing arbitrary Gaussian states. The structure of the interference term of the Wigner function is always hyperbolic, surviving the action of a thermal reservoir. We also consider certain superpositions of mixed Gaussian states. An application to semiclassical dynamics is discussed.

  7. Prediction and retrodiction with continuously monitored Gaussian states

    DEFF Research Database (Denmark)

    Zhang, Jinglei; Mølmer, Klaus

    2017-01-01

    Gaussian states of quantum oscillators are fully characterized by the mean values and the covariance matrix of their quadrature observables. We consider the dynamics of a system of oscillators subject to interactions, damping, and continuous probing which maintain their Gaussian state property......(t)$ to Gaussian states implies that the matrix $E(t)$ is also fully characterized by a vector of mean values and a covariance matrix. We derive the dynamical equations for these quantities and we illustrate their use in the retrodiction of measurements on Gaussian systems....

  8. Spatial pattern formation induced by Gaussian white noise.

    Science.gov (United States)

    Scarsoglio, Stefania; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2011-02-01

    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Shape Modelling Using Markov Random Field Restoration of Point Correspondences

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Hilger, Klaus Baggesen

    2003-01-01

    A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized sh...

  10. Body fixed frame, rigid gauge rotations and large N random fields in QCD

    International Nuclear Information System (INIS)

    Levit, S.

    1995-01-01

    The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)

  11. Transitions in eigenvalue and wavefunction structure in (1+2) -body random matrix ensembles with spin.

    Science.gov (United States)

    Vyas, Manan; Kota, V K B; Chavda, N D

    2010-03-01

    Finite interacting Fermi systems with a mean-field and a chaos generating two-body interaction are modeled by one plus two-body embedded Gaussian orthogonal ensemble of random matrices with spin degree of freedom [called EGOE(1+2)-s]. Numerical calculations are used to demonstrate that, as lambda , the strength of the interaction (measured in the units of the average spacing of the single-particle levels defining the mean-field), increases, generically there is Poisson to GOE transition in level fluctuations, Breit-Wigner to Gaussian transition in strength functions (also called local density of states) and also a duality region where information entropy will be the same in both the mean-field and interaction defined basis. Spin dependence of the transition points lambda_{c} , lambdaF, and lambdad , respectively, is described using the propagator for the spectral variances and the formula for the propagator is derived. We further establish that the duality region corresponds to a region of thermalization. For this purpose we compared the single-particle entropy defined by the occupancies of the single-particle orbitals with thermodynamic entropy and information entropy for various lambda values and they are very close to each other at lambda=lambdad.

  12. Random matrix theory with an external source

    CERN Document Server

    Brézin, Edouard

    2016-01-01

    This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries.

  13. Controlling the ambipolarity and improvement of RF performance using Gaussian Drain Doped TFET

    Science.gov (United States)

    Nigam, Kaushal; Gupta, Sarthak; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2018-05-01

    Ambipolar conduction in tunnel field-effect transistors (TFETs) has been occurred as an inherent issue due to drain-channel tunneling. It makes TFET less efficient and restricts its application in complementary digital circuits. Therefore, this manuscript reports the application of Gaussian doping profile on nanometer regime silicon channel TFETs to completely eliminate the ambipolarity. For this, Gaussian doping is used in the drain region of conventional gate-drain overlap TFET to control the tunneling of electrons from the valence band of channel to the conduction band of drain. As a result, barrier width at the drain/channel junction increases significantly leading to the suppression of an ambipolar current even when higher doping concentration (1 ? 10 ? cm ?) is considered in the drain region. However, significant improvement in terms of RF figure-of-merits such as cut-off frequency (f ?), gain bandwidth product (GBW), and gate-to-drain capacitance (C ?) is achieved with Gaussian doped gate on drain overlap TFET as compared to its counterpart TFET.

  14. Entanglement dynamics in random media

    Science.gov (United States)

    Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.

    2017-12-01

    We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.

  15. ANALYTIC WORD RECOGNITION WITHOUT SEGMENTATION BASED ON MARKOV RANDOM FIELDS

    NARCIS (Netherlands)

    Coisy, C.; Belaid, A.

    2004-01-01

    In this paper, a method for analytic handwritten word recognition based on causal Markov random fields is described. The words models are HMMs where each state corresponds to a letter; each letter is modelled by a NSHP­HMM (Markov field). Global models are build dynamically, and used for recognition

  16. Non-Gaussianity in multi-sound-speed disformally coupled inflation

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Longden, Chris [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Koivisto, Tomi, E-mail: C.vandeBruck@sheffield.ac.uk, E-mail: tomi.koivisto@nordita.org, E-mail: cjlongden1@sheffield.ac.uk [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-02-01

    Most, if not all, scalar-tensor theories are equivalent to General Relativity with a disformally coupled matter sector. In extra-dimensional theories such a coupling can be understood as a result of induction of the metric on a brane that matter is confined to. This article presents a first look at the non-Gaussianities in disformally coupled inflation, a simple two-field model that features a novel kinetic interaction. Cases with both canonical and Dirac-Born-Infeld (DBI) kinetic terms are taken into account, the latter motivated by the possible extra-dimensional origin of the disformality. The computations are carried out for the equilateral configuration in the slow-roll regime, wherein it is found that the non-Gaussianity is typically rather small and negative. This is despite the fact that the new kinetic interaction causes the perturbation modes to propagate with different sounds speeds, which may both significantly deviate from unity during inflation.

  17. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    International Nuclear Information System (INIS)

    Arnaut, L R

    2007-01-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It o-hat and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases

  18. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    Science.gov (United States)

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  19. Current inversion induced by colored non-Gaussian noise

    International Nuclear Information System (INIS)

    Bag, Bidhan Chandra; Hu, Chin-Kung

    2009-01-01

    We study a stochastic process driven by colored non-Gaussian noises. For the flashing ratchet model we find that there is a current inversion in the variation of the current with the half-cycle period which accounts for the potential on–off operation. The current inversion almost disappears if one switches from non-Gaussian (NG) to Gaussian (G) noise. We also find that at low value of the asymmetry parameter of the potential the mobility controlled current is more negative for NG noise as compared to G noise. But at large magnitude of the parameter the diffusion controlled positive current is higher for the former than for the latter. On increasing the noise correlation time (τ), keeping the noise strength fixed, the mean velocity of a particle first increases and then decreases after passing through a maximum if the noise is non-Gaussian. For Gaussian noise, the current monotonically decreases. The current increases with the noise parameter p, 0< p<5/3, which is 1 for Gaussian noise

  20. Passivity and practical work extraction using Gaussian operations

    International Nuclear Information System (INIS)

    Brown, Eric G; Huber, Marcus; Friis, Nicolai

    2016-01-01

    Quantum states that can yield work in a cyclical Hamiltonian process form one of the primary resources in the context of quantum thermodynamics. Conversely, states whose average energy cannot be lowered by unitary transformations are called passive. However, while work may be extracted from non-passive states using arbitrary unitaries, the latter may be hard to realize in practice. It is therefore pertinent to consider the passivity of states under restricted classes of operations that can be feasibly implemented. Here, we ask how restrictive the class of Gaussian unitaries is for the task of work extraction. We investigate the notion of Gaussian passivity, that is, we present necessary and sufficient criteria identifying all states whose energy cannot be lowered by Gaussian unitaries. For all other states we give a prescription for the Gaussian operations that extract the maximal amount of energy. Finally, we show that the gap between passivity and Gaussian passivity is maximal, i.e., Gaussian-passive states may still have a maximal amount of energy that is extractable by arbitrary unitaries, even under entropy constraints. (paper)

  1. Forecasts of non-Gaussian parameter spaces using Box-Cox transformations

    Science.gov (United States)

    Joachimi, B.; Taylor, A. N.

    2011-09-01

    Forecasts of statistical constraints on model parameters using the Fisher matrix abound in many fields of astrophysics. The Fisher matrix formalism involves the assumption of Gaussianity in parameter space and hence fails to predict complex features of posterior probability distributions. Combining the standard Fisher matrix with Box-Cox transformations, we propose a novel method that accurately predicts arbitrary posterior shapes. The Box-Cox transformations are applied to parameter space to render it approximately multivariate Gaussian, performing the Fisher matrix calculation on the transformed parameters. We demonstrate that, after the Box-Cox parameters have been determined from an initial likelihood evaluation, the method correctly predicts changes in the posterior when varying various parameters of the experimental setup and the data analysis, with marginally higher computational cost than a standard Fisher matrix calculation. We apply the Box-Cox-Fisher formalism to forecast cosmological parameter constraints by future weak gravitational lensing surveys. The characteristic non-linear degeneracy between matter density parameter and normalization of matter density fluctuations is reproduced for several cases, and the capabilities of breaking this degeneracy by weak-lensing three-point statistics is investigated. Possible applications of Box-Cox transformations of posterior distributions are discussed, including the prospects for performing statistical data analysis steps in the transformed Gaussianized parameter space.

  2. An application of random field theory to analysis of electron trapping sites in disordered media

    International Nuclear Information System (INIS)

    Hilczer, M.; Bartczak, W.M.

    1993-01-01

    The potential energy surface in a disordered medium is considered a random field and described using the concepts of the mathematical theory of random fields. The preexisting traps for excess electrons are identified with certain regions of excursion (extreme regions) of the potential field. The theory provides an analytical method of statistical analysis of these regions. Parameters of the cavity-averaged potential field, which are provided by computer simulation of a given medium, serve as input data for the analysis. The statistics of preexisting traps are obtained for liquid methanol as a numerical example of the random field method. 26 refs., 6 figs

  3. Phase diagram and tricritical behavior of an metamagnet in uniform and random fields

    International Nuclear Information System (INIS)

    Liang Yaqiu; Wei Guozhu; Xu Xiaojuan; Song Guoli

    2010-01-01

    A two-sublattice Ising metamagnet in both uniform and random fields is studied within the mean-field approach based on Bogoliubov's inequality for the Gibbs free energy. We show that the qualitative features of the phase diagrams are dependent on the parameters of the model and the uniform field values. The tricritical point and reentrant phenomenon can be observed on the phase diagram. The reentrance is due to the competition between uniform and random interactions.

  4. Remarks on non-Gaussian fluctuations of the inflaton and constancy of ζ outside the horizon

    International Nuclear Information System (INIS)

    Mahajan, Namit; Rangarajan, Raghavan

    2011-01-01

    We point out that the non-Gaussianity arising from cubic self-interactions of the inflaton field is proportional to ξN e where ξ∼V ''' and N e is the number of e-foldings from horizon exit till the end of inflation. For scales of interest N e =60, and for models of inflation such as new inflation, natural inflation, and running mass inflation ξ is large compared to the slow-roll parameter ε∼V '2 . Therefore, the contribution from self-interactions should not be outrightly ignored while retaining other terms in the non-Gaussianity parameter f NL . However, the N e -dependent term seems to imply the growth of non-Gaussianities outside the horizon. Therefore, we briefly discuss the issue of the constancy of correlations of the curvature perturbation ζ outside the horizon. We then calculate the 3-point function of the inflaton fluctuations using the canonical formalism and further obtain the 3-point function of ζ k . We find that the N e -dependent contribution to f NL from self-interactions of the inflaton field is canceled by contributions from other terms associated with nonlinearities in cosmological perturbation theory.

  5. Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields

    Science.gov (United States)

    Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.

    1992-12-01

    During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards

  6. Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes.

    Science.gov (United States)

    Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon

    2017-12-01

    Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.

  7. Increasing Entanglement between Gaussian States by Coherent Photon Subtraction

    DEFF Research Database (Denmark)

    Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa

    2007-01-01

    We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...

  8. A test for stationarity of spatio-temporal random fields on planar and spherical domains

    KAUST Repository

    Jun, Mikyoung; Genton, Marc G.

    2012-01-01

    A formal test for weak stationarity of spatial and spatio-temporal random fields is proposed. We consider the cases where the spatial domain is planar or spherical, and we do not require distributional assumptions for the random fields. The method

  9. Numerical solution of field theories using random walks

    International Nuclear Information System (INIS)

    Barnes, T.; Daniell, G.J.

    1985-01-01

    We show how random walks in function space can be employed to evaluate field theoretic vacuum expectation values numerically. Specific applications which we study are the two-point function, mass gap, magnetization and classical solutions. This technique offers the promise of faster calculations using less computer memory than current methods. (orig.)

  10. On randomly interrupted diffusion

    International Nuclear Information System (INIS)

    Luczka, J.

    1993-01-01

    Processes driven by randomly interrupted Gaussian white noise are considered. An evolution equation for single-event probability distributions in presented. Stationary states are considered as a solution of a second-order ordinary differential equation with two imposed conditions. A linear model is analyzed and its stationary distributions are explicitly given. (author). 10 refs

  11. New gaussian points for the solution of first order ordinary ...

    African Journals Online (AJOL)

    Numerical experiments carried out using the new Gaussian points revealed there efficiency on stiff differential equations. The results also reveal that methods using the new Gaussian points are more accurate than those using the standard Gaussian points on non-stiff initial value problems. Keywords: Gaussian points ...

  12. Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions

    International Nuclear Information System (INIS)

    Kawasaki, Masahiro; Yamada, Masaki

    2014-01-01

    I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper, we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles

  13. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  14. Dynamical chaos of nonabelian gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Matinyan, S G

    1985-01-01

    A special class of the Yang - Mills field-the spatially homogeneous fields (Yan - Mills classical mechanics)-having no analog in the linear abelian electrodynamics is studied. Both the computer and analytical approaches show that such fields possess dynamical stochasticity, this allowing one to claim that the Yang - Mills classical equations without external sources represent a non-integrable system. The Higgs mechanism eliminates this stochasticity: at some expectation value of scalar field, a phase transition of disorder-order (confinement-deconfinement) type takes plce. The system with external sources behaves apparently analogously. A relation of the discovered stochasticity with the dimensional reduction mechanism in the macroscopic systems as well as with colour confinement is considered. It is shown that the presence of the random (Gaussian) currents in vacuum leads to confinement of fields generated by those currents. Attention is paid to the possible manifestation of the revealed stochasticity of the classical non-abelian gauge fields in the multiple hadrnoproduction processes which apparently reflect the universal stochastic regularities typical of the systems of quite different nature.

  15. Dynamical chaos of nonabelian gauge fields

    International Nuclear Information System (INIS)

    Matinyan, S.G.

    1985-01-01

    A special class of the Yang - Mills field-the spatially homogeneous fields (Yan - Mills classical mechanics)-having no analog in the linear abelian electrodynamics is studied. Both the computer and analytical approaches show that such fields possess dynamical stochasticity, this allowing one to claim that the Yang - Mills classical equations without external sources represent a non-integrable system. The Higgs mechanism eliminates this stochasticity: at some expectation value of scalar field, a phase transition of disorder-order (confinement-deconfinement) type takes plce. The system with external sources behaves apparently analogously. A relation of the discovered stochasticity with the dimensional reduction mechanism in the macroscopic systems as well as with colour confinement is considered. It is shown that the presence of the random (Gaussian) currents in vacuum leads to confinement of fields generated by those currents. Attention is paid to the possible manifestation of the revealed stochasticity of the classical non-abelian gauge fields in the multiple hadrnoproduction processes which apparently reflect the universal stochastic regularities typical of the systems of quite different nature

  16. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    Science.gov (United States)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  17. Gaussian entanglement distribution via satellite

    Science.gov (United States)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  18. Radiation Transport in Random Media With Large Fluctuations

    Science.gov (United States)

    Olson, Aaron; Prinja, Anil; Franke, Brian

    2017-09-01

    Neutral particle transport in media exhibiting large and complex material property spatial variation is modeled by representing cross sections as lognormal random functions of space and generated through a nonlinear memory-less transformation of a Gaussian process with covariance uniquely determined by the covariance of the cross section. A Karhunen-Loève decomposition of the Gaussian process is implemented to effciently generate realizations of the random cross sections and Woodcock Monte Carlo used to transport particles on each realization and generate benchmark solutions for the mean and variance of the particle flux as well as probability densities of the particle reflectance and transmittance. A computationally effcient stochastic collocation method is implemented to directly compute the statistical moments such as the mean and variance, while a polynomial chaos expansion in conjunction with stochastic collocation provides a convenient surrogate model that also produces probability densities of output quantities of interest. Extensive numerical testing demonstrates that use of stochastic reduced-order modeling provides an accurate and cost-effective alternative to random sampling for particle transport in random media.

  19. The chiral Gaussian two-matrix ensemble of real asymmetric matrices

    International Nuclear Information System (INIS)

    Akemann, G; Phillips, M J; Sommers, H-J

    2010-01-01

    We solve a family of Gaussian two-matrix models with rectangular N x (N + ν) matrices, having real asymmetric matrix elements and depending on a non-Hermiticity parameter μ. Our model can be thought of as the chiral extension of the real Ginibre ensemble, relevant for Dirac operators in the same symmetry class. It has the property that its eigenvalues are either real, purely imaginary or come in complex conjugate eigenvalue pairs. The eigenvalue joint probability distribution for our model is explicitly computed, leading to a non-Gaussian distribution including K-Bessel functions. All n-point density correlation functions are expressed for finite N in terms of a Pfaffian form. This contains a kernel involving Laguerre polynomials in the complex plane as a building block which was previously computed by the authors. This kernel can be expressed in terms of the kernel for complex non-Hermitian matrices, generalizing the known relation among ensembles of Hermitian random matrices. Compact expressions are given for the density at finite N as an example, as well as its microscopic large-N limits at the origin for fixed ν at strong and weak non-Hermiticity.

  20. Gaussian cloning of coherent states with known phases

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2006-01-01

    The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier