Symplectic structures in the chirally gauged Wess-Zumino-Witten model
International Nuclear Information System (INIS)
Inamoto, T.
1992-01-01
The algebraic structure of the chirally gauged Wess-Zumino-Witten model is studied from the Hamiltonian point of view. The consistent chiral anomaly, which is reproduced at the tree level in this model, is related to the Schwinger term of the Gauss-law algebra through descent equations constructed with phase-space differential forms. The descent equations express the effects of the consistent anomaly upon the symplectic structure of the theory, and provide the Hamiltonian analogue of the Wess-Zumino consistency condition in the Weyl gauge. We also clarify the canonical structure of the ungauged Wess-Zumino-Witten model, and the algebra associated with the global Noether symmetry is derived
Wess-Zumino-Witten model based on a nonsemisimple group
International Nuclear Information System (INIS)
Nappi, C.R.; Witten, E.
1993-01-01
We present a conformal field theory which describes a homogeneous four dimensional Lorentz-signature space-time. The model is an ungauged Wess-Zumino-Witten model based on a central extension of the Poincare algebra. The central charge of this theory is exactly four, just like four dimensional Minkowski space. The model can be interpreted as a four dimensional monochromatic plane wave. As there are three commuting isometries, other interesting geometries are expected to emerge via O(3,3) duality
Perturbation theory around the Wess-Zumino-Witten model
International Nuclear Information System (INIS)
Hasseln, H. v.
1991-05-01
We consider a perturbation of the Wess-Zumino-Witten model in 2D by a current-current interaction. The β-function is computed to third order in the coupling constant and a nontrivial fixedpoint is found. By non-abelian bosonization, this perturbed WZW-model is shown to have the same β-function (at least to order g 2 ) as the fermionic theory with a four-fermion interaction. (orig.) [de
On Lie point symmetry of classical Wess-Zumino-Witten model
International Nuclear Information System (INIS)
Maharana, Karmadeva
2001-06-01
We perform the group analysis of Witten's equations of motion for a particle moving in the presence of a magnetic monopole, and also when constrained to move on the surface of a sphere, which is the classical example of Wess-Zumino-Witten model. We also consider variations of this model. Our analysis gives the generators of the corresponding Lie point symmetries. The Lie symmetry corresponding to Kepler's third law is obtained in two related examples. (author)
Exact equivalence of the D=4 gauged Wess-Zumino-Witten term and the D=5 Yang-Mills Chern-Simons term
International Nuclear Information System (INIS)
Hill, Christopher T.
2006-01-01
We derive the full Wess-Zumino-Witten term of a gauged chiral Lagrangian in D=4 by starting from a pure Yang-Mills theory of gauged quark flavor in a flat, compactified D=5. The theory is compactified such that there exists a B 5 zero mode, and supplemented with quarks that are 'chirally delocalized' with q L (q R ) on the left (right) boundary (brane). The theory then necessarily contains a Chern-Simons term (anomaly flux) to cancel the fermionic anomalies on the boundaries. The constituent quark mass represents chiral symmetry breaking and is a bilocal operator in D=5 of the form: q L Wq R +h.c, where W is the Wilson line spanning the bulk, 0≤x 5 ≤R, and is interpreted as a chiral meson field, W=exp(2iπ-tilde/f π ), where f π ∼1/R. The quarks are integrated out, yielding a Dirac determinant which takes the form of a 'boundary term' (anomaly flux return), and is equivalent to Bardeen's counterterm that connects consistent and covariant anomalies. The Wess-Zumino-Witten term then emerges straightforwardly, from the Yang-Mills Chern-Simons term, plus boundary term. The method is systematic and allows generalization of the Wess-Zumino-Witten term to theories of extra dimensions, and to express it in alternative and more compact forms. We give a novel form appropriate to the case of (unintegrated) massless fermions
Superselection sectors of SO(N) Wess-Zumino-Witten models
International Nuclear Information System (INIS)
Boeckenhauer, J.
1996-06-01
The superselection structure of so(N) WZW models is investigated form the point of view of algebraic quantum field theory. At level 1 it turns out that the observable algebras of the WZW theory can be constructed in terms of even CAR algebras. This fact allows to give a formulation of these models close to the DHR framework. Localized endomorphisms are constructed explicitly in terms of Bogoliubov transformations, and the WZW fusion rules are proven using the DHR sector product. At level 2 it is shown that most of the sectors are realized in H NS =H NS x H NS where H NS is the Neveu-Schwarz sector of the level 1 theory. The level 2 charcters are derived and H NS is decomposed completely into tensor products of the sectors of the WZW chiral algebra and irreducible representation spaces of the coset Virasoro algebra. Crucial for this analysis is the DHR decomposition of H NS into sectors of a gauge invariant fermion algebra since the WZW chiral algebra as well as the coset Virasoro algebra are invariant under the gauge group O(2). (orig.)
An algebraic formulation of level one Wess-Zumino-Witten models
International Nuclear Information System (INIS)
Boeckenhauer, J.
1995-07-01
The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven. (orig.)
Dimensional deconstruction and Wess-Zumino-Witten terms
International Nuclear Information System (INIS)
Hill, Christopher T.; Zachos, Cosmas K.
2005-01-01
A new technique is developed for the derivation of the Wess-Zumino-Witten (WZW) terms of gauged chiral Lagrangians. We start in D=5 with a pure (mesonless) Yang-Mills theory, which includes relevant gauge field Chern-Simons terms. The theory is then compactified, and the effective D=4 Lagrangian is derived using lattice techniques, or 'deconstruction', where pseudoscalar mesons arise from the lattice Wilson links. This yields the WZW term with the correct Witten coefficient by way of a simple heuristic argument. We discover a novel WZW term for singlet currents, that yields the full Goldstone-Wilczek current, and a U(1) axial current for the Skyrmion, with the appropriate anomaly structures. A more detailed analysis is presented of the dimensional compactification of Yang-Mills in D=5 into a gauged chiral Lagrangian in D=4, heeding the consistency of the D=4 and D=5 Bianchi identities. These dictate a novel covariant derivative structure in the D=4 gauge theory, yielding a field strength modified by the addition of commutators of chiral currents. The Chern-Simons term of the pure D=5 Yang-Mills theory then devolves into the correct form of the Wess-Zumino-Witten term with an index (the analogue of N colors =3) of N=D=5. The theory also has a Skyrme term with a fixed coefficient
Wess-Zumino-Witten term on the lattice
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Matsui, Kosuke; Yamamoto, Masaru
2003-01-01
We construct the Wess-Zumino-Witten (WZW) term in lattice gauge theory by using a Dirac operator which obeys the Ginsparg-Wilson relation. Topological properties of the WZW term known in the continuum are reproduced on the lattice as a consequence of a non-trivial topological structure of the space of admissible lattice gauge fields. In the course of this analysis, we observe that the gauge anomaly generally implies that there is no basis of a Weyl fermion which leads to a single-valued expectation value in the fermion sector. The lattice Witten term, which carries information of a gauge path along which the gauge anomaly is integrated, is separated from the WZW term and the multivaluedness of the Witten term is shown to be related to the homotopy group π 2n+1 (G). We also discuss the global SU(2) anomaly on the basis of the WZW term. (author)
Noncommutative Wess-Zumino-Witten actions and their Seiberg-Witten invariance
International Nuclear Information System (INIS)
Lopez-Sarrion, Justo; Polychronakos, Alexios P.
2008-01-01
We analyze the noncommutative two-dimensional Wess-Zumino-Witten model and its properties under Seiberg-Witten transformations in the operator formulation. We prove that the model is invariant under such transformations even for the noncritical (non-chiral) case, in which the coefficients of the kinetic and Wess-Zumino terms are not related. The pure Wess-Zumino term represents a singular case in which this transformation fails to reach a commutative limit. We also discuss potential implications of this result for bosonization
Lectures on 2d gauge theories. Topological aspects and path integral techniques
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1993-10-01
In these lectures are discussed two classes of two-dimensional field theories which are not obviously topological, but which nevertheless exhibit an intriguing equivalence with certain topological theories. These classes are two-dimensional Yang-Mills theory and the so-called G/G gauged Wess-Zumino-Witten model. The aim is to exhibit and extract the topological information contained in these theories and to present a technique which allows to calculate directly their partition functions and topological correlation functions on arbitrary closed surfaces. 34 refs
Hoseinzadeh, S.; Rezaei-Aghdam, A.
2017-10-01
We introduce a four-dimensional extension of the Poincaré algebra (N) in (1 + 1)-dimensional space-time and obtain a (1 + 1)-dimensional gauge symmetric gravity model using the algebra N. We show that the obtained gravity model is dual (canonically transformed) to the (1 + 1)-dimensional anti de Sitter (AdS) gravity. We also obtain some black hole and Friedmann-Robertson-Walker (FRW) solutions by solving its classical equations of motion. Then, we study A4,8A1/⊗A1 gauged Wess-Zumino-Witten (WZW) model and obtain some exact black hole and cosmological solutions in string theory. We show that some obtained black hole and cosmological metrics in string theory are same as the metrics obtained in solutions of our gauge symmetric gravity model.
Green-Schwarz superstring as an asymmetric chiral field sigma model
International Nuclear Information System (INIS)
Isaev, A.P.; Ivanov, E.A.
1988-01-01
A new class of two-dimensional σ-models of the Wess-Zumino-Witten type is constructed. The target manifold of these models is coset space GxG/G - , where supergroup G is obtained by contraction from an arbitrary semisimple Lie supergroup and G - is some abelian supergroup of translations in GxG. It is shown that the equations of motion following from the Wess-Zumino-Witten type action of these models admit a zero-curvature representation. 16 refs
Edge states for quantum Hall droplets in higher dimensions and a generalized WZW model
International Nuclear Information System (INIS)
Karabali, Dimitra; Nair, V.P.
2004-01-01
We consider quantum Hall droplets on complex projective spaces with a combination of Abelian and non-Abelian background magnetic fields. Carrying out an analysis similar to what was done for Abelian backgrounds, we show that the effective action for the edge excitations is given by a chiral, gauged Wess-Zumino-Witten (WZW) theory generalized to higher dimensions
Background field method in gauge theories and on linear sigma models
International Nuclear Information System (INIS)
van de Ven, A.E.M.
1986-01-01
This dissertation constitutes a study of the ultraviolet behavior of gauge theories and two-dimensional nonlinear sigma-models by means of the background field method. After a general introduction in chapter 1, chapter 2 presents algorithms which generate the divergent terms in the effective action at one-loop for arbitrary quantum field theories in flat spacetime of dimension d ≤ 11. It is demonstrated that global N = 1 supersymmetric Yang-Mills theory in six dimensions in one-loop UV-finite. Chapter 3 presents an algorithm which produces the divergent terms in the effective action at two-loops for renormalizable quantum field theories in a curved four-dimensional background spacetime. Chapter 4 presents a study of the two-loop UV-behavior of two-dimensional bosonic and supersymmetric non-linear sigma-models which include a Wess-Zumino-Witten term. It is found that, to this order, supersymmetric models on quasi-Ricci flat spaces are UV-finite and the β-functions for the bosonic model depend only on torsionful curvatures. Chapter 5 summarizes a superspace calculation of the four-loop β-function for two-dimensional N = 1 and N = 2 supersymmetric non-linear sigma-models. It is found that besides the one-loop contribution which vanishes on Ricci-flat spaces, the β-function receives four-loop contributions which do not vanish in the Ricci-flat case. Implications for superstrings are discussed. Chapters 6 and 7 treat the details of these calculations
Modular transformations of conformal blocks in WZW models on Riemann surfaces of higher genus
International Nuclear Information System (INIS)
Miao Li; Ming Yu.
1989-05-01
We derive the modular transformations for conformal blocks in Wess-Zumino-Witten models on Riemann surfaces of higher genus. The basic ingredient consists of using the Chern-Simons theory developed by Witten. We find that the modular transformations generated by Dehn twists are linear combinations of Wilson line operators, which can be expressed in terms of braiding matrices. It can also be shown that modular transformation matrices for g > 0 Riemann surfaces depend only on those for g ≤ 3. (author). 13 refs, 15 figs
Haba, Naoyuki; Yamada, Toshifumi
2017-06-01
We investigate the scenario where the standard model is extended with classical scale invariance, which is broken by chiral symmetry breaking and confinement in a new strongly coupled gauge theory that resembles QCD. The standard model Higgs field emerges as a result of the mixing of a scalar meson in the new strong dynamics and a massless elementary scalar field. The mass and scalar decay constant of that scalar meson, which are generated dynamically in the new gauge theory, give rise to the Higgs field mass term, automatically possessing the correct negative sign by the bosonic seesaw mechanism. Using analogy with QCD, we evaluate the dynamical scale of the new gauge theory and further make quantitative predictions for light pseudo-Nambu-Goldstone bosons associated with the spontaneous breaking of axial symmetry along chiral symmetry breaking in the new gauge theory. A prominent consequence of the scenario is that there should be a standard model gauge singlet pseudo-Nambu-Goldstone boson with mass below 220 GeV, which couples to two electroweak gauge bosons through the Wess-Zumino-Witten term, whose strength is thus determined by the dynamical scale of the new gauge theory. Other pseudo-Nambu-Goldstone bosons, charged under the electroweak gauge groups, also appear. Concerning the theoretical aspects, it is shown that the scalar quartic coupling can vanish at the Planck scale with the top quark pole mass as large as 172.5 GeV, realizing the flatland scenario without being in tension with the current experimental data.
On the structure of anomalous composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Gripaios, Ben [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Nardecchia, Marco [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); DAMTP, University of Cambridge, Cambridge (United Kingdom); CERN, Theoretical Physics Department, Geneva (Switzerland); You, Tevong [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); DAMTP, University of Cambridge, Cambridge (United Kingdom)
2017-01-15
We describe the anomaly structure of a composite Higgs model in which the SO(5)/SO(4) coset structure of the minimal model is extended by an additional, non-linearly realised U(1){sub η}. In addition, we show that the effective Lagrangian admits a term that, like the Wess-Zumino-Witten term in the chiral Lagrangian for QCD, is not invariant under the non-linearly realised symmetries, but rather changes by a total derivative. This term is unlike the Wess-Zumino-Witten term in that it does not arise from anomalies. If present, it may give rise to the rare decay η → hW{sup +}W{sup -}Z. The phenomenology of the singlet in this model differs from that in a model based on SO(6)/SO(5), in that couplings to both gluons and photons, arising via anomalies, are present. We show that while some tuning is needed to accommodate flavour and electroweak precision constraints, the model is no worse than the minimal model in this regard. (orig.)
Kaehler-Chern-Simons theory and symmetries of anti-self-dual gauge fields
International Nuclear Information System (INIS)
Nair, V.P.; Schiff, J.
1992-01-01
Kaehler-Chern-Simons theory, which was proposed as a generalization of ordinary Chern-Simons theory, is explored in more detail. The theory describes anti-self-dual instantons on a four-dimensional Kaehler manifold. The phase space is the space of gauge potentials, whose symplectic reduction by the constraints of anti-self-duality leads to the moduli space of instantons. We show that infinitesimal Baecklund transformations, previously related to 'hidden symmetries' of instantons, are canonical transformations generated by the anti-self-duality constraints. The quantum wave functions naturally lead to a generalized Wess-Zumino-Witten action, which in turn has associated chiral current algebras. The dimensional reduction of the anti-self-duality equations leading to integrable two-dimensional theories is briefly discussed in this framework. (orig.)
Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles.
Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi; Volansky, Tomer; Wacker, Jay G
2015-07-10
A recent proposal is that dark matter could be a thermal relic of 3→2 scatterings in a strongly coupled hidden sector. We present explicit classes of strongly coupled gauge theories that admit this behavior. These are QCD-like theories of dynamical chiral symmetry breaking, where the pions play the role of dark matter. The number-changing 3→2 process, which sets the dark matter relic abundance, arises from the Wess-Zumino-Witten term. The theories give an explicit relationship between the 3→2 annihilation rate and the 2→2 self-scattering rate, which alters predictions for structure formation. This is a simple calculable realization of the strongly interacting massive-particle mechanism.
Super string field theory and the Wess-Zumino-Witten action
Czech Academy of Sciences Publication Activity Database
Erler, Theodore
2017-01-01
Roč. 2017, č. 10 (2017), s. 1-63, č. článku 057. ISSN 1029-8479 R&D Projects: GA MŠk EF15_003/0000437 Institutional support: RVO:68378271 Keywords : string field theory * superstrings and heterotic strings Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016
The Wess-Zumino-Witten term of the M5-brane and differential cohomotopy
Czech Academy of Sciences Publication Activity Database
Fiorenza, D.; Sati, H.; Schreiber, Urs
2015-01-01
Roč. 56, č. 10 (2015), s. 102301 ISSN 0022-2488 Institutional support: RVO:67985840 Keywords : differential cohomology Subject RIV: BA - General Mathematics Impact factor: 1.234, year: 2015 http://scitation.aip.org/content/aip/journal/jmp/56/10/10.1063/1.4932618
Covariant phase space formulations of superparticles and supersymmetric WZW models
International Nuclear Information System (INIS)
Au, G.; Spence, B.
1994-02-01
The Wess-Zumino-Witten (WZW) models are fundamental rational conformal field theories, and have a rich structure which has occasioned much interest. With regard to the further development of the formulation of this approach, as well as to the various applications of supersymmetric WZW models in superstring theories, the authors consider the question of whether one can generalise this covariant phase space formulation to the supersymmetric WZW models and discuss superparticles moving upon group manifolds. These systems share many of the important features of the supersymmetric WZW models. The WZW models are then discussed. It is shown that the full current algebras arise naturally for these models and the topological issues which arose in the bosonic case are found here with the same resolution. 22 refs
Four loop wave function renormalization in the non-abelian Thirring model
International Nuclear Information System (INIS)
Ali, D.B.; Gracey, J.A.
2001-01-01
We compute the anomalous dimension of the fermion field with N f flavours in the fundamental representation of a general Lie colour group in the non-abelian Thirring model at four loops. The implications on the renormalization of the two point Green's function through the loss of multiplicative renormalizability of the model in dimensional regularization due to the appearance of evanescent four fermi operators are considered at length. We observe the appearance of one new colour group Casimir, d F abcd d F abcd , in the final four loop result and discuss its consequences for the relation of the Knizhnik-Zamolodchikov critical exponents in the Wess-Zumino-Witten-Novikov model to the non-abelian Thirring model. Renormalization scheme changes are also considered to ensure that the underlying Fierz symmetry broken by dimensional regularization is restored
A resonance without resonance. Scrutinizing the diphoton excess at 750 GeV
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Soo; Rolbiecki, Krzysztof [IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Valencia (Spain). Inst. de Fisica Corpuscular
2015-12-15
Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.
A resonance without resonance. Scrutinizing the diphoton excess at 750 GeV
International Nuclear Information System (INIS)
Kim, Jong Soo; Rolbiecki, Krzysztof; Ruiz de Austri, Roberto
2015-12-01
Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.
Energy Technology Data Exchange (ETDEWEB)
Mitev, Vladimir
2010-08-15
The purpose of this thesis is to deepen our understanding of the fundamental properties and defining features of non-linear sigma models on superspaces. We begin by presenting the major concepts that we have used in our investigation, namely Lie superalgebras and supergroups, non-linear sigma models and two dimensional conformal field theory. We then exhibit a method, called cohomological reduction, that makes use of the target space supersymmetry of non-linear sigma models to compute certain correlation functions. We then show how the target space supersymmetry of Ricci flat Lie supergroups simplifies the perturbation theory of suitable deformed Wess-Zumino-Witten models, making it possible to compute boundary conformal weights to all orders. This is then applied to the OSP (2S+2 vertical stroke 2S) Gross-Neveu Model, leading to a dual description in terms of the sigma model on the supersphere S{sup 2S+1} {sup vertical} {sup stroke} {sup 2S}. With this results in mind, we then turn to the similar, yet more intricate, theory of the non-linear sigma model on the complex projective superspaces CP{sup N-1} {sup vertical} {sup stroke} {sup N}. The cohomological reduction allows us to compute several important quantities non-perturbatively with the help of the system of symplectic fermions. Combining this with partial perturbative results for the whole theory, together with numerical computations, we propose a conjecture for the exact evolution of boundary conformal weights for symmetry preserving boundary conditions. (orig.)
International Nuclear Information System (INIS)
Mitev, Vladimir
2010-08-01
The purpose of this thesis is to deepen our understanding of the fundamental properties and defining features of non-linear sigma models on superspaces. We begin by presenting the major concepts that we have used in our investigation, namely Lie superalgebras and supergroups, non-linear sigma models and two dimensional conformal field theory. We then exhibit a method, called cohomological reduction, that makes use of the target space supersymmetry of non-linear sigma models to compute certain correlation functions. We then show how the target space supersymmetry of Ricci flat Lie supergroups simplifies the perturbation theory of suitable deformed Wess-Zumino-Witten models, making it possible to compute boundary conformal weights to all orders. This is then applied to the OSP (2S+2 vertical stroke 2S) Gross-Neveu Model, leading to a dual description in terms of the sigma model on the supersphere S 2S+1 vertical stroke 2S . With this results in mind, we then turn to the similar, yet more intricate, theory of the non-linear sigma model on the complex projective superspaces CP N-1 vertical stroke N . The cohomological reduction allows us to compute several important quantities non-perturbatively with the help of the system of symplectic fermions. Combining this with partial perturbative results for the whole theory, together with numerical computations, we propose a conjecture for the exact evolution of boundary conformal weights for symmetry preserving boundary conditions. (orig.)
Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states
Poilblanc, Didier
2017-09-01
A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.
International Nuclear Information System (INIS)
Marshakov, A.; Morozov, A.
1989-01-01
A reduced SL(3) Wess-Zumino-Witten model realized in terms of two free fields which posesses SL(3) invariance is considered. The operators W 2 and W 3 of refs. (1,2,3) are the Noether currents of this theory. This is direct generalization of the SL(2) case (two-dimensional gravity). 12 refs.; 1 fig
Induced WZW-type term in dual field theory
International Nuclear Information System (INIS)
Nielsen, N.K.
1990-01-01
One-loop quantum equivalence is investigated by proper time regularization for a nonlinear σ-model in two dimensions on a group manifold and its dual theory constructed by Fradkin and Tseytlin. The one-loop effective actions are found to deviate by a finite local counterterm with a structure similar to that of a Wess-Zumino-Witten term
Polyakov-Wiegmann formula and multiplicative gerbes
International Nuclear Information System (INIS)
Gawedzki, Krzysztof; Waldorf, Konrad
2009-01-01
An unambiguous definition of Feynman amplitudes in the Wess-Zumino-Witten sigma model and the Chern-Simon gauge theory with a general Lie group is determined by a certain geometric structure on the group. For the WZW amplitudes, this is a (bundle) gerbe with connection of an appropriate curvature whereas for the CS amplitudes, the gerbe has to be additionally equipped with a multiplicative structure assuring its compatibility with the group multiplication. We show that for simple compact Lie groups the obstruction to the existence of a multiplicative structure is provided by a 2-cocycle of phases that appears in the Polyakov-Wiegmann formula relating the Wess-Zumino action functional of the product of group-valued fields to the sum of the individual contributions. These phases were computed long time ago for all compact simple Lie groups. If they are trivial, then the multiplicative structure exists and is unique up to isomorphism.
Superstrings fermionic solutions
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
1990-06-01
The solutions proposed by the superstring theory are classified and compared. In order to obtain some of the equivalences, the demonstration is based on the coincidence of the excitation spectrum and the quantum numbers from different states. The fermionic representation of the heterotical strings is discussed. The conformal invariance and the supersymmetric results extended to two dimensions are investigated. Concerning the fermionic strings, the formalism and a phenomenological solution involving three families of quarks, chiral leptons and leptons from the E 6 gauge group are presented. The equivalence between real and complex fermions is discussed. The similarity between some of the solutions of the Wess-Zumino-Witten model and the orbifolds is considered. The formal calculation program developed for reproducing the theory's low energy spectra, in the fermionic string formalism is given [fr
Comments on complete actions for open superstring field theory
International Nuclear Information System (INIS)
Matsunaga, Hiroaki
2016-01-01
We clarify a Wess-Zumino-Witten-like structure including Ramond fields and propose one systematic way to construct gauge invariant actions: Wess-Zumino-Witten-like complete action S WZW . We show that Kunitomo-Okawa’s action proposed in http://arxiv.org/abs/1508.00366 can obtain a topological parameter dependence of Ramond fields and belongs to our WZW-like framework. In this framework, once a WZW-like functional A η =A η [Ψ] of a dynamical string field Ψ is constructed, we obtain one realization of S WZW [Ψ] parametrized by Ψ. On the basis of this way, we construct an action S̃ whose on-shell condition is equivalent to the Ramond equations of motion proposed in http://arxiv.org/abs/1506.05774. Using these results, we provide the equivalence of two theories: http://arxiv.org/abs/1508.00366 and http://arxiv.org/abs/1506.05774.
International Nuclear Information System (INIS)
Candu, Constantin; Schomerus, Volker
2011-04-01
We describe several families of non-unitary coset conformal field theories that possess truly marginal couplings. These generalize the known examples of Wess-Zumino-Witten models on supergroups such as PSU(n vertical stroke n) or OSP(2n+2 vertical stroke 2n). Our extension includes coset space sigma models, affine Toda theories or Gross-Neveu models which are believed to arise in certain limits. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Candu, Constantin; Schomerus, Volker
2011-04-15
We describe several families of non-unitary coset conformal field theories that possess truly marginal couplings. These generalize the known examples of Wess-Zumino-Witten models on supergroups such as PSU(n vertical stroke n) or OSP(2n+2 vertical stroke 2n). Our extension includes coset space sigma models, affine Toda theories or Gross-Neveu models which are believed to arise in certain limits. (orig.)
Stringy horizons and generalized FZZ duality in perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2017-02-14
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
A{sub ∞}/L{sub ∞} structure and alternative action for WZW-like superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Goto, Keiyu [Institute of Physics, University of Tokyo,Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Matsunaga, Hiroaki [Institute of Physics, Academy of Sciences of the Czech Republic,Na Slovance 2, Prague 8 (Czech Republic); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)
2017-01-09
We propose new gauge invariant actions for open NS, heterotic NS, and closed NS-NS superstring field theories. They are based on the large Hilbert space, and have Wess-Zumino-Witten-like expressions which are the ℤ{sub 2}-reversed versions of the conventional WZW-like actions. On the basis of the procedure proposed in https://arxiv.org/abs/1505.01659, we show that our new WZW-like actions are completely equivalent to A{sub ∞}/L{sub ∞} actions proposed in https://arxiv.org/abs/1403.0940 respectively.
Knizhnik-Zamolodchikov equations for positive genus and Krichever-Novikov algebras
International Nuclear Information System (INIS)
Schlichenmaier, M; Sheinman, O K
2004-01-01
In this paper a global operator approach to the Wess-Zumino-Witten-Novikov theory for compact Riemann surfaces of arbitrary genus with marked points is developed. The term 'global' here means that Krichever-Novikov algebras of gauge and conformal symmetries (that is, algebras of global symmetries) are used instead of loop algebras and Virasoro algebras (which are local in this context). The basic elements of this global approach are described in a previous paper of the authors (Russ. Math. Surveys 54:1 (1999)). The present paper gives a construction of the conformal blocks and of a projectively flat connection on the bundle formed by them
Fusion rings and fusion ideals
DEFF Research Database (Denmark)
Andersen, Troels Bak
This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...... by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...
Quantum critical spin-2 chain with emergent SU(3) symmetry.
Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K
2015-04-10
We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.
A natural Poincare gauge model
International Nuclear Information System (INIS)
Aldrovandi, R.; Pereira, J.G.
1985-01-01
A natural candidate model for a gauge theory for the Poincare group is discussed. It satisfies the usual electric-magnetic symmetry of gauge models and is a contraction of a gauge model for the De Sitter group. Its field equations are just the Yang-Mills equations for the Poincare group. It is shown that these equations do not follow from a Lagrangean. (Author) [pt
International Nuclear Information System (INIS)
Leite Lopes, J.
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author)
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
Family gauge symmetry from a composite model
International Nuclear Information System (INIS)
Zhou, B.R.; Chang, C.H.; Princeton Univ., NJ
1983-01-01
A family gauge symmetry SUsup(F)(2) could emerge from a composite model of quarks and leptons under some assumptions of chiral hyperflavor symmetry-breaking pattern. Possible dynamical mechanisms which break the family and electroweak gauge group and produce quark-lepton masses are indicated and their phenomenologies are discussed qualitatively. (orig.)
Subleading hadronic vacuum polarization contributions to muon g - 2: μ + μ - → γ* → π 0 γ*
Hong, Deog Ki; Kim, Du Hwan; Lee, Jong-Wan
2018-01-01
We consider the subleading contributions of the hadronic vacuum polarization, involving the π 0 γ* γ* transition form factor, to the muon anomalous magnetic moment g - 2. Various models for the form factor, based on hadronic ansatzes and holographic principles, are considered: They are the Wess-Zumino-Witten, vector meson dominance, lowest meson dominance (one and two vector resonances), and anti-de Sitter/quantum chromodynamics (AdS/QCD) models. The model parameters are determined by fitting the experimental data for the e + e -→ π 0 γ total cross section. We report the following numerical result for the corrections to the muon g - 2: the resulting values of two vector resonances model are one order-of-magntitude smaller than the one obtained from the dispersion relation.
An Anomalous Composite Higgs and the 750 GeV Di-Gamma Resonance
Gripaios, Ben; You, Tevong
2017-01-13
We describe a composite Higgs model in which the $SO(5)/SO(4)$ coset structure of the minimal model is extended by an additional, non-linearly-realized $U(1)_{\\eta}$. We show that the extra pseudo-Goldstone boson can play the r\\^{o}le of the putative 750 GeV resonance observed at the LHC, with a di-gluon production mode and a di-gamma decay mode arising via anomalies. While some tuning is needed to accommodate flavour and electroweak precision constraints, the model is no worse than the minimal model in this regard. We discuss the higher-order structure of the anomalous effective action and show that there is a Wess-Zumino-Witten term that may give rise to the rare decay $\\eta \\rightarrow h W^+ W^- Z$.
Logarithmic conformal field theory: beyond an introduction
Creutzig, Thomas; Ridout, David
2013-12-01
This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model \\mathfrak {M} (1,2), related to the triplet model \\mathfrak {W} (1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess-Zumino-Witten model based on \\widehat{\\mathfrak {sl}} \\left( 2 \\right) at k=-\\frac{1}{2}, related to the bosonic βγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroup \\mathsf {GL} \\left( 1 {\\mid} 1 \\right), related to \\mathsf {SL} \\left( 2 {\\mid} 1 \\right) at k=-\\frac{1}{2} and 1, the Bershadsky-Polyakov algebra W_3^{(2)} and the Feigin-Semikhatov algebras W_n^{(2)}. These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models \\mathfrak {W} (q,p), the fractional level Wess-Zumino-Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excluding \\mathsf {OSP} \\left( 1 {\\mid} 2n \\right)). In this review, the emphasis lies on the representation theory
$W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes
Ellis, John; Nanopoulos, Dimitri V
2016-01-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...
A covariant canonical description of Liouville field theory
International Nuclear Information System (INIS)
Papadopoulos, G.; Spence, B.
1993-03-01
This paper presents a new parametrisation of the space of solutions of Liouville field theory on a cylinder. In this parametrisation, the solutions are well-defined and manifestly real functions over all space-time and all of parameter space. It is shown that the resulting covariant phase space of the Liouville theory is diffeomorphic to the Hamiltonian one, and to the space of initial data of the theory. The Poisson brackets are derived and shown to be those of the co-tangent bundle of the loop group of the real line. Using Hamiltonian reduction, it is shown that this covariant phase space formulation of Liouville theory may also be obtained from the covariant phase space formulation of the Wess-Zumino-Witten model. 19 refs
Spontaneously broken abelian gauge invariant supersymmetric model
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)
Gauge invariant actions for string models
International Nuclear Information System (INIS)
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs
Flavor gauge models below the Fermi scale
Babu, K. S.; Friedland, A.; Machado, P. A. N.; Mocioiu, I.
2017-12-01
The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, X, corresponding to the B - L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B +, D + and Upsilon decays, D-{\\overline{D}}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling g X in the range (10-2-10-4) the model is shown to be consistent with the data. Possible ways of testing the model in b physics, top and Z decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.
Gauss decomposition, Wakimoto realisation and gauged WZNW models
International Nuclear Information System (INIS)
Arfaei, H.; Mohammedi, N.
1993-10-01
The implications of gauging the Wess-Zumino-Novikov-Witten (WZNW) model using the Gauss decomposition of the group elements are explored. We show that, contrary to standard gauging of WZNW models, this gauging is carried out by minimally coupling the gauge fields. We find that this gauging, in the case of gauging an abelian vector subgroup, differs from the standard one by terms proportional to the field strength of the gauge fields. We prove that gauging an abelian vector subgroup does not have a nonlinear sigma model interpretation. This is because the target-space metric resulting from the integration over the gauge fields is degenerate. We demonstrate, however, that this kind of gauging has a natural interpretation in terms of Wakimoto variables. (orig.)
Utilitarian supersymmetric gauge model of particle interactions
International Nuclear Information System (INIS)
Ma, Ernest
2010-01-01
A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
A high temperature interparticle potential for an alternative gauge model
International Nuclear Information System (INIS)
Doria, R.M.
1984-01-01
A thermal Wilson loop for a model with two gauge fields associated with the same gauge group is discussed. Deconfinement appears at high temperature. It is not possible however specify the colour of the deconfined matter. (Author) [pt
Comparing the Rξ gauge and the unitary gauge for the standard model: An example
Directory of Open Access Journals (Sweden)
Tai Tsun Wu
2017-01-01
Full Text Available For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge – the Rξ gauge and the unitary gauge – are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang–Mills non-Abelian gauge theory in general and the standard model in particular.
Linear sigma model for multiflavor gauge theories
Meurice, Y.
2017-12-01
We consider a linear sigma model describing 2 Nf2 bosons (σ , a0 , η' and π ) as an approximate effective theory for a S U (3 ) local gauge theory with Nf Dirac fermions in the fundamental representation. The model has a renormalizable U (Nf)L⊗U (Nf)R invariant part, which has an approximate O (2 Nf2) symmetry, and two additional terms, one describing the effects of a S U (Nf)V invariant mass term and the other the effects of the axial anomaly. We calculate the spectrum for arbitrary Nf. Using preliminary and published lattice results from the LatKMI collaboration, we found combinations of the masses that vary slowly with the explicit chiral symmetry breaking and Nf. This suggests that the anomaly term plays a leading role in the mass spectrum and that simple formulas such as Mσ2≃(2 /Nf-Cσ)Mη' 2 should apply in the chiral limit. Lattice measurements of Mη'2 and of approximate constants such as Cσ could help in locating the boundary of the conformal window. We show that our calculation can be adapted for arbitrary representations of the gauge group and in particular to the minimal model with two sextets, where similar patterns are likely to apply.
Quiver gauge theories and integrable lattice models
International Nuclear Information System (INIS)
Yagi, Junya
2015-01-01
We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.
Gauge Anomalies and Neutrino Seesaw Models
Neves Cebola, Luis Manuel
Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...
Implications of μ-e universality constraints for gauge models
International Nuclear Information System (INIS)
Kim, C.W.; Kim, J.
1978-01-01
Implications are discussed of apparent violation of μ-e universality in the ratio π→eγ/π→μγ for SU(2)xU(1) gauge models with and without righthanded doublets and gauge models based on the exceptional groups. (Auth.)
Gauge field entanglement in Kitaev's honeycomb model
Dóra, Balázs; Moessner, Roderich
2018-01-01
A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.
Models and mechanisms in gauge theories
International Nuclear Information System (INIS)
Polyakov, A.M.
1979-01-01
Several pieces of information concerning the dynamics of gauge theories are presented. Gauge fields are used for the construction of QCD and QFD. In both cases the most important question is what phases are realized if the gauge group is given. Different possibilities are known: confinement, total spontaneous breakdown, partial spontaneous breakdown and their combinations. Some unknown options also are not excluded. At the moment we have some superficial understanding of the qualitative features of different phases, but we do not know under what circumstances this or that phase is realized
Unification of gauge couplings in radiative neutrino mass models
DEFF Research Database (Denmark)
Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella
2016-01-01
We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively...
Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry
Directory of Open Access Journals (Sweden)
Cheng-Wei Chiang
2012-01-01
Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.
A Model of Direct Gauge Mediation of Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Murayama, H. [Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Berkeley, California 94720 (United States)
1997-07-01
We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m{sup 2}{sub {tilde q}} , m{sup 2}{sub {tilde l}} due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m{sup 2}{sub {tilde q}} and m{sup 2}{sub {tilde l}} can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}
Extended Nambu models: Their relation to gauge theories
Escobar, C. A.; Urrutia, L. F.
2017-05-01
Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
Higgs compositeness in Sp(2N) gauge theories — The pure gauge model
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.
Dark matter model with non-Abelian gauge symmetry
International Nuclear Information System (INIS)
Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao
2010-01-01
We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.
Electroweak phase transition in a model with gauged lepton number
International Nuclear Information System (INIS)
Aranda, Alfredo; Jiménez, Enrique; Vaquera-Araujo, Carlos A.
2015-01-01
In this work we study the electroweak phase transition in a model with gauged lepton number. Here, a family of vector-like leptons is required in order to cancel the gauge anomalies. Furthermore, these leptons can play an important role in the transition process. We find that this framework is able to provide a strong transition, but only for a very limited number of cases.
Stability and supersymmetry: Models with local gauge symmetry
International Nuclear Information System (INIS)
Curtright, T.; Ghandour, G.
1978-01-01
Renormalization group analysis is used to show the supersymmetric point in the effective coupling constant space is an unstable fixed point for several model gauge theories. The physical significance of this result is discussed in terms of the stability of the semiclassical ground state. In perturbation theory the supersymmetric point appears to be surrounded by regions in the coupling space representing three classes of theories: class one consists of theories for which the effective potential V has no apparent lower bound for large (pseudo)scalar field expectations; class two theories have lower bounds and radiatively induced absolute minima for V with nonzero field expectations; class three theories apparently have an absolute minimum of V at the origin of field space. Thus radiatively induced breaking of gauge invariance occurs for theories in classes one and two, but perturbatively the class one theories appear to have no ground states. Class three theories have ground states in which all gauge invariance remains intact. For the supersymmetric limits of the models examined the origin is known to be neutrally stable in field space, permitting an ambiguous breakdown of gauge invariance but not supersymmetry. This phenomenon is discussed in some detail. Calculations are performed in both Lorentz covariant and noncovariant gauges with a detailed comparison between gauges of the relevant one-loop diagrams
Equivalence between bumblebee models and electrodynamics in a nonlinear gauge
Escobar, C. A.; Martín-Ruiz, A.
2017-05-01
Bumblebee models are effective field theories describing a vector field with a nonzero vacuum expectation value that spontaneously breaks Lorentz invariance. They provide an alternative way of exploring the similarities between theories with spontaneous Lorentz symmetry breaking and gauge theories. The equivalence between bumblebee models with suitable conditions and standard electrodynamics in a nonlinear gauge AμAμ+b2=0 is taken for granted; however, this point is very subtle and has not yet been fully addressed. The main goal of this paper is to fill in this gap. More precisely, here we study the relation between a bumblebee model, with a smooth potential of the form V (Bμ)=V (BμBμ+b2), and standard electrodynamics in the nonlinear gauge AμAμ+b2=0 , both at the classical and quantum levels. Using Dirac's method we show that after introducing Dirac brackets with suitable initial conditions, the classical dynamics of the bumblebee model corresponds to that of standard electrodynamics in the aforementioned nonlinear gauge. In the quantum case we demonstrate that perturbative calculations of Feynman amplitudes to any physical process in each model are indistinguishable. To do this, we show that the Feynman rules and propagators of standard electrodynamics in the nonlinear gauge and those describing the bumblebee model are the same.
A simple model of low-scale direct gauge mediation
International Nuclear Information System (INIS)
Csaki, Csaba; Shirman, Yuri; Terning, John
2007-01-01
We construct a calculable model of low-energy direct gauge mediation making use of the metastable supersymmetry breaking vacua recently discovered by Intriligator, Seiberg and Shih. The standard model gauge group is a subgroup of the global symmetries of the SUSY breaking sector and messengers play an essential role in dynamical SUSY breaking: they are composites of a confining gauge theory, and the holomorphic scalar messenger mass appears as a consequence of the confining dynamics. The SUSY breaking scale is around 100 TeV nevertheless the model is calculable. The minimal non-renormalizable coupling of the Higgs to the DSB sector leads in a simple way to a μ-term, while the B-term arises at two-loop order resulting in a moderately large tan β. A novel feature of this class of models is that some particles from the dynamical SUSY breaking sector may be accessible at the LHC
Gravitino dark matter in hybrid gauge-gravity models
International Nuclear Information System (INIS)
Cerdeno, D.G.; Mambrini, Y.; Romagnoni, A.
2009-01-01
We study the phenomenology of generic supergravity models in which gravity mediation naturally competes with gauge mediation as the origin of supergravity-breaking. This class of hybrid models has been recently motivated in string inspired constructions and differs from usual gauge mediated supersymmetry breaking models in having messenger masses of order of the GUT scale. In these scenarios the gravitino can be the lightest supersymmetric particle in wide regions of the parameter space and therefore a potential candidate for dark matter. We investigate this possibility, imposing the WMAP bound on its relic abundance and taking into account constraints from Big Bang nucleosynthesis. We show that in these constructions viable gravitino dark matter can be obtained in specific regions of the parameter space, featuring large values of tan β and where the supersymmetry breaking mechanism is dominated by gauge mediation.
Compendium of Models from a Gauge U(1) Framework
Ma, Ernest
2016-01-01
A gauge U(1) framework was established in 2002 to extend the supersymmetric standard model. It has many possible realizations. Whereas all have the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS Collaboration at the Large Hadron Collider (LHC), they differ in other essential aspects. A compendium of such models is discussed.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Energy Technology Data Exchange (ETDEWEB)
Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)
2014-10-15
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
International Nuclear Information System (INIS)
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes
2014-01-01
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Experimental consequences of a horizontal gauge model for CP nonconservation
International Nuclear Information System (INIS)
Hou, W.; Soni, A.
1985-01-01
The experimental consequences of a model that links CP nonconservation with horizontal interactions and is based on the gauge group SU/sub l//sup W/(2) x SU/sub R//sup H/(2) x U/sup Y/ (1) are investigated. The magnitude of the observed CP nonconservation and that of the K/sub L/-K/sub S/ mass difference constrains the horizontal gauge boson masses (M/sub s/crR) such that 66 TeV> or approx. =M/sub s/crR>5 TeV. The model implies an extremely small value for Vertical Barepsilon'/epsilonVertical Bar. The branching ratio for K/sub L/→μe (K→πμe) could be greater than roughly-equal10 -10 (approx.10 -12 ). theta/sub QFD/ vanishes at the tree level. The contribution from the gauge sector, arising at two loops, is also discussed
Real gauge singlet scalar extension of the Standard Model: A ...
Indian Academy of Sciences (India)
2013-03-05
Mar 5, 2013 ... Abstract. The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry Z2 is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of S is achieved by the application of Z2 ...
Stationary solutions of multicomponent chiral and gauge models
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
The authors examine stationary solutions of completely integrable systems in (x, t) dimensions having infinitely many components. Among the cases under investigation are: (1) the infinite-component non-linear Schroedinger equation; (2) infinite component CPsup(Ω) or SU(N) sigma-models; (3) general gauge and chiral completely integrable systems. (Auth.)
Analysis of spin and gauge models with variational methods
International Nuclear Information System (INIS)
Dagotto, E.; Masperi, L.; Moreo, A.; Della Selva, A.; Fiore, R.
1985-01-01
Since independent-site (link) or independent-link (plaquette) variational states enhance the order or the disorder, respectively, in the treatment of spin (gauge) models, we prove that mixed states are able to improve the critical coupling while giving the qualitatively correct behavior of the relevant parameters
Gauge coupling unification in a classically scale invariant model
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki; Ishida, Hiroyuki [Graduate School of Science and Engineering, Shimane University,Matsue 690-8504 (Japan); Takahashi, Ryo [Graduate School of Science, Tohoku University,Sendai, 980-8578 (Japan); Yamaguchi, Yuya [Graduate School of Science and Engineering, Shimane University,Matsue 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University,Sapporo 060-0810 (Japan)
2016-02-08
There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3){sub C} with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.
Search for composite models with family gauge symmetries
International Nuclear Information System (INIS)
Zhou, B.R.; Huerta, R.
1985-01-01
We have analyzed a class of three-preon models based on a strategy expected to lead to family gauge symmetry SUsup(F)(n) and found that, in order to obey the assumption of asymptotic freedom and infrared confinement for the hypercolor group SUsub(H)(N), 't Hooft anomaly consistency conditions, especially the requirement of dynamical generation of quark-lepton masses by means of color condensates of exotic fermions, the only possible model is the three-fermion model with the hypercolor group SUsub(H)(4) and the family gauge group SUsup(F)(2). All the models considered which contain scalar-preons are excluded from being realistic models unless some new mechanism of quark-lepton mass generation is worked out. (orig.)
Threshold corrections and gauge symmetry in twisted superstring models
International Nuclear Information System (INIS)
Pierce, D.M.
1994-01-01
Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)xU(1) 5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4, SU(3)xU(1)xU(1) model to the gauge group SU(3)xSU(2)xU(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions
Consistent spectroscopy for a extended gauge model
International Nuclear Information System (INIS)
Oliveira Neto, G. de.
1990-11-01
The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)
gl( N, N) current algebras and topological field theories
Isidro, J. M.; Ramallo, A. V.
1994-02-01
The conformal field theory for the gl( N, N) affine Lie superalgebra in two space-time dimensions is studied. The energy-momentum tensor of the model, with vanishing Virasoro anomaly, is constructed. This theory has a topological symmetry generated by operators of dimensions 1, 2 and 3, which are represented as normal-ordered products of gl( N, N) currents. The topological algebra they satisfy is linear and differs from the one obtained by twisting the N = 2 superconformal models. It closes with a set of gl( N) bosonic and fermionic currents. The Wess-Zumino-Witten model for the supergroup GL( N, N) provides an explicit realization of this symmetry and can be used to obtain a free-field representation of the different generators. In this free-field representation, the theory decomposes into two uncoupled components with sl( N) and U(1) symmetries. The non-abelian component is responsible for the extended character of the topological algebra, and it is shown to be equivalent to an SL( N)/SL( N) coset model. In the light of these results, the G/G coset models are interpreted as topological sigma models for the group manifold of G.
gl(N, N) current algebras and topological field theories
International Nuclear Information System (INIS)
Isidro, J.M.; Ramallo, A.V.
1994-01-01
The conformal field theory for the gl(N, N) affine Lie superalgebra in two space-time dimensions is studied. The energy-momentum tensor of the model, with vanishing Virasoro anomaly, is constructed. This theory has a topological symmetry generated by operators of dimensions 1, 2 and 3, which are represented as normal-ordered products of gl(N, N) currents. The topological algebra they satisfy is linear and differs from the one obtained by twisting the N = 2 superconformal models. It closes with a set of gl(N) bosonic and fermionic currents. The Wess-Zumino-Witten model for the supergroup GL(N, N) provides an explicit realization of this symmetry and can be used to obtain a free-field representation of the different generators. In this free-field representation, the theory decomposes into two uncoupled components with sl(N) and U(1) symmetries. The non-abelian component is responsible for the extended character of the topological algebra, and it is shown to be equivalent to an SL(N)/SL(N) coset model. In the light of these results, the G/G coset models are interpreted as topological sigma models for the group manifold of G. (orig.)
N=2 gauged WZW models and the elliptic genus
International Nuclear Information System (INIS)
Henningson, M.
1994-01-01
Witten recently gave further evidence for the conjectured relationship between the A-series of the N = 2 minimal models and certain Landau-Ginzburg models by computing the elliptic genus for the latter. The results agree with those of the N = 2 minimal models, as can be calculated from the known characters of the discrete series representations of the N = 2 superconformal algebra. The N = 2 minimal models also have a lagrangian representation as supersymmetric gauged WZW models. We calculate the elliptic genera, interpreted as a genus one path integral with twisted boundary conditions, for such models and recover the previously known result. (orig.)
Non Abelian T-duality in Gauged Linear Sigma Models
Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto
2018-04-01
Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.
Quark-flavour phenomenology of models with extended gauge symmetries
International Nuclear Information System (INIS)
Carlucci, Maria Valentina
2013-01-01
Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
Continuum limit of gl(M vertical stroke N) spin chains
International Nuclear Information System (INIS)
Candu, Constantin
2011-03-01
We study the spectrum of an integrable antiferromagnetic Hamiltonian of the gl(M vertical stroke N) spin chain of alternating fundamental and dual representations. After extensive numerical analysis, we identify the vacuum and low lying excitations and with this knowledge perform the continuum limit, while keeping a finite gap. All antiferromagnetic gl(n+N vertical stroke N) spin chains with n>0 and N≠0 are shown to possess in the continuum limit 2n-2 multiplets of massive particles which scatter with gl(n) Gross-Neveu like S-matrices, namely their eigenvalues do not depend on N. We argue that the continuum theory is the gl(M vertical stroke N) Gross-Neveu model, that is the massive deformation of the gl(M vertical stroke N) 1 Wess-Zumino-Witten model. As we can see ion the example of gl(2m vertical stroke 1) spin chains, the full particle spectrum is much richer. Our analysis suggests that for a complete characterization of the latter it is not enough to restrict to large volume calculations, as we do in this work. (orig.)
Holographic encoding of universality in corner spectra
Huang, Ching-Yu; Wei, Tzu-Chieh; Orús, Román
2017-05-01
In numerical simulations of classical and quantum lattice systems, 2D corner transfer matrices (CTMs) and 3D corner tensors (CTs) are a useful tool to compute approximate contractions of infinite-size tensor networks. In this paper we show how the numerical CTMs and CTs can be used, additionally, to extract universal information from their spectra. We provide examples of this for classical and quantum systems, in 1D, 2D, and 3D. Our results provide, in particular, practical evidence for a wide variety of models of the correspondence between d -dimensional quantum and (d +1 ) -dimensional classical spin systems. We show also how corner properties can be used to pinpoint quantum phase transitions, topological or not, without the need for observables. Moreover, for a chiral topological PEPS we show by examples that corner tensors can be used to extract the entanglement spectrum of half a system, with the expected symmetries of the S U (2) k Wess-Zumino-Witten model describing its gapless edge for k =1 ,2 . We also review the theory behind the quantum-classical correspondence for spin systems and provide a numerical scheme for quantum state renormalization in 2D using CTs. Our results show that bulk information of a lattice system is encoded holographically in efficiently-computable properties of its corners.
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
The Standard Model is Natural as Magnetic Gauge Theory
DEFF Research Database (Denmark)
Sannino, Francesco
2011-01-01
matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic...
Muon-Electron Conversion in a Family Gauge Boson Model
Koide, Yoshio; Yamanaka, Masato
2016-01-01
We study the $\\mu$-$e$ conversion in muonic atoms via an exchange of family gauge boson (FGB) $A_{2}^{\\ 1}$ in a $U(3)$ FGB model. Within the class of FGB model, we consider three types of family-number assignments for quarks. We evaluate the $\\mu$-$e$ conversion rate for various target nuclei, and find that next generation $\\mu$-$e$ conversion search experiments can cover entire energy scale of the model for all of types of the quark family-number assignments. We show that the conversion rat...
Gauge coupling unification in realistic free-fermionic string models
International Nuclear Information System (INIS)
Dienes, K.R.; Faraggi, A.E.
1995-01-01
We discuss the unification of gauge couplings within the framework of a wide class of realistic free-fermionic string models which have appeared in the literature, including the flipped SU(5), SO(6)xSO(4), and various SU(3)xSU(2)xU(1) models. If the matter spectrum below the string scale is that of the Minimal Supersymmetric Standard Model (MSSM), then string unification is in disagreement with experiment. We therefore examine several effects that may modify the minimal string predictions. First, we develop a systematic procedure for evaluating the one-loop heavy string threshold corrections in free-fermionic string models, and we explicitly evaluate these corrections for each of the realistic models. We find that these string threshold corrections are small, and we provide general arguments explaining why such threshold corrections are suppressed in string theory. Thus heavy thresholds cannot resolve the disagreement with experiment. We also study the effect of non-standard hypercharge normalizations, light SUSY thresholds, and intermediate-scale gauge structure, and similarly conclude that these effects cannot resolve the disagreement with low-energy data. Finally, we examine the effects of additional color triplets and electroweak doublets beyond the MSSM. Although not required in ordinary grand unification scenarios, such states generically appear within the context of certain realistic free-fermionic string models. We show that if these states exist at the appropriate thresholds, then the gauge couplings will indeed unify at the string scale. Thus, within these string models, string unification can be in agreement with low-energy data. (orig.)
Anomaly-free gauges in superstring theory and double supersymmetric sigma-model
International Nuclear Information System (INIS)
Demichev, A.P.; Iofa, M.Z.
1991-01-01
Superharmonic gauge which is a nontrivial analog of the harmonic gauge in bosonic string theory is constructed for the fermionic superstrings. In contrast to the conformal gauge, the harmonic gauge in bosonic string and superharmonic gauge in superstring theory are shown to be free from previously discovered BRST anomaly (in critical dimension) in higher orders of string perturbation theory and thus provide the setup for consistent quantization of (super)string theory. Superharmonic gauge appears to be closely connected with the supersymmetric σ-model with the target space being also a supermanifold. 28 refs
On radiative gauge symmetry breaking in the minimal supersymmetric model
International Nuclear Information System (INIS)
Gamberini, G.; Ridolfi, G.; Zwirner, F.
1990-01-01
We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)
Reheating temperature and gauge mediation models of supersymmetry breaking
International Nuclear Information System (INIS)
Olechowski, Marek; Pokorski, Stefan; Turzynski, Krzysztof; Wells, James D.
2009-01-01
For supersymmetric theories with gravitino dark matter, the maximal reheating temperature consistent with big bang nucleosynthesis bounds arises when the physical gaugino masses are degenerate. We consider the cases of a stau or sneutrino next-to-lightest superpartner, which have relatively less constraint from big bang nucleosynthesis. The resulting parameter space is consistent with leptogenesis requirements, and can be reached in generalized gauge mediation models. Such models illustrate a class of theories that overcome the well-known tension between big bang nucleosynthesis and leptogenesis.
Model of the N-quark potential in SU(N gauge theory using gauge-string duality
Directory of Open Access Journals (Sweden)
Oleg Andreev
2016-05-01
Full Text Available We use gauge-string duality to model the N-quark potential in pure Yang–Mills theories. For SU(3, the result agrees remarkably well with lattice simulations. The model smoothly interpolates between almost the Δ-law at short distances and the Y-law at long distances.
Composite models of quarks, leptons and gauge bosons
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1984-04-01
The current topics on composite models, in which quarks and leptons are made of subquarks, that is, more fundamental particles, are discussed. Among various topics, the discussion is concentrated on the flavor mixing, the minimal composite model of quarks and leptons is introduced as a standard of reference for discussions in this work. It consists of an isodoublet of subquarks and a color quartet of scalar subquarks. The quarks and leptons of the first generation can be taken as the composite states of these subquarks. The gauge bosons as well as the Higgs scalars can also be taken as the composite states of subquark-antisubquark pairs. This minimal composite model may reproduce QFD, QCD and some results of the grand unifified SU(5) gauge theory of Georgi and Glashow. Nucleon decay, the mass spectra of quarks and leptons, mass scale for the sub-structure, and quarks and leptons as Nambu-Goldstone fermions are briefly discussed on the basis of the composite model. The mixing matrix of quarks can be defined by the matrix element of the subquark current between the m-th up-like quark and the n-th down-like quark. The mixing matrix elements may vary as the functions of momentum transfer between quarks. The results of calculation showed that the quark mixing matrix elements drastically changed when the momentum transfer between quarks grew up to an order of the size inverse of quarks. (Kato, T.)
Lattice Gauge Theories Within and Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Gelzer, Zechariah John [Iowa U.
2017-01-01
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \
Extended Hamiltonian formalism of the pure space-like axial gauge Schwinger model
International Nuclear Information System (INIS)
Nakawaki, Yuji; Mccartor, Gary
2001-01-01
We demonstrate that pure space-like axial gauge quantizations of gauge fields can be constructed in ways that are free from infrared divergences. To do so, we must extend the Hamiltonian formalism to include residual gauge fields. We construct an operator solution and an extended Hamiltonian of the pure space-like axial gauge Schwinger model. We begin by constructing an axial gauge formation in auxiliary coordinates, x μ =(x + , x - ), where x + =x 0 sinθ + x 1 cosθ, x - =x 0 cosθ - x 1 sinθ, and we take A=A 0 cosθ + A 1 sin θ=0 as the gauge fixing condition. In the region 0 - as the evolution parameter and construct a traditional canonical formulation of the temporal gauge Schwinger model in which residual gauge fields dependent only on x + are static canonical variables. Then we extrapolate the temporal gauge operator solution into the axial region, π / 4 + is taken as the evolution parameter. In the axial region we find that we have to take the representation of the residual gauge fields realizing the Mandelstam-Leibbrandt prescription in order for the infrared divergences resulting from (∂) -1 to be canceled by corresponding ones resulting from the inverse of the hyperbolic Laplace operator. We overcome the difficulty of constructing the Hamiltonian for the residual gauge fields by employing McCartor and Robertson's method, which gives us a term integrated over x - =constant. Finally, by taking the limit θ→π / 2 - 0, we obtain an operator solution and the Hamiltonian of the axial gauge (Coulomb gauge) Schwinger model in ordinary coordinates. That solution includes auxiliary fields, and the representation space is of indefinite metric, providing further evidence that 'physical' gauges are no more physical than 'unphysical' gauges. (author)
A gauge model describing N relativistic particles bound by linear forces
International Nuclear Information System (INIS)
Filippov, A.T.
1988-01-01
A relativistic model of N particles bound by linear forces is obtained by applying the gauging procedure to the linear canonical symmteries of a simple (rudimentary) nonrelativistic N-particle Lagrangian extended to relativistic phase space. The new (gauged) Lagrangian is formally Poincare invariant, the Hamiltonian is a linear combination of first-class constraints which are closed with respect to Pisson brackets and generate the localized canonical symmteries. The gauge potentials appear as the Lagrange multipliers of the constraints. Gauge fixing and quantization of the model are also briefly discussed. 11 refs
The electroweak phase transition in models with gauge singlets
International Nuclear Information System (INIS)
Ahriche, A.
2007-01-01
A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)
The electroweak phase transition in models with gauge singlets
Energy Technology Data Exchange (ETDEWEB)
Ahriche, A.
2007-04-18
A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)
Superstring motivated gauge models based on a rank six subgroup of E6
International Nuclear Information System (INIS)
Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.
1987-01-01
We discuss gauge models based on a superstring motivated rank six subgroup of E 6 . Lepton number is an accidental unbroken symmetry of the models which leads to an essential stable proton. One of the neutral gauge bosons couples to B-L and may have mass below a TeV. (orig.)
Dynamically broken gauge model without fundamental scalar fields
Energy Technology Data Exchange (ETDEWEB)
Snyderman, N. J.; Guralnik, G. S.
1976-01-01
It is shown that the structure that must be generated by dynamical symmetry breaking solutions to gauge theories can be explicitly implemented with a 4-fermion interaction. This structure arises in order to obtain consistency with the constraints imposed by a Goldstone commutator proportional to (anti psi psi). One demonstrates these ideas within the context of axial electrodynamics, dynamically breaking chiral symmetry. As a pre-requisite it is shown how the Nambu-Jona-Lasinio model becomes renormalizable with respect to a systematic approximation scheme that respects the Goldstone commutator of dynamically broken chiral symmetry to each order of approximation. (This approximation scheme is equivalent to a l/N expansion, where N is set to unity at the end of the calculations). This solution generates new interactions not explicitly present in the original Lagrangian and does not have a 4-fermion contact interaction. The renormalized Green's functions are shown to correspond to those of the sigma-model, summed as though the fermions had N components, and for which lambda/sub 0/ = 2g/sub 0//sup 2/. This correspondence is exact except for the possibility that the renormalized coupling of the Nambu-Jona-Lasinio model may be a determined number.
Dynamically broken gauge model without fundamental scalar fields
International Nuclear Information System (INIS)
Snyderman, N.J.; Guralnik, G.S.
1976-01-01
It is shown that the structure that must be generated by dynamical symmetry breaking solutions to gauge theories can be explicitly implemented with a 4-fermion interaction. This structure arises in order to obtain consistency with the constraints imposed by a Goldstone commutator proportional to [anti psi psi]. One demonstrates these ideas within the context of axial electrodynamics, dynamically breaking chiral symmetry. As a pre-requisite it is shown how the Nambu-Jona-Lasinio model becomes renormalizable with respect to a systematic approximation scheme that respects the Goldstone commutator of dynamically broken chiral symmetry to each order of approximation. (This approximation scheme is equivalent to a l/N expansion, where N is set to unity at the end of the calculations). This solution generates new interactions not explicitly present in the original Lagrangian and does not have a 4-fermion contact interaction. The renormalized Green's functions are shown to correspond to those of the sigma-model, summed as though the fermions had N components, and for which lambda 0 = 2g 0 2 . This correspondence is exact except for the possibility that the renormalized coupling of the Nambu-Jona-Lasinio model may be a determined number
Cosmic time gauge in quantum cosmology and chaotic inflation model
International Nuclear Information System (INIS)
Hosoya, A.
1986-01-01
The author proposes a cosmic time gauge formalism in quantum cosmology to get an equation for the Schrodinger type. Its application to the chaotic inflation scenario reveals that the uncertainty in the scale factor grows exponentially as the universe inflates
A stringy perspective on the quantum integrable model/gauge correspondence
Orlando, Domenico
2013-01-01
We present a string theory realization for the correspondence between quantum integrable models and supersymmetric gauge theories. The quantization results from summing the effects of fundamental strings winding around a compact direction. We discuss the examples of the XXZ gauge/Bethe correspondence and five-dimensional \\Omega--deformed SYM on M x S^1.
Geometrical aspects of operator ordering terms in gauge invariant quantum models
International Nuclear Information System (INIS)
Houston, P.J.
1990-01-01
Finite-dimensional quantum models with both boson and fermion degrees of freedom, and which have a gauge invariance, are studied here as simple versions of gauge invariant quantum field theories. The configuration space of these finite-dimensional models has the structure of a principal fibre bundle and has defined on it a metric which is invariant under the action of the bundle or gauge group. When the gauge-dependent degrees of freedom are removed, thereby defining the quantum models on the base of the principal fibre bundle, extra operator ordering terms arise. By making use of dimensional reduction methods in removing the gauge dependence, expressions are obtained here for the operator ordering terms which show clearly their dependence on the geometry of the principal fibre bundle structure. (author)
Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...
Z2 monopoles in the standard SU(2) lattice gauge theory model
International Nuclear Information System (INIS)
Mack, G.; Petkova, V.B.
1979-04-01
The standard SU(2) lattice gauge theory model without fermions may be considered as a Z 2 model with monopoles and fluctuating coupling constants. At low temperatures β -1 (= small bare coupling constant) the monopoles are confined. (orig.) [de
Finiteness of the topological models in the Landau gauge
International Nuclear Information System (INIS)
Maggiore, N.; Sorella, S.P.
1991-03-01
A general procedure for showing the perturbative finiteness of topological field theories is presented. The main tools of the investigation are the existence of a supersymmetric algebra and the choice of a Landau gauge for the gauge-fixing part of the action. First the on-shell supersymmetry is introduced, then the Slavnov identity and the off-shell supersymmetric algebra, finally the quantum extensions and the perturbative finiteness are studied. As an explicit example, the three-dimensional BF-system with a nonvanishing cosmological term is discussed in details. (K.A.) 15 refs., 2 tabs
Grosso, Andrea; Charrier, Lorena; Lovato, Emanuela; Panico, Claudio; Mariotti, Cesare; Dapavo, Giancarlo; Chiuminatto, Roberto; Siliquini, Roberta; Gianino, Maria Michela
2014-04-01
Small-gauge vitreoretinal techniques have been shown to be safe and effective in the management of a wide spectrum of vitreoretinal diseases. However, the costs of the new technologies may represent a critical issue for national health systems. The aim of the study is to plan a Health Technology Assessment (HTA) by performing a comparative analysis between the 23- and 25-gauge techniques in the management of macular diseases (epiretinal membranes, macular holes, vitreo-macular traction syndrome). In this prospective study, 45-80-year-old patients undergoing vitrectomy surgery for macular disease were enrolled at the Torino Eye Hospital. In the HTA model we assessed the safety, clinical effectiveness, and cost and financial evaluation of 23-gauge compared with 25-gauge vitrectomies. Fifty patients entered the study; 14 patients underwent 23-gauge vitrectomy and 36 underwent 25-gauge vitrectomy. There was no statistically significant difference in post-operative visual acuity at 1 year between the two groups. No cases of retinal detachment or endophtalmitis were registered at 1-year follow-up. The 23-gauge technique was slightly more expensive than the 25-gauge: the total surgical costs were EUR1217.70 versus EUR1164.84 (p = 0.351). We provide a financial comparison between new vitreoretinal procedures recently introduced in the market and reimbursed by the Italian National Health System and we also stimulate a critical debate about the expensive technocratic model of medicine.
Model for spontaneous generation of gauge structure and matter
International Nuclear Information System (INIS)
Chan, H.-M.; Tsou, S.T.
1983-09-01
Based on a special topological property of R 4 , it is argued that in a 4 + 1 - dimensional pure Einstein theory, the world will tend to find itself in a Kaluza-Klein mode with one compactified spatial dimension populated by singly charged solitons, so that both gauge structure and matter are spontaneously generated. (author)
Sterile Particles from the Flavor Gauge Model of Masses
Czech Academy of Sciences Publication Activity Database
Smetana, Adam
2013-01-01
Roč. 2013, č. 4 (2013), s. 139 ISSN 1029-8479 R&D Projects: GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : dynamical mass generation * ﬂavor gauge symmetry * right-handed neutrino condensation * sterile neutrinos * majorons Subject RIV: BE - Theoretical Physics Impact factor: 6.220, year: 2013
Jittoh, Toshifumi; Koike, Masafumi; Nomura, Takaaki; Sato, Joe; Shimomura, Takashi
2009-03-01
We investigate ten-dimensional gauge theories whose extra six-dimensional space is a compact coset space, S/R, and whose gauge group is a direct product of two Lie groups. We list candidates of the gauge group and embeddings of R into them. After dimensional reduction of the coset space, we find fermion and scalar representations of GGUT×U(1) with GGUT=SU(5), SO(10) and E6, which accommodate all of the standard model particles. We also discuss possibilities to generate distinct Yukawa couplings among the generations using representations with different dimensions for GGUT=SO(10) and E6 models.
A non-linear Rsub(xi)gauge condition for the electroweak SU(2)xU(1) model
International Nuclear Information System (INIS)
Gavela, M.B.; Girardi, G.; Malleville, C.; Sorba, P.
1981-05-01
A non-linear Rsub(xi) gauge conditions is presented and explicitly developed in the framework of the SU(2) x U(1) gauge model. We give the corresponding Feynman rules, which are simpler than in Rsub(xi) gauges, because couplings involving unphysical Higgs and gauge bosons disappear or simplify. The Faddeev-Popov sector is more elegant, the ghosts coupling to neutral gauge bosons like in scalar electrodynamics. Finally, as a practical example, the transition Higgs → γγ is considered and compared with the usual calculation in linear gauges
D-string fluid in conifold, I: Topological gauge model
International Nuclear Information System (INIS)
Ahl Laamara, R.; Drissi, L.B.; Saidi, E.H.
2006-01-01
Motivated by similarities between quantum Hall systems a la Susskind and aspects of topological string theory on conifold as well as results obtained in [E.H. Saidi, Topological SL(2) gauge theory on conifold and noncommutative geometry, hep-th/0601020], we study the dynamics of D-string fluids running in deformed conifold in presence of a strong and constant RR background B-field. We first introduce the basis of D-string system in fluid approximation and then derive the holomorphic noncommutative gauge invariant field action describing its dynamics in conifold. This study may be also viewed as embedding Susskind description for Laughlin liquid in type IIB string theory. FQH systems on real manifolds RxS 2 and S 3 are shown to be recovered by restricting conifold to its Lagrangian sub-manifolds. Aspects of quantum behaviour of the string fluid are discussed. ring fluid are discussed
Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda
2016-04-01
Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns
Gauging the nonlinear {sigma} model through a non-Abelian algebra
Energy Technology Data Exchange (ETDEWEB)
Barcelos-Neto, J.; Oliveira, W. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, RJ 21945-970, Caixa Postal 68528 (Brazil)
1997-08-01
We use an extension of the method due to Batalin, Fradkin, Fradkina, and Tyutin (BFFT) for transforming the nonlinear {sigma} model in a non-Abelian gauge theory. We deal with both supersymmetric and nonsupersymmetric cases. The bosonic case was already considered in the literature but just gauged with an Abelian algebra. We show that the supersymmetric version is only compatible with a non-Abelian gauge theory. The usual BFFT method for this case leads to a nonlocal algebra. {copyright} {ital 1997} {ital The American Physical Society}
Directory of Open Access Journals (Sweden)
Mauro Rossi
2017-12-01
Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.
Evaluation of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. Research report (Interim)
International Nuclear Information System (INIS)
Solaimanian, M.; Holmgreen, R.J.; Kennedy, T.W.
1990-07-01
The report describes the results of a research study to determine the effectiveness of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. The densities obtained from cores and the nuclear density gauge from seven construction projects were compared. The projects were either newly constructed or under construction when the tests were performed. A linear regression technique was used to investigate how well the core densities could be predicted from nuclear densities. Correlation coefficients were determined to indicate the degree of correlation between the core and nuclear densities. Using a statistical analysis technique, the range of the mean difference between core and nuclear measurements was established for specified confidence levels for each project. Analysis of the data indicated that the accuracy of the gauge is material dependent. While relatively acceptable results were obtained with limestone mixtures, the gauge did not perform satisfactorily with mixtures containing siliceous aggregate
Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling
DEFF Research Database (Denmark)
He, Xin; Sonnenborg, Torben Obel; Refsgaard, Jens Christian
2013-01-01
Weather radar-based quantitative precipitation estimation (QPE) is in principle superior to the areal precipitation estimated by using rain gauge data only, and therefore has become increasingly popular in applications such as hydrological modeling. The present study investigates the potential...... rainfall and subsequently the simulated hydrological responses. A headwater catchment located in western Denmark is chosen as the study site. Two hydrological models are built using the MIKE SHE code, where they have identical model structures expect for the rainfall forcing: one model is based on rain...... gauge interpolated rainfall, while the other is based on radar QPE which is a combination of both radar and rain gauge information. The two hydrological models are inversely calibrated and then validated against field observations. The model results show that the improvement introduced by using radar...
Extended Hamiltonian formalism of the pure space-like axial gauge Schwinger model. II
International Nuclear Information System (INIS)
Nakawaki, Yuji; McCartor, Gary
2004-01-01
Canonical methods are not sufficient to properly quantize space-like axial gauges. In this paper, we obtain guiding principles that allow for the construction of an extended Hamiltonian formalism for pure space-like axial gauge fields. To do so, we clarify the general role that residual gauge fields play in the space-like axial gauge Schwinger model. In all the calculations, we fix the gauge using the rule n·A=0, where n is a space-like constant vector, and we refer to its direction as x - . Then, to begin with, we construct a formulation in which the quantization surface is space-like but not parallel to the direction of n. The quantization surface has a parameter that allows us to rotate it, but when we do so, we keep the gauge fixing direction fixed. In that formulation, we can use canonical methods. We bosonize the model to simplify the investigation. We find that the inverse differentiation, (∂ - ) -1 , is ill-defined whatever quantization coordinates we use, as long as the direction of n is space-like. We find that the physical part of the dipole ghost field includes infrared divergences. However, we also find that if we introduce residual gauge fields in such as way that the dipole ghost field satisfies the canonical commutation relations, then the residual gauge fields are determined so as to regularize the infrared divergences contained in the physical part. The propagators then take the form prescribed by Mandelstam and Leibbrandt. We make use of these properties to develop guiding principles that allow us to construct consistent operator solutions in the pure space-like case, in which the quantization surface is parallel to the direction of n, and canonical methods do not suffice. (author)
International Nuclear Information System (INIS)
Snyderman, N.J.
1976-01-01
The Schwinger-Dyson equation for the Nambu-Jona Lasinio model is solved systematically subject to the constraint of spontaneously broken chiral symmetry. The solution to this equation generates interactions not explicitly present in the original Lagrangian, and the original 4-fermion interaction is not present in the solution. The theory creates bound-states with respect to which a perturbation theory consistent with the chiral symmetry is set up. The analysis suggests that this theory is renormalizable in the sense that all divergences can be grouped into a few arbitrary parameters. The renormalized propagators of this model are shown to be identical to those of a new solution to the sigma-model in which the bare 4-field coupling lambda 0 is chosen to be twice the π-fermion coupling g 0 . Also considered is spontaneously broken abelian gauge model without fundamental scalar fields by coupling an axial vector gauge field to the N ambu-Jona Lasinio model. It is shown how the Goldstone consequence of spontaneous symmetry breaking is avoided in the radiation gauge, and verify the Guralnik, Hagen, and Kibble theorem that under these conditions the global charge conservation is lost even though there is still local current conservation. This is contrasted with the Lorentz gauge situation. This also demonstrated the way the various noncovariant components of the massive gauge field combine in a gauge invariant scattering amplitude to propagate covariantly as a massive spin-1 particle, and this is compared with the Lorentz gauge calculation. F inally, a new model of interacting massless fermions is introduced, based on the models of Nambu and Jona Lasinio, and the Bjorken, which spontaneously breaks both chiral symmetry and Lorentz invariance. The content of this model is the same as that of the gauge model without fundamental scalar fields, but without fundamental gauge fields as well
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
De Gennes model of the nematic to smectic-A transition: dislocations and gauge properties
International Nuclear Information System (INIS)
Day, A.R.
1984-01-01
The de Gennes model is used to study the nematic to smectic-A (N-A) transition of liquid crystals. The analogy between the Ginzburg-Landau model for the normal metal to superconducting transition and the role of the splay elastic constant K 1 is stressed. It is found that, in contrast to what was previously thought, the de Gennes model is gauge invariant, irrespective of the value of k 1 . The model is studied in an arbitrary gauge, and it is shown that the renormalization group recursion relations in the epsilon expansion are independent of gauge. The critical exponent eta, with governs the power law decay of the smectic correlations at the critical point, is found to depend on the gauge, and, in the physical gauge, to diverge at the accessible fixed point, K 1 /sup XX.XX/ = 0. This is indicative of the nonpower law decay of the correlation function at the critical point. The author introduces an extension of the de Gennes model that describes a liquid crystal, with negative dielectric anisotropy, in an applied electric field. It is shown that there are at least two possible extensions to 4-epsilon dimensions and that they predict different critical behavior
Building up the standard gauge model of high energy physics. 11
International Nuclear Information System (INIS)
Rajasekaran, G.
1989-01-01
This chapter carefully builds up, step by step, the standard gauge model of particle physics based on the group SU(3) c x SU(2) x U(1). Spontaneous symmetry breaking via the Nambu-Goldstone mode, and then via the Higgs mode for gauge theories, are presented via examples, first for the Abelian U(1) and then for the non-Abelian SU(2) case. The physically interesting SU(2) x U(1) model is then taken up. The emergence of massive vector bosons is demonstrated. After this preparation, the 'standard model' of the late 60's prior to the gauge theory revolution, based on the V-A current-current weak interactions, minimal electromagnetism, and an unspecified strong interaction, all in quark-lepton language, is set up. It is then compared to the standard gauge model of SU(3) c x SU(2) x U(1). The compelling reasons for QCD as the gauge theory of strong interactions are spelt out. An introduction to renormalization group methods as the main calculational tool for QCD, asymptotic freedom, infrared problems, and physically motivated reasons for going beyond the standard model are presented. (author). 6 refs.; 19 figs.; 2 tabs
Global gauge fixing in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))
1991-10-15
We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.
Directory of Open Access Journals (Sweden)
H. E. Beck
2017-12-01
Full Text Available We undertook a comprehensive evaluation of 22 gridded (quasi-global (sub-daily precipitation (P datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( < 50 000 km2 catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7 or near-surface soil moisture (SM2RAIN-ASCAT, and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS. Two of the three reanalyses (ERA-Interim and JRA-55 unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0 generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU, which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1. Our results highlight large differences in estimation accuracy
Elliptic genera of 2d (0,2) gauge theories from brane brick models
Franco, Sebastian; Ghim, Dongwook; Lee, Sangmin; Seong, Rak-Kyeong
2017-06-01
Auc(bstract) We compute the elliptic genus of abelian 2d (0, 2) gauge theories corresponding to brane brick models. These theories are worldvolume theories on a single D1-brane probing a toric Calabi-Yau 4-fold singularity. We identify a match with the elliptic genus of the non-linear sigma model on the same Calabi-Yau background, which is computed using a new localization formula. The matching implies that the quantum effects do not drastically alter the correspondence between the geometry and the 2d (0, 2) gauge theory. In theories whose matter sector suffers from abelian gauge anomaly, we propose an ansatz for an anomaly cancelling term in the integral formula for the elliptic genus. We provide an example in which two brane brick models related to each other by Gadde-Gukov-Putrov triality give the same elliptic genus.
Aspects of the affine superalgebra sl(2-vertical bar-1) at fractional level
Energy Technology Data Exchange (ETDEWEB)
Johnstone, Gavin Balfour
2001-04-01
In this thesis we study the affine superalgebra s-tilde-l(2-vertical bar-1; C) at fractional levels of the form k = 1/u - 1, u is an element of N-back slash {l_brace}1{r_brace}. It is for these levels that admissible representations exist, which transform into each other under modular transformations. In the second chapter we review background material on conformal field theory, particularly the Wess-Zumino-Witten model and the connection with modular transformations. The superalgebra sl(2-vertical bar-1; C) is introduced, as is its affine version. The next chapter studies the modular transformation properties of s-tilde-l(2-vertical bar-1; C) characters. We derive formulae for these transformations for all levels of the form k = 1/u - 1, u is an element of N-back slash {l_brace}1{r_brace}. We also investigate some modular invariant combinations of characters and find two series of modular invariants, analogous to the A- and D-series of the classification of s-tilde-l(2) modular invariants. In chapter 4 we turn to the study of fusion rules. We concentrate on the case k = -1/2. By considering the decoupling of singular vectors, we are able to find consistent fusion rules for this particular level. These fusion rules correspond to a modular invariant found in chapter 3. This study suggests that one may consistently define a conformal field theory based on s-tilde-l(2-vertical bar-1; C) at fractional level. (author)
Loop calculations for the non-commutative U*(1) gauge field model with oscillator term
International Nuclear Information System (INIS)
Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael
2010-01-01
Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)
Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-04-28
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
The fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes. (orig.)
The standard model from a gauge theory in ten dimensions via CSDR
International Nuclear Information System (INIS)
Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.
1988-01-01
We present a gauge theory in ten dimensions based on the gauge group E 8 which is dimensionally reduced, according to the coset space dimensional reduction (CSDR) scheme, to the standard model SU 3c xSU 2L xU 1 , which breaks further to SU 3c xU 1em . We use the coset space Sp 4 /(SU 2 xU 1 )xZ 2 . The model gives similar predictions for sin 2 θ w and proton decay as the minimal SU 5 GUT. Natural choices of parameters suggest that the Higgs masses are as predicted by the Coleman-Weinberg radiative mechanism. (orig.)
Higgs-gauge boson interactions in the economical 3-3-1 model
International Nuclear Information System (INIS)
Phung Van Dong; Hoang Ngoc Long; Dang Van Soa
2006-01-01
Interactions among the standard model gauge bosons and scalar fields in the framework of the SU(3) C xSU(3) L xU(1) X gauge model with minimal (economical) Higgs content are presented. From these couplings, all scalar fields including the neutral scalar h and the Goldstone bosons can be identified and their couplings with the usual gauge bosons such as the photon, the charged W ± , and the neutral Z, without any additional conditions, are recovered. In the effective approximation, the full content of the scalar sector can be recognized. The CP-odd part of the Goldstone associated with the neutral non-Hermitian bilepton gauge boson G X 0 is decoupled, while its CP-even counterpart has the mixing in the same way in the gauge boson sector. Masses of the new neutral Higgs boson H 1 0 and the neutral non-Hermitian bilepton X 0 are dependent on a coefficient of Higgs self-coupling (λ 1 ). Similarly, masses of the singly charged Higgs boson H 2 ± and of the charged bilepton Y ± are proportional through a coefficient of Higgs self-interaction (λ 4 ). The hadronic cross section for production of this Higgs boson at the CERN LHC in the effective vector boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 260 fb
A path-functional field theory of lattice gauge models and the large- N limit
Yoneya, Tamiaki
1981-06-01
We transform lattice gauge models to a theory of functional fields defined on a set of closed paths. Some relevant properties of the formalism are discussed in detail, with emphasis on symmetry and topological structure. We then investigate the large- N limit of the U( N) lattice gauge model in arbitrary dimensions using this formalism. Assuming the existence of the limit, we show, to arbitrary order of the strong coupling expansion parameter ( g2N) -, which is kept fixed, that for the leading contribution in the limit: (i) the flow of indices in color space can be represented by planar diagrams; (ii) when the diagrams are immersed in space-time they are random surfaces without handles; (iii) there are interactions of the surfaces which can be depicted as the formation of multisheet bubblesw in the surfaces. This formalism also makes it possible to set up a gauge-invariant mean-field approximation.
Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models
International Nuclear Information System (INIS)
Steinacker, Harold
2009-01-01
The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.
Gauge dynamics in the PNJL model: Color neutrality and Casimir scaling
International Nuclear Information System (INIS)
Abuki, Hiroaki; Fukushima, Kenji
2009-01-01
We discuss a gauge-invariant prescription to take the mean-field approximation self-consistently in the PNJL model (Nambu-Jona-Lasinio model with the Polyakov loop). We first address the problem of non-vanishing color density in normal quark matter, which is an artifact arising from gauge-fixed treatment of the Polyakov loop mean-fields. We then confirm that the gauge average incorporated in our prescription resolves this problem and ensures color neutrality. We point out that the proposed method has an advantage in computing the expectation value of any function of the Polyakov loop matrix. We discuss the Casimir scaling as an immediate application of the method.
Samoilenka, A.; Shnir, Ya.
2018-02-01
We construct a new class of regular soliton solutions of the gauged planar Skyrme model on the target space S2 with fractional topological charges in the scalar sector. These field configurations represent Skyrmed vortices; they have finite energy and carry topologically quantized magnetic flux Φ =2 π n , where n is an integer. Using a special version of the product ansatz as a guide, we obtain by numerical relaxation various multimeron solutions and investigate the pattern of interaction between the fractionally charged solitons. We show that, unlike the vortices in the Abelian Higgs model, the gauged merons may combine short-range repulsion and long-range attraction. Considering the strong gauge coupling limit, we demonstrate that the topological quantization of the magnetic flux is determined by the Poincaré index of the planar components ϕ⊥=ϕ1+i ϕ2 of the Skyrme field.
Dynamical symmetry breaking in the Jackiw-Johnson model and the gauge technique
International Nuclear Information System (INIS)
Singh, J.P.
1984-01-01
The Jackiw-Johnson model of dynamical gauge symmetry breaking has been re-examined in the light of the gauge technique. In the limit where the ratio of the axial to vector coupling constants becomes small, or, consistently, in the limit where the ratio of the axial-vector-boson mass to the fermion mass becomes small, an approximate solution for the fermion spectral function has been derived. This gives an extremely small ratio of the axial-vector-boson mass to the fermion mass. (author)
Gauge-Independent Scales Related to the Standard Model Vacuum Instability
Espinosa, Jose R.; Konstandin, Thomas; Riotto, Antonio
2017-01-01
The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about $10^{11}$ GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.
Gauge-independent scales related to the Standard Model vacuum instability
International Nuclear Information System (INIS)
Espinosa, J.R.; Garny, M.; Konstandin, T.; Riotto, A.
2016-08-01
The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about 10 11 GeV. However, such a scale is unphysical as it is not gauge invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.
Deep-inelastic lepton scattering in an SU(3) x U(1) gauge model
International Nuclear Information System (INIS)
Maharana, K.; Sastry, C.V.
1976-01-01
Linear relations and sum rules for deep-inelastic lepton scattering are derived in the light-cone algebra approach from a set of weak, neutral, and electromagnetic currents based on an SU(3) x U(1) gauge model proposed by Schechter and Ueda
Gauge-field model of superfluid turbulence in the zero-temperature limit
Mehrafarin, M.
2018-02-01
We present a gauge-field extension of the Bose condensate model that describes T≈0 superfluid turbulence generated by the macroscopic motion of the superfluid. We first establish that the condensate model is dual to the short-range interacting loop gas model, wherein the loops represent quantum vortex lines. Vortex lines form, interact and proliferate as a result of the superfluid motion. Our extension is based on incorporating the Biot–Savart interaction between vortex lines, which is lacking in the loop gas model. We show that the extended loop gas is dual to a Ginzburg–Landau model, wherein the gauge coupling is between the macroscopic velocity field of the superfluid and the condensate. Applying the model to cylindrical and pipe flows, we describe how turbulence transitions with and without intermediate vortex flow, respectively.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Energy Technology Data Exchange (ETDEWEB)
Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Criticality of O (N ) symmetric models in the presence of discrete gauge symmetries
Pelissetto, Andrea; Tripodo, Antonio; Vicari, Ettore
2018-01-01
We investigate the critical properties of the three-dimensional antiferromagnetic RPN -1 model, which is characterized by a global O (N ) symmetry and a discrete Z2 gauge symmetry. We perform a field-theoretical analysis using the Landau-Ginzburg-Wilson (LGW) approach and a numerical Monte Carlo study. The LGW field-theoretical results are obtained by high-order perturbative analyses of the renormalization-group flow of the most general Φ4 theory with the same global symmetry as the model, assuming a gauge-invariant order-parameter field. For N =4 no stable fixed point is found, implying that any transition must necessarily be of first order. This is contradicted by the numerical results that provide strong evidence for a continuous transition. This suggests that gauge modes are not always irrelevant, as assumed by the LGW approach, but they may play an important role to determine the actual critical dynamics at the phase transition of O (N ) symmetric models with a discrete Z2 gauge symmetry.
A three-site gauge model for flavor hierarchies and flavor anomalies
Bordone, Marzia; Cornella, Claudia; Fuentes-Martín, Javier; Isidori, Gino
2018-04-01
We present a three-site Pati-Salam gauge model able to explain the Standard Model flavor hierarchies while, at the same time, accommodating the recent experimental hints of lepton-flavor non-universality in B decays. The model is consistent with low- and high-energy bounds, and predicts a rich spectrum of new states at the TeV scale that could be probed in the near future by the high-pT experiments at the LHC.
Model for extended Pati-Salam gauge symmetry
International Nuclear Information System (INIS)
Foot, R.; Lew, H.; Volkas, R.R.
1990-11-01
The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs
Sneutrino dark matter in gauged inverse seesaw models for neutrinos.
An, Haipeng; Dev, P S Bhupal; Cai, Yi; Mohapatra, R N
2012-02-24
Extending the minimal supersymmetric standard model to explain small neutrino masses via the inverse seesaw mechanism can lead to a new light supersymmetric scalar partner which can play the role of inelastic dark matter (IDM). It is a linear combination of the superpartners of the neutral fermions in the theory (the light left-handed neutrino and two heavy standard model singlet neutrinos) which can be very light with mass in ~5-20 GeV range, as suggested by some current direct detection experiments. The IDM in this class of models has keV-scale mass splitting, which is intimately connected to the small Majorana masses of neutrinos. We predict the differential scattering rate and annual modulation of the IDM signal which can be testable at future germanium- and xenon-based detectors.
Koseki, M.; Kuriki, R.
1995-01-01
The massless Schwinger model without the kinetic term of gauge field has gauge anomaly. We quantize the model as an anomalous gauge theory in the most general class of gauge conditions. We show that the gauge field becomes a dynamical variable because of gauge anomaly.
New scotogenic model of neutrino mass with U(1){sub D} gauge interaction
Energy Technology Data Exchange (ETDEWEB)
Ma, Ernest [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Picek, Ivica; Radovčić, Branimir [Department of Physics, Faculty of Science, University of Zagreb, P.O.B. 331, HR-10002 Zagreb (Croatia)
2013-11-04
We propose a new realization of the one-loop radiative model of neutrino mass generated by dark matter (scotogenic), where the particles in the loop have an additional U(1){sub D} gauge symmetry, which may be exact or broken to Z{sub 2}. This model is relevant to a number of astrophysical observations, including AMS-02 and the dark-matter distribution in dwarf galactic halos.
Anomaly cancellation in a class of chiral flavor gauge models
International Nuclear Information System (INIS)
Pisano, F.; Tran Anh Tuan.
1993-07-01
We show typical features on anomaly cancellation in the 3 - n - 1 extensions of the 3 - 2 - 1 standard model, with n = 3,4 which has been proposed recently. We point out that in this class of theories a natural explanation for the fundamental question of fermion family replication arises from the theoretical requirements of renormalizability and self-consistency, which constrains the number of the QFD families to the QCD color degrees of freedom. (author). 10 refs
Directory of Open Access Journals (Sweden)
Nikos Irges
2017-11-01
Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.
Gauge Group Contraction of Electroweak Model and its Natural Energy Limits
Directory of Open Access Journals (Sweden)
Nikolai A. Gromov
2015-09-01
Full Text Available The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interaction is explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.
International Nuclear Information System (INIS)
Sowerby, B.D.
1982-01-01
Techniques employed in nuclear gauges for the measurement of level, thickness, density and moisture are described. The gauges include both transmission and backscatter gauges and utilize alpha particles, beta particles, neutrons or gamma radiation
Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields
Struck, J.; Weinberg, M.; Ölschläger, C.; Windpassinger, P.; Simonet, J.; Sengstock, K.; Höppner, R.; Hauke, P.; Eckardt, A.; Lewenstein, M.; Mathey, L.
2013-11-01
Magnetism plays a key role in modern science and technology, but still many open questions arise from the interplay of magnetic many-body interactions. Deeper insight into complex magnetic behaviour and the nature of magnetic phase transitions can be obtained from, for example, model systems of coupled XY and Ising spins. Here, we report on the experimental realization of such a coupled system with ultracold atoms in triangular optical lattices. This is accomplished by imposing an artificial gauge field on the neutral atoms, which acts on them as a magnetic field does on charged particles. As a result, the atoms show persistent circular currents, the direction of which provides an Ising variable. On this, the tunable staggered gauge field, generated by a periodic driving of the lattice, acts as a longitudinal field. Further, the superfluid ground state presents strong analogies with the paradigm example of the fully frustrated XY model on a triangular lattice.
Mathematical gauge theory with applications to the standard model of particle physics
Hamilton, Mark J D
2017-01-01
The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of d...
T-duality transformation of gauged linear sigma model with F-term
Directory of Open Access Journals (Sweden)
Tetsuji Kimura
2014-10-01
Full Text Available We develop the duality transformation rules in two-dimensional theories in the superfield formalism. Even if the chiral superfield which we dualize involves an F-term, we can dualize it by virtue of the property of chiral superfields. We apply the duality transformation rule of the neutral chiral superfield to the N=(4,4 gauged linear sigma model for five-branes. We also investigate the duality transformation rule of the charged chiral superfield in the N=(4,4 gauged linear sigma model for the A1-type ALE space. In both cases we obtain the dual Lagrangians in the superfield formalism. In the low energy limit we find that their duality transformations are interpreted as T-duality transformations consistent with the Buscher rule.
Standard model from a gauge theory in ten dimensions via CSDR
Energy Technology Data Exchange (ETDEWEB)
Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.
1988-09-01
We present a gauge theory in ten dimensions based on the gauge group E/sub 8/ which is dimensionally reduced, according to the coset space dimensional reduction (CSDR) scheme, to the standard model SU/sub 3c/xSU/sub 2L/xU/sub 1/, which breaks further to SU/sub 3c/xU/sub 1em/. We use the coset space Sp/sub 4//(SU/sub 2/xU/sub 1/)xZ/sub 2/. The model gives similar predictions for sin /sup 2/theta/sub w/ and proton decay as the minimal SU/sub 5/ GUT. Natural choices of parameters suggest that the Higgs masses are as predicted by the Coleman-Weinberg radiative mechanism.
Avilés, L.; Canfora, F.; Dimakis, N.; Hidalgo, D.
2017-12-01
We construct the first analytic examples of topologically nontrivial solutions of the (3 +1 )-dimensional U (1 ) gauged Skyrme model within a finite box in (3 +1 )-dimensional flat space-time. There are two types of gauged solitons. The first type corresponds to gauged Skyrmions living within a finite volume. The second corresponds to gauged time crystals (smooth solutions of the U (1 ) gauged Skyrme model whose periodic time dependence is protected by a winding number). The notion of electromagnetic duality can be extended for these two types of configurations in the sense that the electric and one of the magnetic components can be interchanged. These analytic solutions show very explicitly the Callan-Witten mechanism (according to which magnetic monopoles may "swallow" part of the topological charge of the Skyrmion) since the electromagnetic field contributes directly to the conserved topological charge of the gauged Skyrmions. As it happens in superconductors, the magnetic field is suppressed in the core of the gauged Skyrmions. On the other hand, the electric field is strongly suppresed in the core of gauged time crystals.
Gauging the nonlinear sigma-model through a non-Abelian algebra
Energy Technology Data Exchange (ETDEWEB)
Barcelos Neto, J. [Universidade Federal, Rio de Janeiro, RJ (Brazil); Oliveira, W. [Juiz de Fora Univ., MG (Brazil)
1997-12-31
We have used an extension of the BFFT formalism presented by Banerjee et al. in order to gauge the nonlinear sigma model by means of a non-Abelian algebra. we have considered the supersymmetric and the usual cases. We have shown that the supersymmetric case is only consistently transformed in a first-class theory by means of a non-Abelian algebra. The usual BFFT treatment leads to a nonlocal theory. (author) 6 refs.
Two species of vortices in massive gauged non-linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Alonso-Izquierdo, A. [Departamento de Matemática Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales, Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. García [Departamento de Física, Universidad de Oviedo, Facultad de Ciencias, Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Física Fundamental, Universidad de Salamanca, Facultad de Ciencias, Plaza de la Merced, E-37008 Salamanca (Spain)
2015-02-23
Non-linear sigma models with scalar fields taking values on ℂℙ{sup n} complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S{sup 2} sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ{sup 2} model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ{sup N} models.
An Ar threesome: Matrix models, 2d conformal field theories, and 4d N =2 gauge theories
Schiappa, Ricardo; Wyllard, Niclas
2010-08-01
We explore the connections between three classes of theories: Ar quiver matrix models, d =2 conformal Ar Toda field theories, and d =4 N =2 supersymmetric conformal Ar quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N =2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.
An Ar threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories
International Nuclear Information System (INIS)
Schiappa, Ricardo; Wyllard, Niclas
2010-01-01
We explore the connections between three classes of theories: A r quiver matrix models, d=2 conformal A r Toda field theories, and d=4N=2 supersymmetric conformal A r quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.
Wang, Wei; Lu, Hui; Yang, Dawen; Sothea, Khem; Jiao, Yang; Gao, Bin; Peng, Xueting; Pang, Zhiguo
2016-01-01
The Mekong River is the most important river in Southeast Asia. It has increasingly suffered from water-related problems due to economic development, population growth and climate change in the surrounding areas. In this study, we built a distributed Geomorphology-Based Hydrological Model (GBHM) of the Mekong River using remote sensing data and other publicly available data. Two numerical experiments were conducted using different rainfall data sets as model inputs. The data sets included rain gauge data from the Mekong River Commission (MRC) and remote sensing rainfall data from the Tropic Rainfall Measurement Mission (TRMM 3B42V7). Model calibration and validation were conducted for the two rainfall data sets. Compared to the observed discharge, both the gauge simulation and TRMM simulation performed well during the calibration period (1998–2001). However, the performance of the gauge simulation was worse than that of the TRMM simulation during the validation period (2002–2012). The TRMM simulation is more stable and reliable at different scales. Moreover, the calibration period was changed to 2, 4, and 8 years to test the impact of the calibration period length on the two simulations. The results suggest that longer calibration periods improved the GBHM performance during validation periods. In addition, the TRMM simulation is more stable and less sensitive to the calibration period length than is the gauge simulation. Further analysis reveals that the uneven distribution of rain gauges makes the input rainfall data less representative and more heterogeneous, worsening the simulation performance. Our results indicate that remotely sensed rainfall data may be more suitable for driving distributed hydrologic models, especially in basins with poor data quality or limited gauge availability. PMID:27010692
Exact Solution of the Gauge Symmetric p-Spin Glass Model on a Complete Graph
Korada, Satish Babu; Macris, Nicolas
2009-07-01
We consider a gauge symmetric version of the p-spin glass model on a complete graph. The gauge symmetry guarantees the absence of replica symmetry breaking and allows to fully use the interpolation scheme of Guerra (Fields Inst. Commun. 30:161, 2001) to rigorously compute the free energy. In the case of pairwise interactions ( p=2), where we have a gauge symmetric version of the Sherrington-Kirkpatrick model, we get the free energy and magnetization for all values of external parameters. Our analysis also works for even p≥4 except in a range of parameters surrounding the phase transition line, and for odd p≥3 in a more restricted region. We also obtain concentration estimates for the magnetization and overlap parameter that play a crucial role in the proofs for odd p and justify the absence of replica symmetry breaking. Our initial motivation for considering this model came from problems related to communication over a noisy channel, and is briefly explained.
International Nuclear Information System (INIS)
Gozdz, Marek; Kaminski, Wieslaw A.; Wodecki, Andrzej
2004-01-01
The minimal supersymmetric standard model with gauge mediated supersymmetry breaking and trilinear R-parity violation is applied to the description of neutrinoless double β decay. A detailed study of limits on the parameter space coming from the B→X s γ processes by using the recent CLEO results is performed. The importance of two-nucleon and pion-exchange realizations of 0νββ decay together with gluino and neutralino contributions to this process is addressed. We have deduced new limits on the trilinear R-parity breaking parameter λ 111 ' from the nonobservability of 0νββ in several medium and heavy open-shell nuclei for different gauge mediated breaking scenarios. In general, they are stronger than those known from other analyses. Also some studies with respect to the future 0νββ projects are presented
Instanton-mediated baryon number violation in non-universal gauge extended models
Fuentes-Martín, J.; Portolés, J.; Ruiz-Femenía, P.
2015-01-01
Instanton solutions of non-abelian Yang-Mills theories generate an effective action that may induce lepton and baryon number violations, namely Δ B = Δ L = n f , being n f the number of families coupled to the gauge group. In this article we study instanton mediated processes in a SU(2) ℓ ⊗SU(2) h ⊗U(1) extension of the Standard Model that breaks universality by singularizing the third family. In the construction of the instanton Green functions we account systematically for the inter-family mixing. This allows us to use the experimental bounds on proton decay in order to constrain the gauge coupling of SU(2) h . Tau lepton non-leptonic and radiative decays with Δ B = Δ L = 1 are also analysed.
Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry
International Nuclear Information System (INIS)
Choi, Kiwoon
2010-01-01
There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
Energy Technology Data Exchange (ETDEWEB)
Luhn, C.
2006-05-15
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
International Nuclear Information System (INIS)
Luhn, C.
2006-05-01
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z N symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z 6 symmetry, proton hexality P 6 , which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH u LH u . In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1) X FN models in which the Z 3 symmetry baryon triality, B 3 , arises from U(1) X breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B 3 -conserving FN models. (orig.)
Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models
International Nuclear Information System (INIS)
Moore, S.R.
1985-10-01
In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs
Implementing general gauge mediation
International Nuclear Information System (INIS)
Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.
2009-01-01
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.
Li, Yuan; Grimaldi, Stefania; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2018-02-01
The skill of hydrologic models, such as those used in operational flood prediction, is currently restricted by the availability of flow gauges and by the quality of the streamflow data used for calibration. The increased availability of remote sensing products provides the opportunity to further improve the model forecasting skill. A joint calibration scheme using streamflow measurements and remote sensing derived soil moisture values was examined and compared with a streamflow only calibration scheme. The efficacy of the two calibration schemes was tested in three modelling setups: 1) a lumped model; 2) a semi-distributed model with only the outlet gauge available for calibration; and 3) a semi-distributed model with multiple gauges available for calibration. The joint calibration scheme was found to slightly degrade the streamflow prediction at gauged sites during the calibration period compared with streamflow only calibration, but improvement was found at the same gauged sites during the independent validation period. A more consistent and statistically significant improvement was achieved at gauged sites not used in the calibration, due to the spatial information introduced by the remotely sensed soil moisture data. It was also found that the impact of using soil moisture for calibration tended to be stronger at the upstream and tributary sub-catchments than at the downstream sub-catchments.
Adjusting weather radar data to rain gauge measurements with data-driven models
Teschl, Reinhard; Randeu, Walter; Teschl, Franz
2010-05-01
Weather radar networks provide data with good spatial coverage and temporal resolution. Hence they are able to describe the variability of precipitation. Typical radar stations determine the rain rate for every square kilometre and make a full volume scan within about 5 minutes. A weakness however, is their often poor metering precision limiting the applicability of the radar for hydrological purposes. In contrast to rain gauges, which measure precipitation directly on the ground, the radar determines the reflectivity aloft and remote. Due to this principle, several sources of possible errors occur. Therefore improving the radar estimates of rainfall is still a vital topic in radar meteorology and hydrology. This paper presents data-driven approaches to improve radar estimates of rainfall by mapping radar reflectivity measurements Z to rain gauge data R. The analysis encompasses several input configurations and data-driven models. Reflectivity measurements at a constant altitude and the vertical profiles of reflectivity above a rain gauge are used as input parameters. The applied models are Artificial Neural Network (ANN), Model Tree (MT), and IBk a k-nearest-neighbour classifier. The relationship found between the data of a rain gauge and the reflectivity measurements is subsequently applied to another site with comparable terrain. Based on this independent dataset the performance of the data-driven models in the various input configurations is evaluated. For this study, rain gauge and radar data from the province of Styria, Austria, were available. The data sets extend over a two-year period (2001 and 2002). The available rain gauges use the tipping bucket principle with a resolution of 0.1 mm. Reflectivity measurements are obtained from the Doppler weather radar station on Mt. Zirbitzkogel (by courtesy of AustroControl GmbH). The designated radar is a high-resolution C-band weather-radar situated at an altitude of 2372 m above mean sea level. The data
Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models
International Nuclear Information System (INIS)
Moore, S.R.
1985-01-01
The author analyzed the mass shifts for models with a more complicated Higgs sector. He uses the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. The author has considered the 2-doublet, n-doublet, triplet and doublet-triplet models. He has found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. If the author uses the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, it is found that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. The author has found that when the radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in this predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector
High temperature limit of the Standard Model due to gauge groups contraction
Gromov, N. A.
2017-12-01
The high temperature (high energy) limit of the Standard Model is developed with the help of contractions its gauge groups. The elementary particles evolution in the early Universe from Plank time up to several milliseconds is deduced from this limit theory. Particle properties at the infinite temperature look very unusual: all particles are massless, only neutral Z-bosons, u-quarks, neutrinos and photons are survived in this limit. The weak interactions become long-range and are mediated by neutral currents, quarks have only one color degree of freedom.
Ue (1)-covariant Rξ gauge for the two-Higgs doublet model
Indian Academy of Sciences (India)
Becchi–Rouet–Stora–Tyutin) symmetry is introduced. This gauge allows one to remove a significant number of nonphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant ...
Information on the gauge principle from an N=1/2, D=2 supersymmetric model
International Nuclear Information System (INIS)
Dias, S.A.; Doria, R.M.; Valle, J.L.M.
1988-01-01
The gauge principle does not only work to generate interactions. It potentially yields an abundance of gauge-potential fields transforming under the same local symmetry group. In order to show evidences of this property this work gauge-covariantizes an N = 1/2, D = 2 supersymmetric theory. Then, by relaxing the so-called conventional constraint, a second gauge-potential field naturally emerges. (author) [pt
Installation and operation manual on sea level gauge (Model: NIO_Ghana_2004)
Digital Repository Service at National Institute of Oceanography (India)
Joseph, A; Pereira, A; VijayKumar, K.; Prabhudesai, S.; Methar, A; Dias, M.
NIO sea level gauge is a pressure-based gauge that operates on 12 volts battery. The pressure-sensing element used in this gauge is a piezo-resistive programmable semiconductor transducer that provides pressure samples in RS-485 format...
Calibration of HEC-Ras hydrodynamic model using gauged discharge data and flood inundation maps
Tong, Rui; Komma, Jürgen
2017-04-01
The estimation of flood is essential for disaster alleviation. Hydrodynamic models are implemented to predict the occurrence and variance of flood in different scales. In practice, the calibration of hydrodynamic models aims to search the best possible parameters for the representation the natural flow resistance. Recent years have seen the calibration of hydrodynamic models being more actual and faster following the advance of earth observation products and computer based optimization techniques. In this study, the Hydrologic Engineering River Analysis System (HEC-Ras) model was set up with high-resolution digital elevation model from Laser scanner for the river Inn in Tyrol, Austria. 10 largest flood events from 19 hourly discharge gauges and flood inundation maps were selected to calibrate the HEC-Ras model. Manning roughness values and lateral inflow factors as parameters were automatically optimized with the Shuffled complex with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complex Evolution (SCE-UA). Different objective functions (Nash-Sutcliffe model efficiency coefficient, the timing of peak, peak value and Root-mean-square deviation) were used in single or multiple way. It was found that the lateral inflow factor was the most sensitive parameter. SP-UCI algorithm could avoid the local optimal and achieve efficient and effective parameters in the calibration of HEC-Ras model using flood extension images. As results showed, calibration by means of gauged discharge data and flood inundation maps, together with objective function of Nash-Sutcliffe model efficiency coefficient, was very robust to obtain more reliable flood simulation, and also to catch up with the peak value and the timing of peak.
Classifying bions in Grassmann sigma models and non-Abelian gauge theories by D-branes
Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke
2015-03-01
We classify bions in the Grassmann Gr_{N_F,N_C} sigma model (including the {C}P^{N_F-1} model) on {R}1× S1 with twisted boundary conditions. We formulate these models as U(N_C) gauge theories with N_F flavors in the fundamental representations. These theories can be promoted to supersymmetric gauge theories and, further, can be embedded into D-brane configurations in type-II superstring theories. We focus on specific configurations composed of multiple fractional instantons, termed neutral bions and charged bions, which are identified as perturbative infrared renormalons by Ünsal and his collaborators [G. V. Dunne and M. Ünsal, J. High Energy Phys. 1211, 170 (2012); G. V. Dunne and M. Ünsal, Phys. Rev. D 87, 025015 (2013)]. We show that D-brane configurations, as well as the moduli matrix, offer a very useful tool to classify all possible bion configurations in these models. In contrast to the {C}P^{N_F-1} model, there exist Bogomol'nyi-Prasad-Sommerfield (BPS) fractional instantons with topological charges greater than unity (of order N_C) that cannot be reduced to a composite of an instanton and fractional instantons. As a consequence, we find that the Grassmann sigma model admits neutral bions made of BPS and anti-BPS fractional instantons, each of which has a topological charge greater (less) than one (minus one), that are not decomposable into an instanton-anti-instanton pair and the rest. The {C}P^{N_F-1} model is found to have no charged bions. In contrast, we find that the Grassmann sigma model admits charged bions, for which we construct exact non-BPS solutions of the field equations.
Using Multiple Satellite-derived Water Levels to Inform Hydrodynamic Model in Sparsely Gauged Areas
Pham, H. T.; Marshall, L. A.; Johnson, F.; Sharma, A.
2017-12-01
Satellite radar altimetry from different orbits such as ENVISAT (35-day), Jason-2 (10-day), or CryoSat-2 (369-day) have been used as input data in hydrodynamic models for calibration, parameter estimation, or data assimilation. Due to coarse temporal resolutions, satellite altimeters are usually combined with in-situ data to improve their temporal resolutions and thereby improve model outputs. However, in sparsely gauged areas, using only low temporal resolution satellite altimeters without any complementation of in-situ river heights causes poor model performances. To improve hydrodynamic models in such areas, a method is required to complement high frequent satellite altimeters without using in-situ data. Here we propose a method to supplement 10-day Jason-2 satellite altimetry to produce daily water levels using multiple remotely sensed datasets rather than using in-situ data. A simple seasonal linear regression model is developed of the relationship between Jason-2 satellite altimetry to the difference in day and night land surface temperature (ΔLST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua land surface temperature products, satellite precipitation obtained from the Global Satellite Mapping of Precipitation (GSMAP) product, and satellite soil moisture retrieved from the Soil Moisture and Ocean Salinity (SMOS) product. The main aims of this study are (1) to evaluate the applicability of the daily multiple satellite-derived water levels in hydrodynamic models, and (2) to assess the propagation of uncertainty of multiple satellite datasets to model outputs. A Monte Carlo approach is used to incorporate the errors from multiple satellite input datasets. We apply the methodology at several locations to ensure that the proposed method is robust and reliable. The results indicate the potential of using multiple satellite-derived water levels for hydrodynamic models and other applications in sparsely gauged areas.
Design, modelling and construction of a continuous nuclear gauge for measuring the fluid levels
Falahati, M.; Rashidian Vaziri, M. R.; Beigzadeh, A. M.; Afarideh, H.
2018-02-01
In this paper, we report on design, modelling and construction of a simple continuous nuclear gauge for measuring the fluid levels in vessels. In this instrument, a point source and a point detector are used on top and bottom sides of the vessel. The theoretical framework that is needed for analyzing the instrument data is described and it is shown that with this type of design, any unknown systematic error during the measurements can be removed. The developed theoretical relations and the instrument modelling by the MCNPX code, demonstrate its linear response in the entire measuring span. By using a cesium-137 gamma radiation source and a NaI (Tl) scintillation detector in the construction of the nuclear level gauge, the linear response of the instrument is also experimentally confirmed. It is shown that the mean relative error in determination of water level in the entire range of an 85 cm height vessel was less than 3.57%, which is reasonably acceptable for this simple design.
Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?
Gasbarro, Andrew
2018-03-01
In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.
On the gauged Kaehler isometry in minimal supergravity models of inflation
International Nuclear Information System (INIS)
Ferrara, S.; Fre, P.; Sorin, A.S.
2014-01-01
In this paper we address the question how to discriminate whether the gauged isometry group G Σ of the Kaehler manifold Σ that produces a D-type inflaton potential in a Minimal Supergravity Model is elliptic, hyperbolic or parabolic. We show that the classification of isometries of symmetric cosets can be extended to non symmetric Σ.s if these manifolds satisfy additional mathematical restrictions. The classification criteria established in the mathematical literature are coherent with simple criteria formulated in terms of the asymptotic behavior of the Kaehler potential K(C) = 2 J(C) where the real scalar field C encodes the inflaton field. As a by product of our analysis we show that phenomenologically admissible potentials for the description of inflation and in particular α-attractors are mostly obtained from the gauging of a parabolic isometry, this being, in particular the case of the Starobinsky model. Yet at least one exception exists of an elliptic α-attractor, so that neither type of isometry can be a priori excluded. The requirement of regularity of the manifold Σ poses instead strong constraints on the α-attractors and reduces their space considerably. Curiously there is a unique integrable α-attractor corresponding to a particular value of this parameter. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Fujii, M; Fujii, Masaaki
2002-01-01
We point out that there is no cosmological gravitino problem in a certain class of gauge-mediated supersymmetry-breaking (GMSB) models. The constant term in the superpotential naturally causes small mixings between the standard-model and messenger fields, which give rise to late-time decays of the lightest messenger fields. This decay provides an exquisite amount of entropy, which dilutes the thermal relics of the gravitinos down to just the observed mass density of the dark matter. This remarkable phenomenon takes place automatically, irrespective of the gravitino mass and the reheating temperature of inflation, once the gravitinos and messenger fields are thermalized in the early Universe. In this class of GMSB models, there is no strict upper bound on the reheating temperature of inflation, which makes the standard thermal leptogenesis the most attractive candidate for the origin of the observed baryon asymmetry in the present Universe.
Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)
2016-12-14
We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.
International Nuclear Information System (INIS)
Meade, Patrick; Seiberg, Nathan; Shih, David
2009-01-01
We give a general definition of gauge mediated supersymmetry breaking which encompasses all the known gauge mediation models. In particular, it includes both models with messengers as well as direct mediation models. A formalism for computing the soft terms in the generic model is presented. Such a formalism is necessary in strongly-coupled direct mediation models where perturbation theory cannot be used. It allows us to identify features of the entire class of gauge mediation models and to distinguish them from specific signatures of various subclasses. (author)
On the Gauged Kahler Isometry in Minimal Supergravity Models of Inflation
Ferrara, Sergio; Sorin, Alexander S.
2014-01-01
In this paper we address the question how to discriminate whether the gauged isometry group G_Sigma of the Kahler manifold Sigma that produces a D-type inflaton potential in a Minimal Supergravity Model is elliptic, hyperbolic or parabolic. We show that the classification of isometries of symmetric cosets can be extended to non symmetric Sigma.s if these manifolds satisfy additional mathematical restrictions. The classification criteria established in the mathematical literature are coherent with simple criteria formulated in terms of the asymptotic behavior of the Kahler potential K(C) = 2 J(C) where the real scalar field C encodes the inflaton field. As a by product of our analysis we show that all phenomenologically admissible potentials for the description of inflation and in particular alpha-attractors are mostly obtained from the gauging of a parabolic isometry. The requirement of regularity of the manifold Sigma poses strong constraints on the alpha-attractors and reduces their space considerably. Curi...
Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges
Dedes, A.; Materkowska, W.; Paraskevas, M.; Rosiek, J.; Suxho, K.
2017-06-01
We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as "Warsaw basis". We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.
A Unitary and Renormalizable Theory of the Standard Model in Ghost-Free Light-Cone Gauge
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.
2002-02-15
Light-front (LF) quantization in light-cone (LC) gauge is used to construct a unitary and simultaneously renormalizable theory of the Standard Model. The framework derived earlier for QCD is extended to the Glashow, Weinberg, and Salam (GWS) model of electroweak interaction theory. The Lorentz condition is automatically satisfied in LF-quantized QCD in the LC gauge for the free massless gauge field. In the GWS model, with the spontaneous symmetry breaking present, we find that the 't Hooft condition accompanies the LC gauge condition corresponding to the massive vector boson. The two transverse polarization vectors for the massive vector boson may be chosen to be the same as found in QCD. The non-transverse and linearly independent third polarization vector is found to be parallel to the gauge direction. The corresponding sum over polarizations in the Standard model, indicated by K{sub {mu}{nu}}(k); has several simplifying properties similar to the polarization sum D{sub {mu}{nu}}(k) in QCD. The framework is ghost-free, and the interaction Hamiltonian of electroweak theory can be expressed in a form resembling that of covariant theory, except for few additional instantaneous interactions which can be treated systematically. The LF formulation also provides a transparent discussion of the Goldstone Boson (or Electroweak) Equivalence Theorem, as the illustrations show.
An A_r threesome: Matrix models, 2d CFTs and 4d N=2 gauge theories
Schiappa, Ricardo; Wyllard, Niclas
2009-01-01
We explore the connections between three classes of theories: A_r quiver matrix models, d=2 conformal A_r Toda field theories and d=4 N=2 supersymmetric conformal A_r quiver gauge theories. In particular, we analyse the quiver matrix models recently introduced by Dijkgraaf and Vafa and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in orde...
Gauge structure, anomalies and mass generation in a three dimensional thirring model
International Nuclear Information System (INIS)
Gomes, M.; Mendes, R.S.; Ribeiro, R.F.; Silva, A.J. da.
1990-05-01
We consider a three dimensional model of spinor fields with a Thirring like, quadrilinear self interaction. Using either two or four component Dirac spinors, we prove that the 1/N expansion for the model is renormalizable if a gauge structure to select physical quantities is introduced. For certain values of the coupling the leading 1/N approximation exihibits bound state poles. Dynamical breaking of parity or chiral symmetry is shown to occur as a cooperative effect of different orders of 1/N, if N is smaller than the critical value N c = 128 / x 2 D' , where D is two or four depending on wether the fermion field has two or four components. (author) [pt
Orientifolds and D-branes in N=2 gauged linear sigma models
Brunner, Ilka
We study parity symmetries and boundary conditions in the framework of gauged linear sigma models. This allows us to investigate the Kaehler moduli dependence of the physics of D-branes as well as orientifolds in a Calabi-Yau compactification. We first determine the parity action on D-branes and define the set of orientifold-invariant D-branes in the linear sigma model. Using probe branes on top of orientifold planes, we derive a general formula for the type (SO vs Sp) of orientifold planes. As applications, we show how compactifications with and without vector structure arise naturally at different real slices of the Kaehler moduli space of a Calabi-Yau compactification. We observe that orientifold planes located at certain components of the fixed point locus can change type when navigating through the stringy regime.
Classically conformal radiative neutrino model with gauged B−L symmetry
Directory of Open Access Journals (Sweden)
Hiroshi Okada
2016-09-01
Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.
A comparison of flood extent modelling approaches through constraining uncertainties on gauge data
Directory of Open Access Journals (Sweden)
M. G. F. Werner
2004-01-01
Full Text Available A comparison is made of 1D, 2D and integrated 1D-2D hydraulic models in predicting flood stages in a 17 km reach of the River Saar in Germany. The models perform comparably when calibrated against limited data available from a single gauge in the reach for three low to medium flood events. In validation against a larger event than those used in calibration, extrapolation with the 1D and particularly the integrated 1D-2D model is reliable, if uncertain, while the 2D model is unreliable. The difference stems from the way in which the models deal with flow in the main channel and in the floodplain and with turbulent momentum interchange between the two domains. The importance of using spatial calibration data for testing models giving spatial predictions is shown. Even simple binary (eye-witness observations on the presence or absence of flooding in establishing a reliable model structure to predict flood extent can be very valuable. Keywords: floods, hydraulic modelling, model calibration, uncertainty analysis
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
International Nuclear Information System (INIS)
Alvarez, Gustavo; Concepcion Univ.; Cvetic, Gorazd; Kniehl, Bernd A.; Kondrashuk, Igor; Univ. del Bio-Bio, Chillan; Parra-Ferrada, Ivan
2016-11-01
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica
2016-11-15
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.
Finite Element Model of the Strain Gauge For Determining Uniaxial Tension
Directory of Open Access Journals (Sweden)
Vladimír GOGA
2013-12-01
Full Text Available Strain gauge is device used to measure the mechanical strains of solid bodies. Deformation of the strain gauge element causes changes its electrical resistance. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor. When the stains are known, it is possible to determined state of stress at a point of measured body using generalized Hooke`s law and Mohr`s circle. Finite element analysis of strain gauge measurement using ANSYS software is subject of this article.
Areal rainfall estimation using moving cars as rain gauges – a modelling study
Directory of Open Access Journals (Sweden)
U. Haberlandt
2010-07-01
Full Text Available Optimal spatial assessment of short-time step precipitation for hydrological modelling is still an important research question considering the poor observation networks for high time resolution data. The main objective of this paper is to present a new approach for rainfall observation. The idea is to consider motorcars as moving rain gauges with windscreen wipers as sensors to detect precipitation. This idea is easily technically feasible if the cars are provided with GPS and a small memory chip for recording the coordinates, car speed and wiper frequency. This study explores theoretically the benefits of such an approach. For that a valid relationship between wiper speed and rainfall rate considering uncertainty was assumed here. A simple traffic model is applied to generate motorcars on roads in a river basin. Radar data are used as reference rainfall fields. Rainfall from these fields is sampled with a conventional rain gauge network and with several dynamic networks consisting of moving motorcars, using different assumptions such as accuracy levels for measurements and sensor equipment rates for the car networks. Those observed point rainfall data from the different networks are then used to calculate areal rainfall for different scales. Ordinary kriging and indicator kriging are applied for interpolation of the point data with the latter considering uncertain rainfall observation by cars e.g. according to a discrete number of windscreen wiper operation classes. The results are compared with the values from the radar observations. The study is carried out for the 3300 km^{2} Bode river basin located in the Harz Mountains in Northern Germany. The results show, that the idea is theoretically feasible and motivate practical experiments. Only a small portion of the cars needed to be equipped with sensors for sufficient areal rainfall estimation. Regarding the required sensitivity of the potential rain sensors in cars it could be shown
Choi, Nari; Han, Jongmin
2018-04-01
In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O (3) sigma model coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider radially symmetric solutions. There appear three important constants: a positive parameter a representing a scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonnegative integer N2 representing the total anti-string number. The values of the products aN1 , aN2 ∈ [ 0 , ∞) play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we provide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously known results.
Ue(1)-covariant Rξ gauge for the two-Higgs doublet model
Indian Academy of Sciences (India)
this class of gauges because the resultant theory is nonrenormalizable. Instead, the appropriate framework is BRST symmetry [2], which is a powerful formalism suited to quantize Yang–Mills theories with broader supplementary conditions, and also more general gauge systems. To make this point clear, let us remind that ...
Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation
Burzlaff, Jürgen
1984-11-01
We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.
Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation
Energy Technology Data Exchange (ETDEWEB)
Burzlaff, J. (Dublin Inst. for Advanced Studies (Ireland). School of Theoretical Physics)
1984-11-01
We study finite-energy configurations in SO(N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.
Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation
International Nuclear Information System (INIS)
Burzlaff, J.
1984-01-01
We study finite-energy configurations in SO(N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given. (orig.)
Supersymmetry Reach of Tevatron Upgrades and LHC in Gauge-mediated Supersymmetry-breaking Models
Wang, Y
2002-01-01
We examine signals for sparticle production at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC) within the framework of gauge mediated supersymmetry breaking models. We divide our analysis into four different model lines, each of which leads to qualitatively different signatures. We identify cuts to enhance the signal above Standard Model backgrounds, and use ISAJET to evaluate the SUSY reach of experiments at the Fermilab Main Injector and at its luminosity upgrades and also at the LHC. We examine the reach of the LHC via the canonical E/ and multilepton channels that have been advocated within the mSUGRA framework. For the model lines that we have examined, we find that the reach is at least as large, and frequently larger, than in the mSUGRA framework. For two of these model lines, we find that the ability to identify b-quarks and τ-leptons with high efficiency and purity is essential for the detection of the signal.
Flavor changing processes in supersymmetric models with hybrid gauge- and gravity-mediation
International Nuclear Information System (INIS)
Hiller, Gudrun; Hochberg, Yonit; Nir, Yosef
2009-01-01
We consider supersymmetric models where gauge mediation provides the dominant contributions to the soft supersymmetry breaking terms while gravity mediation provides sub-dominant yet non-negligible contributions. We further assume that the gravity-mediated contributions are subject to selection rules that follow from a Froggatt-Nielsen symmetry. This class of models constitutes an example of viable and natural non-minimally flavor violating models. The constraints from K 0 -K-bar 0 mixing imply that the modifications to the Standard Model predictions for B d -B-bar d and B s - B-bar s mixing are generically at most at the percent level, but can be of order ten percent for large tan β. The modifications for D 0 -D-bar 0 mixing are generically at most of order a few percent, but in a special subclass of models they can be of order one. We point out ΔB = 1 processes relevant for flavor violation in hybrid mediation.
Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.
2017-07-01
In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building
Arthur, Rudy; Hansen, Martin; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2016-01-01
We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining statistical and systematic errors). In the context of the composite (Goldstone) Higgs models, our result for the spin-...
The string unification of gauge couplings and gauge kinetic mixings
International Nuclear Information System (INIS)
Hattori, Chuichiro; Matsuda, Masahisa; Matsuoka, Takeo; Mochinaga, Daizo.
1993-01-01
In the superstring models we have not only the complete 27 multiplets of E 6 but also extra incomplete (27+27-bar) chiral supermultiplets being alive at low energies. Associated with these additional multiplets, when the gauge symmetry contains more than one U(1) gauge group, there may exist gauge kinetic mixings among these U(1) gauge groups. In such cases the effect of gauge kinetic mixings should be incorporated into the study of unification of gauge couplings. We study these interesting effects systematically in these models. The string threshold effect is also taken into account. It is found that in the four-generation models we do not have an advisable solution of string unification of gauge couplings consistent with experimental values at the electroweak scale. We also discuss the possible scenarios to solve this problem. (author)
International Nuclear Information System (INIS)
Mills, R.
1989-01-01
This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment
Searching for dark matter signals in the left-right symmetric gauge model with CP symmetry
International Nuclear Information System (INIS)
Guo Wanlei; Wu Yueliang; Zhou Yufeng
2010-01-01
We investigate the singlet scalar dark matter (DM) candidate in a left-right symmetric gauge model with two Higgs bidoublets in which the stabilization of the DM particle is induced by the discrete symmetries P and CP. According to the observed DM abundance, we predict the DM direct and indirect detection cross sections for the DM mass range from 10 to 500 GeV. We show that the DM indirect detection cross section is not sensitive to the light Higgs mixing and Yukawa couplings except for the resonance regions. The predicted spin-independent DM-nucleon elastic scattering cross section is found to be significantly dependent on the above two factors. Our results show that the future DM direct search experiments can cover the most parts of the allowed parameter space. The PAMELA antiproton data can only exclude two very narrow regions in the two Higgs bidoublets model. It is very difficult to detect the DM direct or indirect signals in the resonance regions due to the Breit-Wigner resonance effect.
Gauge-coupling unification and the minimal SUSY model a fourth generation below the top?
Gunion, J F; Pois, H; Douglas W McKay
1994-01-01
\\centerline{\\bf Abstract} We explore the possibility of a fourth generation in the gauge-coupling-unified, minimal supersymmetric (MSSM) framework. We find that a sequential fourth generation (with a heavy neutrino \
Alonso, Rodrigo; Manohar, Aneesh V; Trott, Michael
2014-01-01
We calculate the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory (SM EFT). Combining these results with our previous results for the $\\lambda$ and Yukawa coupling terms completes the calculation of the one-loop anomalous dimension matrix for the dimension-six operators. There are 1350 $CP$-even and $1149$ $CP$-odd parameters in the dimension-six Lagrangian for 3 generations, and our results give the entire $2499 \\times 2499$ anomalous dimension matrix. We discuss how the renormalization of the dimension-six operators, and the additional renormalization of the dimension $d \\le 4$ terms of the SM Lagrangian due to dimension-six operators, lays the groundwork for future precision studies of the SM EFT aimed at constraining the effects of new physics through precision measurements at the electroweak scale. As some sample applications, we discuss some aspects of the full RGE improved result for essential processes such as $gg \\to h...
Localization of twisted N=(0,2) gauged linear sigma models in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Closset, Cyril [Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY 11794 (United States); Gu, Wei [Department of Physics MC 0435, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States); Jia, Bei [Theory Group, Physics Department, University of Texas, Austin, TX 78612 (United States); Sharpe, Eric [Department of Physics MC 0435, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States)
2016-03-14
We study two-dimensional N=(0,2) supersymmetric gauged linear sigma models (GLSMs) using supersymmetric localization. We consider N=(0,2) theories with an R-symmetry, which can always be defined on curved space by a pseudo-topological twist while preserving one of the two supercharges of flat space. For GLSMs which are deformations of N=(2,2) GLSMs and retain a Coulomb branch, we consider the A/2-twist and compute the genus-zero correlation functions of certain pseudo-chiral operators, which generalize the simplest twisted chiral ring operators away from the N=(2,2) locus. These correlation functions can be written in terms of a certain residue operation on the Coulomb branch, generalizing the Jeffrey-Kirwan residue prescription relevant for the N=(2,2) locus. For abelian GLSMs, we reproduce existing results with new formulas that render the quantum sheaf cohomology relations and other properties manifest. For non-abelian GLSMs, our methods lead to new results. As an example, we briefly discuss the quantum sheaf cohomology of the Grassmannian manifold.
International Nuclear Information System (INIS)
Nielsen, H.B.; Bennett, D.L.
1987-08-01
Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)
Yang, Pan; Ng, Tze Ling
2017-11-01
Accurate rainfall measurement at high spatial and temporal resolutions is critical for the modeling and management of urban storm water. In this study, we conduct computer simulation experiments to test the potential of a crowd-sourcing approach, where smartphones, surveillance cameras, and other devices act as precipitation sensors, as an alternative to the traditional approach of using rain gauges to monitor urban rainfall. The crowd-sourcing approach is promising as it has the potential to provide high-density measurements, albeit with relatively large individual errors. We explore the potential of this approach for urban rainfall monitoring and the subsequent implications for storm water modeling through a series of simulation experiments involving synthetically generated crowd-sourced rainfall data and a storm water model. The results show that even under conservative assumptions, crowd-sourced rainfall data lead to more accurate modeling of storm water flows as compared to rain gauge data. We observe the relative superiority of the crowd-sourcing approach to vary depending on crowd participation rate, measurement accuracy, drainage area, choice of performance statistic, and crowd-sourced observation type. A possible reason for our findings is the differences between the error structures of crowd-sourced and rain gauge rainfall fields resulting from the differences between the errors and densities of the raw measurement data underlying the two field types.
Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory
Energy Technology Data Exchange (ETDEWEB)
Cirafici, Michele [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: m.cirafici@uu.nl; Sinkovics, Annamaria [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)], E-mail: a.sinkovics@damtp.cam.ac.uk; Szabo, Richard J. [Department of Mathematics, Heriot-Watt University and Maxwell Institute for Mathematical Sciences, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)], E-mail: r.j.szabo@ma.hw.ac.uk
2009-03-11
We study the relation between Donaldson-Thomas theory of Calabi-Yau threefolds and a six-dimensional topological Yang-Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques on its noncommutative deformation. As a result the gauge theory localizes on noncommutative instantons which can be classified in terms of N-coloured three-dimensional Young diagrams. We give to these noncommutative instantons a geometrical description in terms of certain stable framed coherent sheaves on projective space by using a higher-dimensional generalization of the ADHM formalism. From this formalism we construct a topological matrix quantum mechanics which computes an index of BPS states and provides an alternative approach to the six-dimensional gauge theory.
International Nuclear Information System (INIS)
Cabibbo, N.
1983-01-01
This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole
Betts, Robert E.; Crawford, John F.
1989-01-01
An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.
International Nuclear Information System (INIS)
Gaigg, P.
1984-04-01
The present thesis contributes to the study of supersymmetry breaking by dynamical effects by treating the supersymmetric two-dimensional CPsup(N-1)-model. The main new feature presented is the formulation of the model completely in terms of unextended superfields and without elimination of the dummy gauge field. Therefore linearly realized supersymmetry is maintained as far as possible. Now, already a one-loop calculation provides one with a starting-point for a systematic perturbative treatment to all orders in 1/N and also for the existence check of infinitely many conservation laws. Hence the one-loop effective action is calculated via the path-integral and the usual 1/N-expansion is set up. From the discussion of the one-loop effective potential it is shown, that there occurs no supersymmetry-breaking in this model. As an essential result the one-loop effective action is rewritten as a supersymmetric gauge-theory and a 'super-projector-formalism' is derived. Furthermore it is proved that the singularities of the gauge-field-propagator are not strong enough to produce confinement. (Author)
Phase-structure of SU(3) lattice gauge-higgs model
International Nuclear Information System (INIS)
Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.
1985-01-01
Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively
Analogy between the standard gauge model of the basic forces and ...
African Journals Online (AJOL)
distance) forces in nature characterized by the conventional gauge-invariant substitution, δγψ→(-i(elhc)Aγ)Ψ for the electromagnetic field (in the Schrodinger or Dirac equation for the normal hydrogen atom in conventional quantum mechanics), and ...
Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models
International Nuclear Information System (INIS)
Abe, Tomohiro; Hisano, Junji; Kitahara, Teppei; Tobioka, Kohsaku
2014-01-01
We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z 2 symmetry. We start by studying the tensor structure of h→VV′ part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment’s result, and future experiments of electron and neutron EDMs may search O(10) TeV physics
Dark revelations of the [SU(3)]3 and [SU(3)]4 gauge extensions of the standard model
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2018-02-01
Two theoretically well-motivated gauge extensions of the standard model are SU(3)C × SU(3)L × SU(3)R and SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q is the same as SU(3)C and SU(3)l is its color leptonic counterpart. Each has three variations, according to how SU(3)R is broken. It is shown here for the first time that a built-in dark U(1)D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2‧ symmetry is defined, so that U(1)D ×Z2‧ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.
Dark revelations of the [SU(3]3 and [SU(3]4 gauge extensions of the standard model
Directory of Open Access Journals (Sweden)
Corey Kownacki
2018-02-01
Full Text Available Two theoretically well-motivated gauge extensions of the standard model are SU(3C×SU(3L×SU(3R and SU(3q×SU(3L×SU(3l×SU(3R, where SU(3q is the same as SU(3C and SU(3l is its color leptonic counterpart. Each has three variations, according to how SU(3R is broken. It is shown here for the first time that a built-in dark U(1D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2′ symmetry is defined, so that U(1D×Z2′ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.
Non-abelian bosonization in two and three dimensions
International Nuclear Information System (INIS)
Le Guillou, J.C.; Moreno, E.; Nunez, C.; Schaposnik, F.A.
1997-01-01
We discuss non-abelian bosonization of two- and three-dimensional fermions using a path-integral framework in which the bosonic action follows from the evaluation of the fermion determinant for the Dirac operator in the presence of a vector field. This naturally leads to the Wess-Zumino-Witten action for massless two-dimensional fermions and to a Chern-Simons action for very massive three-dimensional fermions. One advantage of our approach is that it allows one to derive the exact bosonization recipe for fermion currents in a systematic way. (orig.)
WZW superconformal blocks from three dimensions
International Nuclear Information System (INIS)
McArthur, I.N.
1991-05-01
A three-dimensional theory whose canonical quantization yields wavefunctions which can be identified with the superconformal blocks of two-dimensional super-Wess-Zumino-Witten theory is presented. In particular, the anomalous Ward identities satisfied by the superconformal blocks in the presence of a supergauge background are reproduced in terms of constraints obeyed by the wavefunctions of the three-dimensional theory. The action contains the bosonic Chern-Simons action but does not possess a three-dimensional supersymmetry. The 'time' coordinate plays the role of an interpolating parameter between two-dimensional superconnections. The structure of the Hilbert space of the theory is examined. (orig.)
Nevado, Pedro; Porras, Diego
2015-07-01
We study a spin-boson chain that exhibits a local Z2 symmetry. We investigate the quantum phase diagram of the model by means of perturbation theory, mean-field theory, and the density matrix renormalization group method. Our calculations show the existence of a first-order phase transition in the region where the boson quantum dynamics is slow compared to the spin-spin interactions. Our model can be implemented with trapped-ion quantum simulators, leading to a realization of minimal models showing local gauge invariance and first-order phase transitions.
Indian Academy of Sciences (India)
Abstract. Painlevé test (Jimbo et al [1]) for integrability for the Yang's self-dual equa- tions for SU(2) gauge fields has been revisited. Jimbo et al analysed the complex form of the equations with a rather restricted form of singularity manifold. They did not discuss exact solutions in that context. Here the analysis has been done ...
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study
2009-06-19
We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.
Comments on General Gauge Mediation
Intriligator, Kenneth; Sudano, Matthew
2008-01-01
There has been interest in generalizing models of gauge mediation of supersymmetry breaking. As shown by Meade, Seiberg, and Shih (MSS), the soft masses of general gauge mediation can be expressed in terms of the current two-point functions of the susy-breaking sector. We here give a simple extension of their result which provides, for general gauge mediation, the full effective potential for squark pseudo-D-flat directions. The effective potential reduces to the sfermion soft masses near the...
On the Soft Supersymmetry Breaking Parameters in Gauge-Mediated Models
Wagner, C E M
1998-01-01
Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavour changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate $\\tan\\beta$ regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymm...
A More Minimal Messenger Model of Gauge-Mediated Supersymmetry Breaking?
Dvali, Gia
1997-01-01
This Letter addresses a provocative question: ``Can the standard electroweak Higgs doublets and their color-triplet partners be the messengers of a low energy gauge-mediated SUSY breaking?" Such a possibility does not seem to be immediately ruled out. If so, it can lead to a very economical scheme with clear-cut predictions quite distinct from those of the conventional gauge-mediated scenario. Namely, we get (i) a single light Higgs below the original SUSY- breaking scale; (ii) tan(beta) = 1; (iii) flavor non-universal, but automatically flavor-conserving soft scalar masses; (iv) a light colored scalar with peculiar phenomenology. The familiar mu problem looses its meaning in this approach.
Comments on general gauge mediation
International Nuclear Information System (INIS)
Intriligator, Kenneth; Sudano, Matthew
2008-01-01
There has been interest in generalizing models of gauge mediation of supersymmetry breaking. As shown by Meade, Seiberg, and Shih (MSS), the soft masses of general gauge mediation can be expressed in terms of the current two-point functions of the susy-breaking sector. We here give a simple extension of their result which provides, for general gauge mediation, the full effective potential for squark pseudo-D-flat directions. The effective potential reduces to the sfermion soft masses near the origin, and the full potential, away from the origin, can be useful for cosmological applications. We also generalize the soft masses and effective potential to allow for general gauge mediation by Higgsed gauge groups. Finally, we discuss general gauge mediation in the limit of small F-terms, and how the results of MSS connect with the analytic continuation in superspace results, based on a spurion analysis.
Dimensional Reduction of Nonlinear Gauge Theories
Ikeda, Noriaki; Izawa, K.-I.
2004-09-01
We extend 2D nonlinear gauge theory from the Poisson sigma model based on Lie algebroid to a model with additional two-form gauge fields. Dimensional reduction of 3D nonlinear gauge theory yields an example of such a model, which provides a realization of Courant algebroid by 2D nonlinear gauge theory. We see that the reduction of the base structure generically results in a modification of the target (algebroid) structure.
Satellite altimetry and hydrologic modeling of poorly-gauged tropical watershed
Sulistioadi, Yohanes Budi
proves that satellite altimetry provides a good alternative or the only means in some regions to measure the water level of medium-sized river (200--800 m width) and small lake (extent less than 1000 km 2) in Southeast Asia humid tropic with reasonable accuracy. In addition, the procedure to choose retracked Envisat altimetry water level heights via identification or selection of over water waveform shapes is reliable; therefore this study concluded that the use of waveform shape selection procedure should be a standard measure in determining qualified range measurements especially over small rivers and lakes. This study also found that Ice-1 is not necessarily the best retracker as reported by previous studies, among the four standard waveform retracking algorithms for Envisat altimetry observing hydrologic bodies. The second study modeled the response of the poorly-gauged watershed in the Southeast Asia's humid tropic through the application of Hydrologic Engineering Center -- Hydrologic Modeling System (HEC-HMS). The performance evaluation of HEC-HMS discharge estimation confirms a good match between the simulated discharges with the observed ones. As the result of precipitation data analysis, this study found that Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) is the preferred input forcing for the model, given the thorough evaluation of its relationship with field-measured precipitation data prior to its use as primary climatic forcing. This research also proposes a novel approach to process the TRMM precipitation estimation spatially through Thiessen polygon and area average hybrid method, which model the spatial distribution of TRMM data to match the spatial location of field meteorological stations. Through a simultaneous validation that compares the water level anomaly transformed from HEC-HMS simulated discharge and satellite altimetry measurement, this study found that satellite altimetry measures water level anomaly
Energy Technology Data Exchange (ETDEWEB)
Ashfaque, J. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Delle Rose, L. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Faraggi, A.E. [Rutherford Appleton Laboratory, Department of Particle Physics, Chilton, Didcot (United Kingdom); Marzo, C. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Lecce (Italy); INFN, Lecce (Italy)
2016-10-15
A di-photon excess at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light Z{sup '}. Anomaly cancellation of the U(1){sub Z'} symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the U(1){sub Z'} breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string-inspired model can indeed produce an observable signal and discuss the feasibility of obtaining viable scalar mass spectrum. (orig.)
Nomura, Takaaki; Okada, Hiroshi
2018-03-01
We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.
Probing CP-violating Higgs and gauge-boson couplings in the Standard Model effective field theory
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Felipe [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Fuks, Benjamin [Sorbonne Universites, Universite Pierre et Marie Curie (Paris 06), UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France); Institut Universitaire de France, Paris (France); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Sengupta, Dipan [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Michigan State University, Department of Physics and Astronomy, East Lansing (United States)
2017-10-15
We study the phenomenological consequences of several CP-violating structures that could arise in the Standard Model effective field theory framework. Focusing on operators involving electroweak gauge and/or Higgs bosons, we derive constraints originating from Run I LHC data. We then study the capabilities of the present and future LHC runs at higher energies to further probe associated CP-violating phenomena and we demonstrate how differential information can play a key role. We consider both traditional four-lepton probes of CP-violation in the Higgs sector and novel new physics handles based on varied angular and non-angular observables. (orig.)
Wess, Julius
Gauge theories are studied on a space of functions with the Moyal product. The development of these ideas follows the differential geometry of the usual gauge theories, but several changes are forced upon us. The Leibniz rule has to be changed such that the theory is now based on a twisted Hopf algebra. Nevertheless, this twisted symmetry structure leads to conservation laws. The symmetry has to be extended from Lie algebra valued to enveloping algebra valued and new vector potentials have to be introduced. As usual, field equations are subjected to consistency conditions that restrict the possible models. Some examples are studied.
International Nuclear Information System (INIS)
Ebata, Takeshi
1982-01-01
The global iso-spin invariance of the hadronic interaction, which is a reflection of the SU(2) x U(1) QFD and QCD, as well as the U(1) invariance related to the charge of the hadrons, is formulated as an effective gauge theory. The pseudo-gauge fields in this theory are the vector mesons, and these composite fields become massive when the Higgs field at the quark-lepton level and the anti qq pair states acquire the vacuum expectation value. The formulation gives a theoretical basis for the vector dominance model and gives some insights to the possible composite structure of quarks and leptons. (author)
On the soft supersymmetry-breaking parameters in gauge-mediated models
International Nuclear Information System (INIS)
Wagner, C.E.M.
1998-01-01
Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavor changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate tan β regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymmetry-breaking parameters is obtained for arbitrary boundary conditions of the scalar and gaugino mass parameters at high energies. (orig.)
Parameter space of general gauge mediation
International Nuclear Information System (INIS)
Rajaraman, Arvind; Shirman, Yuri; Smidt, Joseph; Yu, Felix
2009-01-01
We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.
The SU(3)/Z3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality
Anber, Mohamed M.; Collier, Scott; Poppitz, Erich
2013-01-01
Earlier, two of us and M. Ünsal [1] showed that a class of 4d gauge theories, when compactified on a small spatial circle of size L and considered at temperatures β-1 near the deconfinement transition, are dual to 2d "affine" XY-spin models. We exploit this duality to study the deconfinement phase transition in SU(3)/{{{Z}}_3} gauge theories with n f > 1 massless adjoint Weyl fermions, QCD(adj) on {{{R}}^2}× {S}_{β}^1× {S}_L^1 . The dual "affine" XY-model describes two "spins" — compact scalars taking values in the SU(3) root lattice. The spins couple via nearest-neighbor interactions and are subject to an "external field" perturbation preserving the topological {Z}_3^t and a discrete {Z}_3^{{{d_{\\upchi}}}} subgroup of the anomaly-free chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests — but is not convincing, due to the onset of strong coupling — that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of the transition via Monte Carlo simulations. The {Z}_3^t× {Z}_3^{{{d_{\\upchi}}}} order parameter, its susceptibility, the vortex density, the energy per spin, and the specific heat are measured over a range of volumes, temperatures, and "external field" strengths (in the gauge theory, these correspond to magnetic bion fugacities). The finite-size scaling of the susceptibility and specific heat we find is characteristic of a first-order transition. Furthermore, for sufficiently large but still smaller than unity bion fugacity (as can be achieved upon an increase of the {S}_L^1 size), at the critical temperature we find two distinct peaks of the energy probability distribution, indicative of a first-order transition, as has been seen in earlier simulations of the full 4d QCD(adj) theory. We end with discussions of the global
D-branes in a big bang/big crunch universe: Nappi-Witten gauged WZW model
Energy Technology Data Exchange (ETDEWEB)
Hikida, Yasuaki [School of Physics and BK-21 Physics Division, Seoul National University, Seoul 151-747 (Korea, Republic of); Nayak, Rashmi R. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' ' , Rome 00133 (Italy); Panigrahi, Kamal L. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy)
2005-05-01
We study D-branes in the Nappi-Witten model, which is a gauged WZW model based on (SL(2,R) x SU(2))/(U(1) x U(1)). The model describes a four dimensional space-time consisting of cosmological regions with big bang/big crunch singularities and static regions with closed time-like curves. The aim of this paper is to investigate by D-brane probes whether there are pathologies associated with the cosmological singularities and the closed time-like curves. We first classify D-branes in a group theoretical way, and then examine DBI actions for effective theories on the D-branes. In particular, we show that D-brane metric from the DBI action does not include singularities, and wave functions on the D-branes are well behaved even in the presence of closed time-like curves.
Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation
Fortin, Jean-Francois
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.
Quark-gluon vertex from the Landau gauge Curci-Ferrari model
Peláez, Marcela; Tissier, Matthieu; Wschebor, Nicolás
2015-08-01
We investigate the quark-gluon three-point correlation function within a one-loop computation performed in the Curci-Ferrari massive extension of the Faddeev-Popov gauge-fixed action. The mass term is used as a minimal way for taking into account the influence of the Gribov ambiguity. Our results, with renormalization-group improvement, are compared with lattice data. We show that the comparison is, in general, very satisfactory for the functions which are compatible with chiral symmetry, except for one. We argue that this may be due to large systematic errors when extracting this function from lattice simulations. The quantities which break chiral symmetry are more sensitive to the details of the renormalization scheme. We, however, manage to reproduce some of them with good precision. The chosen parameters allow us to simultaneously fit the quark mass function coming from the quark propagator with reasonable agreement.
International Nuclear Information System (INIS)
Nakayama, Yu
2008-01-01
We show a calculable example of stable supersymmetry (SUSY) breaking models with O(10) eV gravitino mass based on the combination of D-term gauge mediation and U(1)' mediation. A potential problem of the negative mass squared for the SUSY standard model (SSM) sfermions in the D-term gauge mediation is solved by the contribution from the U(1)' mediation. On the other hand, the splitting between the SSM gauginos and sfermions in the U(1)' mediation is circumvented by the contributions from the D-term gauge mediation. Since the U(1)' mediation does not introduce any new SUSY vacua, we achieve a completely stable model under thermal effects. Our model, therefore, has no cosmological difficulty
Enhanced gauge symmetry in 6D F-theory models and tuned elliptic Calabi-Yau threefolds
Energy Technology Data Exchange (ETDEWEB)
Johnson, Samuel B.; Taylor, Washington [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2016-08-15
We systematically analyze the local combinations of gauge groups and matter that can arise in 6D F-theory models over a fixed base. We compare the low-energy constraints of anomaly cancellation to explicit F-theory constructions using Weierstrass and Tate forms, and identify some new local structures in the ''swampland'' of 6D supergravity and SCFT models that appear consistent from low-energy considerations but do not have known F-theory realizations. In particular, we classify and carry out a local analysis of all enhancements of the irreducible gauge and matter contributions from ''non-Higgsable clusters,'' and on isolated curves and pairs of intersecting rational curves of arbitrary self-intersection. Such enhancements correspond physically to unHiggsings, and mathematically to tunings of the Weierstrass model of an elliptic CY threefold. We determine the shift in Hodge numbers of the elliptic threefold associated with each enhancement. We also consider local tunings on curves that have higher genus or intersect multiple other curves, codimension two tunings that give transitions in the F-theory matter content, tunings of abelian factors in the gauge group, and generalizations of the ''E{sub 8}'' rule to include tunings and curves of self-intersection zero. These tools can be combined into an algorithm that in principle enables a finite and systematic classification of all elliptic CY threefolds and corresponding 6D F-theory SUGRA models over a given compact base (modulo some technical caveats in various special circumstances), and are also relevant to the classification of 6D SCFT's. To illustrate the utility of these results, we identify some large example classes of known CY threefolds in the Kreuzer-Skarke database as Weierstrass models over complex surface bases with specific simple tunings, and we survey the range of tunings possible over one specific base. (copyright 2016 WILEY-VCH Verlag
Introduction to gauge theories
International Nuclear Information System (INIS)
Wit, B. de
1983-01-01
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
A gauge principle yielding consistent chiral theories
International Nuclear Information System (INIS)
Thompson, G.; Zhang, R.
1987-02-01
We propose a new principle in gauge theories: namely that in a given action, fields should be replaced by gauge invariant equivalents. Using this principle we study anomalous gauge theories and find that the resulting models are anomaly free, unitary and power counting renormalizable. (author). 8 refs
The gauge technique in supersymmetric QED2
Roo, M. de; Steringa, J.J.
1988-01-01
We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge
Gauge and supergauge field theories
International Nuclear Information System (INIS)
Slavnov, A.
1977-01-01
The most actual problems concerning gauge fields are reviwed. Theoretical investigations conducted since as early as 1954 are enclosed. Present status of gauge theories is summarized, including intermediate vector mesons, heavy leptons, weak interactions of hadrons, V-A structure, universal interaction, infrared divergences in perturbation theory, particle-like solutions in gauge theories, spontaneous symmetry breaking. Special emphasis is placed on strong interactions, or more precisely, on the alleged unobservability of ''color'' objects (quark confinement). Problems dealing with the supersymmetric theories invariant under gauge transformations and spontaneous breaking of supersymmetry are also discussed. Gauge theories are concluded to provide self-consistent apparatus for weak and electromagnetic interactions. As to strong interactions such models are still to be discovered
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
International Nuclear Information System (INIS)
Wilkens, P.H.
1978-01-01
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
De Simone, Andrea; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo
2011-01-01
It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called $\\mu$-$B_\\mu$ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of $B_\\mu$ and of the other Higgs-sector soft masses, as predicted in models where both $\\mu$ and $B_\\mu$ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of $\\tan\\beta$. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of ne...
Energy Technology Data Exchange (ETDEWEB)
Allanach, B.C. [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge (United Kingdom); Badziak, Marcin [University of Warsaw, Institute of Theoretical Physics, Faculty of Physics, Warsaw (Poland); University of California, Department of Physics, Berkeley, CA (United States); University of California, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cottin, Giovanna [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Desai, Nishita [Institut fuer Theoretische Physik, Heidelberg (Germany); Hugonie, Cyril [LUPM, UMR 5299, CNRS, Universite de Montpellier, Montpellier (France); Ziegler, Robert [Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France)
2016-09-15
We study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking, both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV standard model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2σ excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a b-jet pair or a tau pair resulting in potential displaced vertex signatures. We investigate current bounds on sparticle masses and the discovery potential of the model, both via conventional searches and via searches for displaced vertices. The searches based on promptly decaying sparticles currently give a lower limit on the gluino mass 1080 GeV and could be sensitive up to 1900 GeV with 100 fb{sup -1}, whereas the current displaced vertex searches cannot probe this model due to b-quarks in the final state. We show how the displaced vertex cuts might be relaxed in order to improve signal efficiency, while simultaneously applied prompt cuts reduce background, resulting in a much better sensitivity than either strategy alone and motivating a fully fledged experimental study. (orig.)
International Nuclear Information System (INIS)
Yamamoto, Hisashi.
1993-07-01
We study the long-distance relevance of vortices (instantons) in an N-component axially U(1)-gauged four-Fermi theory in 1 + 1 dimensions, in which a naive use of 1/N expansion predicts the dynamical Higgs phenomenon. Its general effective lagrangian is found to be a frozen U(1) Higgs model with the gauge-field mass term proportional to an anomaly parameter (b). The dual-transformed versions of the effective theory are represented by sine-Gordon systems and recursion-relation analyses are performed. The results suggest that in the gauge-invariant scheme (b = 0) vortices are always relevant at long distances, while in non-invariant schemes (b > 0) there exists a critical N above which the long-distance behavior is dominated by a free massless scalar field. (author)
Spectroscopy of family gauge bosons
Directory of Open Access Journals (Sweden)
Yoshio Koide
2014-09-01
Full Text Available Spectroscopy of family gauge bosons is investigated based on a U(3 family gauge boson model proposed by Sumino. In his model, the family gauge bosons are in mass eigenstates in a diagonal basis of the charged lepton mass matrix. Therefore, the family numbers are defined by (e1,e2,e3=(e,μ,τ, while the assignment for quark sector are free. For possible family-number assignments (q1,q2,q3, under a constraint from K0–K¯0 mixing, we investigate possibilities of new physics, e.g. production of the lightest family gauge boson at the LHC, μ−N→e−N, rare K and B decays, and so on.
International Nuclear Information System (INIS)
Furuuchi, Kazuyuki; Koyama, Yoji
2016-01-01
We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Optical Rain Gauge Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-01
To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).
Yang, Z.; Hsu, K. L.; Sorooshian, S.; Xu, X.
2017-12-01
Precipitation in mountain regions generally occurs with high-frequency-intensity, whereas it is not well-captured by sparsely distributed rain-gauges imposing a great challenge on water management. Satellite-based Precipitation Estimation (SPE) provides global high-resolution alternative data for hydro-climatic studies, but are subject to considerable biases. In this study, a model named PDMMA-USESGO for Precipitation Data Merging over Mountainous Areas Using Satellite Estimates and Sparse Gauge Observations is developed to support precipitation mapping and hydrological modeling in mountainous catchments. The PDMMA-USESGO framework includes two calculating steps—adjusting SPE biases and merging satellite-gauge estimates—using the quantile mapping approach, a two-dimensional Gaussian weighting scheme (considering elevation effect), and an inverse root mean square error weighting method. The model is applied and evaluated over the Tibetan Plateau (TP) with the PERSIANN-CCS precipitation retrievals (daily, 0.04°×0.04°) and sparse observations from 89 gauges, for the 11-yr period of 2003-2013. To assess the data merging effects on streamflow modeling, a hydrological evaluation is conducted over a watershed in southeast TP based on the Soil and Water Assessment Tool (SWAT). Evaluation results indicate effectiveness of the model in generating high-resolution-accuracy precipitation estimates over mountainous terrain, with the merged estimates (Mer-SG) presenting consistently improved correlation coefficients, root mean square errors and absolute mean biases from original satellite estimates (Ori-CCS). It is found the Mer-SG forced streamflow simulations exhibit great improvements from those simulations using Ori-CCS, with coefficient of determination (R2) and Nash-Sutcliffe efficiency reach to 0.8 and 0.65, respectively. The presented model and case study serve as valuable references for the hydro-climatic applications using remote sensing-gauge information in
Digital Repository Service at National Institute of Oceanography (India)
Srinivas, K.; Das, V.K.; DineshKumar, P.K.
quite high at particular months, in respect of all the three models, for Bhavnagar. The RMSE has been normalized by the range of mean sea level at each station, in order to make better comparison of the performance of the models, as Table 4... such as Bhavnagar, where the seasonal variability is quite high. Eventhough the performance of the three models is satisfactory, it would be worthwhile to investigate alternate models e.g. AutoRegressive, Integrated and Moving Average (ARIMA) model, which...
Castro \\C
2003-01-01
Moyal noncommutative star-product deformations of higher dimensional gravitational Einstein-Hilbert actions via lower-dimensional SU(\\infty) gauge theories are constructed explicitly based on the holographic reduction principle. New reparametrization invariant p-brane actions and their Moyal star product deformations follows. It is conjectured that topological Chern-Simons brane actions associated with higher-dimensional "knots" have a one-to-one correspondence with topological Chern-Simons Matrix models in the large N limit. The corresponding large N limit of Topological BF Matrix models leads to Kalb-Ramond couplings of antisymmetric-tensor fields to p-branes. The former Chern-Simons branes display higher-spin W_\\infty symmetries which are very relevant in the study of W_\\infty Gravity, the Quantum Hall effect and its higher-dimensional generalizations. We conclude by arguing why this interplay between condensed matter models, higher-dimensional extensions of the Quantum Hall effect, Chern-Simons Matrix mod...
General treatment of a non-linear gauge condition
International Nuclear Information System (INIS)
Malleville, C.
1982-06-01
A non linear gauge condition is presented in the frame of a non abelian gauge theory broken with the Higgs mechanism. It is shown that this condition already introduced for the standard SU(2) x U(1) model can be generalized for any gauge model with the same type of simplification, namely the suppression of any coupling of the form: massless gauge boson, massive gauge boson, unphysical Higgs [fr
Extended gauge sectors at future colliders: Report of the New Gauge Boson Subgroup
International Nuclear Information System (INIS)
Rizzo, T.G.
1996-12-01
The author summarizes the results of the New Gauge Boson Subgroup on the physics of extended gauge sectors at future colliders as presented at the 1996 Snowmass workshop. He discusses the direct and indirect search reaches for new gauge bosons at both hadron and lepton colliders as well as the ability of such machines to extract detailed information on the couplings of these particles to the fermions and gauge bosons of the Standard Model. 41 refs., 18 figs., 5 tabs
Combining meteorological radar and network of rain gauges data for space–time model development
Pastoriza, Vicente; Núñez Fernández, Adolfo; Machado, Fernando; Mariño, Perfecto; Pérez Fontán, Fernando; Fiebig, Uwe-Carsten
2009-01-01
Technological developments and the trend to go higher and higher in frequency give rise to the need for true space–time rain field models for testing the dynamics of fade countermeasures. There are many models that capture the spatial correlation of rain fields. Worth mentioning are those models based on cell ensembles. However, the rain rate fields created in this way need the introduction of the time variable to reproduce their dynamics. In this paper, we have concentrated on ad...
4D topological mass by gauging spin
Choudhury, I. D.; Diamantini, M. Cristina; Guarnaccia, Giuseppe; Lahiri, A.; Trugenberger, Carlo A.
2015-06-01
We propose a spin gauge field theory in which the curl of a Dirac fermion current density plays the role of the pseudovector charge density. In this field-theoretic model, spin interactions are mediated by a single scalar gauge boson in its antisymmetric tensor formulation. We show that these long range spin interactions induce a gauge invariant photon mass in the one-loop effective action. The fermion loop generates a coupling between photons and the spin gauge boson, which acquires thus charge. This coupling represents also an induced, gauge invariant, topological mass for the photons, leading to the Meissner effect. The one-loop effective equations of motion for the charged spin gauge boson are the London equations. We propose thus spin gauge interactions as an alternative, topological mechanism for superconductivity in which no spontaneous symmetry breaking is involved.
4D topological mass by gauging spin
Energy Technology Data Exchange (ETDEWEB)
Choudhury, I.D. [S.N. Bose National Centre for Basic Sciences,Block JD, Sector III, Salt Lake, Kolkata, 700098 (India); Diamantini, M. Cristina [NiPS Laboratory, INFN and Dipartimento di Fisica, University of Perugia,via A. Pascoli, Perugia, I-06100 (Italy); Guarnaccia, Giuseppe [Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno,via Giovanni Paolo II, Fisciano, Salerno, I-84084 (Italy); Lahiri, A. [S.N. Bose National Centre for Basic Sciences,Block JD, Sector III, Salt Lake, Kolkata, 700098 (India); Trugenberger, Carlo A. [SwissScientific,chemin Diodati 10, Cologny, CH-1223 (Switzerland)
2015-06-12
We propose a spin gauge field theory in which the curl of a Dirac fermion current density plays the role of the pseudovector charge density. In this field-theoretic model, spin interactions are mediated by a single scalar gauge boson in its antisymmetric tensor formulation. We show that these long range spin interactions induce a gauge invariant photon mass in the one-loop effective action. The fermion loop generates a coupling between photons and the spin gauge boson, which acquires thus charge. This coupling represents also an induced, gauge invariant, topological mass for the photons, leading to the Meissner effect. The one-loop effective equations of motion for the charged spin gauge boson are the London equations. We propose thus spin gauge interactions as an alternative, topological mechanism for superconductivity in which no spontaneous symmetry breaking is involved.
4D topological mass by gauging spin
International Nuclear Information System (INIS)
Choudhury, I.D.; Diamantini, M. Cristina; Guarnaccia, Giuseppe; Lahiri, A.; Trugenberger, Carlo A.
2015-01-01
We propose a spin gauge field theory in which the curl of a Dirac fermion current density plays the role of the pseudovector charge density. In this field-theoretic model, spin interactions are mediated by a single scalar gauge boson in its antisymmetric tensor formulation. We show that these long range spin interactions induce a gauge invariant photon mass in the one-loop effective action. The fermion loop generates a coupling between photons and the spin gauge boson, which acquires thus charge. This coupling represents also an induced, gauge invariant, topological mass for the photons, leading to the Meissner effect. The one-loop effective equations of motion for the charged spin gauge boson are the London equations. We propose thus spin gauge interactions as an alternative, topological mechanism for superconductivity in which no spontaneous symmetry breaking is involved.
Technical data on nucleonic gauges
International Nuclear Information System (INIS)
2005-07-01
This nucleonic gauge manual and directory provides a reference database of nucleonic control systems available to potential users in the fields of exploration, exploitation and processing of natural resources and in the manufacturing industries. It starts with background information an the general principals of nucleonic gauges, followed by portable nuclear analysis systems (PNAS), computer tomography, cost-benefit on NCS (Nucleonic Control Systems) applications and trends and transfer of NCS technology. It continues with radiation protection and safety, discusses nucleonic gauges with low radioactivity sources and ends with typical models of nucleonic gauges. The basic principles of the most popular techniques are reviewed and reference data links to suppliers are provided. Information sheets on many typical commercial devices are also included. It will help end-users to select the most suitable alternative to solve a particular problem or to measure a certain parameter in a specific process
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)
2017-05-25
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
McKim, Stephen A.
2016-01-01
This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Energy Technology Data Exchange (ETDEWEB)
B. A. Kashiwa; W. B. VanderHeyden
2000-12-01
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.
LHC physics of extra gauge bosons in the 4D Composite Higgs Model
Directory of Open Access Journals (Sweden)
Barducci D.
2013-11-01
Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.
Assessing sediment yield in Kalaya gauged watershed (Northern Morocco using GIS and SWAT model
Directory of Open Access Journals (Sweden)
Hamza Briak
2016-09-01
Full Text Available An efficient design for erosion-control structures of any watershed in the world is entrusted with the delicate forecasting of sediment yields. These outlook yields are usually inferred by extrapolations from past observations. Because runoff, as the transporting vehicle, is more closely correlated with sediment yields than any other variable. So, calibration as well as validation of process-based hydrological models are two major processes while estimating the sediment yield in watershed. The actual survey is fulfilled with the aim of developing a trustworthy hydrologic model simulating stream flow discharge and sediment concentration with least uncertainty among the parameters picked out for calibration so as to verify the effect of the scenarios on the spatial distribution of sediment yield (sediments transported from sub-basins to the main channel during the step of time. Soil and Water Assessment Tool (SWAT, version 2012 model integrated with Geographic Information System (GIS, version 10.1 was used to simulate the stream flow and sediment concentration of Kalaya catchment situated in north of Morocco for the period from 1971 to 1993. Model calibration and validation were performed for monthly time periods using Sequential Uncertainty Fitting 2 (SUFI-2, version 2 within SWAT-CUP using 16 parameters. Our calibration outputs for monthly simulation for the period from 1976 to 1984 showed a good model performance for flow rates with NSE and PBIAS values of 0.76 and −11.80, respectively; also a good model performance for sediment concentration with NSE and PBIAS values of 0.69 and 7.12, respectively. Nonetheless, during validation period (1985–1993 for monthly time step, the NSE and PBIAS values were 0.67 and −14.44, respectively for flow rates and these statistical values were 0.70 and 15.51, respectively for sediment concentration; which also means a good model performance for both. Following calibration, the inclusive effect of each
Anomaly cancellation and gauge group of the standard model in NCG
Alvarez, Enrique; Martín, C P; Alvarez, Enrique
1995-01-01
It is well known that anomaly cancellation {\\it almost} determines the hypercharges in the standard model. A related (and somewhat more stronger) phenomenon takes place in Connes' NCG framework: unimodularity (a technical condition on elements of the algebra) is {\\it strictly} equivalent to anomaly cancellation (in the absence of right-handed neutrinos); and this in turn reduces the symmetry group of the theory to the standard SU(3)\\times SU(2) \\times U(1).
Angular distributions of neutrino and antineutrino scatterings by electrons and gauge models
International Nuclear Information System (INIS)
Dass, G.V.
1976-01-01
Assuming a nonderivative point interaction, and Born approximation, the complete angular distributions for the scatterings of neutrinos and antineutrinos by electrons are obtained from only simple general considerations, without explicit calculation; generalisation to parton targets is noted. Two pairs of simple constraints on the angular distributions can be violated only if the interaction has a helicity-flipping component; this can serve to disfavour the large class of models which are purely helicity-conserving. Comparison is made with some explicit calculations done for some special cases of some of the results. (author)
3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Wozniak, A; Fan, Zhun
2008-01-01
FKBs based on two optimization paradigms are used for the reconstruction of the direction- dependent probe error w. The angles beta and gamma are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real......The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...
3D CMM Strain-Gauge Triggering Probe Error Characteristics Modeling
DEFF Research Database (Denmark)
Achiche, Sofiane; Wozniak, Adam; Fan, Zhun
2008-01-01
FKBs based on two optimization paradigms are used for the reconstruction of the directiondependent probe error w. The angles β and γ are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real/ binary like......The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...
Mohamed, Omar Ahmed; Hasan Masood, Syed; Lal Bhowmik, Jahar
2018-02-01
In the additive manufacturing (AM) market, the question is raised by industry and AM users on how reproducible and repeatable the fused deposition modeling (FDM) process is in providing good dimensional accuracy. This paper aims to investigate and evaluate the repeatability and reproducibility of the FDM process through a systematic approach to answer this frequently asked question. A case study based on the statistical gage repeatability and reproducibility (gage R&R) technique is proposed to investigate the dimensional variations in the printed parts of the FDM process. After running the simulation and analysis of the data, the FDM process capability is evaluated, which would help the industry for better understanding the performance of FDM technology.
Thermistor Pressure Gauge Design
Flanick, A. P.; Ainsworth, J. E.
1961-01-01
Thermistor pressure gauges are characterized by large pressure range, good accuracy and stability, fast measurement, insensitivity to over-pressure, negligible out-gassing, ease in cleaning, and physical and electrical simplicity and ruggedness. A number of excellent papers have been published describing these gauges. However, a detailed account of design procedure and characteristics for a specific gauge would eliminate much of the trial and error encountered in designing a gauge having prescribed range, sensitivity, and stability.
Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields
Energy Technology Data Exchange (ETDEWEB)
Abishev, M.E. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation); Boshkayev, K.A. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Ivashchuk, V.D. [Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation)
2017-03-15
Dilatonic black hole dyon-like solutions in the gravitational 4d model with a scalar field, two 2-forms, two dilatonic coupling constants λ{sub i} ≠ 0, i = 1,2, obeying λ{sub 1} ≠ -λ{sub 2} and the sign parameter ε = ±1 for scalar field kinetic term are considered. Here ε = -1 corresponds to a ghost scalar field. These solutions are defined up to solutions of two master equations for two moduli functions, when λ{sup 2}{sub i} ≠ 1/2 for ε = -1. Some physical parameters of the solutions are obtained: gravitational mass, scalar charge, Hawking temperature, black hole area entropy and parametrized post-Newtonian (PPN) parameters β and γ. The PPN parameters do not depend on the couplings λ{sub i} and ε. A set of bounds on the gravitational mass and scalar charge are found by using a certain conjecture on the parameters of solutions, when 1 + 2λ{sub i}{sup 2} ε > 0, i = 1,2. (orig.)
Hadronic form factor models and spectroscopy within the gauge/gravity correspondence
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC
2012-03-20
We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.
Zhou, C.; Wang, K.
2017-12-01
Precipitation characteristics have undergone notable changes over the past several decades (IPCC 2013) and their extremes at subdaily, seasonal to decadal timescales should be associated with severe impacts such as drought and flooding. Using gauge observations, reanalysis and model simulation of precipitation, we did a systematic detection and attribution for multi-graded precipitation extremes from 1961 to 2014 over China. (1) We found subdaily precipitation characteristics exhibit an asymmetrical long-term trends, i.e., the long-time decreasing (increasing) trend in nighttime precipitation frequency (intensity) is significantly greater than that in daytime precipitation frequency (intensity) from 1979 to 2014 over China, despite of no significant change in precipitation amount. (2) We examined the eight current reanalysis products and pointed out that the JRA-55 roughly capture this trend pattern in precipitation intensity but still have considerable room for improvement. (3) We put forward a novel method to quantify the precipitation scalings with long-term warming trend and interannual-decadal variation of surface air temperature from 1979 to 2014 over China. In this method, we successfully isolated the dynamic and thermodynamic effect on precipitation scaling and further reconciled a seemingly contradiction on existing reports. (4) Combining the observed with modeled precipitation from CMIP5 and HadGEM3-A-based attribution system, we separated the impact of global warming and El Niño on increasing probability of the occurrence of such events as the July 2016 flood-induced extreme precipitation over China's Wuhan. These results have been published in Journal of Climate and Bulletin of the American Meteorological Society.
Dark coupling and gauge invariance
International Nuclear Information System (INIS)
Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data
Low Scale Flavor Gauge Symmetries
Grinstein, Benjamín; Villadoro, Giovanni
2010-01-01
We study the possibility of gauging the Standard Model flavor group. Anomaly cancellation leads to the addition of fermions whose mass is inversely proportional to the known fermion masses. In this case all flavor violating effects turn out to be controlled roughly by the Standard Model Yukawa, suppressing transitions for the light generations. Due to the inverted hierarchy the scale of new gauge flavor bosons could be as low as the electroweak scale without violating any existing bound but accessible at the Tevatron and the LHC. The mechanism of flavor protection potentially provides an alternative to Minimal Flavor Violation, with flavor violating effects suppressed by hierarchy of scales rather than couplings.
El Kenawy, Ahmed M.
2015-05-15
Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Gauge coupling unification in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Lee, H.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics
2006-11-15
We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T{sup 2}/Z{sub 2} orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)
Hidden QCD in Chiral Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...
Gauge field condensation in geometric quantum chromodynamics
International Nuclear Information System (INIS)
Guendelman, E.I.
1991-09-01
In odd number of dimensions, it is possible to construct general covariant gauge theories, where the metric is not an independent variable, but local function of the gauge fields. Starting from standardly defined gauge theory, upon functional integration of some variables, we could end up with such moodels. For models with SU(2) and SU(3) symmetry in three dimensions, gauge field condensation take place in the vacuum, which is nevertheless homogeneous and isotropic up to a gauge transformation, provided the space is flat. Introducing Higgs fields that spontaneously break the gauge symmetry, we get a breakdown of the homogenity and isotropy of the vacuum. Finally, we discuss how some of this ideas can be generalized to four and other even dimensions. (author)
Focus point supersymmetry in extended gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [School of Physics, Nankai University,Tianjin 300071 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics (KITPC),Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Staub, Florian [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115 Bonn (Germany); Zhu, Bin [School of Physics, Nankai University,Tianjin 300071 (China)
2014-03-27
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural.
Focus point supersymmetry in extended gauge mediation
International Nuclear Information System (INIS)
Ding, Ran; Li, Tianjun; Staub, Florian; Zhu, Bin
2014-01-01
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural
Anomalous gauge theories as constrained Hamiltonian systems
International Nuclear Information System (INIS)
Fujiwara, T.
1989-01-01
Anomalous gauge theories considered as constrained systems are investigated. The effects of chiral anomaly on the canonical structure are examined first for nonlinear σ-model and later for fermionic theory. The breakdown of the Gauss law constraints and the anomalous commutators among them are studied in a systematic way. An intrinsic mass term for gauge fields makes it possible to solve the Gauss law relations as second class constraints. Dirac brackets between the time components of gauge fields are shown to involve anomalous terms. Based upon the Ward-Takahashi identities for gauge symmetry, we investigate anomalous fermionic theory within the framework of path integral approach. (orig.)
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.
2016-12-22
The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.
Antoniadis, Ignatios; Delgado, A; Quirós, Mariano
2006-01-01
We propose a class of models with gauge mediation of supersymmetry breaking, inspired by simple brane constructions, where R-symmetry is very weakly broken. The gauge sector has an extended N=2 supersymmetry and the two electroweak Higgses form an N=2 hypermultiplet, while quarks and leptons remain in N=1 chiral multiplets. Supersymmetry is broken via the D-term expectation value of a secluded U(1) and it is transmitted to the Standard Model via gauge interactions of messengers in N=2 hypermultiplets: gauginos thus receive Dirac masses. The model has several distinct experimental signatures with respect to ordinary models of gauge or gravity mediation realizations of the Minimal Supersymmetric Standard Model (MSSM). First, it predicts extra states as a third chargino that can be observed at collider experiments. Second, the absence of a D-flat direction in the Higgs sector implies a lightest Higgs behaving exactly as the Standard Model one and thus a reduction of the `little' fine-tuning in the low tan(beta) ...
Czech Academy of Sciences Publication Activity Database
Sokol, Zbyněk
2003-01-01
Roč. 278, - (2003), s. 144-152 ISSN 0022-1694 R&D Projects: GA ČR GA205/01/1066; GA AV ČR IBS3042101 Institutional research plan: CEZ:AV0Z3042911 Keywords : rainfall * radar * rain gauge * regression Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.354, year: 2003
An introduction to gauge theories
Cabibbo, Nicola; Benhar, Omar
2017-01-01
Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.
Gauged baryon and lepton numbers
International Nuclear Information System (INIS)
Foot, R.; Joshi, G.C.; Lew, H.
1989-01-01
A possible extension of the Standard Model can be defined by gauging the global baryon and lepton number U(1) symmetries. Gauging baryon and lepton numbers provide a natural framework for the see-saw mechanism in the lepton sector, and the Peccei-Quinn mechanism in the quark sector. Another consequence of this extension is that the usual three generations of fermions are not anomaly free. However the authors consider a wider framework involving the existence of generations with exotic SU(2) L tensor product U(1) Y quantum numbers. This allows them to derive a minimal spectrum of fermions which contain the known quarks and leptons. 12 refs
Stream Gauges and Satellite Measurements
Alsdorf, D. E.
2010-12-01
Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Unified gauge theories with spontaneous symmetry breaking
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold
M. Malek Yarand; H. Saebi Monfared
2014-01-01
This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays ...
Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section
Kimura, Yusuke
2017-04-01
We determine the discrete gauge symmetries that arise in F-theory compactifications on examples of genus-one fibered Calabi-Yau 4-folds without a section. We construct genus-one fibered Calabi-Yau 4-folds using Fano manifolds, cyclic 3-fold covers of Fano 4-folds, and Segre embeddings of products of projective spaces. Discrete ℤ 5, ℤ 4, ℤ 3 and ℤ 2 symmetries arise in these constructions. We introduce a general method to obtain multisections for several constructions of genus-one fibered Calabi-Yau manifolds. The pullbacks of hyperplane classes under certain projections represent multisections to these genus-one fibrations. We determine the degrees of these multisections by computing the intersection numbers with fiber classes. As a result, we deduce the discrete gauge symmetries that arise in F-theory compactifications. This method applies to various Calabi-Yau genus-one fibrations.
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
High temperature pressure gauge
Echtler, J. Paul; Scandrol, Roy O.
1981-01-01
A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.
Introduction to gauge theories
International Nuclear Information System (INIS)
Okun, L.B.
1984-01-01
These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JINR-CERN School of Physics, Tabor, Czechoslovakia, 5-18 June 1983. The subgect of the lecinvariancetures: gauge of electromagnetic and weak interactions, higgs and supersymmetric particles. The Supplement contains reprints (or excerpts) of some classical papers on gauge invariance by V. Fock, F. London, O. Klein and H. Weyl, in which the concept of gauge invariance was introduced and developed
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
Gauge freedom in path integrals in Abelian gauge theory
Saito, Teijiro; Endo, Ryusuke; Miura, Hikaru
2016-01-01
We extend the gauge symmetry of an Abelian gauge field to incorporate quantum gauge degrees of freedom. We twice apply the Harada–Tsutsui gauge recovery procedure to gauge-fixed theories. First, starting from the Faddeev–Popov path integral in the Landau gauge, we recover the gauge symmetry by introducing an additional field as an extended gauge degree of freedom. Fixing the extended gauge symmetry by the usual Faddeev–Popov procedure, we obtain the theory of Type I gaugeon formalism. Next, a...
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
Gyrocenter-gauge kinetic theory
International Nuclear Information System (INIS)
Qin, H.; Tang, W.M.; Lee, W.W.
2000-01-01
Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is
Dhakal, A. S.; Adera, S.
2017-12-01
Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS
Quantum group gauge theories and covariant quantum algebras
International Nuclear Information System (INIS)
Isaev, A.P.
1993-01-01
The algebraic formulation of the quantum group gauge models in the framework of the R-matrix approach to the theory of quantum groups is given. Gauge groups taking values in the quantum groups and noncommutative gauge fields transformed as comodules under the coaction of the gauge quantum group G q are considered. Using this approach the quantum deformations of the topological Chern-Simons models, non-Abelian gauge theories and the Einstein gravity are constructed. The noncommutative fields in these models generate G q -covariant quantum algebras. 24 refs
Conserved currents and gauge invariance in Yang-Mills theory
International Nuclear Information System (INIS)
Barnich, G.; Brandt, F.; Henneaux, M.
1994-01-01
It is shown that in the absence of free abelian gauge fields, the conserved currents of (classical) Yang-Mills gauge models coupled to matter fields can be always redefined so as to be gauge invariant. This is a direct consequence of the general analysis of the Wess-Zumino consistency condition for Yang-Mills theory that we have provided recently. (orig.)
Chiral gauge theories on the lattice with exact gauge invariance
Lüscher, Martin
1999-01-01
A recently proposed formulation of chiral lattice gauge theories is reviewed, in which the locality and gauge invariance of the theory can be preserved if the fermion representation of the gauge group is anomaly-free.
Non-abelian gauge fields in the Poincare gauge
International Nuclear Information System (INIS)
Galvao, C.A.P.; Pimentel, B.M.
1988-01-01
The canonical structure of non-Abelian gauge fields is analysed in the (non-covariant) Poincare gauge. General aspects of the gauge conditions and quantization prescriptions are discussed. (author) [pt
Osawa, Shunsuke; Oshima, Yusuke
2014-01-01
Ten years or more have passed since the current concept of 25-gauge transconjunctival sutureless vitrectomy with a trocar-cannula system emerged. There is no doubt that current microincision vitrectomy surgery with 25- or 23-gauge instrumentation has simplified the vitrectomy procedure and has provided numerous potential advantages over traditional 20-gauge surgery. The established theory regarding surgical wounds is that 'much smaller is better'. Along with the development of new-generation vitrectomy machines with ergonomic instruments, surgeons have been shifting dramatically from 20-gauge systems to 23- and 25-gauge systems over the last years. Thanks to recent innovations and improvements in high-end multifunctional vitrectomy machines and ultrahigh-speed cutters, the development of powerful light sources, and wide-angle viewing systems, several new techniques have also encouraged us to launch the development of a 27-gauge vitrectomy system over the past several years. Similar to the recent evolution in 23- and 25-gauge systems, further development and refinement of the functionality of instruments with a gauge of 27 or more are under way and will continue over the coming years, which in the future will allow us to establish this system for ultra-minimally invasive surgery for the full spectrum of vitreoretinal pathologies. © 2014 S. Karger AG, Basel.
DEFF Research Database (Denmark)
2017-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....
New Methods in Supersymmetric Theories and Emergent Gauge Symmetry
CERN. Geneva
2014-01-01
It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.
Gauges for the Ginzburg-Landau equations of superconductivity
International Nuclear Information System (INIS)
Fleckinger-Pelle, J.; Kaper, H.G.
1995-01-01
This note is concerned with gauge choices for the time-dependent Ginzburg-Landau equations of superconductivity. The requiations model the state of a superconducting sample in a magnetic field near the critical tempeature. Any two solutions related through a ''gauge transformation'' describe the same state and are physically indistinquishable. This ''gauge invariance'' can be exploited for analtyical and numerical purposes. A new gauge is proposed, which reduces the equations to a particularly attractive form
Vacuum expectation values of Higgs scalars in a SU(2)/sub L/ X SU(2)/sub R/ X U(1) gauge model
International Nuclear Information System (INIS)
Kitazoe, T.; Mainland, G.B.; Tanaka, K.
1978-01-01
The vacuum expectation values of the Higgs scalars are determined within the framework of a six quark SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model after the imposition of discrete symmetrics that are necessary in order to express the Cabibbo angle in terms of quark mass ratios and phases of the vacuum expectation values. Both real and complex solutions are found for the vacuum expectation values depending on the relative values of the parameters in the Higgs potential
Gauge invariance and Nielsen identities
International Nuclear Information System (INIS)
Lima, A.F. de; Bazaia, D.
1989-01-01
The one-loop contribution to the effective potential and mass are computed within the context of scalar electrodynamics for the class of general R gauges in the MS scheme. These calculations are performed in order to construct a non-trivial verification of the corresponding Nielsen identities within the context of the Higgs model. Some brief comments on the Coleman-Weinberg model are also included. (author) [pt
The Relationship of the Laplacian Gauge to the Landau Gauge
Mandula, Jeffrey E.
2001-01-01
The Laplacian gauge for gauge group SU(N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order, O(g^1), configurations in the Laplacian gauge automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O(g^2) they do not remain in the Landau gauge.
Compactification of gauge theories and the gauge invariance of massive modes
Energy Technology Data Exchange (ETDEWEB)
Amorim, R.; Barcelos-Neto, J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
2002-03-01
We study the gauge invariance of the massive modes in the compactification of gauge theories from D = 5 to D = 4. We deal with Abelian gauge theories of rank one and two, and with non-Abelian ones of rank one. We show that Stueckelberg fields naturally appear in the compactification mechanism, contrarily to what usually occurs in literature where they are introduced by hand, as a trick, to render gauge invariance for massive theories. We also show that in the non-Abelian case they appear in a very different way when compared with their usual implementation in the non-Abelian Proca model. (author)
Stability of the effective potential of the gauge-less top-Higgs model in curved spacetime
Energy Technology Data Exchange (ETDEWEB)
Czerwińska, Olga; Lalak, Zygmunt; Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warszawa (Poland)
2015-11-30
We investigate stability of the Higgs effective potential in curved spacetime. To this end, we consider the gauge-less top-Higgs sector with an additional scalar field. Explicit form of the terms proportional to the squares of the Ricci scalar, the Ricci tensor and the Riemann tensor that arise at the one-loop level in the effective action has been determined. We have investigated the influence of these terms on the stability of the scalar effective potential. The result depends on background geometry. In general, the potential becomes modified both in the region of the electroweak minimum and in the region of large field strength.
Stability of the effective potential of the gauge-less top-Higgs model in curved spacetime
Czerwinska, Olga; Lalak, Zygmunt; Nakonieczny, Lukasz
2015-11-01
We investigate stability of the Higgs effective potential in curved spacetime. To this end, we consider the gauge-less top-Higgs sector with an additional scalar field. Explicit form of the terms proportional to the squares of the Ricci scalar, the Ricci tensor and the Riemann tensor that arise at the one-loop level in the effective action has been determined. We have investigated the influence of these terms on the stability of the scalar effective potential. The result depends on background geometry. In general, the potential becomes modified both in the region of the electroweak minimum and in the region of large field strength.
Gauge theory of phase and scale
PAW\\LOWSKI, Marek
1999-01-01
Old Weyl's the idea of scale recalibration freedom and Infeld's and van der Waerden's (IW) ideas concerning geometrical interpretation of natural spinor phase gauge symmetry are discussed in the context of modern models of fundamental particle interactions. It is argued that (IW) gauge symmetry can be naturaly identified with the U(1) symmetry of the Weinberg-Salam model. It is also argued that there are no serious reasons to reject Weyl's gauge the...
Cohen, Timothy; Craig, Nathaniel; Knapen, Simon
2016-03-01
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-03-15
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Gauge theories under incorporation of a generalized uncertainty principle
International Nuclear Information System (INIS)
Kober, Martin
2010-01-01
There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.
Gauge/string duality and hadronic physics
Boschi-Filho, Henrique; Braga, Nelson R. F.
2006-01-01
We review some recent results on phenomenological approaches to strong interactions inspired in gauge/string duality. In particular, we discuss how such models lead to very good estimates for hadronic masses.
Supersymmetric non-Abelian gauge models; the exact β-function from one loop of perturbation theory
International Nuclear Information System (INIS)
Vainshtein, A.I.; Zakharov, V.I.; Shifman, M.A.
1986-01-01
A method for calculating the exact β-function (in all orders in the coupling constant), proposed earlier in supersymmetric electrodynamics, is generalized. The starting point is the observation that the low-energy effective action is exhausted by one loop, provided that the theory is supersymmetrically regularized both in the ultraviolet and in the infrared region in four dimensions. For the ultraviolet regularization the Pauli-Villars method is used, while for the infrared regularization two variants are considered. The first: quantization in a box of finite volume L 3 : is universally applicable to any gauge theory. The second variant is based on an effective Higgs mechanism for generation of mass, and requires the presence of certain matter superfields in the Lagrangian. For the second method a necessary condition is the existence of flat directions: so-called valleys along which the energy of the vacuum vanishes. We quantize the field near a nonzero value of the scalar field from the bottom of the valley. After calculation of the one-loop effective action both variants give for the β-function the same exact expression which, in addition, coincides with our previous result extracted from instanton calculus. A few remarks on the problem of anomalies in supersymmetric gauge theories are presented
International Nuclear Information System (INIS)
Linauskas, S.H.
1988-08-01
Field studies to measure actual radiation exposures of operators of commercial moisture-density gauges were undertaken in several regions of Canada. Newly developed bubble detector dosimeter technology and conventional dosimetry such as thermoluminescent dosimeters (TLDs), integrating electronic dosimeters (DRDs), and CR-39 neutron track-etch detectors were used to estimate the doses received by 23 moisture-density gauge operators and maintenance staff. These radiation dose estimates were supported by mapping radiation fields and accounting for the time an operator was near a gauge. Major findings indicate that gauge maintenance and servicing workers were more likely than gauge operators to receive exposures above the level of 5 mSv, and that neutron doses were roughly the same as gamma doses. Gauge operators receive approximately 75% of their dose when transporting and carrying the gauge. Dose to their hands is similar to the dose to their trunks, but the dose to their feet area is 6 to 30 times higher. Gamma radiation is the primary source of radiation contributing to operator dose
Quantum communication, reference frames, and gauge theory
International Nuclear Information System (INIS)
Enk, S. J. van
2006-01-01
We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model
Aschieri, Paolo; Dimitrijević, Marija; Meyer, Frank; Schraml, Stefan; Wess, Julius
2006-10-01
Gauge theories on a space-time that is deformed by the Moyal-Weyl product are constructed by twisting the coproduct for gauge transformations. This way a deformed Leibniz rule is obtained, which is used to construct gauge invariant quantities. The connection will be enveloping algebra valued in a particular representation of the Lie algebra. This gives rise to additional fields, which couple only weakly via the deformation parameter θ and reduce in the commutative limit to free fields. Consistent field equations that lead to conservation laws are derived and some properties of such theories are discussed.
International Nuclear Information System (INIS)
Krejci, M.; Pilat, M.; Stulik, P.
1977-01-01
Equipment was developed measuring the heavy water level in the TR-0 reactor core within an accuracy of several hundredths of a millimeter in a range of around 3.5 m and at a temperature of up to 90 degC. The equipment uses a vibrating needle contact as a high sensitivity level gauge and a servomechanical system with a motion screw carrying the gauge for monitoring and measuring the level in the desired range. The advantage of the unique level gauge consists in that that the transducer converts the measured level position to an electric signal, ie., pulse width, with high sensitivity and without hysteresis. (Kr)
Microcomputerized neutron moisture gauge
International Nuclear Information System (INIS)
Liu Shengkang; Mei Yu
1987-01-01
A microcomputerized neutron moisture gauge is introduced. This gauge consists of a neutron moisture sensor and instruments. It is developed from the neutron moisture gauge for concrete mixer. A TECH-81 single card microcomputer is used for count, computation and display. It has the function of computing compensated quantity of sand. It can acquire the data from several neutron sensors by the multichanneling sampling, therefore it can measure moisture values of sand in several hoppers simultaneously. The precision of the static state calibration curve is 0.24% wt. The error limits of the dynamic state check is < 0.50% wt
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...
Energy Technology Data Exchange (ETDEWEB)
Bacvinskas, W.S.; Bayer, J.E.; Davis, W.W.; Fodor, G.; Kikta, T.J.; Matchett, R.L.; Nilsen, R.J.; Wilczynski, R.
1991-12-31
The present invention is directed to a semi-automatic rod examination gauge for performing a large number of exacting measurements on radioactive fuel rods. The rod examination gauge performs various measurements underwater with remote controlled machinery of high reliability. The rod examination gauge includes instruments and a closed circuit television camera for measuring fuel rod length, free hanging bow measurement, diameter measurement, oxide thickness measurement, cladding defect examination, rod ovality measurement, wear mark depth and volume measurement, as well as visual examination. A control system is provided including a programmable logic controller and a computer for providing a programmed sequence of operations for the rod examination and collection of data.
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Constraints on Gauge Field Production during Inflation
DEFF Research Database (Denmark)
Nurmi, Sami; Sloth, Martin Snoager
2014-01-01
In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum...... of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton...
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1979-01-01
The construction of field strength copies without any gauge constraint is discussed. Several examples are given, one of which is not only a field strength copy but also (at the same time) a 'current copy'. (author) [pt
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Gauge engineering and propagators
Directory of Open Access Journals (Sweden)
Maas Axel
2017-01-01
The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Four-Fermion Limit of Gauge-Yukawa Theories
DEFF Research Database (Denmark)
Krog, Jens; Mojaza, Matin; Sannino, Francesco
2015-01-01
We elucidate and extend the conditions that map gauge-Yukawa theories at low energies into time-honoured gauged four-fermion interactions at high energies. These compositeness conditions permit to investigate theories of composite dynamics through gauge-Yukawa theories. Here we investigate whether...... perturbative gauge-Yukawa theories can have a strongly coupled limit at high-energy, that can be mapped into a four-fermion theory. Interestingly, we are able to precisely carve out a region of the perturbative parameter space supporting such a composite limit. This has interesting implications on our current...... view on models of particle physics. As a template model we use an $SU(N_C)$ gauge theory with $N_F$ Dirac fermions transforming according to the fundamental representation of the gauge group. The fermions further interact with a gauge singlet complex $N_F\\times N_F$ Higgs that ceases to be a physical...
Gauge origin of discrete flavor symmetries in heterotic orbifolds
Directory of Open Access Journals (Sweden)
Florian Beye
2014-09-01
Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.
Constraints on gauge field production during inflation
International Nuclear Information System (INIS)
Nurmi, Sami; 3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark))" data-affiliation=" (CP3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark))" >Sloth, Martin S.
2014-01-01
In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored
Strong gauge boson scattering at the LHC
Rindani, S.D.
2009-01-01
In the standard model with electroweak symmetry breaking through the Higgs mechanism, electroweak gauge-boson scattering amplitudes are large if the Higgs boson is heavy, and electroweak gauge interactions become strong. In theories with electroweak symmetry breaking through alternative mechanisms, there could be a strongly interacting gauge sector, possibly with resonances in an accessible energy region. In general, the scattering of longitudinally polarized massive gauge bosons can give information on the mechanism of spontaneous symmetry breaking. At energies below the symmetry breaking scale, the equivalence theorem relates the scattering amplitudes to those of the "would-be" Goldstone modes. In the absence of Higgs bosons, unitarity would be restored by some new physics which can be studied through WW scattering. Some representatives models are discussed. Isolating WW scattering at a hadron collider from other contributions involving W emission from parton lines needs a good understanding of the backgrou...
Algebraic formulation of higher gauge theory
Zucchini, Roberto
2017-06-01
In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.
Weak interactions and gauge theories
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-12-01
The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and √(5/3)g' of SU(3)/sub c/ x SU(2) 2 x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures
Parity Violation by a Dark Gauge Boson
Lee, Hye-Sung
2014-01-01
We overview the dark parity violation, which means the parity violation induced by a dark gauge boson of very small mass and coupling. When a dark gauge boson has an axial coupling, as in dark Z model, it can change the effective Weinberg angle in the low-energy experiments such as the atomic parity violation and the low-Q^2 polarized electron scatterings. Such low-energy parity tests are an excellent probe of the dark force.
Energy Technology Data Exchange (ETDEWEB)
Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-10-15
The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.
Quantum and classical gauge symmetries
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Terashima, Hiroaki
2001-01-01
The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)
Topologically massive gauge theories and their dual factorized gauge-invariant formulation
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)
Gauged BPS baby Skyrmions with quantized magnetic flux
Adam, C.; Wereszczynski, A.
2017-06-01
A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.
Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit
Baulieu, L
1999-01-01
To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...
Quantum Critical Behaviour of Semisimple Gauge Theories
DEFF Research Database (Denmark)
Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco
2016-01-01
We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...
Revisiting R-invariant direct gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Chiang, Cheng-Wei [Center for Mathematics and Theoretical Physics andDepartment of Physics, National Central University,Taoyuan, Taiwan 32001, R.O.C. (China); Institute of Physics, Academia Sinica,Taipei, Taiwan 11529, R.O.C. (China); Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan 30013, R.O.C. (China); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); ICRR, University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Ibe, Masahiro [Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); ICRR, University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Yanagida, Tsutomu T. [Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)
2016-03-21
We revisit a special model of gauge mediated supersymmetry breaking, the “R-invariant direct gauge mediation.” We pay particular attention to whether the model is consistent with the minimal model of the μ-term, i.e., a simple mass term of the Higgs doublets in the superpotential. Although the incompatibility is highlighted in view of the current experimental constraints on the superparticle masses and the observed Higgs boson mass, the minimal μ-term can be consistent with the R-invariant gauge mediation model via a careful choice of model parameters. We derive an upper limit on the gluino mass from the observed Higgs boson mass. We also discuss whether the model can explain the 3σ excess of the Z+jets+E{sub T}{sup miss} events reported by the ATLAS collaboration.
Canonical transformations and the gauge dependence in general gauge theories
International Nuclear Information System (INIS)
Voronov, B.L.; Tyutin, I.V.
1982-01-01
Gauge-invariant renormalizability is proven for a general gauge theory with an arbitrary gauge condition. It is shown that a canonical change of the variables in the initial effective action generates just a canonical change of the variables in the renormalized action and in the vertex generating functional. It is noted that the gauge condition enters the effective action as a canonical transformation. As a consequence, a change of the gauge condition is equivalent to the canonical transformation of the renormalized action and the vertex generating functional and this fact, in turn, leads to the gauge invariance of the renormalized S matrix
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
International Nuclear Information System (INIS)
Stora, R.
1976-09-01
The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed
Accelerating abelian gauge dynamics
Adler, Stephen Louis
1991-01-01
In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.
1994-01-01
This volume is a compilation of works which, taken together, give a complete and consistent presentation of instanton calculus in non-Abelian gauge theories, as it exists now. Some of the papers reproduced are instanton classics. Among other things, they show from a historical perspective how the instanton solution has been found, the motivation behind it and how the physical meaning of instantons has been revealed. Other papers are devoted to different aspects of instanton formalism including instantons in supersymmetric gauge theories. A few unsolved problems associated with instantons are d
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge- invariance as the interpolating ...
Marrani, Alessio; Shih, Sheng-Yu Darren; Tagliaferro, Anthony; Zumino, Bruno
2013-01-01
We present a novel gauge field theory, based on the Freudenthal Triple System (FTS), a ternary algebra with mixed symmetry (not completely symmetric) structure constants. The theory, named Freudenthal Gauge Theory (FGT), is invariant under two (off-shell) symmetries: the gauge Lie algebra constructed from the FTS triple product and a novel global non-polynomial symmetry, the so-called Freudenthal duality. Interestingly, a broad class of FGT gauge algebras is provided by the Lie algebras "of type e7" which occur as conformal symmetries of Euclidean Jordan algebras of rank 3, and as U-duality algebras of the corresponding (super)gravity theories in D = 4. We prove a No-Go Theorem, stating the incompatibility of the invariance under Freudenthal duality and the coupling to space-time vector and/or spinor fields, thus forbidding non-trivial supersymmetric extensions of FGT. We also briefly discuss the relation between FTS and the triple systems occurring in BLG-type theories, in particular focusing on superconform...
Indian Academy of Sciences (India)
activities in non-perturbative QCD. Keywords. Deflation; overlap operator; GPU; CUDA. PACS Nos 11.15.Ha; 12.38.-t. 1. Introduction. The lattice gauge theory subgroup of the working group in non-perturbative QCD consisted of Mridupavan Deka, Sourendu Gupta, N D Hari Dass, Rajarshi Roy, Sayantan Sharma and.
International Nuclear Information System (INIS)
Bennerstedt, T.
1986-01-01
A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)
Dirac gauginos, gauge mediation and unification
Energy Technology Data Exchange (ETDEWEB)
Benakli, K. [UPMC Univ. Paris 06 (France). Laboratoire de Physique Theorique et Hautes Energies, CNRS; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-03-15
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)
Dirac gauginos, gauge mediation and unification
International Nuclear Information System (INIS)
Benakli, K.
2010-03-01
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)
Solution of the gauge identities in the axial gauge
International Nuclear Information System (INIS)
Delbourgo, R.
1981-01-01
Starting from the spectral representation of the two-point functions in the axial gauge, the gauge identities are solved so as to express the higher-point Green functions linearly in terms of the two-point spectral function. The four-point functions are an important input for investigations of scalar electrodynamics and vector chromodynamics based on the gauge technique. (author)
Gauge symmetry breaking in gauge theories -- in search of clarification
Friederich, Simon
2013-01-01
The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
We discuss the viability of using interpolating gauges to deﬁne the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition deﬁning term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...
Predictions for the neutrino parameters in the minimal gauged U(1){sub L{sub μ-L{sub τ}}} model
Energy Technology Data Exchange (ETDEWEB)
Asai, Kento; Nagata, Natsumi [University of Tokyo, Department of Physics, Bunkyo-ku, Tokyo (Japan); Hamaguchi, Koichi [University of Tokyo, Department of Physics, Bunkyo-ku, Tokyo (Japan); University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), Kashiwa (Japan)
2017-11-15
We study the structure of the neutrino-mass matrix in the minimal gauged U(1){sub L{sub μ-L{sub τ}}} model, where three right-handed neutrinos are added to the Standard Model in order to obtain non-zero masses for the active neutrinos. Because of the U(1){sub L{sub μ-L{sub τ}}} gauge symmetry, the structure of both Dirac and Majorana mass terms of neutrinos is tightly restricted. In particular, the inverse of the neutrino-mass matrix has zeros in the (μ,μ) and (τ,τ) components, namely, this model offers a symmetric realization of the so-called two-zero-minor structure in the neutrino-mass matrix. Due to these constraints, all the CP phases - the Dirac CP phase δ and the Majorana CP phases α{sub 2} and α{sub 3} - as well as the mass eigenvalues of the light neutrinos m{sub i} are uniquely determined as functions of the neutrino mixing angles θ{sub 12}, θ{sub 23}, and θ{sub 13}, and the squared mass differences Δm{sub 21}{sup 2} and Δm{sub 31}{sup 2}. We find that this model predicts the Dirac CP phase δ to be δ ≅ 1.59π-1.70π (1.54π-1.78π), the sum of the neutrino masses to be sum {sub i}m{sub i} ≅ 0.14-0.22 eV (0.12-0.40 eV), and the effective mass for the neutrinoless double-beta decay to be left angle m{sub ββ} right angle ≅ 0.024-0.055 eV (0.017-0.12 eV) at 1σ (2σ) level, which are totally consistent with the current experimental limits. These predictions can soon be tested in future neutrino experiments. Implications for leptogenesis are also discussed. (orig.)
Weighing Rain Gauge Recording Charts
National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...
Hypotony after 25-gauge vitrectomy
Bamonte, Giulio; Mura, Marco; Stevie Tan, H.
2011-01-01
To describe the incidence of hypotony after 25-gauge vitrectomy and to identify preoperative and intraoperative factors that influence the occurrence of hypotony. Retrospective, nonrandomized, interventional case series. We reviewed 122 consecutive cases of 25-gauge vitrectomy for all surgical
Simple scheme for gauge mediation
International Nuclear Information System (INIS)
Murayama, Hitoshi; Nomura, Yasunori
2007-01-01
We present a simple scheme for constructing models that achieve successful gauge mediation of supersymmetry breaking. In addition to our previous work [H. Murayama and Y. Nomura, Phys. Rev. Lett. 98, 151803 (2007)] that proposed drastically simplified models using metastable vacua of supersymmetry breaking in vectorlike theories, we show there are many other successful models using various types of supersymmetry-breaking mechanisms that rely on enhanced low-energy U(1) R symmetries. In models where supersymmetry is broken by elementary singlets, one needs to assume U(1) R violating effects are accidentally small, while in models where composite fields break supersymmetry, emergence of approximate low-energy U(1) R symmetries can be understood simply on dimensional grounds. Even though the scheme still requires somewhat small parameters to sufficiently suppress gravity mediation, we discuss their possible origins due to dimensional transmutation. The scheme accommodates a wide range of the gravitino mass to avoid cosmological problems
Dynamical gauge coupling unification from moduli stabilization
International Nuclear Information System (INIS)
Choi, Kiwoon
2006-01-01
In D-brane models, different part of the 4-dimensional gauge group might originate from D-branes wrapping different cycles in the internal space, and then the standard model gauge couplings at the compactification scale are determined by different cycle-volume moduli. We point out that those cycle-volume moduli can naturally have universal vacuum expectation values up to small deviations suppressed by 1/8π 2 if they are stabilized by KKLT-type non-perturbative superpotential with properly chosen discrete parameters. This dynamical unification of gauge couplings is independent of the detailed form of the moduli Kahler potential, but relies crucially on the existence of low energy supersymmetry. If supersymmetry is broken by an uplifting brane as in KKLT compactification, again independently of the detailed form of the moduli Kahler potential, the moduli-mediated gaugino masses at the compactification scale are universal also, and are comparable to the anomaly-mediated gaugino masses. As a result, both the gauge coupling unification at high energy scale and the mirage mediation pattern of soft supersymmetry breaking masses are achieved naturally even when the different sets of the standard model gauge bosons originate from D-branes wrapping different cycles in the internal space
More on generalized gauge hierarchies
International Nuclear Information System (INIS)
Ozer, M.
1982-05-01
We point out that the generalized gauge hierarchy evolution equation of Dawson and Georgi for the gauge coupling constants of the subgroups of a unifying group should be modified in order to make it applicable to all the unifying groups. We modify their formula, and in the process derive a formula relating the gauge couplings of the subgroups and the gauge coupling of the unifying group at the unification mass scale. (author)
Renormalisation group flows for gauge theories in axial gauges
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.
Gauge fixing and operator ordering
International Nuclear Information System (INIS)
Tudron, T.N.
1980-01-01
In a large class of gauges, including the Coulomb gauge, in non-Abelian gauge theories, an operator-ordering ambiguity exists in the canonically quantized Hamiltonian. In this paper, a method is described for resolving this ambiguity. It gives rise to an extra potential-like term of order h 2
Safety of hydrogen pressure gauges.
Voth, R. O.
1972-01-01
Study of the relative safety afforded an operator by various hydrogen-pressure gauge case designs. It is shown that assurance of personnel safety, should a failure occur, requires careful selection of available gauge designs, together with proper mounting. Specific gauge case features and mounting requirements are recommended.
The renaissance of gauge theory
International Nuclear Information System (INIS)
Moriyasu, K.
1982-01-01
Gauge theory is a classic example of a good idea proposed before its time. A brief historical review of gauge theory is presented to see why it required over 50 years for gauge invariance to be rediscovered as the basic principle governing the fundamental forces of Nature. (author)
Gauge theories of the weak interactions
International Nuclear Information System (INIS)
Quinn, H.
1978-08-01
Two lectures are presented on the Weinberg--Salam--Glashow--Iliopoulos--Maiani gauge theory for weak interactions. An attempt is made to give some impressions of the generality of this model, how it was developed, variations found in the literature, and the status of the standard model. 21 references
Reeb, Roger N.; Snow-Hill, Nyssa L.; Folger, Susan F.; Steel, Anne L.; Stayton, Laura; Hunt, Charles A.; O'Koon, Bernadette; Glendening, Zachary
2017-01-01
This article presents the Psycho-Ecological Systems Model (PESM)--an integrative conceptual model rooted in General Systems Theory (GST). PESM was developed to inform and guide the development, implementation, and evaluation of transdisciplinary (and multilevel) community-engaged scholarship (e.g., a participatory community action research project…
Radioactive thickness gauge (1962)
International Nuclear Information System (INIS)
Guizerix, J.
1962-01-01
The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr
Graudenz, Dirk
1996-01-01
We consider the evolution of quantum fields on a classical background space-time, formulated in the language of differential geometry. Time evolution along the worldlines of observers is described by parallel transport operators in an infinite-dimensional vector bundle over the space-time manifold. The time evolution equation and the dynamical equations for the matter fields are invariant under an arbitrary local change of frames along the restriction of the bundle to the worldline of an observer, thus implementing a ``quantum gauge principle''. We derive dynamical equations for the connection and a complex scalar quantum field based on a gauge field action. In the limit of vanishing curvature of the vector bundle, we recover the standard equation of motion of a scalar field in a curved background space-time.
Semistrict higher gauge theory
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav [Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague,Prague 186 75 (Czech Republic); Sämann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics,Heriot-Watt University,Edinburgh EH14 4AS (United Kingdom); Wolf, Martin [Department of Mathematics, University of Surrey,Guildford GU2 7XH (United Kingdom)
2015-04-20
We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian N=(2,0) tensor multiplet taking values in a semistrict Lie 2-algebra.
Unitarity in gauge symmetry breaking on an orbifold
Abe, Y; Higashide, Y; Kobayashi, K; Matsunaga, M
2003-01-01
We study the unitarity bounds of scattering amplitudes in extra-dimensional gauge theory, in which the gauge symmetry is broken by the boundary conditions. The evaluation of the amplitude of the diagram including four massive gauge bosons in the external lines shows that the asymptotic power behavior of the amplitude is canceled. The calculation is carried out with the 5-dimensional standard model and the SU(5) grand unified theory, whose 5th dimensional coordinate is compactified on S sup 1 /Z sub 2. The gauge theories broken through the orbifolding preserve unitarity a high energies, similarly to the broken gauge theories in which the gauge bosons acquire masses through the Higgs mechanism. We show that the contributions of the Kaluza-Klein states play a crucial role in conserving the unitarity. (author)
International Nuclear Information System (INIS)
Arodz, H.
1987-01-01
The two formulations of quantum theory of the free electromagnetic field are presented. In the Coulomb gauge approach the independent dynamical variables have been identified and then, in order to quantize the theory, it has been sufficient to apply the straightforward canonical quantization. In the Gupta-Bleuler approach the auxilliary theory is first considered. The straightforward canonical quantization of it leads to the quantum theory defined in the space G with indefinite norm. 15 refs. (author)
Gounaris, George J; Zeppenfeld, Dieter; Ajaltouni, Ziad J; Arhrib, A; Bella, G; Berends, F A; Bilenky, S M; Blondel, A; Busenitz, J K; Choudhury, D; Clarke, P; Conboy, J E; Diehl, M; Fassouliotis, D; Frère, J M; Georgiopoulos, C H; Gibbs, M; Grünewald, M W; Hansen, J B; Hartmann, C; Jin, B N; Jousset, J; Kalinowski, Jan; Kocian, M L; Lahanas, Athanasios B; Layssac, J; Lieb, E H; Markou, C; Matteuzzi, C; Mättig, P; Moreno, J M; Moultaka, G; Nippe, A; Orloff, J; Papadopoulos, C G; Paschalis, J; Petridou, C; Phillips, H; Podlyski, F; Pohl, M; Renard, F M; Rossignol, J M; Rylko, R; Sekulin, R L; Van Sighem, A; Simopoulou, Errietta; Skillman, A; Spanos, V C; Tonazzo, A; Tytgat, M H G; Tzamarias, S; Verzegnassi, Claudio; Vlachos, N D; Zevgolatakos, E
1996-01-01
We present the results obtained by the "Triple Gauge Couplings" working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of WW\\gamma and WWZ couplings in e^-e^+\\to W^-W^+ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
DEFF Research Database (Denmark)
Bombin Palomo, Hector
2015-01-01
Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow t...... the transversal implementation of a universal set of gates by gauge fixing, while error-dectecting measurements involve only four or six qubits....
Schwinger mechanism in linear covariant gauges
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2017-02-01
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansätze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansätze are compatible with the existence of nontrivial solutions. When such Ansätze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic "zero crossing," while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Exact partition functions for gauge theories on Rλ3
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2016-11-01
Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Influence analysis of Arctic tide gauges using leverages
DEFF Research Database (Denmark)
Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg
2014-01-01
Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... a calibration period, in this preliminary case Drakkar ocean model data, which are forced using historical tide gauge data from the PSMSL database. The resulting leverage for each tide gauge may indicate that it represents a distinct mode of variability, or that its time series is perturbed in a way...
Non-minimal gauge mediation and moduli stabilization
International Nuclear Information System (INIS)
Jelinski, T.; Lalak, Z.; Pawelczyk, J.
2010-01-01
In this Letter we consider U(1) A -gauged Polonyi model with two spurions coupled to a twisted closed string modulus. This offers a consistent setup for metastable SUSY breakdown which allows for moduli stabilization and naturally leads to gauge or hybrid gauge/gravitational mediation mechanism. Due to the presence of the second spurion one can arrange for a solution of the μ and B μ problems in a version of modified Giudice-Masiero mechanism, which works both in the limit of pure gauge mediation and in the mixed regime of hybrid mediation.
Search for gauge extensions of the MSSM at the LHC
International Nuclear Information System (INIS)
Ali, Ahmed; Demir, Durmus A.; Izmir Institute of Technology, IZTECH, Izmir; Frank, Mariana; Turan, Ismail
2009-02-01
The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the μ problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a U(1)' gauge extension of the MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp→n leptons+m jets+E T , and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z' searches at the LHC. (orig.)
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kennedy, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2013-07-16
The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at $\\sqrt{s}$ =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV ar...
The ATLAS collaboration
2012-01-01
The results of a search for pair production of the lighter scalar partners of top quarks ($\\tone$) in 2.05 fb-1 of $pp$ collisions at $\\sqrt{s}=7$~TeV using the ATLAS experiment are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons ($e,\\mu$) with invariant mass consistent with the $Z$ boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a $b$-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of $R$-parity conserving, gauge-mediated Supersymmetry breaking `natural' scenarios where the neutralino ($\\tilde{\\chi}_{1}^{0}$) is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310~GeV are excluded for 115~GeV~$< m_{\\tilde{\\chi}_{1}^{0}}<$~230~GeV at 95\\% confidence-level, reaching an exclusion of $m_{\\tone}<$~330~GeV for $m_{\\tilde{\\chi}_{1}^{0}}=190$~GeV.
Abelian 2-form gauge theory: special features
International Nuclear Information System (INIS)
Malik, R P
2003-01-01
It is shown that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is not an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the topological 2D free Abelian (and self-interacting non-Abelian) gauge theories
Light higgsino for gauge coupling unification
Directory of Open Access Journals (Sweden)
Kwang Sik Jeong
2017-06-01
Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
Light higgsino for gauge coupling unification
Energy Technology Data Exchange (ETDEWEB)
Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr
2017-06-10
We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
A new anomaly-free gauged supergravity in six dimensions
International Nuclear Information System (INIS)
Avramis, S.D.; Kehagias, A.; Randjbar-Daemi, S.
2005-04-01
We present a new anomaly-free gauged N = 1 supergravity model in six dimensions. The gauge group is E 7 - G 2 x U(1) R , with all hyperinos transforming in the product representation (56, 14). The theory admits monopole compactifications to R 4 x S 2 , leading to D = 4 effective theories with broken supersymmetry and massless fermions. (author)
Pure Gauge theory in crystal lattice and Coulomb gases
International Nuclear Information System (INIS)
Marchetti, D.H.U.
1985-01-01
A method for the construction of classical gases, starting from a pure gauge theory, is described. The method is applied to the U(1) gauge theory in two spatial dimensions. For this model it's seen the vaccua appearing as a consequence of the quantization ambiguity. The connection between the vaccua and the confinement is discussed. (Author) [pt
Solution of quantum integrable systems from quiver gauge theories
Energy Technology Data Exchange (ETDEWEB)
Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)
2017-02-23
We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.
GPM GROUND VALIDATION MET ONE RAIN GAUGE PAIRS IFLOODS V2
National Aeronautics and Space Administration — The GPM Ground Validation Met One Rain Gauge Pairs IFloodS V2 data measures the amount of fallen precipitation collected by a Model 380 tipping bucket rain gauge...
GPM GROUND VALIDATION MET ONE RAIN GAUGE PAIRS IPHEX V2
National Aeronautics and Space Administration — The GPM Ground Validation Met One Rain Gauge Pairs IPHEx V2 data measured the amount of fallen precipitation collected by a Model 380 tipping bucket rain gauge made...
Gauge Trimming of Neutrino Masses
Energy Technology Data Exchange (ETDEWEB)
Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab
2006-12-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.
Gauge Physics of Finance: simple introduction
Ilinski, Kirill N
1998-01-01
In this paper we state the fundamental principles of the gauge approach to financial economics and demonstrate the ways of its application. In particular, modelling of realistic price processes is considered for an example of S&P500 market index. Derivative pricing and portfolio theory are also briefly discussed.
Spontaneous Breaking of Scale Invariance in a d=3 U(N) Model with Chern-Simons Gauge Field
Bardeen, William A
2014-01-01
We study spontaneous breaking of scale invariance in the large N limit of three dimensional $U(N)_\\kappa$ Chern-Simons theories coupled to a scalar field in the fundamental representation. When a $\\lambda_6(\\phi^\\dagger\\cdot\\phi)^3$ self interaction term is added to the action we find a massive phase at a certain critical value for a combination of the $\\lambda_6$ and 't Hooft's $\\lambda=N/\\kappa$ couplings. This model attracted recent attention since at finite $\\kappa$ it contains a singlet sector which is conjectured to be dual to Vasiliev's higher spin gravity on $AdS_4$. Our paper concentrates on the massive phase of the 3d boundary theory. We discuss the advantage of introducing masses in the boundary theory through spontaneous breaking of scale invariance.
Fourier acceleration in lattice gauge theories. I. Landau gauge fixing
International Nuclear Information System (INIS)
Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.
1988-01-01
Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations
Conformal anomaly from gauge fields without gauge fixing
Falls, Kevin; Morris, Tim R.
2018-03-01
We show how the Weyl anomaly generated by gauge fields, can be computed from manifestly gauge invariant and diffeomorphism invariant exact renormalization group equations, without having to fix the gauge at any stage. Regularization is provided by covariant higher derivatives and by embedding the Maxwell field into a spontaneously broken U (1 |1 ) supergauge theory. We first provide a realization that leaves behind two versions of the original U (1 ) gauge field, and then construct a manifestly U (1 |1 ) supergauge invariant flow equation which leaves behind only the original Maxwell field in the spontaneously broken regime.
International Nuclear Information System (INIS)
Kaptanoglu, S.
1983-01-01
A class of local gauge theories based on compact semisimple Lie groups is studied in the limit of infinite gauge coupling constant (g = infinity). In general, in this limit, the gauge fields become auxiliary in all gauge theories, and the system develops a richer structure of constraints. Unfortunately for most gauge theories, this limit turns out to be too singular to quantize and the theory ceases to be renormalizable. For a special class of gauge theories, however, where there are no fermions and there is only one multiplet of scalars in the adjoint representation, we prove that a consistent renormalizable quantum theory exists even in this very singular limit. We trace this exceptional behavior to a new local translationlike symmetry in the functional space that this class of gauge models possesses in the limit of infinite gauge coupling constant. By carrying out the constraint analysis, evaluating the Faddeev-Popov-Senjanovic determinant, and doing the functional integrations over the canonical momenta, the gauge fields, and most of the components of the scalar fields, we obtain an extremely simple result with no non-Abelian structure left in it. For example, for the group SU(2), the final answer reduces to the theory of a one-component self-interacting real phi 4 scalar field theory. Throughout this paper, we use functional methods and make no approximations; our results are nonperturbative and exact. We also discuss some of the possible implications of our results
Towards the natural gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [Center for High-Energy Physics, Peking University,Beijing, 100871 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics andKavli Institute for Theoretical Physics, China (KITPC), Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Wang, Liucheng [Bartol Research Institute, Department of Physics and Astronomy,University of Delaware, Newark, DE 19716 (United States); Zhu, Bin [State Key Laboratory of Theoretical Physics andKavli Institute for Theoretical Physics, China (KITPC), Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Institute of Physics Chinese Academy of sciences,Beijing 100190 (China)
2015-10-23
The sweet spot supersymmetry (SUSY) solves the μ/B{sub μ} problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the μ-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the μ/B{sub μ}-problem. Moreover, there are only five free parameters in our model. So we can determine the characteristic low energy spectra and explore its distinct phenomenology. The fine-tuning measure can be as low as 100. For some benchmark points, the stop mass can be as low as 1.7 TeV while the glunio mass is around 2.5 TeV. The gravitino dark matter can come from a thermal production with the correct relic density and be consistent with the thermal leptogenesis. Because gluino and stop can be relatively light in our model, how to search for such GMSB at the upcoming run II of the LHC experiment could be very interesting.
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Influence analysis of Arctic tide gauges using leverages
DEFF Research Database (Denmark)
Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg
Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... the statistical leverage of each individual gauge. This may be of help in determining appropriate procedures for data preprocessing, of particular importance for the Arctic area as the GIA is hard to constrain and many gauges are located on rivers. We use a model based on empirical orthogonal functions from...... inappropriate for the reconstruction so that it should be removed from the reconstruction model altogether. Therefore, the characteristics of the high-leverage gauges are examined in detail....
Light third-generation squarks from flavour gauge messengers
Energy Technology Data Exchange (ETDEWEB)
Brümmer, Felix [SISSA/ISAS,Via Bonomea 265, Trieste I-34136 (Italy); Deutsches Elektronen-Synchrotron DESY,Notkestrasse 85, D-22607 Hamburg (Germany); McGarrie, Moritz [Deutsches Elektronen-Synchrotron DESY,Notkestrasse 85, D-22607 Hamburg (Germany); National Institute for Theoretical Physics, School of Physics,and Centre for Theoretical Physics, University of the Witwatersrand,Johannesburg, WITS 2050 (South Africa); Weiler, Andreas [Deutsches Elektronen-Synchrotron DESY,Notkestrasse 85, D-22607 Hamburg (Germany); CERN Theory Division,CH-1211 Geneva 23 (Switzerland)
2014-04-10
We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3){sub F} symmetry acting on the quark superfields. If SU(3){sub F} is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3){sub F} breaking.
Light third-generation squarks from flavour gauge messengers
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, Felix [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. of the Witwatersrand, Johannesburg (South Africa). School of Physics and Centre for Theoretical Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.
2014-04-15
We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3){sub F} symmetry acting on the quark superfields. If SU(3){sub F} is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3){sub F} breaking.
A screening mechanism for extra W and Z gauge bosons
Matias, J
2000-01-01
We generalize a previous construction of a fermiophobic model to the case of more than one extra W and Z gauge bosons. We focus in particular on the existence of screening configurations and their implication on the gauge boson mass spectrum. One of these configurations allows for the existence of a set of relatively light new gauge bosons, without violation of the quite restrictive bounds coming from the rho /sub NC/ parameter. The links with Bess and degenerate Bess models are also discussed. Also the signal given here by this more traditional gauge extension of the SM could help to disentangle it from the towers of Kaluza-Klein states over W and Z gauge bosons in extra dimensions. (18 refs).
Gauges for fine and high vacuum
Jousten, K
2007-01-01
Vacuum gauges for use in accelerators have to cover about 17 decades of pressure, from 10–12 Pa to 105 Pa. In this article we describe the history, measurement mode, design, accuracy and calibration of the gauges used down to 10–5 Pa. We focus on commercially available types of gauges, i.e., mechanical gauges, piezoresistive and capacitance diaphragm gauges, thermal conductivity gauges, and spinning rotor gauges.
Lee, Hyun Min
2018-03-01
We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.
DEFF Research Database (Denmark)
Borup, Morten; Grum, Morten; Linde, Jens Jørgen
2016-01-01
overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5–30 min of rain data recorded by multiple rain gauges and propagating the rainfall......, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10–20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2–3 km away....
Warms, M.; Ramirez, J. A.; Kaptue, A.; Hanan, N. P.; Sigdel-Phuyal, M.; Giree, N.
2013-12-01
The Sahelian region of Africa is the geographic belt directly south of the Sahara, connecting the desert to the wetter Sudanian and Guinean savannas to the South. The region is semi-arid, receiving only 300-600 mm of precipitation on average annually, and experiencing severe dry seasons (7-9 months) with little to no rain. In parts of the Sahel, a remarkable expansion of ephemeral lakes extending longer in the dry season and a recent hydrologic regime shift such that some of the previously ephemeral lakes in the region have become perennial have been observed. To test hypotheses of how this regime shift occurred, or whether this trend will continue, a coupled hydrological, ecological, and social processes model is being developed. In this paper we focus on the parameterization and calibration of the physical hydrologic model--a task that is difficult given the lack of high-resolution datasets for this region. While soils and land cover datasets exist for the entire globe, for the Sahel they are typically too coarse to adequately characterize variability for hydrologic modeling of the small watersheds associated with these lakes. In addition, climate forcing data at a daily scale are scarce. Lastly, streamflow and other gauged data typically used for calibration and validation of hydrologic models are unavailable. To address these issues, anecdotal data and in-situ observations were combined with remotely sensed data to capture as much spatial and temporal variability as possible in the watershed at the highest resolution, including 30-meter land cover data derived from Landsat imagery to infer soil information in the watershed. In order to produce long-term daily climate forcings, the coarse Climate Research Unit (CRU) and Tropical Rainfall Measuring Mission (TRMM) datasets were downscaled both spatially and temporally. Using Landsat imagery of lake sizes over time in conjunction with fractal descriptions of watershed topography and open water evaporation estimates
An introduction to gauge theories
International Nuclear Information System (INIS)
Iliopoulos, J.
1977-01-01
The CERN-JINR School of Physics is meant to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. This paper presents an introduction to gauge theories: the systematics of Yang-Mills theories, spontaneous symmetry breaking, and Higgs mechanism. The treatment is simple, stressing the general principles rather than detailed calculations. The author presents the Weinberg-Salam model as an example of a renormalizable theory of weak and electromagnetic interactions of leptons, and it is shown that the extension of these ideas into the hadronic world requires the introduction of charm and colour. Finally, an attempt is made to include strong interactions into the scheme, guided by the experimental results of deep-inelastic lepton-nucleon scattering. The Callan-Symanzik equation, and the concepts of asymptotic freedom and quark confinement are introduced. (Auth.)
An introduction to gauge theories
International Nuclear Information System (INIS)
Iliopoulos, J.
1976-01-01
These lecture notes present an introduction to gauge theories: the systematics of Yang-Mills theories, spontaneous symmetry breaking, and Higgs mechanism. The treatment is simple, stressing the general principles rather than detailed calculations. We present the Weinberg-Salam model as an example of a renormalizable theory of weak and electromagnetic interactions of leptons, and we show that the extension of these ideas into the hadronic world requires the introduction of charm and colour. Finally, we try to include strong interactions into the scheme, guided by the experimental results of deep-inelastic lepton-nucleon scattering. We derive and solve the Callan-Symanzik equation, and we introduce the concepts of asymptotic freedom and quark confinement. (Author)
Contemporary status of gauge fields
International Nuclear Information System (INIS)
Slavnov, A.A.
1979-01-01
A successive and a self-consistent scheme of calculation is developed for the Yang-Mills theory. Boundary conditions related to the problem on the physical vacuum are predetermined for solving the field theory equations. It is noted that the principal problem for the Yang-Mills theory consists in finding the actual ground state. The role of instantons in constructing the gauge field ground state and of the dynamic mechanism of quark confinement are also discussed. An assumption has been made that the Yang-Mills theory can be solved exactly. This assumption is based on analogy between the Yang-Mills theory and the two-dimensional nonlinear σ-model. An exceptionality of the Yang-Mills theory is stressed which consists in the fact that it is a unique massless vector field theory in which no patologies are observed connected with nonpositive determination of energy
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
On the dynamics of gauge potential
International Nuclear Information System (INIS)
Tao Jiafu; Li Yuanjie; Zhang Jinru
1992-01-01
The gauge potential is resolved into gauge potential of strength and gauge potential of phase. The phase gauge potential can be described with an equivalent potential of inertial force. A Lagrangian density with phase gauge potential is given and some examples are discussed. The method proposed has been extended to the case of the non-Abelian group
Focus point gauge mediation in product group unification
International Nuclear Information System (INIS)
Brümmer, Felix; Ibe, Masahiro; Yanagida, Tsutomu T.
2013-01-01
In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the fine-tuning remains modest. In this Letter, we show that such gauge mediation models with “focus point” behaviour can be naturally embedded into a model of SU(5)×U(3) product group unification
Focus point gauge mediation in product group unification
International Nuclear Information System (INIS)
Bruemmer, Felix; Ibe, Masahiro; Tokyo Univ., Kashiwa; Yanagida, Tsutomu T.
2013-03-01
In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the ne-tuning remains modest. In this paper, we show that such gauge mediation models with ''focus point'' behaviour can be naturally embedded into a model of SU(5) x U(3) product group unification.
Two-Dimensional Interactions in a Class of Tensor Gauge Fields from Local BRST Cohomology
Babalic, E M; Cioroianu, E M; Negru, I; Sararu, S C
2003-01-01
Lagrangian interactions in a class of two-dimensional tensor gauge field theory are derived by means of deforming the solution to the master equation with specific cohomological techniques. Both the gauge transformations and their algebra are deformed. The gauge algebra of the coupled model is open.
Sea level reconstruction from satellite altimetry and tide gauge data
DEFF Research Database (Denmark)
Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg
2012-01-01
Ocean satellite altimetry has provided global sets of sea level data for the last two decades, allowing determination of spatial patterns in global sea level. For reconstructions going back further than this period, tide gauge data can be used as a proxy. We examine different methods of combining...... satellite altimetry and tide gauge data using optimal weighting of tide gauge data, linear regression and EOFs, including automatic quality checks of the tide gauge time series. We attempt to augment the model using various proxies such as climate indices like the NAO and PDO, and investigate alternative...... of itself, whereas the desired signal will exhibit autocorrelation. This will be applied to a global dataset, necessitating wrap-around consideration of spatial shifts. Our focus is a timescale going back approximately 50 years, allowing reasonable global availability of tide gauge data. This allows...
Jet quenching parameters in strongly coupled nonconformal gauge theories
International Nuclear Information System (INIS)
Buchel, Alex
2006-01-01
Recently Liu, Rajagopal, and Wiedemann (LRW) [H. Liu, K. Rajagopal, and U. A. Wiedemann, hep-ph/0605178.] proposed a first principle, nonperturbative quantum field theoretic definition of 'jet quenching parameter' q-circumflex used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating q-circumflex to a short-distance behavior of a certain lightlike Wilson loop, they used gauge theory-string theory correspondence to evaluate q-circumflex for the strongly coupled N=4 SU(N c ) gauge theory plasma. We generalize analysis of LRW to strongly coupled nonconformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears its value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases
Physics from multidimensional gauge theories
International Nuclear Information System (INIS)
Forgacs, P.; Lust, D.; Zoupanos, G.
1986-01-01
The authors motivate high dimensional theories by recalling the original Kaluza-Klein proposal. They review the dimensional reduction of symmetric gauge theories and they present the results of the attempts to obtain realistic description of elementary particles interactions starting from symmetric gauge theories in high dimensions
Krishnan, Chethan; Raju, Avinash
2017-08-01
We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Gauge concepts in theoretical applied physics
Tan, Seng Ghee; Jalil, Mansoor B. A.
2016-01-01
Gauge concept evolves in the course of nearly one century from Faraday’s rather obscure electrotonic state of matter to the physically significant Yang-Mills that underpin today’s standard model. As gauge theories improve, links are established with modern observations, e.g. in the Aharonov-Bohm effect, the Pancharatnam-Berry’s phase, superconductivity, and quantum Hall effects. In this century, emergent gauge theory is formulated in numerous fields of applied physics like topological insulators, spintronics, and graphene. We will show in this paper the application of gauge theory in two particularly useful spin-based phenomena, namely the spin orbit spin torque and the spin Hall effect. These are important fields of study in the engineering community due to great commercial interest in the technology of magnetic memory (MRAM), and magnetic field sensors. Both spin orbit torque and spin Hall perform magnetic switching at low power and high speed. Furthermore, spin Hall is also a promising source of pure spin current, as well as a reliable form of detection mechanism for the magnetic state of a material.
Mathematical and physical aspects of gauge theories
International Nuclear Information System (INIS)
Chatelet, G.; Paris-13 Univ., 93 - Saint-Denis
1981-01-01
We present here a survey of gauge theories, trying to relate the main mathematical and physical concepts. Part I is devoted to exhibiting parallel transport and connection as the adequate concepts for the constitution of the parametrized internal space of a particle. A covariant derivative provides the differential calculus, which is needed when one leaves the point-like description in microphysics. Part II deals with the so-called pure gauge theory and sketches the construction of the self-dual solutions of Yang-Mills equations. We briefly explain Guersey's method to get SU 2 self-dual potentials as quarternionic analytic maps from S 4 (first quarternionic projective space) into HPsub(n) (n-dimensional quarternionic projective space). Part III is devoted to the Goldstone's theorem and Higgs' mechanism used to provide a mass to gauge mesons. We describe a Salam-Weinberg model to illustrate these techniques. Part IV deals with the perturbative aspect. The Faddeev-Popov method, formerly conceived as a technique to get correct Feynmann rules, actually leads to a systematic study of the affine space of connections factored out by gauge transformations. (orig.)
Exact renormalization group for gauge theories
International Nuclear Information System (INIS)
Balaban, T.; Imbrie, J.; Jaffe, A.
1984-01-01
Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study
Applications of noncovariant gauges in the algebraic renormalization procedure
Boresch, A; Schweda, Manfred
1998-01-01
This volume is a natural continuation of the book Algebraic Renormalization, Perturbative Renormalization, Symmetries and Anomalies, by O Piguet and S P Sorella, with the aim of applying the algebraic renormalization procedure to gauge field models quantized in nonstandard gauges. The main ingredient of the algebraic renormalization program is the quantum action principle, which allows one to control in a unique manner the breaking of a symmetry induced by a noninvariant subtraction scheme. In particular, the volume studies in-depth the following quantized gauge field models: QED, Yang-Mills t
On the variation of the gauge couplings during inflation
Giovannini, Massimo
2001-01-01
It is shown that the evolution of the (Abelian) gauge coupling during an inflationary phase of de Sitter type drives the growth of the two-point function of the magnetic inhomogeneities. After examining the constraints on the variation of the gauge coupling arising in a standard model of inflationary and post-inflationary evolution, magnetohydrodynamical equations are generalized to the case of time evolving gauge coupling. It is argued that large scale magnetic fields can be copiously generated. Other possible implications of the model are outlined.
Colored pseudo Goldstone bosons and gauge boson pairs
International Nuclear Information System (INIS)
Chivukula, R.S.; Golden, M.; Ramana, M.V.
1992-01-01
If the electroweak symmetry breaking sector contains colored particles weighing a few hundred GeV, then they will be copiously produced at a hadron supercollider. Colored technipions can rescatter into pairs of gauge bosons. As proposed by Bagger, Dawson, and Valencia, this leads to gauge boson pair rates far larger than in the standard model. In this Letter we reconsider this mechanism, and illustrate it in a model in which the rates can be reliably calculated. The observation of both an enhanced rate of gauge-boson-pair events and colored particles would be a signal that the colored particles were pseudo Goldstone bosons of symmetry breaking
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin
2007-11-02
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron
Search for new heavy charged gauge bosons
International Nuclear Information System (INIS)
Magass, Carsten Martin
2007-01-01
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of √(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about ∫Ldt=1 fb -1 . Using this dataset, a search for a new heavy charged gauge boson W ' and its subsequent decay into an electron and a neutrino is performed: p anti p→W ' +X→eν+X. Additional gauge bosons (including the equivalent to the Z, the Z ' ) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W ' has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W ' is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W ' signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1±2.1(stat) +6.0 -3.7 (sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron and neutrino, σ W ' x Br(W ' →eν). Using this limit, a lower bound on the mass of the new gauge
46 CFR 154.1370 - Pressure gauge and vacuum gauge marking.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure gauge and vacuum gauge marking. 154.1370... Equipment Instrumentation § 154.1370 Pressure gauge and vacuum gauge marking. Each pressure gauge and vacuum gauge under § 154.1335(a) must be marked with the maximum and minimum pressures that are specified on...
Supersymmetry Breaking, Gauge Mediation, and the LHC
International Nuclear Information System (INIS)
Shih, David
2015-01-01
Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called 'General Gauge Mediation' (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.
Supersymmetry Breaking, Gauge Mediation, and the LHC
Energy Technology Data Exchange (ETDEWEB)
Shih, David [Rutgers Univ., New Brunswick, NJ (United States)
2015-04-14
Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.
A quantization scheme for scale-invariant pure gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1988-01-01
A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)
Renormalization of nonabelian gauge theories with tensor matter fields
Energy Technology Data Exchange (ETDEWEB)
Lemes, Vitor; Renan, Ricardo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, Silvio Paolo [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1996-03-01
The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs.
Renormalization of nonabelian gauge theories with tensor matter fields
International Nuclear Information System (INIS)
Lemes, Vitor; Renan, Ricardo; Sorella, Silvio Paolo
1996-03-01
The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs
Flavor gauge bosons at the Fermilab Tevatron
International Nuclear Information System (INIS)
Burdman, Gustavo; Chivukula, R. Sekhar; Evans, Nick
2000-01-01
We investigate collider signals for gauged flavor symmetries that have been proposed in models of dynamical electroweak symmetry breaking and fermion mass generation. We consider the limits on the masses of the gauge bosons in these models which can be extracted from Fermilab Tevatron run I data in dijet production. Estimates of the run II search potential are provided. We show that the models also give rise to significant signals in single top quark production which may be visible at run II. In particular we study chiral quark family symmetry and SU(9) chiral flavor symmetry. The run I limits on the gauge bosons in these models lie between 1.5 and 2 TeV and should increase to about 3 TeV in run II. Finally, we show that an SU(12) enlargement of the SU(9) model, including leptonic interactions, is constrained by low energy atomic parity violation experiments to lie outside the reach of the Tevatron. (c) 2000 The American Physical Society
Bianchi type I cosmology in generalized Saez-Ballester theory via Noether gauge symmetry
International Nuclear Information System (INIS)
Jamil, Mubasher; Ali, Sajid; Momeni, D.; Myrzakulov, R.
2012-01-01
In this paper, we investigate the generalized Saez-Ballester scalar-tensor theory of gravity via Noether gauge symmetry (NGS) in the background of Bianchi type I cosmological spacetime. We start with the Lagrangian of our model and calculate its gauge symmetries and corresponding invariant quantities. We obtain the potential function for the scalar field in the exponential form. For all the symmetries obtained, we determine the gauge functions corresponding to each gauge symmetry which include constant and dynamic gauge. We discuss cosmological implications of our model and show that it is compatible with the observational data. (orig.)
Bianchi type I cosmology in generalized Saez-Ballester theory via Noether gauge symmetry
Jamil, Mubasher; Ali, Sajid; Momeni, D.; Myrzakulov, R.
2012-04-01
In this paper, we investigate the generalized Saez-Ballester scalar-tensor theory of gravity via Noether gauge symmetry (NGS) in the background of Bianchi type I cosmological spacetime. We start with the Lagrangian of our model and calculate its gauge symmetries and corresponding invariant quantities. We obtain the potential function for the scalar field in the exponential form. For all the symmetries obtained, we determine the gauge functions corresponding to each gauge symmetry which include constant and dynamic gauge. We discuss cosmological implications of our model and show that it is compatible with the observational data.
Directory of Open Access Journals (Sweden)
Dzhunushaliev Vladimir
2017-01-01
Full Text Available The nonperturbative quantization technique à la Heisenberg is applied for the SU(3 gauge theory. The operator Yang-Mills equation and corresponding infinite set of equations for all Green’s functions are considered. Gauge degrees of freedom are splitted into two groups: (1 Aμa ∈ SU (2 × U(1 ⊂ SU(3; (2 coset degrees of freedom SU(3/SU(2 × U(1. Using some assumptions about 2- and 4-point Green’s functions, the infinite set of equations is truncated to two equations. The first equation is the SU(2 × U(1 Yang-Mills equation, and the second equation describes a gluon condensate formed by coset fields. A flux tube solution describing longitudinal color electric fields stretched between quark and antiquark located at the ± infinities is obtained. It is shown that the dual Meissner effect appears in this solution: the electric field is pushed out from the gluon condensate.
Wambugu Mwangi; Nyandega Isaiah; Kamp305thiia Shadrack
2017-01-01
In water-scarce developing countries river basins are some of the most valued natural resources but many are poorly gauged and have incomplete hydrological and climate records. In the recent years tropical rivers are increasingly becoming erratic with many hydrologists attributing this variability to combined effects of landscape-specific anthropogenic activities and climate change. Uncertainties about the impacts of climate change compound the challenges attributed to poor and often inconsis...
Gauge and non-gauge curvature tensor copies
International Nuclear Information System (INIS)
Srivastava, P.P.
1982-10-01
A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Gauge theories in particle physics
International Nuclear Information System (INIS)
Taylor, J.
1993-01-01
Forces and the background theory, special relativity, space-time and quantum theory are first reviewed and linked in particles physics (relativity plus quantum theory); spin in quantum mechanics is then detailed and electromagnetism is explained with the view of the generalization of the gauge aspect of electromagnetism; gauge fields interacting with leptons and quarks, short-range forces from gauge theories, the high-energy limit, strong interactions, electric and magnetic properties of matter, vacuum polarization and asymptotic freedom, confinement, are also discussed. 29 figs
BRST gauge fixing and regularization
International Nuclear Information System (INIS)
Damgaard, P.H.; Jonghe, F. de; Sollacher, R.
1995-05-01
In the presence of consistent regulators, the standard procedure of BRST gauge fixing (or moving from one gauge to another) can require non-trivial modifications. These modifications occur at the quantum level, and gauges exist which are only well-defined when quantum mechanical modifications are correctly taken into account. We illustrate how this phenomenon manifests itself in the solvable case of two-dimensional bosonization in the path-integral formalism. As a by-product, we show how to derive smooth bosonization in Batalin-Vilkovisky Lagrangian BRST quantization. (orig.)
Gauge-invariant three-gluon vertex in QCD
International Nuclear Information System (INIS)
Cornwall, J.M.; Papavassiliou, J.
1989-01-01
By resumming the Feynman graphs which contribute to any gauge-invariant process we explicitly construct, at one-loop order, a three-gluon vertex for QCD which is completely independent of the choice of gauge. This vertex satisfies a Ward identity of the type encountered in ghost-free gauges, relating the vertex to the proper self-energy of a previously constructed gluon propagator, also found by resumming graphs; like the vertex, this self-energy is completely gauge invariant. We also derive the gauge-invariant propagator and vertex via a second related technique which minimizes the dependence on embedding these objects in a gauge-invariant process; the same results are found as in the first technique. These results motivate a toy model of the nonlinear Schwinger-Dyson equation satisfied by the exact gauge-invariant three-gluon vertex. This model is nonperturbative and has infrared singularities, which we can remove via gluon mass generation; it shows many interesting features expected of QCD, such as a β function which is not Borel summable in perturbation theory
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin [RWTH Aachen Univ. (Germany)
2007-11-02
Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb^{-1}. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σ_{W'}xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.
The SME gauge sector with minimum length
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Louzada, H.L.C. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2017-12-15
We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory. (orig.)
Tosi, Gian Marco; Malandrini, Alex; Cevenini, Gabriele; Neri, Giovanni; Marigliani, Davide; Cerruto, Arianna; Virgili, Gianni
2017-10-01
To study the patterns of vitreous incarceration at sclerotomy sites by ultrasound biomicroscopy in patients subjected to valved or nonvalved small-gauge pars plana vitrectomy. A prospective comparative study of 88 eyes affected by epiretinal membrane and macular hole. Patients were divided into four groups: valved or nonvalved 23-gauge (16 eyes each) and valved or nonvalved 25-gauge (20 eyes each); their vitreal disposition was compared by ultrasound biomicroscopy. Vitreal disposition was also assessed in 16 eyes of 16 patients subjected to valved 27-gauge pars plana vitrectomy. Three vitreal patterns were identified: P0 (vitreous not visible or vitreous strand distant from the sclerotomy site), P1 (vitreous strand parallel to and in contact with the sclerotomy site), and P2 (vitreous strand entrapped in the sclerotomy site). The effect of valved trocar use on vitreous incarceration seemed to be somewhat beneficial, but no statistically significant effect could be shown (odds ratio: 0.85, 95% confidence interval: 0.42-1.74, P = 0.657). Similarly, no differences in vitreous incarceration were shown among vitrectomy gauges (23, 25, or 27) both in a model including valved trocars only (P = 0.858) and in a model with all available data (P = 0.935). In 23- and 25-gauge macular surgeries, postoperative vitreous incarceration does not seem to be reduced using valved cannulas and was similar to that observed in 27-gauge surgery.
National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...
A Propellant Mass Gauge Project
National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Liquid-Oxygen Mass Gauge, (LMG) for In-Space cryogenic storage capable of continuous monitoring of...
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
Radiative processes in gauge theories
International Nuclear Information System (INIS)
Berends, F.A.; Kleiss, R.; Danckaert, D.; Causmaecker, P. De; Gastmans, R.; Troost, W.; Tai Tsun Wu
1982-01-01
It is shown how the introduction of explicit polarization vectors of the radiated gauge particles leads to great simplifications in the calculation of bremsstrahlung processes at high energies. (author)
Gauge theories in particle physics
International Nuclear Information System (INIS)
Aitchison, I.J.R.; Hey, A.J.G.
1982-01-01
The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)
New framework for gauge field theories
International Nuclear Information System (INIS)
Blaha, S.
1979-01-01
Gauge theories are formulated within the framework of a generalization of quantum field theory. In particular, models of electrodynamics and of Yang-Mills theories, we discuss a model of the strong interaction with higher-order derivatives and quark confinement and a renormalizable model of pure quantum gravity with Einstein Lagrangian. In the case of electrodynamics it is shown that two models are possible: one with predictions which are identical to QED and one which is a quantum action-at-a-distance model of electrodynamics. In the case of Yang-Mills theories a model is constructed which is identical in predictions to any conventional model, or a quantum action-at-a-distance model. In the second case it is possible to eliminate all loops of Yang-Mills particles (in all gauges) in a manner consistent with unitarity. A variation of Yang-Mills models exists in this formulation which has higher-order derivative field equations. It is unitary and has positive probabilities. It can be used to construct a model of the strong interactions which has a linear potential and manifest quark confinement. Finally, it is shown how to construct an action-at-a-distance model of pure quantum gravity (whose classical limit is the dynamics of the Einstein Lagrangian) coupled to an external classical source. The model is trivially renormalizable. (author)
Search for gauge extensions of the MSSM at the LHC
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Demir, Durmus A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Izmir Institute of Technology, IZTECH, Izmir (Turkey). Dept. of Physics; Frank, Mariana; Turan, Ismail [Montreal Univ., PQ (Canada). Dept. of Physics
2009-02-15
The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the {mu} problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a U(1)' gauge extension of the MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp{yields}n leptons+m jets+E{sub T}, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z' searches at the LHC. (orig.)
Interplay of infrared divergences and gauge dependence of the effective potential
Espinosa, J. R.; Garny, M.; Konstandin, T.
2016-09-01
The perturbative effective potential suffers infrared (IR) divergences in gauges with massless Goldstones in their minima (like the Landau or Fermi gauges), but the problem can be fixed by a suitable resummation of the Goldstone propagators. When the potential minimum is generated radiatively, gauge independence of the potential at the minimum also requires resummation, and we demonstrate that the resummation that solves the IR problem also cures the gauge-dependence issue, showing this explicitly in the Abelian Higgs model in the Fermi gauge. In the process, we find an IR divergence (in the first derivative of the potential) specific to the Fermi gauge and not appreciated in the recent literature. We show that physical observables can still be computed in this gauge, and we further show how to get rid of this divergence by a field redefinition. All these results generalize to the Standard Model case.
Interplay of Infrared Divergences and Gauge-Dependence of the Effective Potential
Espinosa, J.R.; Konstandin, T.
2016-01-01
The perturbative effective potential suffers infrared (IR) divergences in gauges with massless Goldstones in their minima (like Landau or Fermi gauges) but the problem can be fixed by a suitable resummation of the Goldstone propagators. When the potential minimum is generated radiatively, gauge-independence of the potential at the minimum also requires resummation and we demonstrate that the resummation that solves the IR problem also cures the gauge-dependence issue, showing this explicitly in the Abelian Higgs model in Fermi gauge. In the process we find an IR divergence (in the location of the minimum) specific to Fermi gauge and not appreciated in recent literature. We show that physical observables can still be computed in this gauge and we further show how to get rid of this divergence by a field redefinition. All these results generalize to the Standard Model case.
Interplay of infrared divergences and gauge-dependence of the effective potential
International Nuclear Information System (INIS)
Espinosa, J.R.; Garny, M.; Konstandin, T.
2016-07-01
The perturbative effective potential suffers infrared (IR) divergences in gauges with massless Goldstones in their minima (like Landau or Fermi gauges) but the problem can be fixed by a suitable resummation of the Goldstone propagators. When the potential minimum is generated radiatively, gauge-independence of the potential at the minimum also requires resummation and we demonstrate that the resummation that solves the IR problem also cures the gauge-dependence issue, showing this explicitly in the Abelian Higgs model in Fermi gauge. In the process we find an IR divergence (in the location of the minimum) specific to Fermi gauge and not appreciated in recent literature. We show that physical observables can still be computed in this gauge and we further show how to get rid of this divergence by a field redefinition. All these results generalize to the Standard Model case.
Statistical selection of tide gauges for Arctic sea-level reconstruction
DEFF Research Database (Denmark)
Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg
2015-01-01
In this paper, we seek an appropriate selection of tide gauges for Arctic Ocean sea-level reconstruction based on a combination of empirical criteria and statistical properties (leverages). Tide gauges provide the only in situ observations of sea level prior to the altimetry era. However, tide...... for the period 1950-2010 for the Arctic Ocean, constrained by tide gauge records, using the basic approach of Church et al. (2004). A major challenge is the sparsity of both satellite and tide gauge data beyond what can be covered with interpolation, necessitating a time-variable selection of tide gauges...... and the use of an ocean circulation model to provide gridded time series of sea level. As a surrogate for satellite altimetry, we have used the Drakkar ocean model to yield the EOFs. We initially evaluate the tide gauges through empirical criteria to reject obvious outlier gauges. Subsequently, we evaluate...
Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass
International Nuclear Information System (INIS)
Das, Ashok K.; Frenkel, J.; Schubert, C.
2013-01-01
We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop
Many-Body Localization Dynamics from Gauge Invariance
Brenes, Marlon; Dalmonte, Marcello; Heyl, Markus; Scardicchio, Antonello
2018-01-01
We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Gauge siphon. 230.43 Section 230.43 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent...
49 CFR 229.107 - Pressure gauge.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Pressure gauge. 229.107 Section 229.107....107 Pressure gauge. (a) Each steam generator shall have an illuminated steam gauge that correctly indicates the pressure. The steam pressure gauge shall be graduated to not less than one and one-half times...
Current algebra for chiral gauge theories
Energy Technology Data Exchange (ETDEWEB)
Manias, M.V.; von Reichenbach, M.C.; Schaposnik, F.A.; Trobo, M.
1987-07-01
Chiral gauge theories are studied with a special emphasis on the treatment of gauge degrees of freedom so as to obtain a gauge-invariant effective action from which current commutators can be evaluated. It is explicitly shown in a simple example that these commutators are those to be expected in a gauge-invariant theory.
Gauge Field Localization on Deformed Branes
Tofighi, A.; Moazzen, M.; Farokhtabar, A.
2016-02-01
In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.