Unified models of interactions with gauge-invariant variables
International Nuclear Information System (INIS)
Zet, Gheorghe
2000-01-01
A model of gauge theory is formulated in terms of gauge-invariant variables over a 4-dimensional space-time. Namely, we define a metric tensor g μν ( μ , ν = 0,1,2,3) starting with the components F μν a and F μν a tilde of the tensor associated to the Yang-Mills fields and its dual: g μν = 1/(3Δ 1/3 ) (ε abc F μα a F αβ b tilde F βν c ). Here Δ is a scale factor which can be chosen of a convenient form so that the theory may be self-dual or not. The components g μν are interpreted as new gauge-invariant variables. The model is applied to the case when the gauge group is SU(2). For the space-time we choose two different manifolds: (i) the space-time is R x S 3 , where R is the real line and S 3 is the three-dimensional sphere; (ii) the space-time is endowed with axial symmetry. We calculate the components g μν of the new metric for the two cases in terms of SU(2) gauge potentials. Imposing the supplementary condition that the new metric coincides with the initial metric of the space-time, we obtain the field equations (of the first order in derivatives) for the gauge fields. In addition, we determine the scale factor Δ which is introduced in the definition of g μν to ensure the property of self-duality for our SU(2) gauge theory, namely, 1/(2√g)(ε αβστ g μα g νβ F στ a = F μν a , g = det (g μν ). In the case (i) we show that the space-time R x S 3 is not compatible with a self-dual SU(2) gauge theory, but in the case (ii) the condition of self-duality is satisfied. The model developed in our work can be considered as a possible way to unification of general relativity and Yang-Mills theories. This means that the gauge theory can be formulated in the close analogy with the general relativity, i.e. the Yang-Mills equations are equivalent to Einstein equations with the right-hand side of a simple form. (authors)
International Nuclear Information System (INIS)
Moriyasu, K.
1978-01-01
A pedagogical approach to gauge invariance is presented which is based on the analogy between gauge transformations and relativity. By using the concept of an internal space, purely geometrical arguments are used to teach the physical ideas behind gauge invariance. Many of the results are applicable to general gauge theories
Hermiticity and gauge invariance
International Nuclear Information System (INIS)
Treder, H.J.
1987-01-01
In the Theory of Hermitian Relativity (HRT) the postulates of hermiticity and gauge invariance are formulated in different ways, due to a different understanding of the idea of hermiticity. However all hermitian systems of equations have to satisfy Einstein's weak system of equations being equivalent to Einstein-Schroedinger equations. (author)
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.
Gauge invariance of string fields
International Nuclear Information System (INIS)
Banks, T.; Peskin, M.E.
1985-10-01
Some work done to understand the appearance of gauge bosons and gravitons in string theories is reported. An action has been constructed for free (bosonic) string field theory which is invariant under an infinite set of gauge transformations which include Yang-Mills transformations and general coordinate transformations as special cases. 15 refs., 1 tab
Wetterich, C.
2018-06-01
We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Dark coupling and gauge invariance
International Nuclear Information System (INIS)
Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data
Dark Coupling and Gauge Invariance
Gavela, M B; Mena, O; Rigolin, S
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Gauge-invariant cosmological density perturbations
International Nuclear Information System (INIS)
Sasaki, Misao.
1986-06-01
Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
Gauge invariance and fermion mass dimensions
International Nuclear Information System (INIS)
Elias, V.
1979-05-01
Renormalization-group equation fermion mass dimensions are shown to be gauge dependent in gauge theories possessing non-vector couplings of gauge bosons to fermions. However, the ratios of running fermion masses are explicitly shown to be gauge invariant in the SU(5) and SU(2) x U(1) examples of such theories. (author)
Dynamic equations for gauge-invariant wave functions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.
1984-01-01
The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents
Invariant structures in gauge theories and confinement
International Nuclear Information System (INIS)
Prokhorov, L.V.; Shabanov, S.V.
1991-01-01
The problem of finding all gauge invariants is considered in connection with the problem of confinement. Polylocal gauge tensors are introduced and studied. It is shown (both in physical and pure geometrical approaches) that the path-ordered exponent is the only fundamental bilocal gauge tensor, which means that any irreducible polylocal gauge tensor is built of P-exponents and local tensors (matter fields). The simplest invariant structures in electrodynamics, chromodynamics and a theory with the gauge group SU(2) are considered separately. 23 refs.; 2 figs
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
Spontaneously broken abelian gauge invariant supersymmetric model
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)
Hamiltonian approach to second order gauge invariant cosmological perturbations
Domènech, Guillem; Sasaki, Misao
2018-01-01
In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.
Gauge invariance and Nielsen identities
International Nuclear Information System (INIS)
Lima, A.F. de; Bazaia, D.
1989-01-01
The one-loop contribution to the effective potential and mass are computed within the context of scalar electrodynamics for the class of general R gauges in the MS scheme. These calculations are performed in order to construct a non-trivial verification of the corresponding Nielsen identities within the context of the Higgs model. Some brief comments on the Coleman-Weinberg model are also included. (author) [pt
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Uniqueness of the gauge invariant action for cosmological perturbations
International Nuclear Information System (INIS)
Prokopec, Tomislav; Weenink, Jan
2012-01-01
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higgs inflation
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Quantized gauge invariant periodic TDHF solutions
International Nuclear Information System (INIS)
Kan, K.-K.; Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.
1979-01-01
Time-dependent Hartree-Fock (TDHF) is used to study steady state large amplitude nuclear collective motions, such as vibration and rotation. As is well known the small amplitude TDHF leads to the RPA equation. The analysis of periodicity in TDHF is not trivial because TDHF is a nonlinear theory and it is not known under what circumstances a nonlinear theory can support periodic solutions. It is also unknown whether such periodic solution, if they exist, form a continuous or a discrete set. But, these properties may be important in obtaining the energy spectrum of the collective states from the TDHF description. The periodicity and Gauge Invariant Periodicity of solutions are investigated for that class of models whose TDHF solutions depend on time through two parameters. In such models TDHF supports a continuous family of periodic solutions, but only a discrete subset of these is gauge invariant. These discrete Gauge Invariant Periodic solutions obey the Bohr-Summerfeld quantization rule. The energy spectrum of the Gauge Invariant Periodic solutions is compared with the exact eigenergies in one specific example
Gauge invariance and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1984-01-01
It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references
Revisiting R-invariant direct gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Chiang, Cheng-Wei [Center for Mathematics and Theoretical Physics andDepartment of Physics, National Central University,Taoyuan, Taiwan 32001, R.O.C. (China); Institute of Physics, Academia Sinica,Taipei, Taiwan 11529, R.O.C. (China); Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan 30013, R.O.C. (China); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); ICRR, University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Ibe, Masahiro [Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); ICRR, University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Yanagida, Tsutomu T. [Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)
2016-03-21
We revisit a special model of gauge mediated supersymmetry breaking, the “R-invariant direct gauge mediation.” We pay particular attention to whether the model is consistent with the minimal model of the μ-term, i.e., a simple mass term of the Higgs doublets in the superpotential. Although the incompatibility is highlighted in view of the current experimental constraints on the superparticle masses and the observed Higgs boson mass, the minimal μ-term can be consistent with the R-invariant gauge mediation model via a careful choice of model parameters. We derive an upper limit on the gluino mass from the observed Higgs boson mass. We also discuss whether the model can explain the 3σ excess of the Z+jets+E{sub T}{sup miss} events reported by the ATLAS collaboration.
Topologically massive gauge theories and their dual factorized gauge-invariant formulation
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)
Gauge invariant actions for string models
International Nuclear Information System (INIS)
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs
Generalized operator canonical formalism and gauge invariance
International Nuclear Information System (INIS)
Fradkina, T.E.
1988-01-01
A direct proof is given in the functional representation of the invariance of the S-matrix constructed in the framework of the generalized operator canonical formalism. We find the traditional functional expression for the S-matrix (without point-splitting in the time factor) in the generalized phase space, as well as in the ghost configuration space. An explicit expression is obtained for the effective unitarizing Hamiltonian for gauge theories with constraints of arbitrary rank
Gauge invariance and equations of motion for closed string modes
Directory of Open Access Journals (Sweden)
B. Sathiapalan
2014-12-01
Full Text Available We continue earlier discussions on loop variables and the exact renormalization group on the string world sheet for closed and open string backgrounds. The world sheet action with a UV regulator is written in a generally background covariant way by introducing a background metric. It is shown that the renormalization group gives background covariant equations of motion – this is the gauge invariance of the graviton. Interaction is written in terms of gauge invariant and generally covariant field strength tensors. The basic idea is to work in Riemann normal coordinates and covariantize the final equation. It turns out that the equations for massive modes are gauge invariant only if the space–time curvature of the (arbitrary background is zero. The exact RG equations give quadratic equations of motion for all the modes including the physical graviton. The level (2,2¯ massive field equations are used to illustrate the techniques. At this level there are mixed symmetry tensors. Gauge invariant interacting equations can be written down. In flat space an action can also be written for the free theory.
Gauge-invariant variational methods for Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Horn, D.; Weinstein, M.
1982-01-01
This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum
Gowdy phenomenology in scale-invariant variables
International Nuclear Information System (INIS)
Andersson, Lars; Elst, Henk van; Uggla, Claes
2004-01-01
The dynamics of Gowdy vacuum spacetimes is considered in terms of Hubble-normalized scale-invariant variables, using the timelike area temporal gauge. The resulting state space formulation provides for a simple mechanism for the formation of 'false' and 'true spikes' in the approach to the singularity, and a geometrical formulation for the local attractor
Gauge invariance properties and singularity cancellations in a modified PQCD
Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos
2006-01-01
The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.
Gauge invariance and reciprocity in quantum mechanics
International Nuclear Information System (INIS)
Leung, P. T.; Young, K.
2010-01-01
Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
A gauge-invariant reorganization of thermal gauge theory
International Nuclear Information System (INIS)
Su, Nan
2010-01-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m D /T, m f /T and e 2 , where m D and m f are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ∝ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m D /T and g 2 , where m D is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ∝ 2 - 3 T c . The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Gauge-invariant intense-field approximations to all orders
International Nuclear Information System (INIS)
Faisal, F H M
2007-01-01
We present a gauge-invariant formulation of the so-called strong-field KFR approximations in the 'velocity' and 'length' gauges and demonstrate their equivalence in all orders. The theory thus overcomes a longstanding discrepancy between the strong-field velocity and the length-gauge approximations for non-perturbative processes in intense laser fields. (fast track communication)
Four-dimensional Yang-Mills theory, gauge invariant mass and fluctuating three-branes
International Nuclear Information System (INIS)
Niemi, Antti J; Slizovskiy, Sergey
2010-01-01
We are interested in a gauge invariant coupling between four-dimensional Yang-Mills field and a three-brane that can fluctuate into higher dimensions. For this we interpret the Yang-Mills theory as a higher dimensional bulk gravity theory with dynamics that is governed by the Einstein action, and with a metric tensor constructed from the gauge field in a manner that displays the original gauge symmetry as an isometry. The brane moves in this higher dimensional spacetime under the influence of its bulk gravity, with dynamics determined by the Nambu action. This introduces the desired interaction between the brane and the gauge field in a way that preserves the original gauge invariance as an isometry of the induced metric. After a prudent change of variables the result can be interpreted as a gauge invariant and massive vector field that propagates in the original spacetime R 4 . The presence of the brane becomes entirely invisible, expect for the mass.
On a gauge invariant subtraction scheme for massive quantum electrodynamics
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Koeberle, R.
A momentum-space subtraction scheme for massive quantum electrodynamics is proposed which respects gauge invariance, in contrast to ordinary normal product techniques. As a consequence the dependence of Green functions on the ghost mass becomes very simple and formally gauge invariant normal products of degree up to four, when subtracted according to the proposed scheme, are automatically gauge invariant. As an aplication we discuss the proof of the Adler-Bardeen theorem. Zero mass limits can be taken for Green function after the integration over intermediate states has been carried out [pt
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
Abelian topologically massive gauge theories (TMGT) provide a topological mechanism to generate mass for a bosonic p-tensor field in any spacetime dimension. These theories include the (2+1)-dimensional Maxwell-Chern-Simons and (3+1)-dimensional Cremmer-Scherk actions as particular cases. Within the Hamiltonian formulation, the embedded topological field theory (TFT) sector related to the topological mass term is not manifest in the original phase space. However, through an appropriate canonical transformation, a gauge-invariant factorization of phase space into two orthogonal sectors is feasible. The first of these sectors includes canonically conjugate gauge-invariant variables with free massive excitations. The second sector, which decouples from the total Hamiltonian, is equivalent to the phase-space description of the associated non-dynamical pure TFT. Within canonical quantization, a likewise factorization of quantum states thus arises for the full spectrum of TMGT in any dimension. This new factorization scheme also enables a definition of the usual projection from TMGT onto topological quantum field theories in a most natural and transparent way. None of these results rely on any gauge-fixing procedure whatsoever
A quantization scheme for scale-invariant pure gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1988-01-01
A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)
Darvas, Gyrgy
2009-01-01
The paper discusses the mathematical consequences of the application of derived variables in gauge fields. Physics is aware of several phenomena, which depend first of all on velocities (like e.g., the force caused by charges moving in a magnetic field, or the Lorentz transformation). Applying the property of the second Noether theorem, that allowed generalised variables, this paper extends the article by Al-Kuwari and Taha (1991) with a new conclusion. They concluded that there are no extra conserved currents associated with local gauge invariance. We show, that in a more general case, there are further conserved Noether currents. In its method the paper reconstructs the clue introduced by Utiyama (1956, 1959) and followed by Al-Kuwari and Taha (1991) in the presence of a gauge field that depends on the co-ordinates of the velocity space. In this course we apply certain (but not full) analogies with Mills (1989). We show, that handling the space-time coordinates as implicit variables in the gauge field, reproduces the same results that have been derived in the configuration space (i.e., we do not lose information), while the proposed new treatment gives additional information extending those. The result is an extra conserved Noether current.
Gauge Invariance and Frame Independence in Cosmology
Weenink, J.G.
2013-01-01
In this thesis the mathematical formulation of cosmological perturbations is studied. First we discuss the gauge problem of general relativity: perturbations of the metric and matter fields in an expanding universe are dependent on the choice of coordinate system, i.e. gauge dependent, even though
Gauge invariance and degree of freedom count
International Nuclear Information System (INIS)
Henneaux, M.; Universite Libre de Bruxelles; Teitelboim, C.; Texas Univ., Austin; Zanelli, J.; Chile Univ., Santiago. Dept. de Fisica)
1990-01-01
The precise relation between the gauge transformations in lagrangian and hamiltonian form is derived for any gauge theory. It is found that in order to define a lagrangian gauge symmetry, the coefficients of the first class constraints in the hamiltonian generator of gauge transformations must obey a set of differential equations. Those equations involve, in general, the Lagrange multipliers. Their solution contains as many arbitrary functions of time as there are primary first class constraints. If n is the number of generations of constraints (primary, secondary, tertiary...), the arbitrary functions appear in the general solution together with their successive time derivatives up to order n-1. The analysis yields as by-products: (i) a systematic way to derive all the gauge symmetries of a given lagrangian; (ii) a precise criterion for counting the physical degrees of freedom of a gauge theory directly from the form of gauge transformations in lagrangian form. This last part is illustrated by means of examples. The BRST analog of the counting of physical degrees of freedom is also discussed. (orig.)
Gauge-invariant perturbations in hybrid quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Gomar, Laura Castelló; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Martín-Benito, Mercedes, E-mail: laura.castello@iem.cfmac.csic.es, E-mail: m.martin@hef.ru.nl, E-mail: mena@iem.cfmac.csic.es [Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands)
2015-06-01
We consider cosmological perturbations around homogeneous and isotropic spacetimes minimally coupled to a scalar field and present a formulation which is designed to preserve covariance. We truncate the action at quadratic perturbative order and particularize our analysis to flat compact spatial sections and a field potential given by a mass term, although the formalism can be extended to other topologies and potentials. The perturbations are described in terms of Mukhanov-Sasaki gauge invariants, linear perturbative constraints, and variables canonically conjugate to them. This set is completed into a canonical one for the entire system, including the homogeneous degrees of freedom. We find the global Hamiltonian constraint of the model, in which the contribution of the homogeneous sector is corrected with a term quadratic in the perturbations, that can be identified as the Mukhanov-Sasaki Hamiltonian in our formulation. We then adopt a hybrid approach to quantize the model, combining a quantum representation of the homogeneous sector with a more standard field quantization of the perturbations. Covariance is guaranteed in this approach inasmuch as no gauge fixing is adopted. Next, we adopt a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger-like equation for the quantum evolution of the perturbations. This evolution is governed by the Mukhanov-Sasaki Hamiltonian, with the dependence on the homogeneous geometry evaluated at quantum expectation values, and with a time parameter defined also in terms of suitable expectation values on that geometry. Finally, we derive effective equations for the dynamics of the Mukhanov-Sasaki gauge invariants, that include quantum contributions, but have the same ultraviolet limit as the classical equations. They provide the master equation to extract predictions about the power spectrum of primordial scalar perturbations.
Gauge-invariant perturbations in hybrid quantum cosmology
International Nuclear Information System (INIS)
Gomar, Laura Castelló; Marugán, Guillermo A. Mena; Martín-Benito, Mercedes
2015-01-01
We consider cosmological perturbations around homogeneous and isotropic spacetimes minimally coupled to a scalar field and present a formulation which is designed to preserve covariance. We truncate the action at quadratic perturbative order and particularize our analysis to flat compact spatial sections and a field potential given by a mass term, although the formalism can be extended to other topologies and potentials. The perturbations are described in terms of Mukhanov-Sasaki gauge invariants, linear perturbative constraints, and variables canonically conjugate to them. This set is completed into a canonical one for the entire system, including the homogeneous degrees of freedom. We find the global Hamiltonian constraint of the model, in which the contribution of the homogeneous sector is corrected with a term quadratic in the perturbations, that can be identified as the Mukhanov-Sasaki Hamiltonian in our formulation. We then adopt a hybrid approach to quantize the model, combining a quantum representation of the homogeneous sector with a more standard field quantization of the perturbations. Covariance is guaranteed in this approach inasmuch as no gauge fixing is adopted. Next, we adopt a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger-like equation for the quantum evolution of the perturbations. This evolution is governed by the Mukhanov-Sasaki Hamiltonian, with the dependence on the homogeneous geometry evaluated at quantum expectation values, and with a time parameter defined also in terms of suitable expectation values on that geometry. Finally, we derive effective equations for the dynamics of the Mukhanov-Sasaki gauge invariants, that include quantum contributions, but have the same ultraviolet limit as the classical equations. They provide the master equation to extract predictions about the power spectrum of primordial scalar perturbations
Renormalization of a distorted gauge: invariant theory
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1976-02-01
A new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated by an intrinsic breakdown of the usual local gauge symmetry is considered. However, the Lagrangian has a distorted gauge symmetry which leads to the Ward-Takahashi (W-T) identities. Also, the theory is independent of the gauge parameter xi. An explicit renormalization at the oneloop level is completely carried out by exhibiting counter terms, defining the physical parameters and computing all renormalization constants to check the W-T identities
International Nuclear Information System (INIS)
Wang Fan; Chen Xiangsong; Lue Xiaofu; Sun Weiming; Goldman, T.
2010-01-01
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However, we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relations. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relations, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.
Strong coupling in a gauge invariant field theory
Energy Technology Data Exchange (ETDEWEB)
Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)
1963-01-15
I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.
Gauge invariant definition of the jet quenching parameter
International Nuclear Information System (INIS)
Benzke, Michael
2013-01-01
We use the framework of Glauber extended Soft-Collinear Effective Theory to explicitly derive a gauge invariant expression of the jet quenching parameter q -hat . The effective theory approach offers a systematic power counting scheme at the Lagrangian level and allows for a consistent treatment of the relevant scales in the problem. Employing this approach in a covariant gauge scenario lead to an expression for q -hat containing the expectation value of two light-cone Wilson lines. We find that in a general gauge, additional interaction terms in the Lagrangian have to be considered, leading to the introduction of transverse gauge links
Gauge invariance and radiative corrections in an extra dimensional theory
International Nuclear Information System (INIS)
Novales-Sanchez, H; Toscano, J J
2011-01-01
The gauge structure of the four dimensional effective theory originated in a pure five dimensional Yang-Mills theory compactified on the orbifold S 1 /Z 2 , is discussed on the basis of the BRST symmetry. If gauge parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields and the four dimensional theory is gauge invariant only if the compactification is carried out by using curvatures as fundamental objects. The four dimensional theory is governed by two types of gauge transformations, one determined by the KK zero modes of the gauge parameters and the other by the excited ones. Within this context, a gauge-fixing procedure to quantize the KK modes that is covariant under the first type of gauge transformations is shown and the ghost sector induced by the gauge-fixing functions is presented. If the gauge parameters are confined to the usual four dimensional space-time, the known result in the literature is reproduced with some minor variants, although it is emphasized that the excited KK modes are not gauge fields, but matter fields transforming under the adjoint representation of SU 4 (N). A calculation of the one-loop contributions of the excited KK modes of the SU L (2) gauge group on the off-shell W + W - V, with V a photon or a Z boson, is exhibited. Such contributions are free of ultraviolet divergences and well-behaved at high energies.
Gauge-invariant dynamical quantities of QED with decomposed gauge potentials
International Nuclear Information System (INIS)
Zhou Baohua; Huang Yongchang
2011-01-01
We discover an inner structure of the QED system; i.e., by decomposing the gauge potential into two orthogonal components, we obtain a new expansion of the Lagrangian for the electron-photon system, from which, we realize the orthogonal decomposition of the canonical momentum conjugate to the gauge potential with the canonical momentum's two components conjugate to the gauge potential's two components, respectively. Using the new expansion of Lagrangian and by the general method of field theory, we naturally derive the gauge invariant separation of the angular momentum of the electron-photon system from Noether theorem, which is the rational one and has the simplest form in mathematics, compared with the other four versions of the angular momentum separation available in literature. We show that it is only the longitudinal component of the gauge potential that is contained in the orbital angular momentum of the electron, as Chen et al. have said. A similar gauge invariant separation of the momentum is given. The decomposed canonical Hamiltonian is derived, from which we construct the gauge invariant energy operator of the electron moving in the external field generated by a proton [Phys. Rev. A 82, 012107 (2010)], where we show that the form of the kinetic energy containing the longitudinal part of the gauge potential is due to the intrinsic requirement of the gauge invariance. Our method provides a new perspective to look on the nucleon spin crisis and indicates that this problem can be solved strictly and systematically.
Gauge invariant treatment of the electroweak phase transition
International Nuclear Information System (INIS)
Buchmueller, W.; Fodor, Z.; Hebecker, A.
1994-03-01
We evaluate the gauge invariant effective potential for the composite field σ = 2Φ † Φin the SU(2)-Higgs model at finite temperature. Symmetric and broken phases correspond to the domains σ ≤ T 2 /3 and σ > T 2 /3, respectively. The effective potential increases very steeply at small values of σ. Predictions for several observables, derived from the ordinary and the gauge invariant effective potential, are compared. Good agreement is found for the critical temperature and the jump in the order parameter. The results for the latent heat differ significantly for large Higgs masses. (orig.)
Sp(2) BRST invariant quantization of strings: The harmonic gauge
International Nuclear Information System (INIS)
Latorre, J.I.; Massachusetts Inst. of Tech., Cambridge
1988-01-01
We analyze the mixed algebra of local diffeomorphisms and Weyl transformations for bosonic strings. BRST and anti-BRST operators are then constructed keeping a manifest Sp(2) invariance. The harmonic gauge arises as a natural gauge choice. All this work is redone in the presence of a two-dimensional background metric. We manage to write down a simple action, to compute the stress tensor and to work out the critical dimensions. (orig.)
Gauge Invariance and the Goldstone Theorem
Guralnik, Gerald S.
This paper was originally created for and printed in the "Proceedings of seminar on unified theories of elementary particles" held in Feldafing, Germany from July 5 to 16, 1965 under the auspices of the Max-Planck-Institute for Physics and Astrophysics in Munich. It details and expands upon the 1964 Guralnik, Hagen, and Kibble paper demonstrating that the Goldstone theorem does not require physical zero mass particles in gauge theories.
Nonlocal hidden variables and nonlocal gauge theories
International Nuclear Information System (INIS)
Boiteux, M.
1984-01-01
A possible unification of classical fundamental interactions together with quantum interactions is proposed, based on an extension of the concept of local gauge invariance to a nonlocal gauge invariance. As an example this new concept is developed for the particular case of the electromagnetic field. (Auth.)
Spontaneous breaking of supersymmetry and gauge invariance in supergravity
Energy Technology Data Exchange (ETDEWEB)
Sohnius, M. (European Organization for Nuclear Research, Geneva (Switzerland)); West, P. (King' s Coll., London (UK). Dept. of Mathematics)
1982-08-09
Using the new minimal auxillary fields of N = 1 supergravity it is found possible to construct a model of local supersymmetry which spontaneously breaks both supersymmetry and gauge invariance. The status of the cosmological constant resulting from this breaking is discussed.
Spontaneous breaking of supersymmetry and gauge invariance in supergravity
International Nuclear Information System (INIS)
Sohnius, M.; West, P.
1982-01-01
Using the new minimal auxillary fields of N = 1 supergravity it is found possible to construct a model of local supersymmetry which spontaneously breaks both supersymmetry and gauge invariance. The status of the cosmological constant resulting from this breaking is discussed. (orig.)
Gauge-invariant cosmic structures---A dynamic systems approach
International Nuclear Information System (INIS)
Woszczyna, A.
1992-01-01
Gravitational instability is expressed in terms of the dynamic systems theory. The gauge-invariant Ellis-Bruni equation and Bardeen's equation are discussed in detail. It is shown that in an open universe filled with matter of constant sound velocity the Jeans criterion does not adequately define the length scale of the gravitational structure
Another scheme for quantization of scale invariant gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1987-10-01
A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs
Electromagnetic properties of off-shell particles and gauge invariance
Nagorny, S. I.; Dieperink, A. E. L.
1998-01-01
Abstract: Electromagnetic properties of off-shell particles are discussed on the basis of a purely electromagnetic reaction: virtual Compton scattering off a proton. It is shown that the definition of off-shell electromagnetic form factors is not gauge invariant and that these cannot be investigated
Propagators for gauge-invariant observables in cosmology
Fröb, Markus B.; Lima, William C. C.
2018-05-01
We make a proposal for gauge-invariant observables in perturbative quantum gravity in cosmological spacetimes, building on the recent work of Brunetti et al (2016 J. High Energy Phys. JHEP08(2016)032). These observables are relational, and are obtained by evaluating the field operator in a field-dependent coordinate system. We show that it is possible to define this coordinate system such that the non-localities inherent in any higher-order observable in quantum gravity are causal, i.e. the value of the gauge-invariant observable at a point x only depends on the metric and inflation perturbations in the past light cone of x. We then construct propagators for the metric and inflaton perturbations in a gauge adapted to that coordinate system, which simplifies the calculation of loop corrections, and give explicit expressions for relevant cases: matter- and radiation-dominated eras and slow-roll inflation.
External gauge invariance and anomaly in BS vertices and boundstates
International Nuclear Information System (INIS)
Bando, Masako; Harada, Masayasu; Kugo, Taichiro
1994-01-01
A systematic method is given for obtaining consistent approximations to the Schwinger-Dyson (SD) and Bethe-Salpeter (BS) equations which maintain the external gauge invariance. We show that for any order of approximation to the SD equation there is a corresponding approximation to the BS equations such that the solutions to those equations satisfy the Ward-Takahashi identities of the external gauge symmetry. This formulation also clarifies the way how we can calculate the Green functions of current operators in a consistent manner with the gauge invariance and the axial anomaly. We show which type of diagrams for the π 0 → γγ amplitude using the pion BS amplitude give result consistent with the low-energy theorem. An interesting phenomenon is observed in the ladder approximation that the low-energy theorem is saturated by the zeroth order terms in the external momenta of the pseudoscalar BS amplitude and the vector vertex functions. (author)
Large gauge invariant nonstandard neutrino interactions
International Nuclear Information System (INIS)
Gavela, M. B.; Hernandez, D.; Ota, T.; Winter, W.
2009-01-01
Theories beyond the standard model must necessarily respect its gauge symmetry. This implies strict constraints on the possible models of nonstandard neutrino interactions, which we analyze. The focus is set on the effective low-energy dimension six and eight operators involving four leptons, decomposing them according to all possible tree-level mediators, as a guide for model building. The new couplings are required to have sizable strength, while processes involving four charged leptons are required to be suppressed. For nonstandard interactions in matter, only diagonal tau-neutrino interactions can escape these requirements and can be allowed to result from dimension six operators. Large nonstandard neutrino interactions from dimension eight operators alone are phenomenologically allowed in all flavor channels and are shown to require at least two new mediator particles. The new couplings must obey general cancellation conditions both at the dimension six and dimension eight levels, which result from expressing the operators obtained from the mediator analysis in terms of a complete basis of operators. We illustrate with one example how to apply this information to model building.
Many-Body Localization Dynamics from Gauge Invariance
Brenes, Marlon; Dalmonte, Marcello; Heyl, Markus; Scardicchio, Antonello
2018-01-01
We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.
Second-order gauge-invariant perturbations during inflation
International Nuclear Information System (INIS)
Finelli, F.; Marozzi, G.; Vacca, G. P.; Venturi, G.
2006-01-01
The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second-order gauge-invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second-order gauge-invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections with respect to the first order spectrum. For all scales of interest the amplitude of these spectra depends on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable
Local gauge invariant Lagrangeans in classical field theories
International Nuclear Information System (INIS)
Grigore, D.R.
1982-07-01
We investigate the most general local gauge invariant Lagrangean in the framework of classical field theory. We rederive esentially Utiyama's result with a slight generalization. Our proof makes clear the importance of the so called current conditions, i.e. the requirement that the Noether currents are different from zero. This condition is of importance both in the general motivation for the introduction of the Yang-Mills fields and for the actual proof. Some comments are made about the basic mathematical structure of the problem - the gauge group. (author)
Gauge-invariant formulation of SU(2) gluodynamics
International Nuclear Information System (INIS)
Simonov, Yu.A.
1984-01-01
The internal structure of a double asymmetric rotator is revealed in vector potential Asub(μa) via a proposed polar representation (PR). In the functional integral a natural gauge choice exists in PR not accompanied by Faddeev-Popov ghosts and Gribov ambiguities. Classical equations in PR are written in terms of only gauge invariant quantities. Instantons and magnetic monopoles in the Bogolmolny-Prasad-Sommerfield limit as well as the color-magnetic field of the 'tHooft-Polyakov monopole are studied in PR
Infrared asymptotic behavior of gauge-invariant propagator in quantum electrodynamics
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1987-01-01
A new class of gauge-invariant fields is introduced. The Dyson-Schwinger equations are obtained for the gauge-invariant generalization of the spinor propagator. On the basis of these equations, and also by means of functional methods, it is shown that the gauge-invariant spinor propagator has a singularity in the form of a simple pole in the infrared region
Infrared asymptotics of a gauge-invariant propagator in quantum electrodynamics
International Nuclear Information System (INIS)
Skachkov, N.B.; Shevchenko, O.Yu.; Solovtsov, I.l.
1987-01-01
A new class of gauge-invariant fields is introduced. For the gauge-invariant propagator of a spinor field the analogue of the Dyson-Schwinger equations is derived. With the help of these equations as well as the functional integration method it is shown that the gauge-invariant spinor propagator has a simple pole singularity in the infrared region
Infrared asymptotics of a gauge-invariant propagator in quantum electrodynamics
International Nuclear Information System (INIS)
Skachkov, N.B.; Shevchenko, O.Yu.
1985-01-01
A new class of the gauge-invariant field is introduced. For the gauge-invariant propagator of a spinor field the analog of the Dyson-Schwinger equations is derived. By using these equations as well as the functional integration method it is shown that the gauge-invariant spinor propagator has a simple pole singularity in the infrared region
A gauge invariant theory for time dependent heat current
International Nuclear Information System (INIS)
Chen, Jian; ShangGuan, Minhui; Wang, Jian
2015-01-01
In this work, we develop a general gauge-invariant theory for AC heat current through multi-probe systems. Using the non-equilibrium Green’s function, a general expression for time-dependent electrothermal admittance is obtained where we include the internal potential due to the Coulomb interaction explicitly. We show that the gauge-invariant condition is satisfied for heat current if the self-consistent Coulomb interaction is considered. It is known that the Onsager relation holds for dynamic charge conductance. We show in this work that the Onsager relation for electrothermal admittance is violated, except for a special case of a quantum dot system with a single energy level. We apply our theory to a nano capacitor where the Coulomb interaction plays an essential role. We find that, to the first order in frequency, the heat current is related to the electrochemical capacitance as well as the phase accumulated in the scattering event. (paper)
Gauge-invariant dressed fermion propagator in massless QED3
International Nuclear Information System (INIS)
Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.
2006-01-01
The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement
Gauge-invariant masses through Schwinger-Dyson equations
International Nuclear Information System (INIS)
Bashir, A.; Raya, A.
2007-01-01
Schwinger-Dyson equations (SDEs) are an ideal framework to study non-perturbative phenomena such as dynamical chiral symmetry breaking (DCSB). A reliable truncation of these equations leading to gauge invariant results is a challenging problem. Constraints imposed by Landau-Khalatnikov-Fradkin transformations (LKFT) can play an important role in the hunt for physically acceptable truncations. We present these constrains in the context of dynamical mass generation in QED in 2 + 1-dimensions
Aspects of the quantization of theories with a gauge invariance
International Nuclear Information System (INIS)
Siopsis, G.
1987-01-01
First, we identify the Gribov problem that is encountered when the Faddeev-Popov procedure of fixing the gauge is employed to define a perturbation expansion. The author propose a modification of the procedure that takes this problem into account. We then apply this method to two-dimensional gauge theories where the exact answer is known. Second, we try to build chiral theories that are consistent in the presence of anomalies, without making use of additional degrees of freedom. We are able to solve the model exactly in two dimensions, arriving at a gauge-invariant theory. We discuss the four-dimensional case and also the application of this method to string theory. In the latter, we obtain a model that lives in arbitrary dimensions. However, we do not compute the spectrum of the model. Third, we investigate the possibility of compactifying the unwanted dimensions of superstrings on a group manifold. We give a complete list of conformally invariant models. We also discuss one-loop modular invariance. We consider both type-II and heterotic superstring theories. Fourth, we discuss quantization of string field theory. We start by presenting the lagrangian approach, to demonstrate the non-uniqueness of the measure in the path- integral. It is fixed by demanding unitarity, which manifests itself in the hamiltonian formulation, studied next
Gauge-invariant Yang-Mills fields and the role of Lorentz gauge condition
International Nuclear Information System (INIS)
Skachkov, N.B.; Shevchenko, O.Yu.
1985-01-01
A new class of gauge-invariant (G.I.) fields is constructed. The inversion formulae that express these fields through the G.I. strength tensor are obtained. It is shown that for the G.I. fields the Lorentz gauge condition appears as the secondary constraint. These fields coincide with the usual ones in some definite gauges. The Dyson-Schwinger equations for the G.I. spinor propagator are derived. It is found that in QED this propagator has a simple pole singularity (p-m) -1 in the infrared limit
Gauge invariance and the effective potential: the Abelian Higgs model
International Nuclear Information System (INIS)
Ramaswamy, S.
1995-01-01
The gauge invariance of the effective potential in the Abelian Higgs model is examined. The Nielsen identities, which ensure gauge independence of the effective potential and other physical quantities, are shown to hold at finite temperature and in the presence of the chemical potential. It is also shown that, as a consequence of the Nielsen identities, the standard order parameter for symmetry breaking, namely the scalar field vacuum expectation value, has a non-zero parametric dependence on the gauge choice employed. These are then verified to one loop at finite temperature. High-temperature symmetry breaking is considered. In the leading high-temperature limit, the potential agrees with the previous calculations. (orig.)
Gauge invariance and the quark-antiquark static potential
International Nuclear Information System (INIS)
Cahill, K.; Stump, D.R.
1979-01-01
We calculate the quark-antiquark static potential to order g 4 in temporal-gauge quantum chromodynamics by constructing a suitably general family of gauge-invariant qq-bar states and then selecting the one whose energy is minimal for a given qq-bar separation r. Our results agree with those of conventional perturbation theory. We study various ways in which quark confinement might arise from nonperturbative effects related to the Gribov ambiguity. We find that the presence of long-range gauge fields can change the asymptotic behavior of the Coulomb Green's function from r -1 to r/sup -1/2/. We illustrate this possibility by a simple example. After making some simplifying assumptions, we obtain a minimally confining potential V (r) that rises logarithmically for large r
Manifestly gauge invariant discretizations of the Schrödinger equation
International Nuclear Information System (INIS)
Halvorsen, Tore Gunnar; Kvaal, Simen
2012-01-01
Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.
Gauge invariant Lagrangian formulation of massive higher spin fields in (A)dS3 space
International Nuclear Information System (INIS)
Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Yu.M.
2012-01-01
We develop the frame-like formulation of massive bosonic higher spin fields in the case of three-dimensional (A)dS space with the arbitrary cosmological constant. The formulation is based on gauge invariant description by involving the Stueckelberg auxiliary fields. The explicit form of the Lagrangians and the gauge transformation laws are found. The theory can be written in terms of gauge invariant objects similar to the massless theories, thus allowing us to hope to use the same methods for investigation of interactions. In the massive spin 3 field example we are able to rewrite the Lagrangian using the new the so-called separated variables, so that the study of Lagrangian formulation reduces to finding the Lagrangian containing only half of the fields. The same construction takes places for arbitrary integer spin field as well. Further working in terms of separated variables, we build Lagrangian for arbitrary integer spin and write it in terms of gauge invariant objects. Also, we demonstrate how to restore the full set of variables, thus receiving Lagrangian for the massive fields of arbitrary spin in the terms of initial fields.
A combinatorial approach to diffeomorphism invariant quantum gauge theories
International Nuclear Information System (INIS)
Zapata, J.A.
1997-01-01
Quantum gauge theory in the connection representation uses functions of holonomies as configuration observables. Physical observables (gauge and diffeomorphism invariant) are represented in the Hilbert space of physical states; physical states are gauge and diffeomorphism invariant distributions on the space of functions of the holonomies of the edges of a certain family of graphs. Then a family of graphs embedded in the space manifold (satisfying certain properties) induces a representation of the algebra of physical observables. We construct a quantum model from the set of piecewise linear graphs on a piecewise linear manifold, and another manifestly combinatorial model from graphs defined on a sequence of increasingly refined simplicial complexes. Even though the two models are different at the kinematical level, they provide unitarily equivalent representations of the algebra of physical observables in separable Hilbert spaces of physical states (their s-knot basis is countable). Hence, the combinatorial framework is compatible with the usual interpretation of quantum field theory. copyright 1997 American Institute of Physics
The extended local gauge invariance and the BRS symmetry in stochastic quantization of gauge fields
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-05-01
We investigate the BRS invariance of the first-class constrained systems in the context of the stochastic quantization. For the first-class constrained systems, we construct the nilpotent BRS transformation and the BRS invariant stochastic effective action based on the D+1 dimensional field theoretical formulation of stochastic quantization. By eliminating the multiplier field of the gauge fixing condition and an auxiliary field, it is shown that there exists a truncated BRS transformation which satisfies the nilpotency condition. The truncated BRS invariant stochastic action is also derived. As the examples of the general formulation, we investigate the BRS invariant structure in the massless and massive Yang-Mills fields in stochastic quantization. (author)
Globally conformal invariant gauge field theory with rational correlation functions
Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.
2003-01-01
Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.
The role of instantons in scale-invariant gauge theories
International Nuclear Information System (INIS)
Affleck, I.
1980-01-01
Instanton calculations in scale-invariant gauge theories, such as QCD, have long been plagued by divergences at large distances where strong coupling effects are important. Furthermore, Witten has argued that quantum effects may cause the instanton gas to disappear and has displayed this phenomenon in the CPsup(N-1) model at large N. It is argued here that instantons can play a role in calculations involving an inherent infrared cut-off, and this is demonstrated in the CPsup(N-1) model for large N at a finite temperature. Some results on finite-temperature QED are also obtained in passing. (orig.)
Gauge-invariant formalism of cosmological weak lensing
Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre
2018-04-01
We present the gauge-invariant formalism of cosmological weak lensing, accounting for all the relativistic effects due to the scalar, vector, and tensor perturbations at the linear order. While the light propagation is fully described by the geodesic equation, the relation of the photon wavevector to the physical quantities requires the specification of the frames, where they are defined. By constructing the local tetrad bases at the observer and the source positions, we clarify the relation of the weak lensing observables such as the convergence, the shear, and the rotation to the physical size and shape defined in the source rest-frame and the observed angle and redshift measured in the observer rest-frame. Compared to the standard lensing formalism, additional relativistic effects contribute to all the lensing observables. We explicitly verify the gauge-invariance of the lensing observables and compare our results to previous work. In particular, we demonstrate that even in the presence of the vector and tensor perturbations, the physical rotation of the lensing observables vanishes at the linear order, while the tetrad basis rotates along the light propagation compared to a FRW coordinate. Though the latter is often used as a probe of primordial gravitational waves, the rotation of the tetrad basis is indeed not a physical observable. We further clarify its relation to the E-B decomposition in weak lensing. Our formalism provides a transparent and comprehensive perspective of cosmological weak lensing.
Gauge-invariance and infrared divergences in the luminosity distance
Energy Technology Data Exchange (ETDEWEB)
Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)
2017-04-01
Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.
Gauge-invariance and infrared divergences in the luminosity distance
International Nuclear Information System (INIS)
Biern, Sang Gyu; Yoo, Jaiyul
2017-01-01
Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.
Implications of Gauge Invariance on a Heavy Diphoton Resonance
Energy Technology Data Exchange (ETDEWEB)
Low, Ian [Northwestern U.; Lykken, Joseph [Fermilab
2015-12-30
Assuming a heavy electroweak singlet scalar, which couples to the Standard Model gauge bosons only through loop-induced couplings, SU(2)_L x U(1)_Y gauge invariance imposes interesting patterns on its decays into electroweak gauge bosons, which are dictated by only two free parameters. Therefore experimental measurements on any two of the four possible electroweak channels would determine the remaining two decay channels completely. Furthermore, searches in the WW/ZZ channels probe a complimentary region of parameter space from searches in the gamma-gamma/Z-gamma channels. We derive a model-independent upper bound on the branching fraction in each decay channel, which for the diphoton channel turns out to be about 61%. Including the coupling to gluons, the upper bound on the diphoton branching fraction implies an upper bound on the mass scale of additional colored particles mediating the gluon-fusion production. Using an event rate of about 5 fb for the reported 750 GeV diphoton excess, we find the new colored particle must be lighter than O(1.7 TeV) and O(2.6 TeV) for a pure CP-even and a pure CP-odd singlet scalar, respectively.
Role of gauge invariance in a variational and mean-field calculation
International Nuclear Information System (INIS)
Masperi, L.; Omero, C.
1981-08-01
We show that the implementation of gauge invariance is essential for a variational treatment to correctly reproduce all the features of the phase diagram for the Z(2) lattice gauge theory with matter field. (author)
The 2-dimensional O(4) symmetric Heisenberg ferromagnet in terms of rotation invariant variables
International Nuclear Information System (INIS)
Holtkamp, A.
1981-09-01
After introduction of rotation invariant auxiliary variables, the integration over all rotation variant variables (spins) in the 0(4) symmetric two-dimensional Heisenberg ferromagnet can be performed. The resulting new Hamiltonian involves a sum over closed loops. It is complex and invariant under U(1) gauge transformations. Ruehl's boson representation is used to derive the result. (orig.)
Gauge-invariant perturbations in a spatially flat anisotropic universe
International Nuclear Information System (INIS)
Den, Mitsue.
1986-12-01
The gauge-invariant perturbations in a spatially flat anisotropic universe with an arbitrary dimension (= N) are studied. In a previous paper the equations for the perturbations with a wave vector k a in one of the axial directions were derived and their solutions were shown. In this paper the perturbations with k a in arbitrary directions are treated. The remarkable properties are that all three types (scalar, vector, and tensor) of perturbations are generally coupled, so that a density perturbation can be produced also by vector or tensor perturbations. The formulation is quite general, but the behavior of the perturbations is discussed in a simple case such that N = 4 and k a is orthogonal to one of the axial directions. In this case, the perturbations are divided into two groups which are dynamically decoupled from each other. The asymptotic behavior of the perturbations in the group containing the density perturbation is discussed. (author)
Gauge invariance and anomalous theories at finite fermionic density
International Nuclear Information System (INIS)
Roberge, A.
1990-01-01
We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well
The Koslowski–Sahlmann representation: gauge and diffeomorphism invariance
International Nuclear Information System (INIS)
Campiglia, Miguel; Varadarajan, Madhavan
2014-01-01
The discrete spatial geometry underlying loop quantum gravity (LQG) is degenerate almost everywhere. This is at apparent odds with the non-degeneracy of asymptotically flat metrics near spatial infinity. Koslowski generalized the LQG representation so as to describe states labeled by smooth non-degenerate triad fields. His representation was further studied by Sahlmann with a view to imposing gauge and spatial diffeomorphism invariance through group averaging methods. Motivated by the desire to model asymptotically flat quantum geometry by states with triad labels which are non-degenerate at infinity but not necessarily so in the interior, we initiate a generalization of Sahlmann’s considerations to triads of varying degeneracy. In doing so, we include delicate phase contributions to the averaging procedure which are crucial for the correct implementation of the gauge and diffeomorphism constraints, and whose existence can be traced to the background exponential functions recently constructed by one of us. Our treatment emphasizes the role of symmetries of quantum states in the averaging procedure. Semianalyticity, influential in the proofs of the beautiful uniqueness results for LQG, plays a key role in our considerations. As a by product, we re-derive the group averaging map for standard LQG, highlighting the role of state symmetries and explicitly exhibiting the essential uniqueness of its specification. (paper)
The gauge-invariant canonical energy-momentum tensor
Lorcé, Cédric
2016-03-01
The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictacted in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMDs and GPDs). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive three similar new sum rules expressing the conservation of transverse momentum.
The gauge-invariant canonical energy-momentum tensor
International Nuclear Information System (INIS)
Lorce, C.
2016-01-01
The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictated in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMD and GPD). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive 3 similar new sum rules expressing the conservation of transverse momentum. (author)
Gauge invariance in the presence of a cutoff
International Nuclear Information System (INIS)
Kvinikhidze, A. N.; Blankleider, B.; Epelbaum, E.; Hanhart, C.; Valderrama, M. Pavon
2009-01-01
We use the method of gauging equations to construct the electromagnetic current operator for the two-nucleon system in a theory with a finite cutoff. The employed formulation ensures that the two-nucleon T-matrix and corresponding five-point function, in the cutoff theory, are identical to the ones formally defined by a reference theory without a cutoff. A feature of our approach is that it effectively introduces a cutoff into the reference theory in a way that maintains the long-range part of the exchange current operator; for applications to effective field theory (EFT), this property is usually sufficient to guarantee the predictive power of the resulting cutoff theory. In addition, our approach leads to Ward-Takahashi (WT) identities that are linear in the interactions. From the point of view of EFT's where such a WT identity is satisfied in the reference theory, this ensures that gauge invariance in the cutoff theory is maintained order by order in the expansion.
Gauge-invariant charged, monopole and dyon fields in gauge theories
International Nuclear Information System (INIS)
Froehlich, J.; Marchetti, P.A.
1999-01-01
We propose explicit recipes to construct the Euclidean Green functions of gauge-invariant charged, monopole and dyon fields in four-dimensional gauge theories whose phase diagram contains phases with deconfined electric and/or magnetic charges. In theories with only either abelian electric or magnetic charges, our construction is an Euclidean version of Dirac's original proposal, the magnetic dual of his proposal, respectively. Rigorous mathematical control is achieved for a class of abelian lattice theories. In theories where electric and magnetic charges coexist, our construction of Green functions of electrically or magnetically charged fields involves taking an average over Mandelstam strings or the dual magnetic flux tubes, in accordance with Dirac's flux quantization condition. We apply our construction to 't Hooft-Polyakov monopoles and Julia-Zee dyons. Connections between our construction and the semiclassical approach are discussed
Variational calculations in gauge theories with approximate projection on gauge invariant states
International Nuclear Information System (INIS)
Heinemann, C.; Martin, C.; Vautherin, D.; Iancu, E.
1999-01-01
Variational calculations using Gaussian wave functionals combined with an approximate projection on gauge invariant states are presented. The minimization with respect to the kernel and center of the Gaussian leads to a gap type equation which is free of the difficulties generally encountered with negative modes. We show that the divergences in the expectation value of the energy density are only logarithmic and can be removed by a renormalization of the coupling constant. The renormalized energy density has a minimum which corresponds to a vanishing background magnetic field. We obtain an estimate for the gluon condensate. (authors)
Gauge invariance of the Rayleigh--Schroedinger time-independent perturbation theory
International Nuclear Information System (INIS)
Yang, K.H.
1977-08-01
It is shown that the Rayleigh-Schroedinger time-independent perturbation theory is gauge invariant when the operator concerned is the particle's instantaneous energy operator H/sub B/ = (1/2m)[vector p - (e/c) vector A] 2 + eV 0 . More explicitly, it is shown that the energy perturbation corrections of each individual order of every state is gauge invariant. When the vector potential is curlless, the energy corrections of all orders are shown to vanish identically regardless of the explicit form of the vector potential. The relation between causality and gauge invariance is investigated. It is shown that gauge invariance guarantees conformity with causality and violation of gauge invariance implies violation of causality
International Nuclear Information System (INIS)
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L.
1991-01-01
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum (k) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like logV with the lattice volume V. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being c-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the φ 4 model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator left-angle φ(k)φ(k')right-angle in the φ 4 model, investigate Euclidean invariance, and extract m R as well as Z R . Moreover we compute left-angle F μν (k)F μν (k')right-angle in the SU(2) model
Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field
International Nuclear Information System (INIS)
Mandal, Anirban; Hunt, Katharine L. C.
2016-01-01
In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gauge dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term H m and a field term H f , and show that both H m and H f have gauge-independent expectation values. Any gauge may be chosen for the calculations; but
Dynamical invariants for variable quadratic Hamiltonians
International Nuclear Information System (INIS)
Suslov, Sergei K
2010-01-01
We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.
Two-parameter nonlinear spacetime perturbations: gauge transformations and gauge invariance
International Nuclear Information System (INIS)
Bruni, Marco; Gualtieri, Leonardo; Sopuerta, Carlos F
2003-01-01
An implicit fundamental assumption in relativistic perturbation theory is that there exists a parametric family of spacetimes that can be Taylor expanded around a background. The choice of the latter is crucial to obtain a manageable theory, so that it is sometime convenient to construct a perturbative formalism based on two (or more) parameters. The study of perturbations of rotating stars is a good example: in this case one can treat the stationary axisymmetric star using a slow rotation approximation (expansion in the angular velocity Ω), so that the background is spherical. Generic perturbations of the rotating star (say parametrized by λ) are then built on top of the axisymmetric perturbations in Ω. Clearly, any interesting physics requires nonlinear perturbations, as at least terms λΩ need to be considered. In this paper, we analyse the gauge dependence of nonlinear perturbations depending on two parameters, derive explicit higher-order gauge transformation rules and define gauge invariance. The formalism is completely general and can be used in different applications of general relativity or any other spacetime theory
Gauge fixing, BRS invariance and Ward identities for randomly stirred flows
International Nuclear Information System (INIS)
Berera, Arjun; Hochberg, David
2009-01-01
The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.
Gauge fixing, BRS invariance and Ward identities for randomly stirred flows
Energy Technology Data Exchange (ETDEWEB)
Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)], E-mail: ab@ph.ed.ac.uk; Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es
2009-06-21
The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.
Formulation of invariant functional integrals and applications to the quantization of gauge theories
International Nuclear Information System (INIS)
Botelho, L.C.L.
1985-01-01
Introducting a metrical structure into the Configuration Space of Quantum Field Theories with Infinite-Dimensional symetry group, a formulation of Invariant Functional Integrals suitable for their quantization, is obtained. It is apllied to Gauge Theories of Yang-Mills and Polyakov's Bosonic String; obtaining several new facts about them, as well as reproducing some well known results. By following the general idea of invariant functional measures; a fermionic (chiral) change of variables in the fermionic sector of two-dimensional massless Quantum-Chromodynamics is implemented obtaining by the first time, a pure gluonic effective action for the model. In adittion, the complete solution for the Rothe-Stamatesu Model, is obtained. (author) [pt
Gauge invariance and quantization applied to atom and nucleon internal structure
International Nuclear Information System (INIS)
Wang Fan; Sun Weimin; Chen Xiangsong; LU Xiaofu; Goldman, T.
2010-01-01
The prevailing theoretical quark and gluon momentum,orbital angular momentum and spin operators, satisfy either gauge invariance or the corresponding canonical commutation relation, but one never has these operators which satisfy both except the quark spin. The conflicts between gauge invariance and the canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both gauge invariance and canonical momentum and angular momentum commutation relation, are proposed.To achieve such a proper decomposition the key point is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics, and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)
Independent SU(2)-loop variables and the reduced configuration space of SU(2)-lattice gauge theory
International Nuclear Information System (INIS)
Loll, R.
1992-01-01
We give a reduction procedure for SU(2)-trace variables and an explicit description of the reduced configuration sace of pure SU(2)-gauge theory on the hypercubic lattices in two, three and four dimensions, using an independent subset of the gauge-invariant Wilson loops. (orig.)
Gauge-invariant formulation of the S, T, and U parameters
International Nuclear Information System (INIS)
Degrassi, G.; Kniehl, B.A.; Sirlin, A.
1993-06-01
It is shown that the bosonic contributions to the S, T, and U parameters, defined in terms of conventional self-energies, are gauge dependent in the Standard Model (SM). Moreover, T and U are divergent unless a constraint is imposed among the gauge parameters. Implications of this result for renormalization schemes of the SM are discussed. A gauge-invariant formulation of S, T, and U is proposed in the pinch-technique framework. The modified S, T, and U parameters provide a gauge-invariant parametrization of leading electroweak radiative corrections in the SM and some of its extensions. (orig.)
A conformal gauge invariant functional for Weyl structures and the first variation formula
Ichiyama, Toshiyuki; Furuhata, Hitoshi; Urakawa, Hajime
1999-01-01
We consider a new conformal gauge invariant functional which is a natural curvature functional on the space of Weyl structures. We derive the first variation formula of its functional and characterize its critical points.
Gauge invariant frequency splitting of the continuum Yang-Mills field
International Nuclear Information System (INIS)
Mitter, P.K.; Valent, G.
1977-01-01
Frequency splitting plays an important role in Wilson's theory of critical phenomena. Here the authors give a theory of gauge invariant frequency splitting of the Yang-Mills field in 4 dimensions. (Auth.)
Geometrical aspects of operator ordering terms in gauge invariant quantum models
International Nuclear Information System (INIS)
Houston, P.J.
1990-01-01
Finite-dimensional quantum models with both boson and fermion degrees of freedom, and which have a gauge invariance, are studied here as simple versions of gauge invariant quantum field theories. The configuration space of these finite-dimensional models has the structure of a principal fibre bundle and has defined on it a metric which is invariant under the action of the bundle or gauge group. When the gauge-dependent degrees of freedom are removed, thereby defining the quantum models on the base of the principal fibre bundle, extra operator ordering terms arise. By making use of dimensional reduction methods in removing the gauge dependence, expressions are obtained here for the operator ordering terms which show clearly their dependence on the geometry of the principal fibre bundle structure. (author)
Towards a manifestly gauge invariant and universal calculus for Jang-Mills theory
International Nuclear Information System (INIS)
Arnone, S.; Gatti, A.; Morris, T.R.
2002-01-01
A manifestly gauge invariant exact renormalization group for pure SU (N) Jang-Mills theory is proposed, along with the necessary gauge invariant regularisation which implements the effective cutoff. The latter is naturally incorporated by embedding the theory into a spontaneously broken SU(N/N) super-gauge theory, which guarantees finiteness to all orders in perturbation theory. The effective action, from which one extracts the physics, can be computed whilst manifestly preserving gauge invariance at each and every step. As an example, we give an elegant computation of the one-loop SU(N) Jang-Mills beta function, for the first time at finite N without any gauge fixing or ghosts. It is also completely independent of the details put in by hand, e.g. the choice of covariantisation and the cutoff profile, and, therefore, guides us to a procedure for streamlined calculations (Authors)
On the dynamical mass generation in gauge-invariant non-linear σ-models
International Nuclear Information System (INIS)
Diaz, A.; Helayel-Neto, J.A.; Smith, A.W.
1987-12-01
We argue that external gauge fields coupled in a gauge-invariant way to both the bosonic and supersymmetric two-dimensional non-linear σ-models acquire a dynamical mass term whenever the target space is restricted to be a group manifold. (author). 11 refs
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Kan-ichi; Kubo, Reijiro
1974-12-01
The framework of the Nakanishi-Lautrup formalism should be enlarged by introducing a scalar dipole ghost field B(x), which is called gauge on field, together with its pair field. By taking free Lagrangian density, Free-field equations can be described. The vacuum is defined by using a neutral vector field U..mu..(x). The state-vector space is generated by the adjoining conjugates of U..mu..sup((+))(x), and auxiliary fields B(x), B/sub 1/(x) and B/sub 2/(x), which were introduced in the form of the Lagrangian density. The physical states can be defined by the supplementary conditions of the form B/sub 1/sup((+))(x) 1 phys>=B/sub 2/sup((+))(x) 1 phys>=0. It is seen that all the field equations and all the commutators are kept form-invariant, and that the gauge parameter ..cap alpha.. is transformed into ..cap alpha..' given by ..cap alpha..'=..cap alpha..+lambda, with epsilon unchanged. The Lagrangian density is specified only by the gauge invariant parameter epsilon. The gauge structure of theory has universal meaning over whole Abelian-gauge field. C-number gauge transformation and the gauge structure in the presence of interaction are also discussed.
Power suppressed operators and gauge invariance in soft-collinear effective theory
International Nuclear Information System (INIS)
Bauer, Christian W.; Pirjol, Dan; Stewart, Iain W.
2003-01-01
The form of collinear gauge invariance for power suppressed operators in the soft-collinear effective theory (SCET) is discussed. Using a field redefinition we show that it is possible to make any power suppressed ultrasoft-collinear operators invariant under the original leading order gauge transformations. Our manipulations avoid gauge fixing. The Lagrangians to O(λ 2 ) are given in terms of these new fields. We then give a simple procedure for constructing power suppressed soft-collinear operators in SCET II by using an intermediate theory SCET I
Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles
International Nuclear Information System (INIS)
Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru
2009-01-01
The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.
Gauge invariance over a group as the first principle of interacting string dynamics
International Nuclear Information System (INIS)
Gervais, J.L.
1986-01-01
It is stressed that the basic principle of the standard gauge theories is the invariance under internal symmetry transformations that do not commute with translations. This concept is generalized to the case where the translation group is replaced by an arbitrarily given non-abelian group G. The generalized Yang-Mills theory, called gauge theory over G, is an attractive extension of the standard formalism. The gauge theory over the conformal group is proposed as the fundamental theory of bosonic strings. As is usual in gauge theories, the interaction is uniquely specific by the invariance properties. For strings, overlap conditions between string positions come out in a natural way. The powerful machinery of Yang-Mills theories is fully applicable to the gauge theories over groups. In particular, an example of the Higgs-Kibble mechanism is given. (orig.)
Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method
Directory of Open Access Journals (Sweden)
Takeshi Sato
2018-03-01
Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.
Response of SU(2) lattice gauge theory to a gauge invariant external field
International Nuclear Information System (INIS)
Goepfert, M.
1980-10-01
Topologically determined Z(2) variables in pure SU(2) lattice gauge theory are discussed. They count the number of 'vortex souls'. The expectation value of the corresponding Z(2) loop and the dependence of the string tension on an external field h coupled to them is calculated to lowest order in the high temperature expansion. The result is in agreement with the conjecture that the probability distribution of vortex souls determines the string tension. A different formula for the string tension is found in the two limiting cases 0 < /h/ << β << 1 and 0 < β << h << 1. This penomenon is traced to the effect of short range interactions of the vortex souls which are mediated by the other excitations in the theory. (orig.)
Gauge groups and topological invariants of vacuum manifolds
International Nuclear Information System (INIS)
Golo, V.L.; Monastyrsky, M.I.
1978-01-01
The paper is concerned with topological properties of the vacuum manifolds in the theories with the broken gauge symmetry for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the Ginsburg-Landau theory of the superfluid 3 He the gauge transformations are discussed. They provide the means to indicate all possible types of the vacuum manifolds, which are likely to correspond to distinct phases of the superfluid 3 He. Conditions on the existence of the minimums of the Ginsburg-Landau functional are discussed
To the proof of manifest relativistic invariance of transverse variables in QED
International Nuclear Information System (INIS)
Pervushin, V.N.; Nguyen Suan Han; Azimov, R.A.
1986-01-01
The quantization of electrodynamics in terms of transverse physical variables is accomplished. At all the steps of the theory construction: 1) the choice of transverse variables, 2) the choice of energy-momentum tensor, 3) quantization, 4) the Feynman diagram description the manifest gauge and relativistic invariance is preserved. For the transverse variables the relativistic-invariant self-energy of the electron is calculated. The results completely solve the problem of renormalization of physical quantities on the mass shell for the physical variables
A gauge-invariant chiral unitary framework for kaon photo- and electroproduction on the proton
International Nuclear Information System (INIS)
Borasoy, B.; Bruns, P.C.; Nissler, R.; Meissner, U.G.
2007-01-01
We present a gauge-invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading-order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed. (orig.)
Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines
International Nuclear Information System (INIS)
Cherednikov, Igor O.
2017-01-01
The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.
Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)
2017-05-01
The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.
Non-abelian gauge invariant classical Lagrangian formalism for point electric and magnetic charge
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.
1978-01-01
The classical electrodynamics of electrically charged point particles has been generalized to include non-Abelian gauge groups and to include magnetically charged point particles. In this paper these two distinct generalizations are unified into a non-Abelian gauge theory of electric and magnetic charge. Just as the electrically charged particles constitute the generalized source of the gauge fields, the magnetically charged particles constitute the generalized source of the dual fields. The resultant equations of motion are invariant to the original 'electric' non-Abelian gauge group, but, because of the absence of a corresponding 'magnetic' gauge group, there is no 'duality' symmetry between electric and magnetic quantities. However, for a class of solutions to these equations, which includes all known point electric and magnetic monopole constructions, there is shown to exist an equivalent description based on a magnetic, rather than electric, gauge group. The gauge potentials in general are singular on strings extending from the particle position to infinity, but it is shown that the observables are without string singularities, and that the theory is Lorentz invariant, provided a charge quantization condition is satisfied. This condition, deduced from a stability analysis, is necessary for the consistency of the classical non-Abelian theory, in contrast to the Abelian case, where such a condition is necessary only for the consistency of the quantum theory. It is also shown that in the classical theory the strings cannot be removed by gauge transformations, as they sometimes can be in the quantum theory. (Auth.)
On conformal invariance in gauge theories. Quantum electrodynamics
International Nuclear Information System (INIS)
Zaikov, R.P.
1983-01-01
In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite
Second quantization, projective modules, and local gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Selesnick, S A [Missouri Univ., St. Louis (USA)
1983-01-01
Bundles and bundle structures have gained wide currency in modern approaches to certain topics in quantum physics, significant applications appearing in connection with gauge theories, theories of geometric quantization, and in numerous other contexts. It is argued that such structures can already be discerned in the most elementary notions of second quantization. An examination of the methods traditionally used by physicists in dealing quantum mechanically with systems exhibiting an infinite number of degrees of freedom reveals the implicit use of module structures over algebras of functions. By making these structures explicit and adapting some results of perturbation theory an association between bare particles and finitely generated projective modules is arrived at. In particular, rank one modules emerge naturally, for algebraic reasons, as the appropriate descriptors of bosons in this association. As a first application of the formalism the existence of phononlike excitations in general many-fermion systems is shown. When these ideas are further specialized (local) gauge theoretical notions arise in a natural way out of a consideration of the bundles.
Radiative proton-deuteron capture in a gauge invariant relativistic model
Korchin, AY; Van Neck, D; Scholten, O; Waroquier, M
A relativistic model is developed for the description of the process p+dHe-3+gamma*. It is based on the impulse approximation, but is explicitly gauge invariant and Lorentz covariant. The model is applied to radiative proton-deuteron capture and electrodisintegration of He-3 nt intermediate
Gauge-invariant approach and infrared behaviour of the spinor propagator
International Nuclear Information System (INIS)
Sisakyan, A.N.; Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1989-01-01
Infrared behaviour of the gauge-invariant spinor propagator is studied. It is proved that infrared peculiarities of such a propagator can be factorized in a form of the Wilson loop that includes only the slowly varying component of electromagnetic field and accumulates all the dependence of the initial Green function of the form of the path
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
International Nuclear Information System (INIS)
Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate
Low-energy behavior of gluons and gravitons from gauge invariance
DEFF Research Database (Denmark)
di Vecchia, Paolo; Bern, Zvi; Davies, Scott
2014-01-01
We show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low...
Geometrical phases from global gauge invariance of nonlinear classical field theories
International Nuclear Information System (INIS)
Garrison, J.C.; Chiao, R.Y.
1988-01-01
We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics
International Nuclear Information System (INIS)
Rund, H.
1984-01-01
A certain class of geometric objects is considered against the background of a classical gauge field associated with an arbitrary structural Lie group. It is shown that the necessary and sufficient conditions for the invariance of the given objects under a finite gauge transformation are embodied in a set of three relations involving the derivatives of their components. As a special case these so-called invariance identities indicate that there cannot exist a gauge-invariant Lagrangian that depends on the gauge potentials, the interaction parameters, and the 4-velocity components of a test particle. However, the requirement that the equations of motion that result from such a lagrangian be gauge-invariant, uniquely determines the structure of these equations. (author)
Gauge-invariant three-boson vertices and their Ward identities in the standard model
International Nuclear Information System (INIS)
Papavassiliou, J.; Philippides, K.
1995-01-01
In the context of the standard model we extend the S-matrix pinch technique for nonconserved currents to the case of three-boson vertices. We outline in detail how effective gauge-invariant three-boson vertices can be constructed, with all three incoming momenta off shell. Explicit closed expressions for the vertices γW - W + , ZW - W + , and χW - W + are reported. The three-boson vertices so constructed satisfy naive QED-like Ward identities which relate them to the gauge-invariant gauge boson self-energies previously constructed by the same method. The derivation of the aforementioned Ward identities relies on the sole requirement of complete gauge invariance of the S-matrix element considered; in particular, no knowledge of the explicit closed form of the three-boson vertices involved is necessary. The validity of one of these Ward identities is demonstrated explicitly, through a detailed diagrammatic one-loop analysis, in the context of three different gauges
Gauge invariance of a particle in an external magnetic field
International Nuclear Information System (INIS)
Ekstein, H.
1978-12-01
In the accepted theory of a nonrelativistic particle in an external field, as well as in the Dirac equation, the canonical momentum p plays a strangely elusive role: contrary to the position q, it has no physical interpretation, yet it is a member of the algebra of observables; nor does it have a well-defined meaning as a translation generator. This paper proposes an observation procedure for p which entails a definite choice for the vector potential A: the radiation gauge divergence of A=0. The canonical momentum, so defined operationally, is shown to be the image of the generator of space translations, in the sense of presymmetry, as the position q is the image of the generator of Galilei boosts in nonrelativistic theories
Second order gauge invariant measure of a tidally deformed black hole
Energy Technology Data Exchange (ETDEWEB)
Ahmadi, Nahid, E-mail: nahmadi@ut.ac.ir [Department of Physics, University of Tehran, Kargar Avenue North, Tehran 14395-547 (Iran, Islamic Republic of)
2012-08-01
In this paper, a Lagrangian perturbation theory for the second order treatment of small disturbances of the event horizon in Schwarzchild black holes is introduced. The issue of gauge invariance in the context of general relativistic theory is also discussed. The developments of this paper is a logical continuation of the calculations presented in [1], in which the first order coordinate dependance of the intrinsic and exterinsic geometry of the horizon is examined and the first order gauge invariance of the intrinsic geometry of the horizon is shown. In context of second order perturbation theory, It is shown that the rate of the expansion of the congruence of the horizon generators is invariant under a second order reparametrization; so it can be considered as a measure of tidal perturbation. A generally non-vanishing expression for this observable, which accomodates tidal perturbations and implies nonlinear response of the horizon, is also presented.
Novel symmetries in Weyl-invariant gravity with massive gauge field
Energy Technology Data Exchange (ETDEWEB)
Abhinav, K. [S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata (India); Shukla, A.; Panigrahi, P.K. [Indian Institute of Science Education and Research Kolkata, Mohanpur (India)
2016-11-15
The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stueckelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stueckelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity. (orig.)
Gauge-invariant scalar and field strength correlators in 3d
Laine, Mikko
1998-01-01
Gauge-invariant non-local scalar and field strength operators have been argued to have significance, e.g., as a way to determine the behaviour of the screened static potential at large distances, as order parameters for confinement, as input parameters in models of confinement, and as gauge-invariant definitions of light constituent masses in bound state systems. We measure such "correlators" in the 3d pure SU(2) and SU(2)+Higgs models on the lattice. We extract the corresponding mass parameters and discuss their scaling and physical interpretation. We find that the finite part of the MS-bar scheme mass measured from the field strength correlator is large, more than half the glueball mass. We also determine the non-perturbative contribution to the Debye mass in the 4d finite T SU(2) gauge theory with a method due to Arnold and Yaffe, finding $\\delta m_D\\approx 1.06(4)g^2T$.
Canonical Yang-Mills field theory with invariant gauge-families
International Nuclear Information System (INIS)
Yokoyama, Kan-ichi
1978-01-01
A canonical Yang-Mills field theory with indefinite metric is presented on the basis of a covariant gauge formalism for quantum electrodynamics. As the first step of the formulation, a many-gauge-field problem, in which many massless Abelian-gauge fields coexist, is treated from a new standpoint. It is shown that only a single pair of a gaugeon field and its associated one can govern the gauge structure of the whole system. The result obtained is further extended to cases of non-Abelian gauge theories. Gauge parameters for respective components of the Yang-Mills fields are introduced as a group vector. There exists a q-number local gauge transformation which connects relevant fields belonging to the same invariant gauge family with one another in a manifestly covariant way. In canonical quantization, the Faddeev-Popov ghosts are introduced in order to guarantee the existence of a desirable physical subspace with positive semi-definite metric. As to treatment of the Faddeev-Popov ghosts, Kugo and Ojima's approach is adopted. Three supplementary conditions which are consistent with one another constrain the physical subspace. (author)
Energy Technology Data Exchange (ETDEWEB)
Ansel' m, A A; D' yakonov, D I [AN SSSR, Leningrad. Inst. Yadernoj Fiziki
1975-01-01
The mechanism of dynamic spontaneous breaking of the Coleman-Weinberg gauge invariance is discussed in which scalar fields assume nonzero mean values owing to quantum effects in higher orders of the perturbation theory. Group renormalization methods are used to study scalar electrodynamics and gauge theories similar to that of Yang and Mills; for these gauge theories it is established that by choosing proper constants it is possible to combine the acquisition of a mass by particles, owing to a dynamic violation of symmetry, with the asymptotic freedom of the theory. The symmetry violation is found to be closely related to infrared poles observed in effective charge for asymptotically free theories. The emerging masses of particles automatically cover these poles. It is proved that physical results due to symmetry violation do not depend, at least in the first non-trivial order of the perturbation theory, on the initial gauging of vector fields.
Torsion-induced gauge superfield mass generation for gauge-invariant non-linear. sigma. -models
Energy Technology Data Exchange (ETDEWEB)
Helayel-Neto, J.A. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro Universidade Catolica de Petropolis, RJ (Brazil)); Mokhtari, S. (International Centre for Theoretical Physics, Trieste (Italy)); Smith, A.W. (Universidade Catolica de Petropolis, RJ (Brazil))
1989-12-21
It is shown that the explicit breaking of (1,0)-supersymmetry by means of a torsion-like term yields dynamical mass generation for the gauge superfields which couple to a (1,0)-supersymmetric non-linear {sigma}-model. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.
2015-10-01
Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.
Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2018-05-01
In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.
Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method
Fukui, H.; Miura, K.; Hirai, A.
A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.
Duality invariance of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory
International Nuclear Information System (INIS)
Dayi, Oemer F.; Kelleyane, Lara T.; Uelker, Kayhan
2005-01-01
A parent action is introduced to formulate (S-) dual of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory. Partition function for parent action in phase space is utilized to establish the equivalence of partition functions of the theories which this parent action produces. Thus, duality invariance of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory follows. The results which we obtained are valid at tree level or equivalently at the first order in the nonanticommutativity parameter C μν
In what sense the canonical perturbation theory is gauge-invariant
International Nuclear Information System (INIS)
Chen, C.Y.
1992-07-01
It is shown that the time-dependent canonical perturbation theory in classical mechanics has unsatisfactory features when dealing with electromagnetic perturbed fields (the perturbed vector potential A-tilde ≠ 0). As a numerical apparatus, the theory relates to gauge-dependent vectors larger than expected. As an analytic apparatus, the theory is involved in unphysical concepts and yields inherently non-gauge-invariant formalisms. By defining the root cause of the problem, an alternative approach is accordingly introduced. (author). 8 refs, 2 figs
Towards a constructive approach of a gauge invariant, massive P(PHI)2 theory
International Nuclear Information System (INIS)
Schrader, R.
1978-01-01
As part of a possible constructive approach to a gauge invariant P(PHI) 2 theory, we consider massive, scalar, polynomially selfcoupled fields PHI in a fixed external Yang-Mills potential A in two dimensional euclidean space. For a large class of A's we show that the corresponding euclidean Green's functions for fields PHI have a lower mass gap for weak coupling which is uniform in A. The result is obtained by adapting the Glimm-Jaffe-Spencer cluster expansion to the present situation through Kato's inequality, which reflects the diamagnetic effect of the Yang-Mills potential. A dicussion of the corresponding gauge covariance is included. (orig.) [de
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Implications of unitarity and gauge invariance for simplified dark matter models
International Nuclear Information System (INIS)
Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwetz, Thomas; Vogl, Stefan
2016-01-01
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the ‘classic’ constraints on DM simplified models such as monojet searches and make it difficult to avoid thermal overproduction of dark matter.
International Nuclear Information System (INIS)
Wirtz, L.; Yang, Xiazhou; Burgdoerfer, J.E.
1996-01-01
Within the semiclassical theory of magnetotransport, conductance fluctuations in ballistic cavities are determined by distribution functions of directed areas enclose by classical paths. The authors calculate gauge invariant areas which can be visualized as closure of areas by adding a virtual path to the real path connecting the leads. Gauge invariance of the resulting area distribution is found to be important for geometry-sensitive non-universal properties of transport. The authors show that in the presence of direct paths both the area distribution and the two-point pair distribution function for areas of trajectories contribute. Comparison with recent data by Marcus et al. for a stadium-shaped nanostructure is made
Spontaneously broken SU(2) gauge invariance and the ΔI=1/2 rule
International Nuclear Information System (INIS)
Shito, Okiyasu
1977-01-01
A model of nonleptonic weak interactions is proposed which is based on spontaneously broken SU(2) gauge invariance. The SU(2) group is taken analogously to the U-spin. To this scheme, the source of nonleptonic decays consists of only neutral currents, and violation of strangeness stems from weak vector boson mixings. The model can provide a natural explanation of the ΔI=1/2 rule and of the bulk of the ΔI=1/2 nonleptonic amplitude. As a consequence, a picture is obtained that weak interactions originate in spontaneously broken gauge invariance under orthogonal SU(2) groups. Finally, a possibility of unifying weak and electromagnetic interactions is indicated. (auth.)
Light-cone observables and gauge-invariance in the geodesic light-cone formalism
Energy Technology Data Exchange (ETDEWEB)
Scaccabarozzi, Fulvio; Yoo, Jaiyul, E-mail: fulvio@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)
2017-06-01
The remarkable properties of the geodesic light-cone (GLC) coordinates allow analytic expressions for the light-cone observables, providing a new non-perturbative way for calculating the effects of inhomogeneities in our Universe. However, the gauge-invariance of these expressions in the GLC formalism has not been shown explicitly. Here we provide this missing part of the GLC formalism by proving the gauge-invariance of the GLC expressions for the light-cone observables, such as the observed redshift, the luminosity distance, and the physical area and volume of the observed sources. Our study provides a new insight on the properties of the GLC coordinates and it complements the previous work by the GLC collaboration, leading to a comprehensive description of light propagation in the GLC representation.
Precursors, gauge invariance, and quantum error correction in AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Freivogel, Ben; Jefferson, Robert A.; Kabir, Laurens [ITFA and GRAPPA, Universiteit van Amsterdam,Science Park 904, Amsterdam (Netherlands)
2016-04-19
A puzzling aspect of the AdS/CFT correspondence is that a single bulk operator can be mapped to multiple different boundary operators, or precursors. By improving upon a recent model of Mintun, Polchinski, and Rosenhaus, we demonstrate explicitly how this ambiguity arises in a simple model of the field theory. In particular, we show how gauge invariance in the boundary theory manifests as a freedom in the smearing function used in the bulk-boundary mapping, and explicitly show how this freedom can be used to localize the precursor in different spatial regions. We also show how the ambiguity can be understood in terms of quantum error correction, by appealing to the entanglement present in the CFT. The concordance of these two approaches suggests that gauge invariance and entanglement in the boundary field theory are intimately connected to the reconstruction of local operators in the dual spacetime.
Conformal invariant powers of the Laplacian, Fefferman-Graham ambient metric and Ricci gauging
International Nuclear Information System (INIS)
Manvelyan, Ruben; Mkrtchyan, Karapet; Mkrtchyan, Ruben
2007-01-01
The hierarchy of conformally invariant kth powers of the Laplacian acting on a scalar field with scaling dimensions Δ (k) =k-d/2, k=1,2,3, as obtained in the recent work [R. Manvelyan, D.H. Tchrakian, Phys. Lett. B 644 (2007) 370, (hep-th/0611077)] is rederived using the Fefferman-Graham (d+2)-dimensional ambient space approach. The corresponding mysterious 'holographic' structure of these operators is clarified. We explore also the (d+2)-dimensional ambient space origin of the Ricci gauging procedure proposed by A. Iorio, L. O'Raifeartaigh, I. Sachs and C. Wiesendanger as another method of constructing the Weyl invariant Lagrangians. The corresponding gauged ambient metric, Fefferman-Graham expansion and extended Penrose-Brown-Henneaux transformations are proposed and analyzed
Implications of unitarity and gauge invariance for simplified dark matter models
International Nuclear Information System (INIS)
Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwetz, Thomas; Vogl, Stefan; Stockholm Univ.
2015-10-01
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the 'classic' constraints on DM simplified models such as monojet searches and make it difficult to avoid thermal overproduction of dark matter.
The Gauge-Invariant Angular Momentum Sum-Rule for the Proton
Shore, G.M.
2000-01-01
We give a gauge-invariant treatment of the angular momentum sum-rule for the proton in terms of matrix elements of three gauge-invariant, local composite operators. These matrix elements are decomposed into three independent form factors, one of which is the flavour singlet axial charge. We further show that the axial charge cancels out of the sum-rule, so that it is unaffacted by the axial anomaly. The three form factors are then related to the four proton spin components in the parton model, namely quark and gluon intrinsic spin and orbital angular momentum. The renormalisation of the three operators is determined to one loop from which the scale dependence and mixing of the spin components is derived under the constraint that the quark spin be scale-independent. We also show how the three form factors can be measured in experiments.
The light-front gauge-invariant energy-momentum tensor
International Nuclear Information System (INIS)
Lorce, Cedric
2015-01-01
In this study, we provide for the first time a complete parametrization for the matrix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various constraints imposed by non-locality, linear and angular momentum conservation. We also derive the relations with two-parton generalized and transverse-momentum dependent distributions, clarifying what can be learned from the latter. In particular, we show explicitly that two-parton transverse-momentum dependent distributions cannot provide any model-independent information about the parton orbital angular momentum. On the way, we recover the Burkardt sum rule and obtain similar new sum rules for higher-twist distributions
Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD
International Nuclear Information System (INIS)
Gogokhia, V.Sh.
1989-09-01
Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs
Systematic Approach to Gauge-Invariant Relations between Lepton Flavor Violating Processes
Ibarra, A; Redondo, J; Ibarra, Alejandro; Masso, Eduard; Redondo, Javier
2005-01-01
We analyze four-lepton contact interactions that lead to lepton flavor violating processes, with violation of individual family lepton number but total lepton number conserved. In an effective Lagrangian framework, the assumption of gauge invariance leads to relations among branching ratios and cross sections of lepton flavor violating processes. In this paper, we work out how to use these relations systematically. We also study the consequences of loop-induced processes.
Gauge-invariant dressed fermion propagator in massless QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in
2006-04-27
The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED{sub 3} is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement.
Connection between complete and Möbius forms of gauge invariant operators
International Nuclear Information System (INIS)
Fadin, V.S.; Fiore, R.; Grabovsky, A.V.; Papa, A.
2012-01-01
We study the connection between complete representations of gauge invariant operators and their Möbius representations acting in a limited space of functions. The possibility to restore the complete representations from Möbius forms in the coordinate space is proven and a method of restoration is worked out. The operators for transition from the standard BFKL kernel to the quasi-conformal one are found both in Möbius and total representations.
Gauge-invariant gravitational wave modes in pre-big bang cosmology
International Nuclear Information System (INIS)
Faraoni, Valerio
2010-01-01
The t<0 branch of pre-big bang cosmological scenarios is subject to a gravitational wave instability. The unstable behaviour of tensor perturbations is derived in a very simple way in Hwang's covariant and gauge-invariant formalism developed for extended theories of gravity. A simple interpretation of this instability as the effect of an ''antifriction'' is given, and it is argued that a universe must eventually enter the expanding phase. (orig.)
Approaches to linear local gauge-invariant observables in inflationary cosmologies
Czech Academy of Sciences Publication Activity Database
Fröb, M. B.; Hack, T.-P.; Khavkine, Igor
2018-01-01
Roč. 35, č. 11 (2018), č. článku 115002. ISSN 0264-9381 R&D Projects: GA ČR(CZ) GA18-07776S Institutional support: RVO:67985840 Keywords : Gauge-invariant observables * cosmological perturbations * single field inflation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 3.119, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6382/aabcb7/meta
Refined algebraic quantisation in a system with nonconstant gauge invariant structure functions
International Nuclear Information System (INIS)
Martínez-Pascual, Eric
2013-01-01
In a previous work [J. Louko and E. Martínez-Pascual, “Constraint rescaling in refined algebraic quantisation: Momentum constraint,” J. Math. Phys. 52, 123504 (2011)], refined algebraic quantisation (RAQ) within a family of classically equivalent constrained Hamiltonian systems that are related to each other by rescaling one momentum-type constraint was investigated. In the present work, the first steps to generalise this analysis to cases where more constraints occur are developed. The system under consideration contains two momentum-type constraints, originally abelian, where rescalings of these constraints by a non-vanishing function of the coordinates are allowed. These rescalings induce structure functions at the level of the gauge algebra. Providing a specific parametrised family of real-valued scaling functions, the implementation of the corresponding rescaled quantum momentum-type constraints is performed using RAQ when the gauge algebra: (i) remains abelian and (ii) undergoes into an algebra of a nonunimodular group with nonconstant gauge invariant structure functions. Case (ii) becomes the first example known to the author where an open algebra is handled in refined algebraic quantisation. Challenging issues that arise in the presence of non-gauge invariant structure functions are also addressed
Gauge-invariant on-shell Z1 in QED and QCD
International Nuclear Information System (INIS)
Fleischer, J.; Tarasov, O.V.
1992-01-01
Results of the two-loop calculation of the renormalization constant Z 1 for the on-shell fermion-fermion-vector vertex function of a general gauge theory with one massive fermion and the other particles massless are presented. Computations were performed in n dimensions and for an arbitrary covariant gauge. We found Z 1 to be gauge invariant in a renormalization scheme with simultaneous dimensional regularization of ultraviolet and infrared divergences. The charge renormalization constant in this scheme has ultraviolet and infrared divergences. It is found that infrared divergent terms in one- and two-loop approximation are proportional to be appropriate coefficient of the β function determined by ultraviolet divergences of massless particles, i.e. gluons and massless fermions. (orig.)
International Nuclear Information System (INIS)
Namsrai, Kh.; Nyamtseren, N.
1994-09-01
A model of the extended electron is constructed by using definition of the d-operation. Gauge invariance of the nonlocal theory is proved. We use the Efimov approach to describe the nonlocal interaction of quantized fields. (author). 4 refs
International Nuclear Information System (INIS)
Kulshreshtha, U.
1998-01-01
A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the above gauge-non-invariant theory, are investigated with some specific gauge choices. (orig.)
Double gauge invariance and covariantly-constant vector fields in Weyl geometry
Kassandrov, Vladimir V.; Rizcallah, Joseph A.
2014-08-01
The wave equation and equations of covariantly-constant vector fields (CCVF) in spaces with Weyl nonmetricity turn out to possess, in addition to the canonical conformal-gauge, a gauge invariance of another type. On a Minkowski metric background, the CCVF system alone allows us to pin down the Weyl 4-metricity vector, identified herein with the electromagnetic potential. The fundamental solution is given by the ordinary Lienard-Wiechert field, in particular, by the Coulomb distribution for a charge at rest. Unlike the latter, however, the magnitude of charge is necessarily unity, "elementary", and charges of opposite signs correspond to retarded and advanced potentials respectively, thus establishing a direct connection between the particle/antiparticle asymmetry and the "arrow of time".
International Nuclear Information System (INIS)
Bershtein, Mikhail; Bonelli, Giulio; Ronzani, Massimiliano; Tanzini, Alessandro
2016-01-01
We provide a contour integral formula for the exact partition function of N=2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N=2"∗ theory on ℙ"2 for all instanton numbers. In the zero mass case, corresponding to the N=4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a long-standing conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.
Approaches to linear local gauge-invariant observables in inflationary cosmologies
Fröb, Markus B.; Hack, Thomas-Paul; Khavkine, Igor
2018-06-01
We review and relate two recent complementary constructions of linear local gauge-invariant observables for cosmological perturbations in generic spatially flat single-field inflationary cosmologies. After briefly discussing their physical significance, we give explicit, covariant and mutually invertible transformations between the two sets of observables, thus resolving any doubts about their equivalence. In this way, we get a geometric interpretation and show the completeness of both sets of observables, while previously each of these properties was available only for one of them.
Cabo-Montes de Oca, Alejandro
2002-01-01
It is shown how the electromagnetic response of 2DEG under Quantum Hall Effect regime, characterized by the Chern-Simons topological action, transforms the sample impurities and defects in charge-reservoirs that stabilize the Hall conductivity plateaus. The results determine the basic dynamical origin of the singular properties of localization under the occurrence of the Quantum Hall Effect obtained in the pioneering works of Laughlin and of Joynt and Prange, by means of a gauge invariance argument and a purely electronic analysis, respectively. The common intuitive picture of electrons moving along the equipotential lines gets an analytical realization through the Chern-Simons current and charge densities.
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available A new classical 2-spinor approach to U(1 gauge theory is presented in which the usual four-potential vector field is replaced by a symmetric second rank spinor. Following a lagrangian formulation, it is shown that the four-rank spinor representing the Maxwell field tensor has a U(1 local gauge invariance in terms of the electric and magnetic field strengths. When applied to the magnetic field of a monopole, this formulation, via the irreducible representation condition for the gauge group, leads to a quantization condition differing by a factor 2 of the one predicted by Dirac without relying on any kind of singular vector potentials. Finally, the U(1 invariant spinor equations, are applied to electron magnetic resonance which has many applications in the study of materials. Keywords: Weyl 2-spinor lenguage, Dirac equation, Gauge theories, Charge quantization
International Nuclear Information System (INIS)
Martel, Karl; Poisson, Eric
2005-01-01
We present a formalism to study the metric perturbations of the Schwarzschild spacetime. The formalism is gauge invariant, and it is also covariant under two-dimensional coordinate transformations that leave the angular coordinates unchanged. The formalism is applied to the typical problem of calculating the gravitational waves produced by material sources moving in the Schwarzschild spacetime. We examine the radiation escaping to future null infinity as well as the radiation crossing the event horizon. The waveforms, the energy radiated, and the angular-momentum radiated can all be expressed in terms of two gauge-invariant scalar functions that satisfy one-dimensional wave equations. The first is the Zerilli-Moncrief function, which satisfies the Zerilli equation, and which represents the even-parity sector of the perturbation. The second is the Cunningham-Price-Moncrief function, which satisfies the Regge-Wheeler equation, and which represents the odd-parity sector of the perturbation. The covariant forms of these wave equations are presented here, complete with covariant source terms that are derived from the stress-energy tensor of the matter responsible for the perturbation
Augmented superfield approach to gauge-invariant massive 2-form theory
International Nuclear Information System (INIS)
Kumar, R.; Krishna, S.
2017-01-01
We discuss the complete sets of the off-shell nilpotent (i.e. s 2 (a)b = 0) and absolutely anticommuting (i.e. s b s ab + s ab s b = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s b ) and anti-BRST (s ab ) symmetries for the (3 + 1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper(anti-) BRST transformations for the Stueckelberg-like vector field. (orig.)
Augmented superfield approach to gauge-invariant massive 2-form theory
Kumar, R.; Krishna, S.
2017-06-01
We discuss the complete sets of the off-shell nilpotent (i.e. s^2_{(a)b} = 0) and absolutely anticommuting (i.e. s_b s_{ab} + s_{ab} s_b = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s_b) and anti-BRST (s_{ab}) symmetries for the (3+1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper (anti-) BRST transformations for the Stückelberg-like vector field.
Augmented superfield approach to gauge-invariant massive 2-form theory
Energy Technology Data Exchange (ETDEWEB)
Kumar, R. [University of Delhi, Department of Physics and Astrophysics, New Delhi (India); Krishna, S. [Indian Institute of Science Education and Research Mohali, Manauli, Punjab (India)
2017-06-15
We discuss the complete sets of the off-shell nilpotent (i.e. s{sup 2}{sub (a)b} = 0) and absolutely anticommuting (i.e. s{sub b}s{sub ab} + s{sub ab}s{sub b} = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s{sub b}) and anti-BRST (s{sub ab}) symmetries for the (3 + 1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper(anti-) BRST transformations for the Stueckelberg-like vector field. (orig.)
Matching of gauge invariant dimension-six operators for $b\\to s$ and $b\\to c$ transitions
Aebischer, Jason; Fael, Matteo; Greub, Christoph
2016-01-01
New physics realized above the electroweak scale can be encoded in a model independent way in the Wilson coefficients of higher dimensional operators which are invariant under the Standard Model gauge group. In this article, we study the matching of the $SU(3)_C \\times SU(2)_L \\times U(1)_Y$ gauge invariant dim-6 operators on the standard $B$ physics Hamiltonian relevant for $b \\to s$ and $b\\to c$ transitions. The matching is performed at the electroweak scale (after spontaneous symmetry breaking) by integrating out the top quark, $W$, $Z$ and the Higgs particle. We first carry out the matching of the dim-6 operators that give a contribution at tree level to the low energy Hamiltonian. In a second step, we identify those gauge invariant operators that do not enter $b \\to s$ transitions already at tree level, but can give relevant one-loop matching effects.
Twisted Poincare invariance, noncommutative gauge theories and UV-IR mixing
Energy Technology Data Exchange (ETDEWEB)
Balachandran, A.P. [Department of Physics, Syracuse University, Syracuse NY, 13244-1130 (United States)], E-mail: bal@physics.syr.edu; Pinzul, A. [Insituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)], E-mail: apinzul@fma.if.usp.br; Queiroz, A.R. [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, C.P. 04667, Brasilia, DF (Brazil); Universidade Federal de Goias, Campus Avancado de Catalao, Departamento de Fisica, St. Universitario - 75700-000, Catalao-GO (Brazil)], E-mail: amilcarq@gmail.com
2008-10-09
In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604 (2004) 98, (hep-th/0408069); P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quantum Grav. 22 (2005) 3511, (hep-th/0504183); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.1379 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, (arXiv: 0708.1779 [hep-th])]. In that formulation, such theories also have no UV-IR mixing [A.P. Balachandran, A. Pinzul, B.A. Qureshi, Phys. Lett. B 634 (2006) 434, (hep-th/0508151)]. Here we investigate UV-IR mixing in gauge theories with matter following the approach of [A.P. Balachandran, A. Pinzul, B. A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th])]. We prove that there is UV-IR mixing in the one-loop diagram of the S-matrix involving a coupling between gauge and matter fields on the GM plane, the gauge field being non-Abelian. There is no UV-IR mixing if it is Abelian.
Energy Technology Data Exchange (ETDEWEB)
Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.
Grassmannian integral for general gauge invariant off-shell amplitudes in N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Bork, L.V. [Institute for Theoretical and Experimental Physics,Moscow (Russian Federation); The Center for Fundamental and Applied Research,All-Russia Research Institute of Automatics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics,JointInstitute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, State University,Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University,Moscow (Russian Federation)
2017-05-08
In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in N=4 SYM with arbitrary number of off-shell gluons or equivalently Wilson line operator insertions. We make a conjecture for the Grassmannian integral representation for such objects and verify our conjecture on several examples. It is remarkable that in our formulation one can consider situation when on-shell particles are not present at all, i.e. we have Grassmannian integral representation for purely off-shell object. In addition we show that off-shell amplitude with arbitrary number of off-shell gluons could be also obtained using quantum inverse scattering method for auxiliary gl(4|4) super spin chain.
Wilson lines, Grassmannians and gauge invariant off-shell amplitudes in N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Bork, L.V. [Institute for Theoretical and Experimental Physics,Moscow (Russian Federation); The Center for Fundamental and Applied Research,All-Russia Research Institute of Automatics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology State University,Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University,Moscow (Russian Federation)
2017-04-04
In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in N=4 SYM. For the off-shell amplitudes with one leg off-shell we present a conjecture for their Grassmannian integral representation in spinor helicity, twistor and momentum twistor parameterizations. The presented conjecture is successfully checked against BCFW results for MHV{sub n}, NMHV{sub 4} and NMHV{sub 5} off-shell amplitudes. We have also verified that our Grassmannian integral representation correctly reproduces soft (on-shell) limit for the off-shell gluon momentum. It is shown that the (deformed) off-shell amplitude expressions could be also obtained using quantum inverse scattering method for auxiliary gl(4|4) super spin chain.
Gauge invariant sub-structures of tree-level double-emission exact QCD spin amplitudes
Van Hameren, A
2009-01-01
In this note we discuss possible separations of exact, massive, tree-level spin amplitudes into gauge invariant parts. We concentrate our attention on processes involving two quarks entering a color- neutral current and, thanks to the QCD interactions, two extra external gluons. We will search for forms compatible with parton shower languages, without applying approximations or restrictions on phase space regions. Special emphasis will be put on the isolation of parts necessary for the construction of evolution kernels for individual splittings and to some degree for the running coupling constant as well. Our aim is to better understand the environment necessary to optimally match hard matrix elements with partons shower algorithms. To avoid complications and ambiguities related to regularization schemes, we ignore, at this point, virtual corrections. Our representation is quite universal: any color-neutral current can be used, in particular our approach is not restricted to vector currents only.
Poincare invariant gravity with local supersymmetry as a gauge theory for the M-algebra
International Nuclear Information System (INIS)
Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge
2004-01-01
Here we consider a gravitational action having local Poincare invariance which is given by the dimensional continuation of the Euler density in ten dimensions. It is shown that the local supersymmetric extension of this action requires the algebra to be the maximal extension of the N=1 super-Poincare algebra. The resulting action is shown to describe a gauge theory for the M-algebra, and is not the eleven-dimensional supergravity theory of Cremmer-Julia-Scherk. The theory admits a class of vacuum solutions of the form S10-dxXd+1, where Xd+1 is a warped product of R with a d-dimensional spacetime. It is shown that a nontrivial propagator for the graviton exists only for d=4 and positive cosmological constant. Perturbations of the metric around this solution reproduce linearized General Relativity around four-dimensional de Sitter spacetime
Cartesian integration of Grassmann variables over invariant functions
Energy Technology Data Exchange (ETDEWEB)
Kieburg, Mario; Kohler, Heiner; Guhr, Thomas [Universitaet Duisburg-Essen, Duisburg (Germany)
2009-07-01
Supersymmetry plays an important role in field theory as well as in random matrix theory and mesoscopic physics. Anticommuting variables are the fundamental objects of supersymmetry. The integration over these variables is equivalent to the derivative. Recently[arxiv:0809.2674v1[math-ph] (2008)], we constructed a differential operator which only acts on the ordinary part of the superspace consisting of ordinary and anticommuting variables. This operator is equivalent to the integration over all anticommuting variables of an invariant function. We present this operator and its applications for functions which are rotation invariant under the supergroups U(k{sub 1}/k{sub 2}) and UOSp(k{sub 1}/k{sub 2}).
Darboux invariants of integrable equations with variable spectral parameters
International Nuclear Information System (INIS)
Shin, H J
2008-01-01
The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach
Gauge-invariant master field in U(∞) LGT: A pathway from the strong to weak coupling phases
International Nuclear Information System (INIS)
Kazakov, V.A.; Migdal, A.A.
1987-01-01
We propose and test a new computational method for SU(∞) lattice gauge and spin theories. It is based on calculation of the effective action depending only on N (rather than N 2 ) gauge invariant degrees of freedom, by means of some modification of the strong coupling expansion. We show using the example of a one-plaquette model that the stationary point equation for this action describes the weak coupling phase as well as the strong coupling phase. It is argued that such an equation predicts a phase transition for D-dimensional gauge theory, in accordance with Monte Carlo data. (orig.)
On gauge invariant cosmological perturbations in UV-modified Hořava gravity
Shin, Sunyoung; Park, Mu-In
2017-12-01
We consider gauge invariant cosmological perturbations in UV-modified, z = 3 (non-projectable) Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. In order to exhibit its dynamical degrees of freedom, we consider the Hamiltonian reduction method and find that, by solving all the constraint equations, the degrees of freedom are the same as those of Einstein gravity: one scalar and two tensor (graviton) modes when a scalar matter field presents. However, we confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology. Moreover, we find that tensor and scalar fluctuations travel differently in UV, generally. We present also some clarifying remarks about confusing points in the literatures.
Gauge invariance and relativistic effects in X-ray absorption and scattering by solids
International Nuclear Information System (INIS)
Bouldi, N.; Brouder, C.
2017-01-01
There is an incompatibility between gauge invariance and the semi-classical time-dependent perturbation theory commonly used to calculate light absorption and scattering cross-sections. There is an additional incompatibility between perturbation theory and the description of the electron dynamics by a semi-relativistic Hamiltonian. In this paper, the gauge-dependence problem of exact perturbation theory is described, the proposed solutions are reviewed and it is concluded that none of them seems fully satisfactory. The problem is finally solved by using the fully relativistic absorption and scattering cross-sections given by quantum electrodynamics. Then, a new general Foldy-Wouthuysen transformation is presented. It is applied to the many-body case to obtain correct semi-relativistic transition operators. This transformation considerably simplifies the calculation of relativistic corrections. In the process, a new light-matter interaction term emerges, called the spin-position interaction, that contributes significantly to the magnetic X-ray circular dichroism of transition metals. We compare our result with the ones obtained by using several semi-relativistic time-dependent Hamiltonians. In the case of absorption, the final formula agrees with the result obtained from one of them. However, the correct scattering cross-section is not given by any of the semi-relativistic Hamiltonians. (authors)
Gauge invariant description of heavy quark bound states in quantum chromodynamics
International Nuclear Information System (INIS)
Moore, S.E.
1980-08-01
A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A 0 = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube
Yang-Mills gauge invariance of a space of Bose and Fermi coordinates
International Nuclear Information System (INIS)
Friedman, M.H.; Srivastava, Y.
1977-01-01
A complete formalism is developed for imposing Yang-Mills gauge invariance induced by general coordinate transformations on superspace (i.e., a space containing both commuting and anticommuting coordinates). The appropriate group is the graded pseudo-Lie group of real, general linear transformations on superspace analogous to the role played by GL(4,R) in general relativity. The construction of derivatives which transform covariantly under this group forces the introduction of a connection. In the usual gauge theories the connection is just the vector potential, whereas here we expect it to be a function of all the dynamical fields. In this purely affine theory, field strengths and our proposed equations of motion for them result in a self-sourced theory involving only the connection. However, we find that there exist solutions which permit us to define a metric for which an inverse does not exist. These solutions are associated with a spontaneous symmetry breakdown of the vacuum which yields only the Lorentz metric and with no restriction on the internal-symmetry group. This spontaneous symmetry breaking introduces a parameter with the dimensions of (mass) 2
N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1991-11-01
Gauge theory with a topological N=2 symmetry is discussed. This theory captures the de Rahm complex and Riemannian geometry of some underlying moduli space M and the partition function equals the Euler number χ (M) of M. Moduli spaces of instantons and of flat connections in 2 and 3 dimensions are explicitly dealt with. To motivate the constructions the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics are explained and a new kind of supersymmetric quantum mechanics is introduced, based on the Gauss-Codazzi equations. The gauge theory actions are interpreted from the Atiyah-Jeffrey point of view and related to super-symmetric quantum mechanics on spaces of connections. As a consequence of these considerations the Euler number χ (M) of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. The possibility of constructing a topological version of the Penner matrix model is also commented. (author). 63 refs
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
International Nuclear Information System (INIS)
Hart, C.F.
1981-01-01
A gauge invariant effective action which generalizes the usual background field method is applied to quantum non-Abelian gauge theories. The gauge properties of the theory as well as its equivalence to the conventional theory are presented. Solutions to the new effective field equations are found to be physical and it is shown how S-matrix elements may be computed in terms of this new effective action. Feynman rules are given and the renormalization theory is discussed using minimal subtraction and dimensional regularization. The resulting computation of counterterms is found to be simpler than that of the usual method. A complete two-loop calculation of the β function for pure Yang-Mills theory is given as a specific example of this approach
Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes
International Nuclear Information System (INIS)
Nagar, Alessandro; Rezzolla, Luciano
2005-01-01
The theory of gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes is now well established. Yet, as different notations and conventions have been used throughout the years, the literature on the subject is often confusing and sometimes confused. The purpose of this review is to review and collect the relevant expressions related to the Regge-Wheeler and Zerilli equations for the odd and even-parity perturbations of a Schwarzschild spacetime. Special attention is paid to the form they assume in the presence of matter-sources and, for the two most popular conventions in the literature, to the asymptotic expressions and gravitational-wave amplitudes. Besides pointing out some inconsistencies in the literature, the expressions collected here could serve as a quick reference for the calculation of the perturbations of a Schwarzschild black-hole spacetime driven by generic sources and for those approaches in which gravitational waves are extracted from numerically generated spacetimes. (topical review)
Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models
International Nuclear Information System (INIS)
Abe, Tomohiro; Hisano, Junji; Kitahara, Teppei; Tobioka, Kohsaku
2014-01-01
We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z 2 symmetry. We start by studying the tensor structure of h→VV′ part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment’s result, and future experiments of electron and neutron EDMs may search O(10) TeV physics
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1985-01-01
The Dayson-Schwinger equations for the gauge-invariant (G.I.) spinor Green function are derived for an Abelian case. On the basis of these equations as well as the functional integration method the behaviour of the G.I. spinor propagator is studied in the infrared region. It is shown that the G.I. propagator has a singularity of a simple pole in this region
International Nuclear Information System (INIS)
Van de Wetering, J.F.W.H.
1992-01-01
Using perturbative Chern-Simons theory in the almost axial gauge on the euclidean manifold S 1 xR 2 , we give a prescription for the computation of knot invariants. The method gives the correct expectation value of the unknot to all orders in perturbation theory and gives the correct answer for the spectral-parameter-dependent universal R-matrix to second order. All results are derived for a general semi-simple Lie algebra. (orig.)
On the development of non-commutative translation-invariant quantum gauge field models
International Nuclear Information System (INIS)
Sedmik, R.I.P.
2009-01-01
models Attaching at these considerations, the present work aims to investigate and enhance a rather new ansatz, originally proposed by Gurau et. al.. This model combines all positive features of recent approaches, as it is translation invariant and renormalizable. Starting at a simple scalar implementation the core achievement, being a damping mechanism which implements the demanded symmetry of scales, and thereby restricts the occurrence of uV/IR mixing, is analyzed. In a further step the theory is generalized to gauge models of the Yang-Mills type, where new problems appear, from which the need for additional modifications arises. A detailed investigation of the obstacles hindering a fully viable proof of renormalization is presented, and possible ways to overcome the current problems are identified. In a final step the insights, which have been gained, are utilized to construct a promising new gauge model - the BRSW model. Renormalizability is demonstrated by explicit computations at the one loop level. A general proof, however, will require a substantial effort in order to establish the required mathematical methods in the non-commutative regime prior to their application - a topic which unfortunately cannot be addressed within the framework of this thesis. (author) [de
Test of gauge invariance and unitarity of the quantized Einstein theory of gravity
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1975-01-01
Explicit calculations at the 1-loop level verify that the usual quantized Einstein theory of gravity is indeed gauge independent and unitary for all values of the gauge parameter α. This lends nontrivial support to a general formal proof
A direct derivation of polynomial invariants from perturbative Chern-Simons gauge theory
International Nuclear Information System (INIS)
Ochiai, Tomoshiro
2003-01-01
There have been several methods to show that the expectation values of Wilson loop operators in the SU(N) Chern-Simons gauge theory satisfy the HOMFLY skein relation. We shall give another method from the perturbative method of the SU(N) Chern-Simons gauge theory in the light-cone gauge, which is more direct than already known methods
Torsion-induced gauge superfield mass generation for gauge-invariant non-linear σ-models
International Nuclear Information System (INIS)
Helayel-Neto, J.A.; Mokhtari, S.; Smith, A.W.
1989-01-01
It is shown that the explicit breaking of (1,0)-supersymmetry by means of a torsion-like term yields dynamical mass generation for the gauge superfields which couple to a (1,0)-supersymmetric non-linear σ-model. (orig.)
On Gauge Invariant Cosmological Perturbations in UV-modified Hořava Gravity: A Brief Introduction
Park, Mu-In
2018-01-01
We revisit gauge invariant cosmological perturbations in UV-modified, z = 3 Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. We confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology.
On Gauge Invariant Cosmological Perturbations in UV-modified Hořava Gravity: A Brief Introduction*
Directory of Open Access Journals (Sweden)
Park Mu-In
2018-01-01
Full Text Available We revisit gauge invariant cosmological perturbations in UV-modified, z = 3 Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. We confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology.
Pure classical SU(2) Yang-Mills theory with potentials invariant under a U(1) gauge subgroup
International Nuclear Information System (INIS)
Bacry, H.
1978-07-01
The present article is devoted to pure SU(2) classical Yang-Mills theories whose potentials are invariant under a U(1) gauge subgroup. Such potentials are shown to be associated with classical Maxwell-like fields with magnetic sources as 't Hooft's monopole is associated with the Dirac magnetic monopole. Conversely, the authors give Yang-Mills potentials corresponding to some Maxwell-like fields, in particular static magnetic fields with emphasis on those with cylindrical symmetry (including the dipole and other multipoles) and the ephemerons corresponding to an instantaneous magnetic multipole
International Nuclear Information System (INIS)
Rindani, S.D.
1989-03-01
A gauge-invariant theory of a massive spin-3/2 particle interaction with external electromagnetic and gravitational fields, obtained earlier by Kaluza-Klein reduction of a massless Rarita-Schwinger theory, is quantized using Dirac's procedure. The field anticommutators are found to be positive definite. The theory, which was earlier shown to be free from the classical Velo-Zwanziger problem of noncausal propagation modes, is thus also free from the problem of negative-norm states, a long-standing problem associated with massive spin-3/2 theories with external interaction. (author). 19 refs
Gauge invariance and the transformation properties of the electromagnetic four-potential
International Nuclear Information System (INIS)
Eriksen, E.
1979-12-01
The problems which arise when Noether's theorem is applied to the Lagrangian of the electromagnetic theory are investigated. They are shown to be related to the gauge dependence of the standard transformation properties of the potential A(subμ). An alternative transformation equation, which in a certain sense is gauge independent, is introduced for infinitesimal space-time transformations. This transformation leads, by Noether's theorem, directly to the continuity equations for the symmetric energy-momentum tensor and the gauge independent angular momentum tensor. The consequences of the transformation formula for finite space-time transformations are discussed. (Auth.)
Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.
2010-01-01
We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.
Is scale-invariance in gauge-Yukawa systems compatible with the graviton?
Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron
2017-10-01
We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.
Introduction to gauge theories
International Nuclear Information System (INIS)
Wit, B. de
1983-01-01
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
Widaman, Keith F; Grimm, Kevin J; Early, Dawnté R; Robins, Richard W; Conger, Rand D
2013-07-01
Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group.
All Chern-Simons invariants of 4D, N=1 gauged superform hierarchies
Energy Technology Data Exchange (ETDEWEB)
Becker, Katrin; Becker, Melanie; III, William D. Linch [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Randall, Stephen [Department of Physics, University of California,Berkeley, CA 94720-7300 (United States); Robbins, Daniel [Department of Physics, University at Albany,Albany, NY 12222 (United States)
2017-04-19
We give a geometric description of supersymmetric gravity/(non-)abelian p-form hierarchies in superspaces with 4D, N=1 super-Poincaré invariance. These hierarchies give rise to Chern-Simons-like invariants, such as those of the 5D, N=1 graviphoton and the eleven-dimensional 3-form but also generalizations such as Green-Schwarz-like/BF-type couplings. Previous constructions based on prepotential superfields are reinterpreted in terms of p-forms in superspace thereby elucidating the underlying geometry. This vastly simplifies the calculations of superspace field-strengths, Bianchi identities, and Chern-Simons invariants. Using this, we prove the validity of a recursive formula for the conditions defining these actions for any such tensor hierarchy. Solving it at quadratic and cubic orders, we recover the known results for the BF-type and cubic Chern-Simons actions. As an application, we compute the quartic invariant ∼AdAdAdA+… relevant, for example, to seven-dimensional supergravity compactifications.
On the principle of gauge invariance in the field theory with curved momentum space
International Nuclear Information System (INIS)
Mir-Kasimov, R.M.
1990-11-01
The gauge transformations consistent with the hypothesis of the curved momentum space are considered. In this case the components of the electromagnetic field are not commuting. The finite-difference analogue of the D'Alambert equation is derived. (author). 5 refs
Some formal problems in gauge theories
International Nuclear Information System (INIS)
Magpantay, J.A.
1980-01-01
The concerns of this thesis are the problems due to the extra degrees of freedom in gauge-invariant theories. Since gauge-invariant Lagrangians are singular, Dirac's consistency formalism and Fadeev's extension are first reviewed. A clarification on the origin of primary constraints is given, and some of the open problems in singular Lagrangian theory are discussed. The criteria in choosing a gauge, i.e., attainability, maintainability and Poincare invariance are summarized and applied to various linear gauges. The effects of incomplete removal of all gauge freedom on the criteria for gauge conditions are described. A simple example in point mechanics that contains some of the features of gauge field theories is given. Finally, we describe a method of constructing gauge-invariant variables in various gauge field theories. For the Abelian theory, the gauge-invariant, transverse potential and Dirac's gauge-invariant fermion field was derived. For the non-Abelian case we introduce a local set of basis vectors and gauge transformations are interpreted as rotations of the basis vectors introduced. The analysis leads to the reformulation of local SU(2) field theory in terms of path-dependent U(1) x U(1) x U(1). However, the analysis fails to include the matter fields as of now
Symplectic matrix, gauge invariance and Dirac brackets for super-QED
Energy Technology Data Exchange (ETDEWEB)
Alves, D.T. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Cheb-Terrab, E.S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mathematics
1999-08-01
The calculation of Dirac brackets (DB) using a symplectic matrix approach but in a Hamiltonian framework is discussed, and the calculation of the DB for the supersymmetric extension of QED (super-QED) is shown. The relation between the zero-mode of the pre-symplectic matrix and the gauge transformations admitted by the model is verified. A general description to construct Lagrangians linear in the velocities is also presented. (author)
Andreoli, Michele; Bonati, Claudio; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco
2018-03-01
We discuss the extension of gauge-invariant electric and magnetic screening masses in the quark-gluon plasma to the case of a finite baryon density, defining them in terms of a matrix of Polyakov loop correlators. We present lattice results for Nf=2 +1 QCD with physical quark masses, obtained using the imaginary chemical potential approach, which indicate that the screening masses increase as a function of μB. A separate analysis is carried out for the theoretically interesting case μB/T =3 i π , where charge conjugation is not explicitly broken and the usual definition of the screening masses can be used for temperatures below the Roberge-Weiss transition. Finally, we investigate the dependence of the static quark free energy on the baryon chemical potential, showing that it is a decreasing function of μB, which displays a peculiar behavior as the pseudocritical transition temperature at μB=0 is approached.
International Nuclear Information System (INIS)
Waters, Thomas J.; Nolan, Brien C.
2009-01-01
In this paper we consider gauge invariant linear perturbations of the metric and matter tensors describing the self-similar Lemaitre-Tolman-Bondi (timelike dust) spacetime containing a naked singularity. We decompose the angular part of the perturbation in terms of spherical harmonics and perform a Mellin transform to reduce the perturbation equations to a set of ordinary differential equations with singular points. We fix initial data so the perturbation is finite on the axis and the past null cone of the singularity, and follow the perturbation modes up to the Cauchy horizon. There we argue that certain scalars formed from the modes of the perturbation remain finite, indicating linear stability of the Cauchy horizon.
Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)
2015-05-13
Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.
Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.
Papachristou, Costas J.
The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.
The SU(3)xU(1) invariant breaking of gauged N=8 supergravity
International Nuclear Information System (INIS)
Nicolai, H.; Warner, N.P.
1985-01-01
The SU(3) x U(1) invariant stationary point of N=8 supergravity is described in some detail. This vacuum has N=2 supersymmetry, and it is shown how the fields of N=8 supergravity may be collected into multiplets of SU(3) x Osp(2, 4). A new kind of shortened massive multiplet is described, and the multiplet shortening conditions for this and other multiplets are used to determine, by the use of group theory alone, the masses of many of the fields in the vacuum. The remaining masses are determined by explicit calculation. The critical point realizes Gell-Mann's scheme for relating the spin-1/2 fermions of the theory to the observed quarks and leptons. (orig.)
Directory of Open Access Journals (Sweden)
Brian Jonathan Wolk
2017-01-01
Full Text Available This paper introduces an alternative formalism for deriving the Dirac operator and equation. The use of this formalism concomitantly generates a separate operator coupled to the Dirac operator. When operating on a Clifford field, this coupled operator produces field components which are formally equivalent to the field components of Maxwell's electromagnetic field tensor. Consequently, the Lagrangian of the associated coupled field exhibits internal local gauge symmetry. The coupled field Lagrangian is seen to be equivalent to the Lagrangian of Quantum Electrodynamics. Received: 8 November 2016, Accepted: 4 January 2017; Edited by: D. Gomez Dumm; DOI: http://dx.doi.org/10.4279/PIP.090002 Cite as: B J Wolk, Papers in Physics 9, 090002 (2017
Estimating decadal variability in sea level from tide gauge records: An application to the North Sea
Frederikse, Thomas; Riva, R.E.M.; Slobbe, Cornelis; Broerse, D.B.T.; Verlaan, Martin
2016-01-01
One of the primary observational data sets of sea level is represented by the tide gauge record. We propose a new method to estimate variability on decadal time scales from tide gauge data by using a state space formulation, which couples the direct observations to a predefined state space model by
Frederikse, T.; Riva, R.E.M.; Slobbe, D.C.; Broerse, D.B.T.; Verlaan, M.
2016-01-01
One of the primary observational data sets of sea level is represented by the tide gauge record. We propose a new method to estimate variability on decadal time scales from tide gauge data by using a state space formulation, which couples the direct observations to a predefined state space model
Estimating decadal variability in sea level from tide gauge records: An application to the North Sea
Frederikse, Thomas; Riva, R.E.M.; Slobbe, Cornelis; Broerse, D.B.T.; Verlaan, Martin
2016-01-01
One of the primary observational data sets of sea level is represented by the tide gauge record. We propose a new method to estimate variability on decadal time scales from tide gauge data by using a state space formulation, which couples the direct observations to a predefined state space model by using a Kalman filter. The model consists of a time-varying trend and seasonal cycle, and variability induced by several physical processes, such as wind, atmospheric pressure changes and teleconne...
Energy Technology Data Exchange (ETDEWEB)
Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)
2001-02-01
An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)
Modular invariance and stochastic quantization
International Nuclear Information System (INIS)
Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.
1989-01-01
In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available In a new classical Weyl 2-spinor approach to non abelian gauge theories, starting with the U(1 gauge group in a previous work, we study now the SU(3 case corresponding to quarks (antiquarks interacting with color fields. The principal difference with the conventional approach is that particle-field interactions are not described by means of potentials but by the field strength magnitudes. Some analytical expressions showing similarities with electrodynamics are obtained. Classical equations that describe the behavior of quarks under gluon fields might be in principle applied to the quark–gluon plasma phase existing during the first instants of the Universe.
Abu-Alqumsan, Mohammad; Kapeller, Christoph; Hintermüller, Christoph; Guger, Christoph; Peer, Angelika
2017-12-01
Objective. This paper discusses the invariance and variability in interaction error-related potentials (ErrPs), where a special focus is laid upon the factors of (1) the human mental processing required to assess interface actions (2) time (3) subjects. Approach. Three different experiments were designed as to vary primarily with respect to the mental processes that are necessary to assess whether an interface error has occurred or not. The three experiments were carried out with 11 subjects in a repeated-measures experimental design. To study the effect of time, a subset of the recruited subjects additionally performed the same experiments on different days. Main results. The ErrP variability across the different experiments for the same subjects was found largely attributable to the different mental processing required to assess interface actions. Nonetheless, we found that interaction ErrPs are empirically invariant over time (for the same subject and same interface) and to a lesser extent across subjects (for the same interface). Significance. The obtained results may be used to explain across-study variability of ErrPs, as well as to define guidelines for approaches to the ErrP classifier transferability problem.
Evidence for a time-invariant phase variable in human ankle control.
Directory of Open Access Journals (Sweden)
Robert D Gregg
Full Text Available Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms. In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control.
Energy Technology Data Exchange (ETDEWEB)
Andersson, Lars [Department of Mathematics, University of Miami, Coral Gables, FL 33124 (United States); Elst, Henk van [Astronomy Unit, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Uggla, Claes [Department of Physics, University of Karlstad, S-651 88 Karlstad (Sweden)
2004-02-07
The dynamics of Gowdy vacuum spacetimes is considered in terms of Hubble-normalized scale-invariant variables, using the timelike area temporal gauge. The resulting state space formulation provides for a simple mechanism for the formation of 'false' and 'true spikes' in the approach to the singularity, and a geometrical formulation for the local attractor.
Monaco, Domenico; Tauber, Clément
2017-07-01
We establish a connection between two recently proposed approaches to the understanding of the geometric origin of the Fu-Kane-Mele invariant FKM\\in Z_2, arising in the context of two-dimensional time-reversal symmetric topological insulators. On the one hand, the Z_2 invariant can be formulated in terms of the Berry connection and the Berry curvature of the Bloch bundle of occupied states over the Brillouin torus. On the other, using techniques from the theory of bundle gerbes, it is possible to provide an expression for FKM containing the square root of the Wess-Zumino amplitude for a certain U( N)-valued field over the Brillouin torus. We link the two formulas by showing directly the equality between the above-mentioned Wess-Zumino amplitude and the Berry phase, as well as between their square roots. An essential tool of independent interest is an equivariant version of the adjoint Polyakov-Wiegmann formula for fields T^2 → U(N), of which we provide a proof employing only basic homotopy theory and circumventing the language of bundle gerbes.
International Nuclear Information System (INIS)
Bowes, J.P.; Foot, R.; Volkas, R.R.
1997-01-01
In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is however mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this, possible modifications of the minimal standard model are discussed which will give a complete electric charge quantisation from classical constraints alone. Because these modifications to the Standard Model involve the consideration of baryon number violating scalar interactions, a complete catalogue of the simplest ways to modify the Standard Model is presented so as to introduce explicit baryon number violation. 9 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Bowes, J.P.; Foot, R.; Volkas, R.R.
1997-06-01
In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is however mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this, possible modifications of the minimal standard model are discussed which will give a complete electric charge quantisation from classical constraints alone. Because these modifications to the Standard Model involve the consideration of baryon number violating scalar interactions, a complete catalogue of the simplest ways to modify the Standard Model is presented so as to introduce explicit baryon number violation. 9 refs., 7 figs.
Non-perturbative Green functions in quantum gauge theories
International Nuclear Information System (INIS)
Shabanov, S.V.
1991-01-01
Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs
Quantification of the spatial variability of rainfall based on a dense network of rain gauges
DEFF Research Database (Denmark)
Pedersen, Lisbeth; Jensen, Niels Einar; Christiansen, Lasse Engbo
2010-01-01
The spatial variability of rainfall within a single Local Area Weather Radar (LAWR) pixel of 500 x 500 m is quantified based on data from two locations. The work was motivated by the need to quantify the variability on this scale in order to provide an estimate of the uncertainty of using a single...... from an earlier campaign in 2003. The fact that the 20072008 dataset was almost four times larger than the original dataset from 2003 motivated this extended study. Two methods were used to describe the variability: the coefficient of variation and the spatial correlation structure of the rainfall......% prediction interval for a given rainfall depth is estimated and can be used to address the uncertainty of using a single rain gauge to represent the rainfall within a 500 x 500 m area. (C) 2009 Elsevier B.V. All rights reserved....
Independent SU(2)-loop variables
International Nuclear Information System (INIS)
Loll, R.
1991-04-01
We give a reduction procedure for SU(2)-trace variables and introduce a complete set of indepentent, gauge-invariant and almost local loop variables for the configuration space of SU(2)-lattice gauge theory in 2+1 dimensions. (orig.)
International Nuclear Information System (INIS)
Wilson, K.E.
1985-01-01
The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)
Introduction to gauge theories
International Nuclear Information System (INIS)
Okun, L.B.
1984-01-01
These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JINR-CERN School of Physics, Tabor, Czechoslovakia, 5-18 June 1983. The subgect of the lecinvariancetures: gauge of electromagnetic and weak interactions, higgs and supersymmetric particles. The Supplement contains reprints (or excerpts) of some classical papers on gauge invariance by V. Fock, F. London, O. Klein and H. Weyl, in which the concept of gauge invariance was introduced and developed
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
The light-cone gauge in Polyakov's theory of strings and its relation to the conformal gauge
International Nuclear Information System (INIS)
Tzani, R.
1989-01-01
The author studies the string theory as a gauge theory. The analysis includes the formulation of the interacting bosonic string by fixing the Gervais-Sakita light-cone gauge in Polyakov's path-integral formulation of the theory and the study of the problem of changing gauge in string theory in the context of the functional formulation of the theory. The main results are the following: Mandelstam's picture is obtained from the light-cone gauge fixed Polyakov's theory. Due to the off-diagonal nature of the gauge, the calculation of the determinants differs from the usual (conformal gauge) case. The regularization of the functional integrals associated with these determinants is done by using the conformal-invariance principle. He then shows that the conformal anomaly associated with this new gauge fixing is canceled at dimensions of space-time d = 26. Studying the problem of changing gauge in string theory, he shows the equivalence between the light-cone and conformal gauge in the path-integral formulation of the theory. In particular, by performing a proper change of variables in the commuting and ghost fields in the Polyakov path-integral, the string theory in the conformal gauge is obtained from the light-cone gauge fixed expression. Finally, the problem of changing gauge is generalized to the higher genus surfaces. It is shown that the string theory in the conformal gauge is equivalent to the light-cone gauge fixed theory for surface with arbitrary number of handles
On behaviour of Weyl's gauge field
International Nuclear Information System (INIS)
Yuan Zhong Zhang.
1990-05-01
We consider a system, consisting of a metric tensor g μυ , a scalar field φ, a Weyl's gauge field A μ and a scalar matter field Φ, which is invariant under general coordinate transformation and Weyl's gauge transformation. Two kinds of identities and field equations are given and discussed. A special space-time with g μυ =φ -2 η μυ is considered in a gauge-independent manner. We point out that in a correct treatment where g μυ is not regarded as an independent variable, an auxiliary condition for Weyl's gauge field cannot be obtained. Therefore Weyl's gauge field can be treated as a usual field of positive norm. (author). 11 refs
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
International Nuclear Information System (INIS)
Lusanna, Luca
2006-01-01
This is a review of the chrono-geometrical structure of special and general relativity with a special emphasis on the role of non-inertial frames and of the conventions for the synchronization of distant clocks. ADM canonical metric and tetrad gravity are analyzed in a class of space-times suitable to incorporate particle physics by using Dirac theory of constraints, which allows to arrive at a separation of the genuine degrees of freedom of the gravitational field, the Dirac observables describing generalized tidal effects, from its gauge variables, describing generalized inertial effects. A background-independent formulation (the rest-frame instant form of tetrad gravity) emerges, since the chosen boundary conditions at spatial infinity imply the existence of an asymptotic flat metric. By switching off the Newton constant in presence of matter this description deparametrizes to the rest-frame instant form for such matter in the framework of parametrized Minkowski theories. The problem of the objectivity of the spacetime point-events, implied by Einstein's Hole Argument, is analyzed
International Nuclear Information System (INIS)
Nielsen, H.B.; Bennett, D.L.
1987-08-01
Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)
Directory of Open Access Journals (Sweden)
N. Peleg
2013-06-01
Full Text Available Runoff and flash flood generation are very sensitive to rainfall's spatial and temporal variability. The increasing use of radar and satellite data in hydrological applications, due to the sparse distribution of rain gauges over most catchments worldwide, requires furthering our knowledge of the uncertainties of these data. In 2011, a new super-dense network of rain gauges containing 14 stations, each with two side-by-side gauges, was installed within a 4 km2 study area near Kibbutz Galed in northern Israel. This network was established for a detailed exploration of the uncertainties and errors regarding rainfall variability within a common pixel size of data obtained from remote sensing systems for timescales of 1 min to daily. In this paper, we present the analysis of the first year's record collected from this network and from the Shacham weather radar, located 63 km from the study area. The gauge–rainfall spatial correlation and uncertainty were examined along with the estimated radar error. The nugget parameter of the inter-gauge rainfall correlations was high (0.92 on the 1 min scale and increased as the timescale increased. The variance reduction factor (VRF, representing the uncertainty from averaging a number of rain stations per pixel, ranged from 1.6% for the 1 min timescale to 0.07% for the daily scale. It was also found that at least three rain stations are needed to adequately represent the rainfall (VRF < 5% on a typical radar pixel scale. The difference between radar and rain gauge rainfall was mainly attributed to radar estimation errors, while the gauge sampling error contributed up to 20% to the total difference. The ratio of radar rainfall to gauge-areal-averaged rainfall, expressed by the error distribution scatter parameter, decreased from 5.27 dB for 3 min timescale to 3.21 dB for the daily scale. The analysis of the radar errors and uncertainties suggest that a temporal scale of at least 10 min should be used for
Analytic stochastic regularization: gauge and supersymmetry theories
International Nuclear Information System (INIS)
Abdalla, M.C.B.
1988-01-01
Analytic stochastic regularization for gauge and supersymmetric theories is considered. Gauge invariance in spinor and scalar QCD is verified to brak fown by an explicit one loop computation of the two, theree and four point vertex function of the gluon field. As a result, non gauge invariant counterterms must be added. However, in the supersymmetric multiplets there is a cancellation rendering the counterterms gauge invariant. The calculation is considered at one loop order. (author) [pt
Quantum and classical gauge symmetries
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Terashima, Hiroaki
2001-01-01
The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)
Hill, Emma M.; Ponte, Rui M.; Davis, James L.
2007-01-01
Comparison of monthly mean tide-gauge time series to corresponding model time series based on a static inverted barometer (IB) for pressure-driven fluctuations and a ocean general circulation model (OM) reveals that the combined model successfully reproduces seasonal and interannual changes in relative sea level at many stations. Removal of the OM and IB from the tide-gauge record produces residual time series with a mean global variance reduction of 53%. The OM is mis-scaled for certain regions, and 68% of the residual time series contain a significant seasonal variability after removal of the OM and IB from the tide-gauge data. Including OM admittance parameters and seasonal coefficients in a regression model for each station, with IB also removed, produces residual time series with mean global variance reduction of 71%. Examination of the regional improvement in variance caused by scaling the OM, including seasonal terms, or both, indicates weakness in the model at predicting sea-level variation for constricted ocean regions. The model is particularly effective at reproducing sea-level variation for stations in North America, Europe, and Japan. The RMS residual for many stations in these areas is 25-35 mm. The production of "cleaner" tide-gauge time series, with oceanographic variability removed, is important for future analysis of nonsecular and regionally differing sea-level variations. Understanding the ocean model's strengths and weaknesses will allow for future improvements of the model.
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
We discuss the viability of using interpolating gauges to deﬁne the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition deﬁning term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...
The renaissance of gauge theory
International Nuclear Information System (INIS)
Moriyasu, K.
1982-01-01
Gauge theory is a classic example of a good idea proposed before its time. A brief historical review of gauge theory is presented to see why it required over 50 years for gauge invariance to be rediscovered as the basic principle governing the fundamental forces of Nature. (author)
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)
2017-05-25
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
Energy Technology Data Exchange (ETDEWEB)
Zander, C.P. [Siemens Krauss-Maffei Lokomotiven GmbH, Muenchen (Germany)
2000-03-01
An adjustable driving unit was developed for the variable gauge TALGO trains which have been in use for decades. The unit also has a novel type of carriage and a novel braking system. [German] Fuer die seit Jahrzehnten im Einsatz befindlichen, spurwechselfaehigen TALGO-Zuege wurde ein umspurbarer Triebkopf entwickelt. Dieses Fahrzeug ist in mehrfacher Hinsicht ohne Vorbild. Neu sind neben dem spurveraenderlichen Drehgestell die Fahrwerksanordnung und das Bremssystem. (orig.)
Non-Abelian gauge field theory in scale relativity
International Nuclear Information System (INIS)
Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry
2006-01-01
Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
A map between corner and link operators in lattice gauge theories
International Nuclear Information System (INIS)
Bars, I.
1979-01-01
A completely local gauge-invariant lattice gauge theory is formulated in terms of a new set of variables introduced earlier in the continuum. This theory uses local 'corner' variables defined on lattice sites only, as opposed to the conventional 'link' variables. It is shown via a map that the formulation gives identical results to the usual lattice gauge theory. The properties of the quantum commutators in the continuum limit is also discussed and contrasted for the two lattice approaches. In terms of the corner operators the quantized lattice theory is seen to be closely related to continuum QCD. (Auth.)
Field transformations, collective coordinates and BRST invariance
International Nuclear Information System (INIS)
Alfaro, J.; Damgaard, P.H.
1989-12-01
A very large class of general field transformations can be viewed as a field theory generalization of the method of collective coordinates. The introduction of new variables induces a gauge invariance in the transformed theory, and the freedom left in gauge fixing this new invariance can be used to find equivalent formulations of the same theory. First the Batalin-Fradkin-Vilkovisky formalism is applied to the Hamiltonian formulation of physical systems that can be described in terms of collective coordinates. We then show how this type of collective coordinate scheme can be generalized to field transformations, and discuss the War Identities of the associated BRST invariance. For Yang-Mills theory a connection to topological field theory and the background field method is explained in detail. In general the resulting BRST invariance we find hidden in any quantum field theory can be viewed as a consequence of our freedom in choosing a basis of coordinates φ(χ) in the action S[φ]. (orig.)
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
Stora's analysis is continued in discussing the nonabelian (Yang-Mills) gauge field models (G.F.M.). The gauge independence of the physical scattering operator is discussed in some details and the connection between its unitary and the Slavnov symmetry outlined. Only the models involving semisimple gauge groups are considered. This greatly simplifies the analysis of the possible quantum corrections to the Quantum Action Principle which is reduced to the study of the cohomology group of the Lie algebra characterizing the gauge theory. The discussion is at the classical level for the algebraic properties of the SU(2) Higgs-Kibble-Englert-Brout-Faddeev-Popov lagrangian and its invariance under Slavnov identity transformations is exhibited. The renormalization of the Slavnov identity in the G.M.F. involving semisimple gauge groups is studied. The unitary and gauge independence of the physical S operator in the SU(2) H.K. model is dealt with [fr
Gauge structure of neutral-vector field theory. [Massive vector fields, massless limits
Energy Technology Data Exchange (ETDEWEB)
Kubo, R; Yokoyama, [Hiroshima univ., Takehara (Japan). Research Inst. for Theoretical Physics
1975-03-01
General aspects of gauge structure of neutral-vector field theory are investigated from an extended standpoint, where massive vector fields are treated in a form corresponding to the electromagnetic fields in a general gauge formalism reported previously. All results obtained are shown to have unique massless limits. It is shown that a generalized q-number gauge transformation for fields makes the theory invariant in cooperation with a simultaneous transformation for relevant gauge parameters. A method of differentiation with respect to a gauge variable is found to clarify some essential features of the gauge structure. Two possible types of gauge structure also emerge correspondingly to the massless case. A neutral-vector field theory proposed in a preceding paper is included in the present framework as the most preferable case.
Invariance of the global monodromies in families of nondegenerate polynomials in two variables
International Nuclear Information System (INIS)
Son, Pham Tien
2009-07-01
We are interested in a global version of Le-Ramanujam μ-constant theorem for polynomials. We consider an analytic family {f s }, s element of [0, 1], of complex polynomials in two variables, that are Newton non-degenerate. We suppose that the Euler characteristic of a generic fiber is constant, then we show that the global monodromy fibrations of f s are all isomorphic, and that the degree of f s is constant (up to an algebraic automorphism of C 2 ). (author)
Derivation of the gauge link in light cone gauge
International Nuclear Information System (INIS)
Gao Jianhua
2010-01-01
In light cone gauge, a gauge link at light cone infinity is necessary for transverse momentum-dependent parton distribution to restore the gauge invariance in some specific boundary conditions. We derive such transverse gauge link in a more regular and general method. We find the gauge link at light cone infinity naturally arises from the contribution of the pinched poles: one is from the quark propagator and the other is hidden in the gauge vector field in light cone gauge. Actually, in the amplitude level, we have obtained a more general gauge link over the hypersurface at light cone infinity which is beyond the transverse direction. The difference of such gauge link between semi-inclusive deep inelastic scattering and Drell-Yan processes can also be obtained directly and clearly in our derivation.
Quantum electrodynamics in the light-front Weyl gauge
International Nuclear Information System (INIS)
Przeszowski, J.; Naus, H.W.; Kalloniatis, A.C.
1996-01-01
We examine (3+1)-dimensional QED quantized in the open-quote open-quote front form close-quote close-quote with finite open-quote open-quote volume close-quote close-quote regularization, namely, in discretized light-cone quantization. Instead of the light-cone or Coulomb gauges, we impose the light-front Weyl gauge A - =0. The Dirac method is used to arrive at the quantum commutation relations for the independent variables. We apply open-quote open-quote quantum-mechanical gauge fixing close-quote close-quote to implement Gauss close-quote law, and derive the physical Hamiltonian in terms of unconstrained variables. As in the instant form, this Hamiltonian is invariant under global residual gauge transformations, namely, displacements. On the light cone the symmetry manifests itself quite differently. copyright 1996 The American Physical Society
Reducing Lookups for Invariant Checking
DEFF Research Database (Denmark)
Thomsen, Jakob Grauenkjær; Clausen, Christian; Andersen, Kristoffer Just
2013-01-01
This paper helps reduce the cost of invariant checking in cases where access to data is expensive. Assume that a set of variables satisfy a given invariant and a request is received to update a subset of them. We reduce the set of variables to inspect, in order to verify that the invariant is still...
Absence of the Gribov ambiguity in a quadratic gauge
International Nuclear Information System (INIS)
Raval, Haresh
2016-01-01
The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S 3 , when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)
Absence of the Gribov ambiguity in a quadratic gauge
Energy Technology Data Exchange (ETDEWEB)
Raval, Haresh [Indian Institute of Technology, Bombay, Department of Physics, Mumbai (India)
2016-05-15
The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S{sup 3}, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)
Analytic invariants of boundary links
Garoufalidis, Stavros; Levine, Jerome
2001-01-01
Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.
Structure of BRS-invariant local functionals
International Nuclear Information System (INIS)
Brandt, F.
1993-01-01
For a large class of gauge theories a nilpotent BRS-operator s is constructed and its cohomology in the space of local functionals of the off-shell fields is shown to be isomorphic to the cohomology of s=s+d on functions f(C,T) of tensor fields T and of variables C which are constructed of the ghosts and the connection forms. The result allows general statements about the structure of invariant classical actions and anomaly cadidates whose BRS-variation vanishes off-shell. The assumptions under which the result holds are thoroughly discussed. (orig.)
On the BRST invariance of field deformations
International Nuclear Information System (INIS)
Alfaro, J.; Damgaard, P.H.; Latorre, J.I.; Montano, D.
1989-08-01
Topological quantum field theories are distinguished by a BRST symmetry corresponding to local field deformations. We investigate in this letter to what extent an arbitrary quantum field theory may be related to this BRST invariance. We demonstrate that at the expense of having to add extra variables (but without changing the physics) one may always extend to symmetry of an arbitrary action to include local field deformations. New avenues for gauge-fixing are then available. Examples are worked out for Yang-Mills theories. (orig.)
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
International Nuclear Information System (INIS)
Okun, Lev B
2010-01-01
V A Fock, in 1926, was the first to have the idea of an Abelian gradient transformation and to discover that the electromagnetic interaction of charged particles has a gradient invariance in the framework of quantum mechanics. These transformation and invariance were respectively named Eichtransformation and Eichinvarianz by H Weyl in 1929 (the German verb zu eichen means to gauge). The first non-Abelian gauge theory was suggested by O Klein in 1938; and in 1954, C N Yang and R L Mills rediscovered the non-Abelian gauge symmetry. Gauge invariance is the underlying principle of the current Standard Model of strong and electroweak interactions. (from the history of physics)
Kaluza–Klein-type models of de Sitter and Poincaré gauge theories of gravity
International Nuclear Information System (INIS)
Lu Jiaan; Huang Chaoguang
2013-01-01
We construct Kaluza–Klein-type models with a de Sitter or Minkowski bundle in the de Sitter or Poincaré gauge theory of gravity, respectively. A manifestly gauge-invariant formalism has been given. The gravitational dynamics is constructed by the geometry of the de Sitter or Minkowski bundle and a global section which plays an important role in the gauge-invariant formalism. Unlike the old Kaluza–Klein-type models of gauge theory of gravity, a suitable cosmological term can be obtained in the Lagrangian of our models and the models in the spin-current-free and torsion-free limit will come back to general relativity with a corresponding cosmological term. We also generalize the results to the case with a variable cosmological term. (paper)
Comments on the Gauge Fixed BRST Cohomology and the Quantum Noether Method
Barnich, G; Skenderis, K; Barnich, Glenn; Hurth, Tobias; Skenderis, Kostas
2004-01-01
We discuss in detail the relation between the gauge fixed and gauge invariant BRST cohomology. In particular in certain gauges some cohomology classes of the gauge fixed BRST differential do not correspond to gauge invariant observables, and in addition ``accidental'' conserved currents may appear. These correspond 1-1 to observables that become trivial in this gauge. We explicitly show how the gauge fixed BRST cohomology appears in the context of the Quantum Noether Method.
SO(9,1) invariant matrix formulation of a supermembrane
International Nuclear Information System (INIS)
Fujikawa, K.; Okuyama, K.
1998-01-01
An SO(9,1) invariant formulation of an 11-dimensional supermembrane is presented by combining an SO(10,1) invariant treatment of reparametrization symmetry with an SO(9,1) invariant θ R = 0 gauge of κ-symmetry. The Lagrangian thus defined consists of polynomials in dynamical variables (up to quartic terms in X μ and up to the eighth power in θ), and reparametrization BRST symmetry is manifest. The area preserving diffeomorphism is consistently incorporated and the area preserving gauge symmetry is made explicit. The SO(9,1) invariant theory contains terms which cannot be induced by a naive dimensional reduction of higher-dimensional supersymmetric Yang-Mills theory. The SO(9,1) invariant Hamiltonian and the generator of area preserving diffeomorphism together with the supercharge are matrix regularized by applying the standard procedure. As an application of the present formulation, we evaluate the possible central charges in superalgebra both in the path integral and in the canonical (Dirac) formalism, and we find only the two-form charge [ X μ , X ν ]. (orig.)
Near-field photon wave mechanics in the Lorenz gauge
International Nuclear Information System (INIS)
Keller, Ole
2007-01-01
Optical near-field interactions are studied theoretically in the perspective of photon wave mechanics paying particular attention to the dynamics in the wave-vector time domain. A unitary transformation is used to replace the scalar and longitudinal photon variables by so-called near-field and gauge photon variables. Dynamical equations are established for these types of photon variables, and it is shown that these equations are invariant against gauge transformations within the Lorenz gauge. The near-field photon is absent in the free-field limit, and the gauge photon can be eliminated by a suitable gauge transformation. Implicit solutions for the near-field, gauge, and transverse photon variables are obtained and discussed. The general theory is applied to an investigation of transverse photon propagation in a uniform solid-state plasma dominated by the diamagnetic field-matter interaction. It is found that the diamagnetic response can be incorporated in a quantum mechanical wave equation for a massive transverse photon. The Compton wave number of the massive photon equals the plasma wave number of the electron system. A dynamical equation describing the emission of a massive transverse photon from a mesoscopic source embedded in the plasma is finally established
Radjavi, Heydar
2003-01-01
This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,
Non-Abelian gauge theory of fields associated with dyons
International Nuclear Information System (INIS)
Rajput, B.S.; Kumar, S.R.
1983-01-01
A suitable Lorentz invariant non-Abelian gauge theory of the fields associated with dyons has been constructed to describe the dual dynamics between colour isocharges and topological charges. It has been shown that the generalized particle current is gauge covariant and not conserved in non-Abelian theory. It has also been shown that in this theory the unphysical string variables and unphysical charged fields are not needed and that any extra constraint to maintain the dual symmetry of field equation and Lagrangian is also not needed. (author)
Gauge fixing problem in the conformal QED
International Nuclear Information System (INIS)
Ichinose, Shoichi
1986-01-01
The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)
International Nuclear Information System (INIS)
Sowerby, B.D.
1982-01-01
Techniques employed in nuclear gauges for the measurement of level, thickness, density and moisture are described. The gauges include both transmission and backscatter gauges and utilize alpha particles, beta particles, neutrons or gamma radiation
International Nuclear Information System (INIS)
Loubenets, Elena R.
2015-01-01
We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence of this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)
Scale-invariant gravity: geometrodynamics
International Nuclear Information System (INIS)
Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O
2003-01-01
We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different
Absence of the Gribov ambiguity in a special algebraic gauge
Directory of Open Access Journals (Sweden)
Raval Haresh
2016-01-01
Full Text Available The Gribov ambiguity exists in various gauges except algebraic gauges. However in general, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We show that nontrivial copies can not occur in this gauge. We then provide an example of spherically symmetric gauge field configuration and prove that with a proper boundary condition on the configuration, this gauge removes the ambiguity on a compact manifold S3${{\\mathbb S}^3}$.
Conformal invariance in supergravity
International Nuclear Information System (INIS)
Bergshoeff, E.A.
1983-01-01
In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)
The potentials of the gauged N=8 supergravity theories
International Nuclear Information System (INIS)
Hull, C.M.
1985-01-01
The potentials of the SO(p,q) gaugings of N=8 supergravity are investigated for critical points. The SO(7,1) gauging has no G 2 -invariant critical points, the SO(6,2) theory has no SU(3) invariant critical points and the SO(5,3) gauging has only one SO(5)-invariant critical point, with positive cosmological constant, SO(5) x SO(3) symmetry and no supersymmetry. (orig.)
Conformal (WEYL) invariance and Higgs mechanism
International Nuclear Information System (INIS)
Zhao Shucheng.
1991-10-01
A massive Yang-Mills field theory with conformal invariance and gauge invariance is proposed. It involves gravitational and various gauge interactions, in which all the mass terms appear as a uniform form of interaction m(x) KΦ(x). When the conformal symmetry is broken spontaneously and gravitation is ignored, the Higgs field emerges naturally, where the imaginary mass μ can be described as a background curvature. (author). 7 refs
Central extensions of some Abelian finite gauge groups
International Nuclear Information System (INIS)
Combe, Ph.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.
1981-01-01
The authors describe central extensions of Abelian finite gauge groups on lattices which are permutation invariant. Moreover some remarks are made on the gauge models on lattice associated with these non-commutative central extensions. (Auth.)
Zero energy gauge fields and the phases of a gauge theory
International Nuclear Information System (INIS)
Guendelman, E.I.
1990-01-01
A new approach to the definition of the phases of a Poincare invariant gauge theory is developed. It is based on the role of gauge transformations that change the asymptotic value of the gauge fields from zero to a constant. In the context of theories without Higgs fields, this symmetry can be spontaneously broken when the gauge fields are massless particles, explicitly broken when the gauge fields develop a mass. Finally, the vacuum can be invariant under this transformation, this last case can be achieved when the theory has a violent infrared behavior, which in some theories can be connected to a confinement mechanism
Quantum gauge freedom in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)
2017-02-15
We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Link invariants for flows in higher dimensions
International Nuclear Information System (INIS)
Garcia-Compean, Hugo; Santos-Silva, Roberto
2010-01-01
Linking numbers in higher dimensions and their generalization including gauge fields are studied in the context of BF theories. The linking numbers associated with n-manifolds with smooth flows generated by divergence-free p-vector fields, endowed with an invariant flow measure, are computed in the context of quantum field theory. They constitute invariants of smooth dynamical systems (for nonsingular flows) and generalize previous proposals of invariants. In particular, they generalize Arnold's asymptotic Hopf invariant from three to higher dimensions. This invariant is generalized by coupling with a non-Abelian gauge flat connection with nontrivial holonomy. The computation of the asymptotic Jones-Witten invariants for flows is naturally extended to dimension n=2p+1. Finally, we give a possible interpretation and implementation of these issues in the context of 11-dimensional supergravity and string theory.
Diffeomorphism invariance in the Hamiltonian formulation of General Relativity
International Nuclear Information System (INIS)
Kiriushcheva, N.; Kuzmin, S.V.; Racknor, C.; Valluri, S.R.
2008-01-01
It is shown that when the Einstein-Hilbert Lagrangian is considered without any non-covariant modifications or change of variables, its Hamiltonian formulation leads to results consistent with principles of General Relativity. The first-class constraints of such a Hamiltonian formulation, with the metric tensor taken as a canonical variable, allow one to derive the generator of gauge transformations, which directly leads to diffeomorphism invariance. The given Hamiltonian formulation preserves general covariance of the transformations derivable from it. This characteristic should be used as the crucial consistency requirement that must be met by any Hamiltonian formulation of General Relativity
A lattice formulation of chiral gauge theories
International Nuclear Information System (INIS)
Bodwin, G.T.
1995-12-01
The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration
Renormalization of gauge theories
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-04-01
Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr
New gauged N = 8, D = 4 supergravities
International Nuclear Information System (INIS)
Hull, C M
2003-01-01
New gaugings of four-dimensional N = 8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N = 2 supersymmetry and in which the gauge group is broken to SU(3) x U(1) 2 . Previous gaugings used the form of the ungauged action which is invariant under a rigid SL (8,R) symmetry and promoted a 28-dimensional subgroup (SO(8), SO(p, 8 - p) or the non-semi-simple contraction CSO(p, q, 8 - p - q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU*(8) instead of SL (8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p, 8 - 2p) groups, denoted as CSO*(2p, 8 - 2p), and the new theories have a rigid SU(2) symmetry. The five-dimensional gauged N = 8 supergravities are dimensionally reduced to D = 4. The D = 5, SO(p, 6 - p) gauge theories reduce, after a duality transformation, to the D = 4, CSO(p, 6 - p, 2) gauging while the SO*(6) gauge theory reduces to the D = 4, CSO*(6, 2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualized to forms with different gauge groups
The gauge principle vs. the equivalence principle
International Nuclear Information System (INIS)
Gates, S.J. Jr.
1984-01-01
Within the context of field theory, it is argued that the role of the equivalence principle may be replaced by the principle of gauge invariance to provide a logical framework for theories of gravitation
International Nuclear Information System (INIS)
Mackrodt, C.; Reeh, H.
1997-01-01
General summational invariants, i.e., conservation laws acting additively on asymptotic particle states, are investigated within a classical framework for point particles with nontrivial scattering. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
International Nuclear Information System (INIS)
Power, B.D.; Priestland, C.R.D.
1978-01-01
This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)
International Nuclear Information System (INIS)
Kummer, W.; Mistelberger, H.; Schaller, P.; Schweda, M.
1989-01-01
Supersymmetric gauge theories can be suitably quantized in non-supersymmetric 'superaxial' gauges without abolishing the basic advantages of the superfield technique. In this review the state of the art is presented. It includes the proof of renormalization and the proof of gauge independence and supersymmetry of observable physical quantities. (author)
General quadratic gauge theory: constraint structure, symmetries and physical functions
Energy Technology Data Exchange (ETDEWEB)
Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)
2005-06-17
How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.
International Nuclear Information System (INIS)
Srilakshmi, B.R.; Rao, M.K.V.
1993-01-01
The ion gauge uses energetic electrons to ionize gas molecules, the magnitude of ion current thus produced is a measure of the molecular density or the pressure which is the most commonly measured parameter in vacuum technology. The relationship between ion current (I p ) and pressure (P) is given by the equation P=I p /(I E .S.G) where S = sensitivity of a particular gauge head, G = gas constant depending on the nature of the gas appearing in the system. I E = emission current. Hence P becomes directly proportional to I p if I E is maintained constant. The present scheme incorporates a microprocessor based circuit for automatic display of pressure in the mantissa and exponent form. While the exponent is displayed through a look up table stored in the EPROM, the mantissa is computed by the processor after multiple sampling, conversion through ADC and averaging technique. (author). 2 refs., 1 fig
Gauge Theories in the Twentieth Century
2001-01-01
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups
Classical solutions in lattice gauge theories
International Nuclear Information System (INIS)
Mitrjushkin, V.K.
1996-08-01
The solutions of the classical equations of motion on a periodic lattice are found which correspond to abelian single and double Dirac sheets. These solutions exist also in non-abelian theories. Possible applications of these solutions to the calculation of gauge dependent and gauge invariant observables are discussed. (orig.)
Gauge principle for hyper(para) fields
Energy Technology Data Exchange (ETDEWEB)
Govorkov, A.B. (Joint Inst. for Nuclear Research, Dubna (USSR))
1983-04-01
A special representation for parafields is considered which is based on the use of the Clifford hypernumbers. The principle of gauge invariance under hypercomplex phase transformations of parafields is formulated. A special role of quaternion hyperfields and corresponding Yang-Mills lagrangian with the gauge SO(3)-symmetry is pointed out.
Tumbling in two djmensional gauge theories
International Nuclear Information System (INIS)
Banks, T.; Yankielowicz, S.; Frishman, Y.
1981-05-01
The ideas of Tumbling and Most Attractive Channel condensation are confronted in two dimensional chiral gauge theories. The performance of a gauge invariant regularization is first demonstrated. Exact results about the spectra in both abelian and non abelian cases are then found. These conflict with the predictions of Tumbling and MAC. (author)
Lectures on quantization of gauge systems
Reshetikhin, N.; Booß-Bavnbek, B.; Esposito, G.; Lesch, M.
2010-01-01
A gauge system is a classical field theory where among the fields there are connections in a principal G-bundle over the space - time manifold and the classical action is either invariant or transforms appropriately with respect to the action of the gauge group. The lectures are focused on the path
Gauge theory and elementary particles
International Nuclear Information System (INIS)
Zwirn, H.
1982-01-01
The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr
Notes on gauge theory and gravitation
International Nuclear Information System (INIS)
Wallner, R.P.
1981-01-01
In order to investigate whether Einstein's general relativity theory (GRT) fits into the general scheme of a gauge theory, first the concept of a (classical) gauge theory is outlined in an introductionary spacetime approach. Having thus fixed the notation and the main properties of gauge fields, GRT is examined to find out what the gauge potentials and the corresponding gauge group might be. In this way the possibility of interpreting GRT as a gauge theory of the 4-dimensional translation group T(4) = (R 4 , +), and where the gauge potentials are incorporated in a T(4)-invariant way via orthonormal anholonomic basis 1-forms is considered. To include also the spin aspect a natural extension of GRT is given by gauging also the Lorentz group, whereby a Riemann-Cartan spacetime (U 4 -spacetime) comes into play. (Auth.)
Some observations on interpolating gauges and non-covariant gauges
International Nuclear Information System (INIS)
Joglekar, Satish D.
2003-01-01
We discuss the viability of using interpolating gauges to define the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge invariance as the interpolating parameter θ varies, depends very sensitively on the parameter variation. We do this with a gauge used by Doust. We also consider the Lagrangian path-integrals in Minkowski space for gauges with a residual gauge-invariance. We point out the necessity of inclusion of an ε-term (even) in the formal treatments, without which one may reach incorrect conclusions. We, further, point out that the ε-term can contribute to the BRST WT-identities in a non-trivial way (even as ε → 0). We point out that these contributions lead to additional constraints on Green's function that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. (author)
Tensor gauge condition and tensor field decomposition
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism
International Nuclear Information System (INIS)
Lima, Gabriel Di Lemos Santiago
2014-01-01
Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism
Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism
Energy Technology Data Exchange (ETDEWEB)
Lima, Gabriel Di Lemos Santiago, E-mail: gabriellemos3@hotmail.com
2014-02-15
Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism.
Gharineiat, Zahra; Deng, Xiaoli
2018-05-01
This paper aims at providing a descriptive view of the low-frequency sea-level changes around the northern Australian coastline. Twenty years of sea-level observations from multi-mission satellite altimetry and tide gauges are used to characterize sea-level trends and inter-annual variability over the study region. The results show that the interannual sea-level fingerprint in the northern Australian coastline is closely related to El Niño Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO) events, with the greatest influence on the Gulf Carpentaria, Arafura Sea, and the Timor Sea. The basin average of 14 tide-gauge time series is in strong agreement with the basin average of the altimeter data, with a root mean square difference of 18 mm and a correlation coefficient of 0.95. The rate of the sea-level trend over the altimetry period (6.3 ± 1.4 mm/yr) estimated from tide gauges is slightly higher than that (6.1 ± 1.3 mm/yr) from altimetry in the time interval 1993-2013, which can vary with the length of the time interval. Here we provide new insights into examining the significance of sea-level trends by applying the non-parametric Mann-Kendall test. This test is applied to assess if the trends are significant (upward or downward). Apart from a positive rate of sea-level trends are not statistically significant in this region due to the effects of natural variability. The findings suggest that altimetric trends are not significant along the coasts and some parts of the Gulf Carpentaria (14°S-8°S), where geophysical corrections (e.g., ocean tides) cannot be estimated accurately and altimeter measurements are contaminated by reflections from the land.
Some issues in the loop variable approach to open strings and an extension to closed strings
International Nuclear Information System (INIS)
Sathiapalan, B.
1994-01-01
Some issues in the loop variable renormalization group approach to gauge-invariant equations for the free fields of the open string are discussed. It had been shown in an earlier paper that this leads to a simple form of the gauge transformation law. We discuss in some detail some of the curious features encountered there. The theory looks a little like a massless theory in one higher dimension that can be dimensionally reduced to give a massive theory. We discuss the origin of some constraints that are needed for gauge invariance and also for reducing the set of fields to that of standard string theory. The mechanism of gauge invariance and the connection with the Virasoro algebra is a little different from the usual story and is discussed. It is also shown that these results can be extended in a straightforward manner to closed strings. (orig.)
Hamiltonian formulation of QCD in the Schwinger gauge
International Nuclear Information System (INIS)
Schutte, D.
1989-01-01
The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed
Some physico-geometrical remarks on gauge fields
International Nuclear Information System (INIS)
Ikeda, S.
1976-01-01
The gauge fields introduced to accomplish gauge invariance under Poincare and Weyl gauge transformations in general relativity are found a new to be absorbed into the covariant derivative operators. Some torsional properties associated with them are also discussed in connection with the principle of minimally coupling and the equivalence principle
String field theory-inspired algebraic structures in gauge theories
International Nuclear Information System (INIS)
Zeitlin, Anton M.
2009-01-01
We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.
Dynamic conservation of anomalous current in gauge theories
International Nuclear Information System (INIS)
Kulikov, A.V.
1986-01-01
The symmetry of classical Lagrangian of gauge fields is shown to lead in quantum theory to certain limitations for the fields interacting with gauge ones. Due to this property, additional terms appear in the effective action in the theories with anomalous currents and its gauge invariance is ensured
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1984-12-01
The fundamental laws of nature may be truely random, or they may be so complicated that a random description is adequate. With this philosophy we examine various ways in which a lattice gauge theory (at the Planck scale) can be generalized. Without here giving up a regular lattice structure (which we really ought to do) we consider two generalizations. Making the action (quenched) random has the effect that the gauge group tends to break down and some gauge bosons become massive, unless the gauge group has special properties: no noncentral corners in the geometry of conjugacy classes and furthermore a connected center. Making the concept of gauge transformation more general has a symmetry breaking effect for groups with outer automorphisms. A study of SU 5 -breaking in the context of the first breakdown mechanism (D. Bennett, E. Buturovic and H. B. Nielsen) is shortly reviewed. (orig.)
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
Gauge bridges in classical field theory
International Nuclear Information System (INIS)
Jakobs, S.
2009-03-01
In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called ''gauge bridges''are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)
Gauge theories in particle physics
International Nuclear Information System (INIS)
Aitchison, I.J.R.; Hey, A.J.G.
1982-01-01
The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)
International Nuclear Information System (INIS)
Mills, R.
1989-01-01
This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment
Gauge fixing conditions for the SU(3) gauge theory
International Nuclear Information System (INIS)
Ragiadakos, Ch.; Viswanathan, K.S.
1979-01-01
SU(3) gauge theory is quantized in the temporal gauge A 0 =0. Gauge fixing conditions are imposed completely on the electric field components, conjugate to the vector potential Ssub(i) that belongs to the subalgebra SO(3) of SU(3). The generating functional in terms of the independent variables is derived. It is ghost-free and may be regarded as a theory of (non-relativistic) spin-0, 1, 2, and 3 fields. (Auth.)
A gauge field theory of fermionic continuous-spin particles
Energy Technology Data Exchange (ETDEWEB)
Bekaert, X., E-mail: xavier.bekaert@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science, Daejeon (Korea, Republic of); Najafizadeh, M., E-mail: mnajafizadeh@gmail.com [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of)
2016-09-10
In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.
A gauge field theory of fermionic continuous-spin particles
International Nuclear Information System (INIS)
Bekaert, X.; Najafizadeh, M.; Setare, M.R.
2016-01-01
In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.
New Methods in Supersymmetric Theories and Emergent Gauge Symmetry
CERN. Geneva
2014-01-01
It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.
The Higgs mechanism in a covariant-gauge formalism
International Nuclear Information System (INIS)
Yokoyama, Kan-ichi; Kubo, Reijiro.
1975-02-01
In a covariant-gauge formalism for gauge fields the Higgs mechanism is investigated under a spontaneous breakdown of gauge invariance. It is shown that the Goldstone bosons are in general described by a dipole-ghost field and can be consistently eliminated from the physical state-vector space by supplementary conditions. By an asymptotic condition for the relevant fields, field equations and commutators of asymptotic fields are determined. A renormalization problem and an aspect concerning gauge transformations are also discussed. (auth.)
Gauges for the Ginzburg-Landau equations of superconductivity
International Nuclear Information System (INIS)
Fleckinger-Pelle, J.; Kaper, H.G.
1995-01-01
This note is concerned with gauge choices for the time-dependent Ginzburg-Landau equations of superconductivity. The requiations model the state of a superconducting sample in a magnetic field near the critical tempeature. Any two solutions related through a ''gauge transformation'' describe the same state and are physically indistinquishable. This ''gauge invariance'' can be exploited for analtyical and numerical purposes. A new gauge is proposed, which reduces the equations to a particularly attractive form
Gauge theory and variational principles
Bleecker, David
2005-01-01
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
Noncommutative gauge theories on ℝ{sub λ}{sup 3}: perturbatively finite models
Energy Technology Data Exchange (ETDEWEB)
Géré, Antoine [Dipartimento di Matematica, Università di Genova,Via Dodecaneso, 35, I-16146 Genova (Italy); Jurić, Tajron [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Wallet, Jean-Christophe [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, University Paris-Saclay,Bât. 210, 91405 Orsay (France)
2015-12-09
We show that natural noncommutative gauge theory models on ℝ{sub λ}{sup 3} can accommodate gauge invariant harmonic terms, thanks to the existence of a relationship between the center of ℝ{sub λ}{sup 3} and the components of the gauge invariant 1-form canonical connection. This latter object shows up naturally within the present noncommutative differential calculus. Restricting ourselves to positive actions with covariant coordinates as field variables, a suitable gauge-fixing leads to a family of matrix models with quartic interactions and kinetic operators with compact resolvent. Their perturbative behavior is then studied. We first compute the 2-point and 4-point functions at the one-loop order within a subfamily of these matrix models for which the interactions have a symmetric form. We find that the corresponding contributions are finite. We then extend this result to arbitrary order. We find that the amplitudes of the ribbon diagrams for the models of this subfamily are finite to all orders in perturbation. This result extends finally to any of the models of the whole family of matrix models obtained from the above gauge-fixing. The origin of this result is discussed. Finally, the existence of a particular model related to integrable hierarchies is indicated, for which the partition function is expressible as a product of ratios of determinants.
Dominance of gauge artifact in the consistency relation for the primordial bispectrum
International Nuclear Information System (INIS)
Tanaka, Takahiro; Urakawa, Yuko
2011-01-01
The conventional cosmological perturbation theory has been performed under the assumption that we know the whole spatial region of the universe with infinite volume. This is, however, not the case in the actual observations because observable portion of the universe is limited. To give a theoretical prediction to the observable fluctuations, gauge-invariant observables should be composed of the information in our local observable universe with finite volume. From this point of view, we reexamine the primordial non-Gaussianity in single field models, focusing on the bispectrum in the squeezed limit. A conventional prediction states that the bispectrum in this limit is related to the power spectrum through the so-called consistency relation. However, it turns out that, if we adopt a genuine gauge invariant variable which is naturally composed purely of the information in our local universe, the leading term for the bispectrum in the squeezed limit predicted by the consistency relation vanishes
Relating measurement invariance, cross-level invariance, and multilevel reliability
Jak, S.; Jorgensen, T.D.
2017-01-01
Data often have a nested, multilevel structure, for example when data are collected from children in classrooms. This kind of data complicate the evaluation of reliability and measurement invariance, because several properties can be evaluated at both the individual level and the cluster level, as well as across levels. For example, cross-level invariance implies equal factor loadings across levels, which is needed to give latent variables at the two levels a similar interpretation. Reliabili...
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical Lorentz violation due to the simultaneously generated gauge invariance. Udgivelsesdato: June 11...
Dilation operator in gauge theories
International Nuclear Information System (INIS)
Galayda, J.
1984-01-01
The electromagnetic field is expanded in a series of O(4) eigenstates of total spin, and quantized by specifying commutators on surfaces of constant x/sub μ/x/sup μ/ = R 2 in four-dimensional Euclidean space. It is demonstrated that, under an arbitrary gauge transformation, some of the O(4) eigenstates are invariant; these gauge-invariant states are labeled by SU(2)xSU(2) total (orbital plus internal) spin quantum numbers (A,B) and with Anot =B. Only these gauge-invariant states are nontrivial in the absence of sources, and are quantized. The leading-twist quantum states of the dilation field theory contain the minimum number of these dilation photons. The remaining spin degrees of freedom of the electromagnetic field are most simply written as a function of the form partial/sub μ/phi(x)+x/sub μ/psi(x)/R 2 . phi(x) is obviously devoid of physics while psi(x) is a classical field propagating between radial projections of two electric currents x/sub μ/ J/sup μ/(x) and y/sub μ/ J/sup μ/(y) only if x/sub μ/ x/sup μ/ = y/sub μ/ y/sup μ/. The quantization procedure described herein may be applied to non-Abelian theories. The procedure does not lead to a gauge-invariant decomposition of a non-Abelian field, but the identification of leading-twist quantum states is preserved in the zero-coupling limit
Liouville action in cone gauge
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1989-01-01
The effective action of the conformally invariant field theory in the curved background space is considered in the light cone gauge. The effective potential in the classical background stress is defined as the Legendre transform of the Liouville action. This potential is tightly connected with the sl(2) current algebra. The series of the covariant differential operators is constructed and the anomalies of their determinants are reduced to this effective potential. 7 refs
Noncommutative induced gauge theories on Moyal spaces
International Nuclear Information System (INIS)
Wallet, J-C
2008-01-01
Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed
Recursive relations for a quiver gauge theory
International Nuclear Information System (INIS)
Park, Jaemo; Sim, Woojoo
2006-01-01
We study the recursive relations for a quiver gauge theory with the gauge group SU(N 1 ) x SU(N 2 ) with bifundamental fermions transforming as (N 1 , N-bar 2 ). We work out the recursive relation for the amplitudes involving a pair of quark and antiquark and gluons of each gauge group. We realize directly in the recursive relations the invariance under the order preserving permutations of the gluons of the first and the second gauge group. We check the proposed relations for MHV, 6-point and 7-point amplitudes and find the agreements with the known results and the known relations with the single gauge group amplitudes. The proposed recursive relation is much more efficient in calculating the amplitudes than using the known relations with the amplitudes of the single gauge group
Analytic stochastic regularization and gange invariance
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1986-05-01
A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt
Superfield approach to symmetry invariance in quantum ...
Indian Academy of Sciences (India)
The Nakanishi–Lautrup auxiliary field B is required to .... In the language of the physical terms, the above HC is the assertion that the electric and magnetic fields (that are gauge and BRST invariant quantities) should remain independent of .... the 4D Lagrangian density (2.1) can be captured in the language of the superfield.
Quantum field theory and link invariants
International Nuclear Information System (INIS)
Cotta-Ramusino, P.; Guadagnini, E.; Mintchev, M.; Martellini, M.
1990-01-01
A skein relation for the expectation values of Wilson line operators in three-dimensional SU(N) Chern-Simons gauge theory is derived at first order in the coupling constant. We use a variational method based on the properties of the three-dimensional field theory. The relationship between the above expectation values and the known link invariants is established. (orig.)
Non-Abelian tensor gauge fields and higher-spin extension of standard model
International Nuclear Information System (INIS)
Savvidy, G.
2006-01-01
We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Itzykson, C.
1978-01-01
In these notes the author provides some background on the theory of gauge fields, a subject of increasing popularity among particle physicists (and others). Detailed motivations and applications which are covered in the other lectures of this school are not presented. In particular the application to weak interactions is omitted by referring to the introduction given by J. Ilipoulos a year ago (CERN Report 76-11). The aim is rather to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (Auth.)
Non-Abelian gauge fields in two spatial dimensions
International Nuclear Information System (INIS)
Hagen, C.R.
1987-01-01
Generalizing an earlier work on the Abelian case the most general non-Abelian gauge theory in two spatial dimensions is derived. It is shown that local gauge invariance leads to a new term in the action which in turn requires that the gauge current operator have a part which is bilinear in the non-Abelian gauge field-strength tensor. Although a radiation (or axial) gauge quantization is possible, this approach is found not to yield the maximal set of commutation relations among the basic fields. The latter goal can be accomplished only by a rather unusual gauge choice which has not previously been studied. Quantization conditions on the coupling constant implied by invariance under large gauge transformations are also derived
International Nuclear Information System (INIS)
Yoo, Jaiyul; Durrer, Ruth
2017-01-01
Theoretical descriptions of observable quantities in cosmological perturbation theory should be independent of coordinate systems. This statement is often referred to as gauge-invariance of observable quantities, and the sanity of their theoretical description is verified by checking its gauge-invariance. We argue that cosmological observables are invariant scalars under diffeomorphisms and their theoretical description is gauge-invariant, only at linear order in perturbations. Beyond linear order, they are usually not gauge-invariant, and we provide the general law for the gauge-transformation that the perturbation part of an observable does obey. We apply this finding to derive the second-order expression for the observational light-cone average in cosmology and demonstrate that our expression is indeed invariant under diffeomorphisms.
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jaiyul [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland); Durrer, Ruth, E-mail: jyoo@physik.uzh.ch, E-mail: ruth.durrer@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, Quai E. Ansermet 24, CH-1211 Genève 4 (Switzerland)
2017-09-01
Theoretical descriptions of observable quantities in cosmological perturbation theory should be independent of coordinate systems. This statement is often referred to as gauge-invariance of observable quantities, and the sanity of their theoretical description is verified by checking its gauge-invariance. We argue that cosmological observables are invariant scalars under diffeomorphisms and their theoretical description is gauge-invariant, only at linear order in perturbations. Beyond linear order, they are usually not gauge-invariant, and we provide the general law for the gauge-transformation that the perturbation part of an observable does obey. We apply this finding to derive the second-order expression for the observational light-cone average in cosmology and demonstrate that our expression is indeed invariant under diffeomorphisms.
Analytic stochastic regularization and gauge theories
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1987-04-01
We prove that analytic stochatic regularization braks gauge invariance. This is done by an explicit one loop calculation of the two three and four point vertex functions of the gluon field in scalar chromodynamics, which turns out not to be geuge invariant. We analyse the counter term structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization. (author) [pt
Symmetry behavior of the effective gauge theory
International Nuclear Information System (INIS)
Midorikawa, S.
1981-01-01
The restoration of spontaneously broken CP invariance is investigated by using the effective QED lagrangian obtained from the standard SU(2) x U(1) gauge theory with two Higgs doublets. It is shown that the large electromagnetic field may restore CP invariance by changing the relative phase angle of Higgs vacuum expectation values even before one of the vacuum expectation values of the two Higgs doublets disappears. Further large magnetic field may lead to the fine structure constant with discontinuous behavior. (orig.)
Generally covariant gauge theories
International Nuclear Information System (INIS)
Capovilla, R.
1992-01-01
A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)
Composite gauge bosons of transmuted gauge symmetry
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1987-10-01
It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
International Nuclear Information System (INIS)
Bond, A.
1977-01-01
The present position of nucleonic techniques for process measurements, is considered from the technical and cost viewpoints. Systems considered include level, density, thickness (including coating thickness), moisture, and sulphur in hydrocarbons gauges and also belt weighers. The advantages of such systems are discussed and the cost-benefit position considered. The combination of nucleonic measuring equipment with a microcomputer is examined. (U.K.)
Conformal invariance from nonconformal gravity
International Nuclear Information System (INIS)
Meissner, Krzysztof A.; Nicolai, Hermann
2009-01-01
We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.
The invariant theory of matrices
Concini, Corrado De
2017-01-01
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...
Noncommutative gauge theory without Lorentz violation
International Nuclear Information System (INIS)
Carlson, Carl E.; Carone, Christopher D.; Zobin, Nahum
2002-01-01
The most popular noncommutative field theories are characterized by a matrix parameter θ μν that violates Lorentz invariance. We consider the simplest algebra in which the θ parameter is promoted to an operator and Lorentz invariance is preserved. This algebra arises through the contraction of a larger one for which explicit representations are already known. We formulate a star product and construct the gauge-invariant Lagrangian for Lorentz-conserving noncommutative QED. Three-photon vertices are absent in the theory, while a four-photon coupling exists and leads to a distinctive phenomenology
Noether's theorem for local gauge transformations
International Nuclear Information System (INIS)
Karatas, D.L.; Kowalski, K.L.
1989-01-01
The variational methods of classical field theory may be applied to any theory with an action which is invariant under local gauge transformations. What is the significance of the resulting Noether current? This paper examines such currents for both Abelian and non-Abelian gauge theories and provides an explanation for their form and limited range of physical significance on a level accessible to those with a basic knowledge of classical field theory. Several of the more subtle aspects encountered in the application of the residual local gauge symmetry found by Becchi, Rouet, Stora, and Tyutin are also considered in detail in a self-contained manner. 23 refs
Investigation of spontaneously broken gauge theories
International Nuclear Information System (INIS)
Nagy, T.
1978-01-01
Spontaneously broken gauge theories (SBGT) with effects treated perturbatively are investigated. The general structure of SBGT is exhibited and gauge invariant renormalization program for practical calculations is set up. The proof of renormalizability of Lee and Zinn-Justin are extended to the problems of SBGT. A general semisimple compact gauge group is used. Arbitrary fermion and scalar multiplets are considered. The structure of the Lagrangian is discussed. The problem of quantization is described and the definition of the generating functionals of the Green functions and the Green functions themselves is given
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
International Nuclear Information System (INIS)
Qurnell, F.D.; Patterson, C.B.
1979-01-01
A gauge supporting device for measuring say a square tube comprises a pair of rods or guides in tension between a pair of end members, the end members being spaced apart by a compression member or members. The tensioned guides provide planes of reference for measuring devices moved therealong on a carriage. The device is especially useful for making on site dimensional measurements of components, such as irradiated and therefore radioactive components, that cannot readily be transported to an inspection laboratory. (UK)
Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.
2018-05-01
Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.
International Nuclear Information System (INIS)
Jarvis, P.D.; Thompson, G.
1987-04-01
We establish the equivalence between the extended BRST invariances, and the conventional Slavnov-Taylor transformations together with a new ''dual'' analogue. However, the latter (a non-local gauge transformation, generating an A-dependent translation of the gauge-fixing surface) is not an invariance of the Faddeev-Popov determinant, contrary to the published claim. (author)
Weyl gravity as a gauge theory
Trujillo, Juan Teancum
In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation of the metric leads to the field equation known as the Bach equation. In this dissertation, the same action is analyzed, but as a conformal gauge theory. It is shown that this action is a result of a particular gauging of this group. By treating it as a gauge theory, it is natural to vary all of the gauge fields independently, rather than performing the usual fourth-order metric variation only. We show that solutions of the resulting vacuum field equations are all solutions to the vacuum Einstein equation, up to a conformal factor---a result consistent with local scale freedom. We also show how solutions for the gauge fields imply there is no gravitational self energy.
Can (electric-magnetic) duality be gauged?
International Nuclear Information System (INIS)
Bunster, Claudio; Henneaux, Marc
2011-01-01
There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.
Lorentz violating p-form gauge theories in superspace
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India)
2017-03-15
Very special relativity (VSR) keeps the main features of special relativity but breaks rotational invariance due to an intrinsic preferred direction. We study the VSR-modified extended BRST and anti-BRST symmetry of the Batalin-Vilkovisky (BV) actions corresponding to the p = 1, 2, 3-form gauge theories. Within the VSR framework, we discuss the extended BRST invariant and extended BRST and anti-BRST invariant superspace formulations for these BV actions. Here we observe that the VSR-modified extended BRST invariant BV actions corresponding to the p = 1, 2, 3-form gauge theories can be written in a manifestly covariant manner in a superspace with one Grassmann coordinate. Moreover, two Grassmann coordinates are required to describe the VSR-modified extended BRST and extended anti-BRST invariant BV actions in a superspace. These results are consistent with the Lorentz-invariant (special relativity) formulation. (orig.)
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Degenerate gauge conditions, generalized Gribov's ambiguity and BRST symmetry
International Nuclear Information System (INIS)
Fabbrichesi, M.E.
1987-01-01
The BFS-BRST approach to gauge theories is considered. It is argued that the BRST-invariant boundary conditions ordinarily used do not maintain the necessary degeneracy in the gauge fixing. As a by-product of this discussion, the existence of a generalized Gribov-like ambiguity is suggested. This ambiguity is however shown to be just a particular BRST transformation
A photon propagator on de Sitter in covariant gauges
Domazet, S.; Prokopec, T.
2014-01-01
We construct a de Sitter invariant photon propagator in general covariant gauges. Our result is a natural generalization of the Allen-Jacobson photon propagator in Feynman gauge. Our propagator reproduces the correct response to a point static charge and the one-loop electromagnetic stress-energy
Superfield formulation of stochastic quantization for gauge theories
International Nuclear Information System (INIS)
Egoryan, Ed.Sh.; Manvelian, R.P.
1990-01-01
Using gauge symmetry localization relative to superspace coordinates an extended stochastic action for the Yang-Mills field possessing supergauge invariance is obtained. This allows to formulate correctly a mechanism of stochastic reduction for gauge theories beyond the framework of perturbation theory. 12 refs
the Simple Centern Projection of SU (2) Gauge Theory
Bakker, B.L.G.; Veselov, A.I.; Zubkov, M.A.
2001-01-01
We consider the SU(2) lattice gauge model. We propose a new gauge invariant definition of center projection, which we call the Simple Center Projection. We demonstrate the center dominance, i.e., the coincidence of the projected potential with the full potential up to the mass renormalization term
Chern-Simons gauge theory: Ten years after
International Nuclear Information System (INIS)
Labastida, J. M. F.
1999-01-01
A brief review on the progress made in the study of Chern-Simons gauge theory since its relation to knot theory was discovered ten years ago is presented. Emphasis is made on the analysis of the perturbative study of the theory and its connection to the theory of Vassiliev invariants. It is described how the study of the quantum field theory for three different gauge fixings leads to three different representations for Vassiliev invariants. Two of these gauge fixings lead to well known representations: the covariant Landau gauge corresponds to the configuration space integrals while the non-covariant light-cone gauge to the Kontsevich integral. The progress made in the analysis of the third gauge fixing, the non-covariant temporal gauge, is described in detail. In this case one obtains combinatorial expressions, instead of integral ones, for Vassiliev invariants. The approach based on this last gauge fixing seems very promising to obtain a full combinatorial formula. We collect the combinatorial expressions for all the Vassiliev invariants up to order four which have been obtained in this approach
Gauge theories, duality relations and the tensor hierarchy
Bergshoeff, Eric A.; Hartong, Jelle; Hohm, Olaf; Huebscher, Mechthild; Ortin, Tomas; Hübscher, Mechthild
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of
A geometric view on topologically massive gauge theories
International Nuclear Information System (INIS)
Horvathy, P.A.; Nash, C.
1985-01-01
The topologically massive gauge theory of Deser, Jackiw and Templeton is understood from Souriau's Principle of General Covariance. The non-gauge invariant mass term corresponds to a non-trivial class in the first cohomology group of configuration space, generated by the Chern-Simons secondary characteristic class. Quantization requires this class to be integral
New gauge symmetries in Witten's Ramond string field theory
International Nuclear Information System (INIS)
Kugo, Taichiro; Terao, Haruhiko
1988-01-01
Witten's Raymond string field theory is observed to possess new gauge symmetries, which guarantee the consistency and the equivalence of Witten's theory to the other formulation based on the constrained string field. The projection operator into the gauge-invariant sector is explicitly constructed using an operator similar to the picture changing operator. (orig.)
International Nuclear Information System (INIS)
Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P
2014-01-01
In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)
International Nuclear Information System (INIS)
Arodz, H.
1987-01-01
The two formulations of quantum theory of the free electromagnetic field are presented. In the Coulomb gauge approach the independent dynamical variables have been identified and then, in order to quantize the theory, it has been sufficient to apply the straightforward canonical quantization. In the Gupta-Bleuler approach the auxilliary theory is first considered. The straightforward canonical quantization of it leads to the quantum theory defined in the space G with indefinite norm. 15 refs. (author)
Parity anomalies in gauge theories in 2 + 1 dimensions
International Nuclear Information System (INIS)
Rao, S.; Yahalom, R.
1986-01-01
We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs
Gauge theories under incorporation of a generalized uncertainty principle
International Nuclear Information System (INIS)
Kober, Martin
2010-01-01
There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.
SU(N) chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2004-01-01
We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory
Chirality conservation in the lattice gauge theory
International Nuclear Information System (INIS)
Peskin, M.E.
1978-01-01
The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail
Ice limit of Coulomb gauge Yang-Mills theory
International Nuclear Information System (INIS)
Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.
2008-01-01
In this paper we describe gauge invariant multiquark states generalizing the path integral framework developed by Parrinello, Jona-Lasinio, and Zwanziger to amend the Faddeev-Popov approach. This allows us to produce states such that, in a limit which we call the ice limit, fermions are dressed with glue exclusively from the fundamental modular region associated with Coulomb gauge. The limit can be taken analytically without difficulties, avoiding the Gribov problem. This is illustrated by an unambiguous construction of gauge invariant mesonic states for which we simulate the static quark-antiquark potential.
Massive and massless gauge fields of any spin and symmetry
International Nuclear Information System (INIS)
Hussain, F.; Jarvis, P.D.
1988-05-01
An analysis of the BRST approach to massive and massless gauge fields of any spin and symmetry is presented. Previous results on massless gauge fields are extended to totally antisymmetric massless tensors and Kaehler-Dirac particles. Two methods for arriving at a BRST invariant, massive theory from the corresponding massless one are discussed. The first allows for an interpretation in terms of dimensional reduction, while the second keeps the BRST operator of the massless theory, but employs gauge invariant fields. (author). 10 refs
Remarks on an equation common to Weyl's gauge field, Yang-Mills field and Toda lattice
International Nuclear Information System (INIS)
Nishioka, M.
1984-01-01
In this letter a remark is presented on an equation of a gauge-invariant Weyl's gauge field and it is shown that the equation is common to Yang's approach to the self-duality condition for SU 2 gauge field and the simplest Toda lattice
DEFF Research Database (Denmark)
Han, Yong-Chang; Madsen, Lars Bojer
2010-01-01
, and acceleration forms, and two gauges, the length and velocity gauges. The relationships among the harmonic phases obtained from the Fourier transform of the three forms are discussed in detail. Although quantum mechanics is gauge invariant and the length and velocity gauges should give identical results, the two...... gauges present different computation efficiencies, which reflects the different behavior in terms of characteristics of the physical couplings acting in the two gauges. In order to obtain convergence, more angular momentum states are required in the length gauge, while more grid points are required...
International Nuclear Information System (INIS)
Tominaga, Hiroshi
1980-01-01
A survey was made by Japan Atomic Industrial Forum, Inc., in August, 1979, on the uses of isotope-equipped measuring instruments in private industrial enterprises by sending questionnaires to 1372 enterprises using sealed radiation sources. The results are described. i.e. usage of isotope-equipped measuring instruments, the economic effects, and problems for the future, and also the general situation in this field. Such instruments used are gas chromatography apparatus, thickness, level and moisture gauges, sulfur analyzer, etc. Except the gas chromatography, the rest are mostly incorporated in automatic control systems. As the economic effects, there are the rises in productivity, quality and yield and the savings in materials, energy and manpower. While they are used to great advantage, there are still problems occasionally in measuring accuracy and others. (J.P.N.)
Continuum gauge fields from lattice gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.
1993-01-01
On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)
Gauged multisoliton baby Skyrme model
Samoilenka, A.; Shnir, Ya.
2016-03-01
We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.
Energy Technology Data Exchange (ETDEWEB)
Olver, Peter J [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: olver@math.umn.edu
2008-08-29
Given a Lie group acting on a manifold, our aim is to analyze the evolution of differential invariants under invariant submanifold flows. The constructions are based on the equivariant method of moving frames and the induced invariant variational bicomplex. Applications to integrable soliton dynamics, and to the evolution of differential invariant signatures, used in equivalence problems and object recognition and symmetry detection in images, are discussed.
Global gauge fixing in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))
1991-10-15
We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.
Duality transformation of a spontaneously broken gauge theory
International Nuclear Information System (INIS)
Mizrachi, L.
1981-04-01
Duality transformation for a spontaneously broken gauge theory is constructed in the CDS gauge (xsub(μ)Asub(μ)sup(a)=0). The dual theory is expressed in terms of dual potentials which satisfy the same gauge condition, but with g→ 1 /g. Generally the theory is not self dual but in the weak coupling region (small g), self duality is found for the subgroup which is not spontaneously broken or in regions where monopoles and vortices are concentrated (in agreement with t'Hooft's ideas that monopoles and vortices in the Georgi-Glashow model make it self dual). In the strong coupling regime a systematic strong coupling expansion can be written. For this region the dual theory is generally not local gauge invariant, but it is invariant under global gauge transformations. (author)
Radionuclides gauges. Gauges designed for permanent installation
International Nuclear Information System (INIS)
1987-06-01
This present norm determines, for radionuclides gauges designed for permanent installation, the characteristics that these gauges should satisfied in their construction and performance to respect the prescriptions. It indicates the testing methods which permit to verify the agreement, gives a classification of gauges and specifies the indications to put on the emitter block [fr
International Nuclear Information System (INIS)
Wilkens, P.H.
1978-01-01
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Gromov-Witten invariants and localization
Morrison, David R.
2017-11-01
We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kähler potential on the conformal manifold. We show how the Kähler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed V Pestun and M Zabzine) which contains 17 chapters, available at [1].
Anomalous gauge theories revisited
International Nuclear Information System (INIS)
Matsui, Kosuke; Suzuki, Hiroshi
2005-01-01
A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)
Gauge field condensation in geometric quantum chromodynamics
International Nuclear Information System (INIS)
Guendelman, E.I.
1991-09-01
In odd number of dimensions, it is possible to construct general covariant gauge theories, where the metric is not an independent variable, but local function of the gauge fields. Starting from standardly defined gauge theory, upon functional integration of some variables, we could end up with such moodels. For models with SU(2) and SU(3) symmetry in three dimensions, gauge field condensation take place in the vacuum, which is nevertheless homogeneous and isotropic up to a gauge transformation, provided the space is flat. Introducing Higgs fields that spontaneously break the gauge symmetry, we get a breakdown of the homogenity and isotropy of the vacuum. Finally, we discuss how some of this ideas can be generalized to four and other even dimensions. (author)
Gauged BPS baby Skyrmions with quantized magnetic flux
Adam, C.; Wereszczynski, A.
2017-06-01
A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.
Exact partition functions for gauge theories on Rλ3
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2016-11-01
Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Sp(2) covariant quantisation of general gauge theories
Energy Technology Data Exchange (ETDEWEB)
Vazquez-Bello, J L
1994-11-01
The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M{sub s}, G{sub s}) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs.
Sp(2) covariant quantisation of general gauge theories
International Nuclear Information System (INIS)
Vazquez-Bello, J.L.
1994-11-01
The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M s , G s ) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs
Rotationally invariant correlation filtering
International Nuclear Information System (INIS)
Schils, G.F.; Sweeney, D.W.
1985-01-01
A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired
Consistency questions in the light cone gauge based on equal time commutation rules
International Nuclear Information System (INIS)
Haller, K.
1989-01-01
We investigate whether time displacement invariant propagators are compatible canonical formulations in the light cone gauge based on equal time commutation rules. We conclude that, in the light cone gauge, time displacement invariant propagators are not consistent with the requirement that, in canonical formulations of gauge theories, only transversely polarized, massless gauge field excitations (photons, or gluons in perturbative QCD), can contribute to the transverse part of a time displacement invariant propagator. When the time displacement invariant light cone gauge propagator is represented as a four-dimensional momentum space Fourier integral the following is observed: Transverse parts of the propagator obtain time displacement invariant contributions from the (k 3 -k 0 ) pole, as well as from the (vertical strokekvertical stroke 2 -k 0 2 ) pole. But since, in the Schroedinger picture (i.e. at t=0), the divergence-free part of the gauge field consists of transversely polarized gauge field excitations only, the transverse part of the propagator either can have time displacement invariant time dependence determined by the (vertical strokekvertical stroke 2 -k 0 2 ) pole; or, if any part of the transverse propagator has time dependence determined by the (k 3 -k 0 ) pole, it cannot be time displacement invariant. (orig.)
A new formulation of non-relativistic diffeomorphism invariance
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Rabin, E-mail: rabin@bose.res.in [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata-700 098 (India); Mitra, Arpita, E-mail: arpita12t@bose.res.in [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata-700 098 (India); Mukherjee, Pradip, E-mail: mukhpradip@gmail.com [Department of Physics, Barasat Government College, Barasat, West Bengal (India)
2014-10-07
We provide a new formulation of non-relativistic diffeomorphism invariance. It is generated by localising the usual global Galilean symmetry. The correspondence with the type of diffeomorphism invariant models currently in vogue in the theory of fractional quantum Hall effect has been discussed. Our construction is shown to open up a general approach of model building in theoretical condensed matter physics. Also, this formulation has the capacity of obtaining Newton–Cartan geometry from the gauge procedure.
Lattices gauge theories in terms of knots
International Nuclear Information System (INIS)
Vecernyes, P.
1989-01-01
Cluster expansion is developed in lattice gauge theories with finite gauge groups in d≥3 dimensions where the clusters are connected (d - 2)-dimensional surfaces which can branch along (d - 3)-cells. The interaction between them has a knot theoretical interpretation. It can be many body linking or knotting self-interaction. For small enough gauge coupling g the authors prove analyticity of the correlation functions in the variable exp(-1/g 2
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
Perturbative expansion of Chern-Simons theory with non-compact gauge group
International Nuclear Information System (INIS)
Bar-Natan, D.; Witten, E.
1991-01-01
Naive imitation of the usual formulas for compact gauge group in quantizing three dimensional Chern-Simons gauge theory with non-compact gauge group leads to formulas that are wrong or unilluminating. In this paper, an appropriate modification is described, which puts the perturbative expansion in a standard manifestly 'unitary' format. The one loop contributions (which differ from naive extrapolation from the case of compact gauge group) are computed, and their topological invariance is verified. (orig.)
World-line quantization of a reciprocally invariant system
International Nuclear Information System (INIS)
Govaerts, Jan; Jarvis, Peter D; Morgan, Stuart O; Low, Stephen G
2007-01-01
We present the world-line quantization of a system invariant under the symmetries of reciprocal relativity (pseudo-unitary transformations on 'phase-space coordinates' (x μ (τ), p μ (τ)) which preserve the Minkowski metric and the symplectic form, and global shifts in these coordinates, together with coordinate-dependent transformations of an additional compact phase coordinate, θ(τ)). The action is that of free motion over the corresponding Weyl-Heisenberg group. Imposition of the first class constraint, the generator of local time reparametrizations, on physical states enforces identification of the world-line cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(D-1,1)≅U(D-1,1)xH(D), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group (the central extension of the global translation group, with central extension associated with the phase variable θ(τ)). The spacetime spectrum of physical states is identified. Even though for an appropriate range of values the restriction enforced by the cosmological constant projects out negative norm states from the physical gauge invariant spectrum, leaving over spin zero states only, in this purely bosonic setting the mass-squared spectrum is continuous over the entire real line and thus includes a tachyonic branch as well
Unification beyond GUT's: Gauge-Yukawa unification
International Nuclear Information System (INIS)
Kubo, J.; Mondragon, M.; Zoupanos, G.
1996-01-01
Gauge-Yukawa Unification (GYU) is a renormalization group invariant functional relation among gauge and Yukawa couplings which holds beyond the unification point in Grand Unified Theories (GUTs). We present here various models where GYU is obtained by requiring the principles of finiteness and reduction of couplings. We examine the consequences of these requirements for the low energy parameters, especially for the top quark mass. The predictions are such that they clearly distinguish already GYU from ordinary GUTs. It is expected that it will be possible to discriminate among the various GYUs when more accurate measurements of the top quark mass are available. (author)
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Gauges and functional measures in quantum gravity II: higher-derivative gravity
Energy Technology Data Exchange (ETDEWEB)
Ohta, N. [Kindai University, Department of Physics, Higashi-Osaka, Osaka (Japan); Percacci, R. [International School for Advanced Studies, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Pereira, A.D. [UERJ-Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)
2017-09-15
We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work with a two-parameter family of parametrizations of the graviton field, and a two-parameter family of gauges. We find that there are some choices of gauge or parametrization that reduce the dependence on the remaining parameters. The results are invariant under a recently discovered ''duality'' that involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable. (orig.)
International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
Gauss decomposition, Wakimoto realisation and gauged WZNW models
International Nuclear Information System (INIS)
Arfaei, H.; Mohammedi, N.
1993-10-01
The implications of gauging the Wess-Zumino-Novikov-Witten (WZNW) model using the Gauss decomposition of the group elements are explored. We show that, contrary to standard gauging of WZNW models, this gauging is carried out by minimally coupling the gauge fields. We find that this gauging, in the case of gauging an abelian vector subgroup, differs from the standard one by terms proportional to the field strength of the gauge fields. We prove that gauging an abelian vector subgroup does not have a nonlinear sigma model interpretation. This is because the target-space metric resulting from the integration over the gauge fields is degenerate. We demonstrate, however, that this kind of gauging has a natural interpretation in terms of Wakimoto variables. (orig.)
New topological invariants for non-abelian antisymmetric tensor fields from extended BRS algebra
International Nuclear Information System (INIS)
Boukraa, S.; Maillet, J.M.; Nijhoff, F.
1988-09-01
Extended non-linear BRS and Gauge transformations containing Lie algebra cocycles, and acting on non-abelian antisymmetric tensor fields are constructed in the context of free differential algebras. New topological invariants are given in this framework. 6 refs
Electric dipole moment of the neutron in gauge theory
International Nuclear Information System (INIS)
Shabalin, E.P.
1983-01-01
One of the consequences of violation of CP invariance of the physical world is the existence of an electric dipole moment of elementary particles. The renormalization gauge theory of the electroweak and strong interactions developed during the past decade has revealed several possible sources of violation of CP invariance: direct violation of CP invariance in the Lagrangian of the electroweak interactions, spontaneous violation of CP invariance, and violation of CP invariance in the strong interactions described by quantum chromodynamics. The present review is devoted to a discussion of the predictions for the electric dipole moment of the neutron which follow from the various sources of violation of CP invariance in the theory. It includes the theoretical results obtained in the framework of gauge theory during the past decade up to the beginning of 1982. A comparison of the prediction of various gauge models with the experimental measurements of the electric dipole moment will make it possible to gain a better understanding of the nature of violation of CP invariance
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Invariants for minimal conformal supergravity in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph; Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany)
2016-12-15
We develop a new off-shell formulation for six-dimensional conformal supergravity obtained by gauging the 6D N=(1,0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N=(1,0) conformal supergravity, which contain C{sup 3} and C◻C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F◻F invariant in curved superspace.
Constrained Gauge Fields from Spontaneous Lorentz Violation
Chkareuli, J L; Jejelava, J G; Nielsen, H B
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...
Transgression forms and extensions of Chern-Simons gauge theories
International Nuclear Information System (INIS)
Mora, Pablo; Olea, Rodrigo; Troncoso, Ricardo; Zanelli, Jorge
2006-01-01
A gauge invariant action principle, based on the idea of transgression forms, is proposed. The action extends the Chern-Simons form by the addition of a boundary term that makes the action gauge invariant (and not just quasi-invariant). Interpreting the spacetime manifold as cobordant to another one, the duplication of gauge fields in spacetime is avoided. The advantages of this approach are particularly noticeable for the gravitation theory described by a Chern-Simons lagrangian for the AdS group, in which case the action is regularized and finite for black hole geometries in diverse situations. Black hole thermodynamics is correctly reproduced using either a background field approach or a background-independent setting, even in cases with asymptotically nontrivial topologies. It is shown that the energy found from the thermodynamic analysis agrees with the surface integral obtained by direct application of Noether's theorem
N = 8 superconformal gauge theories and M2 branes
International Nuclear Information System (INIS)
Benvenuti, Sergio; Rodriguez-Gomez, Diego; Verlinde, Herman; Tonni, Erik
2009-01-01
Based on recent developments, in this letter we find 2+1 dimensional gauge theories with scale invariance and N = 8 supersymmetry. The gauge theories are defined by a Lagrangian and are based on an infinite set of 3-algebras, constructed as an extension of ordinary Lie algebras. Recent no-go theorems on the existence of 3-algebras are circumvented by relaxing the assumption that the invariant metric is positive definite. The gauge group is non compact, and its maximally compact subgroup can be chosen to be any ordinary Lie group, under which the matter fields are adjoints or singlets. Interestingly, the theories are parity invariant and do not admit any tunable coupling constant.
On the BRST cohomology in U(1) gauge theory
International Nuclear Information System (INIS)
Malik, R.P.
1998-08-01
We discuss the Becchi-Rouet-Stora-Tyutin (BRST) cohomology in the case of two-dimensional free U(1) gauge theory. In addition to the usual BRST charge, we deduce a conserved and nilpotent dual-BRST charge under which the gauge-fixing term remains invariant. This charge is the analogue of the adjoint (dual) exterior derivative of differential geometry. The BRST extended Casimir operator, corresponding to the Laplacian operator of differential geometry, turns out to generate a symmetry under which the ghost term remains invariant. We take a single photon state in the Hilbert space and demonstrate the notion of gauge invariance, no-(anti)ghost theorem and transversality of photon by exploiting the refinement of cohomology by selecting the physical state as the harmonic state of the Hodge decomposition theorem. (author)
Rotation Invariance Neural Network
Li, Shiyuan
2017-01-01
Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...
Magnetic monopoles and the dual London equation in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Skala, P.; Faber, M.; Zach, M.
1996-01-01
The dual superconductor model of confinement in non-Abelian gauge theories is studied in a gauge invariant formulation. We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the dual London equation in a gauge invariant formulation. (orig.)
The energy–momentum tensor(s in classical gauge theories
Directory of Open Access Journals (Sweden)
Daniel N. Blaschke
2016-11-01
Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.
Shadow fields and local supersymmetric gauges
International Nuclear Information System (INIS)
Baulieu, L.; Bossard, G.; Sorella, S.P.
2006-01-01
To control supersymmetry and gauge invariance in super-Yang-Mills theories we introduce new fields, called shadow fields, which enable us to enlarge the conventional Faddeev-Popov framework and write down a set of useful Slavnov-Taylor identities. These identities allow us to address and answer the issue of the supersymmetric Yang-Mills anomalies, and to perform the conventional renormalization programme in a fully regularization-independent way
International Nuclear Information System (INIS)
Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P
2014-01-01
Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabeling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabeling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler–Poincaré variational approach is also used to derive conservation laws associated with fluid relabeling symmetries using Noether's second theorem. (paper)
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Gauge invariance and the κ-gl relation
International Nuclear Information System (INIS)
Arima, A; Bentz, W; Enders, J; Richter, A
2005-01-01
The connection between the enhancement factor of the photonuclear E1 sum rule and the orbital angular momentum g-factor of a bound nucleon is discussed in the framework of the Landau-Migdal theory for isospin asymmetric nuclear matter, and compared to empirical informations
Gauge invariance and the {kappa}-g{sub l} relation
Energy Technology Data Exchange (ETDEWEB)
Arima, A [Japan Science Foundation, 2-1 Kitanomaru Koen, Chiyoda-ku, Tokyo 102-0091 (Japan); Bentz, W [Department of Physics, School of Science, Tokai University, 1117 Kita-Kaname, Hiratsuka-shi 259-1207 (Japan); Enders, J [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Richter, A [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany)
2005-01-01
The connection between the enhancement factor of the photonuclear E1 sum rule and the orbital angular momentum g-factor of a bound nucleon is discussed in the framework of the Landau-Migdal theory for isospin asymmetric nuclear matter, and compared to empirical informations.
Body fixed frame, rigid gauge rotations and large N random fields in QCD
International Nuclear Information System (INIS)
Levit, S.
1995-01-01
The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)
Gauge theory loop operators and Liouville theory
International Nuclear Information System (INIS)
Drukker, Nadav; Teschner, Joerg
2009-10-01
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Gauged supergravities in various spacetime dimensions
Energy Technology Data Exchange (ETDEWEB)
Weidner, M.
2006-12-15
In this thesis we study the gaugings of extended supergravity theories in various space-time dimensions. These theories describe the low-energy limit of non-trivial string compactifications. For each theory under consideration we work out all possible gaugings that are compatible with supersymmetry. They are parameterized by the so-called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half-maximal (N=4) supergravities in d=4 and d=5 and to the maximal supergravities in d=2 and d=7. Examples of particular gaugings are given. Whenever possible, the higher-dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor. (orig.)
Geometric phases and hidden local gauge symmetry
International Nuclear Information System (INIS)
Fujikawa, Kazuo
2005-01-01
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Renormalization group invariance in the presence of an instanton
International Nuclear Information System (INIS)
Ross, D.A.
1987-01-01
A pure Yang-Mills theory which admits an instanton is under discussion. n=1 supersymmetric (SU-2) Yang-Mills theory, both in the Wess-zumino gauge and in manifestly supersymmetric supergauge is considered. Two-loop vacuum graphs are calculated. The way a renormalization group invariance works under conditions of fermionic zero mode elimination is shown
Massive Abelian gauge fields coupled with nonconserved currents
International Nuclear Information System (INIS)
Nakazato, Hiromichi; Namiki, Mikio; Yamanaka, Yoshiya; Yokoyama, Kan-ichi.
1985-04-01
A massive Abelian gauge field coupled with a nonconserved mass-changing current is described within the framework of canonical quantum theory with indefinite metric. In addition to the conventional Lagrange multiplier fields, another ghost field is introduced to preserve gauge invariance and unitarity of a physical S-matrix in the case of the nonconserved current. The renormalizability of the theory is explicitly shown in the sense of superpropagator approach for nonpolynomial Lagrangian theories. (author)
Ambiguities of the natural gauge in Yang-Mills theories
International Nuclear Information System (INIS)
Lazarides, G.
1978-01-01
We study the ambiguities of the natural gauge condition for the Euclidean SU(2) Yang-Mills theory in four dimensions. Then, we show that, in the stationary-phase approximation, these ambiguities do not affect the contribution of the sector with Pontryagin index q = 1 to the correlation functions of gauge-invariant operators. They affect only the higher-order corrections to this contribution
Superspace gauge fixing of topological Yang-Mills theories
Energy Technology Data Exchange (ETDEWEB)
Constantinidis, Clisthenis P; Piguet, Olivier [Universidade Federal do Espirito Santo (UFES) (Brazil); Spalenza, Wesley [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro (Brazil)
2004-03-01
We revisit the construction of topological Yang-Mills theories of the Witten type with arbitrary space-time dimension and number of ''shift supersymmetry'' generators, using a superspace formalism. The super-BF structure of these theories is exploited in order to determine their actions uniquely, up to the ambiguities due to the fixing of the Yang-Mills and BF gauge invariance. UV finiteness to all orders of perturbation theory is proved in a gauge of the Landau type. (orig.)
Superspace gauge fixing of topological Yang-Mills theories
International Nuclear Information System (INIS)
Constantinidis, Clisthenis P.; Piguet, Olivier; Spalenza, Wesley
2004-01-01
We revisit the construction of topological Yang-Mills theories of the Witten type with arbitrary space-time dimension and number of ''shift supersymmetry'' generators, using a superspace formalism. The super-BF structure of these theories is exploited in order to determine their actions uniquely, up to the ambiguities due to the fixing of the Yang-Mills and BF gauge invariance. UV finiteness to all orders of perturbation theory is proved in a gauge of the Landau type. (orig.)
Renormalization of an abelian gauge theory in stochastic quantization
International Nuclear Information System (INIS)
Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.
1987-01-01
The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)
Lattice Gauge Theories Have Gravitational Duals
International Nuclear Information System (INIS)
Hellerman, Simeon
2002-01-01
In this paper we examine a certain threebrane solution of type IIB string theory whose long-wavelength dynamics are those of a supersymmetric gauge theory in 2+1 continuous and 1 discrete dimension, all of infinite extent. Low-energy processes in this background are described by dimensional deconstruction, a strict limit in which gravity decouples but the lattice spacing stays finite. Relating this limit to the near-horizon limit of our solution we obtain an exact, continuum gravitational dual of a lattice gauge theory with nonzero lattice spacing. H-flux in this translationally invariant background encodes the spatial discreteness of the gauge theory, and we relate the cutoff on allowed momenta to a giant graviton effect in the bulk
Finite N=1 SUSY gauge field theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1986-01-01
The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established
Embedded graph invariants in Chern-Simons theory
International Nuclear Information System (INIS)
Major, Seth A.
1999-01-01
Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines -- an embedded graph invariant. Using a generalization of the variational method, lowest-order results for invariants for graphs of arbitrary valence and general vertex tangent space structure are derived. Gauge invariant operators are introduced. Higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. However, without a global projection of the graph there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity -- as a way of relating frames at distinct vertices
International Nuclear Information System (INIS)
Bes, D.R.
1984-01-01
The history of the development of quantum field theory for treating coupling between phonons and fermions are summarized. These perturbative theories are applied introducing concept of gauge invariance for the problem of rotation nuclei. (L.C.) [pt
GAUGE PRINCIPLE AND VARIATIONAL FORMULATION FOR FLOWS OF AN IDEAL FLUID
Institute of Scientific and Technical Information of China (English)
KAMBE Tsutomu
2003-01-01
A gauge principle is applied to mass flows of an ideal compressible fluid subject to Galilei transformation. A free-field Lagrangian defined at the outset is invariant with respect to global SO(3) gauge transformations as well as Galilei transformations. The action principle leads to the equation of potential flows under constraint of a continuity equation. However, the irrotational flow is not invariant with respect to local SO(3) gauge transformations. According to the gauge principle,a gauge-covariant derivative is defined by introducing a new gauge field. Galilei invariance of the derivative requires the gauge field to coincide with the vorticity, i.e. the curl of the velocity field. A full gauge-covariant variational formulation is proposed on the basis of the Hamilton's principle and an assoicated Lagrangian. By means of an isentropic material variation taking into account individual particle motion, the Euler's equation of motion is derived for isentropic flows by using the covariant derivative. Noether's law associated with global SO(3) gauge invariance leads to the conservation of total angular momentum. In addition, the Lagrangian has a local symmetry of particle permutation which results in local conservation law equivalent to the vorticity equation.
Measurement invariance versus selection invariance: Is fair selection possible?
Borsboom, D.; Romeijn, J.W.; Wicherts, J.M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement
Measurement invariance versus selection invariance : Is fair selection possible?
Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement
Frisby, Craig L.; Wang, Ze
2016-01-01
Data from the standardization sample of the Woodcock-Johnson Psychoeducational Battery--Third Edition (WJ III) Cognitive standard battery and Test Session Observation Checklist items were analyzed to understand the relationship between g (general mental ability) and test session behavior (TSB; n = 5,769). Latent variable modeling methods were used…
Stability and supersymmetry: Models with local gauge symmetry
International Nuclear Information System (INIS)
Curtright, T.; Ghandour, G.
1978-01-01
Renormalization group analysis is used to show the supersymmetric point in the effective coupling constant space is an unstable fixed point for several model gauge theories. The physical significance of this result is discussed in terms of the stability of the semiclassical ground state. In perturbation theory the supersymmetric point appears to be surrounded by regions in the coupling space representing three classes of theories: class one consists of theories for which the effective potential V has no apparent lower bound for large (pseudo)scalar field expectations; class two theories have lower bounds and radiatively induced absolute minima for V with nonzero field expectations; class three theories apparently have an absolute minimum of V at the origin of field space. Thus radiatively induced breaking of gauge invariance occurs for theories in classes one and two, but perturbatively the class one theories appear to have no ground states. Class three theories have ground states in which all gauge invariance remains intact. For the supersymmetric limits of the models examined the origin is known to be neutrally stable in field space, permitting an ambiguous breakdown of gauge invariance but not supersymmetry. This phenomenon is discussed in some detail. Calculations are performed in both Lorentz covariant and noncovariant gauges with a detailed comparison between gauges of the relevant one-loop diagrams
Path-integral invariants in abelian Chern–Simons theory
International Nuclear Information System (INIS)
Guadagnini, E.; Thuillier, F.
2014-01-01
We consider the U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin–Turaev surgery invariants
Invariance Signatures: Characterizing contours by their departures from invariance
Squire, David; Caelli, Terry M.
1997-01-01
In this paper, a new invariant feature of two-dimensional contours is reported: the Invariance Signature. The Invariance Signature is a measure of the degree to which a contour is invariant under a variety of transformations, derived from the theory of Lie transformation groups. It is shown that the Invariance Signature is itself invariant under shift, rotation and scaling of the contour. Since it is derived from local properties of the contour, it is well-suited to a neural network implement...
Physical Invariants of Intelligence
Zak, Michail
2010-01-01
A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective
Canonical transformation path to gauge theories of gravity
Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.
2017-06-01
In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.
Nonabelian Gauged Linear Sigma Model
Institute of Scientific and Technical Information of China (English)
Yongbin RUAN
2017-01-01
The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago.Since then,it has been investigated extensively in physics by Hori and others.Recently,an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications.The abelian GLSM was relatively better understood and is the focus of current mathematical investigation.In this article,the author would like to look over the horizon and consider the nonabelian GLSM.The nonabelian case possesses some new features unavailable to the abelian GLSM.To aid the future mathematical development,the author surveys some of the key problems inspired by physics in the nonabelian GLSM.
Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V
1999-01-01
This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical
Invariant functionals in higher-spin theory
Directory of Open Access Journals (Sweden)
M.A. Vasiliev
2017-03-01
Full Text Available A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F⁎(B(x in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space–time points of the factors of B(x, which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
The axion mass in modular invariant supergravity
International Nuclear Information System (INIS)
Butter, Daniel; Gaillard, Mary K.
2005-01-01
When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality)
Four-dimensional Ashkin-Teller gauge theory
International Nuclear Information System (INIS)
Alcaraz, F.C.; Jacobs, L.
1983-01-01
The authors construct and analyze a lattice field theory of two Z 2 gauge fields which interact in a minimal gauge-invariant fashion. Although the theory presented here, a generalization of the two-dimensional Ashkin-Teller spin system, has no formal continuum limit, it is found that it has an electrodynamicslike phase similar to that observed in general Z/sub N/ theories for N> or =4. This model is probably the simplest generalization of the conventional Z 2 pure gauge theory which has a massless phase separated from the strong- and weak-coupling regions by lines of second-order phase transitions
Energy Technology Data Exchange (ETDEWEB)
Kubo, R; Yokoyama, K
1974-11-01
The purpose of this work is to study the structure of c-number gauge transformation in connection with renormalization problem. In the wide theory of neutral vector fields, there is the gauge structure described essentially by free Lagrangian density. The c-number gauge transformation makes the Lagrangian invariant correspondingly to the usual case of quantum electrodynamics. The c-number transformation can be used to derive relationships among all relevant renormalization constants in the case of interacting fields. In the presence of interaction, total Lagrangian density L is written as L=L/sub 0/+L/sub 1/+L/sub 2/, where L/sub 1/ is given from matter-field Lagrangian density, and L/sub 2/ denotes necessary additional counter terms. In order to conserve the gauge structure, the form of L is invariant under the gauge transformation. Since L matter is self-adjoining, L/sub 1/ remains invariant by itself under the transformation. The form of L/sub 2/ is finally given from the observation that L/sub 3/ cannot contain wave-function renormalization constants. Since L/sub 2/ is invariant under q-number gauge transformation, this transformation in unrenormalized form makes the present L form-invariant. Therefore, together with the above results, auxiliary fields produce the q-number gauge transformation for renormalized fields.
Cosmological disformal invariance
Energy Technology Data Exchange (ETDEWEB)
Domènech, Guillem; Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Naruko, Atsushi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Algorithms in invariant theory
Sturmfels, Bernd
2008-01-01
J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Gauge and general covariance of string interactions
International Nuclear Information System (INIS)
Das, S.R.
1986-01-01
All fundamental interactions at observable energies seem to arise out of local symmetries - gauge invariances and general coordinate invariance. In usual field theories of point particles these invariances are postulated a priori: the idea is to deduce everything else from the symmetry group and the representation content of the matter fields. In string theories, the situation is rather different. Here the basic principle is reparametrization invariance on the world sheet swept out by the string. The authors consider the simplest string models-those defined on flat Minkowski space-time. The transverse oscillations of the string lead to an infinite tower of modes which may be thought of as the ''particles'' constituting the string. The interacting string theory is defined, in the first quantized formulation, by specifying the interaction of these modes with the string. These interaction vertices must satisfy a basic requirement: when any dual amplitude is factorized only physical states (i.e. those satisfying the Virasoro conditions) must occur as on-mass-shell intermediate states. This means that the vertices respect the reparametrization invariance of the world sheet, since it is this symmetry which eliminates ghost states by virtue of Virasoro conditions
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
Effective actions for gauge theories with Chern-Simons terms - I
International Nuclear Information System (INIS)
Bambah, B.A.; Mukku, C.
1989-01-01
The effective Lagrangian for a three-dimensional gauge theory with a Chern-Simons term is evaluated upto one-loop effects. It is shown to be completely finite. It also does not exhibit any imaginary part. The calculation is carried out in a background field analogue of the Feynman gauge and gauge invariance is maintained throughout the calculation. In an appendix an argument is presented as to why this Feynman gauge may be a 'good' gauge for our results to be applied to high temperature QCD and in particular to the quark-gluon plasma. (author). 12 refs
Abelian 2-form gauge theory: special features
International Nuclear Information System (INIS)
Malik, R P
2003-01-01
It is shown that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is not an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the topological 2D free Abelian (and self-interacting non-Abelian) gauge theories
A gauge-theoretic approach to gravity.
Krasnov, Kirill
2012-08-08
Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.
On spontaneous parity breaking in three-dimensional gauge-Higgs systems
International Nuclear Information System (INIS)
Ambjoern, J.; Farakos, K.; Shaposhnikov, M.E.
1991-04-01
We address the question of spontaneous breaking of parity in three-dimensional euclidian SU(2) gauge-Higgs theory by Monte Carlo simulations. We observe no sign of spontaneous parity breaking in the behaviour of local gauge invariant operators. However, the presence of parity odd terms in the action can induce a phase transition to a parity odd ground state. (orig.)
Higher Loop Corrections to the Infrared Evolution of Fermionic Gauge Theories in the RI' Scheme
DEFF Research Database (Denmark)
Ryttov, Thomas
2014-01-01
We study the evolution of the gauge coupling and the anomalous dimension of the mass towards an infrared fixed point for non-supersymmetric gauge theories in the modified regularization invariant, RI', scheme. This is done at the three loop level where all the renormalization group functions have...
International Nuclear Information System (INIS)
Cuesta, Vladimir; Vergara, Jose David; Montesinos, Merced
2011-01-01
We work with gauge systems and using gauge invariant functions we study its quantum counterpart and we find if all these operators are self adjoint or not. Our study is divided in two cases, when we choose clock or clocks that its Poisson brackets with the set of constraints is one or it is different to one. We show some transition amplitudes.
Invariant metrics for Hamiltonian systems
International Nuclear Information System (INIS)
Rangarajan, G.; Dragt, A.J.; Neri, F.
1991-05-01
In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs
Variability of multifractal parameters in an urban precipitation monitoring network
Licznar, Paweł; De Michele, Carlo; Dżugaj, Dagmara; Niesobska, Maria
2014-05-01
Precipitation especially over urban areas is considered a highly non-linear process, with wide variability over a broad range of temporal and spatial scales. Despite obvious limitations of rainfall gauges location at urban sites, rainfall monitoring by gauge networks is a standard solution of urban hydrology. Often urban precipitation gauge networks are formed by modern electronic gauges and connected to control units of centralized urban drainage systems. Precipitation data, recorded online through these gauge networks, are used in so called Real-Time-Control (RTC) systems for the development of optimal strategies of urban drainage outflows management. As a matter of fact, the operation of RTC systems is motivated mainly by the urge of reducing the severity of urban floods and combined sewerage overflows, but at the same time, it creates new valuable precipitation data sources. The variability of precipitation process could be achieved by investigating multifractal behavior displayed by the temporal structure of precipitation data. There are multiply scientific communications concerning multifractal properties of point-rainfall data from different worldwide locations. However, very little is known about the close variability of multifractal parameters among closely located gauges, at the distances of single kilometers. Having this in mind, here we assess the variability of multifractal parameters among gauges of the urban precipitation monitoring network in Warsaw, Poland. We base our analysis on the set of 1-minute rainfall time series recorded in the period 2008-2011 by 25 electronic weighing type gauges deployed around the city by the Municipal Water Supply and Sewerage Company in Warsaw as a part of local RTC system. The presence of scale invariance and multifractal properties in the precipitation process was investigated with spectral analysis, functional box counting method and studying the probability distributions and statistical moments of the rainfall
Gauging the graded conformal group with unitary internal symmetries
International Nuclear Information System (INIS)
Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.
1977-06-01
Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out
On novel string theories from 4d gauge theories
Directory of Open Access Journals (Sweden)
Kiritsis Elias
2014-04-01
Full Text Available We investigate strings theories as defined from four dimensional gauge theories. It is argued that novel (superstring theories exist up to 26 dimensions. Some of them may support weakly curved geometries. A proposal is outlined to link their local conformal invariance to the dynamics of the bulk string theory.
Expository lectures on topology, geometry, and gauge theories
International Nuclear Information System (INIS)
Akyildiz, Y.
1983-01-01
The article provides an extremely useful and clear explanation of applications of topology and differential geometry in modern gauge theories. Basic concepts like invariants, manifolds, (co)homology, etc. are explained. The author has prepared this lecture with physicists in mind and the level of mathematical sophistication has been kept to a minimum. (S.J.P.)
Beltrami parametrization and gauging of Virasoro and w-infinity algebras
International Nuclear Information System (INIS)
Tatar, L.
1992-07-01
The gauging of the Virasoro and w-infinity algebras are discussed from the point of view of BRST symmetry. Both algebras are realised as ''Russian formulas'' for the curvatures built from the generators of the Lie algebras and the corresponding gauge fields. The generalized curvatures are used to determine the gauge invariant Lagrangians as well as the anomaly structures of the conformal two dimensional theory and the w-gravity. (author). 21 refs
Gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge
International Nuclear Information System (INIS)
Dudal, D.; Verschelde, H.; Lemes, V.E.R.; Sarandy, M.S.; Sorella, S.P.; Picariello, M.
2003-01-01
The effective potential for an on-shell BRST invariant gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge in SU(N) Yang-Mills is analysed by combining the local composite operator technique with the algebraic renormalization. We pay attention to the gauge parameter independence of the vacuum energy obtained in the considered framework and discuss the Landau gauge as an interesting special case
Gauge properties of the guiding center variational symplectic integrator
International Nuclear Information System (INIS)
Squire, J.; Tang, W. M.; Qin, H.
2012-01-01
Variational symplectic algorithms have recently been developed for carrying out long-time simulation of charged particles in magnetic fields [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008); H. Qin, X. Guan, and W. Tang, Phys. Plasmas (2009); J. Li, H. Qin, Z. Pu, L. Xie, and S. Fu, Phys. Plasmas 18, 052902 (2011)]. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed for this type of system. It is found that for explicit algorithms, an instability arises because the discrete symplectic structure does not become the continuous structure in the t→0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the “antisymmetric discretization gauge,” in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and φ are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss’s law [J. Squire, H. Qin, and W. Tang (to be published)].
Gauge field theories. 3. enl. ed.
International Nuclear Information System (INIS)
Frampton, Paul H.
2008-01-01
Gauge theories provide a unified framework to describe three of the four universal forces known so far: the quantum field theories of electromagnetism, the weak force and the strong force. They are an essential part of the so-called standard model of particles and matter. The first edition of this work was quickly adopted by universities and other institutions of higher learning around the world. Completely updated, this third edition continues to be an ideal reference on the subject. In total, more than a quarter of the content has been changed or added. The tried-and-tested logical structuring of the material on gauge invariance, quantization, and renormalization has been retained, while the chapters on electroweak interactions and model building have been revised. Completely new is the chapter on conformality. As in the past, Frampton emphasizes formalism rather than experiments and provides sufficient detail for readers wishing to do their own calculations or pursue theoretical physics research: - gauge invariance, - quantization, - renormalization, - electroweak forces, - renormalization group, - quantum chromodynamics, - model building, - conformality. (orig.)
Gauge invariance, quantization and integration of heavy modes in a gauge Kaluza-Klein theory
Novales-Sánchez, H.
This dissertation examines topics at the intersection of environmental and energy economics. The first two chapters explore how policies can induce more efficient use of the energy sources available for generating electricity. The electricity sector is a major source of a wide variety of harmful pollutants. To mitigate the environmental impacts of electricity production, a variety of policies are being implemented to increase the quantity of generation from clean, renewable energy sources. The first chapter identifies the short-run reductions in emissions caused by generation from a particular renewable technology; wind turbines. Using the estimates of the pollution offset by the renewable production, I explore the efficiency of the incentives created by the current set of renewable energy policies. The second chapter examines the impact adding bulk electricity storage capacity will have on the full social costs of generating electricity. The third chapter explores the impact of various gasoline tax structures on both retail price volatility and state revenue volatility.
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
International Nuclear Information System (INIS)
Greensite, J.; Olejnik, S.
2003-01-01
We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.
Implementing general gauge mediation
International Nuclear Information System (INIS)
Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.
2009-01-01
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-01-01
Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
Energy Technology Data Exchange (ETDEWEB)
Moller-Nielsen, Thomas [University of Oxford (United Kingdom)
2014-07-01
Physicists and philosophers have long claimed that the symmetries of our physical theories - roughly speaking, those transformations which map solutions of the theory into solutions - can provide us with genuine insight into what the world is really like. According to this 'Invariance Principle', only those quantities which are invariant under a theory's symmetries should be taken to be physically real, while those quantities which vary under its symmetries should not. Physicists and philosophers, however, are generally divided (or, indeed, silent) when it comes to explaining how such a principle is to be justified. In this paper, I spell out some of the problems inherent in other theorists' attempts to justify this principle, and sketch my own proposed general schema for explaining how - and when - the Invariance Principle can indeed be used as a legitimate tool of metaphysical inference.
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
The holomorphicity of the gauge coupling constant in supersymmetric gauge theories
International Nuclear Information System (INIS)
Li, H.
1993-01-01
Holomorphicity is the analytical dependence of the gauge coupling function, f = 1/g 2 + Θ/8π 2 , on the chiral fields in supergravity and supersymmetric gauge theories. The holomorphic property of 1/g 2 in supersymmetric gauge theories is studied by calculating its dependence on the mass matrix. The general representations of the mass matrix allowed by the constraints of gauge invariance is considered, and calculate the one- and two-loop corrections to 1/g 2 for both super QED and super Yang-Mills theories. For the massive mass matrix it is shown that one- and two-loop corrections to the gauge coupling constant are holomorphic. The reason for two-loop holomorphicity is that the second order logarithmic terms cancel out. For the mass matrix with at least one zero mode, it is recognized that there are two distinct cases which we call pseudo massive and intrinsically massless. For the case of pseudo mass matrix, the reducible representation of the gauge group is (i) complex with equal numbers of irreducible representations and their conjugates, (ii) real, or (iii) pseudo-real. Even though there are massless modes, it is found that the dependence of the gauge coupling constant on the mass matrix is holomorphic. This holomorphicity follows because the mass matrix can be perturbed to regularize the infrared divergence. For the case of intrinsically massless mass matrix, a reducible complex representation with unequal numbers of irreducible representations and their conjugates. The author shows that loop corrections to the gauge coupling constant are non-holomorphic. The reason is an infrared momentum cutoff is used which spins holomorphicity. The results show that, for the pseudo massive case, even though there is an infrared divergence, the one- and two-loop corrections are still holomorphic. Hence, it is concluded that non-holomorphicity is caused by the unbalanced numbers of families and antifamilies in the complex representation
Quantizing higher-spin gravity in free-field variables
Campoleoni, Andrea; Fredenhagen, Stefan; Raeymaekers, Joris
2018-02-01
We study the formulation of massless higher-spin gravity on AdS3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for W N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical W N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W ∞[λ]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate W N primaries, to all orders in the large central charge expansion.
Invariant imbedding equations for linear scattering problems
International Nuclear Information System (INIS)
Apresyan, L.
1988-01-01
A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation