WorldWideScience

Sample records for gate array-based real-time

  1. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  2. Real-time field programmable gate array architecture for computer vision

    Science.gov (United States)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar

    2001-01-01

    This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low-level image processing. The field programmable gate array (FPGA)-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and it is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on dedicated very- large-scale-integrated devices to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real-time performance are discussed. Some results are presented and discussed.

  3. Field programmable gate array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo

    DEFF Research Database (Denmark)

    Thrane, Lars; Larsen, Henning Engelbrecht; Norozi, Kambiz

    2009-01-01

    efficient and compact implementation by combining the conversion to an analytic signal with a pulse shaping function without the need for extra resources as compared to the Hilbert transform method. The conversion of the analytic signal to amplitude and phase is done by use of the coordinate rotation......We demonstrate a field programmable gate-array-based real-time optical Doppler tomography system. A complex-valued bandpass filter is used for the first time in optical coherence tomography signal processing to create the analytic signal. This method simplifies the filter design, and allows...

  4. The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger

    Science.gov (United States)

    Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.

    2009-05-01

    Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.

  5. Real-Time Plasma Control Tools for Advanced Tokamak Operation

    International Nuclear Information System (INIS)

    Varandas, C. A. F.; Sousa, J.; Rodrigues, A. P.; Carvalho, B. B.; Fernandes, H.; Batista, A. J.; Cruz, N.; Combo, A.; Pereira, R. C.

    2006-01-01

    Real-time control will play an important role in the operation and scientific exploitation of the new generation fusion devices. This paper summarizes the real-time systems and diagnostics developed by the Portuguese Fusion Euratom Association based on digital signal processors and field programmable gate arrays

  6. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    International Nuclear Information System (INIS)

    Palazzo, S.; Vagliasindi, G.; Arena, P.; Murari, A.; Mazon, D.; De Maack, A.

    2010-01-01

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496x560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN - unlike software CNN implementations.

  7. Real-time gigabit DMT transmission over plastic optical fibre

    NARCIS (Netherlands)

    Lee, S.C.J.; Breyer, F.; Cárdenas, D.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    For the first time, a real-time 1.25 Gbit/s discrete multitone (DMT) transmitter implemented in a field-programmable gate array is demonstrated for use in low-cost, standard 1 mm step-index plastic optical fibre applications based on a commercial resonant-cavity LED and a large-diameter

  8. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    Directory of Open Access Journals (Sweden)

    Jong-Ryul Yang

    2016-03-01

    Full Text Available A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  9. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    Science.gov (United States)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  10. Isotropic gates and large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate

  11. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  12. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  13. Real time processor for array speckle interferometry

    International Nuclear Information System (INIS)

    Chin, G.; Florez, J.; Borelli, R.; Fong, W.; Miko, J.; Trujillo, C.

    1989-01-01

    With the construction of several new large aperture telescopes and the development of large format array detectors in the near IR, the ability to obtain diffraction limited seeing via IR array speckle interferometry offers a powerful tool. We are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element 2D complex FFT, and to average the power spectrum all within the 25 msec coherence time for speckles at near IR wavelength. The processor is a compact unit controlled by a PC with real time display and data storage capability. It provides the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with off-line methods

  14. A DP based scheme for real-time reconfiguration of solar cell arrays exposed to dynamic changing inhomogeneous illuminations

    DEFF Research Database (Denmark)

    Shi, Liping; Brehm, Robert

    2016-01-01

    The overall energy conversion efficiency of solar cell arrays is highly effected by partial shading effects. Especially for solar panel arrays installed in environments which are exposed to inhomogeneous dynamic changing illuminations such as on roof tops of electrical vehicles the overall system...... efficiency is drastically reduced. Dynamic real-time reconfiguration of the solar panel array can reduce effects on the output efficiency due to partial shading. This results in a maximized power output of the panel array when exposed to dynamic changing illuminations. The optimal array configuration...... with respect to shading patterns can be stated as a combinatorial optimization problem and this paper proposes a dynamic programming (DP) based algorithm which finds the optimal feasible solution to reconfigure the solar panel array for maximum efficiency in real-time with linear time complexity. It is shown...

  15. CMOS gate array characterization procedures

    Science.gov (United States)

    Spratt, James P.

    1993-09-01

    Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.

  16. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  17. Developing infrared array controller with software real time operating system

    Science.gov (United States)

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  18. A counting-weighted calibration method for a field-programmable-gate-array-based time-to-digital converter

    International Nuclear Information System (INIS)

    Chen, Yuan-Ho

    2017-01-01

    In this work, we propose a counting-weighted calibration method for field-programmable-gate-array (FPGA)-based time-to-digital converter (TDC) to provide non-linearity calibration for use in positron emission tomography (PET) scanners. To deal with the non-linearity in FPGA, we developed a counting-weighted delay line (CWD) to count the delay time of the delay cells in the TDC in order to reduce the differential non-linearity (DNL) values based on code density counts. The performance of the proposed CWD-TDC with regard to linearity far exceeds that of TDC with a traditional tapped delay line (TDL) architecture, without the need for nonlinearity calibration. When implemented in a Xilinx Vertix-5 FPGA device, the proposed CWD-TDC achieved time resolution of 60 ps with integral non-linearity (INL) and DNL of [−0.54, 0.24] and [−0.66, 0.65] least-significant-bit (LSB), respectively. This is a clear indication of the suitability of the proposed FPGA-based CWD-TDC for use in PET scanners.

  19. A counting-weighted calibration method for a field-programmable-gate-array-based time-to-digital converter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan-Ho, E-mail: chenyh@mail.cgu.edu.tw [Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Center for Reliability Sciences and Technologies, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2017-05-11

    In this work, we propose a counting-weighted calibration method for field-programmable-gate-array (FPGA)-based time-to-digital converter (TDC) to provide non-linearity calibration for use in positron emission tomography (PET) scanners. To deal with the non-linearity in FPGA, we developed a counting-weighted delay line (CWD) to count the delay time of the delay cells in the TDC in order to reduce the differential non-linearity (DNL) values based on code density counts. The performance of the proposed CWD-TDC with regard to linearity far exceeds that of TDC with a traditional tapped delay line (TDL) architecture, without the need for nonlinearity calibration. When implemented in a Xilinx Vertix-5 FPGA device, the proposed CWD-TDC achieved time resolution of 60 ps with integral non-linearity (INL) and DNL of [−0.54, 0.24] and [−0.66, 0.65] least-significant-bit (LSB), respectively. This is a clear indication of the suitability of the proposed FPGA-based CWD-TDC for use in PET scanners.

  20. Real-time heterogeneous video transcoding for low-power applications

    CERN Document Server

    Elarabi, Tarek; Bayoumi, Magdy

    2014-01-01

    This book introduces a novel transcoding algorithm for real time video applications, designed to overcome inter-operability problems between MPEG-2 to H.264/AVC. The new algorithm achieves 92.8% reduction in the transcoding run time at a price of an acceptable Peak Signal-to-Noise Ratio (PSNR) degradation, enabling readers to use it for real time video applications. The algorithm described is evaluated through simulation and experimental results. In addition, the authors present a hardware implementation of the new algorithm using Field Programmable Gate Array (FPGA) and Application-specific standard products (ASIC).   • Describes a novel transcoding algorithm for real time video applications, designed to overcome inter-operability problems between H.264/AVC to MPEG-2; • Implements algorithm presented using Field Programmable Gate Array (FPGA) and Application-specific Integrated Circuit (ASIC); • Demonstrates the solution to real problems, with verification through simulation and experimental result...

  1. Radiation-hardened optically reconfigurable gate array exploiting holographic memory characteristics

    Science.gov (United States)

    Seto, Daisaku; Watanabe, Minoru

    2015-09-01

    In this paper, we present a proposal for a radiation-hardened optically reconfigurable gate array (ORGA). The ORGA is a type of field programmable gate array (FPGA). The ORGA configuration can be executed by the exploitation of holographic memory characteristics even if 20% of the configuration data are damaged. Moreover, the optoelectronic technology enables the high-speed reconfiguration of the programmable gate array. Such a high-speed reconfiguration can increase the radiation tolerance of its programmable gate array to 9.3 × 104 times higher than that of current FPGAs. Through experimentation, this study clarified the configuration dependability using the impulse-noise emulation and high-speed configuration capabilities of the ORGA with corrupt configuration contexts. Moreover, the radiation tolerance of the programmable gate array was confirmed theoretically through probabilistic calculation.

  2. SWNT array resonant gate MOS transistor.

    Science.gov (United States)

    Arun, A; Campidelli, S; Filoramo, A; Derycke, V; Salet, P; Ionescu, A M; Goffman, M F

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  3. SWNT array resonant gate MOS transistor

    International Nuclear Information System (INIS)

    Arun, A; Salet, P; Ionescu, A M; Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F

    2011-01-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  4. Cluster Computing For Real Time Seismic Array Analysis.

    Science.gov (United States)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  5. Real-Time Hand-Held Magnetometer Array

    Science.gov (United States)

    2016-04-01

    measurements, we swung a target, pendulum-style, from the ceiling above the array. We could easily observe that the height of the target was varying... crystal oscillator clock signal. The Microblaze processor boots up with the program already present in its RAM at startup. MR-2104 Real-Time

  6. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  7. SWNT array resonant gate MOS transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arun, A; Salet, P; Ionescu, A M [NanoLab, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F, E-mail: marcelo.goffman@cea.fr [Laboratoire d' Electronique Moleculaire, SPEC (CNRS URA 2454), IRAMIS, CEA, Gif-sur-Yvette (France)

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  8. Comparison of gating methods for the real-time analysis of left ventricular function in nonimaging blood pool studies.

    Science.gov (United States)

    Beard, B B; Stewart, J R; Shiavi, R G; Lorenz, C H

    1995-01-01

    Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating.

  9. Real-time algorithm for acoustic imaging with a microphone array.

    Science.gov (United States)

    Huang, Xun

    2009-05-01

    Acoustic phased array has become an important testing tool in aeroacoustic research, where the conventional beamforming algorithm has been adopted as a classical processing technique. The computation however has to be performed off-line due to the expensive cost. An innovative algorithm with real-time capability is proposed in this work. The algorithm is similar to a classical observer in the time domain while extended for the array processing to the frequency domain. The observer-based algorithm is beneficial mainly for its capability of operating over sampling blocks recursively. The expensive experimental time can therefore be reduced extensively since any defect in a testing can be corrected instantaneously.

  10. FPGA-based real-time simulation of power converters of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Kokenyesi, Tamas; Varjasi, Istvan [Budapest University of Technology and Economics, Department of Automation and Applied Informatics (Hungary)], e-mail: kokenyesi.tamas@gmail.com, email: varjasi@aut.bme.hu

    2011-07-01

    This paper presents a hardware-in-the-loop testing (HIL) approach based on a field programmable gate array (FPGA) real-time simulation with real measured signals designed to reduce the cost and time for testing the main circuit of a power converter significantly. This method allows the control unit to measure its outputs on the same signal level in a completely transparent way, unlike other computer based simulation methods. As an example, a simulator for a three-phase inverter used for DC/AC conversion or frequency control is described and the simulated network illustrated. The calculation procedure and relative equations are also detailed, with simulation parameters and some measurement results being presented. It was found that the main advantage of this method is speed, which was only limited by the actual capabilities of the FPGA used. This method can be applied to a wide variety of analog circuits, reducing time to market. More complex circuits and higher frequencies could be simulated in the future with the evolution of FPGAs.

  11. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    Directory of Open Access Journals (Sweden)

    Hailong Xu

    2016-03-01

    Full Text Available Nowadays, software-defined radio (SDR has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP and Space-Frequency Adaptive Processing (SFAP are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  12. Real time processor for array speckle interferometry

    Science.gov (United States)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  13. Real-time change detection in data streams with FPGAs

    International Nuclear Information System (INIS)

    Vega, J.; Dormido-Canto, S.; Cruz, T.; Ruiz, M.; Barrera, E.; Castro, R.; Murari, A.; Ochando, M.

    2014-01-01

    Highlights: • Automatic recognition of changes in data streams of multidimensional signals. • Detection algorithm based on testing exchangeability on-line. • Real-time and off-line applicability. • Real-time implementation in FPGAs. - Abstract: The automatic recognition of changes in data streams is useful in both real-time and off-line data analyses. This article shows several effective change-detecting algorithms (based on martingales) and describes their real-time applicability in the data acquisition systems through the use of Field Programmable Gate Arrays (FPGA). The automatic event recognition system is absolutely general and it does not depend on either the particular event to detect or the specific data representation (waveforms, images or multidimensional signals). The developed approach provides good results for change detection in both the temporal evolution of profiles and the two-dimensional spatial distribution of volume emission intensity. The average computation time in the FPGA is 210 μs per profile

  14. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    Science.gov (United States)

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    Science.gov (United States)

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  16. Field programmable gate array-assigned complex-valued computation and its limits

    Energy Technology Data Exchange (ETDEWEB)

    Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com [National Instruments, Ganghoferstrasse 70b, 80339 Munich (Germany); Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien (Austria); Zwick, Wolfgang; Klier, Jochen [National Instruments, Ganghoferstrasse 70b, 80339 Munich (Germany); Wenzel, Lothar [National Instruments, 11500 N MOPac Expy, Austin, Texas 78759 (United States); Gröschl, Martin [Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien (Austria)

    2014-09-15

    We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.

  17. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Science.gov (United States)

    Lyu, Letian; Jaswal, Perveshwer; Xu, Guangyu

    2018-03-01

    Graphene field-effect transistors (GFET) hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR) and graphene sheets (GS) show comparable sensing signals to each other when gated at 1011 - 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  18. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Directory of Open Access Journals (Sweden)

    Letian Lyu

    2018-03-01

    Full Text Available Graphene field-effect transistors (GFET hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR and graphene sheets (GS show comparable sensing signals to each other when gated at 1011 – 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  19. A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer

    Science.gov (United States)

    Wei, ZHANG; Tongyu, WU; Bowen, ZHENG; Shiping, LI; Yipo, ZHANG; Zejie, YIN

    2018-04-01

    A new neutron-gamma discriminator based on the support vector machine (SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination (PSD) property. The SVM algorithm is implemented in field programmable gate array (FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.

  20. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  1. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    Science.gov (United States)

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  2. Real-time system for respiratory-cardiac gating in positron tomography

    International Nuclear Information System (INIS)

    Klein, G.J.; Reutter, B.W.; Ho, M.H.; Huesman, R.H.; Reed, J.H.

    1998-01-01

    A Macintosh-based signal processing system has been developed to support simultaneous respiratory and cardiac gating on the ECAT EXACT HR PET scanner. Using the Lab-View real-time software environment, the system reads analog inputs from a pneumatic respiratory bellows and an EGG monitor to compute an appropriate histogram memory location for the PET data. Respiratory state is determined by the bellows signal amplitude; cardiac state is based on the time since the last R-wave. These two states are used in a 2D lookup table to determine a combined respiratory-cardiac state. A 4-bit address encoding the selected histogram is directed from the system to the ECAT scanner, which dynamically switches the destination of tomograph events as respiratory-cardiac state changes. to Test the switching efficiency of the combined Macintosh/ECAT system, a rotating emission phantom was built. Acquisitions with 25 msec states while the phantom was rotating at 240 rpm demonstrate the system could effectively stop motion at this rate, with approximately 5 msec switching time between states

  3. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    International Nuclear Information System (INIS)

    Yabu-uti, B.F.C.; Roversi, J.A.

    2011-01-01

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  4. Development of a fast time-to-digital converter (TDC) using a programmable gate array

    International Nuclear Information System (INIS)

    Mine, Shun-ichi; Tokushuku, Katsuo; Yamada, Sakue.

    1994-09-01

    A fast time-to-digital converter with a 5 ns step was designed and tested by utilizing a user-programmable gate array. The stabilities against temperature and supply voltage variation were measured. A module was built with this TDC, and was successfully used in the first-level trigger system of the ZEUS detector to reject proton-beam induced background events. (author)

  5. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression

    International Nuclear Information System (INIS)

    Bukhari, W; Hong, S-M

    2015-01-01

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR + , implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR + algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR + implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR + in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR + . The experimental results show that the EKF-GPR + algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR + reduces the patient-wise RMS error to 37%, 39% and 42

  6. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression

    Science.gov (United States)

    Bukhari, W.; Hong, S.-M.

    2015-01-01

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR+, implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR+ algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR+ implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR+ in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR+. The experimental results show that the EKF-GPR+ algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR+ reduces the patient-wise RMS error to 37%, 39% and 42% in

  7. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression.

    Science.gov (United States)

    Bukhari, W; Hong, S-M

    2015-01-07

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR(+), implements a gating function without pre-specifying a particular region of the patient's breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR(+) algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR(+) implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR(+) in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR(+). The experimental results show that the EKF-GPR(+) algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR(+) reduces the patient-wise RMS error to 37%, 39% and

  8. FPGA-Based Real Time, Multichannel Emulated-Digital Retina Model Implementation

    Directory of Open Access Journals (Sweden)

    Zsolt Vörösházi

    2009-01-01

    Full Text Available The function of the low-level image processing that takes place in the biological retina is to compress only the relevant visual information to a manageable size. The behavior of the layers and different channels of the neuromorphic retina has been successfully modeled by cellular neural/nonlinear networks (CNNs. In this paper, we present an extended, application-specific emulated-digital CNN-universal machine (UM architecture to compute the complex dynamic of this mammalian retina in video real time. The proposed emulated-digital implementation of multichannel retina model is compared to the previously developed models from three key aspects, which are processing speed, number of physical cells, and accuracy. Our primary aim was to build up a simple, real-time test environment with camera input and display output in order to mimic the behavior of retina model implementation on emulated digital CNN by using low-cost, moderate-sized field-programmable gate array (FPGA architectures.

  9. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  10. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Directory of Open Access Journals (Sweden)

    Irineo Torres-Pacheco

    2010-09-01

    Full Text Available Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  11. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Science.gov (United States)

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  12. Real-time dual-polarization transmission based on hybrid optical wireless communications

    Science.gov (United States)

    Sousa, Artur N.; Alimi, Isiaka A.; Ferreira, Ricardo M.; Shahpari, Ali; Lima, Mário; Monteiro, Paulo P.; Teixeira, António L.

    2018-01-01

    We present experimental work on a gigabit-capable and long-reach hybrid coherent UWDM-PON plus FSO system for supporting different applications over the same fiber infrastructure in the mobile backhaul (MBH) networks. Also, for the first time, we demonstrate a reconfigurable real-time DSP transmission/reception of DP-QPSK signals over standard single-mode fiber (SSMF) and FSO links. The receiver presented is based on a commercial field-programmable gate array (FPGA). The considered communication links are based on 20 UDWDM channels with 625 Mbaud and 2.5 GHz channel spacing. We are able to demonstrate the lowest sampling rate required for digital coherent PON by employing four 1.25 Gsa/s ADCs using an electrical front-end receiver that offers only 1 GHz analog bandwidth. We achieved this by implementing a phase and polarization diversity coherent receiver combined with the DP-QPSK modulation formats. The system performance is estimated in terms of receiver sensitivity. The results show the viability of coherent PON and flexible dual-polarization supported by software-defined transceivers for the MBH.

  13. A field programmable gate array unit for the diagnosis and control of neoclassical tearing modes on MAST

    Energy Technology Data Exchange (ETDEWEB)

    O' Gorman, T.; Gibson, K. J.; Snape, J. A. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Naylor, G.; Huang, B.; McArdle, G. J.; Scannell, R.; Shibaev, S.; Thomas-Davies, N. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2012-10-15

    A real-time system has been developed to trigger both the MAST Thomson scattering (TS) system and the plasma control system on the phase and amplitude of neoclassical tearing modes (NTMs), extending the capabilities of the original system. This triggering system determines the phase and amplitude of a given NTM using magnetic coils at different toroidal locations. Real-time processing of the raw magnetic data occurs on a low cost field programmable gate array (FPGA) based unit which permits triggering of the TS lasers on specific amplitudes and phases of NTM evolution. The MAST plasma control system can receive a separate trigger from the FPGA unit that initiates a vertical shift of the MAST magnetic axis. Such shifts have fully removed m/n= 2/1 NTMs instabilities on a number of MAST discharges.

  14. Developing a gate-array capability at a research and development laboratory

    Science.gov (United States)

    Balch, J. W.; Current, K. W.; Magnuson, W. G., Jr.; Pocha, M. D.

    1983-03-01

    Experiences in developing a gate array capability for low volume applications in a research and development (R and D) laboratory are described. By purchasing unfinished wafers and doing the customization steps in-house. Turnaround time was shortened to as little as one week and the direct costs reduced to as low as $5K per design. Designs generally require fast turnaround (a few weeks to a few months) and very low volumes (1 to 25). Design costs must be kept at a minimum. After reviewing available commercial gate array design and fabrication services, it was determined that objectives would best be met by using existing internal integrated circuit fabrication facilities, the COMPUTERVISION interactive graphics layout system, and extensive computational capabilities. The reasons and the approach taken for; selection for a particular gate array wafer, adapting a particular logic simulation program, and how layout aids were enhanced are discussed. Testing of the customized chips is described. The content, schedule, and results of the internal gate array course recently completed are discussed. Finally, problem areas and near term plans are presented.

  15. Direct protein detection with a nano-interdigitated array gate MOSFET.

    Science.gov (United States)

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.

  16. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    We present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The design uses the flexibility of Field Programmable Gate Arrays (FPGAs) and the powerful Associative Memory Chip (ASIC) to achieve real-time performance. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain.

  17. Real-time tracking with a 3D-flow processor array

    International Nuclear Information System (INIS)

    Crosetto, D.

    1993-01-01

    The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was though to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc. with respect to the CAM approach. This report describes real-time track finding using a new computing approach technique based on the 3D-flow array processor system. This system consists of a fixed interconnection architexture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project

  18. Real-time tracking with a 3D-Flow processor array

    International Nuclear Information System (INIS)

    Crosetto, D.

    1993-06-01

    The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was thought to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc., with respect to the CAM approach. The report describes real-time track finding using new computing approach technique based on the 3D-Flow array processor system. This system consists of a fixed interconnection architecture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project

  19. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  20. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    -to-digital converters (ADCs) were used for acquiring the diagnostics data. Each ADC operates at 2 Msample/s but (for real-time operation) the acquired data is decimated in real-time on the board's Field-programmable gate array (FPGA) to a frequency defined by the control cycle time. This paper presents the ISTTOK real-time architecture and the human–machine Interface (HMI) for simplified AC discharge programming.

  1. ISTTOK real-time architecture

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    -to-digital converters (ADCs) were used for acquiring the diagnostics data. Each ADC operates at 2 Msample/s but (for real-time operation) the acquired data is decimated in real-time on the board's Field-programmable gate array (FPGA) to a frequency defined by the control cycle time. This paper presents the ISTTOK real-time architecture and the human–machine Interface (HMI) for simplified AC discharge programming

  2. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study.

    Science.gov (United States)

    Kanehira, Takahiro; Matsuura, Taeko; Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki; Ito, Yoichi M; Miyamoto, Naoki; Inoue, Tetsuya; Katoh, Norio; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2017-01-01

    To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 lung, and treatment times were evaluated. Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, Takahiro [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Ito, Yoichi M. [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Miyamoto, Naoki [Department of Medical Physics, Hokkaido University Hospital, Sapporo (Japan); Inoue, Tetsuya [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Katoh, Norio [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo (Japan); Shimizu, Shinichi [Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Umegaki, Kikuo [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Shirato, Hiroki [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan)

    2017-01-01

    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.

  4. Field Programmable Gate Array-based I and C Safety System

    International Nuclear Information System (INIS)

    Kim, Hyun Jeong; Kim, Koh Eun; Kim, Young Geul; Kwon, Jong Soo

    2014-01-01

    Programmable Logic Controller (PLC)-based I and C safety system used in the operating nuclear power plants has the disadvantages of the Common Cause Failure (CCF), high maintenance costs and quick obsolescence, and then it is necessary to develop the other platform to replace the PLC. The Field Programmable Gate Array (FPGA)-based Instrument and Control (I and C) safety system is safer and more economical than Programmable Logic Controller (PLC)-based I and C safety system. Therefore, in the future, FPGA-based I and C safety system will be able to replace the PLC-based I and C safety system in the operating and the new nuclear power plants to get benefited from its safety and economic advantage. FPGA-based I and C safety system shall be implemented and verified by applying the related requirements to perform the safety function

  5. Field Programmable Gate Array-based I and C Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jeong; Kim, Koh Eun; Kim, Young Geul; Kwon, Jong Soo [KEPCO, Daejeon (Korea, Republic of)

    2014-08-15

    Programmable Logic Controller (PLC)-based I and C safety system used in the operating nuclear power plants has the disadvantages of the Common Cause Failure (CCF), high maintenance costs and quick obsolescence, and then it is necessary to develop the other platform to replace the PLC. The Field Programmable Gate Array (FPGA)-based Instrument and Control (I and C) safety system is safer and more economical than Programmable Logic Controller (PLC)-based I and C safety system. Therefore, in the future, FPGA-based I and C safety system will be able to replace the PLC-based I and C safety system in the operating and the new nuclear power plants to get benefited from its safety and economic advantage. FPGA-based I and C safety system shall be implemented and verified by applying the related requirements to perform the safety function.

  6. Embedded system based on a real time fuzzy motor speed controller

    Directory of Open Access Journals (Sweden)

    Ebrahim Abd El-Hamid Mohamed Ramadan

    2014-06-01

    Full Text Available This paper describes an implementation of a fuzzy logic control (FLC system and a/the conventional proportional-integral (PI controller for speed control of DC motor, based on field programmable gate array (FPGA circuit. The proposed scheme is aimed to improve the tracking performance and to eliminate the load disturbance in the speed control of DC motors. The proposed fuzzy system has been applied to a permanent magnet DC motor, via a configuration of H-bridge. The fuzzy control algorithm is designed and verified with a nonlinear model, using the MATLAB® tools. Both FLC and conventional PI controller hardware are synthesized, functionally verified and implemented using Xilinx Integrated Software Environment (ISE Version 11.1i. The real time implementation of these controllers is made on Spartan-3E FPGA starter kit (XC3S500E. The practical results showed that the proposed FLC scheme has better tracking performance than the conventional PI controller for the speed control of DC motors.

  7. FPGA-based real time implementation of MPPT-controller for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A.; Rezzouk, H.; Medjahed, B. [Faculty of Sciences and Technology, Jijel University, Ouled-aissa, P.O. Box 98, Jijel 18000 (Algeria); Messai, A. [CRNB Ain Oussera, P.O. Box 180, 17200 Djelfa (Algeria)

    2011-05-15

    In this paper an FPGA-based implementation of a real time perturb and observe (P and O) algorithm for tracking the Maximum Power Point (MPP) of a photovoltaic (PV) generator is presented. The P and O algorithm has been designed using the very high-speed description language (VHDL) and implemented on Xilinx Virtex-II-Pro(xc2v1000-4fg456) - Field Programmable Gate Array (FPGA). The algorithm and the hardware have been simulated and tested by conditioning the power produced by the PV-modules installed on the rooftop of the ''Hall of Technology Laboratory'' at Jijel University. The main advantages of the developed MPPT are low cost, good velocity, acceptable reliability, and easy implementation. However, its main disadvantage is related to the fact that for fast changes in irradiance it may fail to track the maximum power point. The efficiency of the implemented P and O controller is about 96%. (author)

  8. A FPGA-based Fast Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio Telescopes

    Science.gov (United States)

    Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.

    2018-02-01

    Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.

  9. Estimation of patient-specific imaging dose for real-time tumour monitoring in lung patients during respiratory-gated radiotherapy

    Science.gov (United States)

    Shiinoki, Takehiro; Onizuka, Ryota; Kawahara, Daisuke; Suzuki, Tatsuhiko; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Hanazawa, Hideki; Shibuya, Keiko

    2018-03-01

    Purpose: To quantify the patient-specific imaging dose for real-time tumour monitoring in the lung during respiratory-gated stereotactic body radiotherapy (SBRT) in clinical cases using SyncTraX. Methods and Materials: Ten patients who underwent respiratory-gated SBRT with SyncTraX were enrolled in this study. The imaging procedure for real-time tumour monitoring using SyncTraX was simulated using Monte Carlo. We evaluated the dosimetric effect of a real-time tumour monitoring in a critical organ at risk (OAR) and the planning target volume (PTV) over the course of treatment. The relationship between skin dose and gating efficiency was also investigated. Results: For all patients, the mean D50 to the PTV, ipsilateral lung, liver, heart, spinal cord and skin was 118.3 (21.5–175.9), 31.9 (9.5–75.4), 15.4 (1.1–31.6), 10.1 (1.3–18.1), 25.0 (1.6–101.8), and 3.6 (0.9–7.1) mGy, respectively. The mean D2 was 352.0 (26.5–935.8), 146.4 (27.3–226.7), 90.7 (3.6–255.0), 42.2 (4.8–82.7), 88.0 (15.4–248.5), and 273.5 (98.3–611.6) mGy, respectively. The D2 of the skin dose was found to increase as the gating efficiency decreased. Conclusions: The additional dose to the PTV was at most 1.9% of the prescribed dose over the course of treatment for real-time tumour monitoring. For OARs, we could confirm the high dose region, which may not be susceptible to radiation toxicity. However, to reduce the skin dose from SyncTraX, it is necessary to increase the gating efficiency.

  10. Iris unwrapping using the Bresenham circle algorithm for real-time iris recognition

    Science.gov (United States)

    Carothers, Matthew T.; Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.

    2015-02-01

    An efficient parallel architecture design for the iris unwrapping process in a real-time iris recognition system using the Bresenham Circle Algorithm is presented in this paper. Based on the characteristics of the model parameters this algorithm was chosen over the widely used polar conversion technique as the iris unwrapping model. The architecture design is parallelized to increase the throughput of the system and is suitable for processing an inputted image size of 320 × 240 pixels in real-time using Field Programmable Gate Array (FPGA) technology. Quartus software is used to implement, verify, and analyze the design's performance using the VHSIC Hardware Description Language. The system's predicted processing time is faster than the modern iris unwrapping technique used today∗.

  11. New real-time image processing system for IRFPA

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-jian; LIU Shang-qian; CHENG Yu-bao

    2006-01-01

    Influenced by detectors' material,manufacturing technology etc,every detector in infrared focal plane array (IRFPA) will output different voltages even if their input radiation flux is the same.And this is called non-uniformity of IRFPA.At the same time,the high background temperature,low temperature difference between targets and background and the low responsivity of IRFPA result in low contrast of infrared images.So non-uniformity correction and image enhancement are important techniques for IRFPA imaging system.This paper proposes a new real-time infrared image processing system based on Field Programmable Gate Array(FPGA).The system implements non-uniformity correction,image enhancement and video synthesization etc.By using parallel architecture and pipeline technique,the system processing speed is as high as 50Mx12bits per second.It is appropriate greatly to a large IRFPA and a high frame frequency IRFPA imaging system.The system is miniatured in one FPGA.

  12. FPGA Implementation of Real-Time Ethernet for Motion Control

    Directory of Open Access Journals (Sweden)

    Chen Youdong

    2013-01-01

    Full Text Available This paper provides an applicable implementation of real-time Ethernet named CASNET, which modifies the Ethernet medium access control (MAC to achieve the real-time requirement for motion control. CASNET is the communication protocol used for motion control system. Verilog hardware description language (VHDL has been used in the MAC logic design. The designed MAC serves as one of the intellectual properties (IPs and is applicable to various industrial controllers. The interface of the physical layer is RJ45. The other layers have been implemented by using C programs. The real-time Ethernet has been implemented by using field programmable gate array (FPGA technology and the proposed solution has been tested through the cycle time, synchronization accuracy, and Wireshark testing.

  13. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    International Nuclear Information System (INIS)

    Hu, Kun; Wang, Xu; Li, Feng; Jin, Ge; Lu, Houbing; Liang, Futian

    2015-01-01

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability

  14. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    International Nuclear Information System (INIS)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun; Pan, Jian-Wei; Zhou, Hongyi; Ma, Xiongfeng

    2016-01-01

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  15. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)

    2016-07-15

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  16. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  17. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  18. A real-time multi-gases detection and concentration measurements based-on time-division multiplexed-lasers

    Science.gov (United States)

    Yazdandoust, Fatemeh; Tatenguem Fankem, Hervé; Milde, Tobias; Jimenez, Alvaro; Sacher, Joachim

    2018-02-01

    We report the development of a platform, based-on a Field-Programmable Gate Arrays (FPGAs) and suitable for Time-Division-Multiplexed DFB lasers. The designed platform is subsequently combined with a spectroscopy setup, for detection and quantification of species in a gas mixture. The experimental results show a detection limit of 460 ppm, an uncertainty of 0.1% and a computation time of less than 1000 clock cycles. The proposed system offers a high level of flexibility and is applicable to arbitrary types of gas-mixtures.

  19. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  20. Experiment Design Regularization-Based Hardware/Software Codesign for Real-Time Enhanced Imaging in Uncertain Remote Sensing Environment

    Directory of Open Access Journals (Sweden)

    Castillo Atoche A

    2010-01-01

    Full Text Available A new aggregated Hardware/Software (HW/SW codesign approach to optimization of the digital signal processing techniques for enhanced imaging with real-world uncertain remote sensing (RS data based on the concept of descriptive experiment design regularization (DEDR is addressed. We consider the applications of the developed approach to typical single-look synthetic aperture radar (SAR imaging systems operating in the real-world uncertain RS scenarios. The software design is aimed at the algorithmic-level decrease of the computational load of the large-scale SAR image enhancement tasks. The innovative algorithmic idea is to incorporate into the DEDR-optimized fixed-point iterative reconstruction/enhancement procedure the convex convergence enforcement regularization via constructing the proper multilevel projections onto convex sets (POCS in the solution domain. The hardware design is performed via systolic array computing based on a Xilinx Field Programmable Gate Array (FPGA XC4VSX35-10ff668 and is aimed at implementing the unified DEDR-POCS image enhancement/reconstruction procedures in a computationally efficient multi-level parallel fashion that meets the (near real-time image processing requirements. Finally, we comment on the simulation results indicative of the significantly increased performance efficiency both in resolution enhancement and in computational complexity reduction metrics gained with the proposed aggregated HW/SW co-design approach.

  1. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  2. Design and Implementation of Video Shot Detection on Field Programmable Gate Arrays

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-09-01

    Full Text Available Video has become an interactive medium of communication in everyday life. The sheer volume of video makes it extremely difficult to browse through and find the required data. Hence extraction of key frames from the video which represents the abstract of the entire video becomes necessary. The aim of the video shot detection is to find the position of the shot boundaries, so that key frames can be selected from each shot for subsequent processing such as video summarization, indexing etc. For most of the surveillance applications like video summery, face recognition etc., the hardware (real time implementation of these algorithms becomes necessary. Here in this paper we present the architecture for simultaneous accessing of consecutive frames, which are then used for the implementation of various Video Shot Detection algorithms. We also present the real time implementation of three video shot detection algorithms using the above mentioned architecture on FPGA (Field Programmable Gate Arrays.

  3. Development of a Photovoltaic Array Emulator System in Real Time Considering Climatic Conditions Variations

    Directory of Open Access Journals (Sweden)

    Camilo E. Ardila-Franco

    2013-11-01

    Full Text Available This paper presents the development of an emulator that has the ability to replicate, in real time, the behavior of photovoltaic panels (PV arrays considering different conditions of irradiation and temperature for each one. The emulator consists of a data acquisition card, a programmable source and a computer. It is based on the bypass diode model that provides a better approximation to real operating conditions. The solution is computed by a simplified equation that uses the Lambert W function, which reduces the computation time. After that, it generates a solution table of values of current as a function of voltage on terminals, temperature and irradiation. Real-time emulation is performed by means of a search algorithm in the solutions table of the closest value to the voltage imposed on the terminals.

  4. A flexible 32-channel time-to-digital converter implemented in a Xilinx Zynq-7000 field programmable gate array

    International Nuclear Information System (INIS)

    Wang, Yonggang; Kuang, Jie; Liu, Chong; Cao, Qiang; Li, Deng

    2017-01-01

    A high performance multi-channel time-to-digital converter (TDC) is implemented in a Xilinx Zynq-7000 field programmable gate array (FPGA). It can be flexibly configured as either 32 TDC channels with 9.9 ps time-interval RMS precision, 16 TDC channels with 6.9 ps RMS precision, or 8 TDC channels with 5.8 ps RMS precision. All TDCs have a 380 M Samples/second measurement throughput and a 2.63 ns measurement dead time. The performance consistency and temperature dependence of TDC channels are also evaluated. Because Zynq-7000 FPGA family integrates a feature-rich dual-core ARM based processing system and 28 nm Xilinx programmable logic in a single device, the realization of high performance TDCs on it will make the platform more widely used in time-measuring related applications.

  5. A flexible 32-channel time-to-digital converter implemented in a Xilinx Zynq-7000 field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Kuang, Jie; Liu, Chong; Cao, Qiang; Li, Deng

    2017-03-01

    A high performance multi-channel time-to-digital converter (TDC) is implemented in a Xilinx Zynq-7000 field programmable gate array (FPGA). It can be flexibly configured as either 32 TDC channels with 9.9 ps time-interval RMS precision, 16 TDC channels with 6.9 ps RMS precision, or 8 TDC channels with 5.8 ps RMS precision. All TDCs have a 380 M Samples/second measurement throughput and a 2.63 ns measurement dead time. The performance consistency and temperature dependence of TDC channels are also evaluated. Because Zynq-7000 FPGA family integrates a feature-rich dual-core ARM based processing system and 28 nm Xilinx programmable logic in a single device, the realization of high performance TDCs on it will make the platform more widely used in time-measuring related applications.

  6. Development of measurement system for radiation effect on static random access memory based field programmable gate array

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    Based on the detailed investigation in field programmable gate array(FPGA) radiation effects theory, a measurement system for radiation effects on static random access memory(SRAM)-based FPGA was developed. The testing principle of internal memory, function and power current was introduced. The hardware and software implement means of system were presented. Some important parameters for radiation effects on SRAM-based FPGA, such as configuration RAM upset section, block RAM upset section, function fault section and single event latchup section can be gained with this system. The transmission distance of the system can be over 50 m and the maximum number of tested gates can reach one million. (authors)

  7. GPU-based real-time trinocular stereo vision

    Science.gov (United States)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  8. A real-time sub-μrad laser beam tracking system

    Science.gov (United States)

    Buske, Ivo; Schragner, Ralph; Riede, Wolfgang

    2007-10-01

    We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.

  9. The implementation of real-time plasma electron density calculations on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.C., E-mail: zzc@ipp.ac.cn; Xiao, B.J.; Wang, F.; Liu, H.Q.; Yuan, Q.P.; Wang, Y.; Yang, Y.

    2016-11-15

    Highlights: • The real-time density calculation system (DCS) has been applied to the EAST 3-wave polarimeter-interferometer (POINT) system. • The new system based on Flex RIO acquires data at high speed and processes them in a short time. • Roll-over module is developed for density calculation. - Abstract: The plasma electron density is one of the most fundamental parameters in tokamak experiment. It is widely used in the plasma control system (PCS) real-time control, as well as plasma physics analysis. The 3-wave polarimeter-interferometer (POINT) system had been used to measure the plasma electron density on the EAST since last campaign. This paper will give the way to realize the real-time measurement of plasma electron density. All intermediate frequency (IF) signals after POINT system, in the 0.5–3 MHz range, stream to the real-time density calculation system (DCS) to extract the phase shift information. All the prototype hardware is based on NI Flex RIO device which contains a high speed Field Programmable Gate Array (FPGA). The original signals are sampled at 10 M Samples/s, and the data after roll-over module are transmitted to PCS by reflective memory (RFM). With this method, real-time plasma electron density data with high accuracy and low noise had been obtained in the latest EAST tokamak experiment.

  10. Firmware-only implementation of Time-to-Digital Converter (TDC) in Field-Programmable Gate Array (FPGA)

    International Nuclear Information System (INIS)

    Jinyuan Wu; Zonghan Shi; Irena Y Wang

    2003-01-01

    A Time-to-Digital Converter (TDC) implemented in general purpose field-programmable gate array (FPGA) for the Fermilab CKM experiment will be presented. The TDC uses a delay chain and register array structure to produce lower bits in addition to higher bits from a clock counter. Lacking the direct controls custom chips, the FPGA implementation of the delay chain and register array structure had to address two major problems: (1) the logic elements used for the delay chain and register array structure must be placed and routed by the FPGA compiler in a predictable manner, to assure uniformity of the TDC binning and short-term stability. (2) The delay variation due to temperature and power supply voltage must be compensated for to assure long-term stability. They used the chain structures in the existing FPGAs that the venders designed for general purpose such as carry algorithm or logic expansion to solve the first problem. To compensate for delay variations, they studied several digital compensation strategies that can be implemented in the same FPGA device. Some bench-top test results will also be presented in this document

  11. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    Science.gov (United States)

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  12. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    Science.gov (United States)

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  13. Design and development of FPGA based TCP/IP module for real time computers in nuclear power plants

    International Nuclear Information System (INIS)

    Balasri, G. Janani; Santhana Raj, A.; Gour, Aditya; Murali, N.; Manikandan, J.

    2013-01-01

    An VME (Virtual Module Europa) bus based Real Time Computer's (RTC's) are being developed for Prototype Fast Breeder Reactor (PFBR) which is in an advanced stage of construction at Kalpakkam, where the RTC's have to communicate to the central process computer on the data collected from the field instrument and receive data from the central process computer. A Distributed Digital Control System (DDSC) architecture has been designed for this communication which is based on Transfer Communication Protocol/Internet Protocol (TCP/IP) over Ethernet. Currently the RTC's uses 'Wiznet Module', a bought out chip which implements the TCP/IP stack in hardware. This project concentrates on the design and development of Field Programmable Gate Array (FPGA) based TCP/IP module that runs on Microblaze, a 32-bit softcore processor, to take care of the communication as that of Wiznet module. Advantage of switching over to FPGA based system are its reconfigurability, desired number of sockets, and the design is stable even if the FPGA's get obsolete. (author)

  14. Applications of field-programmable gate arrays in scientific research

    CERN Document Server

    Sadrozinski, Hartmut F W

    2011-01-01

    Focusing on resource awareness in field-programmable gate array (FPGA) design, Applications of Field-Programmable Gate Arrays in Scientific Research covers the principle of FPGAs and their functionality. It explores a host of applications, ranging from small one-chip laboratory systems to large-scale applications in ""big science."" The book first describes various FPGA resources, including logic elements, RAM, multipliers, microprocessors, and content-addressable memory. It then presents principles and methods for controlling resources, such as process sequencing, location constraints, and in

  15. SU-G-JeP1-08: Dual Modality Verification for Respiratory Gating Using New Real- Time Tumor Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Hanazawa, H; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Kawamura, S; Koike, M; Yuasa, Y; Uehara, T; Fujimoto, K [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The respirato ry gating system combined the TrueBeam and a new real-time tumor-tracking radiotherapy system (RTRT) was installed. The RTRT system consists of two x-ray tubes and color image intensifiers. Using fluoroscopic images, the fiducial marker which was implanted near the tumor was tracked and was used as the internal surrogate for respiratory gating. The purposes of this study was to develop the verification technique of the respiratory gating with the new RTRT using cine electronic portal image device images (EPIDs) of TrueBeam and log files of the RTRT. Methods: A patient who underwent respiratory gated SBRT of the lung using the RTRT were enrolled in this study. For a patient, the log files of three-dimensional coordinate of fiducial marker used as an internal surrogate were acquired using the RTRT. Simultaneously, the cine EPIDs were acquired during respiratory gated radiotherapy. The data acquisition was performed for one field at five sessions during the course of SBRT. The residual motion errors were calculated using the log files (E{sub log}). The fiducial marker used as an internal surrogate into the cine EPIDs was automatically extracted by in-house software based on the template-matching algorithm. The differences between the the marker positions of cine EPIDs and digitally reconstructed radiograph were calculated (E{sub EPID}). Results: Marker detection on EPID using in-house software was influenced by low image contrast. For one field during the course of SBRT, the respiratory gating using the RTRT showed the mean ± S.D. of 95{sup th} percentile E{sub EPID} were 1.3 ± 0.3 mm,1.1 ± 0.5 mm,and those of E{sub log} were 1.5 ± 0.2 mm, 1.1 ± 0.2 mm in LR and SI directions, respectively. Conclusion: We have developed the verification method of respiratory gating combined TrueBeam and new real-time tumor-tracking radiotherapy system using EPIDs and log files.

  16. Design of acoustic logging signal source of imitation based on field programmable gate array

    Science.gov (United States)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  17. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    Directory of Open Access Journals (Sweden)

    Erwin Hack

    2016-02-01

    Full Text Available In terahertz (THz materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i vanadium oxide; (ii amorphous silicon; (iii a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  18. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    Science.gov (United States)

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  19. Algorithm for real-time detection of signal patterns using phase synchrony: an application to an electrode array

    Science.gov (United States)

    Sadeghi, Saman; MacKay, William A.; van Dam, R. Michael; Thompson, Michael

    2011-02-01

    Real-time analysis of multi-channel spatio-temporal sensor data presents a considerable technical challenge for a number of applications. For example, in brain-computer interfaces, signal patterns originating on a time-dependent basis from an array of electrodes on the scalp (i.e. electroencephalography) must be analyzed in real time to recognize mental states and translate these to commands which control operations in a machine. In this paper we describe a new technique for recognition of spatio-temporal patterns based on performing online discrimination of time-resolved events through the use of correlation of phase dynamics between various channels in a multi-channel system. The algorithm extracts unique sensor signature patterns associated with each event during a training period and ranks importance of sensor pairs in order to distinguish between time-resolved stimuli to which the system may be exposed during real-time operation. We apply the algorithm to electroencephalographic signals obtained from subjects tested in the neurophysiology laboratories at the University of Toronto. The extension of this algorithm for rapid detection of patterns in other sensing applications, including chemical identification via chemical or bio-chemical sensor arrays, is also discussed.

  20. Design and realization of the real-time spectrograph controller for LAMOST based on FPGA

    Science.gov (United States)

    Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi

    2008-08-01

    A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.

  1. An FPGA Based Implementation for Real-Time Processing of the LHC Beam Loss Monitoring System's Data

    CERN Document Server

    Dehning, B; Emery, J; Ferioli, G; Zamantzas, C

    2006-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. At each turn, there will be several thousands of data to record and process in order to decide if the beams should be permitted to continue circulating or their safe extraction is necessary to be triggered. The processing involves a proper analysis of the loss pattern in time and for the decision the energy of the beam needs to be accounted. This complexity needs to be minimized by all means to maximize the reliability of the BLM system and allow a feasible implementation. In this paper, a field programmable gate array (FPGA) based implementation is explored for the real-time processing of the LHC BLM data. It gives emphasis on the highly efficient Successive Running Sums (SRS) technique used that allows many and long integration periods to be maintained for each detector's data with relatively small leng...

  2. Catheter-based time-gated near-infrared fluorescence/OCT imaging system

    Science.gov (United States)

    Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric

    2018-02-01

    We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.

  3. Gate protective device for SOS array

    Science.gov (United States)

    Meyer, J. E., Jr.; Scott, J. H.

    1972-01-01

    Protective gate device consisting of alternating heavily doped n(+) and p(+) diffusions eliminates breakdown voltages in silicon oxide on sapphire arrays caused by electrostatic discharge from person or equipment. Diffusions are easily produced during normal double epitaxial processing. Devices with nine layers had 27-volt breakdown.

  4. Real-time reconfigurable devices implemented in UV-light programmable floating-gate CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Aunet, Snorre

    2002-06-01

    This dissertation describes using theory, computer simulations and laboratory measurements a new class of real time reconfigurable UV-programmable floating-gate circuits operating with current levels typically in the pA to {mu}A range, implemented in a standard double-poly CMOS technology. A new design method based on using the same basic two-MOSFET circuits extensively is proposed, meant for improving the opportunities to make larger FGUVMOS circuitry than previously reported. By using the same basic circuitry extensively, instead of different circuitry for basic digital functions, the goal is to ease UV-programming and test and save circuitry on chip and I/O-pads. Matching of circuitry should also be improved by using this approach. Compact circuitry can be made, reducing wiring and active components. Compared to earlier FGUVMOS approaches the number of transistors for implementing the CARRY' of a FULL-ADDER is reduced from 22 to 2. A complete FULL-ADDER can be implemented using only 8 transistors. 2-MOSFET circuits able to implement CARRY', NOR, NAND and INVERT functions are demonstrated by measurements on chip, working with power supply voltages ranging from 800 mV down to 93 mV. An 8-transistor FULL-ADDER might use 2500 times less energy than a FULL-ADDER implemented using standard cells in the same 0.6 {mu}m CMOS technology while running at 1 MHz. The circuits are also shown to be a new class of linear threshold elements, which is the basic building blocks of neural networks. Theory is developed as a help in the design of floating-gate circuits.

  5. Development of portable phased array UT system for real-time flaw imaging

    International Nuclear Information System (INIS)

    Goto, M.

    1995-01-01

    Many functions and features of phased array UT technology must be useful for NDE in the industrial field. Some phased array UT systems have been developed for the inspection of nuclear pressure vessel and turbine components. However, phased array UT is still a special NDE technique and it has not been used widely in the past. The reasons of that are system size, cost, operator performance, equipment design and others. TOSHIBA has newly developed PC controlled portable phased array system to solve those problems. The portable phased array UT system is very compact and light but it is able to drive up to 32-channel linear array probe, to display real-time linear/sector B-scan, to display accumulated B-scan with an encoder and to display profile overlaid B-scan. The first applications were turbine component inspections for precise flaw investigation and flaw image data recording

  6. A control system based on field programmable gate array for papermaking sewage treatment

    International Nuclear Information System (INIS)

    Zhang, Zi Sheng; Xie, Chang; Xiong, Yan Qing; Liu, Zhi Qiang; Li, Qing

    2013-01-01

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  7. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Science.gov (United States)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  8. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2018-03-01

    Full Text Available A Low-level radio-frequency (LLRF control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  9. Introduction to embedded system design using field programmable gate arrays

    CERN Document Server

    Dubey, Rahul

    2009-01-01

    Offers information on the use of field programmable gate arrays (FPGAs) in the design of embedded systems. This text considers a hypothetical robot controller as an embedded application and weaves around it related concepts of FPGA-based digital design. It is suitable for both students and designers who have worked with microprocessors.

  10. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...

  11. Optical Doppler tomography based on a field programmable gate array

    DEFF Research Database (Denmark)

    Larsen, Henning Engelbrecht; Nilsson, Ronnie Thorup; Thrane, Lars

    2008-01-01

    We report the design of and results obtained by using a field programmable gate array (FPGA) to digitally process optical Doppler tomography signals. The processor fits into the analog signal path in an existing optical coherence tomography setup. We demonstrate both Doppler frequency and envelope...... extraction using the Hilbert transform, all in a single FPGA. An FPGA implementation has certain advantages over general purpose digital signal processor (DSP) due to the fact that the processing elements operate in parallel as opposed to the DSP. which is primarily a sequential processor....

  12. Real-time Kalman filter: Cooling of an optically levitated nanoparticle

    Science.gov (United States)

    Setter, Ashley; Toroš, Marko; Ralph, Jason F.; Ulbricht, Hendrik

    2018-03-01

    We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a field programmable gate array, is sufficient to perform closed-loop parametric feedback cooling of the center-of-mass motion to sub-Kelvin temperatures. The translational center-of-mass motion along the optical axis of the trapped nanoparticle has been cooled by 3 orders of magnitude, from a temperature of 300 K to a temperature of 162 ±15 mK.

  13. Real-time Kalman filter: cooling of an optically levitated nanoparticle

    OpenAIRE

    Setter, Ashley; Toros, Marko; Ralph, Jason; Ulbricht, Hendrik

    2018-01-01

    We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a Field Programmable Gate Array (FPGA), is sufficient to perform closed-loop parametric feedback cooling of the centre of mass motion to sub-Kelvin temperatures. The translational centre of mass motion along the optical axis of the trapped nanoparticle has been cooled by three orders of magnitude, from a temperature of 300K to a temperature of 162 +/- 1...

  14. Consideration of the accuracy by variation of respiration in real-time position management respiratory gating system

    International Nuclear Information System (INIS)

    Na, Jun Young; Kang, Tae Young; Beak, Geum Mun; Kwon, Gyeong Tae

    2013-01-01

    Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30-70% gating) in Asan Medical Center. It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy

  15. Facial Expression Emotion Detection for Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Saeed Turabzadeh

    2018-01-01

    Full Text Available Recently, real-time facial expression recognition has attracted more and more research. In this study, an automatic facial expression real-time system was built and tested. Firstly, the system and model were designed and tested on a MATLAB environment followed by a MATLAB Simulink environment that is capable of recognizing continuous facial expressions in real-time with a rate of 1 frame per second and that is implemented on a desktop PC. They have been evaluated in a public dataset, and the experimental results were promising. The dataset and labels used in this study were made from videos, which were recorded twice from five participants while watching a video. Secondly, in order to implement in real-time at a faster frame rate, the facial expression recognition system was built on the field-programmable gate array (FPGA. The camera sensor used in this work was a Digilent VmodCAM — stereo camera module. The model was built on the Atlys™ Spartan-6 FPGA development board. It can continuously perform emotional state recognition in real-time at a frame rate of 30. A graphical user interface was designed to display the participant’s video in real-time and two-dimensional predict labels of the emotion at the same time.

  16. Real-time synthetic aperture imaging: opportunities and challenges

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    the development and implementation of the signal processing stages employed in SA imaging: compression of received data acquired using codes, and beamforming. The goal was to implement the system using commercially available field programmable gate arrays. The compression filter operates on frequency modulated...... pulses with duration of up to 50 mus sampled at 70 MHz. The beamformer can process data from 256 channels at a pulse repetition frequency of 5000 Hz and produces 192 lines of 1024 complex samples in real time. The lines are described by their origin, direction, length and distance between two samples...

  17. A Real-Time Sound Field Rendering Processor

    Directory of Open Access Journals (Sweden)

    Tan Yiyu

    2017-12-01

    Full Text Available Real-time sound field renderings are computationally intensive and memory-intensive. Traditional rendering systems based on computer simulations suffer from memory bandwidth and arithmetic units. The computation is time-consuming, and the sample rate of the output sound is low because of the long computation time at each time step. In this work, a processor with a hybrid architecture is proposed to speed up computation and improve the sample rate of the output sound, and an interface is developed for system scalability through simply cascading many chips to enlarge the simulated area. To render a three-minute Beethoven wave sound in a small shoe-box room with dimensions of 1.28 m × 1.28 m × 0.64 m, the field programming gate array (FPGA-based prototype machine with the proposed architecture carries out the sound rendering at run-time while the software simulation with the OpenMP parallelization takes about 12.70 min on a personal computer (PC with 32 GB random access memory (RAM and an Intel i7-6800K six-core processor running at 3.4 GHz. The throughput in the software simulation is about 194 M grids/s while it is 51.2 G grids/s in the prototype machine even if the clock frequency of the prototype machine is much lower than that of the PC. The rendering processor with a processing element (PE and interfaces consumes about 238,515 gates after fabricated by the 0.18 µm processing technology from the ROHM semiconductor Co., Ltd. (Kyoto Japan, and the power consumption is about 143.8 mW.

  18. Design of acoustic logging signal source of imitation based on field programmable gate array

    International Nuclear Information System (INIS)

    Zhang, K; Ju, X D; Lu, J Q; Men, B Y

    2014-01-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes. (paper)

  19. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from......Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...

  20. Development of field programmable gate array-based reactor trip functions using systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Cheon; Ahmed, Ibrahim [Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

  1. Field-programmable gate array based controller for multi spot light-addressable potentiometric sensors with integrated signal correction mode

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Carl Frederik; Schusser, Sebastian; Spelthahn, Heiko [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Heinrich-Mussmann-Strasse 1, 52428 Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, 52425 Juelich (Germany); Wagner, Torsten; Yoshinobu, Tatsuo [Tohoku University, Department of Electronic Engineering, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Schoening, Michael J., E-mail: schoening@fh-aachen.de [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Heinrich-Mussmann-Strasse 1, 52428 Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, 52425 Juelich (Germany)

    2011-11-01

    Highlights: > Flexible up-scalable design of a light-addressable potentiometric sensor set-up. > Utilisation of a field-programmable gate array to address LAPS measurement spots. > Measurements in amplitude-mode and phase-mode for different pH solutions. > Amplitude, phase and frequency behaviour of LAPS for single and multiple light stimulus. > Signal calibration method by brightness control to compensated systematic errors. - Abstract: A light-addressable potentiometric sensor (LAPS) can measure the concentration of one or several analytes at the sensor surface simultaneously in a spatially resolved manner. A modulated light pointer stimulates the semiconductor structure at the area of interest and a responding photocurrent can be read out. By simultaneous stimulation of several areas with light pointers of different modulation frequencies, the read out can be performed at the same time. With the new proposed controller electronic based on a field-programmable gate array (FPGA), it is possible to control the modulation frequencies, phase shifts, and light brightness of multiple light pointers independently and simultaneously. Thus, it is possible to investigate the frequency response of the sensor, and to examine the analyte concentration by the determination of the surface potential with the help of current/voltage curves and phase/voltage curves. Additionally, the ability to individually change the light intensities of each light pointer is used to perform signal correction.

  2. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  3. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  4. Runtime verification of embedded real-time systems.

    Science.gov (United States)

    Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg

    We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.

  5. Real-time algorithms for JET hard X-ray and gamma-ray profile monitor

    International Nuclear Information System (INIS)

    Fernandes, A.; Pereira, R.C.; Valcárcel, D.F.; Alves, D.; Carvalho, B.B.; Sousa, J.; Kiptily, V.; Correia, C.M.B.A.; Gonçalves, B.

    2014-01-01

    Highlights: • Real-time tools and mechanisms are required for data handling and machine control. • A new DAQ system, ATCA based, with embedded FPGAs, was installed at JET. • Different real-time algorithms were developed for FPGAs and MARTe application. • MARTe provides the interface to CODAS and to the JET real-time network. • The new DAQ system is capable to process and deliver data in real-time. - Abstract: The steady state operation with high energy content foreseen for future generation of fusion devices will necessarily demand dedicated real-time tools and mechanisms for data handling and machine control. Consequently, the real-time systems for those devices should be carefully selected and their capabilities previously established. The Joint European Torus (JET) is undertaking an enhancement program, which includes tests of relevant real-time tools for the International Thermonuclear Experimental Reactor (ITER), a key experiment for future fusion devices. In these enhancements a new Data AcQuisition (DAQ) system is included, with real-time processing capabilities, for the JET hard X-ray and gamma-ray profile monitor. The DAQ system is composed of dedicated digitizer modules with embedded Field Programmable Gate Array (FPGA) devices. The interface between the DAQ system, the JET control and data acquisition system and the JET real-time data network is provided by the Multithreaded Application Real-Time executor (MARTe). This paper describes the real-time algorithms, developed for both digitizers’ FPGAs and MARTe application, capable of meeting the DAQ real-time requirements. The new DAQ system, including the embedded real-time features, was commissioned during the 2012 experiments. Results achieved with these real-time algorithms during experiments are presented

  6. Real-time algorithms for JET hard X-ray and gamma-ray profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A., E-mail: anaf@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pereira, R.C.; Valcárcel, D.F.; Alves, D.; Carvalho, B.B.; Sousa, J. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Kiptily, V. [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Correia, C.M.B.A. [Centro de Instrumentação, Dept. de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)

    2014-03-15

    Highlights: • Real-time tools and mechanisms are required for data handling and machine control. • A new DAQ system, ATCA based, with embedded FPGAs, was installed at JET. • Different real-time algorithms were developed for FPGAs and MARTe application. • MARTe provides the interface to CODAS and to the JET real-time network. • The new DAQ system is capable to process and deliver data in real-time. - Abstract: The steady state operation with high energy content foreseen for future generation of fusion devices will necessarily demand dedicated real-time tools and mechanisms for data handling and machine control. Consequently, the real-time systems for those devices should be carefully selected and their capabilities previously established. The Joint European Torus (JET) is undertaking an enhancement program, which includes tests of relevant real-time tools for the International Thermonuclear Experimental Reactor (ITER), a key experiment for future fusion devices. In these enhancements a new Data AcQuisition (DAQ) system is included, with real-time processing capabilities, for the JET hard X-ray and gamma-ray profile monitor. The DAQ system is composed of dedicated digitizer modules with embedded Field Programmable Gate Array (FPGA) devices. The interface between the DAQ system, the JET control and data acquisition system and the JET real-time data network is provided by the Multithreaded Application Real-Time executor (MARTe). This paper describes the real-time algorithms, developed for both digitizers’ FPGAs and MARTe application, capable of meeting the DAQ real-time requirements. The new DAQ system, including the embedded real-time features, was commissioned during the 2012 experiments. Results achieved with these real-time algorithms during experiments are presented.

  7. A real-time spike sorting method based on the embedded GPU.

    Science.gov (United States)

    Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng

    2017-07-01

    Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.

  8. Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems.

    Science.gov (United States)

    da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre

    2012-08-13

    By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.

  9. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A. [Physics and Astronomy Department, University of California, Los Angeles, California 90095 (United States); Bobrek, M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006 (United States)

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.

  10. Addressing BI Transactional Flows in the Real-Time Enterprise Using GoldenGate TDM

    Science.gov (United States)

    Pareek, Alok

    It's time to visit low latency and reliable real-time (RT) infrastructures to support next generation BI applications instead of continually debating the need and notion of real-time. The last few years have illuminated some key paradigms affecting data management. The arguments put forth to move away from traditional DBMS architectures have proven persuasive - and specialized architectural data stores are being adopted in the industry [1]. The change from traditional database pull methods towards intelligent routing/push models is underway, causing applications to be redesigned, redeployed, and re-architected. One direct result of this is that despite original warnings about replication [2] - enterprises continue to deploy multiple replicas to support both performance, and high availability of RT applications, with an added complexity around manageability of heterogeneous computing systems. The enterprise is overflowing with data streams that require instantaneous processing and integration, to deliver faster visibility and invoke conjoined actions for RT decision making, resulting in deployment of advanced BI applications as can be seen by stream processing over RT feeds from operational systems for CEP [3]. Given these various paradigms, a multitude of new challenges and requirements have emerged, thereby necessitating different approaches to management of RT applications for BI. The purpose of this paper is to offer a viewpoint on how RT affects critical operational applications, evolves the weight of non-critical applications, and pressurizes availability/data-movement requirements in the underlying infrastructure. I will discuss how the GoldenGate TDM platform is being deployed within the RTE to manage some of these challenges particularly around RT dissemination of transactional data to reduce latency in data integration flows, to enable real-time reporting/DW, and to increase availability of underlying operational systems. Real world case studies will be

  11. FPGA-based multisensor real-time machine vision for banknote printing

    Science.gov (United States)

    Li, Rui; Türke, Thomas; Schaede, Johannes; Willeke, Harald; Lohweg, Volker

    2009-02-01

    Automatic sheet inspection in banknote production has been used as a standard quality control tool for more than a decade. As more and more print techniques and new security features are established, total quality in bank note printing must be guaranteed. This aspect has a direct impact on the research and development for bank note inspection systems in general in the sense of technological sustainability. It is accepted, that print defects are generated not only by printing parameter changes, but also by mechanical machine parameter changes, which will change unnoticed in production. Therefore, a new concept for a multi-sensory adaptive learning and classification model based on Fuzzy-Pattern- Classifiers for data inspection and machine conditioning is proposed. A general aim is to improve the known inspection techniques and propose an inspection methodology that can ensure a comprehensive quality control of the printed substrates processed by printing presses, especially printing presses which are designed to process substrates used in the course of the production of banknotes, security documents and others. Therefore, the research and development work in this area necessitates a change in concept for banknote inspection in general. In this paper a new generation of FPGA (Field Programmable Gate Array) based real time inspection technology is presented, which allows not only colour inspection on banknote sheets, but has also the implementation flexibility for various inspection algorithms for security features, such as window threads, embedded threads, OVDs, watermarks, screen printing etc., and multi-sensory data processing. A variety of algorithms is described in the paper, which are designed for and implemented on FPGAs. The focus is based on algorithmic approaches.

  12. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  13. SU-F-J-44: Development of a Room Laser Based Real-Time Alignment Monitoring System Using An Array of Photodiodes

    International Nuclear Information System (INIS)

    Noh, Y; Kim, T; Kang, S; Kim, D; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2016-01-01

    Purpose: To develop a real-time alignment monitoring system (RAMS) to compensate for the limitations of the conventional room laser based alignment system, and to verify the feasibility of the RAMS. Methods: The RAMS was composed of a room laser sensing array (RLSA), an analog-todigital converter, and a control PC. In the RLSA, seven photodiodes (each in 1 mm width) are arranged in a pattern that the RAMS provides alignment in 1 mm resolution. It works based on detecting laser light aligned on one of photodiodes. When misaligned, the laser would match with different photodiode(s) giving signal at unexpected location. Thus, how much displaced can be determined. To verify the reproducibility of the system with respect to time as well as repeated set-ups, temporal reproducibility and repeatability test was conducted. The accuracy of the system was tested by obtaining detection signals with varying laser-match positions. Results: The signal of the RAMS was found to be stable with respect to time. The repeatability test resulted in a maximum coefficient of variance of 1.14%, suggesting that the signal of the RAMS was stable over repeated set-ups. In the accuracy test, signals between when the laser was aligned and notaligned with any of sensors could be distinguished by signal intensity. The signals of not-aligned sensors were always below 75% of the signal of the aligned sensor. It was confirmed that the system could detect 1 mm of movement by monitoring the pattern of signals, and could observe the movement of the system in real-time. Conclusion: We developed a room laser based alignment monitoring system. The feasibility test verified that the system is capable of quantitative alignment monitoring in real time. The system is relatively simple, not expensive, and considered to be easily incorporated into conventional room laser systems for real-time alignment monitoring. This research was supported by the Mid-career Researcher Program through NRF funded by the

  14. Evaluation of accuracy about 2D vs 3D real-time position management system based on couch rotation when non-coplanar respiratory gated radiation therapy

    International Nuclear Information System (INIS)

    Kwon, Kyung Tae; Kim, Jung Soo; Sim, Hyun Sun; Min, Jung Whan; Son, Soon Yong; Han, Dong Kyoon

    2016-01-01

    Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change

  15. Evaluation of accuracy about 2D vs 3D real-time position management system based on couch rotation when non-coplanar respiratory gated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung Tae; Kim, Jung Soo [Dongnam Health University, Suwon (Korea, Republic of); Sim, Hyun Sun [College of Health Sciences, Korea University, Seoul (Korea, Republic of); Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of); Son, Soon Yong [Wonkwang Health Science University, Iksan (Korea, Republic of); Han, Dong Kyoon [College of Health Sciences, EulJi University, Daejeon (Korea, Republic of)

    2016-12-15

    Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.

  16. Automatic real-time surveillance of eye position and gating for stereotactic radiotherapy of uveal melanoma

    International Nuclear Information System (INIS)

    Petersch, Bernhard; Bogner, Joachim; Dieckmann, Karin; Poetter, Richard; Georg, Dietmar

    2004-01-01

    A new prototype (hardware and software) for monitoring eye movements using a noninvasive technique for gated linac-based stereotactic radiotherapy (SRT) of uveal melanoma was developed. The prototype was tested within the scope of a study for 11 patients. Eye immobilization was achieved by having the patient fixate a light source integrated into the system. The system is used in conjunction with a Head and Neck mask system for immobilization, and uses infrared tracking technology for positioning (both BrainLAB AG Heimstetten/Germany). It was used during CT and MR image acquisition as well as during all of five treatment fractions (6 MeV, 5x12 Gy to 80% isodose) to guarantee identical patient setup and eye rotational state during treatment planning and treatment delivery. Maximum temporal and angular deviations tolerated during treatment delivery can be chosen by the physician, the radiation then being interrupted automatically and instantaneously if those criteria are being exceeded during irradiation. A graphical user interface displays life video images of the treated eye and information about the current and previous rotational deviation of the eye from its reference treatment position. The physician thus has online access to data directly linked to the success of the treatment and possible side effects. Mean angular deviations during CT/MR scans and treatment deliveries ranged from 1.61 deg. to 3.64 deg. (standard deviations 0.87 deg. to 2.09 deg.) which is in accordance with precision requirements for SRT. Typical situations when preset deviation criteria were exceeded are slow drifts (fatigue), sudden large eye movements (irritation), or if patients closed their eyes (fatigue). In these cases radiation was reliably interrupted by the gating system. In our clinical setup the novel system for computer-controlled eye movement gated treatments was well tolerated by all patients. The system yields quantitative real-time information about the eye's rotational state

  17. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane (Australia); Streed, Erik W. [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Institute for Glycomics, Griffith University, Gold Coast (Australia)

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  18. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  19. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    Science.gov (United States)

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  20. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  1. Evaluation of highly accelerated real-time cardiac cine MRI in tachycardia.

    Science.gov (United States)

    Bassett, Elwin C; Kholmovski, Eugene G; Wilson, Brent D; DiBella, Edward V R; Dosdall, Derek J; Ranjan, Ravi; McGann, Christopher J; Kim, Daniel

    2014-02-01

    Electrocardiogram (ECG)-gated breath-hold cine MRI is considered to be the gold standard test for the assessment of cardiac function. However, it may fail in patients with arrhythmia, impaired breath-hold capacity and poor ECG gating. Although ungated real-time cine MRI may mitigate these problems, commercially available real-time cine MRI pulse sequences using parallel imaging typically yield relatively poor spatiotemporal resolution because of their low image acquisition efficiency. As an extension of our previous work, the purpose of this study was to evaluate the diagnostic quality and accuracy of eight-fold-accelerated real-time cine MRI with compressed sensing (CS) for the quantification of cardiac function in tachycardia, where it is challenging for real-time cine MRI to provide sufficient spatiotemporal resolution. We evaluated the performances of eight-fold-accelerated cine MRI with CS, three-fold-accelerated real-time cine MRI with temporal generalized autocalibrating partially parallel acquisitions (TGRAPPA) and ECG-gated breath-hold cine MRI in 21 large animals with tachycardia (mean heart rate, 104 beats per minute) at 3T. For each cine MRI method, two expert readers evaluated the diagnostic quality in four categories (image quality, temporal fidelity of wall motion, artifacts and apparent noise) using a Likert scale (1-5, worst to best). One reader evaluated the left ventricular functional parameters. The diagnostic quality scores were significantly different between the three cine pulse sequences, except for the artifact level between CS and TGRAPPA real-time cine MRI. Both ECG-gated breath-hold cine MRI and eight-fold accelerated real-time cine MRI yielded all four scores of ≥ 3.0 (acceptable), whereas three-fold-accelerated real-time cine MRI yielded all scores below 3.0, except for artifact (3.0). The left ventricular ejection fraction (LVEF) measurements agreed better between ECG-gated cine MRI and eight-fold-accelerated real-time cine MRI

  2. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    Science.gov (United States)

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  3. A real time sorting algorithm to time sort any deterministic time disordered data stream

    Science.gov (United States)

    Saini, J.; Mandal, S.; Chakrabarti, A.; Chattopadhyay, S.

    2017-12-01

    In new generation high intensity high energy physics experiments, millions of free streaming high rate data sources are to be readout. Free streaming data with associated time-stamp can only be controlled by thresholds as there is no trigger information available for the readout. Therefore, these readouts are prone to collect large amount of noise and unwanted data. For this reason, these experiments can have output data rate of several orders of magnitude higher than the useful signal data rate. It is therefore necessary to perform online processing of the data to extract useful information from the full data set. Without trigger information, pre-processing on the free streaming data can only be done with time based correlation among the data set. Multiple data sources have different path delays and bandwidth utilizations and therefore the unsorted merged data requires significant computational efforts for real time manifestation of sorting before analysis. Present work reports a new high speed scalable data stream sorting algorithm with its architectural design, verified through Field programmable Gate Array (FPGA) based hardware simulation. Realistic time based simulated data likely to be collected in an high energy physics experiment have been used to study the performance of the algorithm. The proposed algorithm uses parallel read-write blocks with added memory management and zero suppression features to make it efficient for high rate data-streams. This algorithm is best suited for online data streams with deterministic time disorder/unsorting on FPGA like hardware.

  4. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating

    DEFF Research Database (Denmark)

    Uribe, Sergio; Beerbaum, Philipp; Sørensen, Thomas Sangild

    2009-01-01

    Four-dimensional (4D) flow imaging has been used to study flow patterns and pathophysiology, usually focused on specific thoracic vessels and cardiac chambers. Whole-heart 4D flow at high measurement accuracy covering the entire thoracic cardiovascular system would be desirable to simplify...... and improve hemodynamic assessment. This has been a challenge because compensation of respiratory motion is difficult to achieve, but it is paramount to limit artifacts and improve accuracy. In this work we propose a self-gating technique for respiratory motion-compensation integrated into a whole-heart 4D...... flow acquisition that overcomes these challenges. Flow components are measured in all three directions for each pixel over the complete cardiac cycle, and 1D volume projections are obtained at certain time intervals for respiratory gating in real time during the acquisition. The technique was tested...

  5. Solar cell array for driving MOS type FET gate. MOS gata EFT gate kudoyo taiyo denchi array

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S; Yoshida, K; Yoshiki, T; Yamaguchi, Y; Nakayama, T; Owada, Y

    1990-03-12

    There has been a semiconductor relay utilizing MOS type FET (field effect transistor). Concerning the solar cells used for a semiconductor relay, it is required to separate the cells by forming insulating oxide films first and to form semiconductor layers by using many mask patterns, since a crystal semiconductor is used. Thereby its manufacturing process becomes complicated and laminification as well as thin film formation are difficult, In view of the above, this invention proposes a solar cell array for driving a MOS type FET gate consisting of amorphous silicon semiconductor cells, which are used for a semiconductor relay with solar cells generating electromotive power by the light of a light emitting diode and a MOS type FET that the power output of the above solar cells is supplied to its gate, and which are connected in series with many steps. 9 figs.

  6. The Real-Time Dose Measurement Scintillating Fiber Array for Brachytherapy Procedures

    Science.gov (United States)

    Tynes, Lawrence

    2007-03-01

    Brachytherapy is a treatment modality that uses tiny radioactive sources (few mm in length) by delivering enough doses to kill cancer tumors or plaque build-up. The type of sources used in hospitals include both gamma and beta emitters. Presently, the technique suffers from not having a single detector with the capability of providing accurate dose distribution information within sub-mm accuracy. The current standard is based primarily on well chambers and film dosimetry. The Center for Advanced Medical Instrumentation (CAMI) at Hampton University is developing a Scintillating Fiber Based Beta Detector prototype in collaboration with the National Institute for Standards and Technology (NIST) to address this problem. The device is composed of an array of 1x1 mm^2 scintillating fibers optically coupled to photo-multiplier tubes for photon-to-current conversion. A CAMAC LabView based data acquisition system is used for real time data collection and histogramming, data analysis. A set of data were collected at the nearby Bon Secours DePaul Medical Center using a GammaMed 12i HDR after-loader housing a 6.62 mCi Ir-192 source. Preliminary comparison between our device and film dosimetry will be discussed.

  7. Implementation of a real-time adaptive digital shaping for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Regadío, Alberto, E-mail: aregadio@srg.aut.uah.es [Department of Computer Engineering, Space Research Group, Universidad de Alcalá, 28805 Alcalá de Henares (Spain); Electronic Technology Area, Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz (Spain); Sánchez-Prieto, Sebastián, E-mail: ssanchez@srg.aut.uah.es [Department of Computer Engineering, Space Research Group, Universidad de Alcalá, 28805 Alcalá de Henares (Spain); Prieto, Manuel, E-mail: mprieto@srg.aut.uah.es [Department of Computer Engineering, Space Research Group, Universidad de Alcalá, 28805 Alcalá de Henares (Spain); Tabero, Jesús, E-mail: taberogj@inta.es [Electronic Technology Area, Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz (Spain)

    2014-01-21

    This paper presents the structure, design and implementation of a new adaptive digital shaper for processing the pulses generated in nuclear particle detectors. The proposed adaptive algorithm has the capacity to automatically adjust the coefficients for shaping an input signal with a desired profile in real-time. Typical shapers such as triangular, trapezoidal or cusp-like ones can be generated, but more exotic unipolar shaping could also be performed. A practical prototype was designed, implemented and tested in a Field Programmable Gate Array (FPGA). Particular attention was paid to the amount of internal FPGA resources required and to the sampling rate, making the design as simple as possible in order to minimize power consumption. Lastly, its performance and capabilities were measured using simulations and a real benchmark.

  8. Implementation of a real-time adaptive digital shaping for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Regadío, Alberto; Sánchez-Prieto, Sebastián; Prieto, Manuel; Tabero, Jesús

    2014-01-01

    This paper presents the structure, design and implementation of a new adaptive digital shaper for processing the pulses generated in nuclear particle detectors. The proposed adaptive algorithm has the capacity to automatically adjust the coefficients for shaping an input signal with a desired profile in real-time. Typical shapers such as triangular, trapezoidal or cusp-like ones can be generated, but more exotic unipolar shaping could also be performed. A practical prototype was designed, implemented and tested in a Field Programmable Gate Array (FPGA). Particular attention was paid to the amount of internal FPGA resources required and to the sampling rate, making the design as simple as possible in order to minimize power consumption. Lastly, its performance and capabilities were measured using simulations and a real benchmark

  9. Quality assurance for respiratory-gated stereotactic body radiation therapy in lung using real-time position management system

    International Nuclear Information System (INIS)

    Nakaguchi, Yuji; Maruyama, Masato; Araki, Fujio; Kouno, Tomohiro

    2012-01-01

    In this study, we investigated comprehensive quality assurance (QA) for respiratory-gated stereotactic body radiation therapy (SBRT) in the lungs using a real-time position management system (RPM). By using the phantom study, we evaluated dose liberality and reproducibility, and dose distributions for low monitor unite (MU), and also checked the absorbed dose at isocenter and dose profiles for the respiratory-gated exposure using RPM. Furthermore, we evaluated isocenter dose and dose distributions for respiratory-gated SBRT plans in the lungs using RPM. The maximum errors for the dose liberality were 4% for 2 MU, 1% for 4-10 MU, and 0.5% for 15 MU and 20 MU. The dose reproducibility was 2% for 1 MU and within 0.1% for 5 MU or greater. The accuracy for dose distributions was within 2% for 2 MU or greater. The dose error along a central axis for respiratory cycles of 2, 4, and 6 sec was within 1%. As for geometric accuracy, 90% and 50% isodose areas for the respiratory-gated exposure became almost 1 mm and 2 mm larger than without gating, respectively. For clinical lung-SBRT plans, the point dose at isocenter agreed within 2.1% with treatment planning system (TPS). And the pass rates of all plans for TPS were more than 96% in the gamma analysis (3 mm/3%). The geometrical accuracy and the dose accuracy of TPS calculation algorithm are more important for the dose evaluation at penumbra region for respiratory-gated SBRT in lung using RPM. (author)

  10. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system

    Science.gov (United States)

    Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.

    2015-11-01

    Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.

  11. Real-Time Hand Position Sensing Technology Based on Human Body Electrostatics

    Directory of Open Access Journals (Sweden)

    Kai Tang

    2018-05-01

    Full Text Available Non-contact human-computer interactions (HCI based on hand gestures have been widely investigated. Here, we present a novel method to locate the real-time position of the hand using the electrostatics of the human body. This method has many advantages, including a delay of less than one millisecond, low cost, and does not require a camera or wearable devices. A formula is first created to sense array signals with five spherical electrodes. Next, a solving algorithm for the real-time measured hand position is introduced and solving equations for three-dimensional coordinates of hand position are obtained. A non-contact real-time hand position sensing system was established to perform verification experiments, and the principle error of the algorithm and the systematic noise were also analyzed. The results show that this novel technology can determine the dynamic parameters of hand movements with good robustness to meet the requirements of complicated HCI.

  12. TH-CD-209-11: Simulation Study of Real-Time-Image Gating On Spot Scanning Proton Therapy for Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Inoue, T; Katoh, N [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Matsuzaki, Y; Fujii, Y; Fujii, T; Miyamoto, N [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Shimizu, S; Shirato, H [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To study the impact of a real-time-image gating on spot scanning proton therapy for lung tumors and to examine the suitable size of the gating window (GW). Methods: We investigated a real-time-image gated proton therapy (RGPT), in which two fluoroscopic units monitor a gold sphere fiducial in real-time, and the proton beam is irradiated only when the marker enters within the pre-assigned GW. We designed 5 treatment plans for 7 lung cancer patients: RGPT with a GW of ±1, 2, 5, and 8 mm and free-breathing proton therapy (FBPT) using the end-exhale and average images of 4-dimensional (4D) CT, respectively. 70 Gy(RBE)/10fr was prescribed to 99% of the targets. The time-series data of the three-dimensional marker positions (RTRT data) were grouped into 10 phases to associate with the phases of 4DCT. The 4D dose distributions were calculated using the plan information, RTRT Data, 4DCT, and modeled accelerator pattern. The dose distribution in each respiratory phase was deformed into the end-exhale CT. The D99 and D5-95 of CTV (with a criteria of D99>95% and D5-95<5%), V20 of Lung-GTV, and treatment times were evaluated. Results: GWs ≤ ±2 mm satisfied the criteria of CTV in all cases, whereas GWs ≥ ±5 mm did not satisfy the criteria in some cases. The V20 was reduced by more than 18.9% (relative to FBPT) for GW ≤ ±2 mm, but equaled or even surpassed the FBPT for GWs ≥ ±5 mm. The irradiation times for the ±1, 2, 5, and 8 mm GWs and FBPT were 372.4±208.3, 215.2±51.5, 180.9±31.6, 178.4±21.2, and 140.1±15.2 s, respectively. The GW of ±1 mm caused large variation in irradiation time among the patients. Conclusion: In RGPT for lung cancer, the most suitable GW, in terms of good dose preservation without prolonging the therapeutic beam delivery, is ±2 mm.

  13. Physiologically gated microbeam radiation using a field emission x-ray source array

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, Pavel, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599 (United States); Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 (United States); Yuan, Hong [Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599 (United States); Zhang, Lei [Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States); Zhou, Otto, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States)

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only

  14. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    Science.gov (United States)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  15. A Fastbus module for trigger applications based on a digital signal processor and on programmable gate arrays

    International Nuclear Information System (INIS)

    Battaiotto, P.; Colavita, A.; Fratnik, F.; Lanceri, L.; Udine Univ.

    1991-01-01

    The new generation of DSP microprocessors based on RISC and Harvard-like architectures can conveniently take the place of specially built processors in fast trigger circuits for high-energy physics experiments. Presently available programmable gate arrays are well matched to them in speed and contribute to simplify the design of trigger circuits. Using these components, we designed and constructed a Fastbus module. We describe an application for the total-energy trigger of DELPHI, performing the readout of digitized calorimeter trigger data and some simple computations in less than 3 μs. (orig.)

  16. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    Science.gov (United States)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  17. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  18. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  19. Field programmable gate array based reconfigurable scanning probe/optical microscope.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Dzegede, Zechariah K; Hiester, Justin C; Kim, Cliff; Sánchez, Erik J

    2011-10-01

    The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed.

  20. Development of multi-channel gated integrator and PXI-DAQ system for nuclear detector arrays

    International Nuclear Information System (INIS)

    Kong Jie; Su Hong; Chen Zhiqiang; Dong Chengfu; Qian Yi; Gao Shanshan; Zhou Chaoyang; Lu Wan; Ye Ruiping; Ma Junbing

    2010-01-01

    A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable GI controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz.

  1. FPGA cluster for high-performance AO real-time control system

    Science.gov (United States)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  2. Gating based on internal/external signals with dynamic correlation updates

    International Nuclear Information System (INIS)

    Wu Huanmei; Zhao Qingya; Berbeco, Ross I; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B

    2008-01-01

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  3. Gating based on internal/external signals with dynamic correlation updates

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [Purdue School of Engineering and Technology, Indiana University School of Informatics, IUPUI, Indianapolis, IN (United States); Zhao Qingya [School of Health Sciences, Purdue University, West Lafayette, IN (United States); Berbeco, Ross I [Department of Radiation Oncology, Dana-Farber/Brigham and Womens Cancer Center and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [NTT East-Japan Sapporo Hospital, Sapporo (Japan); Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, School of Medicine, University of California, San Diego, CA (United States)], E-mail: hw9@iupui.edu, E-mail: sbjiang@ucsd.edu

    2008-12-21

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  4. Application of Field programmable Gate Array to Digital Signal ...

    African Journals Online (AJOL)

    Journal of Research in National Development ... This work shows how one parallel technology Field Programmable Gate Array (FPGA) can be applied to digital signal processing problem to increase computational speed. ... In this research work FPGA typically exploits parallelism because FPGA is a parallel device. With the ...

  5. Real-time odor discrimination using a bioelectronic sensor array based on the insect electroantennogram

    International Nuclear Information System (INIS)

    Myrick, A J; Hetling, J R; Park, K-C; Baker, T C

    2008-01-01

    Current trends in artificial nose research are strongly influenced by knowledge of biological olfactory systems. Insects have evolved over millions of years to detect and maneuver toward a food source or mate, or away from predators. The insect olfactory system is able to identify volatiles on a time scale that matches their ability to maneuver. Here, biological olfactory sense organs, insect antennae, have been exploited in a hybrid-device biosensor, demonstrating the ability to identify individual strands of odor in a plume passing over the sensor on a sub-second time scale. A portable system was designed to utilize the electrophysiological responses recorded from a sensor array composed of male or female antennae from four or eight different species of insects (a multi-channel electroantennogram, EAG). A computational analysis strategy that allows discrimination between odors in real time is described in detail. Following a training period, both semi-parametric and k-nearest neighbor (k-NN) classifiers with the ability to discard ambiguous responses are applied toward the classification of up to eight odors. EAG responses to individual strands in an odor plume are classified or discarded as ambiguous with a delay (sensor response to classification report) on the order of 1 s. The dependence of classification error rate on several parameters is described. Finally, the performance of the approach is compared to that of a minimal conditional risk classifier

  6. Measurement of time delay for a prospectively gated CT simulator.

    Science.gov (United States)

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  7. Implementing a Microcontroller Watchdog with a Field-Programmable Gate Array (FPGA)

    Science.gov (United States)

    Straka, Bartholomew

    2013-01-01

    Reliability is crucial to safety. Redundancy of important system components greatly enhances reliability and hence safety. Field-Programmable Gate Arrays (FPGAs) are useful for monitoring systems and handling the logic necessary to keep them running with minimal interruption when individual components fail. A complete microcontroller watchdog with logic for failure handling can be implemented in a hardware description language (HDL.). HDL-based designs are vendor-independent and can be used on many FPGAs with low overhead.

  8. Real-time stereo matching architecture based on 2D MRF model: a memory-efficient systolic array

    Directory of Open Access Journals (Sweden)

    Park Sungchan

    2011-01-01

    Full Text Available Abstract There is a growing need in computer vision applications for stereopsis, requiring not only accurate distance but also fast and compact physical implementation. Global energy minimization techniques provide remarkably precise results. But they suffer from huge computational complexity. One of the main challenges is to parallelize the iterative computation, solving the memory access problem between the big external memory and the massive processors. Remarkable memory saving can be obtained with our memory reduction scheme, and our new architecture is a systolic array. If we expand it into N's multiple chips in a cascaded manner, we can cope with various ranges of image resolutions. We have realized it using the FPGA technology. Our architecture records 19 times smaller memory than the global minimization technique, which is a principal step toward real-time chip implementation of the various iterative image processing algorithms with tiny and distributed memory resources like optical flow, image restoration, etc.

  9. Test bed for real-time image acquisition and processing systems based on FlexRIO, CameraLink, and EPICS

    International Nuclear Information System (INIS)

    Barrera, E.; Ruiz, M.; Sanz, D.; Vega, J.; Castro, R.; Juárez, E.; Salvador, R.

    2014-01-01

    Highlights: • The test bed allows for the validation of real-time image processing techniques. • Offers FPGA (FlexRIO) image processing that does not require CPU intervention. • Is fully compatible with the architecture of the ITER Fast Controllers. • Provides flexibility and easy integration in distributed experiments based on EPICS. - Abstract: Image diagnostics are becoming standard ones in nuclear fusion. At present, images are typically analyzed off-line. However, real-time processing is occasionally required (for instance, hot-spot detection or pattern recognition tasks), which will be the objective for the next generation of fusion devices. In this paper, a test bed for image generation, acquisition, and real-time processing is presented. The proposed solution is built using a Camera Link simulator, a Camera Link frame-grabber, a PXIe chassis, and offers software interface with EPICS. The Camera Link simulator (PCIe card PCIe8 DVa C-Link from Engineering Design Team) generates simulated image data (for example, from video-movies stored in fusion databases) using a Camera Link interface to mimic the frame sequences produced with diagnostic cameras. The Camera Link frame-grabber (FlexRIO Solution from National Instruments) includes a field programmable gate array (FPGA) for image acquisition using a Camera Link interface; the FPGA allows for the codification of ad-hoc image processing algorithms using LabVIEW/FPGA software. The frame grabber is integrated in a PXIe chassis with system architecture similar to that of the ITER Fast Controllers, and the frame grabber provides a software interface with EPICS to program all of its functionalities, capture the images, and perform the required image processing. The use of these four elements allows for the implementation of a test bed system that permits the development and validation of real-time image processing techniques in an architecture that is fully compatible with that of the ITER Fast Controllers

  10. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    Science.gov (United States)

    Szplet, R.; Kalisz, J.; Jachna, Z.

    2009-02-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.

  11. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    International Nuclear Information System (INIS)

    Szplet, R; Kalisz, J; Jachna, Z

    2009-01-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second

  12. Profiling the miRNAs for Early Cancer Detection using DNA-based Logic Gates

    Directory of Open Access Journals (Sweden)

    Tahereh Yahya

    2017-12-01

    Full Text Available Abstract Background: DNA-based computing is an emerging research aspect that enables the in-vivo computation and decision making with significant correctness. Recent papers show that the expression level of miRNAs are related to the progress status of some diseases such as cancers and DNA computing is introduced as a low cost and concise technique for detection of these biomarkers. In this paper, DNA-based logic gates are implemented in the laboratory to detect the level of miR-21 as the biomarker of cancer. Materials and Methods: At the first, required strands for designing DNA gates are synthesized. Then, double stranded gate is generated in laboratory using a temperature gradient that followed by electrophoresis process. This double strand is the computation engine for detecting the miR-21 biomarker. miR-21 is as input in designed gate. At the end, the expression level of miR-21 is identified by measuring the generated fluorescent. Results: at the first stage, the proposed DNA-based logic gate is evaluated by using the synthesized input strands and then it is experimented on a tumor tissue. Experimental results on synthesized strands show that its detection quality/correctness is 2.5x better than conventional methods. Conclusion: Experimental results on the tumor tissues are successful and are matched with those are extracted from real time PCR results. Also, the results show that this method is significantly more suitable than real time PCR in view of time and cost.

  13. Neuromorphic VLSI vision system for real-time texture segregation.

    Science.gov (United States)

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  14. gFEX, the ATLAS Calorimeter Level-1 Real Time Processor

    CERN Document Server

    AUTHOR|(SzGeCERN)759889; The ATLAS collaboration; Begel, Michael; Chen, Hucheng; Lanni, Francesco; Takai, Helio; Wu, Weihao

    2016-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Vertex Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 276 optical fibers with the data transferred at the 40 MHz Large Hadron Collider (LHC) clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor Field-Programmable Gate Array (FPGAs), monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA ...

  15. Experimental demonstration of a real-time high-throughput digital DC blocker for compensating ADC imperfections in optical fast-OFDM receivers.

    Science.gov (United States)

    Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian

    2016-06-27

    Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.

  16. Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter

    Science.gov (United States)

    Michele, Simone; Sammarco, Paolo; d'Errico, Michele

    2016-08-01

    We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency.

  17. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    International Nuclear Information System (INIS)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  18. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  19. Real-time imaging of vertically aligned carbon nanotube array growth kinetics

    International Nuclear Information System (INIS)

    Puretzky, A A; Eres, G; Rouleau, C M; Ivanov, I N; Geohegan, D B

    2008-01-01

    In situ time-lapse photography and laser irradiation are applied to understand unusual coordinated growth kinetics of vertically aligned carbon nanotube arrays including pauses in growth, retraction, and local equilibration in length. A model is presented which explains the measured kinetics and determines the conditions for diffusion-limited growth. Laser irradiation of the growing nanotube arrays is first used to prove that the nanotubes grow from catalyst particles at their bases, and then increase their growth rate and terminal lengths

  20. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays.

    Science.gov (United States)

    Li, Jianfeng; Wang, Feng; Jiang, Defu

    2017-03-20

    A fast direction of arrival (DOA) estimation method using a real-valued cross-correlation matrix (CCM) of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS) method and estimation of signal parameter via rotational invariance (ESPRIT) based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  1. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian

    2009-01-01

    We propose an approach to automatic verification of real-time systems against scenario-based requirements. A real-time system is modeled as a network of Timed Automata (TA), and a scenario-based requirement is specified as a Live Sequence Chart (LSC). We define a trace-based semantics for a kernel...... subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking...

  2. Multiple constant multiplication optimizations for field programmable gate arrays

    CERN Document Server

    Kumm, Martin

    2016-01-01

    This work covers field programmable gate array (FPGA)-specific optimizations of circuits computing the multiplication of a variable by several constants, commonly denoted as multiple constant multiplication (MCM). These optimizations focus on low resource usage but high performance. They comprise the use of fast carry-chains in adder-based constant multiplications including ternary (3-input) adders as well as the integration of look-up table-based constant multipliers and embedded multipliers to get the optimal mapping to modern FPGAs. The proposed methods can be used for the efficient implementation of digital filters, discrete transforms and many other circuits in the domain of digital signal processing, communication and image processing. Contents Heuristic and ILP-Based Optimal Solutions for the Pipelined Multiple Constant Multiplication Problem Methods to Integrate Embedded Multipliers, LUT-Based Constant Multipliers and Ternary (3-Input) Adders An Optimized Multiple Constant Multiplication Architecture ...

  3. A new data acquisition and imaging system for nuclear microscopy based on a Field Programmable Gate Array card

    International Nuclear Information System (INIS)

    Bettiol, A.A.; Udalagama, C.; Watt, F.

    2009-01-01

    The introduction of the new Field Programmable Gate Array (FPGA) cards by National Instruments has made it possible for the first time to develop reconfigurable custom data acquisition hardware easily with the LabVIEW programming environment. Data acquisition issues such as precise timing for scanning and operating system latencies can now be easily overcome using this new technology because the data acquisition software is embedded in the FPGA chip on the card. In this paper we present the first results of the new data acquisition system developed at the Centre for Ion Beam Applications (CIBA), National University of Singapore using the new National Instruments cards in conjunction with rack mountable Wilkinson type ADCs.

  4. Residual Motion and Duty Time in Respiratory Gating Radiotherapy Using Individualized or Population-Based Windows

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Asada, Yoshihiro; Numano, Masumi; Yamashita, Haruo; Nishimura, Tetsuo; Hashimoto, Takayuki; Harada, Hideyuki; Asakura, Hirofumi; Murayama, Shigeyuki

    2009-01-01

    Purpose: The efficiency and precision of respiratory gated radiation therapy for tumors is affected by variations in respiration-induced tumor motion. We evaluated the use of individualized and population-based parameters for such treatment. Methods and Materials: External respiratory signal records and images of respiration-induced tumor motion were obtained from 42 patients undergoing respiratory gated radiation therapy for liver tumors. Gating window widths were calculated for each patient, with 2, 4, and 10 mm of residual motion, and the mean was defined as the population-based window width. Residual motions based on population-based and predefined window widths were compared. Duty times based on whole treatment sessions, at various window levels, were calculated. The window level giving the longest duty time was defined as the individualized most efficient level (MEL). MELs were also calculated based on the first 10 breathing cycles. The duty times for population-based MELs (defined as mean MELs) and individualized MELs were compared. Results: Tracks of respiration-induced tumor motion ranged from 3 to 50 mm. Half of the patients had larger actual residual motions than the assigned residual motions. Duty times were greater when based on individualized, rather than population-based, window widths. The MELs established during whole treatment sessions for 2 mm and 4 mm of residual motion gave significantly increased duty times, whereas those calculated using the first 10 breathing cycles showed only marginal increases. Conclusions: Using individualized window widths and levels provided more precise and efficient respiratory gated radiation therapy. However, methods for predicting individualized window levels before treatment remain to be explored.

  5. CD-SEM real time bias correction using reference metrology based modeling

    Science.gov (United States)

    Ukraintsev, V.; Banke, W.; Zagorodnev, G.; Archie, C.; Rana, N.; Pavlovsky, V.; Smirnov, V.; Briginas, I.; Katnani, A.; Vaid, A.

    2018-03-01

    Accuracy of patterning impacts yield, IC performance and technology time to market. Accuracy of patterning relies on optical proximity correction (OPC) models built using CD-SEM inputs and intra die critical dimension (CD) control based on CD-SEM. Sub-nanometer measurement uncertainty (MU) of CD-SEM is required for current technologies. Reported design and process related bias variation of CD-SEM is in the range of several nanometers. Reference metrology and numerical modeling are used to correct SEM. Both methods are slow to be used for real time bias correction. We report on real time CD-SEM bias correction using empirical models based on reference metrology (RM) data. Significant amount of currently untapped information (sidewall angle, corner rounding, etc.) is obtainable from SEM waveforms. Using additional RM information provided for specific technology (design rules, materials, processes) CD extraction algorithms can be pre-built and then used in real time for accurate CD extraction from regular CD-SEM images. The art and challenge of SEM modeling is in finding robust correlation between SEM waveform features and bias of CD-SEM as well as in minimizing RM inputs needed to create accurate (within the design and process space) model. The new approach was applied to improve CD-SEM accuracy of 45 nm GATE and 32 nm MET1 OPC 1D models. In both cases MU of the state of the art CD-SEM has been improved by 3x and reduced to a nanometer level. Similar approach can be applied to 2D (end of line, contours, etc.) and 3D (sidewall angle, corner rounding, etc.) cases.

  6. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  7. Evaluation of delivered monitor unit accuracy of gated step-and-shoot IMRT using a two-dimensional detector array

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Kwang-Ho; Kang, Sei-Kwon; Lee, MeYeon; Kim, Su SSan; Park, SoAh; Hwang, Tae-Jin; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik; Suh, Tae-Suk [Department of Radiation Oncology, Hallym University College of Medicine, Seoul, 431070 (Korea, Republic of) and Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137701 (Korea, Republic of); Department of Radiation Oncology, Hallym University College of Medicine, Seoul 431070 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137701 (Korea, Republic of)

    2010-03-15

    Purpose: To overcome the problem of organ motion in intensity-modulated radiation therapy (IMRT), gated IMRT is often used for the treatment of lung cancer. In this study, the authors investigated the accuracy of the delivered monitor units (MUs) from each segment during gated IMRT using a two-dimensional detector array for user-specific verification purpose. Methods: The authors planned a 6 MV photon, seven-port step-and-shoot lung IMRT delivery. The respiration signals for gated IMRT delivery were obtained from the one-dimensional moving phantom using the real-time position management (RPM) system (Varian Medical Systems, Palo Alto, CA). The beams were delivered using a Clinac iX (Varian Medical Systems, Palo Alto, CA) with the Millennium 120 MLC. The MatriXX (IBA Dosimetry GmbH, Germany) was validated through consistency and reproducibility tests as well as comparison with measurements from a Farmer-type ion chamber. The authors delivered beams with varying dose rates and duty cycles and analyzed the MatriXX data to evaluate MU delivery accuracy. Results: There was quite good agreement between the planned segment MUs and the MUs computed from the MatriXX within {+-}2% error. The beam-on times computed from the MatriXX data were almost identical for all cases, and they matched well with the RPM beam-on and beam-off signals. A slight difference was observed between them, but it was less than 40 ms. The gated IMRT delivery demonstrated an MU delivery accuracy that was equivalent to ungated IMRT, and the delivered MUs with a gating signal agreed with the planned MUs within {+-}0.5 MU regardless of dose rate and duty cycle. Conclusions: The authors can conclude that gated IMRT is able to deliver an accurate dose to a patient during a procedure. The authors believe that the methodology and results can be transferred to other vendors' devices, particularly those that do not provide MLC log data for a verification purpose.

  8. Isotropic gates in large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    The quality of the angular distribution information extracted from high-fold gamma-gamma coincidence events is analyzed. It is shown that a correct quasi-isotropic gate setting, available at the modern large gamma-ray detector arrays, essentially preserves the quality of the angular information. (orig.)

  9. A FPGA-based signal processing unit for a GEM array detector

    International Nuclear Information System (INIS)

    Yen, W.W.; Chou, H.P.

    2013-06-01

    in the present study, a signal processing unit for a GEM one-dimensional array detector is presented to measure the trajectory of photoelectrons produced by cosmic X-rays. The present GEM array detector system has 16 signal channels. The front-end unit provides timing signals from trigger units and energy signals from charge sensitive amplifies. The prototype of the processing unit is implemented using commercial field programmable gate array circuit boards. The FPGA based system is linked to a personal computer for testing and data analysis. Tests using simulated signals indicated that the FPGA-based signal processing unit has a good linearity and is flexible for parameter adjustment for various experimental conditions (authors)

  10. Measurement of time delay for a prospectively gated CT simulator

    Directory of Open Access Journals (Sweden)

    Goharian M

    2010-01-01

    Full Text Available For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient′s breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore™ (Philips Medical Systems, Madison, WI scanner attached to a Varian Real-Time Position Management™ (RPM system (Varian Medical Systems, Palo Alto, CA was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL ′X-Ray ON′ status signal from the CT scanner in a text file. The TTL ′X-Ray ON′ indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for

  11. Measurement of time delay for a prospectively gated CT simulator

    International Nuclear Information System (INIS)

    Goharian, M.; Khan, R.F.H.

    2010-01-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  12. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Science.gov (United States)

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  13. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2011-09-01

    Full Text Available Due to their weak received signal power, Global Positioning System (GPS signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs. However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU coupled with a new generation Graphics Processing Unit (GPU having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  14. Three-channel phase meters based on the AD8302 and field programmable gate arrays for heterodyne millimeter wave interferometer

    Czech Academy of Sciences Publication Activity Database

    Varavin, A.V.; Ermak, G.P.; Vasiliev, A.S.; Fateev, A.V.; Varavin, Mykyta; Žáček, František; Zajac, Jaromír

    2016-01-01

    Roč. 75, č. 11 (2016), s. 1009-1025 ISSN 0040-2508 Institutional support: RVO:61389021 Keywords : AD8302 * Interferometer * Millimeter wave * Phase meter * Programmable gate array * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics

  15. Real Time Decoding of Color Symbol for Optical Positioning System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2015-01-01

    Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex backgrounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.

  16. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging.

    Science.gov (United States)

    Xu, Bing; Shi, Yang; Lao, Zhaoxin; Ni, Jincheng; Li, Guoqiang; Hu, Yanlei; Li, Jiawen; Chu, Jiaru; Wu, Dong; Sugioka, Koji

    2018-01-30

    Microarray technology provides an excellent platform for biomedical and biochemical research including basic scientific studies, drug discovery, and diagnostics. Here, we develop a novel method referred to as real-time two-photon lithography in a controlled flow in which femtosecond laser two-photon lithography is performed in situ in the sequential mode stopping and flowing the flow of liquid resin containing microparticles to achieve 100% trapping on a one-bead-to-one-trap basis. Polydisperse particles can be all trapped to form a desired array by freely designing trap structures, resulting in an unprecedentedly high capture efficiency of ∼100%. No persistent pressure is needed after trapping which reduces the complexity of the system. In addition, trapping of particle-cluster arrays with a controlled number of particles is also achieved via this method. The trapped particles inside the microchip are successfully applied as microlenses for high quality imaging. The present technology marks an essential step towards a versatile platform for the integration of bead-based assays and paves the way for developing innovative microfluidics, optofluidics, micro-optics and single-cell analysis devices.

  17. Real-time image registration and fusion in a FPGA architecture (Ad-FIRE)

    Science.gov (United States)

    Waters, T.; Swan, L.; Rickman, R.

    2011-06-01

    Real-time Image Registration is a key processing requirement of Waterfall Solutions' image fusion system, Ad-FIRE, which combines the attributes of high resolution visible imagery with the spectral response of low resolution thermal sensors in a single composite image. Implementing image fusion at video frame rates typically requires a high bandwidth video processing capability which, within a standard CPU-type processing architecture, necessitates bulky, high power components. Field Programmable Gate Arrays (FPGAs) offer the prospect of low power/heat dissipation combined with highly efficient processing architectures for use in portable, battery-powered, passively cooled applications, such as Waterfall Solutions' hand-held or helmet-mounted Ad-FIRE system.

  18. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  19. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-08-01

    Full Text Available Artificial Neural Networks (ANNs, including Deep Neural Networks (DNNs, have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP. The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  20. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays

    Directory of Open Access Journals (Sweden)

    Jianfeng Li

    2017-03-01

    Full Text Available A fast direction of arrival (DOA estimation method using a real-valued cross-correlation matrix (CCM of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS method and estimation of signal parameter via rotational invariance (ESPRIT based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  1. Tracking Real-Time Changes in Working Memory Updating and Gating with the Event-Based Eye-Blink Rate

    NARCIS (Netherlands)

    Rac-Lubashevsky, R.; Slagter, H.A.; Kessler, Y.

    2017-01-01

    Effective working memory (WM) functioning depends on the gating process that regulates the balance between maintenance and updating of WM. The present study used the event-based eye-blink rate (ebEBR), which presumably reflects phasic striatal dopamine activity, to examine how the cognitive

  2. Real-time computational photon-counting LiDAR

    Science.gov (United States)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  3. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-07-01

    Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.

  4. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Science.gov (United States)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  5. Real-time pulse deinterleaving using digital delay line techniques

    Science.gov (United States)

    Lentz, L. F.; Palermo, T. J.

    This paper describes an implementation of a tracking pulse sorter based on predictive gating techniques. Real-time pulse sorters or pulse train gating devices have been utilized by the ELINT signal analyst for many years. The more elementary of these devices employed a retriggerable delay interval and an acceptance gate, which were used in predictive fashion to track pulse trains whose PRIs fall within the limits of the programmed delay interval. This design utilizes the pulse hit/miss history of individual track files in a variation of a sequential observer detection algorithm. Use of a digital delay line with pulse history allows multiple pulse trains to be tracked simultaneously and independently without interference. The design also provides flexibility in lock-on and track criteria to allow maintenance of acquisition probability and false alarm rate in dense signal environments and with low SNRs. The hardware provides time interval resolution to 12.5 nsec and covers a PRI range of 50 microsec to 50 msec.

  6. Heterogeneous real-time computing in radio astronomy

    Science.gov (United States)

    Ford, John M.; Demorest, Paul; Ransom, Scott

    2010-07-01

    Modern computer architectures suited for general purpose computing are often not the best choice for either I/O-bound or compute-bound problems. Sometimes the best choice is not to choose a single architecture, but to take advantage of the best characteristics of different computer architectures to solve your problems. This paper examines the tradeoffs between using computer systems based on the ubiquitous X86 Central Processing Units (CPU's), Field Programmable Gate Array (FPGA) based signal processors, and Graphical Processing Units (GPU's). We will show how a heterogeneous system can be produced that blends the best of each of these technologies into a real-time signal processing system. FPGA's tightly coupled to analog-to-digital converters connect the instrument to the telescope and supply the first level of computing to the system. These FPGA's are coupled to other FPGA's to continue to provide highly efficient processing power. Data is then packaged up and shipped over fast networks to a cluster of general purpose computers equipped with GPU's, which are used for floating-point intensive computation. Finally, the data is handled by the CPU and written to disk, or further processed. Each of the elements in the system has been chosen for its specific characteristics and the role it can play in creating a system that does the most for the least, in terms of power, space, and money.

  7. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives

    Science.gov (United States)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno

    2017-05-01

    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  8. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    Science.gov (United States)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  9. A Soft Computing Approach to Crack Detection and Impact Source Identification with Field-Programmable Gate Array Implementation

    Directory of Open Access Journals (Sweden)

    Arati M. Dixit

    2013-01-01

    Full Text Available The real-time nondestructive testing (NDT for crack detection and impact source identification (CDISI has attracted the researchers from diverse areas. This is apparent from the current work in the literature. CDISI has usually been performed by visual assessment of waveforms generated by a standard data acquisition system. In this paper we suggest an automation of CDISI for metal armor plates using a soft computing approach by developing a fuzzy inference system to effectively deal with this problem. It is also advantageous to develop a chip that can contribute towards real time CDISI. The objective of this paper is to report on efforts to develop an automated CDISI procedure and to formulate a technique such that the proposed method can be easily implemented on a chip. The CDISI fuzzy inference system is developed using MATLAB’s fuzzy logic toolbox. A VLSI circuit for CDISI is developed on basis of fuzzy logic model using Verilog, a hardware description language (HDL. The Xilinx ISE WebPACK9.1i is used for design, synthesis, implementation, and verification. The CDISI field-programmable gate array (FPGA implementation is done using Xilinx’s Spartan 3 FPGA. SynaptiCAD’s Verilog Simulators—VeriLogger PRO and ModelSim—are used as the software simulation and debug environment.

  10. Field Programmable Gate Array Control of Power Systems in Graduate Student Laboratories

    National Research Council Canada - National Science Library

    O'Connor, Joseph E

    2008-01-01

    ...) continuously develops new design and education resources for students. One area of focus for students in the Power Electronics curriculum track is the development of a design center that explores Field Programmable Gate Array (FPGA...

  11. Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps

    Science.gov (United States)

    Ratcliffe, Alexander K.; Taylor, Richard L.; Hope, Joseph J.; Carvalho, André R. R.

    2018-06-01

    Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10-5 are shown to be possible with 250 mW laser power and a trap separation of 100 μ m . The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.

  12. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.

    Science.gov (United States)

    Pani, Danilo; Meloni, Paolo; Tuveri, Giuseppe; Palumbo, Francesca; Massobrio, Paolo; Raffo, Luigi

    2017-01-01

    In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments.

  13. Design of a portable, intrinsically safe multichannel acquisition system for high-resolution, real-time processing HD-sEMG.

    Science.gov (United States)

    Barone, Umberto; Merletti, Roberto

    2013-08-01

    A compact and portable system for real-time, multichannel, HD-sEMG acquisition is presented. The device is based on a modular, multiboard approach for scalability and to optimize power consumption for battery operating mode. The proposed modular approach allows us to configure the number of sEMG channels from 64 to 424. A plastic-optical-fiber-based 10/100 Ethernet link is implemented on a field-programmable gate array (FPGA)-based board for real-time, safety data transmission toward a personal computer or laptop for data storage and offline analysis. The high-performance A/D conversion stage, based on 24-bit ADC, allows us to automatically serialize the samples and transmits them on a single SPI bus connecting a sequence of up to 14 ADC chips in chain mode. The prototype is configured to work with 64 channels and a sample frequency of 2.441 ksps (derived from 25-MHz clock source), corresponding to a real data throughput of 3 Mbps. The prototype was assembled to demonstrate the available features (e.g., scalability) and evaluate the expected performances. The analog front end board could be dynamically configured to acquire sEMG signals in monopolar or single differential mode by means of FPGA I/O interface. The system can acquire continuously 64 channels for up to 5 h with a lightweight battery pack of 7.5 Vdc/2200 mAh. A PC-based application was also developed, by means of the open source Qt Development Kit from Nokia, for prototype characterization, sEMG measurements, and real-time visualization of 2-D maps.

  14. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA)

    Science.gov (United States)

    Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir

    2013-01-01

    This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119

  15. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  16. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  17. Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-06-01

    Full Text Available The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS and phase locked loop (PLL. A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA and digital signal processor (DSP pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  18. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui [Physics Department, Zhejiang University, Hangzhou, 310027 (China)

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  19. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  20. Quality Assurance of Real-Time Oceanographic Data from the Cabled Array of the Ocean Observatories Initiative

    Science.gov (United States)

    Kawka, O. E.; Nelson, J. S.; Manalang, D.; Kelley, D. S.

    2016-02-01

    The Cabled Array component of the NSF-funded Ocean Observatories Initiative (OOI) provides access to real-time physical, chemical, geological, and biological data from water column and seafloor platforms/instruments at sites spanning the southern half of the Juan de Fuca Plate. The Quality Assurance (QA) program for OOI data is designed to ensure that data products meet OOI science requirements. This overall data QA plan establishes the guidelines for assuring OOI data quality and summarizes Quality Control (QC) protocols and procedures, based on best practices, which can be utilized to ensure the highest quality data across the OOI program. This presentation will highlight, specifically, the QA/QC approach being utilized for the OOI Cabled Array infrastructure and data and will include a summary of both shipboard and shore-based protocols currently in use. Aspects addressed will be pre-deployment instrument testing and calibration checks, post-deployment and pre-recovery field verification of data, and post-recovery "as-found" testing of instruments. Examples of QA/QC data will be presented and specific cases of cabled data will be discussed in the context of quality assessments and adjustment/correction of OOI datasets overall for inherent sensor drift and/or instrument fouling.

  1. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Real-time PCR array as a universal platform for the detection of genetically modified crops and its application in identifying unapproved genetically modified crops in Japan.

    Science.gov (United States)

    Mano, Junichi; Shigemitsu, Natsuki; Futo, Satoshi; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Furui, Satoshi; Kitta, Kazumi

    2009-01-14

    We developed a novel type of real-time polymerase chain reaction (PCR) array with TaqMan chemistry as a platform for the comprehensive and semiquantitative detection of genetically modified (GM) crops. Thirty primer-probe sets for the specific detection of GM lines, recombinant DNA (r-DNA) segments, endogenous reference genes, and donor organisms were synthesized, and a 96-well PCR plate was prepared with a different primer-probe in each well as the real-time PCR array. The specificity and sensitivity of the array were evaluated. A comparative analysis with the data and publicly available information on GM crops approved in Japan allowed us to assume the possibility of unapproved GM crop contamination. Furthermore, we designed a Microsoft Excel spreadsheet application, Unapproved GMO Checker version 2.01, which helps process all the data of real-time PCR arrays for the easy assumption of unapproved GM crop contamination. The spreadsheet is available free of charge at http://cse.naro.affrc.go.jp/jmano/index.html .

  3. Real-time 3D imaging methods using 2D phased arrays based on synthetic focusing techniques.

    Science.gov (United States)

    Kim, Jung-Jun; Song, Tai-Kyong

    2008-07-01

    A fast 3D ultrasound imaging technique using a 2D phased array transducer based on the synthetic focusing method for nondestructive testing or medical imaging is proposed. In the proposed method, each column of a 2D array is fired successively to produce transverse fan beams focused at a fixed depth along a given longitudinal direction and the resulting pulse echoes are received at all elements of a 2D array used. After firing all column arrays, a frame of high-resolution image along a given longitudinal direction is obtained with dynamic focusing employed in the longitudinal direction on receive and in the transverse direction on both transmit and receive. The volume rate of the proposed method can be increased much higher than that of the conventional 2D array imaging by employing an efficient sparse array technique. A simple modification to the proposed method can further increase the volume scan rate significantly. The proposed methods are verified through computer simulations.

  4. Pseudo real-time imaging systems with nonredundant pinhole arrays

    International Nuclear Information System (INIS)

    Han, K.S.; Berzins, G.J.; Roach, W.H.

    1976-01-01

    Coded aperture techniques, because of their efficiency and three-dimensional information content, represent potentially powerful tools for LMFBR safety experiment diagnostics. These techniques should be even more powerful if the data can be interpreted in real time or in pseudo real time. For example, to satisfy the stated goals for LMFBR diagnostics (1-ms time resolution and 1-mm spatial resolution), it is conceivable that several hundred frames of coded data would be recorded. To unscramble all of this information into reconstructed images could be a laborious, time-consuming task. A way to circumvent the tedium is with the use of the described hybrid digital/analog real-time imaging system. Some intermediate results are described briefly

  5. Systems-on-chip approach for real-time simulation of wheel-rail contact laws

    Science.gov (United States)

    Mei, T. X.; Zhou, Y. J.

    2013-04-01

    This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.

  6. Terahertz modulation based on surface plasmon resonance by self-gated graphene

    Science.gov (United States)

    Qian, Zhenhai; Yang, Dongxiao; Wang, Wei

    2018-05-01

    We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.

  7. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  8. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Clément, N., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr; Han, X. L. [Institute of Electronics, Microelectronics and Nanotechnology, CNRS, Avenue Poincaré, 59652 Villeneuve d' Ascq (France); Larrieu, G., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr [Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Universite de Toulouse, 7 Avenue Colonel Roche, 31077 Toulouse (France)

    2013-12-23

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

  9. Opportunist combination of electronic technologies for real time calculations in the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Barbuti, A.; Gil, C.; Pastor, P.; Spuig, P.; Vincent, B.; Volpe, D.

    2013-06-01

    The Tore Supra tokamak real-time plasma control is based on measurements coming from various diagnostics. The complexity of all the events that occur during plasma is at the origin of measurements disturbances which have to be corrected in real time in order to ensure an optimal control. The signal correction does not just mean processing but requires complex algorithms. Electronics does not only need to process and adapt electrical signals, but it has to include corrections by mathematical calculation. The FPGA (field-programmable gate array) technology, with the help of basic adapted electronics, allows integrating the entire real time calculation and digital data transmission on the network. FMC (FPGA Mezzanine Card) coupled with in-house motherboard, which is used both as the interface with Tore Supra specific systems and as the support for other signals processing options, is the perfect answer to this request. The FMC includes a FPGA, memory, Ethernet port and multiple I/O for interfacing with the motherboard and Tore Supra signals. The algorithms are developed in VHDL (Very high speed integrated circuit Hardware Description Language), parallel process management that promotes faster calculation than a common μC (Micro-controller) in one clock pulse. The flexibility, the low cost and the implementation speed allow fitting a large number of various applications in fields where no 'off-theshelf' component can be found. And more specifically, in research and experimentation, algorithms can be continuously improved or modified for new requirements. (authors)

  10. Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Rakotozafy, Mamianja [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Saadate, Shahrokh [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Bordas, Cedric; Leclere, Loic [CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France)

    2011-02-15

    Most of actual real time simulation platforms have practically about ten microseconds as minimum calculation time step, mainly due to computation limits such as processing speed, architecture adequacy and modeling complexities. Therefore, simulation of fast switching converters' instantaneous models requires smaller computing time step. The approach presented in this paper proposes an answer to such limited modeling accuracies and computational bandwidth of the currently available digital simulators.As an example, the authors present a low cost, flexible and high performance FPGA-based real-time digital simulator for a complete complex power system with Neutral Point Piloted (NPP) three-level inverter. The proposed real-time simulator can model accurately and efficiently the complete power system, reducing costs, physical space and avoiding any damage to the actual equipment in the case of any dysfunction of the digital controller prototype. The converter model is computed at a small fixed time step as low as 100 ns. Such a computation time step allows high precision account of the gating signals and thus avoids averaging methods and event compensations. Moreover, a novel high performance model of the NPP three-level inverter has also been proposed for FPGA implementation. The proposed FPGA-based simulator models the environment of the NPP converter: the dc link, the RLE load and the digital controller and gating signals. FPGA-based real time simulation results are presented and compared with offline results obtained using PLECS software. They validate the efficiency and accuracy of the modeling for the proposed high performance FPGA-based real-time simulation approach. This paper also introduces new potential FPGA-based applications such as low cost real time simulator for power systems by developing a library of flexible and portable models for power converters, electrical machines and drives. (author)

  11. Special Technology Area Review on Field Programmable Gate Arrays (FPGAs) For Military Applications

    National Research Council Canada - National Science Library

    2005-01-01

    ...) on Field Programmable Gate Arrays (FPGAs) for Military Applications on August 3-4, 2004 at the Naval Postgraduate School in Monterey, California to address issues relevant to the use of this technology in military systems...

  12. Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

    Science.gov (United States)

    Mostafa, Sheikh Shanawaz; Sousa, L. Natércia; Ferreira, Nuno Fábio; Sousa, Ricardo M.; Santos, Joao; Wäny, Martin; Morgado-Dias, F.

    2017-01-01

    Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm×1 mm×1.65 mm is used. Due to the physical properties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.

  13. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    Science.gov (United States)

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  14. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    Science.gov (United States)

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  15. Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification.

    Science.gov (United States)

    Yang, Fan; Paindavoine, M

    2003-01-01

    This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.

  16. Determination of prospective displacement-based gate threshold for respiratory-gated radiation delivery from retrospective phase-based gate threshold selected at 4D CT simulation

    International Nuclear Information System (INIS)

    Vedam, S.; Archambault, L.; Starkschall, G.; Mohan, R.; Beddar, S.

    2007-01-01

    and delivery gate thresholds to within 0.3%. For patient data analysis, differences between simulation and delivery gate thresholds are reported as a fraction of the total respiratory motion range. For the smaller phase interval, the differences between simulation and delivery gate thresholds are 8±11% and 14±21% with and without audio-visual biofeedback, respectively, when the simulation gate threshold is determined based on the mean respiratory displacement within the 40%-60% gating phase interval. For the longer phase interval, corresponding differences are 4±7% and 8±15% with and without audio-visual biofeedback, respectively. Alternatively, when the simulation gate threshold is determined based on the maximum average respiratory displacement within the gating phase interval, greater differences between simulation and delivery gate thresholds are observed. A relationship between retrospective simulation gate threshold and prospective delivery gate threshold for respiratory gating is established and validated for regular and nonregular respiratory motion. Using this relationship, the delivery gate threshold can be reliably estimated at the time of 4D CT simulation, thereby improving the accuracy and efficiency of respiratory-gated radiation delivery

  17. Graphene-Based FET Detector for E. coli K12 Real-Time Monitoring and Its Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Jieyi Zhu

    2016-01-01

    Full Text Available This paper presents a theoretical analysis for a graphene-based FET real-time detector of the target bacteria E. coli K12. The motivation for this study is to design a sensor device for detection of bacteria in food and water in order to guarantee food safety. Graphene is chosen as our material for sensor design, which has outstanding electrical, physical, and optical performance. In our sensor structure, graphene-based solution gate field effect transistor (FET is the device model; fabrication and functionalization protocol are presented together in this paper. What is more, a real-time signal display system is the accompanied equipment for our designed biosensor device. In this system, the sensor bias current signal Ids would change obviously when the target bacteria are attached to the sensor surface. And the bias current Ids increases when the E. coli concentration increases. In the latter part, a theoretical interpretation of the sensor signal is to explain the bias current Ids increasing after the E. coli K12 attachment.

  18. Real-time co-registered ultrasound and photoacoustic imaging system based on FPGA and DSP architecture

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Aguirre, Andres; Zhu, Quing

    2011-03-01

    Co-registering ultrasound (US) and photoacoustic (PA) imaging is a logical extension to conventional ultrasound because both modalities provide complementary information of tumor morphology, tumor vasculature and hypoxia for cancer detection and characterization. In addition, both modalities are capable of providing real-time images for clinical applications. In this paper, a Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) module-based real-time US/PA imaging system is presented. The system provides real-time US/PA data acquisition and image display for up to 5 fps* using the currently implemented DSP board. It can be upgraded to 15 fps, which is the maximum pulse repetition rate of the used laser, by implementing an advanced DSP module. Additionally, the photoacoustic RF data for each frame is saved for further off-line processing. The system frontend consists of eight 16-channel modules made of commercial and customized circuits. Each 16-channel module consists of two commercial 8-channel receiving circuitry boards and one FPGA board from Analog Devices. Each receiving board contains an IC† that combines. 8-channel low-noise amplifiers, variable-gain amplifiers, anti-aliasing filters, and ADC's‡ in a single chip with sampling frequency of 40MHz. The FPGA board captures the LVDSξ Double Data Rate (DDR) digital output of the receiving board and performs data conditioning and subbeamforming. A customized 16-channel transmission circuitry is connected to the two receiving boards for US pulseecho (PE) mode data acquisition. A DSP module uses External Memory Interface (EMIF) to interface with the eight 16-channel modules through a customized adaptor board. The DSP transfers either sub-beamformed data (US pulse-echo mode or PAI imaging mode) or raw data from FPGA boards to its DDR-2 memory through the EMIF link, then it performs additional processing, after that, it transfer the data to the PC** for further image processing. The PC code

  19. Real-time imaging systems for superconducting nanowire single-photon detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hofherr, Matthias

    2014-07-01

    Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.

  20. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    International Nuclear Information System (INIS)

    Lin Tong; Li Ruijiang; Tang Xiaoli; Jiang, Steve B; Dy, Jennifer G

    2009-01-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks-ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  1. The Advanced Gamma-ray Imaging System (AGIS): Topological Array Trigger

    Science.gov (United States)

    Smith, Andrew W.

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of the telescopes and on the triggering and readout systems for AGIS. To maximize the capabilities of large arrays of IACTs with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We outline the status of the development of a stereoscopic array trigger that calculates image parameters and correlates them across a subset of telescopes. Field Programmable Gate Arrays (FPGAs) implement the real-time pattern recognition to suppress cosmic rays and night-sky background events. A proof of principle system is being developed to run at camera trigger rates up to 10MHz and array-level rates up to 10kHz.

  2. Real-time x-ray response of biocompatible solution gate AlGaN/GaN high electron mobility transistor devices

    International Nuclear Information System (INIS)

    Hofstetter, Markus; Funk, Maren; Paretzke, Herwig G.; Thalhammer, Stefan; Howgate, John; Sharp, Ian D.; Stutzmann, Martin

    2010-01-01

    We present the real-time x-ray irradiation response of charge and pH sensitive solution gate AlGaN/GaN high electron mobility transistors. The devices show stable and reproducible behavior under and following x-ray radiation, including a linear integrated response with dose into the μGy range. Titration measurements of devices in solution reveal that the linear pH response and sensitivity are not only retained under x-ray irradiation, but an irradiation response could also be measured. Since the devices are biocompatible, and can be simultaneously operated in aggressive fluids and under hard radiation, they are well-suited for both medical radiation dosimetry and biosensing applications.

  3. Simulation of time curves in small animal PET using GATE

    International Nuclear Information System (INIS)

    Simon, Luc; Strul, Daniel; Santin, Giovanni; Krieguer, Magalie; Morel, Christian

    2004-01-01

    The ClearPET project of the Crystal Clear Collaboration (CCC) is building spin-off technology for high resolution small animal Positron Emission Tomography (PET). Monte Carlo simulation is essential for optimizing the specifications of these systems with regards to their most important characteristics, such as spatial resolution, sensitivity, or count rate performance. GATE, the Geant4 Application for Tomographic Emission simulates the passing of time during real acquisitions, allowing to handle dynamic systems such as decaying source distributions or moving detectors. GATE output is analyzed on an event-by-event basis. The time associated with each single event allows to sort coincidences and to model dead-time. This leads to the study of time curves for a prospective small animal PET scanner design. The count rates of true, and random coincidences are discussed together with the corresponding Noise Equivalent Count (NEC) rates as a function of some PET scanner specifications such as detector dead time, or coincidence time window

  4. FPGA Implementation of Real-Time Compressive Sensing with Partial Fourier Dictionary

    Directory of Open Access Journals (Sweden)

    Yinghui Quan

    2016-01-01

    Full Text Available This paper presents a novel real-time compressive sensing (CS reconstruction which employs high density field-programmable gate array (FPGA for hardware acceleration. Traditionally, CS can be implemented using a high-level computer language in a personal computer (PC or multicore platforms, such as graphics processing units (GPUs and Digital Signal Processors (DSPs. However, reconstruction algorithms are computing demanding and software implementation of these algorithms is extremely slow and power consuming. In this paper, the orthogonal matching pursuit (OMP algorithm is refined to solve the sparse decomposition optimization for partial Fourier dictionary, which is always adopted in radar imaging and detection application. OMP reconstruction can be divided into two main stages: optimization which finds the closely correlated vectors and least square problem. For large scale dictionary, the implementation of correlation is time consuming since it often requires a large number of matrix multiplications. Also solving the least square problem always needs a scalable matrix decomposition operation. To solve these problems efficiently, the correlation optimization is implemented by fast Fourier transform (FFT and the large scale least square problem is implemented by Conjugate Gradient (CG technique, respectively. The proposed method is verified by FPGA (Xilinx Virtex-7 XC7VX690T realization, revealing its effectiveness in real-time applications.

  5. Scenario-based verification of real-time systems using UPPAAL

    DEFF Research Database (Denmark)

    Li, Shuhao; Belaguer, Sandie; David, Alexandre

    2010-01-01

    Abstract This paper proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified...... as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA modeled real-time system......, the problem of scenario-based verification reduces to a computation tree logic (CTL) real-time model checking problem. In case the real time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one...

  6. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR.

    Science.gov (United States)

    Qin, Li-Xuan; Beyer, Richard P; Hudson, Francesca N; Linford, Nancy J; Morris, Daryl E; Kerr, Kathleen F

    2006-01-17

    There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most important factors in methods' performances. However, we found poor reliability for methods using mismatch probes for low-intensity genes

  7. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Morris Daryl E

    2006-01-01

    Full Text Available Abstract Background There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. Results We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch and a sequence-based method of background adjustment (as in gcRMA as the most important factors in methods' performances. However, we found poor reliability for methods

  8. In vivo photothermal treatment with real-time monitoring by optical fiber-needle array.

    Science.gov (United States)

    Yang, Taeseok Daniel; Park, Kwanjun; Kim, Hyung-Jin; Im, Nu-Ri; Kim, Byoungjae; Kim, TaeHoon; Seo, Sohyun; Lee, Jae-Seung; Kim, Beop-Min; Choi, Youngwoon; Baek, Seung-Kuk

    2017-07-01

    Photothermal treatment (PTT) using gold nanoshells (gold-NSs) is accepted as a method for treating cancer. However, owing to restrictions in therapeutic depth and skin damage caused by excessive light exposure, its application has been limited to lesions close to the epidermis. Here, we demonstrate an in vivo PTT method that uses gold-NSs with a flexible optical fiber-needle array (OFNA), which is an array of multiple needles in which multimode optical fibers are inserted, one in each, for light delivery. The light for PTT was directly administrated to subcutaneous tissues through the OFNA, causing negligible thermal damage to the skin. Enhancement of light energy delivery assisted by the OFNA in a target area was confirmed by investigation using artificial tissues. The ability of OFNA to treat cancer without causing cutaneous thermal damage was also verified by hematoxylin and eosin (H&E) staining and optical coherence tomography in cancer models in mice. In addition, the OFNA allowed for observation of the target site through an imaging fiber bundle. By imaging the activation of the injected gold-NSs, we were able to obtain information on the PTT process in real-time.

  9. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Science.gov (United States)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  10. Speech Silicon: An FPGA Architecture for Real-Time Hidden Markov-Model-Based Speech Recognition

    Directory of Open Access Journals (Sweden)

    Schuster Jeffrey

    2006-01-01

    Full Text Available This paper examines the design of an FPGA-based system-on-a-chip capable of performing continuous speech recognition on medium sized vocabularies in real time. Through the creation of three dedicated pipelines, one for each of the major operations in the system, we were able to maximize the throughput of the system while simultaneously minimizing the number of pipeline stalls in the system. Further, by implementing a token-passing scheme between the later stages of the system, the complexity of the control was greatly reduced and the amount of active data present in the system at any time was minimized. Additionally, through in-depth analysis of the SPHINX 3 large vocabulary continuous speech recognition engine, we were able to design models that could be efficiently benchmarked against a known software platform. These results, combined with the ability to reprogram the system for different recognition tasks, serve to create a system capable of performing real-time speech recognition in a vast array of environments.

  11. Speech Silicon: An FPGA Architecture for Real-Time Hidden Markov-Model-Based Speech Recognition

    Directory of Open Access Journals (Sweden)

    Alex K. Jones

    2006-11-01

    Full Text Available This paper examines the design of an FPGA-based system-on-a-chip capable of performing continuous speech recognition on medium sized vocabularies in real time. Through the creation of three dedicated pipelines, one for each of the major operations in the system, we were able to maximize the throughput of the system while simultaneously minimizing the number of pipeline stalls in the system. Further, by implementing a token-passing scheme between the later stages of the system, the complexity of the control was greatly reduced and the amount of active data present in the system at any time was minimized. Additionally, through in-depth analysis of the SPHINX 3 large vocabulary continuous speech recognition engine, we were able to design models that could be efficiently benchmarked against a known software platform. These results, combined with the ability to reprogram the system for different recognition tasks, serve to create a system capable of performing real-time speech recognition in a vast array of environments.

  12. A real-time photogrammetry system based on embedded architecture

    Directory of Open Access Journals (Sweden)

    S. Y. Zheng

    2014-06-01

    Full Text Available In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.

  13. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

    Science.gov (United States)

    Bukhari, W.; Hong, S.-M.

    2016-03-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit

  14. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

    International Nuclear Information System (INIS)

    Bukhari, W; Hong, S-M

    2016-01-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN +  , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN + prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN + implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN +  . The experimental results show that the EKF-GPRN + algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN + algorithm can further reduce the prediction error by employing the gating function

  15. Active gated imaging for automotive safety applications

    Science.gov (United States)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  16. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  17. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  18. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    Science.gov (United States)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  19. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file.

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-21

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases.

  20. Multi-Level Pre-Correlation RFI Flagging for Real-Time Implementation on UniBoard

    Science.gov (United States)

    Dumez-Viou, Cédric; Weber, Rodolphe; Ravier, Philippe

    2016-03-01

    Because of the denser active use of the spectrum, and because of radio telescopes higher sensitivity, radio frequency interference (RFI) mitigation has become a sensitive topic for current and future radio telescope designs. Even if quite sophisticated approaches have been proposed in the recent years, the majority of RFI mitigation operational procedures are based on post-correlation corrupted data flagging. Moreover, given the huge amount of data delivered by current and next generation radio telescopes, all these RFI detection procedures have to be at least automatic and, if possible, real-time. In this paper, the implementation of a real-time pre-correlation RFI detection and flagging procedure into generic high-performance computing platforms based on field programmable gate arrays (FPGA) is described, simulated and tested. One of these boards, UniBoard, developed under a Joint Research Activity in the RadioNet FP7 European programme is based on eight FPGAs interconnected by a high speed transceiver mesh. It provides up to 4 TMACs with ®Altera Stratix IV FPGA and 160 Gbps data rate for the input data stream. The proposed concept is to continuously monitor the data quality at different stages in the digital preprocessing pipeline between the antennas and the correlator, at the station level and the core level. In this way, the detectors are applied at stages where different time-frequency resolutions can be achieved and where the interference-to-noise ratio (INR) is maximum right before any dilution of RFI characteristics by subsequent channelizations or signal recombinations. The detection decisions could be linked to a RFI statistics database or could be attached to the data for later stage flagging. Considering the high in-out data rate in the pre-correlation stages, only real-time and go-through detectors (i.e. no iterative processing) can be implemented. In this paper, a real-time and adaptive detection scheme is described. An ongoing case study has been

  1. A study of real-time content marketing : formulating real-time content marketing based on content, search and social media

    OpenAIRE

    Nguyen, Thi Kim Duyen

    2015-01-01

    The primary objective of this research is to understand profoundly the new concept of content marketing – real-time content marketing on the aspect of the digital marketing experts. Particularly, the research will focus on the real-time content marketing theories and how to build real-time content marketing strategy based on content, search and social media. It also finds out how marketers measure and keep track of conversion rates of their real-time content marketing plan. Practically, th...

  2. Gating treatment delivery QA based on a surrogate motion analysis

    International Nuclear Information System (INIS)

    Chojnowski, J.; Simpson, E.

    2011-01-01

    Full text: To develop a methodology to estimate intrafractional target position error during a phase-based gated treatment. Westmead Cancer Care Centre is using respiratory correlated phase-based gated beam delivery in the treatment of lung cancer. The gating technique is managed by the Varian Real-time Position Management (RPM) system, version 1.7.5. A 6-dot block is placed on the abdomen of the patient and acts as a surrogate for the target motion. During a treatment session, the motion of the surrogate can be recorded by RPM application. Analysis of the surrogate motion file by in-house developed software allows the intrafractional error of the treatment session to be computed. To validate the computed error, a simple test that involves the introduction of deliberate errors is performed. Errors of up to 1.1 cm are introduced to a metal marker placed on a surrogate using the Varian Breathing Phantom. The moving marker was scanned in prospective mode using a GE Lightspeed 16 CT scanner. Using the CT images, a difference of the marker position with and without introduced errors is compared to the calculated errors based on the surrogate motion. The average and standard deviation of a difference between calculated target position errors and measured introduced artificial errors of the marker position is 0.02 cm and 0.07 cm respectively. Conclusion The calculated target positional error based on surrogate motion analysis provides a quantitative measure of intrafractional target positional errors during treatment. Routine QA for gated treatment using surrogate motion analysis is relatively quick and simple.

  3. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  4. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  5. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  6. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    Science.gov (United States)

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  7. Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation

    International Nuclear Information System (INIS)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong, Lei; Bues, Martin; Balter, Peter; Smith, Alfred; Mohan, Radhe; Umezawa, Masumi; Sakae, Takeji

    2008-01-01

    Significant differences exist in respiratory-gated proton beam delivery with a synchrotron-based accelerator system when compared to photon therapy with a conventional linear accelerator. Delivery of protons with a synchrotron accelerator is governed by a magnet excitation cycle pattern. Optimal synchronization of the magnet excitation cycle pattern with the respiratory motion pattern is critical to the efficiency of respiratory-gated proton delivery. There has been little systematic analysis to optimize the accelerator's operational parameters to improve gated treatment efficiency. The goal of this study was to estimate the overall efficiency of respiratory-gated synchrotron-based proton irradiation through realistic simulation. Using 62 respiratory motion traces from 38 patients, we simulated respiratory gating for duty cycles of 30%, 20% and 10% around peak exhalation for various fixed and variable magnet excitation patterns. In each case, the time required to deliver 100 monitor units in both non-gated and gated irradiation scenarios was determined. Based on results from this study, the minimum time required to deliver 100 MU was 1.1 min for non-gated irradiation. For respiratory-gated delivery at a 30% duty cycle around peak exhalation, corresponding average delivery times were typically three times longer with a fixed magnet excitation cycle pattern. However, when a variable excitation cycle was allowed in synchrony with the patient's respiratory cycle, the treatment time only doubled. Thus, respiratory-gated delivery of synchrotron-based pulsed proton irradiation is feasible and more efficient when a variable magnet excitation cycle pattern is used

  8. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  9. realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array

    Science.gov (United States)

    Law, C. J.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Halle, A.; Khudikyan, S.; Lazio, T. J. W.; Pokorny, M.; Robnett, J.; Rupen, M. P.

    2018-05-01

    Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a source at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hr of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways in which real-time analysis can help in other fields of astrophysics.

  10. Paper-Based Active Tactile Sensor Array.

    Science.gov (United States)

    Zhong, Qize; Zhong, Junwen; Cheng, Xiaofeng; Yao, Xu; Wang, Bo; Li, Wenbo; Wu, Nan; Liu, Kang; Hu, Bin; Zhou, Jun

    2015-11-25

    A paper-based active tactile sensor -array (PATSA) with a dynamic sensitivity of 0.35 V N(-1) is demonstrated. The pixel position of the PATSA can be routed by analyzing the real-time recording voltages in the pressing process. The PATSA performance, which remains functional when removing partial areas, reveals that the device has a potential application to customized electronic skins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Towards MRI-guided linear accelerator control: gating on an MRI accelerator.

    Science.gov (United States)

    Crijns, S P M; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2011-08-07

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  12. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases. This work was partly presented at the 58th Annual meeting of American Association of Physicists in Medicine.

  13. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    International Nuclear Information System (INIS)

    Kobulnicky, K; Pawlak, D; Purwar, A

    2015-01-01

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc

  14. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, K; Pawlak, D; Purwar, A [Varian Medical Systems, Inc., Palo Alto, CA (United States)

    2015-06-15

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc.

  15. Improved Real-time Denoising Method Based on Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Liu Zhaohua

    2014-06-01

    Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.

  16. A knowledge-based system framework for real-time monitoring applications

    International Nuclear Information System (INIS)

    Heaberlin, J.O.; Robinson, A.H.

    1989-01-01

    A real-time environment presents a challenge for knowledge-based systems for process monitoring with on-line data acquisition in nuclear power plants. These applications are typically data intensive. This, coupled with the dynamic nature of events on which problematic decisions are based, requires the development of techniques fundamentally different from those generally employed. Traditional approaches involve knowledge management techniques developed for static data, the majority of which is elicited directly from the user in a consultation environment. Inference mechanisms are generally noninterruptible, requiring all appropriate rules to be fired before new data can be accommodated. As a result, traditional knowledge-based applications in real-time environments have inherent problems in dealing with the time dependence of both the data and the solution process. For example, potential problems include obtaining a correct solution too late to be of use or focusing computing resources on problems that no longer exist. A knowledge-based system framework, the real-time framework (RTF), has been developed that can accommodate the time dependencies and resource trade-offs required for real-time process monitoring applications. This framework provides real-time functionality by using generalized problem-solving goals and control strategies that are modifiable during system operation and capable of accommodating feedback for redirection of activities

  17. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-01-01

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of ±1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time (∼20× for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position (±1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  18. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati [National Centre for Radio Astrophysics, Pune 411007 (India)

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  19. Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-01-01

    Field programmable gate arrays (FPGAs) are gaining increased attention worldwide for application in nuclear power plant (NPP) instrumentation and control (I&C) systems, particularly for safety and safety related applications, but also for non-safety ones. NPP operators and equipment suppliers see potential advantages of FPGA based digital I&C systems as compared to microprocessor based applications. This is because FPGA based systems can be made simpler, more testable and less reliant on complex software (e.g. operating systems), and are easier to qualify for safety and safety related applications. This publication results from IAEA consultancy meetings covering the various aspects, including design, qualification, implementation, licensing, and operation, of FPGA based I&C systems in NPPs

  20. Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase.

    Science.gov (United States)

    Achleitner, S; De Toffol, S; Engelhard, C; Rauch, W

    2005-01-01

    In river stretches being subjected to flow regulation, usually for the purpose of energy production (e.g. Hydropower) or flood protection (river barrage), a special measure can be taken against the effect of combined sewer overflows (CSOs). The basic idea is the temporal increase of the river base flow (during storm weather) as an in-stream measure for mitigation of CSO spilling. The focus is the mitigation of the negative effect of acute pollution of substances. The measure developed can be seen as an application of the classic real time control (RTC) concept onto the river system. Upstream gate operation is to be based on real time monitoring and forecasting of precipitation. The main objective is the development of a model based predictive control system for the gate operation, by modelling of the overall wastewater system (incl. the receiving water). The main emphasis is put on the operational strategy and the appropriate short-term forecast of spilling events. The potential of the measure is tested for the application of the operational strategy and its ecological and economic feasibility. The implementation of such an in-stream measure into the hydropower's operational scheme is unique. Advantages are (a) the additional in-stream dilution of acute pollutants entering the receiving water and (b) the resulting minimization of the required CSO storage volume.

  1. Effect of liquid gate bias rising time in pH sensors based on Si nanowire ion sensitive field effect transistors

    Science.gov (United States)

    Jang, Jungkyu; Choi, Sungju; Kim, Jungmok; Park, Tae Jung; Park, Byung-Gook; Kim, Dong Myong; Choi, Sung-Jin; Lee, Seung Min; Kim, Dae Hwan; Mo, Hyun-Sun

    2018-02-01

    In this study, we investigate the effect of rising time (TR) of liquid gate bias (VLG) on transient responses in pH sensors based on Si nanowire ion-sensitive field-effect transistors (ISFETs). As TR becomes shorter and pH values decrease, the ISFET current takes a longer time to saturate to the pH-dependent steady-state value. By correlating VLG with the internal gate-to-source voltage of the ISFET, we found that this effect occurs when the drift/diffusion of mobile ions in analytes in response to VLG is delayed. This gives us useful insight on the design of ISFET-based point-of-care circuits and systems, particularly with respect to determining an appropriate rising time for the liquid gate bias.

  2. The Case For Prediction-based Best-effort Real-time Systems.

    Science.gov (United States)

    1999-01-01

    Real - time Systems Peter A. Dinda Loukas Kallivokas January...DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited DTIG QUALBR DISSECTED X The Case For Prediction-based Best-effort Real - time Systems Peter...Mellon University Pittsburgh, PA 15213 A version of this paper appeared in the Seventh Workshop on Parallel and Distributed Real - Time Systems

  3. Securing Real-Time Sessions in an IMS-Based Architecture

    Science.gov (United States)

    Cennamo, Paolo; Fresa, Antonio; Longo, Maurizio; Postiglione, Fabio; Robustelli, Anton Luca; Toro, Francesco

    The emerging all-IP mobile network infrastructures based on 3rd Generation IP Multimedia Subsystem philosophy are characterised by radio access technology independence and ubiquitous connectivity for mobile users. Currently, great focus is being devoted to security issues since most of the security threats presently affecting the public Internet domain, and the upcoming ones as well, are going to be suffered by mobile users in the years to come. While a great deal of research activity, together with standardisation efforts and experimentations, is carried out on mechanisms for signalling protection, very few integrated frameworks for real-time multimedia data protection have been proposed in a context of IP Multimedia Subsystem, and even fewer experimental results based on testbeds are available. In this paper, after a general overview of the security issues arising in an advanced IP Multimedia Subsystem scenario, a comprehensive infrastructure for real-time multimedia data protection, based on the adoption of the Secure Real-Time Protocol, is proposed; then, the development of a testbed incorporating such functionalities, including mechanisms for key management and cryptographic context transfer, and allowing the setup of Secure Real-Time Protocol sessions is presented; finally, experimental results are provided together with quantitative assessments and comparisons of system performances for audio sessions with and without the adoption of the Secure Real-Time Protocol framework.

  4. Real-time particle image velocimetry based on FPGA technology

    International Nuclear Information System (INIS)

    Iriarte Munoz, Jose Miguel

    2008-01-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach. [es

  5. Real-time 2-D Phased Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon; Hansen, Kristoffer Lindskov; Fogh, Nikolaj

    2018-01-01

    Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental off-line 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner....... A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSV) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow-rig with continuous laminar parabolic flow and in a pulsating flow...

  6. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography

    Science.gov (United States)

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-12-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  7. All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters

    Science.gov (United States)

    Picollo, Federico; Battiato, Alfio; Bernardi, Ettore; Plaitano, Marilena; Franchino, Claudio; Gosso, Sara; Pasquarelli, Alberto; Carbone, Emilio; Olivero, Paolo; Carabelli, Valentina

    2016-02-01

    We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.

  8. Time synchronization for an Ethernet-based real-time token network

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; van den Boom, Joost; Jansen, P.G.; Scholten, Johan

    We present a distributed clock synchronization algorithm. It performs clock synchronization on an Ethernet-based real-time token local area network, without the use of an external clock source. It is used to enable the token schedulers in each node to agree upon a common time. Its intended use is in

  9. Can Real-Time Data Also Be Climate Quality?

    Science.gov (United States)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  10. A synchronous serial bus for multidimensional array acoustic logging tool

    Science.gov (United States)

    Men, Baiyong; Ju, Xiaodong; Lu, Junqiang; Qiao, Wenxiao

    2016-12-01

    In high-temperature and spatial borehole applications, a distributed structure is employed in a multidimensional array acoustic logging tool (MDALT) based on a phased array technique for electronic systems. However, new challenges, such as synchronous multichannel data acquisition, multinode real-time control and bulk data transmission in a limited interval, have emerged. To address these challenges, we developed a synchronous serial bus (SSB) in this study. SSB works in a half-duplex mode via a master-slave architecture. It also consists of a single master, several slaves, a differential clock line and a differential data line. The clock line is simplex, whereas the data line is half-duplex and synchronous to the clock line. A reliable communication between the master and the slaves with real-time adjustment of synchronisation is achieved by rationally designing the frame format and protocol of communication and by introducing a scramble code and a Hamming error-correcting code. The control logic of the master and the slaves is realized in field programmable gate array (FPGA) or complex programmable logic device (CPLD). The clock speed of SSB is 10 MHz, the effective data rate of the bulk data transmission is over 99%, and the synchronous errors amongst the slaves are less than 10 ns. Room-temperature test, high-temperature test (175 °C) and field test demonstrate that the proposed SSB is qualified for MDALT.

  11. Real-Time EEG-Based Happiness Detection System

    Directory of Open Access Journals (Sweden)

    Noppadon Jatupaiboon

    2013-01-01

    Full Text Available We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use PSD as a feature and SVM as a classifier. The average accuracies of subject-dependent model and subject-independent model are approximately 75.62% and 65.12%, respectively. Considering each pair of channels, temporal pair of channels (T7 and T8 gives a better result than the other area. Considering different frequency bands, high-frequency bands (Beta and Gamma give a better result than low-frequency bands. Considering different time durations for emotion elicitation, that result from 30 seconds does not have significant difference compared with the result from 60 seconds. From all of these results, we implement real-time EEG-based happiness detection system using only one pair of channels. Furthermore, we develop games based on the happiness detection system to help user recognize and control the happiness.

  12. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    Science.gov (United States)

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.

  13. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  14. NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan

    2017-01-01

    This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.

  15. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    Science.gov (United States)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  16. Benchmarking gate-based quantum computers

    Science.gov (United States)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  17. A Sparsity-Based Approach to 3D Binaural Sound Synthesis Using Time-Frequency Array Processing

    Science.gov (United States)

    Cobos, Maximo; Lopez, JoseJ; Spors, Sascha

    2010-12-01

    Localization of sounds in physical space plays a very important role in multiple audio-related disciplines, such as music, telecommunications, and audiovisual productions. Binaural recording is the most commonly used method to provide an immersive sound experience by means of headphone reproduction. However, it requires a very specific recording setup using high-fidelity microphones mounted in a dummy head. In this paper, we present a novel processing framework for binaural sound recording and reproduction that avoids the use of dummy heads, which is specially suitable for immersive teleconferencing applications. The method is based on a time-frequency analysis of the spatial properties of the sound picked up by a simple tetrahedral microphone array, assuming source sparseness. The experiments carried out using simulations and a real-time prototype confirm the validity of the proposed approach.

  18. Gating-ML: XML-based gating descriptions in flow cytometry.

    Science.gov (United States)

    Spidlen, Josef; Leif, Robert C; Moore, Wayne; Roederer, Mario; Brinkman, Ryan R

    2008-12-01

    The lack of software interoperability with respect to gating due to lack of a standardized mechanism for data exchange has traditionally been a bottleneck, preventing reproducibility of flow cytometry (FCM) data analysis and the usage of multiple analytical tools. To facilitate interoperability among FCM data analysis tools, members of the International Society for the Advancement of Cytometry (ISAC) Data Standards Task Force (DSTF) have developed an XML-based mechanism to formally describe gates (Gating-ML). Gating-ML, an open specification for encoding gating, data transformations and compensation, has been adopted by the ISAC DSTF as a Candidate Recommendation. Gating-ML can facilitate exchange of gating descriptions the same way that FCS facilitated for exchange of raw FCM data. Its adoption will open new collaborative opportunities as well as possibilities for advanced analyses and methods development. The ISAC DSTF is satisfied that the standard addresses the requirements for a gating exchange standard.

  19. Real-time collaboration in activity-based architectures

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak

    2004-01-01

    With the growing research into mobile and ubiquitous computing, there is a need for addressing how such infrastructures can support collaboration between nomadic users. We present the activity based computing paradigm and outline a proposal for handling collaboration in an activity......-based architecture. We argue that activity-based computing establishes a natural and sound conceptual and architectural basis for session management in real-time, synchronous collaboration....

  20. Developments in real-time monitoring for geologic hazard warnings (Invited)

    Science.gov (United States)

    Leith, W. S.; Mandeville, C. W.; Earle, P. S.

    2013-12-01

    Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of

  1. Real-time emulation of neural images in the outer retinal circuit.

    Science.gov (United States)

    Hasegawa, Jun; Yagi, Tetsuya

    2008-12-01

    We describe a novel real-time system that emulates the architecture and functionality of the vertebrate retina. This system reconstructs the neural images formed by the retinal neurons in real time by using a combination of analog and digital systems consisting of a neuromorphic silicon retina chip, a field-programmable gate array, and a digital computer. While the silicon retina carries out the spatial filtering of input images instantaneously, using the embedded resistive networks that emulate the receptive field structure of the outer retinal neurons, the digital computer carries out the temporal filtering of the spatially filtered images to emulate the dynamical properties of the outer retinal circuits. The emulations of the neural image, including 128 x 128 bipolar cells, are carried out at a frame rate of 62.5 Hz. The emulation of the response to the Hermann grid and a spot of light and an annulus of lights has demonstrated that the system responds as expected by previous physiological and psychophysical observations. Furthermore, the emulated dynamics of neural images in response to natural scenes revealed the complex nature of retinal neuron activity. We have concluded that the system reflects the spatiotemporal responses of bipolar cells in the vertebrate retina. The proposed emulation system is expected to aid in understanding the visual computation in the retina and the brain.

  2. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  3. A Real Time Electronics Emulator with Realistic Data Generation for Reception Tests of the CMS ECAL Front-End Boards

    CERN Document Server

    Romanteau, T; Collard, Caroline; Debraine, A; Decotigny, D; Dobrzynski, L; Karar, A; Regnault, N

    2005-01-01

    The CMS [1] electromagnetic calorimeter (ECAL) [2] uses 3 132 Front-End boards (FE) performing both trigger and data readout functions. Prior to their integration at CERN, the FE boards have to be validated by dedicated test bench systems. The final one, called "XFEST" (eXtended Front-End System Test) and for which the present developments have been performed, is located at Laboratoire Leprince-Ringuet. In this contribution, a solution is described to efficiently test a large set of complex electronics boards characterized by a large number of input ports and a high throughput data rate. To perform it, an algorithm to simulate the Very Front End signals has been emulated. The project firmwares use VHDL embedded into XILINX Field Programmable Gate Array circuits (FPGA). This contribution describes the solutions developed in order to create a realistic digital input patterns real-time emul ator working at 40 MHz. The implementation of a real time comparison of the FE output streams as well as the test bench wil...

  4. VEST: An Aspect-Based Composition Tool for Real-Time Systems

    Science.gov (United States)

    2003-01-01

    VEST: An Aspect-Based Composition Tool for Real - Time Systems * John A. Stankovic Ruiqing Zhu Ram Poornalingam Chenyang Lu Zhendong Yu Marty Humphrey...Composition Tool for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...it is obvious that designers of embedded real - time systems face many difficult problems. By working through various product scenarios with avionics

  5. Real-time QRS detection using integrated variance for ECG gated cardiac MRI

    Directory of Open Access Journals (Sweden)

    Schmidt Marcus

    2016-09-01

    Full Text Available During magnetic resonance imaging (MRI, a patient’s vital signs are required for different purposes. In cardiac MRI (CMR, an electrocardiogram (ECG of the patient is required for triggering the image acquisition process. However, a reliable QRS detection of an ECG signal acquired inside an MRI scanner is a challenging task due to the magnetohydrodynamic (MHD effect which interferes with the ECG. The aim of this work was to develop a reliable QRS detector usable inside the MRI which also fulfills the standards for medical devices (IEC 60601-2-27. Therefore, a novel real-time QRS detector based on integrated variance measurements is presented. The algorithm was trained on ANSI/AAMI EC13 test waveforms and was then applied to two databases with 12-lead ECG signals recorded inside and outside an MRI scanner. Reliable results for both databases were achieved for the ECG signals recorded inside (DBMRI: sensitivity Se = 99.94%, positive predictive value +P = 99.84% and outside (DBInCarT: Se = 99.29%, +P = 99.72% the MRI. Due to the accurate R-peak detection in real-time this can be used for monitoring and triggering in MRI exams.

  6. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

    International Nuclear Information System (INIS)

    Posada, Chrystian M.; Grant, Edwin J.; Lee, Hyoung K.; Castaño, Carlos H.; Divan, Ralu; Sumant, Anirudha V.; Rosenmann, Daniel; Stan, Liliana

    2014-01-01

    A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm 2 could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO 2 insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance of alternative single and double gate designs that would yield better field emission characteristics compared to the first FEA prototype. The best simulation results are obtained for the double gate FEA design, when the diameter of the collimator gate is around 2.6 times the diameter of the extraction gate

  7. High-speed real-time OFDM transmission based on FPGA

    Science.gov (United States)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  8. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    Science.gov (United States)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  9. Migration of a Real-Time Optimal-Control Algorithm: From MATLAB (Trademark) to Field Programmable Gate Array (FPGA)

    National Research Council Canada - National Science Library

    Moon, II, Ron L

    2005-01-01

    ...) development environment into an FPGA-based embedded-platform development board. Research at the Naval Postgraduate School has produced a revolutionary time-optimal spacecraft control algorithm based upon the Legendre Pseudospectral method...

  10. Time gated phase-correlation distributed Brillouin fibre sensor

    Science.gov (United States)

    Denisov, Andrey; Soto, Marcelo A.; Thévenaz, Luc

    2013-05-01

    A random access distributed Brillouin fibre sensor is presented, based on phase modulation using a pseudo-random bit sequence (PRBS) together with time gating. The standard phase-correlation technique is known to show a noise level increasing linearly with the number of measured points due to weak gratings generated randomly along the whole sensing fibre. Here we show how intensity modulated pump and time gated detection significantly improve the signal-tonoise ratio (SNR) of the system with no impact on the spatial resolution. A measurement with 1.1 cm spatial resolution over 3.3 km is demonstrated, representing 300'000 equivalent points. The limitations of the proposed technique are discussed through the paper.

  11. MO-FG-BRA-03: A Novel Method for Characterizing Gating Response Time in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, R; McCabe, B; Belcher, A; Jenson, P [The University of Chicago, Chicago, IL (United States); Smith, B [University Illinois at Chicago, Orland Park, IL (United States); Aydogan, B [The University of Chicago, Chicago, IL (United States); University Illinois at Chicago, Orland Park, IL (United States)

    2016-06-15

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Current film based methods to assess gating response have poor temporal resolution and are highly qualitative. We describe a novel method to precisely measure gating lag times at high temporal resolutions and use it to characterize the temporal response of several gating systems. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz (0.4 millisecond (ms) sampling interval) with an analogue-to-digital converter (ADC). The techniques was used on three commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted using a polynomial fit method. Results: A Varian RPM system with a monoscopic IR camera was measured to have mean beam ON and OFF lag times of 98.2 ms and 89.6 ms, respectively. A Varian RPM system with a stereoscopic IR camera was measured to have mean beam ON and OFF lag times of 86.0 ms and 44.0 ms, respectively. A Calypso magnetic fiducial tracking system was measured to have mean beam ON and OFF lag times of 209.0 ms and 60.0 ms, respectively. Conclusions: A novel method allowed for quantitative determination of gating timing accuracy for several clinically used gating systems. All gating systems met the 100 ms TG-142 criteria for mean beam OFF times. For beam ON response, the Calypso system exceeded the recommended response time.

  12. Development of real-time tumor tracking system for stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Yamanaka, Seiji; Sasagawa, Tsuyoshi; Uno, Yukimichi

    2011-01-01

    We are now developing the real-time tumor tracking system for stereotactic radiotherapy (SRT) to provide precise information on the location of a tumor and to reduce the irradiation to healthy tissue in a patient. The system has the following features: A motion tracking and processing unit recognizes a gold marker inserted in or near a tumor in real time by the pattern matching of a predetermined template image and acquired X-ray fluoroscopic images. When the gold marker is within a planned area, that is to say, when a tumor enters a target irradiation area, a gate signal is sent to a linear accelerator. A railway unit is equipped with two X-ray tubes and two detectors, which are controlled separately with their own drive mechanism. They travel with high accuracy and reproducibility to the best position for monitoring the gold marker. A synchronization controller controls the timing for X-ray fluoroscopy and the gate signals to the linear accelerator. The controller works for two types of detectors: a color X-ray detector and a flat panel detector (FPD). (author)

  13. Frequency Based Real-time Pricing for Residential Prosumers

    Science.gov (United States)

    Hambridge, Sarah Mabel

    This work is the first to explore frequency based pricing for secondary frequency control as a price-reactive control mechanism for residential prosumers. A frequency based real-time electricity rate is designed as an autonomous market control mechanism for residential prosumers to provide frequency support as an ancillary service. In addition, prosumers are empowered to participate in dynamic energy transactions, therefore integrating Distributed Energy Resources (DERs), and increasing distributed energy storage onto the distributed grid. As the grid transitions towards DERs, a new market based control system will take the place of the legacy distributed system and possibly the legacy bulk power system. DERs provide many benefits such as energy independence, clean generation, efficiency, and reliability to prosumers during blackouts. However, the variable nature of renewable energy and current lack of installed energy storage on the grid will create imbalances in supply and demand as uptake increases, affecting the grid frequency and system operation. Through a frequency-based electricity rate, prosumers will be encouraged to purchase energy storage systems (ESS) to offset their neighbor's distributed generation (DG) such as solar. Chapter 1 explains the deregulation of the power system and move towards Distributed System Operators (DSOs), as prosumers become owners of microgrids and energy cells connected to the distributed system. Dynamic pricing has been proposed as a benefit to prosumers, giving them the ability to make decisions in the energy market, while also providing a way to influence and control their behavior. Frequency based real-time pricing is a type of dynamic pricing which falls between price-reactive control and transactive control. Prosumer-to-prosumer transactions may take the place of prosumer-to-utility transactions, building The Energy Internet. Frequency based pricing could be a mechanism for determining prosumer prices and supporting

  14. Development of the compact proton beam therapy system dedicated to spot scanning with real-time tumor-tracking technology

    Science.gov (United States)

    Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki

    2013-04-01

    Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.

  15. Parallel processing method for high-speed real time digital pulse processing for gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Fernandes, A.M.; Pereira, R.C.; Sousa, J.; Neto, A.; Carvalho, P.; Batista, A.J.N.; Carvalho, B.B.; Varandas, C.A.F.; Tardocchi, M.; Gorini, G.

    2010-01-01

    A new data acquisition (DAQ) system was developed to fulfil the requirements of the gamma-ray spectrometer (GRS) JET-EP2 (joint European Torus enhancement project 2), providing high-resolution spectroscopy at very high-count rate (up to few MHz). The system is based on the Advanced Telecommunications Computing Architecture TM (ATCA TM ) and includes a transient record (TR) module with 8 channels of 14 bits resolution at 400 MSamples/s (MSPS) sampling rate, 4 GB of local memory, and 2 field programmable gate array (FPGA) able to perform real time algorithms for data reduction and digital pulse processing. Although at 400 MSPS only fast programmable devices such as FPGAs can be used either for data processing and data transfer, FPGA resources also present speed limitation at some specific tasks, leading to an unavoidable data lost when demanding algorithms are applied. To overcome this problem and foreseeing an increase of the algorithm complexity, a new digital parallel filter was developed, aiming to perform real time pulse processing in the FPGAs of the TR module at the presented sampling rate. The filter is based on the conventional digital time-invariant trapezoidal shaper operating with parallelized data while performing pulse height analysis (PHA) and pile up rejection (PUR). The incoming sampled data is successively parallelized and fed into the processing algorithm block at one fourth of the sampling rate. The following data processing and data transfer is also performed at one fourth of the sampling rate. The algorithm based on data parallelization technique was implemented and tested at JET facilities, where a spectrum was obtained. Attending to the observed results, the PHA algorithm will be improved by implementing the pulse pile up discrimination.

  16. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  17. Real-time traffic signal optimization model based on average delay time per person

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-10-01

    Full Text Available Real-time traffic signal control is very important for relieving urban traffic congestion. Many existing traffic control models were formulated using optimization approach, with the objective functions of minimizing vehicle delay time. To improve people’s trip efficiency, this article aims to minimize delay time per person. Based on the time-varying traffic flow data at intersections, the article first fits curves of accumulative arrival and departure vehicles, as well as the corresponding functions. Moreover, this article transfers vehicle delay time to personal delay time using average passenger load of cars and buses, employs such time as the objective function, and proposes a signal timing optimization model for intersections to achieve real-time signal parameters, including cycle length and green time. This research further implements a case study based on practical data collected at an intersection in Beijing, China. The average delay time per person and queue length are employed as evaluation indices to show the performances of the model. The results show that the proposed methodology is capable of improving traffic efficiency and is very effective for real-world applications.

  18. Real-time biscuit tile image segmentation method based on edge detection.

    Science.gov (United States)

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Hippocampus activation related to 'real-time' processing of visuospatial change.

    Science.gov (United States)

    Beudel, M; Leenders, K L; de Jong, B M

    2016-12-01

    The delay associated with cerebral processing time implies a lack of real-time representation of changes in the observed environment. To bridge this gap for motor actions in a dynamical environment, the brain uses predictions of the most plausible future reality based on previously provided information. To optimise these predictions, adjustments to actual experiences are necessary. This requires a perceptual memory buffer. In our study we gained more insight how the brain treats (real-time) information by comparing cerebral activations related to judging past-, present- and future locations of a moving ball, respectively. Eighteen healthy subjects made these estimations while fMRI data was obtained. All three conditions evoked bilateral dorsal-parietal and premotor activations, while judgment of the location of the ball at the moment of judgment showed increased bilateral posterior hippocampus activation relative to making both future and past judgments at the one-second time-sale. Since the condition of such 'real-time' judgments implied undistracted observation of the ball's actual movements, the associated hippocampal activation is consistent with the concept that the hippocampus participates in a top-down exerted sensory gating mechanism. In this way, it may play a role in novelty (saliency) detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  1. Development of a scalable generic platform for adaptive optics real time control

    Science.gov (United States)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  2. The FPGA Pixel Array Detector

    International Nuclear Information System (INIS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2013-01-01

    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested. -- Highlights: ► We describe the novelty and need for the FPGA Pixel Array Detector. ► We describe the specifications and design of the Diode, ASIC and FPGA layers. ► We highlight the Autocorrelation Function (ACF) for speckle as an example application. ► Simulated FPGA output calculates the ACF for different input bitstreams to 100 ns. ► Reduced data transfer rate by 640× and sped up real-time ACF by 100× other methods.

  3. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  4. Evaluation of the geometric accuracy of surrogate-based gated VMAT using intrafraction kilovoltage x-ray images

    International Nuclear Information System (INIS)

    Li Ruijiang; Mok, Edward; Han, Bin; Koong, Albert; Xing Lei

    2012-01-01

    . For a target with 3D motion, the technique is able to detect geometric errors in the left-right (LR) and anterior-posterior (AP) directions. For the patient study, the average intrafraction positioning errors are 0.8, 0.9, and 1.4 mm and 95th percentile errors are 1.7, 2.1, and 2.7 mm in the LR, AP, and SI directions, respectively. Conclusions: The correlation between external surrogate and internal target motion is crucial to ensure the geometric accuracy of surrogate-based gating. Real-time guidance based on kV x-ray images overcomes the potential issues in surrogate-based gating and can achieve accurate beam targeting in gated VMAT.

  5. Managing truck arrivals with time windows to alleviate gate congestion at container terminals

    DEFF Research Database (Denmark)

    Chen, G.; Govindan, Kannan; Yang, Z.

    2013-01-01

    Long truck queues at gates often limit the efficiency of a container terminal and generate serious air pollution. To reduce the gate congestion, this paper proposes a method called'vessel dependent time windows (VDTWs)' to control truck arrivals, which involves partitioning truck entries into gro......Long truck queues at gates often limit the efficiency of a container terminal and generate serious air pollution. To reduce the gate congestion, this paper proposes a method called'vessel dependent time windows (VDTWs)' to control truck arrivals, which involves partitioning truck entries...... into groups and assigning different time windows to the groups. The proposed VDTWs method includes three steps: (1) predicting truck arrivals based on the time window assignment, (2) estimating the queue length of trucks, and (3) optimizing the arrangement of time windows to minimize the total cost...

  6. A real-time non-contact monitoring method of subsea pipelines

    Directory of Open Access Journals (Sweden)

    Song Dalei

    2015-01-01

    Full Text Available To monitoring the subsea pipeline in real-time, a special potentiometric sensor array and a potential prediction model are presented in this paper. Firstly, to measure the potential of seawater, a special potentiometric sensor array with Ag/AgCl all-solid-state reference electrodes is first developed in this paper. Secondly, according to the obtained distribution law of electric field intensities a prediction model of the pipeline potentials is developed. Finally, the potentiometric sensor array is applied in sink experiment and the prediction model is validated by the sink measurements. The maximum error for pipeline potential prediction model is 1.1 mV. The proposed non-contact monitoring method for subsea pipeline can predict the potential of sea pipeline in real-time, thus providing important information for further subsea pipeline maintenance.

  7. Imaged-guided liver stereotactic body radiotherapy using VMAT and real-time adaptive tumor gating. Concerns about technique and preliminary clinical results.

    Science.gov (United States)

    Llacer-Moscardo, Carmen; Riou, Olivier; Azria, David; Bedos, Ludovic; Ailleres, Norbert; Quenet, Francois; Rouanet, Philippe; Ychou, Marc; Fenoglietto, Pascal

    2017-01-01

    Motion management is a major challenge in abdominal SBRT. We present our study of SBRT for liver tumors using intrafraction motion review (IMR) allowing simultaneous KV information and MV delivery to synchronize the beam during gated RapidArc treatment. Between May 2012 and March 2015, 41 patients were treated by liver SBRT using gated RapidArc technique in a Varian Novalis Truebeam STx linear accelerator. PTV was created by expanding 5 mm from the ITV. Dose prescription ranged from 40 to 50 Gy in 5-10 fractions. The prescribed dose and fractionation were chosen depending on hepatic function and dosimetric results. Thirty-four patients with a minimal follow-up of six months were analyzed for local control and toxicity. Accuracy for tumor repositioning was evaluated for the first ten patients. With a median follow-up of 13 months, the treatment was well tolerated and no patient presented RILD, perforation or gastrointestinal bleeding. Acute toxicity was found in 3 patients with G1 abdominal pain, 2 with G1 nausea, 10 with G1 asthenia and 1 with G2 asthenia. 6 patients presented asymptomatic transitory perturbation of liver enzymes. In-field local control was 90.3% with 7 complete responses, 14 partial responses and 7 stabilisations. 3 patients evolved "in field". 12 patients had an intrahepatic progression "out of field". Mean intrafraction deviation of fiducials in the craneo-caudal direction was 0.91 mm (0-6 mm). The clinical tolerance and oncological outcomes were favorable when using image-guided liver SBRT with real-time adaptive tumor gating.

  8. The potential of TaqMan Array Cards for detection of multiple biological agents by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Phillip A Rachwal

    Full Text Available The TaqMan Array Card architecture, normally used for gene expression studies, was evaluated for its potential to detect multiple bacterial agents by real-time PCR. Ten PCR assays targeting five biological agents (Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis were incorporated onto Array Cards. A comparison of PCR performance of each PCR in Array Card and singleplex format was conducted using DNA extracted from pure bacterial cultures. When 100 fg of agent DNA was added to Array Card channels the following levels of agent detection (where at least one agent PCR replicate returned a positive result were observed: Y. pestis 100%, B. mallei & F. tularensis 93%; B. anthracis 71%; B. pseudomallei 43%. For B. mallei & pseudomallei detection the BPM2 PCR, which detects both species, outperformed PCR assays specific to each organism indicating identification of the respective species would not be reproducible at the 100 fg level. Near 100% levels of detection were observed when 100 fg of DNA was added to each PCR in singleplex format with singleplex PCRs also returning sporadic positives at the 10 fg per PCR level. Before evaluating the use of Array Cards for the testing of environmental and clinical sample types, with potential levels of background DNA and PCR inhibitors, users would therefore have to accept a 10-fold reduction in sensitivity of PCR assays on the Array Card format, in order to benefit for the capacity to test multiple samples for multiple agents. A two PCR per agent strategy would allow the testing of 7 samples for the presence of 11 biological agents or 3 samples for 23 biological agents per card (with negative control channels.

  9. Modeling and Simulation of a Non-Coherent Frequency Shift Keying Transceiver Using a Field Programmable Gate Array (FPGA)

    National Research Council Canada - National Science Library

    Voskakis, Konstantinos

    2008-01-01

    ...) receiver-transmitter in a Field Programmable Gate Array (FPGA). After introducing the theory behind the Non- Coherent BFSK demodulation implemented at the receiver, the design of transmitter and receiver is illustrated...

  10. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    Science.gov (United States)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  11. In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation.

    Science.gov (United States)

    Pagliazzi, M; Sekar, S Konugolu Venkata; Di Sieno, L; Colombo, L; Durduran, T; Contini, D; Torricelli, A; Pifferi, A; Mora, A Dalla

    2018-06-01

    We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.

  12. Real-time data reorganizer for the D0 central fiber tracker trigger system at Fermilab

    International Nuclear Information System (INIS)

    Stefano Marco Rapisarda, Jamieson T Olsen and Neal George Wilcer email rapisard@fnal.gov

    2002-01-01

    A custom digital data Mixer system has been designed to reorganize, in real time, the data produced by the Fermilab D0 Scintillating Fiber Detector. The data is used for the Level 1 and Level 2 trigger generation. The Mixer System receives the data from the front-end digitization electronics over 320 Low Voltage Differential Signaling (LVDS) links running at 371 MHz. The input data is de-serialized down to 53 MHz by the LVDS receivers, clock/frame re-synchronized and multiplexed in Field Programmable Gate Arrays (FPGAs). The data is then reserialized at 371 MHz by LVDS transmitters over 320 LVDS output links and sent to the electronics responsible for Level 1 and Level 2 trigger decisions. The Mixer System processes 311 Gigabits per second of data with an input to output delay of 200 nanoseconds

  13. Microgrids Real-Time Pricing Based on Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2018-05-01

    Full Text Available Microgrids are widely spreading in electricity markets worldwide. Besides the security and reliability concerns for these microgrids, their operators need to address consumers’ pricing. Considering the growth of smart grids and smart meter facilities, it is expected that microgrids will have some level of flexibility to determine real-time pricing for at least some consumers. As such, the key challenge is finding an optimal pricing model for consumers. This paper, accordingly, proposes a new pricing scheme in which microgrids are able to deploy clustering techniques in order to understand their consumers’ load profiles and then assign real-time prices based on their load profile patterns. An improved weighted fuzzy average k-means is proposed to cluster load curve of consumers in an optimal number of clusters, through which the load profile of each cluster is determined. Having obtained the load profile of each cluster, real-time prices are given to each cluster, which is the best price given to all consumers in that cluster.

  14. Laser-assisted electron emission from gated field-emitters

    CERN Document Server

    Ishizuka, H; Yokoo, K; Mimura, H; Shimawaki, H; Hosono, A

    2002-01-01

    Enhancement of electron emission by illumination of gated field-emitters was studied using a 100 mW cw YAG laser at a wavelength of 532 nm, intensities up to 10 sup 7 W/m sup 2 and mechanically chopped with a rise time of 4 mu s. When shining an array of 640 silicon emitters, the emission current responded quickly to on-off of the laser. The increase of the emission current was proportional to the basic emission current at low gate voltages, but it was saturated at approx 3 mu A as the basic current approached 100 mu A with the increase of gate voltage. The emission increase was proportional to the square root of laser power at low gate voltages and to the laser power at elevated gate voltages. For 1- and 3-tip silicon emitters, the rise and fall of the current due to on-off of the laser showed a significant time lag. The magnitude of emission increase was independent of the position of laser spot on the emitter base and reached 2 mu A at a basic current of 5 mu A without showing signs of saturation. The mech...

  15. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    Science.gov (United States)

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  16. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  17. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    Science.gov (United States)

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  18. Single Event Gate Rupture in 130-nm CMOS Transistor Arrays Subjected to X-Ray Irradiation

    CERN Document Server

    Silvestri, M; Gerardin, Simone; Faccio, Federico; Paccagnella, Alessandro

    2010-01-01

    We present new experimental results on heavy ion-induced gate rupture on deep submicron CMOS transistor arrays. Through the use of dedicated test structures, composed by a large number of 130-nm MOSFETs connected in parallel, we show the response to heavy ion irradiation under high stress voltages of devices previously irradiated with X-rays. We found only a slight impact on gate rupture critical voltage at a LET of 32 MeV cm(2) mg(-1) for devices previously irradiated up to 3 Mrad(SiO2), and practically no change for 100 Mrad(SiO2) irradiation, dose of interest for the future super large hadron collider (SLHC).

  19. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    Science.gov (United States)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported

  20. A Lecture Supporting System Based on Real-Time Learning Analytics

    Science.gov (United States)

    Shimada, Atsushi; Konomi, Shin'ichi

    2017-01-01

    A new lecture supporting system based on real-time learning analytics is proposed. Our target is on-site classrooms where teachers give their lectures, and a lot of students listen to teachers' explanation, conduct exercises etc. We utilize not only an e-Learning system, but also an e-Book system to collect real-time learning activities during the…

  1. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    NARCIS (Netherlands)

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  2. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  3. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  4. Injection moulded microneedle sensor for real-time wireless pH monitoring.

    Science.gov (United States)

    Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer

    2017-07-01

    This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.

  5. Real-time machine vision system using FPGA and soft-core processor

    Science.gov (United States)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  6. A software framework for pipelined arithmetic algorithms in field programmable gate arrays

    Science.gov (United States)

    Kim, J. B.; Won, E.

    2018-03-01

    Pipelined algorithms implemented in field programmable gate arrays are extensively used for hardware triggers in the modern experimental high energy physics field and the complexity of such algorithms increases rapidly. For development of such hardware triggers, algorithms are developed in C++, ported to hardware description language for synthesizing firmware, and then ported back to C++ for simulating the firmware response down to the single bit level. We present a C++ software framework which automatically simulates and generates hardware description language code for pipelined arithmetic algorithms.

  7. Optical and Microcantilever-Based Sensors for Real-Time In Situ Characterization of High-Level Waste

    International Nuclear Information System (INIS)

    Braun, Gilbert M.; Bryan, Samuel

    2002-01-01

    Fundamental research is being conducted to develop sensors for strontium that can be used in real-time to characterize high-level waste (HLW) process streams. Two fundamentally different approaches are being pursued, which have in common the dependence on highly selective molecular recognition agents. In one approach, an array of chemically selective sensors with sensitive fluorescent probes to signal the presence of the constituent of interest are coupled to fiber optics for remote analytical applications. The second approach employs sensitive microcantilever sensors that have been demonstrated to have unprecedented sensitivity in solution for Cs+ and CrO4 -. Selectivity in microcantilever-based sensors is achieved by modifying the surface of a gold-coated cantilever with a monolayer coating of an alkanethiol derivative of the molecular recognition agent. The approaches are complementary since fiber optic sensors can be deployed in the highly alkaline environment of HLW, bu t a method of immobilizing a fluorescent molecular recognition agents in a polymer film or bead on the surface of the optical fiber has yet to be demonstrated. The microcantilever-based sensors function by converting molecular complexation into surface stress, and they have been demonstrated to have the requisite sensitivity. However, we will investigate method of protecting Si or SiN microcantilever sensors in the highly alkaline environment of HLW while maintaining high selectivity. One objective of this project is to develop Sr(II) molecular recognition agents with rapidly established equilibria needed for real-time analysis, and initial research will focus on calixarene-crown ethers as a platform. Sensors for alkali metal ions, hydroxide, and temperature will be part of the array of sensor elements that will be demonstrated in this program for both the cantilever and fiber optic sensor approaches

  8. MISENS DEVICE AS A NEW AUTOMATED BIOSENSING PLATFORM BASED ON REAL-TIME ELECTROCHEMICAL PROFILING (REP

    Directory of Open Access Journals (Sweden)

    yıldız uludağ

    2016-09-01

    Full Text Available In various fields like health, environmental control, food security and military defense; there is an increasing demand for on-site detection, fast identification and urgent response which brings the necessity to employ laboratory detection procedures on standalone automatic devices. In response to that TUBITAK BILGEM’s Bioelectronic Devices and Systems Group has been developing portable and fully automated biosensor devices using optical and electrochemical biosensor detection techniques. Here we describe a new integrated and fully automated lab-on-a-chip based biosensor device ‘MiSens’. The key features of the MiSens include a new electrode array, an integrated microfluidic system and real-time amperometric measurements during the flow of enzyme substrate. While simple protocols can be controlled from the LCD display on the device, other main device control procedures can be run wireless by a tablet/PC using the MiCont™ software developed by the team. For the device, a new plug and play type sensor chip docking station has been designed that with one move it enables the formation of a ~ 7-10 µl capacity flow cell on the electrode array with the necessary microfluidic and electronic connections. The MiSens device has been developed by our multi-disciplinary team by integrating and automatising the earlier developed sensing platform REP™ (Real-time Electrochemical Profiling. The performance of the MiSens device has been tested using cyclic voltammetry and amperometry tests and the results were compared with an of the shelf potantiostat.

  9. Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring-Guided Gating for Prostate Cancer Radiation Therapy

    DEFF Research Database (Denmark)

    Keall, Paul J; Ng, Jin Aun; Juneja, Prabhjot

    2016-01-01

    for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. METHODS AND MATERIALS: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy...... treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beam is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired k...

  10. Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Ching-Hsing Luo

    2011-09-01

    Full Text Available A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC, a microcontroller unit (MCU, a graphical user interface (GUI, and a radio frequency (RF transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA. The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment, a small size of 5.6 cm × 8.7 cm, high portability, and high integration.

  11. Implementation of SoC Based Real-Time Electromagnetic Transient Simulator

    Directory of Open Access Journals (Sweden)

    I. Herrera-Leandro

    2017-01-01

    Full Text Available Real-time electromagnetic transient simulators are important tools in the design stage of new control and protection systems for power systems. Real-time simulators are used to test and stress new devices under similar conditions that the device will deal with in a real network with the purpose of finding errors and bugs in the design. The computation of an electromagnetic transient is complex and computationally demanding, due to features such as the speed of the phenomenon, the size of the network, and the presence of time variant and nonlinear elements in the network. In this work, the development of a SoC based real-time and also offline electromagnetic transient simulator is presented. In the design, the required performance is met from two sides, (a using a technique to split the power system into smaller subsystems, which allows parallelizing the algorithm, and (b with specialized and parallel hardware designed to boost the solution flow. The results of this work have shown that for the proposed case studies, based on a balanced distribution of the node of subsystems, the proposed approach has decreased the total simulation time by up to 99 times compared with the classical approach running on a single high performance 32-bit embedded processor ARM-Cortex A9.

  12. A gating grid driver for time projection chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tangwancharoen, S.; Lynch, W.G.; Barney, J.; Estee, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shane, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Tsang, M.B., E-mail: tsang@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Zhang, Y. [Department of Physics, Tsinghua University, Beijing 100084 (China); Isobe, T.; Kurata-Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Murakami, T. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606–8502 (Japan); Xiao, Z.G. [Department of Physics, Tsinghua University, Beijing 100084 (China); Zhang, Y.F. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2017-05-01

    A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 µs, for small values of the termination resistors. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 µs. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 µs.

  13. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  14. Real-Time Location-Based Rendering of Urban Underground Pipelines

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-01-01

    Full Text Available The concealment and complex spatial relationships of urban underground pipelines present challenges in managing them. Recently, augmented reality (AR has been a hot topic around the world, because it can enhance our perception of reality by overlaying information about the environment and its objects onto the real world. Using AR, underground pipelines can be displayed accurately, intuitively, and in real time. We analyzed the characteristics of AR and their application in underground pipeline management. We mainly focused on the AR pipeline rendering procedure based on the BeiDou Navigation Satellite System (BDS and simultaneous localization and mapping (SLAM technology. First, in aiming to improve the spatial accuracy of pipeline rendering, we used differential corrections received from the Ground-Based Augmentation System to compute the precise coordinates of users in real time, which helped us accurately retrieve and draw pipelines near the users, and by scene recognition the accuracy can be further improved. Second, in terms of pipeline rendering, we used Visual-Inertial Odometry (VIO to track the rendered objects and made some improvements to visual effects, which can provide steady dynamic tracking of pipelines even in relatively markerless environments and outdoors. Finally, we used the occlusion method based on real-time 3D reconstruction to realistically express the immersion effect of underground pipelines. We compared our methods to the existing methods and concluded that the method proposed in this research improves the spatial accuracy of pipeline rendering and the portability of the equipment. Moreover, the updating of our rendering procedure corresponded with the moving of the user’s location, thus we achieved a dynamic rendering of pipelines in the real environment.

  15. The impact of gated Communities on property values: evidence of changes in real estate markets -Los Angeles, 1980-2000

    Directory of Open Access Journals (Sweden)

    Renaud Le Goix

    2007-05-01

    Full Text Available The paper focuses on how gated communities, as private means of providing public infrastructure and security, real estate products and club-economies, produce changes in housing market patterns. Based on an empirical study of Los Angeles (California data, it aims to trace to what extent gates and walls favor property values and if the presence of gated communities produces over time (1980-2000 a deterrent effect on non-gated properties abutting the enclave, or close to it. Resulting from a demand for security, gated communities are a leading offer from the homebuilding industry. But their spread emerges from a partnership between local governments and land developers. Both agree to charge the homebuyer with the cost of urban sprawl (construction and maintenance costs of infrastructure within the gates. Such a structuring of residential space is particularly desirable on the urban edges, where the cost of urban sprawl exceeds the financial assets of local public authorities. New private developments provide local governments with new wealthy taxpayers at almost no cost. As compensation, the homebuyer is granted private and exclusive access to sites and amenities (lakes, beaches, etc.. Such exclusivity favors the location rent, and usually positively affects the property values within the gated enclaves. But it is also assumed that operating cost of private governance are paid for by the increase of property values. Market failure nevertheless occurs when costs rise above sustainable levels compared to property values. Changes produced by gates yield to at least two outcomes. At first sight, residential enclosures produce a price premium, thus being a smart investment. Furthermore, gated communities might well be able to generate enough property value to pay off the price of private governance. But this analysis holds only on a short term basis. In the long term, larger and wealthier gated communities are successful in shielding their property

  16. An Overview on Base Real-Time Hard Shadow Techniques in Virtual Environments

    Directory of Open Access Journals (Sweden)

    Mohd Shahrizal Sunar

    2012-03-01

    Full Text Available Shadows are elegant to create a realistic scene in virtual environments variety type of shadow techniques encourage us to prepare an overview on all base shadow techniques. Non real-time and real-time techniques are big subdivision of shadow generation. In non real-time techniques ray tracing, ray casting and radiosity are well known and are described deeply. Radiosity is implemented to create very realistic shadow on non real-time scene. Although traditional radiosity algorithm is difficult to implement, we have proposed a simple one. The proposed pseudo code is easier to understand and implement. Ray tracing is used to prevent of collision of movement objects. Projection shadow, shadow volume and shadow mapping are used to create real-time shadow in virtual environments. We have used projection shadow for some objects are static and have shadow on flat surface. Shadow volume is used to create accurate shadow with sharp outline. Shadow mapping that is the base of most recently techniques is reconstructed. The reconstruct algorithm gives some new idea to propose another algorithm based on shadow mapping.

  17. A 1T Dynamic Random Access Memory Cell Based on Gated Thyristor with Surrounding Gate Structure for High Scalability.

    Science.gov (United States)

    Kim, Hyungjin; Kim, Sihyun; Kim, Hyun-Min; Lee, Kitae; Kim, Sangwan; Pak, Byung-Gook

    2018-09-01

    In this study, we investigate a one-transistor (1T) dynamic random access memory (DRAM) cell based on a gated-thyristor device utilizing voltage-driven bistability to enable high-speed operations. The structural feature of the surrounding gate using a sidewall provides high scalability with regard to constructing an array architecture of the proposed devices. In addition, the operation mechanism, I-V characteristics, DRAM operations, and bias dependence are analyzed using a commercial device simulator. Unlike conventional 1T DRAM cells utilizing the floating body effect, excess carriers which are required to be stored to make two different states are not generated but injected from the n+ cathode region, giving the device high-speed operation capabilities. The findings here indicate that the proposed DRAM cell offers distinct advantages in terms of scalability and high-speed operations.

  18. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    International Nuclear Information System (INIS)

    Benitez, D; Gaydecki, P; Quek, S; Torres, V

    2007-01-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research

  19. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Science.gov (United States)

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2007-07-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  20. Seven channel gated charge to time converter

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, R J; Waddoup, W D [Durham Univ. (UK)

    1977-11-01

    By using a hybrid integrated circuit seven independent gated charge to time converters have been constructed in a single width NIM module. Gate widths from < approximately 10 ns to approximately 300 ns are possible with a resolution of 0.25 pC, linearity is better than +-1 pC over 2.5 decades of input signal height. Together with a multichannel scaling system described in the following paper one has a very powerful multichannel gated ADC system.

  1. Real-time DSP implementation for MRF-based video motion detection.

    Science.gov (United States)

    Dumontier, C; Luthon, F; Charras, J P

    1999-01-01

    This paper describes the real time implementation of a simple and robust motion detection algorithm based on Markov random field (MRF) modeling, MRF-based algorithms often require a significant amount of computations. The intrinsic parallel property of MRF modeling has led most of implementations toward parallel machines and neural networks, but none of these approaches offers an efficient solution for real-world (i.e., industrial) applications. Here, an alternative implementation for the problem at hand is presented yielding a complete, efficient and autonomous real-time system for motion detection. This system is based on a hybrid architecture, associating pipeline modules with one asynchronous module to perform the whole process, from video acquisition to moving object masks visualization. A board prototype is presented and a processing rate of 15 images/s is achieved, showing the validity of the approach.

  2. Real-time electricity pricing mechanism in China based on system dynamics

    International Nuclear Information System (INIS)

    He, Yongxiu; Zhang, Jixiang

    2015-01-01

    Highlights: • The system dynamics is used to research the real-time electricity pricing mechanism. • Four kinds of the real-time electricity pricing models are carried out and simulated. • It analysed the electricity price, the user satisfaction and the social benefits under the different models. • Market pricing is the trend of the real-time electricity pricing mechanism. • Initial development path of the real-time price mechanism for China is designed between 2015 and 2030. - Abstract: As an important means of demand-side response, the reasonable formulation of the electricity price mechanism will have an important impact on the balance between the supply and demand of electric power. With the introduction of Chinese intelligence apparatus and the rapid development of smart grids, real-time electricity pricing, as the frontier electricity pricing mechanism in the smart grid, will have great significance on the promotion of energy conservation and the improvement of the total social surplus. From the perspective of system dynamics, this paper studies different real-time electricity pricing mechanisms based on load structure, cost structure and bidding and analyses the situation of user satisfaction and the total social surplus under different pricing mechanisms. Finally, through the comparative analysis of examples under different real-time pricing scenarios, this paper aims to explore and design the future dynamic real-time electricity pricing mechanism in China, predicts the dynamic real-time pricing level and provides a reference for real-time electricity price promotion in the future

  3. Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

    Directory of Open Access Journals (Sweden)

    Li Xie

    2012-01-01

    Full Text Available A key requirement of lunar rover autonomous navigation is to acquire state information accurately in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF- based real-time celestial navigation (RCN method. The proposed method considers the rover position and velocity on the lunar surface as the system parameters and establishes a constant velocity (CV model. In addition, the attitude quaternion is considered as the system state, and the quaternion differential equation is established as the state equation, which incorporates the output of angular rate gyroscope. Therefore, the measurement equation can be established with sun direction vector from the sun sensor and speed observation from the speedometer. The gyro continuous output ensures the algorithm real-time operation. Finally, we use the dual-EKF method to solve the system equations. Simulation results show that the proposed method can acquire the rover position and heading information in real time and greatly improve the navigation accuracy. Our method overcomes the disadvantage of the cumulative error in inertial navigation.

  4. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  5. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    Energy Technology Data Exchange (ETDEWEB)

    Batin, E; Depauw, N; MacDonald, S; Lu, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°.

  6. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    International Nuclear Information System (INIS)

    Batin, E; Depauw, N; MacDonald, S; Lu, H

    2015-01-01

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°

  7. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    Science.gov (United States)

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  9. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    International Nuclear Information System (INIS)

    Fattori, G.; Seregni, M.; Pella, A.; Riboldi, M.; Capasso, L.; Donetti, M.; Ciocca, M.; Giordanengo, S.; Pullia, M.; Marchetto, F.; Baroni, G.

    2016-01-01

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  10. Time and Power Optimizations in FPGA-Based Architectures for Polyphase Channelizers

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Harris, Fred; Koch, Peter

    2012-01-01

    This paper presents the time and power optimization considerations for Field Programmable Gate Array (FPGA) based architectures for a polyphase filter bank channelizer with an embedded square root shaping filter in its polyphase engine. This configuration performs two different re-sampling tasks......% slice register resources of a Xilinx Virtex-5 FPGA, operating at 400 and 480 MHz, and consuming 1.9 and 2.6 Watts of dynamic power, respectively....

  11. Microcomputer-based real-time optical signal processing system

    Science.gov (United States)

    Yu, F. T. S.; Cao, M. F.; Ludman, J. E.

    1986-01-01

    A microcomputer-based real-time programmable optical signal processing system utilizing a Magneto-Optic Spatial Light Modulator (MOSLM) and a Liquid Crystal Light Valve (LCLV) is described. This system can perform a myriad of complicated optical operations, such as image correlation, image subtraction, matrix multiplication and many others. The important assets of this proposed system must be the programmability and the capability of real-time addressing. The design specification and the progress toward practical implementation of this proposed system are discussed. Some preliminary experimental demonstrations are conducted. The feasible applications of this proposed system to image correlation for optical pattern recognition, image subtraction for IC chip inspection and matrix multiplication for optical computing are demonstrated.

  12. Using Sun’s Java Real-Time System to Manage Behavior-Based Mobile Robot Controllers

    Directory of Open Access Journals (Sweden)

    Andrew McKenzie

    2011-01-01

    Full Text Available Implementing a robot controller that can effectively manage limited resources in a deterministic, real-time manner is challenging. Behavior-based architectures that decompose autonomy into levels of intelligence are popular due to their robustness but do not provide real-time features that enforce timing constraints or support determinism. We propose an architecture and approach for using the real-time features of the Real-Time Specification for Java (RTSJ in a behavior-based mobile robot controller to show that timing constraints affect performance. This is accomplished by extending a real-time aware architecture that explicitly enumerates timing requirements for each behavior. It is not enough to reduce latency. The usefulness of this approach is demonstrated via an implementation on Solaris 10 and the Sun Java Real-Time System (Java RTS. Experimental results are obtained using a K-team Koala robot performing path following with four composite behaviors. Experiments were conducted using several task period sets in three cases: real-time threads with the real-time garbage collector, real-time threads with the non- real-time garbage collector, and non-real-time threads with the non-real-time garbage collector. Results show that even if latency and determinism are improved, the timing of each individual behavior significantly affects task performance.

  13. Field programmable gate array reliability analysis using the dynamic flow graph methodology

    Energy Technology Data Exchange (ETDEWEB)

    McNelles, Phillip; Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario (Canada)

    2016-10-15

    Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the 'IEEE 1164 standard', registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

  14. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes

    International Nuclear Information System (INIS)

    Dawood, Mohammad; Buether, Florian; Lang, Norbert; Schober, Otmar; Schaefers, Klaus P

    2007-01-01

    Respiratory gating is used for reducing the effects of breathing motion in a wide range of applications from radiotherapy treatment to diagnostical imaging. Different methods are feasible for respiratory gating. In this study seven gating methods were developed and tested on positron emission tomography (PET) listmode data. The results of seven patient studies were compared quantitatively with respect to motion and noise. (1) Equal and (2) variable time-based gating methods use only the time information of the breathing cycle to define respiratory gates. (3) Equal and (4) variable amplitude-based gating approaches utilize the amplitude of the respiratory signal. (5) Cycle-based amplitude gating is a combination of time and amplitude-based techniques. A baseline correction was applied to methods (3) and (4) resulting in two new approaches: Baseline corrected (6) equal and (7) variable amplitude-based gating. Listmode PET data from seven patients were acquired together with a respiratory signal. Images were reconstructed applying the seven gating methods. Two parameters were used to quantify the results: Motion was measured as the displacement of the heart due to respiration and noise was defined as the standard deviation of pixel intensities in a background region. The amplitude-based approaches (3) and (4) were superior to the time-based methods (1) and (2). The improvement in capturing the motion was more than 30% (up to 130%) in all subjects. The variable time (2) and amplitude (4) methods had a more uniform noise distribution among all respiratory gates compared to equal time (1) and amplitude (3) methods. Baseline correction did not improve the results. Out of seven different respiratory gating approaches, the variable amplitude method (4) captures the respiratory motion best while keeping a constant noise level among all respiratory phases

  15. Real-time data acquisition and parallel data processing solution for TJ-II Bolometer arrays diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, E. [Departamento de Sistemas Electronicos y de Control, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain)]. E-mail: eduardo.barrera@upm.es; Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain); Lopez, S. [Departamento de Sistemas Electronicos y de Control, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain); Machon, D. [Departamento de Sistemas Electronicos y de Control, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, 28040 Madrid (Spain); Ochando, M. [Asociacion EURATOM/CIEMAT para Fusion, 28040 Madrid (Spain)

    2006-07-15

    Maps of local plasma emissivity of TJ-II plasmas are determined using three-array cameras of silicon photodiodes (AXUV type from IRD). They have assigned the top and side ports of the same sector of the vacuum vessel. Each array consists of 20 unfiltered detectors. The signals from each of these detectors are the inputs to an iterative algorithm of tomographic reconstruction. Currently, these signals are acquired by a PXI standard system at approximately 50 kS/s, with 12 bits of resolution and are stored for off-line processing. A 0.5 s discharge generates 3 Mbytes of raw data. The algorithm's load exceeds the CPU capacity of the PXI system's controller in a continuous mode, making unfeasible to process the samples in parallel with their acquisition in a PXI standard system. A new architecture model has been developed, making possible to add one or several processing cards to a standard PXI system. With this model, it is possible to define how to distribute, in real-time, the data from all acquired signals in the system among the processing cards and the PXI controller. This way, by distributing the data processing among the system controller and two processing cards, the data processing can be done in parallel with the acquisition. Hence, this system configuration would be able to measure even in long pulse devices.

  16. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering

    International Nuclear Information System (INIS)

    Yamamura, Jin; Frisch, Michael; Ecker, Hannes; Adam, Gerhard; Wedegaertner, Ulrike; Graessner, Joachim; Hecher, Kurt

    2011-01-01

    To investigate the self-gating technique for MR imaging of the fetal heart in a sheep model. MR images of 6 fetal sheep heart were obtained at 1.5T. For self-gating MRI of the fetal heart a cine SSFP in short axis, two and four chamber view was used. Self-gated images were compared with real cardiac triggered MR images (pulse-wave triggering). MRI of the fetal heart was performed using both techniques simultaneously. Image quality was assessed and the left ventricular volume and function were measured and compared. Compared with pulse-wave triggering, the self-gating technique produced slightly inferior images with artifacts. Especially the atrial septum could not be so clearly depicted. The contraction of the fetal heart was shown in cine sequences in both techniques. The average blood volumes could be measured with both techniques with no significant difference: at end-systole 3.1 ml (SD± 0.2), at end-diastole 4.9 ml (±0.2), with ejection fractions at 38.6%, respectively 39%. Both self-gating and pulse-wave triggered cardiac MRI of the fetal heart allowed the evaluation of anatomical structures and functional information. Images obtained by self-gating technique were slightly inferior than the pulse-wave triggered MRI. (orig.)

  17. The economic analysis of power market architectures: application to real-time market design

    International Nuclear Information System (INIS)

    Saguan, M.

    2007-04-01

    This work contributes to the economic analysis of power market architectures. A modular framework is used to separate problems of market design in different modules. The work's goal is to study real-time market design. A two-stage market equilibrium model is used to analyse the two main real-time designs: the 'market' and the 'mechanism' (with penalty). Numerical simulations show that design applied in real-time is not neutral vis-a-vis of energy markets sequence and the competition dynamic. Designs using penalty (mechanisms) cause distortions, inefficiencies and can create barriers to entry. The size of distortions is given by the temporal position of the gate that closure the forward markets. This model has also allowed us to show the key role of real-time integration between zones and the importance of good harmonization between real-time designs of each zone. (author)

  18. Online Synchrophasor-Based Dynamic State Estimation using Real-Time Digital Simulator

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Adewole, Adeyemi Charles; Udaya, Annakkage

    2018-01-01

    Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real-...... using the RTDS (real-time digital simulator). The dynamic state variables of multi-machine systems are monitored and measured for the study on the transient behavior of power systems.......Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real......-time digital simulator (RTDS). The dynamic state variables of the system are the rotor angle and speed of the generators. The performance of the UKF method is tested with PMU measurements as inputs using the IEEE 14-bus test system. This test system was modeled in the RSCAD software and tested in real time...

  19. Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

    Directory of Open Access Journals (Sweden)

    YangBeibei Ji

    2016-01-01

    Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

  20. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  1. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  2. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance

  3. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    Science.gov (United States)

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  4. Real-time simulation of MHD/steam power plants by digital parallel processors

    International Nuclear Information System (INIS)

    Johnson, R.M.; Rudberg, D.A.

    1981-01-01

    Attention is given to a large FORTRAN coded program which simulates the dynamic response of the MHD/steam plant on either a SEL 32/55 or VAX 11/780 computer. The code realizes a detailed first-principle model of the plant. Quite recently, in addition to the VAX 11/780, an AD-10 has been installed for usage as a real-time simulation facility. The parallel processor AD-10 is capable of simulating the MHD/steam plant at several times real-time rates. This is desirable in order to develop rapidly a large data base of varied plant operating conditions. The combined-cycle MHD/steam plant model is discussed, taking into account a number of disadvantages. The disadvantages can be overcome with the aid of an array processor used as an adjunct to the unit processor. The conversion of some computations for real-time simulation is considered

  5. Hard real-time multibody simulations using ARM-based embedded systems

    Energy Technology Data Exchange (ETDEWEB)

    Pastorino, Roland, E-mail: roland.pastorino@kuleuven.be, E-mail: rpastorino@udc.es; Cosco, Francesco, E-mail: francesco.cosco@kuleuven.be; Naets, Frank, E-mail: frank.naets@kuleuven.be; Desmet, Wim, E-mail: wim.desmet@kuleuven.be [KU Leuven, PMA division, Department of Mechanical Engineering (Belgium); Cuadrado, Javier, E-mail: javicuad@cdf.udc.es [Universidad de La Coruña, Laboratorio de Ingeniería Mecánica (Spain)

    2016-05-15

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  6. Hard real-time multibody simulations using ARM-based embedded systems

    International Nuclear Information System (INIS)

    Pastorino, Roland; Cosco, Francesco; Naets, Frank; Desmet, Wim; Cuadrado, Javier

    2016-01-01

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  7. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong

    2016-11-21

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reduction and energy saving, as well as working productivity improvements, can be achieved.

  8. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  9. A Near-real-time Data Transport System for Selected Stations in the Magnetometer Array for Cusp and Cleft Studies (MACCS)

    Science.gov (United States)

    Engebretson, M. J.; Valentic, T. A.; Stehle, R. H.; Hughes, W. J.

    2004-05-01

    The Magnetometer Array for Cusp and Cleft Studies (MACCS) is a two-dimensional array of eight fluxgate magnetometers that was established in 1992-1993 in the Eastern Canadian Arctic from 75° to over 80° MLAT to study electrodynamic interactions between the solar wind and Earth's magnetosphere and high-latitude ionosphere. A ninth site in Nain, Labrador, extends coverage down to 66° between existing Canadian and Greenland stations. Originally designed as part of NSF's GEM (Geospace Environment Modeling) Program, MACCS has contributed to the study of transients and waves at the magnetospheric boundary and in the near-cusp region as well as to large, cooperative, studies of ionospheric convection and substorm processes. Because of the limitations of existing telephone lines to each site, it has not been possible to economically access MACCS data promptly; instead, each month's collected data is recorded and mailed to the U.S. for processing and eventual posting on a publicly-accessible web site, http://space.augsburg.edu/space. As part of its recently renewed funding, NSF has supported the development of a near-real-time data transport system using the Iridium satellite network, which will be implemented at two MACCS sites in summer 2004. At the core of the new MACCS communications system is the Data Transport Network, software developed with NSF-ITR funding to automate the transfer of scientific data from remote field stations over unreliable, bandwidth-constrained network connections. The system utilizes a store-and-forward architecture based on sending data files as attachments to Usenet messages. This scheme not only isolates the instruments from network outages, but also provides a consistent framework for organizing and accessing multiple data feeds. Client programs are able to subscribe to data feeds to perform tasks such as system health monitoring, data processing, web page updates and e-mail alerts. The MACCS sites will employ the Data Transport Network

  10. Single-flux-quantum logic circuits exploiting collision-based fusion gates

    International Nuclear Information System (INIS)

    Asai, T.; Yamada, K.; Amemiya, Y.

    2008-01-01

    We propose a single-flux-quantum (SFQ) logic circuit based on the fusion computing systems--collision-based and reaction-diffusion fusion computers. A fusion computing system consists of regularly arrayed unit cells (fusion gates), where each unit has two input arms and two output arms and is connected to its neighboring cells with the arms. We designed functional SFQ circuits that implemented the fusion computation. The unit cell was able to be made with ten Josephson junctions. Circuit simulation with standard Nb/Al-AlOx/Nb 2.5-kA/cm 2 process parameters showed that the SFQ fusion computing systems could operate at 10 GHz clock

  11. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  12. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    Science.gov (United States)

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for

  13. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V., E-mail: maria.felice@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol, U.K. and NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom); Velichko, Alexander, E-mail: p.wilcox@bristol.ac.uk; Wilcox, Paul D., E-mail: p.wilcox@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom); Barden, Tim; Dunhill, Tony [NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom)

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  14. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    Science.gov (United States)

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  16. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    Science.gov (United States)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  17. FPGA-Based Real-Time Motion Detection for Automated Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2016-03-01

    Full Text Available Design of automated video surveillance systems is one of the exigent missions in computer vision community because of their ability to automatically select frames of interest in incoming video streams based on motion detection. This research paper focuses on the real-time hardware implementation of a motion detection algorithm for such vision based automated surveillance systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion detection scheme. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, has been implemented on Xilinx ML510 (Virtex-5 FX130T FPGA platform. The prototyped system robustly detects the relevant motion in real-time in live PAL (720 × 576 resolution video streams directly coming from the camera.

  18. Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells.

    Science.gov (United States)

    Dorval, A D; Christini, D J; White, J A

    2001-10-01

    We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.

  19. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    Science.gov (United States)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  20. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  1. Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM

    Energy Technology Data Exchange (ETDEWEB)

    McGinty, J; Requejo-Isidro, J; Munro, I; Talbot, C B; Dunsby, C; Neil, M A A; French, P M W [Photonics Group, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW (United Kingdom); Kellett, P A; Hares, J D, E-mail: james.mcginty@imperial.ac.u [Kentech Instruments Ltd, Isis Building, Howbery Park, Wallingford, OX10 8BA (United Kingdom)

    2009-07-07

    Time-gated imaging using gated optical intensifiers provides a means to realize high speed fluorescence lifetime imaging (FLIM) for the study of fast events and for high throughput imaging. We present a signal-to-noise characterization of CCD-coupled micro-channel plate gated intensifiers used with this technique and determine the optimal acquisition parameters (intensifier gain voltage, CCD integration time and frame averaging) for measuring mono-exponential fluorescence lifetimes in the shortest image acquisition time for a given signal flux. We explore the use of unequal CCD integration times for different gate delays and show that this can improve the lifetime accuracy for a given total acquisition time.

  2. Real-time statistical quality control and ARM

    International Nuclear Information System (INIS)

    Blough, D.K.

    1992-05-01

    An important component of the Atmospheric Radiation Measurement (ARM) Program is real-time quality control of data obtained from meteorological instruments. It is the goal of the ARM program to enhance the predictive capabilities of global circulation models by incorporating in them more detailed information on the radiative characteristics of the earth's atmosphere. To this end, a number of Cloud and Radiation Testbeds (CART's) will be built at various locations worldwide. Each CART will consist of an array of instruments designed to collect radiative data. The large amount of data obtained from these instruments necessitates real-time processing in order to flag outliers and possible instrument malfunction. The Bayesian dynamic linear model (DLM) proves to be an effective way of monitoring the time series data which each instrument generates. It provides a flexible yet powerful approach to detecting in real-time sudden shifts in a non-stationary multivariate time series. An application of these techniques to data arising from a remote sensing instrument to be used in the CART is provided. Using real data from a wind profiler, the ability of the DLM to detect outliers is studied. 5 refs

  3. Design of a Tritium-in-air-monitor using field programmable gate arrays

    International Nuclear Information System (INIS)

    McNelles, Phillip; Lu, Lixuan

    2015-01-01

    Field Programmable Gate Arrays (FPGAs) have recently garnered significant interest for certain applications within the nuclear field. Some applications of these devices include Instrumentation and Control (I and C) systems, pulse measurement systems, particle detectors and health physics purposes. In CANada Deuterium Uranium (CANDU) nuclear power plants, the use of heavy water (D2O) as the moderator leads to the increased production of Tritium, which poses a health risk and must be monitored by Tritium-In-Air Monitors (TAMs). Traditional TAMs are mostly designed using microprocessors. More recent studies show that FPGAs could be a potential alternative to implement the electronic logic used in radiation detectors, such as the TAM, more effectively. In this paper, an FPGA-based TAM is designed and constructed in a laboratory setting using an FPGA-based cRIO system. New functionalities, such as the detection of Carbon-14 and the addition of noble gas compensation are incorporated into a new FPGA-based TAM. Additionally, all of the standard functions included in the original microprocessor-based TAM, such as tritium detection, gamma compensation, pump and air flow control, and background and thermal drift corrections were also implemented. The effectiveness of the new design is demonstrated through simulations as well as laboratory testing on the prototype system. (author)

  4. Real time 1.55 μm VCSEL-based coherent detection link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Parekh, D.; Jensen, Jesper Bevensee

    2012-01-01

    This paper presents an experimental demonstration of VCSEL-based PON with simplified real-time coherent receiver at 2.5 Gbps. Receiver sensitivity of −37 dBm is achieved proving splitting ratio up to 2048 after 17 km fiber transmission.......This paper presents an experimental demonstration of VCSEL-based PON with simplified real-time coherent receiver at 2.5 Gbps. Receiver sensitivity of −37 dBm is achieved proving splitting ratio up to 2048 after 17 km fiber transmission....

  5. Design and implementation of real-time wireless projection system based on ARM embedded system

    Science.gov (United States)

    Long, Zhaohua; Tang, Hao; Huang, Junhua

    2018-04-01

    Aiming at the shortage of existing real-time screen sharing system, a real-time wireless projection system is proposed in this paper. Based on the proposed system, a weight-based frame deletion strategy combined sampling time period and data variation is proposed. By implementing the system on the hardware platform, the results show that the system can achieve good results. The weight-based strategy can improve the service quality, reduce the delay and optimize the real-time customer service system [1].

  6. Failure mode taxonomy for assessing the reliability of Field Programmable Gate Array based Instrumentation and Control systems

    International Nuclear Information System (INIS)

    McNelles, Phillip; Zeng, Zhao Chang; Renganathan, Guna; Chirila, Marius; Lu, Lixuan

    2017-01-01

    Highlights: • The use FPGAs in I&C systems in Nuclear Power Plants is an important issue (IAEA). • OECD-NEA published a failure mode taxonomy for software-based digital I&C systems. • This paper extends the OECD-NEA taxonomy to model FPGA-based systems. • FPGA failure modes, failure effects, uncovering methods are categorized/described. • Provides an example of modelling an FPGA-Based RTS/ESFAS using the FPGA taxonomy. - Abstract: Field Programmable Gate Arrays (FPGAs) are a form of programmable digital hardware configured to perform digital logic functions. This configuration (programming) is performed using Hardware Description Language (HDL), making FPGAs a form of HDL Programmed Device (HPD). In the nuclear field, FPGAs have seen use in upgrades and replacements of obsolete Instrumentation and Control (I&C) systems. This paper expands upon previous work that resulted in extensive FPGA failure mode data, to allow for the application of the OECD-NEA failure modes taxonomy. The OECD-NEA taxonomy presented a method to model digital (software-based) I&C systems, based on the hardware and software failure modes, failure uncovering effects and levels of abstraction, using a Reactor Trip System/Engineering Safety Feature Actuation System (RTS/ESFAS) as an example system. To create the FPGA taxonomy, this paper presents an additional “sub-component” level of abstraction, to demonstrate the effect of the FPGA failure modes and failure categories on an FPGA-based system. The proposed FPGA taxonomy is based on the FPGA failure modes, failure categories, failure effects and uncovering situations. The FPGA taxonomy is applied to the RTS/ESFAS test system, to demonstrate the effects of the anticipated FPGA failure modes on a digital I&C system, and to provide a modelling example for this proposed taxonomy.

  7. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    Science.gov (United States)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  8. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Daudin, L., E-mail: daudin@cenbg.in2p3.fr [Université Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Barberet, Ph.; Serani, L.; Moretto, Ph. [Université Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA’s nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  9. Cf-252 based neutron radiography using real-time image processing system

    International Nuclear Information System (INIS)

    Mochiki, Koh-ichi; Koiso, Manabu; Yamaji, Akihiro; Iwata, Hideki; Kihara, Yoshitaka; Sano, Shigeru; Murata, Yutaka

    2001-01-01

    For compact Cf-252 based neutron radiography, a real-time image processing system by particle counting technique has been developed. The electronic imaging system consists of a supersensitive imaging camera, a real-time corrector, a real-time binary converter, a real-time calculator for centroid, a display monitor and a computer. Three types of accumulated NR image; ordinary, binary and centroid images, can be observed during a measurement. Accumulated NR images were taken by the centroid mode, the binary mode and ordinary mode using of Cf-252 neutron source and those images were compared. The centroid mode presented the sharpest image and its statistical characteristics followed the Poisson distribution, while the ordinary mode showed the smoothest image as the averaging effect by particle bright spots with distributed brightness was most dominant. (author)

  10. Agent-Based Modeling of Day-Ahead Real Time Pricing in a Pool-Based Electricity Market

    Directory of Open Access Journals (Sweden)

    Sh. Yousefi

    2011-09-01

    Full Text Available In this paper, an agent-based structure of the electricity retail market is presented based on which day-ahead (DA energy procurement for customers is modeled. Here, we focus on operation of only one Retail Energy Provider (REP agent who purchases energy from DA pool-based wholesale market and offers DA real time tariffs to a group of its customers. As a model of customer response to the offered real time prices, an hourly acceptance function is proposed in order to represent the hourly changes in the customer’s effective demand according to the prices. Here, Q-learning (QL approach is applied in day-ahead real time pricing for the customers enabling the REP agent to discover which price yields the most benefit through a trial-and-error search. Numerical studies are presented based on New England day-ahead market data which include comparing the results of RTP based on QL approach with that of genetic-based pricing.

  11. Robust real-time extraction of respiratory signals from PET list-mode data.

    Science.gov (United States)

    Salomon, Andre; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-05-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions' detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting ("binning") of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signalsdirectly from the acquired PET data simplifies the clinical workflow as it avoids to handle additional signal measurement equipment. We introduce a new data-driven method "Combined Local Motion Detection" (CLMD). It uses the Time-of-Flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using 7 measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4s in total on a standard multi-core CPU

  12. Robust real-time extraction of respiratory signals from PET list-mode data

    Science.gov (United States)

    Salomon, André; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-06-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions’ detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting (‘binning’) of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signals directly from the acquired PET data simplifies the clinical workflow as it avoids handling additional signal measurement equipment. We introduce a new data-driven method ‘combined local motion detection’ (CLMD). It uses the time-of-flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using seven measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4 s in total on a standard

  13. Fuzzy logic based power-efficient real-time multi-core system

    CERN Document Server

    Ahmed, Jameel; Najam, Shaheryar; Najam, Zohaib

    2017-01-01

    This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors. .

  14. Seismocardiography-Based Cardiac Computed Tomography Gating Using Patient-Specific Template Identification and Detection.

    Science.gov (United States)

    Yao, Jingting; Tridandapani, Srini; Wick, Carson A; Bhatti, Pamela T

    2017-01-01

    To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22-48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31-78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA.

  15. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  16. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  17. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  18. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  19. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  20. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  1. A Realization of Temperature Monitoring System Based on Real-Time Kernel μC/OS and 1-wire Bus

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2013-06-01

    Full Text Available The traditional temperature monitoring system generally adopt some analog sensors for collecting data and a microcontroller for processing data for the purpose of temperature monitoring. However, this back-fore ground system has the disadvantages that the system has poor real-time property and single function, the amount of sensors is not easy to expand, and the software system has a difficulty in upgrading. Aiming at these disadvantages, the system designed in this paper adopts brand-new hardware and software structures: a digitaltemperature sensor array is connected to 1-wire bus and communicated with a control core through 1-wire bus protocol, thus a great convenience is provided for the expansion of the sensor; a real-time operating system is introduced into the software, an application program capable of realizing various functions runs on the real-time kernel μC/OS-II platform. The application of the real-time kernel also provides a good lower layer interface for the late-stage software upgrading.

  2. A first near real-time seismology-based landquake monitoring system.

    Science.gov (United States)

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-03-02

    Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap 10 6  m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

  3. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    Science.gov (United States)

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development of Real-Time Thickness Measuring System for Insulated Pipeline Using Gamma-ray

    International Nuclear Information System (INIS)

    Jang, Ji Hoon; Kim, Byung Joo; Cho, Kyung Shik; Kim, Gi Dong

    2002-01-01

    By this study, on-line real-time radiometric system was developed using a 64 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses an Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer through cable. This system collects and analyses the data from the detector array in real-time as the crawler travels over the piping system. The maximum measurable length of pipe is 120cm/min. in the case of 1mm scanning interval

  5. Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit

    2018-03-01

    New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.

  6. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.

    Science.gov (United States)

    Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi

    2018-01-01

    Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Near real-time digital holographic microscope based on GPU parallel computing

    Science.gov (United States)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  8. Design of area array CCD image acquisition and display system based on FPGA

    Science.gov (United States)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  9. Design optimization of TTEthernet-based distributed real-time systems

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul; Steiner, Wilfried

    2015-01-01

    Many safety-critical real-time applications are implemented using distributed architectures, composed of heterogeneous processing elements interconnected in a network. Our focus in this paper is on the TTEthernet protocol, a deterministic, synchronized and congestion-free network protocol based o...

  10. Real Time Monitoring of Diesel Engine Injector Waveforms for Accurate Fuel Metering and Control

    Directory of Open Access Journals (Sweden)

    Q. R. Farooqi

    2013-01-01

    Full Text Available This paper presents the development, experimentation, and validation of a reliable and robust system to monitor the injector pulse generated by an engine control module (ECM which can easily be calibrated for different engine platforms and then feedback the corresponding fueling quantity to the real-time computer in a closed-loop controller in the loop (CIL bench in order to achieve optimal fueling. This research utilizes field programmable gate arrays (FPGA and direct memory access (DMA transfer capability to achieve high speed data acquisition and delivery. This work is conducted in two stages: the first stage is to study the variability involved in the injected fueling quantity from pulse to pulse, from injector to injector, between real injector stators and inductor load cells, and over different operating conditions. Different thresholds have been used to find out the best start of injection (SOI threshold and the end of injection (EOI threshold that capture the injector “on-time” with best reliability and accuracy. Second stage involves development of a system that interprets the injector pulse into fueling quantity. The system can easily be calibrated for various platforms. Finally, the use of resulting correction table has been observed to capture the fueling quantity with highest accuracy.

  11. Real-Time Imaging with Frequency Scanning Array Antenna for Industrial Inspection Applications at W band

    Science.gov (United States)

    Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge

    2018-01-01

    A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.

  12. Optimization design of a gating system for sand casting aluminium A356 using a Taguchi method and multi-objective culture-based QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Jong Chen

    2016-04-01

    Full Text Available This article combined Taguchi method and analysis of variance with the culture-based quantum-behaved particle swarm optimization to determine the optimal models of gating system for aluminium (Al A356 sand casting part. First, the Taguchi method and analysis of variance were, respectively, applied to establish an L27(38 orthogonal array and determine significant process parameters, including riser diameter, pouring temperature, pouring speed, riser position and gating diameter. Subsequently, a response surface methodology was used to construct a second-order regression model, including filling time, solidification time and oxide ratio. Finally, the culture-based quantum-behaved particle swarm optimization was used to determine the multi-objective Pareto optimal solutions and identify corresponding process conditions. The results showed that the proposed method, compared with initial casting model, enabled reducing the filling time, solidification time and oxide ratio by 68.14%, 50.56% and 20.20%, respectively. A confirmation experiment was verified to be able to effectively reduce the defect of casting and improve the casting quality.

  13. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  14. An IBM PC-based math model for space station solar array simulation

    Science.gov (United States)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  15. GPU-based real-time triggering in the NA62 experiment

    CERN Document Server

    Ammendola, R.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-01-01

    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have...

  16. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  17. Open-circuit respirometry: real-time, laboratory-based systems.

    Science.gov (United States)

    Ward, Susan A

    2018-05-04

    This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

  18. Real-time classification of auditory sentences using evoked cortical activity in humans

    Science.gov (United States)

    Moses, David A.; Leonard, Matthew K.; Chang, Edward F.

    2018-06-01

    Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.

  19. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    Science.gov (United States)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  20. A distributed, hardware reconfigurable and packet switched real-time control and data acquisition system

    International Nuclear Information System (INIS)

    Batista, A.J.N.; Combo, A.; Sousa, J.; Varandas, C.A.F.

    2002-01-01

    The architecture of a synchronized event-based control and data acquisition system that aims to improve significantly the performance of actual systems is presented. The design explores recent developments in data transport, signal processing and system synchronization. Data transport between the acquisition, processing and storing devices and at backplane level will be performed by InfiniBand, a low latency packet switched network standard. Data processing algorithms will be performed in a mixture of digital signal processors and reconfigurable field programmable gate arrays. Both devices will be programmed from a descriptive high-level mathematical language. Acquisition synchronization, data stamping and event management will be performed through a specialized low latency synchronous optical network for the time critical signals

  1. Real Time Animation of Trees Based on BBSC in Computer Games

    Directory of Open Access Journals (Sweden)

    Xuefeng Ao

    2009-01-01

    Full Text Available That researchers in the field of computer games usually find it is difficult to simulate the motion of actual 3D model trees lies in the fact that the tree model itself has very complicated structure, and many sophisticated factors need to be considered during the simulation. Though there are some works on simulating 3D tree and its motion, few of them are used in computer games due to the high demand for real-time in computer games. In this paper, an approach of animating trees in computer games based on a novel tree model representation—Ball B-Spline Curves (BBSCs are proposed. By taking advantage of the good features of the BBSC-based model, physical simulation of the motion of leafless trees with wind blowing becomes easier and more efficient. The method can generate realistic 3D tree animation in real-time, which meets the high requirement for real time in computer games.

  2. Powerful conveyer belt real-time online detection system based on x-ray

    Science.gov (United States)

    Rong, Feng; Miao, Chang-yun; Meng, Wei

    2009-07-01

    The powerful conveyer belt is widely used in the mine, dock, and so on. After used for a long time, internal steel rope of the conveyor belt may fracture, rust, joints moving, and so on .This would bring potential safety problems. A kind of detection system based on x-ray is designed in this paper. Linear array detector (LDA) is used. LDA cost is low, response fast; technology mature .Output charge of LDA is transformed into differential voltage signal by amplifier. This kind of signal have great ability of anti-noise, is suitable for long-distance transmission. The processor is FPGA. A IP core control 4-channel A/D convertor, achieve parallel output data collection. Soft-core processor MicroBlaze which process tcp/ip protocol is embedded in FPGA. Sampling data are transferred to a computer via Ethernet. In order to improve the image quality, algorithm of getting rid of noise from the measurement result and taking gain normalization for pixel value is studied and designed. Experiments show that this system work well, can real-time online detect conveyor belt of width of 2.0m and speed of 5 m/s, does not affect the production. Image is clear, visual and can easily judge the situation of conveyor belt.

  3. Development of a protection system for research reactor based in Field Programmable Gate Array - FPGA

    International Nuclear Information System (INIS)

    Martins, Roque Hudson da Silva

    2016-01-01

    This study presents a implementation purpose of a protection system for research nuclear reactors by using a programed device FPGA (Field Programmable Gate Array). As well as logic protection method involved on an automatic shutdown (TRIP) of a reactor, that ensure the security on such systems. These new control and operation mechanics are developed to guarantee that the security limits of a power plant are not exceeded, these mechanics can work isolated or in groups to safe guard the security levels. For this implementation to be completed, there will be presented the main aspects and concepts referred to protection systems, mostly about research nuclear reactors, with some applications terms exposed. The system proposed at this paper was developed following the VHDL (Very High Speed Integrated Circuits) hardware describing language, and the Modelsim software from Altera Software to program the automatic turning off routines, and hypothetical simulations for such. The results show that for every software application for supporting nuclear reactors, like security devices, they have to meet the IEC 60880 criteria. This paper have great importance, seeing that nuclear reactor security systems, are a basic element for ensure the reactor security. (author)

  4. Real-time bus location monitoring using Arduino

    Science.gov (United States)

    Ibrahim, Mohammad Y. M.; Audah, Lukman

    2017-09-01

    The Internet of Things (IoT) is the network of objects, such as a vehicles, mobile devices, and buildings that have electronic components, software, and network connectivity that enable them to collect data, run commands, and be controlled through the Internet. Controlling physical items from the Internet will increase efficiency and save time. The growing number of devices used by people increases the practicality of having IoT devices on the market. The IoT is also an opportunity to develop products that can save money and time and increase work efficiency. Initially, they need more efficiency for real-time bus location systems, especially in university campuses. This system can easily find the accurate locations of and distances between each bus stop and the estimated time to reach a new location. This system has been separated into two parts, which are the hardware and the software. The hardware parts are the Arduino Uno and the Global Positioning System (GPS), while Google Earth and GpsGate are the software parts. The GPS continuously takes input data from the satellite and stores the latitude and longitude values in the Arduino Uno. If we want to track the vehicle, we need to send the longitude and latitude as a message to the Google Earth software to convert these into maps for navigation. Once the Arduino Uno is activated, it takes the last received latitude and longitude positions' values from GpsGate and sends a message to Google Earth. Once the message has been sent to Google Earth, the current location will be shown, and navigation will be activated automatically. Then it will be broadcast using ManyCam, Google+ Hangouts, and YouTube, as well as Facebook, and appear to users. The additional features use Google Forms for determining problems faced by students, who can also take immediate action against the responsible department. Then after several successful simulations, the results will be shown in real time on a map.

  5. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  6. Shape based kinetic outlier detection in real-time PCR

    Directory of Open Access Journals (Sweden)

    D'Atri Mario

    2010-04-01

    Full Text Available Abstract Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.

  7. Real-time application of knowledge-based systems

    Science.gov (United States)

    Brumbaugh, Randal W.; Duke, Eugene L.

    1989-01-01

    The Rapid Prototyping Facility (RPF) was developed to meet a need for a facility which allows flight systems concepts to be prototyped in a manner which allows for real-time flight test experience with a prototype system. This need was focused during the development and demonstration of the expert system flight status monitor (ESFSM). The ESFSM was a prototype system developed on a LISP machine, but lack of a method for progressive testing and problem identification led to an impractical system. The RPF concept was developed, and the ATMS designed to exercise its capabilities. The ATMS Phase 1 demonstration provided a practical vehicle for testing the RPF, as well as a useful tool. ATMS Phase 2 development continues. A dedicated F-18 is expected to be assigned for facility use in late 1988, with RAV modifications. A knowledge-based autopilot is being developed using the RPF. This is a system which provides elementary autopilot functions and is intended as a vehicle for testing expert system verification and validation methods. An expert system propulsion monitor is being prototyped. This system provides real-time assistance to an engineer monitoring a propulsion system during a flight.

  8. A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time Data

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Joydeep [Michigan State Univ., East Lansing, MI (United States); Ben-Idris, Mohammed [Univ. of Nevada, Reno, NV (United States); Faruque, Omar [Florida State Univ., Tallahassee, FL (United States); Backhaus, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deb, Sidart [LCG Consulting, Los Altos, CA (United States)

    2016-03-30

    This report summarizes the outcome of a research project that comprised the development of a Lyapunov function based remedial action screening tool using real-time data (L-RAS). The L-RAS is an advanced computational tool that is intended to assist system operators in making real-time redispatch decisions to preserve power grid stability. The tool relies on screening contingencies using a homotopy method based on Lyapunov functions to avoid, to the extent possible, the use of time domain simulations. This enables transient stability evaluation at real-time speed without the use of massively parallel computational resources. The project combined the following components. 1. Development of a methodology for contingency screening using a homotopy method based on Lyapunov functions and real-time data. 2. Development of a methodology for recommending remedial actions based on the screening results. 3. Development of a visualization and operator interaction interface. 4. Testing of screening tool, validation of control actions, and demonstration of project outcomes on a representative real system simulated on a Real-Time Digital Simulator (RTDS) cluster. The project was led by Michigan State University (MSU), where the theoretical models including homotopy-based screening, trajectory correction using real-time data, and remedial action were developed and implemented in the form of research-grade software. Los Alamos National Laboratory (LANL) contributed to the development of energy margin sensitivity dynamics, which constituted a part of the remedial action portfolio. Florida State University (FSU) and Southern California Edison (SCE) developed a model of the SCE system that was implemented on FSU's RTDS cluster to simulate real-time data that was streamed over the internet to MSU where the L-RAS tool was executed and remedial actions were communicated back to FSU to execute stabilizing controls on the simulated system. LCG Consulting developed the visualization

  9. Maximum-likelihood methods for array processing based on time-frequency distributions

    Science.gov (United States)

    Zhang, Yimin; Mu, Weifeng; Amin, Moeness G.

    1999-11-01

    This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of-arrival (DOA) estimation for non- stationary signals, and compares this method with conventional maximum likelihood DOA estimation techniques. Time-frequency distributions localize the signal power in the time-frequency domain, and as such enhance the effective SNR, leading to improved DOA estimation. The localization of signals with different t-f signatures permits the division of the time-frequency domain into smaller regions, each contains fewer signals than those incident on the array. The reduction of the number of signals within different time-frequency regions not only reduces the required number of sensors, but also decreases the computational load in multi- dimensional optimizations. Compared to the recently proposed time- frequency MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent environments, without the need to perform any type of preprocessing that is subject to both array geometry and array aperture.

  10. A high precision time-to-digital converter based on multi-phase clock implemented within Field-Programmable-Gate-Array

    International Nuclear Information System (INIS)

    Chen Kai; Liu Shubin; An Qi

    2010-01-01

    In this paper, the design of a coarse-fine interpolation Time-to-Digital Converter (TDC) is implemented in an ALTERA's Cyclone FPGA. The carry-select chain performs as the tapped delay line. The Logic Array Block (LAB) having a propagation delay of 165 ps in the chain is synthesized as delay cell. Coarse counters triggered by the global clock count the more significant bits of the time data. This clock is also fed through the delay line, and LABs create the copies. The replicas are latched by the tested event signal, and the less significant bits are encoded from the latched binary bits. Single-shot resolution of the TDC can be 60 ps. The worst Differential Nonlinearity (DNL) is about 0.2 Least Significant Bit (LSB, 165 ps in this TDC module), and the Integral Nonlinearity (INL) is 0.6 LSB. In comparison with other architectures using the synchronous global clock to sample the taps, this architecture consumed less electric power and logic cells, and is more stable. (authors)

  11. Implementing EW Receivers Based on Large Point Reconfigured FFT on FPGA Platforms

    Directory of Open Access Journals (Sweden)

    He Chen

    2011-12-01

    Full Text Available This paper presents design and implementation of digital receiver based on large point fast Fourier transform (FFT suitable for electronic warfare (EW applications. When implementing the FFT algorithm on field-programmable gate array (FPGA platforms, the primary goal is to maximize throughput and minimize area. This algorithm adopts two-dimension, parallel and pipeline stream mode and implements the reconfiguration of FFT's points. Moreover, a double-sequence-separation FFT algorithm has been implemented in order to achieve faster real time processing in broadband digital receivers. The performance of the hardware implementation on the FPGA platforms of broadband digital receivers has been analyzed in depth. It reaches the requirement of high-speed digital signal processing, and reveals the designing this kind of digital signal processing systems on FPGA platforms. Keywords: digital receivers, field programmable gate array (FPGA, fast Fourier transform (FFT, large point reconfigured, signal processing system.

  12. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  13. Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Directory of Open Access Journals (Sweden)

    Won-Sun Lee

    2014-01-01

    Full Text Available Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game.

  14. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

    Science.gov (United States)

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-01-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  15. A Hardware Accelerator for Fault Simulation Utilizing a Reconfigurable Array Architecture

    Directory of Open Access Journals (Sweden)

    Sungho Kang

    1996-01-01

    Full Text Available In order to reduce cost and to achieve high speed a new hardware accelerator for fault simulation has been designed. The architecture of the new accelerator is based on a reconfigurabl mesh type processing element (PE array. Circuit elements at the same topological level are simulated concurrently, as in a pipelined process. A new parallel simulation algorithm expands all of the gates to two input gates in order to limit the number of faults to two at each gate, so that the faults can be distributed uniformly throughout the PE array. The PE array reconfiguration operation provides a simulation speed advantage by maximizing the use of each PE cell.

  16. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    Science.gov (United States)

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  17. T-UPPAAL: Online Model-based Testing of Real-Time Systems

    DEFF Research Database (Denmark)

    Mikucionis, Marius; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    The goal of testing is to gain confidence in a physical computer based system by means of executing it. More than one third of typical project resources is spent on testing embedded and real-time systems, but still it remains ad-hoc, based on heuristics, and error-prone. Therefore systematic...

  18. Development of a time synchronization methodology for a wireless seismic array

    Science.gov (United States)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  19. A Metrics-Based Approach to Intrusion Detection System Evaluation for Distributed Real-Time Systems

    Science.gov (United States)

    2002-04-01

    Based Approach to Intrusion Detection System Evaluation for Distributed Real - Time Systems Authors: G. A. Fink, B. L. Chappell, T. G. Turner, and...Distributed, Security. 1 Introduction Processing and cost requirements are driving future naval combat platforms to use distributed, real - time systems of...distributed, real - time systems . As these systems grow more complex, the timing requirements do not diminish; indeed, they may become more constrained

  20. Tracking errors in a prototype real-time tumour tracking system

    International Nuclear Information System (INIS)

    Sharp, Gregory C; Jiang, Steve B; Shimizu, Shinichi; Shirato, Hiroki

    2004-01-01

    In motion-compensated radiation therapy, radio-opaque markers can be implanted in or near a tumour and tracked in real-time using fluoroscopic imaging. Tracking these implanted markers gives highly accurate position information, except when tracking fails due to poor or ambiguous imaging conditions. This study investigates methods for automatic detection of tracking errors, and assesses the frequency and impact of tracking errors on treatments using the prototype real-time tumour tracking system. We investigated four indicators for automatic detection of tracking errors, and found that the distance between corresponding rays was most effective. We also found that tracking errors cause a loss of gating efficiency of between 7.6 and 10.2%. The incidence of treatment beam delivery during tracking errors was estimated at between 0.8% and 1.25%

  1. Flexible, fpga-based electronics for modular robots

    DEFF Research Database (Denmark)

    Brandt, David; Larsen, Jørgen Christian; Christensen, David Johan

    2008-01-01

    In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays (FPGAs). The immediate advantage of using FPGAs is that some of the module’s electronics can be moved into the FPGA, thereby the number of components can be reduced. In the case...... the FPGA and therefore integrate task-specific electronics without physically changing the electronics or we can reconfigure the electronics for specific tasks. The disadvantages of an FPGA-based design include the cost of FPGAs, the extra layer of complexity in programming, and a limited increase in power...... consumption compared to micro-controllers. However, overall FPGAs make the electronics of modular robots more flexible and therefore may make them more suitable for real applications. AB - In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays...

  2. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  3. Efficient and Fast Implementation of Embedded Time-of-Flight Ranging System Based on FPGAs

    DEFF Research Database (Denmark)

    Zhou, Weiguo; Lyu, Congyi; Jiang, Xin

    2017-01-01

    Time-of-flight cameras perceive depth information about the surrounding environment with an amplitude-modulated near-infrared light source. The distance between the sensor and objects is calculated through measuring the time the light needs to travel. To be used in fast and embedded applications......, such as 3-D reconstruction, visual SLAM, human-robot interactions, and object detection, the 3-D imaging must be performed at high frame rates and accuracy. Thus, this paper presents a real-time field programmable gate arrays platform that calculates the phase shift and then the distance. Experimental...... results shown that the platform can acquire ranging images at the maximum frame rate of 131fps with a fine measurement precision (appropriately 5.1mm range error at 1.2m distance with the proper integration time). Low resource utilization and power consumption of the proposed system make it very suitable...

  4. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    Science.gov (United States)

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  5. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    International Nuclear Information System (INIS)

    Fahimian, B.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  6. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, B. [Stanford University (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  7. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    Science.gov (United States)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  8. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Longhitano, F.; Lo Presti, D.; Bonanno, D.L.; Bongiovanni, D.G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.

    2017-01-01

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) . Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm"2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) proton beam, and a comparison with the simulations of the detectors are presented. - Highlights: • A real time charged particle imaging system is described. • The system is composed of a position sensitive and a residual range detectors. • The sensitive area of the system is composed of submillimeter scintillating fibers. • The read-out is based on a patented channel reduction system. • The results of the measurements with proton beam are presented.

  9. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Longhitano, F., E-mail: fabio.longhitano@ct.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Lo Presti, D. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Department of Physics and Astronomy, University of Catania (Italy); Bonanno, D.L.; Bongiovanni, D.G.; Leonora, E.; Randazzo, N.; Reito, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Sipala, V. [University of Sassari, Sassari (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari (Italy); Gallo, G. [Department of Physics and Astronomy, University of Catania (Italy)

    2017-02-11

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) . Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm{sup 2}. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) proton beam, and a comparison with the simulations of the detectors are presented. - Highlights: • A real time charged particle imaging system is described. • The system is composed of a position sensitive and a residual range detectors. • The sensitive area of the system is composed of submillimeter scintillating fibers. • The read-out is based on a patented channel reduction system. • The results of the measurements with proton beam are presented.

  10. Integration of domain and resource-based reasoning for real-time control in dynamic environments

    Science.gov (United States)

    Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.

    1993-01-01

    A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.

  11. Microcontroller-based real-time QRS detection.

    Science.gov (United States)

    Sun, Y; Suppappola, S; Wrublewski, T A

    1992-01-01

    The authors describe the design of a system for real-time detection of QRS complexes in the electrocardiogram based on a single-chip microcontroller (Motorola 68HC811). A systematic analysis of the instrumentation requirements for QRS detection and of the various design techniques is also given. Detection algorithms using different nonlinear transforms for the enhancement of QRS complexes are evaluated by using the ECG database of the American Heart Association. The results show that the nonlinear transform involving multiplication of three adjacent, sign-consistent differences in the time domain gives a good performance and a quick response. When implemented with an appropriate sampling rate, this algorithm is also capable of rejecting pacemaker spikes. The eight-bit single-chip microcontroller provides sufficient throughput and shows a satisfactory performance. Implementation of multiple detection algorithms in the same system improves flexibility and reliability. The low chip count in the design also favors maintainability and cost-effectiveness.

  12. On-line monitoring system of PV array based on internet of things technology

    Science.gov (United States)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  13. Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata

    Directory of Open Access Journals (Sweden)

    Karine Altisen

    2010-06-01

    Full Text Available To analyze complex and heterogeneous real-time embedded systems, recent works have proposed interface techniques between real-time calculus (RTC and timed automata (TA, in order to take advantage of the strengths of each technique for analyzing various components. But the time to analyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis of a TA modeled component. First, we abstract fine models to work with event streams at coarse granularity. We perform analysis of the component at multiple coarse granularities and then based on RTC theory, we derive lower and upper bounds on arrival patterns of the fine output streams using the causality closure algorithm. Our framework can help to achieve tradeoffs between precision and analysis time.

  14. Hard Real-Time Networking on Firewire

    NARCIS (Netherlands)

    Zhang, Yuchen; Orlic, Bojan; Visser, Peter; Broenink, Jan

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  15. Synthesizing biomolecule-based Boolean logic gates.

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  16. Synthesizing Biomolecule-based Boolean Logic Gates

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  17. Reliable 5-min real-time MR technique for left-ventricular-wall motion analysis

    International Nuclear Information System (INIS)

    Katoh, Marcus; Spuentrup, Elmar; Guenther, Rolf W.; Buecker, Arno; Kuehl, Harald P.; Lipke, Claudia S.A.

    2007-01-01

    The aim of this study was to investigate the value of a real-time magnetic resonance imaging (MRI) approach for the assessment of left-ventricular-wall motion in patients with insufficient transthoracic echocardiography in terms of accuracy and temporal expenditure. Twenty-five consecutive patients were examined on a 1.5-Tesla whole-body MR system (ACS-NT, Philips Medical Systems, Best, NL) using a real-time and ECG-gated (the current gold standard) steady-state free-precession (SSFP) sequence. Wall motion was analyzed by three observers by consensus interpretation. In addition, the preparation, scanning, and overall examination times were measured. The assessment of the wall motion demonstrated a close agreement between the two modalities resulting in a mean κ coefficient of 0.8. At the same time, each stage of the examination was significantly shortened using the real-time MR approach. Real-time imaging allows for accurate assessment of left-ventricular-wall motion with the added benefit of decreased examination time. Therefore, it may serve as a cost-efficient alternative in patients with insufficient echocardiography. (orig.)

  18. Restless Tuneup of High-Fidelity Qubit Gates

    Science.gov (United States)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  19. Indoor Localization of a Quadrotor Based on WSN: A Real-Time Application

    Directory of Open Access Journals (Sweden)

    Jose L. Rullan-Lara

    2013-01-01

    Full Text Available A real-time localization algorithm is presented in this paper. The algorithm presented here uses an extended Kalman filter and is based on Time Difference Of Arrivals (TDOA measurements of radio signal. The position and velocity of an Unmanned Aerial Vehicle (UAV are successfully estimated in closed-loop in real-time, both in hover and path following flights. Relatively small position errors obtained from the experiments prove the good performance of the proposed algorithm.

  20. Implementation of a FPGA-Based Feature Detection and Networking System for Real-time Traffic Monitoring

    OpenAIRE

    Chen, Jieshi; Schafer, Benjamin Carrion; Ho, Ivan Wang-Hei

    2016-01-01

    With the growing demand of real-time traffic monitoring nowadays, software-based image processing can hardly meet the real-time data processing requirement due to the serial data processing nature. In this paper, the implementation of a hardware-based feature detection and networking system prototype for real-time traffic monitoring as well as data transmission is presented. The hardware architecture of the proposed system is mainly composed of three parts: data collection, feature detection,...

  1. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    Science.gov (United States)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  2. Fully integrated monolithic opoelectronic transducer for real.time protein and DNA detection

    DEFF Research Database (Denmark)

    Misiakos, Konstatinos; S. Petrou, Panagiota; E. Kakabakos, Sotirios

    2010-01-01

    The development and testing of a portable bioanalytical device which was capable for real-time monitoring of binding assays was demonstrated. The device was based on arrays of nine optoelectronic transducers monolithically integrated on silicon chips. The optocouplers consisted of nine silicon av...... by exploiting wavelength filtering on photonic crystal engineered waveguides. The proposed miniaturized sensing device with proper packaging and accompanied by a portable instrument can find wide application as a platform for reliable and cost effective point-of-care diagnosis....

  3. Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions.

    Science.gov (United States)

    Perk, Gila; Lang, Roberto M; Garcia-Fernandez, Miguel Angel; Lodato, Joe; Sugeng, Lissa; Lopez, John; Knight, Brad P; Messika-Zeitoun, David; Shah, Sanjiv; Slater, James; Brochet, Eric; Varkey, Mathew; Hijazi, Ziyad; Marino, Nino; Ruiz, Carlos; Kronzon, Itzhak

    2009-08-01

    Real-time three-dimensional (RT3D) echocardiography is a recently developed technique that is being increasingly used in echocardiography laboratories. Over the past several years, improvements in transducer technologies have allowed development of a full matrix-array transducer that allows acquisition of pyramidal-shaped data sets. These data sets can be processed online and offline to allow accurate evaluation of cardiac structures, volumes, and mass. More recently, a transesophageal transducer with RT3D capabilities has been developed. This allows acquisition of high-quality RT3D images on transesophageal echocardiography (TEE). Percutaneous catheter-based procedures have gained growing acceptance in the cardiac procedural armamentarium. Advances in technology and technical skills allow increasingly complex procedures to be performed using a catheter-based approach, thus obviating the need for open-heart surgery. The authors used RT3D TEE to guide 72 catheter-based cardiac interventions. The procedures included the occlusion of atrial septal defects or patent foramen ovales (n=25), percutaneous mitral valve repair (e-valve clipping; n=3), mitral balloon valvuloplasty for mitral stenosis (n=10), left atrial appendage obliteration (n=11), left atrial or pulmonary vein ablation for atrial fibrillation (n=5), percutaneous closures of prosthetic valve dehiscence (n=10), percutaneous aortic valve replacement (n=6), and percutaneous closures of ventricular septal defects (n=2). In this review, the authors describe their experience with this technique, the added value over multiplanar two-dimensional TEE, and the pitfalls that were encountered. The main advantages found for the use RT3D TEE during catheter-based interventions were (1) the ability to visualize the entire lengths of intracardiac catheters, including the tips of all catheters and the balloons or devices they carry, along with a clear depiction of their positions in relation to other cardiac structures, and

  4. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  5. Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial

    DEFF Research Database (Denmark)

    Woudstra, C.; Skarin, H.; Anniballi, F.

    2013-01-01

    Two real-time PCR arrays based on the GeneDisc® cycler platform (Pall-GeneDisc Technologies) were evaluated in a multicenter collaborative trial for their capacity to specifically detect and discriminate Clostridium botulinum types C, D and their mosaic variants C-D and D-C that are associated wi...

  6. Fast, multi-channel real-time processing of signals with microsecond latency using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Rath, N., E-mail: Nikolaus@rath.org; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.; Peng, Q. [Department of Applied Physics and Applied Mathematics, Columbia University, 500 W 120th St, New York, New York 10027 (United States); Kato, S. [Department of Information Engineering, Nagoya University, Nagoya (Japan)

    2014-04-15

    Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.

  7. Fast, multi-channel real-time processing of signals with microsecond latency using graphics processing units

    International Nuclear Information System (INIS)

    Rath, N.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Kato, S.

    2014-01-01

    Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules

  8. FPGA implementation of image dehazing algorithm for real time applications

    Science.gov (United States)

    Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.

    2017-09-01

    Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.

  9. A 16-channel real-time digital processor for pulse-shape discrimination in multiplicity assay

    International Nuclear Information System (INIS)

    Joyce, Malcolm J.; Aspinall, M.D.; Cave, F.D.; Lavietes, A.

    2013-06-01

    In recent years, real-time neutron/γ-ray pulse-shape discrimination has become feasible for use with scintillator-based detectors that respond extremely quickly, on the order of 25 ns in terms of pulse width, and their application to a variety of nuclear material assays has been reported. For the in-situ analysis of nuclear materials, measurements are often based on the multiplicity assessment of spontaneous fission events. An example of this is the 240 Pu eff assessment stemming from long-established techniques developed for 3 He-based neutron coincidence counters when 3 He was abundant and cheap. However, such measurements when using scintillator detectors can be plagued by low detection efficiencies and low orders of coincidence (often limited to triples) if the number of detectors in use is similarly limited to 3-4 detectors. Conversely, an array of >10 detector modules arranged to optimize efficiency and multiplicity sensitivity, shifts the emphasis in terms of performance requirement to the real-time digital analyzer and, critically, to the scope remaining in the temporal processing window of these systems. In this paper we report on the design, development and commissioning of a bespoke, 16-channel real-time pulse-shape discrimination analyzer specified for the materials assay challenge summarized above. The analyzer incorporates 16 dedicated and independent high-voltage supplies along with 16 independent digital processing channels offering pulse-shape discrimination at a rate of 3 x 10 6 events per second. These functions are configured from a dedicated graphical user interface, and all settings can be adjusted on-the-fly with the analyzer effectively configured one-time-only (where desired) for subsequent plug-and-play connection, for example to a fuel bundle organic scintillation detector array. (authors)

  10. Smart Wireless Power Transfer Operated by Time-Modulated Arrays via a Two-Step Procedure

    Directory of Open Access Journals (Sweden)

    Diego Masotti

    2015-01-01

    Full Text Available The paper introduces a novel method for agile and precise wireless power transmission operated by a time-modulated array. The unique, almost real-time reconfiguration capability of these arrays is fully exploited by a two-step procedure: first, a two-element time-modulated subarray is used for localization of tagged sensors to be energized; the entire 16-element TMA then provides the power to the detected tags, by exploiting the fundamental and first-sideband harmonic radiation. An investigation on the best array architecture is carried out, showing the importance of the adopted nonlinear/full-wave computer-aided-design platform. Very promising simulated energy transfer performance of the entire nonlinear radiating system is demonstrated.

  11. Video-based real-time on-street parking occupancy detection system

    Science.gov (United States)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  12. An FPGA Based Multiprocessing CPU for Beam Synchronous Timing in CERN's SPS and LHC

    CERN Document Server

    Ballester, F J; Gras, J J; Lewis, J; Savioz, J J; Serrano, J

    2003-01-01

    The Beam Synchronous Timing system (BST) will be used around the LHC and its injector, the SPS, to broadcast timing meassages and synchronize actions with the beam in different receivers. To achieve beam synchronization, the BST Master card encodes messages using the bunch clock, with a nominal value of 40.079 MHz for the LHC. These messages are produced by a set of tasks every revolution period, which is every 89 us for the LHC and every 23 us for the SPS, therefore imposing a hard real-time constraint on the system. To achieve determinism, the BST Master uses a dedicated CPU inside its main Field Programmable Gate Array (FPGA) featuring zero-delay hardware task switching and a reduced instruction set. This paper describes the BST Master card, stressing the main FPGA design, as well as the associated software, including the LynxOS driver and the tailor-made assembler.

  13. Neural Network Based Real-time Correction of Transducer Dynamic Errors

    Science.gov (United States)

    Roj, J.

    2013-12-01

    In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equation with respect to the input quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and disadvantages, are discussed.

  14. The FERMI-Elettra distributed real-time framework

    International Nuclear Information System (INIS)

    Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.

    2012-01-01

    FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)

  15. System Realization of Broad Band Digital Beam Forming for Digital Array Radar

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2013-09-01

    Full Text Available Broad band Digital Beam Forming (DBF is the key technique for the realization of Digital Array Radar (DAR. We propose the method of combination realization of the channel equalization and DBF time delay filter function by using adaptive Sample Matrix Inversion algorithm. The broad band DBF function is realized on a new DBF module based on parallel fiber optic engines and Field Program Gate Array (FPGA. Good performance is achieved when it is used to some radar products.

  16. Design of real-time communication system for image recognition based colony picking instrument

    Science.gov (United States)

    Wang, Qun; Zhang, Rongfu; Yan, Hua; Wu, Huamin

    2017-11-01

    In order to aachieve autommated observatiion and pickinng of monocloonal colonies, an overall dessign and realizzation of real-time commmunication system based on High-throoughput monooclonal auto-piicking instrumment is propossed. The real-time commmunication system is commposed of PCC-PLC commuunication systtem and Centrral Control CComputer (CCC)-PLC communicatioon system. Bassed on RS232 synchronous serial communnication methood to develop a set of dedicated shoort-range commmunication prootocol betweenn the PC and PPLC. Furthermmore, the systemm uses SQL SSERVER database to rrealize the dataa interaction between PC andd CCC. Moreoover, the commmunication of CCC and PC, adopted Socket Ethernnet communicaation based on TCP/IP protoccol. TCP full-dduplex data cannnel to ensure real-time data eexchange as well as immprove system reliability andd security. We tested the commmunication syystem using sppecially develooped test software, thee test results show that the sysstem can realizze the communnication in an eefficient, safe aand stable way between PLC, PC andd CCC, keep thhe real-time conntrol to PLC annd colony inforrmation collecttion.

  17. Concurrent array-based queue

    Science.gov (United States)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  18. A Kinect-Based Segmentation of Touching-Pigs for Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    Miso Ju

    2018-05-01

    Full Text Available Segmenting touching-pigs in real-time is an important issue for surveillance cameras intended for the 24-h tracking of individual pigs. However, methods to do so have not yet been reported. We particularly focus on the segmentation of touching-pigs in a crowded pig room with low-contrast images obtained using a Kinect depth sensor. We reduce the execution time by combining object detection techniques based on a convolutional neural network (CNN with image processing techniques instead of applying time-consuming operations, such as optimization-based segmentation. We first apply the fastest CNN-based object detection technique (i.e., You Only Look Once, YOLO to solve the separation problem for touching-pigs. If the quality of the YOLO output is not satisfied, then we try to find the possible boundary line between the touching-pigs by analyzing the shape. Our experimental results show that this method is effective to separate touching-pigs in terms of both accuracy (i.e., 91.96% and execution time (i.e., real-time execution, even with low-contrast images obtained using a Kinect depth sensor.

  19. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    International Nuclear Information System (INIS)

    He, Pengbo; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin; Li, Qiang; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng

    2014-01-01

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose

  20. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    He, Pengbo; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Qiang, E-mail: liqiang@impcas.ac.cn; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-01

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose