WorldWideScience

Sample records for gaseous species emitted

  1. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  2. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    Science.gov (United States)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  3. On-line measurement of gaseous iodine species during a PWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Haykal, I.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, 91191 Gif sur Yvette Cedex, (France); Perrin, A. [CNRS-University of Paris Est and Paris 7, Laboratoire Inter-Universitaire des Systemes Atmospheriques, 94010 Creteil, (France); Vincent, B. [University of Burgundy, Laboratoire de physique, CNRS UMR 5027, 9, Avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Manceron, L. [Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); Mejean, G. [University of Joseph Fourier in Grenoble, Laboratoire de Spectrometrie Physique-CNRS UMR 5588, 38402 Saint Martin d' Heres, (France); Ducros, G. [CEA Cadarache, CEA, DEN, Departement d' Etudes des Combustibles, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    A long-range remote sensing of severe accidents in nuclear power plants can be obtained by monitoring the online emission of volatile fission products such as xenon, krypton, caesium and iodine. The nuclear accident in Fukushima was ranked at level 7 of the International Nuclear Event Scale by the NISA (Nuclear and Industrial Safety Agency) according to the importance of the radionuclide release and the off-site impact. Among volatile fission products, iodine species are of high concern, since they can be released under aerosols as well as gaseous forms. Four years after the Fukushima accident, the aerosol/gaseous partition is still not clear. Since the iodine gaseous forms are less efficiently trapped by the Filtered Containment Venting Systems than aerosol forms, it is of crucial importance to monitor them on-line during a nuclear accident, in order to improve the source term assessment in such a situation. Therefore, we propose to detect and quantify these iodine gaseous forms by the use of highly sensitive optical methods. (authors)

  4. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  5. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  6. Monitoring and removal of gaseous carbon-14 species

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1979-01-01

    A simple and efficient method was developed for the monitoring of low level carbon-14 in nuclear power station areas and gaseous effluent. Gaseous carbon compounds (hydrocarbons and CO) are catalytically oxidized to CO 2 , which is then absorbed on solid Ca(OH) 2 at elevated temperatures. The 14 C collected is quantitatively liberated by thermal decomposition of CaCO 3 as CO 2 , which is either measured directly by flow-through detectors or absorbed in alkali hydroxide followed by liquid scintillation counting. The method can also be used for the removal of gaseous 14 C. The Ca 14 CO 3 can be immobilized in concrete for long term disposal. Ca(OH) 2 is an inexpensive absorber. It is selective for CO 2 and has high capacity and efficiency for its absorption and retention. A theoretical evaluation of thee optium conditions for CO 2 absorption and liberation is discussed and experimental investigations are described. There is good agreement between theoretical predictions and experimental findings

  7. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  8. Two new sources of reactive gaseous mercury in the free troposphere

    OpenAIRE

    H. Timonen; J. L. Ambrose; D. A. Jaffe

    2012-01-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical ...

  9. Determination of some toxic gaseous emissions at Ama Industrial ...

    African Journals Online (AJOL)

    Determination of some toxic gaseous emissions at Ama Industrial Complex, Enugu, south eastern Nigeria. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... A study of some gases emitted from three industries at Ama industrial complex, Nigeria, was carried out ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  10. Infrared scintillation: a comparison between gaseous and liquid xenon

    International Nuclear Information System (INIS)

    Bressi, G.; Carugno, G.; Conti, E.; Del Noce, C.; Iannuzzi, D.

    2001-01-01

    Light yield and spectrum of infrared (IR) scintillation in Xe are different in gaseous and liquid phases. In gas, the spectrum consists mainly of a broad line centered at 1300 nm. In liquid, light is emitted primarily below 1200 nm and with a lower yield

  11. Differences in the dry deposition of gaseous elemental I-131 to several leafy vegetable species

    International Nuclear Information System (INIS)

    Shinonaga, T.; Heuberger, H.; Tschiersch, J.

    2004-01-01

    The height of the dry deposition of gaseous elemental 131 I to leafy vegetable is quite uncertain because of the different habit, surface texture and leaf uptake of the different plant species. There is no comparative data on the deposition to various species, but leafy vegetables are taken as reference plants for the estimation of the height of contamination of vegetable foods after a nuclear accident. Therefore new chamber experiments were performed to determine under homogeneous and controlled conditions the dry deposition of gaseous elemental 131 I on mature leafy vegetable. The simultaneous exposition of endive, head lettuce, red oak leaf lettuce and spinach (spring leafy vegetable) rsp. curly kale, white cabbage and spinach (summer leafy vegetable) was arranged. The sample collective of each species was such large that for the expected variation of the results a statistically firm analysis was possible. Significant differences were observed for the 131 I deposition on spring vegetable: the deposition on spinach was roughly 3 times that on leaf lettuce, 4 times that on endive and 9 times that on head lettuce. All summer vegetables showed differences in deposition. For Iodine, the deposition on spinach was roughly 3 times (6 times) that on curly kale and 35 times (100 times) that on white cabbage in the 2 experiments. Washing by deionised water could reduce the contamination only by about 10% for 131 I. (author)

  12. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  13. Aerotrace. Measurement of trace species in the exhaust of aero engines

    Energy Technology Data Exchange (ETDEWEB)

    Cottington, R V [DRA, Farnborough (United Kingdom)

    1998-12-31

    There is growing evidence that trace species, both gaseous and particulate, play an important role in the chemistry of the atmosphere. Very little is currently known about the nature and concentration of these species emitted by aircraft engines. The purpose of AEROTRACE, therefore, is to make representative measurements of trace species emissions, such as particulates, hydrocarbon constituents and various nitrogen compounds, from engine combustors over the entire flight altitude range from ground level to cruise conditions. An overview of the programme and progress to date is presented. (author)

  14. Aerotrace. Measurement of trace species in the exhaust of aero engines

    Energy Technology Data Exchange (ETDEWEB)

    Cottington, R.V. [DRA, Farnborough (United Kingdom)

    1997-12-31

    There is growing evidence that trace species, both gaseous and particulate, play an important role in the chemistry of the atmosphere. Very little is currently known about the nature and concentration of these species emitted by aircraft engines. The purpose of AEROTRACE, therefore, is to make representative measurements of trace species emissions, such as particulates, hydrocarbon constituents and various nitrogen compounds, from engine combustors over the entire flight altitude range from ground level to cruise conditions. An overview of the programme and progress to date is presented. (author)

  15. Emission of gaseous organic pollutants and flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun, Y.

    2007-01-01

    Gaseous organic pollutants are emitted into atmosphere from various sources, creating a threat to the environment and man. New, economical technologies are needed for flue gas treatment. Emission sources of pollutants are reviewed and different treatment technologies are discussed in this report. (authors)

  16. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Annual atmospheric mercury species in downtown Toronto, Canada.

    Science.gov (United States)

    Song, Xinjie; Cheng, Irene; Lu, Julia

    2009-03-01

    Real-time concentrations of atmospheric gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and mercury associated with particles having sizes RGM were 4.5 +/- 3.1 ng m(-3) (99.2%), 21.5 +/- 16.4 pg m(-3) (0.5%) and 14.2 +/- 13.2 pg m(-3) (0.3%), respectively. The concentrations for all the measured Hg species were highly variable throughout the year and were lower in winter than in the other three seasons. The maximum concentrations of Hg species were observed in June and were a result of the high number of Hg spikes (using [GEM] >10 ng m(-3) as an indicator) that occurred in the month. Nighttime (between 9pm-6am) concentrations of Hg species were higher than those of daytime. The results revealed: (1) an urban area is a continuous source of Hg species that have the potential to pose impacts on local, regional and global scales; (2) local/regional anthropogenic sources contributed significantly to the levels and the distributions of the Hg species in the urban atmosphere. More studies are needed to identify and quantify the anthropogenic sources of Hg and the Hg species emitted from these sources; (3) surface emission and photochemical reactions (including the reactions involving ozone) did not have significant influence on the levels of Hg species and their distribution in the urban atmosphere.

  18. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  19. Migration from Gasoline to Gaseous Fuel for Small-scale Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Sukandar Sukandar

    2013-03-01

    Full Text Available This paper describes a study that gives a consideration to change fuel source for electricity generator from gasoline to combustible gas. A gaseous fuel conversion technology is presented and its performance is compared with gasoline. In the experiment, two types of load were tested, resistive and resistive-inductive. By using both fuels mostly the power factor (Cos ? of resistive-inductive load variations were greater than 0.8, and they had slight difference on operational voltage. The drawback of using gaseous fuel is the frequency of the electricity might be up to 10 Hz deviated from the standard frequency (i.e. 50 Hz. In the lab scale experiment, the gasoline consumption increased proportionally with the load increase, while using gaseous fuel the consumption of gas equal for two different load value in the range of 50% maximum load, which is 100 gram per 15 minutes operation. Therefore, the use of gaseous generation system should have average power twice than the required load. The main advantage using gaseous fuel (liquefied petroleum gas or biogas compared to gasoline is a cleaner emitted gas after combustion.

  20. Behaviour of gaseous alkali compounds in coal gasification; Kaasumaisten alkaliyhdisteiden kaeyttaeytyminen kivihiilien kaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    In this project the behaviour of alkali compounds emitting from CO{sub 2}/O{sub 2}- and airblown gasification are studied. This research project is closely connected to an EU-project coordinated by the Delft University of Technology (DUT). In that project alkali emissions from a 1.6 MW pilot plant will be measured. The results from those measurements will be compared with the calculations performed in this LIEKKI 2 project. The equilibrium calculations show that the major gaseous alkali compounds emitting from combustion and gasification are chlorides and hydroxides. This applies both to air- and CO{sub 2}/O{sub 2}-blown processes. In all the cases studied the concentration of gaseous alkali compounds is determined mainly by the amount of chlorides. The key parameters, with respect to alkali behaviour, are the temperature of the process and chlorine content of the coal. By cooling the gases down to 600 deg C prior to a ceramic filter the alkali concentration can be kept about at 100 ppbv. In combustion, the addition of calcium carbonate increases the amount of gaseous alkali compounds by decreasing the amount of alkali sulphates. In the case of gasification the importance of limestone is negligible. The difference between air- and CO{sub 2}/O{sub 2}-blown processes, in terms of gaseous alkali emissions, is small. This is because CO{sub 2} concentration of the gas does not have a strong impact on alkali chlorides. Furthermore, the effect of CO{sub 2}/O{sub 2}-ratio of the recirculation process is negligible. (orig.)

  1. An improved microstrip plasma for optical emission spectrometry of gaseous species

    Energy Technology Data Exchange (ETDEWEB)

    Schermer, Susanne; Bings, Nicolas H.; Bilgic, Attila M.; Stonies, Robert; Voges, Edgar; Broekaert, Jose A.C. E-mail: jose.broekaert@chemie.uni-hamburg.de

    2003-09-26

    A modified compact 2.45 GHz microstrip plasma (MSP) operated with Ar as working gas at atmospheric pressure has been characterized and examined for its suitability for the determination of Hg as gaseous species by optical emission spectrometry. As a formerly described MSP the new device is provided on a sapphire substrate. The areas of plasma stability in terms of gas flow rates and microwave power for both MSPs with respect to plasma form and reflected power were investigated. Power levels of 5-40 W and Ar flow rates of 15-60 l/h were used. The modified MSP, which extends out of the channel in the sapphire substrate, was used for the recording of emission spectra for Hg vapor at different working conditions. Using optimized parameters a detection limit for Hg of less than 10 ng Hg/l Ar is obtained. The attainable excitation temperatures in the modified MSP at different microwave power were determined under the use of Fe as thermometric species and introducing ferrocene into the plasma. They were found to be at the order of 6000-7000 K for a power of 10-40 W and a gas flow of 15 l/h. It was shown that the modified MSP source can be combined with both a conventional monochromator with photomultiplier detection and a miniaturized spectrometer with CCD detection, whereby space-angle limitations are not stringent.

  2. An introduction to technetium in the gaseous diffusion cascades

    International Nuclear Information System (INIS)

    Simmons, D.W.

    1996-09-01

    The radioisotope technetium-99 ( 99 Tc) was introduced into the gaseous diffusion plants (GDP) as a contaminant in uranium that had been reprocessed from spent nuclear reactor fuel. 99 Tc is a product of the nuclear fission of uranium-235 ( 235 U). The significantly higher emitted radioactivity of 99 Tc generates concern in the enrichment complex and warrants increased attention (1) to the control of all site emissions, (2) to worker exposures and contamination control when process equipment requires disassembly and decontamination, and (3) to product purity when the enriched uranium hexafluoride (UF 6 ) product is marketed to the private sector. A total of 101,268 metric tons of RU (∼96% of the total) was fed at the Paducah Gaseous Diffusion Plant (PGDP) between FY1953 and FY1976. An additional 5600 metric tons of RU from the government reactors were fed at the Oak Ridge Gaseous Diffusion Plant (ORGDP), plus an approximate 500 tons of foreign reactor returns. Only a small amount of RU was fed directly at the Portsmouth Gaseous Diffusion Plant (PORTS). The slightly enriched PGDP product was then fed to either the ORGDP or PORTS cascades for final enrichment. Bailey estimated in 1988 that of the 606 kg of Tc received at PGDP from RU, 121 kg was subsequently re-fed to ORGDP and 85 kg re-fed to PORTS

  3. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Durose, A.; Boakes, J. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  4. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    International Nuclear Information System (INIS)

    Steer, C.A.; Durose, A.; Boakes, J.

    2015-01-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  5. Experiments for detection of gaseous Po-210 originated from microbial activity in the environment

    International Nuclear Information System (INIS)

    Ishimoto, A.; Momoshima, N.

    2006-01-01

    We attempted to detect gaseous Po-210 (half-life 138d) emitted from organisms in the environment. Gaseous Po-210 was tried to collect in 0.5 M nitric acid solution after passing the atmospheric air through filters and a distilled water bubbler, which would remove aerosols existing in the air. The activity of Po-210 was determined by alpha spectrometry after radiochemical separation and electrolytic deposition of Po-210 on a silver disk. Twenty seven point four mBq of Po-210 was observed when 800 m 3 atmospheric air was sampled. Blank of Po-210 in regents and the sampling system was 4.9-6.8 mBq. The concentration of Po-210 observed in the atmospheric air was, thus about 5 times higher than the background; the results strongly support existence of gaseous Po-210 in the environment. (author)

  6. Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species

    Directory of Open Access Journals (Sweden)

    Jin He

    2015-04-01

    Full Text Available The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu2+/Eu3+ ions and coumarin 535 in sol-gel AlPO4 mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  7. Review on the effects of dual-fuel operation, using diesel and gaseous fuels, on emissions and performance

    NARCIS (Netherlands)

    Wagemakers, A.M.L.M.; Leermakers, C.A.J.

    2012-01-01

    In recent years the automotive industry has been forced to reduce the harmful and pollutant emissions emitted by direct injected diesel engines. To accomplish this difficult task various solutions have been proposed. One of these proposed solutions is the usage of gaseous fuels in addition to the

  8. Removing Gaseous NH3 Using Biochar as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Kyoung S. Ro

    2015-09-01

    Full Text Available Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with different thermal conditions and activation techniques were determined using laboratory adsorption column tests. Ammonia adsorption capacities of non-activated biochars ranged from 0.15 to 5.09 mg·N/g, which were comparable to that of other commercial activated carbon and natural zeolite. There were no significant differences in ammonia adsorption capacities of steam activated and non-activated biochars even if the surface areas of the steam activated biochars were about two orders of magnitude greater than that of non-activated biochars. In contrast, phosphoric acid activation greatly increased the biochar ammonia adsorption capacity. This suggests that the surface area of biochar did not readily control gaseous NH3 adsorption. Ammonia adsorption capacities were more or less linearly increased with acidic oxygen surface groups of non-activated and steam-activated biochars. Phosphoric acid bound to the acid activated biochars is suspected to contribute to the exceptionally high ammonia adsorption capacity. The sorption capacities of virgin and water-washed biochar samples were not different, suggesting the potential to regenerate spent biochar simply with water instead of energy- and capital-intensive steam. The results of this study suggest that non-activated biochars can successfully replace commercial activated carbon in removing gaseous ammonia and the removal efficiency will greatly increase if the biochars are activated with phosphoric acid.

  9. Secondary processes in gaseous boron accompanying the cascade decay of the 1s-vacancy

    International Nuclear Information System (INIS)

    Bruehl, S.; Kochur, A.G.

    2009-01-01

    We employ the Monte-Carlo technique to simulate the processes in gaseous boron initiated by 1s-photoionization of boron atoms. The processes of excitations/ionizations of atoms by photons and electrons emitted by the neighboring decaying atoms are considered. It is found that the medium effect becomes noticeable at atomic densities of about 2.5·10 20 m -3 . (authors)

  10. Method and device to measure the concentration of the various isotopes of radon in a gaseous atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Guelin, M; LeGac, J; Caruau, J

    1990-11-30

    Device to implement the method according to claim 1, wherein it is constituted of a vessel provided with an intake tube and an evacuation tube for the gaseous atmosphere and whose inside forms the closed sampling space, is subdivided into a large number of small elementary intercommunicating volumes so as to enable the taken gaseous sample to be homogenized, as well as to allow for the diffusion and the spatially homogeneous trapping of all the solid daughter products thus constituting a homogeneous emitting source for the spectrometry chain which examines this source from outside. (author). 4 figs.

  11. Alpha-emitting nuclides in commercial fish species caught in the vicinity of Windscale, United Kingdom, and their radiological significance to man

    International Nuclear Information System (INIS)

    Pentreath, R.J.; Lovett, M.B.; Harvey, B.R.; Ibbett, R.D.

    1979-01-01

    The concentrations of a number of alpha-emitting nuclides have been determined in the tissues of several commercial fish species caught in the vicinity of the fuel reprocessing plant at Windscale. All tissues analysed were found to contain 238 Pu, sup(239+240)Pu and 241 Am, but 242 Cm and 244 Cm could only be reliably detected in the liver samples of some fish. Fish of the same species, but taken from the North Sea, have also been analysed for some naturally occurring alpha-emitting nuclides. Whereas uranium ( 238 U) and thorium ( 232 Th) could be detected in bone samples of fish, neither could be reliably detected in samples of muscle: in contrast, 210 Po was readily detected in samples of liver, muscle and bone. Commercial fish fillets from the Irish Sea, including the Windscale area, are also routinely monitored for alpha-emitting nuclides, and their radiological significance to man is briefly discussed. Comments are also made on the significance of the naturally occurring nuclides. (author)

  12. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  13. Non-destructive measurement methods for large scale gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.

    1994-01-01

    Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability

  14. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  15. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review

    International Nuclear Information System (INIS)

    Helsen, Lieve

    2005-01-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices. - Submicron arsenic fumes are difficult to control in conventional air pollution control devices

  16. Development of on-line uranium enrichment monitor of gaseous UF6 for uranium enrichment plant

    International Nuclear Information System (INIS)

    Lu Xuesheng; Liu Guorong; Jin Huimin; Zhao Yonggang; Li Jinghuai; Hao Xueyuan; Ying Bin; Yu Zhaofei

    2013-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF 6 , flowing through the processing pipes in uranium enrichment plant. A Nal (Tl) detector was used to measure the count rates of the 185.7 keV γ-ray emitted from 235 U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade can be monitored continuously by using the device. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant. (authors)

  17. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  18. Gaseous poison injection device

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko; Inada, Ikuo.

    1983-01-01

    Purpose: To rapidly control the chain reaction due to thermal neutrons in a reactor core by using gaseous poisons as back-up means for control rod drives. Constitution: Gaseous poisons having a large neutron absorption cross section are used as back-up means for control rod drives. Upon failure of control rod insertion, the gaseous poisons are injected into the lower portion of the reactor core to control the reactor power. As the gaseous poisons, vapors at a high temperature and a higher pressure than that of the coolants in the reactor core are injected to control the reactor power due to the void effects. Since the gaseous poisons thus employed rapidly reach the reactor core and form gas bubbles therein, the deccelerating effect of the thermal neutrons is decreased to reduce the chain reaction. (Moriyama, K.)

  19. Air--sea gaseous exchange of PCB at the Venice lagoon (Italy).

    Science.gov (United States)

    Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P

    2007-10-01

    Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open sea. The air-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional processes and where they may be emitted by gaseous exchange. In this work the parallel collection of air, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous flux of PCBs. The total concentration of PCBs (sum of 118 congeners) in air varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the flux at the air-sea interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net flux varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This flux is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.

  20. The impact from emitted NO{sub x} and VOC in an aircraft plume. Model results for the free troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Pleijel, K.

    1998-04-01

    The chemical fate of gaseous species in a specific aircraft plume is investigated using an expanding box model. The model treats the gas phase chemical reactions in detail, while other parameters are subject to a high degree of simplification. Model simulations were carried out in a plume up to an age of three days. The role of emitted VOC, NO{sub x} and CO as well as of background concentrations of VOC, NO{sub x} and ozone on aircraft plume chemistry was investigated. Background concentrations were varied in a span of measured values in the free troposphere. High background concentrations of VOC were found to double the average plume production of ozone and organic nitrates. In a high NO{sub x} environment the plume production of ozone and organic nitrates decreased by around 50%. The production of nitric acid was found to be less sensitive to background concentrations of VOC, and increased by up to 50% in a high NO{sub x} environment. Mainly, emitted NO{sub x} caused the plume production of ozone, nitric acid and organic nitrates. The ozone production during the first hours is determined by the relative amount of NO{sub 2} in the NO{sub x} emissions. The impact from emitted VOC was in relative values up to 20% of the ozone production and 65% of the production of organic nitrates. The strongest relative influence from VOC was found in an environment characterized by low VOC and high NO{sub x} background concentrations, where the absolute peak production was lower than in the other scenarios. The effect from emitting VOC and NO{sub x} at the same time added around 5% for ozone, 15% for nitric acid and 10% for organic nitrates to the plume production caused by NO{sub x} and VOC when emitted separately 47 refs, 15 figs, 4 tabs

  1. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area, Portsmouth, Ohio

    International Nuclear Information System (INIS)

    1992-09-01

    An aerial radiological survey was conducted from July 11--20, 1990, over an 83-square-kilometer (32-square-mile) area surrounding the Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. The survey was conducted at a nominal altitude of 91 meters (300 feet) with line spacings of 122 meters (400 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph and a set of United States Geological Survey (USGS) topographic maps of the area. The terrestrial exposure rates varied from about 7 to 14 microroentgens per hour (μR/h) at 1 meter above the ground. Analysis of the data for man-made sources and for the uranium decay product, protactinium-234m ( 234m Pa), showed five sites within the boundaries of the Portsmouth Gaseous Diffusion Plant with elevated readings. Spectra obtained in the vicinity of the buildings at the Portsmouth Gaseous Diffusion Plant showed the presence of 234m Pa, a uranium-238 ( 238 U) decay product. In addition, spectral analysis of the data obtained over the processing plant facility showed gamma activity indicative of uranium-235 ( 234 U). No other man-made gamma ray emitting radioactive material was detected, either on or off the Portsmouth Gaseous Diffusion Plant property. Soil samples and pressurized ion chamber measurements were obtained at five different locations within the survey boundlaries to support the aerial data

  2. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  3. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  4. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  5. Simulating Isotope Enrichment by Gaseous Diffusion

    Science.gov (United States)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  6. Chemistry of gaseous lower halides of uranium. Technical progress report, 1 September 1979-1 April 1980

    International Nuclear Information System (INIS)

    Hildenbrand, D.L.

    1980-01-01

    The gaseous uranium species UF, UF 2 , UF 3 , and UF 4 were generated in effusion cell beams by vaporization of UF 4 (s) under reducing conditions, and they were identified and studied by mass spectrometry. From extensive second-law studies of reaction equilibria involving these species and several reaction partners used as reference standards, the individual bond dissociation energies and standard enthalpies of formation of the U-F species were derived. Reaction entropies derived from the slope data indicate that the electronic entropies of the U-F species are substantial, and are comparable to or larger than that of atomic uranium. Additional thermochemical measurements were made to establish the properties of several Ag and Cu monohalides that have been or will be used as reference standards in the uranium halide measurements. From studies of the sublimation and decomposition of uranyl fluoride, UO 2 F 2 (s), the enthalpy of sublimation of UO 2 F 2 (g), has been determined, and another gaseous oxyfluoride, UOF 4 (g), has been tentatively identified. The gaseous products of decomposition of UO 2 F 2 (s) observed by mass spectrometry differ from those postulated by other investigators, indicating that the mechanism of decomposition has not been clearly established. A search of the thermochemical literature on uranium halides has been completed

  7. Effects of radiation and impurities on gaseous iodine behavior in a containment vessel

    International Nuclear Information System (INIS)

    Takahashi, Masato; Watanabe, Atsushi; Hashimoto, Takashi

    2000-01-01

    In order to estimate the effect of impurities and radiation on gaseous iodine behavior in containment vessel, NUPEC has improved IMPAIR-3 code developed by PSI. Several modifications on the iodine oxidation by radiolysis and the production of nitric acid, the existence of boric acid, and the reaction of silver particle with iodine were newly added in evaluating the effect of radiolysis and impurities. pH change resulting from presence of boric acid, nitric acid production by radiolysis of air, and sodium hydroxide addition by AM operation, was also considered. The code verification for pH change was performed using the RTF experimental results. Additionally, the effects of boric acid and silver impurities on gaseous iodine behavior were evaluated by the sensitivity analysis. As a result, the experimental results of iodine concentration transient under pH change were well simulated. The following results were also obtained from the sensitive analysis. The gaseous iodine behavior was not affected by the existence of boric acid. In the case of silver existence in liquid phase, the gaseous iodine concentration rapidly decreased because a large amount of iodine changed into AgI species in liquid phase. The restraint effect of silver on gaseous iodine, production was larger than that of pH change. (author)

  8. Dry deposition of particulate Cs-134 to several leafy vegetable species and comparison to deposition of gaseous radioiodine

    International Nuclear Information System (INIS)

    Tschiersch, J.; Shinonaga, T.; Heuberger, H.

    2004-01-01

    The height of the dry deposition of particulate radionuclides to leafy vegetable is quite uncertain because of the different habit, surface texture and leaf uptake of the different species. There is no comparative data on the deposition to various species, but leafy vegetables are taken as reference plants for the estimation of the height of contamination of vegetable foods after a nuclear accident. Therefore new chamber experiments were performed to determine under homogeneous and controlled conditions the dry deposition of particulate radio-caesium on mature leafy vegetable. The simultaneous exposition of endive, head lettuce, red oak leaf lettuce and spinach (spring leafy vegetable) rsp. curly kale, white cabbage and spinach (summer leafy vegetable) was arranged. The sample collective of each species was such large that for the expected variation of the results a statistically firm analysis was possible. For spring vegetable, there was no significant difference observed in deposition of 134 Cs between spinach and leaf lettuce, about twice the amount was deposited on both species as on endive and 3 times as on head lettuce. All summer vegetables showed differences in deposition for Caesium, the deposition to curly kale was highest, about twice that on spinach and 35 times (80 times) that on white cabbage. The normalized deposition velocity could be estimated, in average it was about 8 times lower for 134 Cs than for gaseous elemental 131 I. The influence of the particle size on the deposition velocity was small in the considered size range of 0.58-1.1μm (AMAD) of the monodisperse aerosol. Washing could reduce the contamination by about 45% for 134 Cs. (author)

  9. Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis

    Directory of Open Access Journals (Sweden)

    A. R. Rickard

    2010-03-01

    Full Text Available Secondary Organic Aerosol (SOA affects atmospheric composition, air quality and radiative transfer, however major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Ion Trap Mass Spectrometry and Liquid Chromatography. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method, and the potential influence of condensed phase chemistry. Comparisons of the simulated gaseous- and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species, (ii provide evidence for the occurrence of recently suggested radical isomerisation channels not included in the basic model, and (iii explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra.

  10. Preliminary study of PCBs in raccoons living on or near the Paducah Gaseous Diffusion Plant, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Halbrook, Richard S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Zoology. Cooperative Wildlife Research Lab. Kentucky Research Consortium for Energy and Environment

    2016-01-15

    The “Ecological Monitoring at the Paducah Gaseous Diffusion Plant: Historical Evaluation and Guidelines for Future Monitoring” report (Halbrook, et al. 2007) recommended the raccoon as a species for study at the Paducah Gaseous Diffusion Plant (PGDP). This species was selected to fill data gaps in ecological resources and provide resource managers with knowledge that will be valuable in making decisions and implementing specific actions to safeguard ecological resources and reduce human exposure. The current paper reports results of a preliminary evaluation to establish protocols for collection of tissues and initial screening of polychlorinated biphenyls (PCBs) in raccoons collected near the PGDP. These data are useful in developing future more comprehensive studies.

  11. Top-emitting organic light-emitting diodes.

    Science.gov (United States)

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  12. Carbonaceous species emitted from handheld two-stroke engines

    Science.gov (United States)

    Volckens, John; Olson, David A.; Hays, Michael D.

    Small, handheld two-stroke engines used for lawn and garden work (e.g., string trimmers, leaf blowers, etc.) can emit a variety of potentially toxic carbonaceous air pollutants. Yet, the emissions effluents from these machines go largely uncharacterized, constraining the proper development of human exposure estimates, emissions inventories, and climate and air quality models. This study samples and evaluates chemical pollutant emissions from the dynamometer testing of six small, handheld spark-ignition engines—model years 1998-2002. Four oil-gas blends were tested in each engine in duplicate. Emissions of carbon dioxide, carbon monoxide, and gas-phase hydrocarbons were predominant, and the PM emitted was organic matter primarily. An ANOVA model determined that engine type and control tier contributed significantly to emissions variations across all identified compound classes; whereas fuel blend was an insignificant variable accounting for engines were generally intermediate in magnitude compared with other gasoline-powered engines, numerous compounds traditionally viewed as motor vehicle markers are also present in small engine emissions in similar relative proportions. Given that small, handheld two-stroke engines used for lawn and garden work account for 5-10% of total US emissions of CO, CO 2, NO x, HC, and PM 2.5, source apportionment models and human exposure studies need to consider the effect of these small engines on ambient concentrations in air polluted environments.

  13. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  14. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  15. Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species.

    Science.gov (United States)

    Prieto, Martin; Rwei, Alina Y; Alejo, Teresa; Wei, Tuo; Lopez-Franco, Maria Teresa; Mendoza, Gracia; Sebastian, Victor; Kohane, Daniel S; Arruebo, Manuel

    2017-12-06

    Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd 3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

  16. Acid-base thermochemistry of gaseous aliphatic α-aminoacids.

    Science.gov (United States)

    Bouchoux, Guy; Huang, Sihua; Inda, Bhawani Singh

    2011-01-14

    Acid-base thermochemistry of isolated aliphatic amino acids (denoted AAA): glycine, alanine, valine, leucine, isoleucine and proline has been examined theoretically by quantum chemical computations at the G3MP2B3 level. Conformational analysis on neutral, protonated and deprotonated species has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. Comparison of the G3MP2B3 theoretical proton affinities, PA, and ΔH(acid) with experimental results is shown to be correct if experimental thermochemistry is re-evaluated and adapted to the most recent acidity-basicity scales. From this point of view, a set of evaluated proton affinities of 887, 902, 915, 916, 919 and 941 kJ mol(-1), and a set of evaluated ΔH(acid) of 1433, 1430, 1423, 1423, 1422 and 1426 kJ mol(-1), is proposed for glycine, alanine, valine, leucine, isoleucine and proline, respectively. Correlations with structural parameters (Taft's σ(α) polarizability parameter and molecular size) suggest that polarizability of the side chain is the major origin of the increase in PA and decrease in ΔH(acid) along the homologous series glycine, alanine, valine and leucine/isoleucine. Heats of formation of gaseous species AAA, AAAH(+) and [AAA-H](-) were computed at the G3MP2B3 level. The present study provides previously unavailable Δ(f)H°(298) for the ionized species AAAH(+) and [AAA-H](-). Comparison with Benson's estimate, and correlation with molecular size, show that several experimental Δ(f)H°(298) values of neutral or gaseous AAA might be erroneous.

  17. A new gaseous and combustible form of water

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Ruggero Maria [Institute for Basic Research, P.O. Box 1577, Palm Harbor, FL 34682 (United States)

    2006-08-15

    In this paper we present, apparently for the first time, various measurements on a mixture of hydrogen and oxygen called HHO gas produced via a new electrolyzer (international patents pending by Hydrogen Technologies Applications, Inc. of Clearwater, Florida), which mixture is distinctly different than the Brown and other known gases. The measurements herein reported suggest the existence in the HHO gas of stable clusters composed of H and O atoms, their dimers H-O, and their molecules H{sub 2}, O{sub 2} and H{sub 2}O whose bond cannot entirely be of valence type. Numerous anomalous experimental measurements on the HHO gas are reported in this paper for the first time. To reach their preliminary, yet plausible interpretation, we introduce the working hypothesis that the clusters constituting the HHO gas constitute another realization of a recently discovered new chemical species called for certain technical reasons magnecules as well as to distinguish them from the conventional 'molecules' [Santilli RM. Foundations of hadronic chemistry with applications to new clean energies and fuels. Boston, Dordrecht, London: Kluwer Academic Publisher; 2001]. It is indicated that the creation of the gaseous and combustible HHO from distilled water at atmospheric temperature and pressure occurs via a process structurally different than evaporation or separation, thus suggesting the existence of a new form of water, apparently introduced in this paper for the first time, with the structure (HxH)-O where 'x' represents the new magnecular bond and '-' the conventional molecular bond. The transition from the conventional H-O-H species to the new (HxH)-O species is predicted by a change of the electric polarization of water caused by the electrolyzer. When H-O-H is liquid, the new species (HxH)-O can only be gaseous, thus explaining the transition of state without evaporation or separation energy. Finally, the new species (HxH)-O is predicted to be

  18. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  19. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    Energy Technology Data Exchange (ETDEWEB)

    Shugurov, S.M., E-mail: s.shugurov@spbu.ru; Panin, A.I.; Lopatin, S.I.; Emelyanova, K.A.

    2016-10-15

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO{sub 3} and Pb{sub 2}TeO{sub 4} were calculated by quantum chemistry methods. The formation enthalpies Δ{sub f}H{sup 0} (298.15) = −294 ± 13 for gaseous PbTeO{sub 3} and Δ{sub f}H{sup 0} (298.15) = −499 ± 12 for gaseous Pb{sub 2}TeO{sub 4} were obtained. On the base of these results the formation enthalpies of gaseous PbPoO{sub 3} and Pb{sub 2}PoO{sub 4} were estimated as −249 ± 34 and −478 ± 38, respectively. - Highlights: • Gaseous lead tellurates PbTeO{sub 3}, Pb{sub 2}TeO{sub 4} were discovered. • Their thermodynamic properties were studied using both high temperature mass spectrometry and quantum chemistry computations. • The obtained data allows to predict the formation enthalpies of gaseous lead polonates PbPoO{sub 3}, Pb{sub 2}PoO{sub 4}.

  20. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  1. Gaseous emissions during the solid state fermentation of different wastes for enzyme production at pilot scale.

    Science.gov (United States)

    Maulini-Duran, Caterina; Abraham, Juliana; Rodríguez-Pérez, Sheila; Cerda, Alejandra; Jiménez-Peñalver, Pedro; Gea, Teresa; Barrena, Raquel; Artola, Adriana; Font, Xavier; Sánchez, Antoni

    2015-03-01

    The emissions of volatile organic compounds (VOC), CH4, N2O and NH3 during the solid state fermentation process of some selected wastes to obtain different enzymes have been determined at pilot scale. Orange peel+compost (OP), hair wastes+raw sludge (HW) and winterization residue+raw sludge (WR) have been processed in duplicate in 50 L reactors to provide emission factors and to identify the different VOC families present in exhaust gaseous emissions. Ammonia emission from HW fermentation (3.2±0.5 kg Mg(-1) dry matter) and VOC emission during OP processes (18±6 kg Mg(-1) dry matter) should be considered in an industrial application of these processes. Terpenes have been the most emitted VOC family during all the processes although the emission of sulphide molecules during HW SSF is notable. The most emitted compound was dimethyl disulfide in HW and WR processes, and limonene in the SSF of OP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    Science.gov (United States)

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The conditions of gaseous fuels development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Face to the actual situation of petrol and gas oil in France, the situation of gaseous fuels appears to be rather modest. However, the aim of gaseous fuels is not to totally supersede the liquid fuels. Such a situation would imply a complete overturn which has not been seriously considered yet. This short paper describes the essential conditions to promote the wider use of gaseous fuels: the intervention of public authorities to adopt a more advantageous tax policy in agreement with the ''Clean Air''law project, a suitable distribution network for gaseous fuels, a choice of vehicles consistent with the urban demand, the development of transformation kits of quality and of dual-fuel vehicles by the car manufacturers. (J.S.)

  4. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  5. Evaluation of the use of activated carbon for the filtration of gaseous effluents generated in the production of the radiopharmaceutical FDG-18F

    International Nuclear Information System (INIS)

    Cunha, R.S.; Goulart, A.S.; Flores, M.R.; Saibt, M.

    2017-01-01

    Gaseous rejects generated in the production of FDG- 18 F are produced mainly during the irradiation of the enriched water (H2O 18 ) within the niobium / target body at the cyclotron accelerator and during the process of FDG- 18 F synthesis in the synthesizer modules within the cell hot. In order to reduce the levels of gaseous effluents emitted, activated carbon filters are used in the exhaust system. These have the ability to adsorb the 18 F gaseous molecules generated in the synthesis. This work aims to quantify the efficiency of the activated carbon filters in relation to the dose rate before and after the passage of the gases through the filtration system. To quantify the values in the exhaust system, two radiation detectors were used, in the equivalent dose rate mode in μSv/h. To evaluate the values obtained, graphs of the levels before and after the filtration system were generated. These graphs were compared to each other, relating the values found. The generated graphs showed a high efficiency in the filtration of gaseous effluents. Several dose rate peaks are presented in the exhaust system during FDG- 18 F synthesis, however after the passage of the gases through the filters these peaks become values very close to the Background values

  6. Mixed species radioiodine air sampling readout and dose assessment system

    International Nuclear Information System (INIS)

    Distenfeld, C.H.; Klemish, J.R. Jr.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector

  7. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    Science.gov (United States)

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  8. Conversion factors for estimating release rate of gaseous radioactivity by an aerial survey

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1988-02-01

    Conversion factors necessary for estimating release rate of gaseous radioactivity by an aerial survey are presented. The conversion factors were determined based on calculation assuming a Gaussian plume model as a function of atmospheric stability, down-wind distance and flight height. First, the conversion factors for plumes emitting mono-energy gamma rays were calculated, then, conversion factors were constructed through convolution for the radionuclides essential in an accident of a nuclear reactor, and for mixtures of these radionuclides considering elapsed time after shutdown. These conversion factors are shown in figures, and also polynomial expressions of the conversion factors as a function of height have been decided with the least-squares method. A user can easily obtain proper conversion factors from data shown here. (author)

  9. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  10. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  11. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  12. Modelling of atmospheric transport of heavy metals emitted from Polish power sector

    International Nuclear Information System (INIS)

    Zysk, Janusz

    2016-01-01

    Modelling of atmospheric transport of heavy metals emitted from Polish power sector. Many studies have been conducted to investigate the atmospheric heavy metals contamination and its deposition to ecosystems. The increasing attention to mercury pollution has been mainly driven by the growing evidence of its negative impacts on wildlife, ecosystems and particularly human health. Lead and cadmium are also toxics which are being emitted into the atmosphere by anthropogenic as well as natural sources. The harmful influence of these three heavy metals was underlined in the Aarhus Protocol on Heavy Metals of 1998. The Parties of this protocol (including Poland) are obligated to reduce emissions, observe the transport and the amounts of lead, mercury and cadmium in the environment. Poland is one of the biggest emitter of mercury, lead and cadmium in Europe mainly due to emission from coal combustion processes. Therefore in Poland, research efforts to study the heavy metals emission, atmospheric transport, concentration and deposition are extremely important. The objectives of this work were twofold: - The practical objective was to develop and run a model to represent the atmospheric dispersion of mercury and to implement it in the air quality modelling platform Polyphemus.- The scientific objective was to perform heavy metals dispersion studies over Europe and detailed studies of the impact of the polish power sector on the air quality regarding mercury, cadmium and lead. To meet the declared aim, a new mercury chemical model was implemented into the Polyphemus air quality system. The scientific literature was reviewed regarding mercury chemistry and mercury chemical models. It can be concluded that the chemistry of mercury is still not well known. The models also differ in the way of calculating the dry and wet deposition of mercury. The elemental gaseous mercury ambient concentrations are evenly distributed, on the contrary, high variations in the spatial gradients of

  13. Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise

    DEFF Research Database (Denmark)

    Lindberg, S. E.; Brooks, S.; Lin, C.-J.

    2002-01-01

    Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven...... oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated...... rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions. Udgivelsesdato: 2002-Mar-15...

  14. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  15. CO2 laser photoacoustic detection of ammonia emitted by ceramic industries.

    Science.gov (United States)

    Sthel, M S; Schramm, D U; Lima, G R; Carneiro, L; Faria, R T; Castro, M P P; Alexandre, J; Toledo, R; Silva, M G; Vargas, H

    2011-01-01

    A homemade photoacoustic spectrometer has been constructed for monitoring gas emission from several sources. Numerous air pollutant gases are emitted exhaust of industries, vehicles and power plants. The photoacoustic technique is extremely sensitive and selective in detecting various gases. This work focuses on the gas emitted by the ceramic industry in northern Rio de Janeiro State in Brazil, the ceramic industry plays a remarkable role in the economy activity of this region, in recent years, this region developed into a significant red ceramic complex. The potential impact on the atmospheric environment of the region due to gaseous pollutant emissions from these anthropogenic sources needs to be evaluated. In this work we identified NH3 present in the samples collected in the kiln of a ceramic plant, in the concentration range of 33-52 ppmV. The ammonia gas present in our collected samples might come from the excess nitrogen in the manure soil from where the ceramic material was extracted. This soil was used for the sugarcane culture which is another important economic activity of this region. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Method of separating tritium contained in gaseous wastes

    International Nuclear Information System (INIS)

    Hashimoto, Yasuo; Oozono, Hideaki.

    1981-01-01

    Purpose: To decrease tritium concentration in gaseous wastes to less than the allowable level by removing tritium in gaseous wastes generated upon combustion of radioactive wastes by using a plurality of heat exchangers. Method: Gaseous wastes at high temperature generated upon combustion of radioactive wastes in an incinerator are removed with radioactive solid substances through filters, cooled down to a temperature below 10 0 C by the passage through first and second heat exchangers and decreased with tritium content to less than the allowable concentration by the gaseous wastes at low temperature from the second heat exhcanger. The gaseous wastes at low temperature are used as the cooling medium for the first heat exchanger. They are heat exchanged at the upstream of the second heat exchanger with the cooling water from the third heat exchanger and cooled at the downstream by the cooling water cooled by the cooling medium. The gaseous wastes at low temperature thus cooled below 10 0 C are heated to about 350 0 C in the first heat exchanger and discharged. (Moriyama, K.)

  17. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  18. Examination of vegetation around a nuclear plant emitting gaseous fluorides in order to detect fluorine pollution

    International Nuclear Information System (INIS)

    Teulon, Francoise; Bonnaventure, J. P.

    1971-08-01

    Fluorine pollution (chronic or occasional) around a plant rejecting gaseous fluoride effluents can be detected from vegetation samples by chemical analysis. Systematic monitoring allows the effects and gravity of the pollution to be estimated. The analytical method used consists of a double distillation (in phosphoric acid and perchloric acid) followed by a spectro-colorimetric analysis (alizarine-complexon-lanthane). This method of control allows both the efficiency of the trapping installations and also the appearance of effluents at unexpected places to be checked, In the event of an accident it is possible to determine the advisability of prohibiting the consumption of locally grown produce by humans or fodder by cattle. Research conducted in order to determine the relation between visible, damage to certain vegetables (tomatoes, haricot beans and sorghum) and their fluorine contents demonstrated that such a relation appears above all at the level of the leaves; chemical analysis may thus be used to confirm or reject information obtained on the basis of visual evidence [fr

  19. Exchange reaction between hydrogen and deuterium. II - Proposal for an heterogeneous initiation mechanism of gaseous phase reactions

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, Henri [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of experimental data related to evolution period exhibited by H/sub 2/-D/sub 2/ exchange process requires to take into account the variation against time of every atomic species -adsorbed or not- implied in the reaction mechanism. The formation of first chain carriers involves: - chemisorption of either gaseous reactant on the surface active centres (..sigma..), e.g.: ..sigma.. + 1/2 H/sub 2/ reversible ..sigma..H; - consecutive generation of atomic species through hetero-homogeneous transfer between chemisorbed species (..sigma..H) and gaseous molecules: ..sigma..H+H/sub 2/..--> sigma..+H/sub 2/+H/sup 0/, ..sigma..H+D/sub 2/..--> sigma..+HD+D/sup 0/. Therefore, it can be shown that the heterogeneous initiation process of a gas phase reaction identifies to a chain linear mechanism. Such an heterogeneous sequence conditions the further proceeding of the homogeneous chain reaction; both evolutions being kinematically connected. Rate constant of hydrogen adsorption on silica glass: ksub(a1) approximately 10/sup 14/ exp(-47/RT)Isup(0,5).molesup(-0,5).S/sup -1/ has been evaluated.

  20. Dry deposition of gaseous radioiodine and particulate radiocaesium onto leafy vegetables

    International Nuclear Information System (INIS)

    Tschiersch, Jochen; Shinonaga, Taeko; Heuberger, Heidi

    2009-01-01

    Radionuclides released to the atmosphere during dry weather (e.g. after a nuclear accident) may contaminate vegetable foods and cause exposure to humans via the food chain. To obtain experimental data for an appropriate assessment of this exposure path, dry deposition of radionuclides to leafy vegetables was studied under homogeneous and controlled greenhouse conditions. Gaseous 131 I-tracer in predominant elemental form and particulate 134 Cs-tracer at about 1 μm diameter were used to identify susceptible vegetable species with regard to contamination by these radionuclides. The persistence was examined by washing the harvested product with water. The vegetables tested were spinach (Spinacia oleracea), butterhead lettuce (Lactuca sativa var. capitata), endive (Cichorium endivia), leaf lettuce (Lactuca sativa var. crispa), curly kale (Brassica oleracea convar. acephala) and white cabbage (Brassica oleracea convar. capitata). The variation of radionuclides deposited onto each vegetable was evaluated statistically using the non-parametric Kruskal-Wallis Test and the U-test of Mann-Whitney. Significant differences in deposited 131 I and 134 Cs activity concentration were found among the vegetable species. For 131 I, the deposition velocity to spinach normalized to the biomass of the vegetation was 0.5-0.9 cm 3 g -1 s -1 which was the highest among all species. The particulate 134 Cs deposition velocity of 0.09 cm 3 g -1 s -1 was the highest for curly kale, which has rough and structured leaves. The lowest deposition velocity was onto white cabbage: 0.02 cm 3 g -1 s -1 (iodine) and 0.003 cm 3 g -1 s -1 (caesium). For all species, the gaseous iodine deposition was significantly higher compared to the particulate caesium deposition. The deposition depends on the sensitive parameters leaf area, stomatal aperture, and plant morphology. Decontamination by washing with water was very limited for iodine but up to a factor of two for caesium.

  1. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  2. The impact of the fuel chemical composition on volatile organic compounds emitted by an in-service aircraft gas turbine engine

    Science.gov (United States)

    Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.

    2017-12-01

    Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (engine were mainly constituted of alkanes, oxygenated compounds, and aromatics. More than 50 % of the

  3. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-02-20

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  4. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    International Nuclear Information System (INIS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-01-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10 −10 ( R * / R ) 3 g cm −3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10 −9 M * . We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  5. Two new sources of reactive gaseous mercury in the free troposphere

    Science.gov (United States)

    Timonen, H.; Ambrose, J. L.; Jaffe, D. A.

    2012-11-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical composition of RGM are poorly known. Using speciated mercury measurements conducted at the Mt. Bachelor Observatory since 2005 we present two previously unidentified sources of RGM to the free troposphere (FT). Firstly, we observed elevated RGM concentrations, large RGM/GEM-ratios, and anti-correlation between RGM and GEM during Asian long-rang transport events, demonstrating that RGM is formed from GEM by in-situ oxidation in some anthropogenic pollution plumes in the FT. During the Asian pollution events the measured RGM/GEM-ratios reached peak values, up to ~0.20, which are significantly larger than ratios typically measured (RGM/GEM RGM levels - the highest reported in the FT - in clean air masses that were processed upwind of Mt. Bachelor Observatory over the Pacific Ocean. The high RGM concentrations (up to 700 pg m-3), high RGM/GEM-ratios (up to 1), and very low ozone levels during these events provide the first observational evidence indicating significant GEM oxidation in the lower FT. The identification of these processes changes our conceptual understanding of the formation and distribution of oxidized Hg in the global atmosphere.

  6. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  7. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  8. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  9. Preliminary study of the distribution of gaseous mercury species in the air of Guiyang city, China

    Science.gov (United States)

    Shang, L.; Feng, X.; Zheng, W.; Yan, H.

    2003-05-01

    Total gaseous mercury (TGM) in ambient air consists of Hg^0 and reactive gaseous mercury (RGM) in general. Although RGM only constitutes a small portion of TGM in the air, it contributes the most to both dry and wet deposition of mercury from the atmosphere. TGM and RGM concentrations in ambient air at one site of Guiyang City were determined in March 2002. TGM concentrations were monitored using an automated mercury vapor analyzer Tekran2537A, and RGM in ambient air was sampled using KCI coated tubular denuders. The sampled RGM denuders were analyzed using thermal desorption coupled with CVAFS detection. The average concentrations of TGM and RGM are 7.09 ng m^{-3} and 37.5pg m^{-3} respectively during the sampling period. The primary anthropogenic source for both Hg^0 and RGM is coal combustion in the study area. TGM concentrations are significantly elevated comparing to the global background values, whereas RGM concentrations are only slightly higher than the reported values in remote areas in Europe and US. RGM only constitutes 0.5% ofTGM in the air at the sampling period. There is a significant negative correlation between RGM concentration and relative humidity (RH), with a coefficient correlation of 0.39 (αRGM concentrations observed.

  10. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    Science.gov (United States)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  11. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint

    International Nuclear Information System (INIS)

    Lamorena, Rheo B.; Jung, Sang-Guen; Bae, Gwi-Nam; Lee, Woojin

    2007-01-01

    The formation of secondary products during the ozone-initiated oxidations with biogenic VOCs emitted from natural paint was investigated in this study. Mass spectrometry and infrared spectroscopy measurements have shown that the major components of gas-phase chemicals emitted from natural paint are monoterpenes including α- and β-pinenes, camphene, p-cymene, and limonene. A significant formation of gaseous carbonyl products and nano-sized particles (4.4-168 nm) was observed in the presence of ozone. Carboxylic acids were also observed to form during the reactions (i.e. formic acid at 0.170 ppm and acetic acid at 0.260 ppm). The formation of particles increased as the volume of paint introduced into a reaction chamber increased. A secondary increase in the particle number concentration was observed after 440 min, which suggests further partitioning of oxidation products (i.e. carboxylic acids) into the particles previously existing in the reaction chamber. The growth of particles increased as the mean particle diameter and particle mass concentrations increased during the reaction. The experimental results obtained in this study may provide insight into the potential exposure of occupants to irritating chemical compounds formed during the oxidations of biogenic VOCs emitted from natural paint in indoor environments

  12. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  13. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  14. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    Science.gov (United States)

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  15. Dry deposition of gaseous radioiodine and particulate radiocaesium onto leafy vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Tschiersch, Jochen, E-mail: tschiersch@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Shinonaga, Taeko [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Heuberger, Heidi [TU Muenchen, Center of Life and Food Sciences Weihenstephan, Duernast 2, 85350 Freising (Germany)

    2009-10-15

    Radionuclides released to the atmosphere during dry weather (e.g. after a nuclear accident) may contaminate vegetable foods and cause exposure to humans via the food chain. To obtain experimental data for an appropriate assessment of this exposure path, dry deposition of radionuclides to leafy vegetables was studied under homogeneous and controlled greenhouse conditions. Gaseous {sup 131}I-tracer in predominant elemental form and particulate {sup 134}Cs-tracer at about 1 {mu}m diameter were used to identify susceptible vegetable species with regard to contamination by these radionuclides. The persistence was examined by washing the harvested product with water. The vegetables tested were spinach (Spinacia oleracea), butterhead lettuce (Lactuca sativa var. capitata), endive (Cichorium endivia), leaf lettuce (Lactuca sativa var. crispa), curly kale (Brassica oleracea convar. acephala) and white cabbage (Brassica oleracea convar. capitata). The variation of radionuclides deposited onto each vegetable was evaluated statistically using the non-parametric Kruskal-Wallis Test and the U-test of Mann-Whitney. Significant differences in deposited {sup 131}I and {sup 134}Cs activity concentration were found among the vegetable species. For {sup 131}I, the deposition velocity to spinach normalized to the biomass of the vegetation was 0.5-0.9 cm{sup 3} g{sup -1} s{sup -1} which was the highest among all species. The particulate {sup 134}Cs deposition velocity of 0.09 cm{sup 3} g{sup -1} s{sup -1} was the highest for curly kale, which has rough and structured leaves. The lowest deposition velocity was onto white cabbage: 0.02 cm{sup 3} g{sup -1} s{sup -1} (iodine) and 0.003 cm{sup 3} g{sup -1} s{sup -1} (caesium). For all species, the gaseous iodine deposition was significantly higher compared to the particulate caesium deposition. The deposition depends on the sensitive parameters leaf area, stomatal aperture, and plant morphology. Decontamination by washing with water was very

  16. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.B. [Centre for Energy, Indian Institute of Technology, Guwahati 781039 (India); Sahoo, N.; Saha, U.K. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039 (India)

    2009-08-15

    Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as 'dual-fuel engines'. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that 'dual-fuel concept' is a promising technique for controlling both NO{sub x} and soot emissions even on existing diesel engine. But, HC, CO emissions and 'bsfc' are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition

  17. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-02-03

    Two-dimensional (2D) perovskites with the general formula APbX are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap colour centres. Here, we provide an in-depth description of the charge localization sites underlying the generation of such radiative centres and their corresponding decay dynamics, highlighting the formation of small polarons trapped within their lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations to study the white-light emitting 2D perovskites (EDBE)PbCl and (EDBE)PbBr, we infer the formation of Pb , Pb, and X (where X = Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant for a broad class of white-light emitting perovskites with large polaron relaxation energy.

  18. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  19. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  20. Absorbing method of iodine in radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Fukutome, Yutaka; Mifuji, Hiroshi; Ito, Sakae.

    1983-01-01

    Purpose: To maintain an iodine adsorbing efficiency at a high level by keeping the adsorbing atmosphere to more than a predetermined temperature to thereby suppress the degradation and the activity reduction in zeolite. Method: Adsorption and desorption-regeneration of gaseous wastes are performed in parallel by heating gaseous wastes in a heater and switchingly supplying the same to adsorption columns by way of valve operation. Processed gases are cooled in a cooler and desorbed gases are supplied to an after-treatment device to eliminate or recover iodine 131. In the adsorption column, iodine in gaseous wastes is adsorbed to remove by using zeolite, wherein the adsorbing atmosphere is kept at a temperature higher than 40 0 C. This can prevent the formation of an aqueous HNO 3 solution from NO 2 and H 2 O contained in the gaseous wastes and prevent the degradation of the zeolite adsorption layer. (Kawakami, Y.)

  1. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blazy, V., E-mail: vincent.blazy@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Benoist, J.C; Daumoin, M. [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Lemasle, M.; Wolbert, D. [Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes (France); Barrington, S., E-mail: suzellebarrington@sympatico.ca [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Concordia University, Department of Building, Civil and Environmental Engineering, 1455 de Maisonneuve, Montréal, QC H3G 1M8 (Canada)

    2014-07-15

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  2. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    International Nuclear Information System (INIS)

    Blazy, V.; Guardia, A. de; Benoist, J.C; Daumoin, M.; Lemasle, M.; Wolbert, D.; Barrington, S.

    2014-01-01

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH 3 , 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10 5 to 10 6 is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent

  3. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda

    2011-01-01

    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  4. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  5. Absorption of gaseous iodine by water droplets

    International Nuclear Information System (INIS)

    Albert, M.F.

    1985-07-01

    A new model has been developed for predicting the rate at which gaseous molecular iodine is absorbed by water sprays. The model is a quasi-steady state mass transfer model that includes the iodine hydrolysis reactions. The parameters of the model are spray drop size, initial concentration of the gas and liquid phases, temperature, pressure, buffered or unbuffered spray solution, spray flow rate, containment diameter and drop fall height. The results of the model were studied under many values of these parameters. Plots of concentration of iodine species in the drop versus time have been produced by varying the initial gas phase concentration of molecular iodine over the range of 1 x 10 -5 moles/liter to 1 x 10 -10 moles/liter and a drop size of 1000 microns. Results from the model are compared to results available from Containment Systems Experiments at Pacific Northwest Laboratory. The difference between the model predictions and the experimental data ranges from -120.5% to 68.0% with the closest agreement 7.7%. The new spray model is also compared to previously existing spray models. At high concentrations of gaseous molecular iodine, the new spray model is considered to be less accurate but at low concentrations, the new model predicts results that are closer to the experimental data than the model called the realistic model from WASH-1329. Inclusion of the iodine hydrolysis reaction is shown to be a feature important to a model intended for determining the removal of molecular iodine over a wide range of conditions

  6. Entrapment process of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Gagneraud, Francis; Gagneraud, Michel.

    1981-01-01

    Process for collecting chemically inert gaseous radioactive waste in melted substances, whereby the gaseous waste is injected under pressure in a molten substance to its saturation point followed by fast cooling. This substance is constituted of glass, ceramics, metallurgical drosses and slag masses in fusion. Its cooling is carried out by quenching by means of running water or a gas fluid, or by casting into vessels with great thermal inertia such as cast iron or similar, before recovery and confinement in receptacles for storage [fr

  7. Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: a tunnel study in the Paris mega-city

    International Nuclear Information System (INIS)

    Ammoura, L.; Xueref-Remy, I.; Gros, V.; Baudic, A.; Bonsang, B.; Bonnaire, N.; Sciare, J.; Chevallier, F.; Petit, J.E.; Perrussel, O.

    2014-01-01

    Measurements of CO 2 , CO, NO x and selected Volatile Organic Compounds (VOCs) mole fractions were performed continuously during a 10-day period in the Guy Moquet tunnel in Thiais, a peri-urban area about 15 km south of the centre of Paris, between 28 September and 8 October 2012. This data set is used here to identify the characteristics of traffic-emitted CO 2 by evaluating its ratios to co-emitted species for the first time in the Paris region. High coefficients of determination (r 2 ≥ 0.7) are observed between CO 2 and certain compounds that are characteristic of the traffic source (CO, NO x , benzene, xylenes and acetylene). Weak correlations (r 2 ≤ 0.2) are found with species such as propane, n- butane and i-butane that are associated with fuel evaporation, an insignificant source for CO 2 . To better characterise the traffic signal we focus only on species that are well correlated with CO 2 and on rush-hour periods characterised by the highest traffic-related mole fractions. From those mole fractions we remove the nighttime-average weekday mole fraction obtained for each species that we infer to be the most appropriate background signal for our study. Then we calculate observed Δspecies / ΔCO 2 ratios, which we compare with the ones provided by the 2010 bottom-up high-resolved regional emission inventory from Airparif (the association in charge of monitoring the air quality in ile-de-France), focusing on local emission data for the specific road of the tunnel. We find an excellent agreement (2 %) between the local inventory emission CO/CO 2 ratio and our observed ΔCO/ΔCO 2 ratio. Former tunnel experiments carried out elsewhere in the world provided observed ΔCO/ΔCO 2 ratios that differ from 49 to 592% to ours. This variability can be related to technological improvement of vehicles, differences in driving conditions, and fleet composition. We also find a satisfactory agreement with the Airparif inventory for n-propylbenzene, n-pentane and xylenes

  8. Behaviour of radioiodine in gaseous effluents

    International Nuclear Information System (INIS)

    Barry, P.J.

    1968-01-01

    Because of the different chemical forms in which radioiodine occurs in the gaseous state, it is important when designing efficient filters to know the chemical forms which may be present in the effluent gases when various operations are being carried out and to know the effect of different gaseous environments on the filtration efficiency. To obtain this information it is necessary to have available reliable means of characterizing different chemical forms and to sample gaseous effluents when these operations are being carried out. This paper describes the use for identifying molecular iodine of metallic screens in a multi-component sampling pack in different gaseous environments. Using multi-component sampling packs, the fractionation of iodine nuclides between different chemical forms was measured in the effluent gases escaping from an in-pile test loop in which the fuel was deliberately ruptured by restricting the flow of coolant. Sequential samples were taken for six hours after the rupture and it was possible to follow during this period the individual behaviours of 13 '1I, 133 I and 135 I. Simultaneous samples were also obtained of the noble gases in the effluent gas stream and of the iodine nuclides in the loop coolant. Similar experiments have been carried out with a view to characterizing the different chemical behaviour of radioiodine as it is released from a variety of operations in the nuclear industry including the cutting of fuel sections in metallurgical examination caves and an incinerator. (author)

  9. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant

  10. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  11. Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Restivo, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-13

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation or exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.

  12. Engineering design of the Aries-IV gaseous divertor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Najmabadi, F.; Sharafat, S.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10MPa base pressure. ARIES-IV uses double-null divertors for particle control. Total thermal power recovered from the divertors is 425MW, which is 16% of the total reactor thermal power. Among the desirable goals of divertor design were to avoid the use of tungsten and to use the same structural material and primary coolant as in the blanket design. In order to reduce peak heat flux, the innovative gaseous divertor has been used in ARIES-IV. A gaseous divertor reduces peak heat flux by increasing the surface area and by distributing particle and radiation energy more uniformly. Another benefit of gaseous divertor is the reduction of plasma temperature in the divertor chamber, so that material erosion due to sputtering, can be diminished. This makes the use of low-Z material possible in a gaseous divertor

  13. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  14. Gaseous isotope correlation technique for safeguards at reprocessing facilities

    International Nuclear Information System (INIS)

    Ohkubo, Michiaki.

    1988-03-01

    The isotope correlation technique based on gaseous stable fission products can be used as a means of verifying the input measurement to fuel reprocessing plants. This paper reviews the theoretical background of the gaseous fission product isotope correlation technique. The correlations considered are those between burnup and various isotopic ratios of Kr and Xe nuclides. The feasibility of gaseous ICT application to Pu input accountancy of reprocessing facilities is also discussed. The technique offers the possibility of in situ measurement verification by the inspector. (author). 16 refs, 7 figs

  15. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  16. Uranium enrichment by the gaseous diffusion process

    International Nuclear Information System (INIS)

    Petit, J.F.

    1977-01-01

    After a brief description of the process and technology (principle, stage constitution, cascade constitution, and description of a plant), the author gives the history of gaseous diffusion and describes the existing facilities. Among the different enrichment processes contemplated in the USA during and after the last world war, gaseous diffusion has been the only one to be developed industrially on a wide scale in the USA, then in the UK, in the USSR and in France. The large existing capacities in the USA provided the country with a good starting base for the development of a light-water nuclear power plant programme, the success of which led to a shortfall in production means. France and the USA, possessing the necessary know-how, have been able to undertake the realization of two industrial programmes: the CIP-CUP programme in the USA and the Eurodif project in France. Current plans still call for the construction of several plants by 1990. Can the gaseous diffusion process meet this challenge. Technically, there is no doubt about it. Economically, this process is mainly characterized by large energy consumption and the necessity to build large plants. This leads to a large investment, at least for the first plant. Other processes have been developed with a view to reducing both energy and capital needs. However, in spite of continuous studies and technological progress, no process has yet proved competitive. Large increments in capacities are still expected to come from gaseous diffusion, and several projects taking into account the improvements in flexibility, automatization, reliability and reduced investment, are analysed in the paper. Combining new facilities with existing plants has already proved to be of great interest. This situation explains why gaseous diffusion is being further investigated and new processes are being studied. (author)

  17. Radioactivity in gaseous waste discharged from the separations facilities during 1978

    International Nuclear Information System (INIS)

    Anderson, J.D.; Poremba, B.E.

    1979-01-01

    This document is issued quarterly for the purpose of summarizing the radioactive gaseous wastes that are discharged from the facilities of the Rockwell Hanford Operations. Data on alpha and beta emissions during 1978 are presented where relevant to the gaseous effluent. Emission data are not included on gaseous wastes produced within the 200 Areas by other Hanford contractors

  18. Thermodynamic properties of gaseous ruthenium species.

    Science.gov (United States)

    Miradji, Faoulat; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2015-05-21

    The review of thermodynamic data of ruthenium oxides reveals large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. The reaction energies leading to the formation of ruthenium oxides RuO, RuO2, RuO3, and RuO4 have been calculated for a series of reactions. The combination of different quantum chemical methods has been investigated [DFT, CASSCF, MRCI, CASPT2, CCSD(T)] in order to predict the geometrical parameters, the energetics including electronic correlation and spin-orbit coupling. The most suitable method for ruthenium compounds is the use of TPSSh-5%HF for geometry optimization, followed by CCSD(T) with complete basis set (CBS) extrapolations for the calculation of the total electronic energies. SO-CASSCF seems to be accurate enough to estimate spin-orbit coupling contributions to the ground-state electronic energies. This methodology yields very accurate standard enthalpies of formations of all species, which are either in excellent agreement with the most reliable experimental data or provide an improved estimate for the others. These new data will be implemented in the thermodynamical databases that are used by the ASTEC code (accident source term evaluation code) to build models of ruthenium chemistry behavior in severe nuclear accident conditions. The paper also discusses the nature of the chemical bonds both from molecular orbital and topological view points.

  19. The characterisation of polycyclic aromatic hydrocarbons emissions from burning of different firewood species in Australia.

    Science.gov (United States)

    Zou, Linda Y; Zhang, Weidong; Atkiston, Steven

    2003-01-01

    Four kinds of woods used for residential heating in Australia were selected and burned under two burning conditions in a domestic wood heater installed in a laboratory. The selected wood species included pine (Pinus radiata), red gum (Eucalvptus camaldulensis), sugar gum (Eucalyptus cladocalyx) and yellow box (Eucalyptus melliodora). The two different burning conditions represented fast burning and slow burning, with the air inlet of the combustion chamber respectively 'full open' and 'half open'. By sampling and analysing particulate and gaseous emissions from the burning of each load of wood under defined experimental conditions, PAHs emissions and their profiles in the particulate and gaseous phases were obtained. 16 species out of the 18 selected PAHs were detected. Of these, seven species were detected in the gaseous phase and most were lower molecular weight compounds.Similarly, more than 10 species of PAHs were detected in the particulate phase and these were mostly heavier molecular weight compounds. Under both burning conditions, emission levels for total PAHs and total genotoxic PAHs were the highest for pine and lowest for sugar gum, with red gum being the second highest, followed by yellow box. Using the specific sampling method, gaseous PAHs accounted for above 90% mass fraction of total PAHs in comparison to particulate PAHs (10%). The majority of the genotoxic PAHs were present in the particulate phase. PAHs emission levels in slow burning conditions were generally higher than those in fast burning conditions.

  20. Chemical thermodynamics of iodine species in the HTGR fuel particle

    International Nuclear Information System (INIS)

    Lindemer, T.B.

    1982-09-01

    The iodine-containing species in an intact fuel particle in the high-temperature gas-cooled reactor (HTGR) have been calculated. Assumptions include: (1) attainment of chemical thermodynamic equilibrium among all species in the open porosity of the particle, primarily in the buffer layer; and (2) fission-product concentrations in proportion to their yields. The primary gaseous species is calculated to be cesium iodide; in carbide-containing fuels, gaseous barium iodide may exhibit equivalent pressures. The condensed iodine-containing phase is usually cesium iodide, but in carbide-containing fuels, barium iodide may be stable instead. Absorption of elemental iodine on the carbon in the particle appears to be less than or equal to 10 -4 μg I/g C. The fission-product-spectra excess of cesium over iodine would generally be adsorbed on the carbon, but may form Cs 2 MoO 4 under some circumstances

  1. Legal provisions governing gaseous effluents radiological monitoring

    International Nuclear Information System (INIS)

    Winkelmann, I.

    1985-01-01

    This contribution explains the main provisions governing radiological monitoring of gaseous effluents from LWR type nuclear power plants. KTA rule 1503.1 defines the measuring methods and tasks to be fulfilled by reactor operators in order to safeguard due monitoring and accounting of radioactive substances in the plants' gaseous effluents. The routine measurements are checked by a supervisory programme by an independent expert. The routine controls include analysis of filter samples, comparative measurement of radioactive noble gases, interlaboratory comparisons, and comparative evaluation of measured values. (DG) [de

  2. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  3. Method for separating gaseous mixtures of matter

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.

    1979-01-01

    Molecules to be separated from a mixture of matter of a chemical component are excited in a manner known per se by narrow-band light sources, and a chemical reaction partner for reacting with these molecules is admixed while supplied with energy by electromagnetic radiation or heating, and as additionally required for making chemical reactions possible. A method is described for separating gaseous mixtures of matter by exciting the molecules to be separated with laser radiation and causing the excited species to react chemically with a reaction partner. It may be necessary to supply additional energy to the reaction partner to make the chemical reaction possible. The method is applicable to the separation of hydrogen isotopes by the bromination of normal methanol in a mixture normal methanol and deuterated methanol; of uranium isotope by the reactions of UF 6 with SF 4 , SiCl 4 , HCl, or SO 2 ; and of boron isotopes by the reaction of BH 3 with NH 3

  4. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  5. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  6. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  7. The characterisation of polycyclic aromatic hydrocarbons emissions from burning of different firewood species in Australia

    International Nuclear Information System (INIS)

    Zou, Linda Y.; Zhang Weidong; Atkiston, Steven

    2003-01-01

    Emission levels for PAHs varied with the type of wood burned. - Four kinds of woods used for residential heating in Australia were selected and burned under two burning conditions in a domestic wood heater installed in a laboratory. The selected wood species included pine (Pinus radiata), red gum (Eucalyptus camaldulensis), sugar gum (Eucalyptus cladocalyx) and yellow box (Eucalyptus melliodora). The two different burning conditions represented fast burning and slow burning, with the air inlet of the combustion chamber respectively 'full open' and 'half open'. By sampling and analysing particulate and gaseous emissions from the burning of each load of wood under defined experimental conditions, PAHs emissions and their profiles in the particulate and gaseous phases were obtained. 16 species out of the 18 selected PAHs were detected. Of these, seven species were detected in the gaseous phase and most were lower molecular weight compounds. Similarly, more than 10 species of PAHs were detected in the particulate phase and these were mostly heavier molecular weight compounds. Under both burning conditions, emission levels for total PAHs and total genotoxic PAHs were the highest for pine and lowest for sugar gum, with red gum being the second highest, followed by yellow box. Using the specific sampling method, gaseous PAHs accounted for above 90% mass fraction of total PAHs in comparison to particulate PAHs (10%). The majority of the genotoxic PAHs were present in the particulate phase. PAHs emission levels in slow burning conditions were generally higher than those in fast burning conditions

  8. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  9. DISCOVERY OF AN Hα EMITTING DISK AROUND THE SUPERMASSIVE BLACK HOLE OF M31

    International Nuclear Information System (INIS)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2013-01-01

    Due to its proximity, the mass of the supermassive black hole in the nucleus of the Andromeda galaxy (M31), the most massive black hole in the Local Group of galaxies, has been measured by several methods involving the kinematics of a stellar disk which surrounds it. We report here the discovery of an eccentric Hα emitting disk around the black hole at the center of M31 and show how modeling this disk can provide an independent determination of the mass of the black hole. Our model implies a mass of 5.0 +0.8 –1.0 × 10 7 M ☉ for the central black hole, consistent with the average of determinations by methods involving stellar dynamics, and compatible (at 1σ level) with measurements obtained from the most detailed models of the stellar disk around the central black hole. This value is also consistent with the M-σ relation. In order to make a comparison, we applied our simulation on the stellar kinematics in the nucleus of M31 and concluded that the parameters obtained for the stellar disk are not formally compatible with the parameters obtained for the Hα emitting disk. This result suggests that the stellar and the Hα emitting disks are intrinsically different from each other. A plausible explanation is that the Hα emission is associated with a gaseous disk. This hypothesis is supported by the detection of traces of weaker nebular lines in the nuclear region of M31. However, we cannot exclude the possibility that the Hα emission is, at least partially, generated by stars.

  10. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Liverman, James L.

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  11. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  12. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  13. Top emitting white OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Luessem, Bjoern; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, George-Baehr-Strasse 1, 01069 Dresden (Germany)

    2009-07-01

    Top emitting organic light emitting diodes (TOLEDs) provide a number of interesting opportunities for new applications, such as the opportunity to fabricate ITO-free devices by using opaque substrates. This makes it possible to manufacture low cost OLEDs for signage and lighting applications. A general top emitting device consists of highly reflecting metal contacts as anode and semitransparent cathode, the latter one for better outcouling reasons. In between several organic materials are deposited as charge transporting, blocking, and emission layers. Here, we show a top emitting white organic light emitting diode with silver electrodes arranged in a p-i-n structure with p- and n-doped charge transport layers. The centrical emission layer consists of two phosphorescent (red and green) and one fluorescent (blue) emitter systems separated by an ambipolar interlayer to avoid mutual exciton quenching. By adding an additional dielectric capping layer on top of the device stack, we achieve a reduction of the strong microcavity effects which appear due to the high reflection of both metal electrodes. Therefore, the outcoupled light shows broad and nearly angle-independent emission spectra, which is essential for white light emitting diodes.

  14. Seasonal variations of ambient air mercury species nearby an airport

    Science.gov (United States)

    Fang, Guor-Cheng; Tsai, Kai-Hsiang; Huang, Chao-Yang; Yang, Kuang-Pu Ou; Xiao, You-Fu; Huang, Wen-Chuan; Zhuang, Yuan-Jie

    2018-04-01

    This study focuses on the collection of ambient air mercury species (total gaseous mercury (TGM), reactive gaseous mercury (RGM), gaseous element mercury (GEM) and particulate bound mercury (PBM) pollutants at airport nearby sampling site during the year of Apr. 2016 to Mar. 2017 by using Four-stage gold amalgamation and denuder. The results indicated that the average TGM, RGM and GEM concentrations were 5.04 ± 2.43 ng/m3, 29.58 ± 80.54 pg/m3, 4.70 ± 2.63 ng/m3, respectively during the year of Apr. 2016 to Mar. 2017 (n = 49) period at this airport sampling site nearby. In addition, the results also indicated that the average PBM concentrations in TSP and PM2.5 were 0.35 ± 0.08 ng/m3 and 0.09 ± 0.03 ng/m3, respectively. And the average PBM in TSP concentrations order follows as summer > autumn > spring > winter, while the average PBM in PM2.5 concentrations order follows as spring > summer > winter > autumn. Moreover, the average TGM, RGM and GEM concentrations order follow as spring > summer > autumn > winter. Finally, the Asian continent has the highest average mercury species concentrations (TGM, RGM, GEM and PBM) when compared with the American and European continents, and the average mercury species concentrations (TGM, RGM, GEM and PBM) displayed declined trends for North America (United States and Canada) and Europe (Spain, Sweden and Southern Baltic) during the years of 2004-2014. Also noteworthy is that the average mercury species concentrations (TGM, RGM, GEM) displayed increasing trends in China and Taiwan during the years of 2008-2016. Japan and Korea are the only two exceptions. Those above two countries mercury species concentrations displayed decreasing trends during years of 2008-2015.

  15. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  16. Air pollution with gaseous emissions and methods for their removal

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Boycheva, Sylvia; Fidancevska, Emilija

    2009-01-01

    Information concerning gaseous pollutants generated in the atmosphere, as a result of fuel incineration processes in thermal power and industrial plants, was summarized. The main methods and technologies for flue gases purification from the most ecologically hazardous pollutants are comparatively discussed. Keywords: gaseous pollutants, aerosols, flue gas purification systems and technologies, air ecology control

  17. Gaseous radioiodine transport in the air-forage-cow-milk system

    International Nuclear Information System (INIS)

    Black, S.C.; Douglas, R.L.; Barth, D.S.

    1976-04-01

    To study the transport of 131 I in the air-forage-cow milk system, a gaseous form of 131 I was released over a field of growing alfalfa which also contained some baled hay and dairy cows in pens. Some of the alfalfa was converted to hay and fed to cows, and some was used as green chop for other cows and goats. The results of this experiment suggest that the deposition velocity of gaseous iodine is much less than that for iodine bound to particulates; that cows ingesting hay secrete a higher percentage of 131 I in milk than cows ingesting green chop; that gaseous forms do not penetrate hay bales to any great extent; that the gaseous form is transferred to milk in a manner similar to particulate forms; that ingestion of contaminated forage results in 80 times as much 131 I transfer to milk as does inhalation exposure to the same cloud; and that goats transfer 131 I from forage to milk more efficiently than do dairy cows

  18. The effect of gaseous ammonia on cobalt perrhenate

    International Nuclear Information System (INIS)

    Maslov, L.P.; Men'shikov, O.D.; Borisov, V.V.; Sorokin, S.I.; Krutovertsev, S.A.; Kharkevich, S.I.; Ivanova, O.M.

    1994-01-01

    The influence of humid air ammonia mixture on crystal pentahydrate of cobalt(2) perrhenate has been studied by the methods of PES, IR spectroscopy thermal analysis and electrophysical measurements. It is shown that with an increase in ammonia content in gaseous phase cobalt perrhenate successively transforms into diaquodiammine-, tetrammine- and μ-dioxo-bis-(tetrammine) derivatives of cobalt. Reversibility of dioxocomplex formation and a correlation between the change in electrophysical properties of crystal sample and change in ammonia content in gaseous phase are pointed out. 16 refs.; 4 figs.; 1 tab

  19. DISCOVERY OF AN H{alpha} EMITTING DISK AROUND THE SUPERMASSIVE BLACK HOLE OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)

    2013-01-10

    Due to its proximity, the mass of the supermassive black hole in the nucleus of the Andromeda galaxy (M31), the most massive black hole in the Local Group of galaxies, has been measured by several methods involving the kinematics of a stellar disk which surrounds it. We report here the discovery of an eccentric H{alpha} emitting disk around the black hole at the center of M31 and show how modeling this disk can provide an independent determination of the mass of the black hole. Our model implies a mass of 5.0{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 7} M{sub Sun} for the central black hole, consistent with the average of determinations by methods involving stellar dynamics, and compatible (at 1{sigma} level) with measurements obtained from the most detailed models of the stellar disk around the central black hole. This value is also consistent with the M-{sigma} relation. In order to make a comparison, we applied our simulation on the stellar kinematics in the nucleus of M31 and concluded that the parameters obtained for the stellar disk are not formally compatible with the parameters obtained for the H{alpha} emitting disk. This result suggests that the stellar and the H{alpha} emitting disks are intrinsically different from each other. A plausible explanation is that the H{alpha} emission is associated with a gaseous disk. This hypothesis is supported by the detection of traces of weaker nebular lines in the nuclear region of M31. However, we cannot exclude the possibility that the H{alpha} emission is, at least partially, generated by stars.

  20. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  1. A Population Study of Gaseous Exoplanets

    Science.gov (United States)

    Tsiaras, A.; Waldmann, I. P.; Zingales, T.; Rocchetto, M.; Morello, G.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L. K.; Tennyson, J.; Yurchenko, S. N.

    2018-04-01

    We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 R Jup. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres in around 16 planets out of the 30 analyzed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  2. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  3. Monitoring of released radioactive gaseous and liquid effluent at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Oka, M.; Keta, S.; Nagai, S.; Kano, M.; Ishihara, N.; Moriyama, T.; Ogaki, K.; Noda, K.

    2009-01-01

    Rokkasho Reprocessing Plant (RRP) Rokkasho Reprocessing Plant started its active tests with spent fuel at the end of March 2006. When spent fuels are sheared and dissolved, radioactive gaseous effluent and radioactive liquid effluent such as krypton-85, tritium, etc. are released into the environment. In order to limit the public dose as low as reasonably achievable in an efficient way, RRP removes radioactive material by evaporation, rinsing, filtering, etc., and then releases it through the main stack and the sea discharge pipeline that allow to make dispersion and dilution very efficiently. Also, concerning the radioactive gaseous and liquid effluent to be released into the environment, the target values of annual release have been defined in the Safety Rule based on the estimated annual release evaluated at the safety review of RRP. By monitoring the radioactive material in gaseous exhaust and liquid effluent RRP controls it not to exceed the target values. RRP reprocessed 430 tUpr of spent fuel during Active Test (March 2006 to October 2008). In this report, we report about: The outline of gaseous and liquid effluent monitoring. The amount of radioactive gaseous and liquid effluent during the active test. The performance of removal of radioactive materials in gaseous and liquid effluents. The impact on the public from radioactive effluents during the active test. (author)

  4. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    Science.gov (United States)

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  5. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  6. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    Science.gov (United States)

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  7. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  8. N management of European grasslands: can the exchange of gaseous N species be influenced at the operational level?

    Science.gov (United States)

    Calanca, P; Neftel, A; Fuhrer, J

    2001-11-30

    Grassland ecosystems can be regarded as biochemical reactors in which large amounts of organic nitrogen (N) are converted into inorganic N, and vice versa. If managed in a sustainable manner, grasslands should operate in a quasi steady state, characterized by an almost perfect balance between total N input and output. As a consequence, the exchange of gaseous N species (NH3, NO, NO2, N2O, and N2) between grasslands and the atmosphere is very small compared to the total N turnover. In this study, the effects of two management options (mowing and fertilization) on production and emission of nitrous oxide (N2O) from a grass/clover crop were examined on the basis of observations and model results referring to an experiment carried out on the Swiss Plateau in late summer of 2000. It was found that production and emission of N2O induced by mowing were of the same order of magnitude as those brought about by fertilization, suggesting a possible transfer of N from clover to the soil after defoliation. Emissions were strongly modulated by precipitation on time scales ranging from 1 day to 1 week. This indicates that effective control of N2O emissions through management on a day-to-day basis requires reliable medium-range weather forecasts. Model calculations were not able to reproduce essential characteristics of the emissions. The model slightly overestimated the background emissions, but severely underestimated the emission peaks following fertilizer application, and largely failed to reproduce emission induced by mowing. Shortfalls in the model used for this study were found in relation to the description of soil-water fluxes, soil organic matter, and the physiology of clover.

  9. N Management of European Grasslands: Can the Exchange of Gaseous N Species Be Influenced at the Operational Level?

    Directory of Open Access Journals (Sweden)

    P. Calanca

    2001-01-01

    Full Text Available Grassland ecosystems can be regarded as biochemical reactors in which large amounts of organic nitrogen (N are converted into inorganic N, and vice versa. If managed in a sustainable manner, grasslands should operate in a quasi steady state, characterized by an almost perfect balance between total N input and output. As a consequence, the exchange of gaseous N species (NH3, NO, NO2, N2O, and N2 between grasslands and the atmosphere is very small compared to the total N turnover. In this study, the effects of two management options (mowing and fertilization on production and emission of nitrous oxide (N2O from a grass/clover crop were examined on the basis of observations and model results referring to an experiment carried out on the Swiss Plateau in late summer of 2000. It was found that production and emission of N2O induced by mowing were of the same order of magnitude as those brought about by fertilization, suggesting a possible transfer of N from clover to the soil after defoliation. Emissions were strongly modulated by precipitation on time scales ranging from 1 day to 1 week. This indicates that effective control of N2O emissions through management on a day-to-day basis requires reliable medium-range weather forecasts. Model calculations were not able to reproduce essential characteristics of the emissions. The model slightly overestimated the background emissions, but severely underestimated the emission peaks following fertilizer application, and largely failed to reproduce emission induced by mowing. Shortfalls in the model used for this study were found in relation to the description of soil-water fluxes, soil organic matter, and the physiology of clover.

  10. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area

    International Nuclear Information System (INIS)

    Sampoll-Ramirez, G.

    1994-09-01

    An aerial radiological survey was conducted from August 10-16, 1993, over a 78-square-kilometer (30-square-mile) area of the Portsmouth Gaseous Diffusion Plant and surrounding area located near Portsmouth, Ohio. The survey was performed at a nominal altitude of 46 meters (150 feet) with a line spacing of 76 meters (250 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level was prepared and overlaid on a set of United States Geological Survey topographic maps of the area and an aerial photograph of the plant. The terrestrial gamma exposure rates varied from about 7 to 14 microroentgens per hour at 1 meter above the ground. Protactinium-234m was observed at six sites within the boundaries of the plant. At a seventh site, only uranium-235 was observed. No other man-made, gamma ray-emitting radioactive material was present in a detectable quantity, either on or off the plant property. Soil sample and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to support the aerial data. The results of the aerial and ground-based measurements were found to agree within ± 7.5%

  11. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  12. Emissions of gaseous nitrogen species from manure management: A new approach

    International Nuclear Information System (INIS)

    Daemmgen, Ulrich; Hutchings, Nicholas J.

    2008-01-01

    A procedure for the assessment of emissions of nitrogen (N) species (ammonia, nitrous oxide, nitric oxide, di-nitrogen) from the manure management system is developed, which treats N pools and flows including emissions strictly according to conservation of mass criteria. As all relevant flows in the husbandry of mammals are depicted, the methodology is considered a Tier 3 approach in IPCC terminology or a detailed methodology in UN ECE terminology. The importance of accounting for all N species is illustrated by comparing emission estimates obtained using this approach with those obtained from the application the present detailed/Tier 2 methodology. - A cow is a cow. There is no distinction between an IPCC and a UN ECE cow!

  13. Emissions of gaseous nitrogen species from manure management: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, Bundesallee 50, 38116 Braunschweig (Germany)], E-mail: ulrich.daemmgen@fal.de; Hutchings, Nicholas J. [Danish Institute of Agricultural Sciences, Department of Agroecology, Tjele (Denmark)], E-mail: nick.hutchings@agrsci.dk

    2008-08-15

    A procedure for the assessment of emissions of nitrogen (N) species (ammonia, nitrous oxide, nitric oxide, di-nitrogen) from the manure management system is developed, which treats N pools and flows including emissions strictly according to conservation of mass criteria. As all relevant flows in the husbandry of mammals are depicted, the methodology is considered a Tier 3 approach in IPCC terminology or a detailed methodology in UN ECE terminology. The importance of accounting for all N species is illustrated by comparing emission estimates obtained using this approach with those obtained from the application the present detailed/Tier 2 methodology. - A cow is a cow. There is no distinction between an IPCC and a UN ECE cow{exclamation_point}.

  14. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  15. Recombination zone in white organic light emitting diodes with blue and orange emitting layers

    Science.gov (United States)

    Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi

    2012-10-01

    White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.

  16. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire, E-mail: gregoire.danger@univ-amu.fr [Aix-Marseille Université, PIIM UMR-CNRS 7345, F-13397 Marseille (France)

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  17. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes.

    Science.gov (United States)

    Lee, Mian Rong; Lee, Hiang Kwee; Yang, Yijie; Koh, Charlynn Sher Lin; Lay, Chee Leng; Lee, Yih Hong; Phang, In Yee; Ling, Xing Yi

    2017-11-15

    We demonstrate a one-step precise direct metal writing of well-defined and densely packed gold nanoparticle (AuNP) patterns with tunable physical and optical properties. We achieve this by using two-photon lithography on a Au precursor comprising poly(vinylpyrrolidone) (PVP) and ethylene glycol (EG), where EG promotes higher reduction rates of Au(III) salt via polyol reduction. Hence, clusters of monodisperse AuNP are generated along raster scanning of the laser, forming high-particle-density, well-defined structures. By varying the PVP concentration, we tune the AuNP size from 27.3 to 65.0 nm and the density from 172 to 965 particles/μm 2 , corresponding to a surface roughness of 12.9 to 67.1 nm, which is important for surface-based applications such as surface-enhanced Raman scattering (SERS). We find that the microstructures exhibit an SERS enhancement factor of >10 5 and demonstrate remote writing of well-defined Au microstructures within a microfluidic channel for the SERS detection of gaseous molecules. We showcase in situ SERS monitoring of gaseous 4-methylbenzenethiol and real-time detection of multiple small gaseous species with no specific affinity to Au. This one-step, laser-induced fabrication of AuNP microstructures ignites a plethora of possibilities to position desired patterns directly onto or within most surfaces for the future creation of multifunctional lab-on-a-chip devices.

  18. Measurements of gaseous multiplication coefficient in pure isobutane

    International Nuclear Information System (INIS)

    Lima, Iara Batista de

    2010-01-01

    In this work it is presented measurements of gaseous multiplication coefficient (α) in pure isobutane obtained with a parallel plate chamber, protected against discharges by one electrode (anode) of high resistivity glass (ρ = 2 x 10 12 Ω.cm). The method applied was the Pulsed Townsend, where the primary ionization is produced through the incidence of a nitrogen laser beam onto a metallic electrode (cathode). The electric currents measured with the chamber operating in both ionization and avalanche regimes were used to calculate the gaseous multiplication coefficient by the solution of the Townsend equation for uniform electric fields. The validation of the technique was provided by the measurements of gaseous multiplication coefficient in pure nitrogen, a widely studied gas, which has well-established data in literature. The α coefficients in isobutane were measured as a function of the reduced electric field in the range of 139Td up to 208Td. The obtained values were compared with those simulated by Imonte software (version 4.5) and the only experimental results available in the literature, recently obtained in our group. This comparison showed that the results are concordant within the experimental errors. (author)

  19. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China

    Directory of Open Access Journals (Sweden)

    X. Fu

    2016-10-01

    Full Text Available There exists observational evidence that gaseous elemental mercury (GEM can be readily removed from the atmosphere via chemical oxidation followed by deposition in the polar and sub-polar regions, free troposphere, lower stratosphere, and marine boundary layer under specific environmental conditions. Here we report GEM depletions in a temperate mixed forest at Mt. Changbai, Northeast China. The strong depletions occurred predominantly at night during the leaf-growing season and in the absence of gaseous oxidized mercury (GOM enrichment (GOM  <  3 pg m−3. Vertical gradients of decreasing GEM concentrations from layers above to under forest canopy suggest in situ loss of GEM to forest canopy at Mt. Changbai. Foliar GEM flux measurements showed that the foliage of two predominant tree species is a net sink of GEM at night, with a mean flux of −1.8 ± 0.3 ng m2 h−1 over Fraxinus mandshurica (deciduous tree species and −0.1 ± 0.2 ng m2 h−1 over Pinus Koraiensis (evergreen tree species. Daily integrated GEM δ202Hg, Δ199Hg, and Δ200Hg at Mt. Changbai during 8–18 July 2013 ranged from −0.34 to 0.91 ‰, from −0.11 to −0.04 ‰ and from −0.06 to 0.01 ‰, respectively. A large positive shift in GEM δ202Hg occurred during the strong GEM depletion events, whereas Δ199Hg and Δ200Hg remained essentially unchanged. The observational findings and box model results show that uptake of GEM by forest canopy plays a predominant role in the GEM depletion at Mt. Changbai forest. Such depletion events of GEM are likely to be a widespread phenomenon, suggesting that the forest ecosystem represents one of the largest sinks ( ∼ 1930 Mg of atmospheric Hg on a global scale.

  20. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  1. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Sevoflurane improves gaseous exchange and exerts protective effects in ... Lung water content and cell count were estimated by standard protocols. ... It reversed LPS-induced oxidative stress, as demonstrated by increase in total antioxidant ...

  2. Basic processes and trends in gaseous detectors

    CERN Multimedia

    1999-01-01

    Almost a century after the invention of the proportional counter, a large research effort is still devoted to better understand the basic properties of gaseous detectors, and to improve their performances and reliability, particularly in view of use at the high radiation levels expected at LHC. In the first part of the lectures, after a brief introduction on underlying physical phenomena, I will review modern sophisticated computational tools, as well as some classic "back of the envelope" analytical methods, available today for estimating the general performances of gaseous detectors. In the second part, I will analyze in more detail problems specific to the use of detectors at high rates (space charge, discharges, aging), and describe the recent development of powerful and perhaps more reliable devices, particularly in the field of position-sensitive micro-pattern detectors.

  3. A denuder-impinger system with in situ derivatization followed by gas chromatography-mass spectrometry for the determination of gaseous iodine-containing halogen species.

    Science.gov (United States)

    Huang, Ru-Jin; Hoffmann, Thorsten

    2008-11-14

    Reactive iodine species have been suggested to play an important role in the atmosphere (e.g. tropospheric ozone depletion, coastal new particle formation). However, there still exist major uncertainties about their atmospheric chemistry, mostly due to the lack of analytical approaches for the accurate speciation of certain key compounds. In this study, 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated denuder proved to be suitable for the differentiation between gaseous interhalogens (iodine monochloride (ICl), iodine monobromide (IBr)) and molecular iodine (I2) based on a selective collection/derivatization method. The results of the denuder sampling were compared with the results of impinger sampling in water, methanol and carbon tetrachloride solutions of 1,3,5-TMB. ICl and IBr are converted into 1-iodo-2,4,6-trimethoxybenzene (1-iodo-2,4,6-TMB) and 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB), respectively, in the denuder systems. The respective collection efficiency is 99.2% for ICl and 92.6% for IBr, at 500mLmin(-1) gas flow rate. The collection efficiency for I2 is lower than 1% in the same denuder system, but significantly increases to about 90% in the aqueous 1,3,5-TMB loaded impinger. The denuder-impinger coupled system was then used to differentiate and to collect the ICl, IBr and I2 gas mixtures, followed by gas chromatography-ion trap mass spectrometry (GC-MS) determination. The precision of the method is in general better than 9.1%. The parameters affecting denuder operation including sampling flow rate, sampling duration, and relative humidity have been evaluated. The presented method provides an attractive protocol for iodine species analysis for atmospheric chemistry research.

  4. Portable and Disposable Paper-Based Fluorescent Sensor for In Situ Gaseous Hydrogen Sulfide Determination in Near Real-Time.

    Science.gov (United States)

    Petruci, João Flávio da Silveira; Cardoso, Arnaldo Alves

    2016-12-06

    Hydrogen sulfide is found in many environments including sewage systems, petroleum extraction platforms, kraft paper mills, and exhaled breath, but its determination at ppb levels remains a challenge within the analytical chemistry field. Off-line methods for analysis of gaseous reduced sulfur compounds can suffer from a variety of biases associated with high reactivity, sorptive losses, and atmospheric oxidative reactions. Here, we present a portable, online, and disposable gas sensor platform for the in situ determination of gaseous hydrogen sulfide, employing a 470 nm light emitting diode (LED) and a microfiber optic USB spectrometer. A sensing layer was created by impregnating 2.5 μL (0.285 nmol) of fluorescein mercury acetate (FMA) onto the surface of a micropaper analytical device with dimensions of 5 × 5 mm, which was then positioned in the optical detection system. The quantitative determination of H 2 S was based on the quenching of fluorescence intensity after direct selective reaction between the gas and FMA. This approach enabled linear calibration within the range 17-67 ppb of H 2 S, with a limit of detection of 3 ppb. The response time of the sensor was within 60 s, and the repeatability was 6.5% (RSD). The sensor was employed to monitor H 2 S released from a mini-scale wastewater treatment tank in a research laboratory. The appropriate integration of optoelectronic and mechanical devices, including LED, photodiode, pumps, and electronic boards, can be used to produce simple, fully automated portable sensors for the in situ determination of H 2 S in a variety of environments.

  5. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  6. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mitigation of release of volatile iodine species during severe reactor accidents - a novel reliable process of safety technology

    International Nuclear Information System (INIS)

    Guentay, S.; Bruchertseifer, H.

    2010-01-01

    In severe accidents, a significant risk for public health may be generated as a result of release of the gaseous iodine species into the environment through the containment leaks or containment venting filter systems with low retention efficiency. The elemental iodine and volatile organic iodides are the main gaseous iodine species in the containment. Potential release of large quantities of gaseous elemental iodine from the reactor coolant system or its radiolytic generation in the containment sump constitute the key source of gaseous elemental iodine in containment atmosphere. Iodine paint reactions as well as the reaction of iodine with organic residuals in sump water are the main mechanisms for the generation of high volatile organic iodides in the containment. Although very much desired, significant research activities conducted in 70's unfortunately did not create any technically feasible solution to mitigate iodine release into the environment under prevailing conditions. Development of a process leading to a fast, comprehensive and reliable retention of volatile iodine species in aqueous solution with an aim to implement for the severe accident management applications has been subject of a research project in the recent years at Paul Scherrer Institut. The process developed utilizes simultaneous use of two customary technical chemical additives in an aqueous solution. The results of the experimental program have demonstrated a fast and reliable destruction of high volatile organic iodine species and fast reduction of elemental iodine into iodide ions in aqueous solutions and an efficient mitigation of the re-formation of gaseous iodine from iodide ions. Investigations covered a broad range of anticipated severe accident conditions in the containment. The project additionally focused on possible application of the process to existing containment venting filter systems, specifically as a passive add-on for back-fitting. This paper describes the process

  8. Rapid monitoring of gaseous fission products in BWRs using a portable spectrometer

    International Nuclear Information System (INIS)

    Yeh, Wei-Wen; Lee, Cheng-Jong; Chen, Chen-Yi; Chung, Chien

    1996-01-01

    Rapid, quantitative determination of gaseous radionuclides is the most difficult task in the field of environmental monitoring for radiation. Although the identification of each gaseous radionuclide is relatively straightforward using its decayed gamma ray as an index, the quantitative measurement is hampered by the time-consuming sample collection procedures, in particular for the radioactive noble gaseous fission products of krypton and xenon. In this work, a field gamma-ray spectrometer consisting of a high-purity germanium detector, portable multichannel anlayzer, and a notebook computer was used to conduct rapid scanning of radioactive krypton and xenon in the air around a nuclear facility

  9. Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-09

    This report draws together activities related to wet and gaseous waste feedstocks into a single document. It enables an amplified focus on feedstocks in the relevant technology and potential markets category. Also, this report helps to inform and support ongoing wet and gaseous resource recovery activities in the Bioenergy Technologies Office (BETO) and in the broader federal space. Historically, the office has identified wet and gaseous waste feedstocks as potentially advantageous, but has not pursued them with a sustained focus. This document seeks to position these waste streams appropriately alongside more traditional feedstocks in BETO efforts.

  10. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  11. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro

    Science.gov (United States)

    Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C.

    2018-04-01

    Gaseous microenvironments play important roles in various biological activities in vivo. However, it is challenging to precisely control gaseous microenvironments in vitro for cell culture due to the high diffusivity nature of gases. In recent years, microfluidics has paved the way for the development of new types of cell culture devices capable of manipulating cellular microenvironments, and provides a powerful tool for in vitro cell studies. This paper reviews recent developments of microfluidic cell culture devices for the control of gaseous microenvironments, and discusses the advantages and limitations of current devices. We conclude with suggestions for the future development of microfluidic cell culture devices for the control of gaseous microenvironments.

  12. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species.

    Science.gov (United States)

    Sen, Abhishek; Khan, Indrani; Kundu, Debajyoti; Das, Kousik; Datta, Jayanta Kumar

    2017-06-01

    Identification of tree species that can biologically monitor air pollution and can endure air pollution is very much important for a sustainable green belt development around any polluted place. To ascertain the species, ten tree species were selected on the basis of some previous study from the campus of the University of Burdwan and were studied in the pre-monsoon and post-monsoon seasons. The study has been designed to investigate biochemical and physiological activities of selected tree species as the campus is presently exposed to primary air pollutants and their impacts on plant community were observed through the changes in several physical and biochemical constituents of plant leaves. As the plant species continuously exchange different gaseous pollutants in and out of the foliar system and are very sensitive to gaseous pollutants, they serve as bioindicators. Due to air pollution, foliar surface undergoes different structural and functional changes. In the selected plant species, it was observed that the concentration of primary air pollutants, proline content, pH, relative water holding capacity, photosynthetic rate, and respiration rate were higher in the pre-monsoon than the post-monsoon season, whereas the total chlorophyll, ascorbic acid, sugar, and conductivity were higher in the post-monsoon season. From the entire study, it was observed that the concentration of sulfur oxide (SO x ), nitrogen oxide (NO x ), and suspended particulate matter (SPM) all are reduced in the post-monsoon season than the pre-monsoon season. In the pre-monsoon season, SO x , NO x , and SPM do not have any significant correlation with biochemical as well as physiological parameters. SPM shows a negative relationship with chlorophyll 'a' (r = -0.288), chlorophyll 'b' (r = -0.267), and total chlorophyll (r = -0.238). Similarly, chlorophyll a, chlorophyll b, and the total chlorophyll show negative relations with SO x and NO x (p tree species according to their air

  13. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.

    Science.gov (United States)

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2017-04-01

    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Characterization of iodine species in the marine aerosol:to understand their roles in particle formation processes

    Institute of Scientific and Technical Information of China (English)

    Hongwei Chen; Rolf Brandt; Rolf Bandur; Thorsten Hoffmann

    2006-01-01

    In this contribution,iodine chemistry in the Marine Boundary Layer(MBL)is introduced.A series of methodologies for the measurements of iodine species in the gas and particle phases of the coastal atmosphere has been developed.Iodine species in the gas phase in real air samples has been determined in two field campaigns at the west coast of Ireland,indicating that gaseous iodo-hydrocarbons and elemental iodine are the precursors of new particle formation.Particulate iodine speciation from the same measurement campaigns show that the non-water-soluble iodine compounds are the main iodine species during the marine particle formation.A seaweed-chamber experiment was performed,indicating that gaseous I2 is one of the important precursors that lead to new particle formation in the presence of solar light in the ambient air at the coastal tidal area.

  15. Direct observation of the release of alkali vapor species in biofuel combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R.J.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    The largest present use of biomass for energy is in combustion for steam and electrical power. Biofuels have an acknowledged advantage over coal as a solid fuel because of their low sulfur and ash content. However, some forms of biomass have substantial quantities of alkali metals and chlorine. In addition, evidence indicates that the alkali in biomass is largely atomically dispersed, resulting in its facile mobilization into the gas-phase. Gaseous alkali compounds aggravate problems of slagging, fouling, and corrosion on heat transfer surfaces in present-day boilers. These problems can be particularly severe when mixed and variable agricultural residues are burned. Furthermore, the next generation of biomass-to-power systems will likely involve combined cycle gas turbines, where alkali tolerances are especially restrictive. In this paper, we report on laboratory studies in which biofuels are combusted under simulated turbine or boiler-firing conditions. Gaseous alkali, sulfur, nitrogen, and halogen-containing species are measured by direct extraction from the hot gases through molecular-beam mass spectrometry (MBMS). The experimental apparatus will be described and its capability illustrated with results of time-resolved evolution of species like K, KCl, KOH, SO{sub 2} and NO{sub x} from small samples of biomass in combustion environments. The nature and release of such species will be explicated by referring to thermodynamic equilibrium predictions and the form of alkali in solid, gaseous, and liquid biofuels.

  16. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan; Keyser, John

    2013-01-01

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation

  17. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  18. Electron beam treatment of organic pollutants contained in gaseous streams. 1. RCM report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Volatile Organic Compounds (VOC) and Polyaromatic Hydrocarbons (PAH) are emitted in different processes, mostly combustion-based ones applied in power, chemical and metallurgical industries, municipal wastes incineration, etc. Many of them are persistent in environment, so called Persistent Organic Pollutants (POPs). They are responsible for ozone layer depletion, ground level and photochemical smog formation, contribute to the greenhouse effect, most of them being carcinogenic or/and mutagenic. Some tests performed in different countries have shown that electron beam technology can be a promising technique in these applications. Good removing efficiency for chlorohydrocarbons, dioxins and PAH was demonstrated in the laboratory scale. Different hybrid techniques like eb/absorption or eb/catalysis were studied as well. However, due to the different product formation, this technique should be studied carefully further concerning process mechanism, analyses of products and possible technical solution applications. The present CRP aiming at development of laboratory and pilot plant methodologies for comparative evaluation of degradation effects of organic pollutants in gaseous phase. Theoretical and experimental investigations of the mechanisms of the processes are part of the research work. Limitation of formation of toxic byproducts, modification of physical and chemical properties, application of hybrid processes (eb/catalytist) are important topics for further development under the CRP. The CRP has been launched with the objectives of developing analytical techniques for better understanding of degradation effects of organic pollutants in gaseous phase and technologies (processing conditions) to control these emissions. It is anticipated that through collaborative and cooperative research efforts of the participants, new analytical methods to study the process and strategies to apply electron beam to address these emissions will be developed. The executive summary

  19. Electron beam treatment of organic pollutants contained in gaseous streams. 1. RCM report

    International Nuclear Information System (INIS)

    2005-01-01

    Volatile Organic Compounds (VOC) and Polyaromatic Hydrocarbons (PAH) are emitted in different processes, mostly combustion-based ones applied in power, chemical and metallurgical industries, municipal wastes incineration, etc. Many of them are persistent in environment, so called Persistent Organic Pollutants (POPs). They are responsible for ozone layer depletion, ground level and photochemical smog formation, contribute to the greenhouse effect, most of them being carcinogenic or/and mutagenic. Some tests performed in different countries have shown that electron beam technology can be a promising technique in these applications. Good removing efficiency for chlorohydrocarbons, dioxins and PAH was demonstrated in the laboratory scale. Different hybrid techniques like eb/absorption or eb/catalysis were studied as well. However, due to the different product formation, this technique should be studied carefully further concerning process mechanism, analyses of products and possible technical solution applications. The present CRP aiming at development of laboratory and pilot plant methodologies for comparative evaluation of degradation effects of organic pollutants in gaseous phase. Theoretical and experimental investigations of the mechanisms of the processes are part of the research work. Limitation of formation of toxic byproducts, modification of physical and chemical properties, application of hybrid processes (eb/catalytist) are important topics for further development under the CRP. The CRP has been launched with the objectives of developing analytical techniques for better understanding of degradation effects of organic pollutants in gaseous phase and technologies (processing conditions) to control these emissions. It is anticipated that through collaborative and cooperative research efforts of the participants, new analytical methods to study the process and strategies to apply electron beam to address these emissions will be developed. The executive summary

  20. Tracing Sources of Total Gaseous Mercury to Yongheung Island off the Coast of Korea

    Directory of Open Access Journals (Sweden)

    Gang S. Lee

    2014-04-01

    Full Text Available In this study, total gaseous mercury (TGM concentrations were measured on Yongheung Island off the coast of Korea between mainland Korea and Eastern China in 2013. The purpose of this study was to qualitatively evaluate the impact of local mainland Korean sources and regional Chinese sources on local TGM concentrations using multiple tools including the relationship with other pollutants, meteorological data, conditional probability function, backward trajectories, and potential source contribution function (PSCF receptor modeling. Among the five sampling campaigns, two sampling periods were affected by both mainland Korean and regional sources, one was caused by mainland vehicle emissions, another one was significantly impacted by regional sources, and, in the remaining period, Hg volatilization from oceans was determined to be a significant source and responsible for the increase in TGM concentration. PSCF identified potential source areas located in metropolitan areas, western coal-fired power plant locations, and the southeastern industrial area of Korea as well as the Liaoning province, the largest Hg emitting province in China. In general, TGM concentrations generally showed morning peaks (07:00~12:00 and was significantly correlated with solar radiation during all sampling periods.

  1. Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2015-01-01

    Highlights: • NH 3 and NO formation mechanisms during superfine pulverized coal pyrolysis are investigated. • Influences of temperature, heating rate, particle size, atmosphere, and acid wash on the NH 3 and NO formation are analyzed. • Transformations of nitrogen-containing structures in coal/char during pyrolysis are recognized through XPS observation. • Relationships among nitrogen-containing gaseous species during pyrolysis are discussed. - Abstract: With more stringent regulations being implemented, elucidating the formation mechanisms of nitrogen-containing species during the initial pyrolysis step becomes important for developing new NO x control strategies. However, there is a lack of agreement on the origins of NO x precursors during coal pyrolysis, in spite of extensive investigations. Hence, it is important to achieve a more precise knowledge of the formation mechanisms of nitrogen-contain species during coal pyrolysis. In this paper, pyrolysis experiments of superfine pulverized coal were performed in a fixed bed at low heating rates. The influences of temperature, coal type, particle size and atmosphere on the NH 3 and NO evolution were discussed. There is a central theme to develop knowledge of the relationship between particle sizes and evolving behaviors of nitrogen-containing species. Furthermore, the catalytic role of inherent minerals in coal was proved to be effective on the partitioning of nitrogen during coal pyrolysis. In addition, the conversion pathways of heteroaromatic nitrogen structures in coal/char during pyrolysis were recognized through the X-ray photoelectron spectroscopy (XPS) analysis. Large quantities of pyridinic and quanternary nitrogen functionalities were formed during the thermal degradation. Finally, the relationships among the nitrogen-containing gaseous species during coal pyrolysis were discussed. In brief, a comprehensive picture of the volatile-nitrogen partitioning during coal pyrolysis is obtained in this

  2. Paducah Gaseous Diffusion Plant environmental report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  3. Paducah Gaseous Diffusion Plant environmental report for 1992

    International Nuclear Information System (INIS)

    Horak, C.M.

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials

  4. Extruder system and method for treatment of a gaseous medium

    Energy Technology Data Exchange (ETDEWEB)

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  5. Characteristics and applications of small, portable gaseous air pollution monitors.

    Science.gov (United States)

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed

  6. Leaf absorption of atmospheric ammonia emitted from pig slurry applied beneath the canopy of winter wheat

    International Nuclear Information System (INIS)

    Gjedde Sommer, S.; Jensen, E.S.; Kofoed Schjoerring, J.

    1993-01-01

    Absorption of volatilized ammonia after application of slurry onto the soil surface (sand) between rows of a wheat crop was studied in two experiments. The slurry was labelled with 15 N-NH 4 . During seven days the accumulated gaseous N loss from the slurry varied from 6.9 to 11.1 g N m -2 . In April ammonia losses from slurry applied beneath a 5 cm high wheat crop were equal to losses from slurry applied to a fallow, but 2.2% of the lost atmospheric ammonia was taken up by the leaves. In May ammonia loss from slurry applied between the rows of a 43 cm high crop was reduced by 6% compared to the loss from fallow, because of a reduced transfer of ammonia from the slurry to the air. Of the emitted ammonia 3.3% was absorbed by the canopy. (au)

  7. Radiation emitting devices act

    International Nuclear Information System (INIS)

    1970-01-01

    This Act, entitled the Radiation Emitting Devices Act, is concerned with the sale and importation of radiation emitting devices. Laws relating to the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of these devices are listed as well as penalties for any person who is convicted of breaking these laws

  8. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  9. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    International Nuclear Information System (INIS)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth's soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238)

  10. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Science.gov (United States)

    Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.

    2018-05-01

    Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  11. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Science.gov (United States)

    McLagan, David S.; Mitchell, Carl P. J.; Steffen, Alexandra; Hung, Hayley; Shin, Cecilia; Stupple, Geoff W.; Olson, Mark L.; Luke, Winston T.; Kelley, Paul; Howard, Dean; Edwards, Grant C.; Nelson, Peter F.; Xiao, Hang; Sheu, Guey-Rong; Dreyer, Annekatrin; Huang, Haiyong; Hussain, Batual Abdul; Lei, Ying D.; Tavshunsky, Ilana; Wania, Frank

    2018-04-01

    Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day-1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m-3, this represents an ability to resolve concentrations to within 0.13 ng m-3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active-passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or

  12. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2013-05-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel−1 and for the CNG buses 41

  13. Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-11

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  14. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  15. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  16. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  17. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  18. Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species

    DEFF Research Database (Denmark)

    Nilsson, Torben; Larsen, Thomas Ostenfeld; Montanarella, Luca

    1996-01-01

    Head-space solid-phase microextraction (HS-SPME) has been used to collect volatile organic compounds (VOCs) emitted from fungi of the genus Penicillium. Gas chromatography combined with mass spectrometry (GC-MS) was employed for the analysis of the profiles of volatile metabolites characteristic...

  19. Production of 41Ar and 79Kr gaseous radiotracers for industrial applications

    International Nuclear Information System (INIS)

    Yelgaonkar, V.N.; Jagadeesan, K.C.; Shivarudrappa, V.; Sharma, V.K.; Chitra, S.

    2007-01-01

    Radiotracers are extensively used in many industries for trouble shooting and optimization of process parameters leading to considerable savings in time and huge economic benefits. In chemical and petrochemical industries different gases and vapours flowing in the conversion reactors play a major role in the final production. Gaseous radiotracers are ideal to study hydrodynamics of gas phases in process vessels. 41 Ar and 79 Kr are the preferred gaseous radiotracers for such studies. Owing to the increase in demand from Indian industries for gas phase radiotracers, efforts have been made to produce 41 Ar and 79 Kr indigenously by irradiation of 40 Ar and enriched 78 Kr gaseous targets in research reactors. Prequalification of the containers used, safety aspects concerning accidental rupture and mandatory tests necessary for irradiation of gaseous targets in the reactors have been studied. The paper describes some of the important safety aspects involved and the results of trial irradiations on the production of 41 Ar and 79 Kr radiotracers. Standardization of suitable assay protocols for their regular production and supply for applications in industries is also described. (author)

  20. Radiolytical oxidation of gaseous iodine by beta radiation

    International Nuclear Information System (INIS)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi; Jokiniemi, Jorma

    2015-01-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH 3 I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  1. Radiolytical oxidation of gaseous iodine by beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi [VTT Technical Research Centre of Finland, Espoo (Finland); Jokiniemi, Jorma [VTT Technical Research Centre of Finland, Espoo (Finland); Eastern Finland Univ., Kuopio (Finland)

    2015-07-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH{sub 3}I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  2. Interconversion of pollutants from the gaseous to the condensed phase. Technical progress report - brief summary of recent findings, March 1, 1983-August 31, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    Purpose of the studies were to provide new information on the interconversion of pollutants from the gaseous to the condensed phase. More information were obtained on mechanisms of cluster formation, leading to the production of prenucleation embryos, rates of phase transformation, and the thermochemical properties and photochemical stability of the species involved. Systems studied included nitric acid, ammonia, sulfuric acid, carbonic acid, etc

  3. TC-99 Decontaminant from heat treated gaseous diffusion membrane -Phase I, Part B

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Restivo, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-01

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation or exact form in the gaseous diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal or leaching desorption, which is independent of the technetium oxidation states, to perform an insitu removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste. Based on the positive results of the first part of this work1 the use of steam as a thermal decontamination agent was further explored with a second piece of used barrier material from a different location. This new series of tests included exposing more of the material surface to the flow of high temperature steam through the change in the reactor design, subjecting it to alternating periods of stream and vacuum, as well as determining if a lower temperature steam, i.e., 121°C (250°F) would be effective, too. Along with these methods, one other simpler method involving the leaching of the Tc-99 contaminated barrier material with a 1.0 M aqueous solution of ammonium carbonate, with and without sonication, was

  4. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing

    International Nuclear Information System (INIS)

    Lau, Jason; Hung, W.T.; Cheung, C.S.

    2012-01-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. - Highlights: ► Emissions collected in 3 different periods to examine changes in emission over time. ► LPG vehicles generally emit more gaseous pollutants compared to other vehicles. ► Large increase in emissions from modern petrol/LPG vehicles after 2 years' operation. ► CO and NO emissions of modern diesel vehicles are similar to those of older vehicles. - Remote sensing measurements show large increases in gaseous emissions from vehicles in Hong Kong after 2 years of operation, indicating that engine and catalyst performance deteriorate rapidly.

  5. Detection of gaseous fission products in water - a method of monitoring fuel sheathing failures

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, P. R.; Whittier, A. C.

    1959-05-15

    The gaseous activities stripped from samples of effluent coolant from the NRU fuel elements tested in the central thimble of the NRX reactor (NRU loop) and from the NRX main effluent have been investigated. The activities obtained from the NRU loop can be attributed to gaseous fission products only. Design data have been obtained for a 'Gaseous Fission Product Monitor' to be installed for use with the NRU reactor. It is expected that this monitor will have high sensitivity to activity indicative of an incipient fuel element sheath failure. No qualitative determination of the various gaseous activities obtained from the NRX effluent has been made. A strong component of 25 {+-}1 seconds half-life is not consistent with O-19. Limited information concerning sheath failures in NRX was obtained. Of six failures observed in parallel with the installed delayed neutron monitors, three of these gave pre-warnings and in each case the gaseous fission product monitor showed a substantially greater sensitivity. An experiment in which small samples of uranium, inserted into the NRX reactor, could be exposed at will to a stream of water showed the behaviour of the two types of monitors to be similar. However, a number of signals were detected only by the gaseous fission product monitor. These can be attributed to its sensitivity to relatively long lived fission products. (author)

  6. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  7. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  8. Rare earths in iron and steelmaking and gaseous desulphurisation

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Subramanian, S.V.; Meng, V.; Kumar, R.V.

    1985-01-01

    Rare earth (RE) additions, either as mischmetal or rare earth silicide, are used in many ladle treatment processes in modern ferrous metallurgy. In ironmaking they provide the basis for the control of graphite morphology in cast irons and in steelmaking additions are made to aluminum-killed steels for desulphurisation and the control of inclusion composition and morphology. Rare earth oxides may also be used in the desulphurisation of medium calorific value gaseous fuels and stack gases. In this paper, Ce-S-O and La-S-O phase stability diagrams are used to determine the role of the rare earths in the external processing of iron and steel, and gaseous desulphurisation

  9. A method to unfold the efficiency of gaseous detectors exposed to broad X-ray spectra

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines S. de; Lopes, Ricardo T.

    2000-01-01

    A method to obtain the efficiency of a gaseous detector exposed to broad energy X-ray spectra was developed. It consists in the de-convolution of the integrated detector response using the shapes of those spectra as a tool to unfold the aimed detector efficiency curve. For this purpose, the spectra emitted by a X-ray tube under several anode voltages, were properly characterized through measurements with a NaI(Tl) spectrometer. A Lorentz function was then fitted to each of the spectra, and their parameters expressed as a function of the anode voltage, by using polynomial and gaussian fittings. The integral of the product of each Lorentz function, by another unknown Lorentz function, expressing the detector efficiency curve, represents the response of the detector for each anode tension, e.g., each X-ray spectrum. The symbolical integration of that product, produces a general function containing the unknown parameters of the unknown efficiency curve. A non-linear fitting of this general function, to the detector response points, as experimentally obtained, generates the aimed parameters for the efficiency curve. The final detector efficiency curve is obtained after normalization procedures. (author)

  10. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  11. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered

  12. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Rowse

    Full Text Available We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS to light emitting diode (LED street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes, or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.

  13. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    Science.gov (United States)

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  14. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Directory of Open Access Journals (Sweden)

    D. S. McLagan

    2018-04-01

    Full Text Available Passive air samplers (PASs for gaseous mercury (Hg were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day−1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m−3, this represents an ability to resolve concentrations to within 0.13 ng m−3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active–passive concentration further (8.7 ± 5.7 %, but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 % represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed

  15. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF6) in the diffusion cascade

    International Nuclear Information System (INIS)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF 6 in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF 6 in plant operations

  16. Emission characteristics for gaseous- and size-segregated particulate PAHs in coal combustion flue gas from circulating fluidized bed (CFB) boiler.

    Science.gov (United States)

    Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong

    2018-07-01

    The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate

  17. Effect of gaseous ozone for control of stored product pests at low and high temperature

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård; Hansen, Peer; Vagn Jensen, Karl-Martin

    2013-01-01

    Gaseous ozone (O3) has shown potential for control of insects in stored grain. A previous laboratory study determined doses of ozone necessary to control freely exposed and internal stages of eleven stored product pest species at 20 C. In this study the impact of temperature on the effect of ozone...... was tested on two species of stored product pests: Sitophilus granarius and Plodia interpunctella. Insects were exposed to continuous flows of ozone in doses of approximately 33 ppm for 6 d or approximately 131 ppm for 8 d at low temperatures between 7.3 and 7.9 C and high temperatures between 29.6 and 31.......6 C, respectively. Results from the previous study conducted at 20 C were used in the data analysis. The result of the treatments was unaffected by the temperatures used in the study. Treatment with a high dose of ozone for 8 d led to full mortality in all stages of S. granarius and all stages of P...

  18. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  19. Respiratory system. Part 2: Gaseous exchange.

    Science.gov (United States)

    McLafferty, Ella; Johnstone, Carolyn; Hendry, Charles; Farley, Alistair

    This article, which isthe last in the life sciences series and the second of two articles on the respiratory system, describes gaseous exchange in the lungs, transport of oxygen and carbon dioxide, and internal and external respiration. The article concludes with a brief consideration of two conditions that affect gas exchange and transport: carbon monoxide poisoning and chronic obstructive pulmonary disease.

  20. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  1. Trends and new developments in gaseous detectors

    CERN Document Server

    AUTHOR|(CDS)2069485

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hadron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have p...

  2. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  3. Toxicity of inhaled alpha-emitting radionuclides - Status report

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Mewhinney, J.A.; Guilmette, R.A.; Gillett, N.A.; Diel, J.H.; Lundgren, D.L.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    The toxicity of inhaled alpha-emitting radionuclides is being investigated in a series of interrelated dose-response studies. Dogs, rodents, and nonhuman primates have been exposed to monodisperse or polydisperse aerosols of the oxides of 239 Pu, 238 Pu, 241 Am, or 244 Cm to measure the relative importance of average organ dose, local dose around particles, specific activity, chemical form, particle size, and number of particles inhaled to the development of biological effects. The influence of animal species, age at exposure, and pre-existing lung disease, as well as the effects of repeated exposure, are also being studied, because they may influence the toxicity of these radionuclides. (author)

  4. Retention of gaseous isotopes

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Mailen, J.C.; Stephenson, M.J.

    1977-01-01

    Retention of gaseous fission products during fuel reprocessing has, in the past, been limited to a modest retention of 131 I when processing fuels decayed less than about 180 days. The projected rapid growth of the nuclear power industry along with a desire to minimize environmental effects is leading to the reassessment of requirements for retention of gaseous fission products, including 131 I, 129 I, 85 Kr, 3 H, and 14 C. Starting in the late 1960s, a significant part of the LMFBR reprocessing development program has been devoted to understanding the behavior of gaseous fission products in plant process and effluent streams and the development of advanced systems for their removal. Systems for iodine control include methods for evolving up to 99% of the iodine from dissolver solutions to minimize its introduction and distribution throughout downstream equipment. An aqueous scrubbing system (Iodox) using 20 M HNO 3 as the scrubbing media effectively removes all significant iodine forms from off-gas streams while handling the kilogram quantities of iodine present in head-end and dissolver off-gas streams. Silver zeolite is very effective for removing iodine forms at low concentration from the larger-volume plant off-gas streams. Removal of iodine from plant liquid effluents by solid sorbents either prior to or following final vaporization appears feasible. Krypton is effectively released during dissolution and can be removed from the relatively small volume head-end and dissolver off-gas stream. Two methods appear applicable for removal and concentration of krypton: (1) selective absorption in fluorocarbons, and (2) cryogenic absorption in liquid nitrogen. The fluorocarbon absorption process appears to be rather tolerant of the normal contaminants (H 2 O, CO 2 , NOsub(x), and organics) present in typical reprocessing plant off-gas whereas the cryogenic system requires an extensive feed gas pretreatment system. Retention of tritium in a reprocessing plant is

  5. Recent developments in white light emitting diodes

    Science.gov (United States)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application

  6. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1982-08-01

    Five fuel pins, taken from a PWR fuel assembly with 32000 MWD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developped to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  7. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1983-01-01

    Five fuel pins, taken from a PWR fuel assembly with 32,000 MwD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developed to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  8. Turbulence enhancement by ultrasonically induced gaseous cavitation in the CO2 saturated water

    International Nuclear Information System (INIS)

    Lee, Seung Youp; Choi, Young Don

    2002-01-01

    Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipment is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO 2 saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer

  9. A gaseous scintillation counter filled with He3 for neutron spectrometry

    International Nuclear Information System (INIS)

    Baldin, S.A.; Matveev, V.V.

    1962-01-01

    The paper describes a gas plant and gaseous scintillation counter, and gives the results of experiments on the recording and spectrometry of neutron beams using a gaseous scintillation counter filled with a mixture of 10% xenene and 90% helium-3 at an overall pressure of 20 ata. Data are given on the design of the gas plant, which makes it possible to operate the counter continuously over long periods of time, as well as providing the required gas mixtures at overall pressures of up to 60 atm and ensuring constant freedom of the gas from contamination. In addition, the paper presents the results of research on the counter's energy resolution and linearity at different energy levels and indicates its efficiency in gamma fields of intensity up to 3 r/h; the possibility of extending the working energy-range of gaseous scintillation counters filled with helium-3 is also considered. (author) [fr

  10. Clusia hilariana and Eugenia uniflora as bioindicators of atmospheric pollutants emitted by an iron pelletizing factory in Brazil.

    Science.gov (United States)

    da Silva, Luzimar Campos; de Araújo, Talita Oliveira; Siqueira-Silva, Advanio Inácio; Pereira, Tiago Augusto Rodrigues; Castro, Letícia Nalon; Silva, Eduardo Chagas; Oliva, Marco Antonio; Azevedo, Aristéa Alves

    2017-12-01

    The objectives of this work were to evaluate if the pollution emitted by the pelletizing factory causes visual symptoms and/or anatomical changes in exposed Eugenia uniflora and Clusia hilariana, in active biomonitoring, at different distances from a pelletizing factory. We characterize the symptomatology, anatomical, and histochemistry alterations induced in the two species. There was no difference in the symptomatology in relation to the different distances of the emitting source. The foliar symptoms found in C. hilariana were chlorosis, necrosis, and foliar abscission and, in E. uniflora, were observed necrosis punctuais, purple spots in the leaves, and increase in the emission of new leaves completely purplish. The two species presented formation of a cicatrization tissue. E. uniflora presented reduction in the thickness of leaf. In C. hilariana, it was visualized hyperplasia of the cells and the adaxial epidermis did not appear collapsed due to thick cuticle and cuticular flanges. Leaves of C. hilariana showed positive staining for iron, protein, starch, and phenolic compounds. E. uniflora showed positive staining for total phenolic compounds and starch. Micromorphologically, there was accumulation of particulate matter on the leaf surface, obstruction of the stomata, and scaling of the epicuticular wax in both species. It was concluded that the visual and anatomical symptoms were efficient in the diagnosis of the stress factor. C. hilariana and E. uniflora showed to be good bioindicators of the atmospheric pollutants emitted by the pelletizing factory.

  11. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Dept. of Mechanical Engineering

    2004-02-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters. (author)

  12. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2004-01-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters

  13. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Directory of Open Access Journals (Sweden)

    D. Kılıç

    2018-05-01

    Full Text Available Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS for nonrefractory particulate matter (NR-PM1 were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5–7 %, more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  14. Distribution of xenon between gaseous and liquid CO2

    International Nuclear Information System (INIS)

    Ackley, R.D.; Notz, K.J.

    1976-10-01

    The distribution of xenon at low concentrations between gaseous and liquid CO 2 was measured over essentially the entire liquid range of CO 2 . These measurements involved using a collimated radiation-detection cell to determine the relative quantities of 133 Xe-traced xenon in the separate phases contained in a vertical cylinder under isothermal conditions. The results are expressed in terms of a distribution ratio (mole fraction of xenon in the gaseous phase divided by mole fraction of xenon in the liquid phase) which decreased from 7.53 at -54.8 0 C to 1.10 at 30.5 0 C. These data were used to calculate various other solubility-related quantities

  15. Method of producing gaseous products using a downflow reactor

    Science.gov (United States)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  16. Container for gaseous samples for irradiation at accelerators

    International Nuclear Information System (INIS)

    Kupsch, H.; Riemenschneider, J.; Leonhardt, J.

    1985-01-01

    The invention concerns a container for gaseous samples for the irradiation at accelerators especially to generate short-lived radioisotopes. The container is also suitable for storage and transport of the target gas and can be multiply reused

  17. Safety aspects of the design of a PWR gaseous radwaste treatment system using hydrogen recombiners

    International Nuclear Information System (INIS)

    Glibert, R.; Nuyt, G.; Herin, S.; Fossion, P.

    1978-01-01

    PWR Gaseous radwaste treatment system is essential for the reduction of impact on environment of the nuclear power plants. Decay tank system has been used for the retention of the radioactive gaseous fission products generated in the primary coolant. The use of a system combining decay tanks and hydrogen recombiner units is described in this paper. Accent is put on the safety aspects of this gaseous radwaste treatment facilitystudied by BN for a Belgian Power Plant. (author)

  18. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-01

    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  19. Handling of UF6 in U.S. gaseous diffusion plants

    International Nuclear Information System (INIS)

    Legeay, A.J.

    1978-01-01

    A comprehensive systems analysis of UF 6 handling has been made in the three U.S. gaseous diffusion plants and has resulted in a significant impact on the equipment design and the operating procedures of these facilities. The equipment, facilities, and industrial practices in UF 6 handling operations as they existed in the early 1970's are reviewed with particular emphasis placed on the changes which have been implemented. The changes were applied to the systems and operating methods which evolved from the design, startup, and operation of the Oak Ridge Gaseous Diffusion Plant in 1945

  20. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  2. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    Science.gov (United States)

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions

  3. Paducah Gaseous Diffusion Plant Environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Counce-Brown, D. (ed.)

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  4. Gaseous (DMS, MSA, SO2, H2SO4 and DMSO and particulate (sulfate and methanesulfonate sulfur species over the northeastern coast of Crete

    Directory of Open Access Journals (Sweden)

    H. Bardouki

    2003-01-01

    Full Text Available A detailed study of the levels, the temporal and diurnal variability of the main compounds involved in the biogenic sulfur cycle was carried out in Crete (Eastern Mediterranean during the Mediterranean Intensive Oxidant Study (MINOS field experiment in July-August 2001. Intensive measurements of gaseous dimethylsulfide (DMS, dimethylsulfoxide (DMSO, sulfur dioxide (SO2, sulfuric (H2SO4 and methanesulfonic acids (MSA and particulate sulfate (SO42- and methanesulfonate (MS- have been performed during the campaign. Dimethylsulfide (DMS levels ranged from 2.9 to 136 pmol·mol-1 (mean value of 21.7 pmol·mol-1 and showed a clear diurnal variation with daytime maximum. During nighttime DMS levels fall close or below the detection limit of 2 pmol·mol-1. Concurrent measurements of OH and NO3 radicals during the campaign indicate that NO3 levels can explain most of the observed diurnal variation of DMS. Dimethylsulfoxide (DMSO ranged between 0.02 and 10.1 pmol·mol-1 (mean value of 1.7 pmol·mol-1 and presents a diurnal variation similar to that of DMS. SO2 levels ranged from 220 to 2970 pmol·mol-1 (mean value of 1030 pmol·mol-1, while nss-SO42- and MS- ranged from 330 to 7100 pmol·mol-1, (mean value of 1440 pmol·mol-1 and 1.1 to 37.5 pmol·mol-1 (mean value of 11.5 pmol·mol-1 respectively. Of particular interest are the measurements of gaseous MSA and H2SO4. MSA ranged from below the detection limit (3x104 to 3.7x107 molecules cm-3, whereas H2SO4 ranged between 1x105 and 9.0x107 molecules cm-3. The measured H2SO4 maxima are among the highest reported in literature and can be attributed to high insolation, absence of precipitation and increased SO2 levels in the area. From the concurrent SO2, OH, and H2SO4 measurements a sticking coefficient of 0.52±0.28 was calculated for H2SO4. From the concurrent MSA, OH, and DMS measurements the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to range between 0.1-0.4%. This low MSA

  5. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  6. Controlled light emission from white organic light-emitting devices with a single blue-emitting host and multiple fluorescent dopants

    International Nuclear Information System (INIS)

    Chin, Byung Doo; Kim, Jai Kyeong; Park, O Ok

    2007-01-01

    In this work, we fabricated white organic light-emitting devices (WOLEDs) containing a layered light-emitting region composed of a single blue-emitting host and different fluorescent dopant materials. The effects of varying the dye-doping ratio and emitting layer thickness on the efficiency, lifetime, spectral voltage-dependence and white balance were investigated for devices with a blue/orange stacked layer structure. Addition of a blue host layer doped with a green-emitting dopant, to give a blue/green/orange emitter, resulted in a broadband white spectrum without the need for a charge-blocking interlayer. The composition of blue, green and orange dopants in the host and the thickness of each emitting layer were optimized, resulting in a device efficiency of 9-11 cd A -1 even at a high brightness of 10 000 cd m -2 (achieved at a bias voltage of less than 9 V) with an emission spectrum suitable for lighting applications

  7. The role of marine zooplankton in the vertical oceanic transport of alpha-emitting nuclides

    International Nuclear Information System (INIS)

    Cherry, R.D.; Heyraud, M.; Higgo, J.J.W.; Fowler, S.W.; LaRosa, J.

    1976-01-01

    This project aims at studying, in quantitative detail, the role played by marine plankton in the vertical oceanic transport of alpha-emitting nuclides. The common Mediterranean euphausiid, Meganyotiphanes norvegica, for which the necessary quantitative biological data are available as a result of previous work in the Monaco Laboratory, has been selected as the typical macrozooplanktonic species which is the focus of this work

  8. Theoretical predictions of arsenic and selenium species under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Monahan-Pendergast, M.T.; Przybylek, M.; Lindblad, M.; Wilcox, J. [Worcester Polytechnic Institute, Worcester, MA (United States). Dept. of Chemical Engineering

    2008-03-15

    Thermochemical properties of arsenic and selenium species thought to be released into the atmosphere during the coal combustion were examined using ab initio methods. At various levels of theory, calculated geometries and vibrational frequencies of the species were compared with experimental data, where available. Through a comparison of equilibrium constants for a series of gaseous arsenic and selenium oxidation reactions involving OH and HO{sub 2}, five thermodynamically favored reactions were found. In addition, it was determined that all favored reactions were more likely to go to completion tinder tropospheric, rather than stratospheric, conditions.

  9. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support

  10. Contribution to the study of gaseous molecular iodine washout by natural rains

    International Nuclear Information System (INIS)

    Fournier-Bidoz, V.

    1991-01-01

    This study is part of researches about nuclear accident prediction consequences on the environment. It concerns transfering of molecular gaseous iodine into liquids and especially precipitation scavenging below the cloud (washout). Bibliographic data directly concerned with this study (iodine's aqueous chemistry, aqueous to gaseous phases transfer) and also with its global frame-work (atmospheric release from a nuclear reactor in accidental situation and the behaviour of atmospheric iodine) are presented. Several experimental approaches have been performed in laboratory and on field. An aqueous to gaseous phase transfer simulator allowed us to isolate parameters involved in absorption and desorption of the halogen. Field experiments permit to quantify dry deposition on different solutions and to get a better insight of the phenomenon. Extrapolation of the whole results to precipitation scavenging of gaseous iodine I 2 by natural rains suggests that the process is an irreversible one. Washout rate values acquired during rainy experiments with molecular iodine emission or in a laboratory rainfall simulator agree with literatures data relative to irreversibility. However and even if reversibility was efficient it was not possible to clearly exhibit it according to experimental conditions. Moreover, the analytical iodine method which leads to a good experimental study has been presented

  11. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    Science.gov (United States)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2017-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  12. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es

  13. Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices

    International Nuclear Information System (INIS)

    Park, Jong Hyeok; Lim, Yong Taik; Park, O Ok; Yu, Jae-Woong; Kim, Jai Kyeong; Kim, Young Chul

    2004-01-01

    Light-emitting devices based on environmentally stable, blue-emitting polymer/dielectric nanolayer nanocomposites were fabricated by blending poly(di-octylfluorene) (PDOF) with organo-clay. By reducing the excimer formation that leads to long wavelength tails, the photoluminescence (PL) and electroluminescence (EL) color purity of the device was enhanced. When a conjugated polymer/dielectric nanolayer nanocomposite is applied to an EL device, we expect an electronic structure similar to the well-known quantum well in small nanodomains. The ratio of PDOF/organo-clay was regulated from 2:1 to 0.5:1 (w/w). The light-emitting device of 0.5:1 (w/w) blend demonstrated the highest quantum efficiency (QE), 0.72% (ph/el), which is ∼500 times higher value compared with that of the pure PDOF layer device. However, the driving voltage of the nanocomposite devices tended to increase with increasing organo-clay content

  14. Salient features in the preparation of gaseous tritium filled luminous light sources

    International Nuclear Information System (INIS)

    Mathew, K.M.; Ravi, S.; Subramanian, T.K.; Ananthakrishnan, M.

    2003-01-01

    Beta radiation emanating from gaseous tritium in close proximity with copper activated zinc sulphide phosphor provides self sustained light sources and these sources are used for nocturnal illumination of liquid crystal display in digital watches and clocks, product advertisements, exit signs etc. We report herein the preparation of low specific radioactivity gaseous tritium (29.5 Ci/m mole; 1.09 TBq/m mole) filled light sources and its effect on light output. (author)

  15. Analytical and numerical study of a gaseous plasma dipole in the UHF frequency band

    NARCIS (Netherlands)

    Melazzi, Davide; Lancellotti, Vito; Capobianco, Antonio Daniele

    2017-01-01

    Gaseous plasma antennas are appealing in applications in which reconfigurability is desired, because the radiation properties can be changed by tuning the plasma parameters. In this paper, an analytical and numerical analysis of a gaseous plasma dipole that works in the 0.3-3 GHz frequency range is

  16. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    Science.gov (United States)

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  17. Toxicity of inhaled alpha-emitting radionuclides - Status report

    Energy Technology Data Exchange (ETDEWEB)

    Muggenburg, B A; Mewhinney, J A; Guilmette, R A; Gillett, N A; Diel, J H; Lundgren, D L; Hahn, F F; Boecker, B B; McClellan, R O

    1988-12-01

    The toxicity of inhaled alpha-emitting radionuclides is being investigated in a series of interrelated dose-response studies. Dogs, rodents, and nonhuman primates have been exposed to monodisperse or polydisperse aerosols of the oxides of {sup 239}Pu, {sup 238}Pu, {sup 241}Am, or {sup 244}Cm to measure the relative importance of average organ dose, local dose around particles, specific activity, chemical form, particle size, and number of particles inhaled to the development of biological effects. The influence of animal species, age at exposure, and pre-existing lung disease, as well as the effects of repeated exposure, are also being studied, because they may influence the toxicity of these radionuclides. (author)

  18. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    Science.gov (United States)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  19. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    Energy Technology Data Exchange (ETDEWEB)

    Huffer, J.E. [Parallax, Inc., Atlanta, GA (United States)

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  20. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  1. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Directory of Open Access Journals (Sweden)

    Gérard Liger-Belair

    Full Text Available In champagne tasting, gaseous CO(2 and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2 and ethanol was monitored through micro-gas chromatography (μGC, all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2 was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2 visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2 found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2 escaping the liquid phase into the form of bubbles.

  2. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Pron, Hervé; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    In champagne tasting, gaseous CO(2) and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2) and ethanol was monitored through micro-gas chromatography (μGC), all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2) was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2) visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2) found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2) escaping the liquid phase into the form of bubbles.

  3. Spectrum study of top-emitting organic light-emitting devices with micro-cavity structure

    International Nuclear Information System (INIS)

    Liu Xiang; Wei Fuxiang; Liu Hui

    2009-01-01

    Blue and white top-emitting organic light-emitting devices OLEDs with cavity effect have been fabricated. TBADN:3%DSAPh and Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 were used as emitting materials of microcavity OLEDs. On a patterned glass substrate, silver was deposited as reflective anode, and copper phthalocyanine (CuPc) layer as HIL and 4'-bis[N-(1-Naphthyl)- N-phenyl-amino]biphenyl (NPB) layer as HTL were made. Al/Ag thin films were made as semi-transparent cathode with a transmittance of about 30%. By changing the thickness of indium tin oxide ITO, deep blue with Commission Internationale de L'Eclairage chromaticity coordinates (CIEx, y) of (0.141, 0.049) was obtained on TBADN:3%DSAPh devices, and different color (red, blue and green) was obtained on Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 devices, full width at half maxima (FWHM) was only 17 nm. The spectral intensity and FWHM of emission in cavity devices have also been studied.

  4. Light emitting device having peripheral emissive region

    Science.gov (United States)

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  5. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS)

    Science.gov (United States)

    Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier

    2018-02-01

    Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.

  6. Carbon dioxide emitted from live stems of tropical trees is several years old.

    Science.gov (United States)

    Muhr, Jan; Angert, Alon; Negrón-Juárez, Robinson I; Muñoz, Waldemar Alegria; Kraemer, Guido; Chambers, Jeffrey Q; Trumbore, Susan E

    2013-07-01

    Storage carbon (C) pools are often assumed to contribute to respiration and growth when assimilation is insufficient to meet the current C demand. However, little is known of the age of stored C and the degree to which it supports respiration in general. We used bomb radiocarbon ((14)C) measurements to determine the mean age of carbon in CO2 emitted from and within stems of three tropical tree species in Peru. Carbon pools fixed >1 year previously contributed to stem CO2 efflux in all trees investigated, in both dry and wet seasons. The average age, i.e., the time elapsed since original fixation of CO2 from the atmosphere by the plant to its loss from the stem, ranged from 0 to 6 years. The average age of CO2 sampled 5-cm deep within the stems ranged from 2 to 6 years for two of the three species, while CO2 in the stem of the third tree species was fixed from 14 to >20 years previously. Given the consistency of (14)C values observed for individuals within each species, it is unlikely that decomposition is the source of the older CO2. Our results are in accordance with other studies that have demonstrated the contribution of storage reserves to the construction of stem wood and root respiration in temperate and boreal forests. We postulate the high (14)C values observed in stem CO2 efflux and stem-internal CO2 result from respiration of storage C pools within the tree. The observed age differences between emitted and stem-internal CO2 indicate an age gradient for sources of CO2 within the tree: CO2 produced in the outer region of the stem is younger, originating from more recent assimilates, whereas the CO2 found deeper within the stem is older, fueled by several-year-old C pools. The CO2 emitted at the stem-atmosphere interface represents a mixture of young and old CO2. These observations were independent of season, even during a time of severe regional drought. Therefore, we postulate that the use of storage C for respiration occurs on a regular basis challenging

  7. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  8. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn; Liu, Bin; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Shi, Hongying [Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Huang, Wei, E-mail: iamdirector@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  9. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Richard S. [SETI Institute, Mountain View, CA (United States); Lustig-Yaeger, Jacob [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana E.; Marley, Mark S. [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States); Lodders, Katharina, E-mail: Richard.S.Freedman@nasa.gov [Planetary Chemistry Laboratory, Washington University, St. Louis, MO (United States)

    2014-10-01

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use.

  10. Research on solubility characteristics of gaseous methyl iodide

    International Nuclear Information System (INIS)

    Zhou Yanmin; Sun Zhongning; Gu Haifeng; Wang Junlong

    2014-01-01

    With the deionized water as the absorbent, the solubility characteristics of the gaseous methyl iodide were studied under different temperature and pressure conditions, using a dynamic measuring method. The results show that within the range of experiment parameters, namely temperature is below 80℃ and pressure is lower than 0.3 MPa, the physical dissolution process of gaseous methyl iodide in water obeys Henry's law. The solubility coefficient under different temperature and pressure conditions was calculated based on the measurement results. Further research indicates that at atmospheric pressure, the solubility coefficient of methyl iodide in water decreases exponentially with the increase of temperature. While the pressure changes from 0.1 MPa to 0.3 MPa with equal interval, the solubility coefficient also increases linearly. The variation of the solubility coefficient with temperature under different pressure conditions all decreases exponentially. An equation is given to calculate the solubility coefficient of methyl iodide under different pressure and temperature conditions. (authors)

  11. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.

    Science.gov (United States)

    Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S

    2016-04-01

    This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.

  12. ASSESSMENT OF THE MOISTURE EFFECT ON GASEOUS PRODUCTS OF SELF-HEATING OF WOOD CHIPS

    Directory of Open Access Journals (Sweden)

    Hana VĚŽNÍKOVÁ

    2017-12-01

    Full Text Available Biofuels are stored in large quantities and may be susceptible to self-ignition. The possible methods of indication of temperature increase include the analysis of the gaseous products of heating where concentrations of certain gases may increase with increasing temperature. Gas release is also affected by the moisture of the material given that the moisture level changes surface accessibility for oxygen on the one side and serves as a catalyst of the oxidation reactions on the other. The present project analysed the effect of temperature and moisture on gaseous products of heating of wood chips, one of frequently used biofuels, with the aim to determine a suitable gaseous indicator of beginning self-ignition.

  13. Device for taking gaseous samples from irradiated fuel elements

    International Nuclear Information System (INIS)

    Lengacker, B.

    1983-01-01

    The described device allows to take gaseous samples from irradiated fuel elements. It is connected with a gas analyzer and a pressure gage, so that in opening the fuel can the internal pressure can be determined

  14. Light emitting fabric technologies for photodynamic therapy.

    Science.gov (United States)

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  16. Side-emitting fiber optic position sensor

    Science.gov (United States)

    Weiss, Jonathan D [Albuquerque, NM

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  17. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. On-line vibration and analysis system at the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Herricks, D.M.; Strunk, W.D.

    1987-11-01

    The enrichment facility in Paducah, KY uses a unique hard-wired vibration monitoring and analysis system for gaseous diffusion equipment. The axial flow and centrifugal flow compressors used in uranium enrichment range in size from 6 feet in diameter to less than one foot in diameter. These compressors must operate smoothly and safely, without breech of containment, since the working fluid of gaseous diffusion is gaseous UF 6 . The condition of 1925 compressors is monitored by use of the 2500 point vibration analysis system. Since the failure mechanisms of the compressors are well known and documented, only one accelerometer per machine is needed for most machines. The system is completely automated and can generate spectra or broadband levels in either acceleration or velocity units. Levels are stored for historical review. The analyst can, via a custom telecommunications link, view and analyze data from all monitored points with an office PC. 4 figs

  19. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  20. PWR-GALE, Radioactive Gaseous Release and Liquid Release from PWR

    International Nuclear Information System (INIS)

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1988-01-01

    1 - Description of program or function: The PWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from pressurized water reactors (PWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment. 2 - Method of solution: GALE calculates expected releases based on 1) standardized coolant activities derived from ANS Standards 18.1 Working Group recommendations, 2) release and transport mechanisms that result in the appearance of radioactive material in liquid and gaseous waste streams, 3) plant-specific design features used to reduce the quantities of radioactive materials ultimately released to the environs, and 4) information received on the operation of nuclear power plants. 3 - Restrictions on the complexity of the problem: The liquid release portion of GALE uses subroutines taken from the ORIGEN (CCC-217) to calculate radionuclide buildup and decay during collection, processing, and storage of liquid radwaste. Memory requirements for this part of the program are determined by the large nuclear data base accessed by these subroutines

  1. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Science.gov (United States)

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  2. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  3. Deuterium exchange between liquid water and gaseous hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The overall separation factors for the deuterium exchange between liquid water and gaseous hydrogen have been calculated over a wide range of temperature, pressure and deuterium concentrations. These data would be useful in the design and other considerations for heavy water production, based on hydrogen-water exchange. (author)

  4. A new gaseous gap conductance relationship

    International Nuclear Information System (INIS)

    Wesley, D.A.; Yovanovich, M.M.

    1986-01-01

    A new relationship for predicting the gaseous gap conductance between the fuel and clad of a nuclear fuel rod is derived. This relationship is derived from purely analytical considerations and represents a departure from approaches taken in the past. A comparison between the predictions from this new relationship and experimental measurements is presented and the agreement is very good. Predictions can be generated relatively quickly with this relationship making it attractive for fuel pin analysis codes

  5. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  6. Process and device for the excitation and selective dissociation by absorption of a laser light and application to isotopic enrichment

    International Nuclear Information System (INIS)

    Rigny, Paul.

    1975-01-01

    The description is given of a process for the excitation and selective dissociation by absorption of the monochromatic light emitted by a high power laser. The laser light at frequency ν 1 is beamed on to an isotopic mixture of gaseous molecules, some of these molecules presenting transitions, between two vibration levels corresponding to a given isotope, separated by an energy interval ΔE 1 =2h ν 1 , and the molecules of a given isotopic species are thus preferentially dissociated into several component parts [fr

  7. Gaseous radiocarbon measurements of small samples

    International Nuclear Information System (INIS)

    Ruff, M.; Szidat, S.; Gaeggeler, H.W.; Suter, M.; Synal, H.-A.; Wacker, L.

    2010-01-01

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) is a well-established method for samples containing carbon in the milligram range. However, the measurement of small samples containing less than 50 μg carbon often fails. It is difficult to graphitise these samples and the preparation is prone to contamination. To avoid graphitisation, a solution can be the direct measurement of carbon dioxide. The MICADAS, the smallest accelerator for radiocarbon dating in Zurich, is equipped with a hybrid Cs sputter ion source. It allows the measurement of both, graphite targets and gaseous CO 2 samples, without any rebuilding. This work presents experiences dealing with small samples containing 1-40 μg carbon. 500 unknown samples of different environmental research fields have been measured yet. Most of the samples were measured with the gas ion source. These data are compared with earlier measurements of small graphite samples. The performance of the two different techniques is discussed and main contributions to the blank determined. An analysis of blank and standard data measured within years allowed a quantification of the contamination, which was found to be of the order of 55 ng and 750 ng carbon (50 pMC) for the gaseous and the graphite samples, respectively. For quality control, a number of certified standards were measured using the gas ion source to demonstrate reliability of the data.

  8. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.

    Science.gov (United States)

    Wallenius, Kaisa; Lappi, Kaisa; Mikkonen, Anu; Wickström, Annika; Vaalama, Anu; Lehtinen, Taru; Suominen, Leena

    2012-02-01

    We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.

  10. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    Science.gov (United States)

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  11. Monoterpene emissions from an understory species, Pteridium aquilinum

    Science.gov (United States)

    Madronich, Monica B.; Greenberg, James P.; Wessman, Carol A.; Guenther, Alex B.

    2012-07-01

    Monoterpene emissions from the dominant understory species Pteridium aquilinum (Bracken fern) in a mixed temperate forest were measured in the field during the summers of 2006, 2007 and 2008. The results showed that Bracken fern emitted monoterpenes at different rates depending if the plants were located in the understory or in open areas. Understory plants emitted monoterpene levels ranging from 0.002 to 13 μgC gdw-1 h-1. Open area plants emitted monoterpene levels ranging from 0.005 to 2.21 μgC gdw-1 h-1. During the summer of 2008 greenhouse studies were performed to complement the field studies. Only 3% of the greenhouse Bracken fern plants emitted substantial amounts of monoterpenes. The average emission, 0.15 μgC gdw-1 h-1 ± 0.9 μgC gdw-1 h-1, was much lower than that observed in the field. The factors controlling monoterpene emissions are not clear, but this study provides evidence of the potential importance of understory vegetation to ecosystem total hydrocarbon emissions and emphasizes the need for longer-term field studies.

  12. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  13. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    Science.gov (United States)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  14. Evaluation of the use of activated carbon for the filtration of gaseous effluents generated in the production of the radiopharmaceutical FDG-{sup 18}F; Avaliação do uso de carvão ativado para filtração de efluentes gasosos gerados na produção do radiofármaco FDG-{sup 18}F

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, R.S.; Goulart, A.S.; Flores, M.R.; Saibt, M., E-mail: rafael@nucleorad.com.br [NUCLEORAD Soluções em Proteção Radiológica, Porto Alegre, RS (Brazil)

    2017-07-01

    Gaseous rejects generated in the production of FDG-{sup 18}F are produced mainly during the irradiation of the enriched water (H2O{sup 18}) within the niobium / target body at the cyclotron accelerator and during the process of FDG-{sup 18}F synthesis in the synthesizer modules within the cell hot. In order to reduce the levels of gaseous effluents emitted, activated carbon filters are used in the exhaust system. These have the ability to adsorb the {sup 18}F gaseous molecules generated in the synthesis. This work aims to quantify the efficiency of the activated carbon filters in relation to the dose rate before and after the passage of the gases through the filtration system. To quantify the values in the exhaust system, two radiation detectors were used, in the equivalent dose rate mode in μSv/h. To evaluate the values obtained, graphs of the levels before and after the filtration system were generated. These graphs were compared to each other, relating the values found. The generated graphs showed a high efficiency in the filtration of gaseous effluents. Several dose rate peaks are presented in the exhaust system during FDG-{sup 18}F synthesis, however after the passage of the gases through the filters these peaks become values very close to the Background values.

  15. Removal of radioiodine species from gaseous stream on inorganic absorbents

    International Nuclear Information System (INIS)

    Vujisic, L.

    1978-11-01

    As a contribution to the development of an impregnated absorbent for the removal of airborne iodine species in the off-gas streams of nuclear facilities the adsorption of 131 l-labelled methyl iodide on impregnated alumina was investigated. Alcoa alumina H-151 was impregnated with metal nitrates (Ag, Ag+Cd, Ag+Pb) and with triethylenediamine (TEDA). The removal efficiency of CH 3 l was experimentally evaluated, as functions of relative humidity of air-stream, its temperature and flow rate and of the amount of impregnated materials. Under constant temperature, relative humidity and face velocity, the retention of CH 3 l increases as the total amount of Ag impregnation increases. In a wet air-stream the only efficient impregnation was found to be with silver nitrate. At constant temperature the CH 3 l retention decreases with increasing relative humidity or face velocity of the stream. An increase of temperature favours the CH 3 l retention. Very low retention of CH 3 l was found on TEDA impregnated alumina

  16. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  17. α particle induced scintillation in dense gaseous argon: emission spectra and temporal behavior of its ionic component

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1980-01-01

    The scintillation induced by α particles in dense gaseous argon (above 1 atm) has been studied. The electric field dependence of the scintillation, shows that the second continuum (centred around 1270A) stems from the neutral as well as from the ionic species, initially created by the impinging particle. Intensity decay curves and emission spectra of these neutral excitation and ionic components were determined. Time constants suggest that the recombination mechanism is responsible for a delayed formation of the second continuum states, 1 Σ + sub(u) and 3 Σ + sub(u). The third continuum of the emission spectra, which spreads at longer wavelengths, from 1600A to 2800A, is field independent

  18. BVOC emissions from 2 Asian Eucalyptus species,E.camadulensis and E.robusta

    Science.gov (United States)

    Tsui, J.; Guenther, A. B.; Chan, C. K.; Lau, A. P.

    2009-12-01

    Eucalyptus species dominate native forests in Australia and are planted over vast regions in Asia and other continents for afforestation and for pulp due to their fast growth rates. However, they have also been identified as high emitters of biogenic volatile organic compounds (BVOCs). BVOCs, when emitted to the atmosphere, react to form air pollutants such as ozone (O3) and secondary organic aerosols (SOA). The large areas of Eucalyptus forests in Australia and Asia, and high BVOC emission rates of Eucalyptus species, imply a potential significant effect of BVOC emissions from Eucalyptus on the air quality of these regions. A better understanding of BVOC emissions from this genus is thus needed. Here we present data of BVOC measurements from E.camadulensis and E.robusta. BVOC emissions of the 2 Eucalyptus species were measured by a branch enclosure approach in an environmental chamber, in which light and temperature were carefully controlled to mimic their changes throughout the day under natural conditions. E. camadulensis was found to emit isoprene, α-pinene, camphene and limonene, while E. robusta was found to emit isoprene, α-pinene, β-pinene, α-phellandrene, 3-carene and ocimene. Diurnal variations in BVOC emissions from the 2 species were observed. The 2 Eucalyptus species were also treated with methyl jasmonate (MeJA), a plant hormone which has found to induce elevated BVOC emissions similar to response to insect attacks in other plant species. The emission profiles of the 2 species before and after MeJA treatment were contrasted to examine the effects of the MeJA on their BVOC emissions. Acknowledgment: This work was supported by the General Research Fund of the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 610909).

  19. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 2. Draft environmental statement

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, W. H.

    1976-06-01

    The need for additional uranium enrichment facilities and the environmental impacts of the add-on gaseous diffusion plant proposed for the Portsmouth Gaseous Diffusion Plant are discussed. A detailed description of the proposed facilities is included and unavoidable adverse environmental effects, possible alternatives, and anticipated benefits from the proposed facilities are considered. The flora and fauna of the area are tabulated and possible effects of air and water pollution on aquatic and terrestrial ecosystems are postulated. The extent of anticipated noise impact on the vicinity and the anticipated extent of civic envolvement are discussed. (CH)

  20. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 2. Draft environmental statement

    International Nuclear Information System (INIS)

    1976-06-01

    The need for additional uranium enrichment facilities and the environmental impacts of the add-on gaseous diffusion plant proposed for the Portsmouth Gaseous Diffusion Plant are discussed. A detailed description of the proposed facilities is included and unavoidable adverse environmental effects, possible alternatives, and anticipated benefits from the proposed facilities are considered. The flora and fauna of the area are tabulated and possible effects of air and water pollution on aquatic and terrestrial ecosystems are postulated. The extent of anticipated noise impact on the vicinity and the anticipated extent of civic envolvement are discussed

  1. Bench-scale and full-scale studies of nitric oxides reduction by gaseous fuel reburning

    International Nuclear Information System (INIS)

    Su, S.; Xiang, J.; Sun, L.S.; Hu, S.; Zhu, J.M.

    2008-01-01

    Nitrogen oxides (NOx) emissions from coal-fired boilers are significant contributors to atmospheric pollution. China has specified more rigorous legal limits for NOx emissions from power plants. As a result of the need to reduce NOx emissions, cost-effective NOx reduction strategies must be explored. This paper presented detailed experimental studies on a gaseous fuel reburning process that was performed in a 36 kilowatt bench-scale down-fired furnace to define the optimal reburning operating conditions when different Chinese coals were fired in the furnace. In addition, the combustion system of a 350 megawatt full-scale boiler was retrofitted according to the experimental results. Finally, the gaseous fuel reburning was applied to the retrofitted full-scale boiler. The purpose of the study was to obtain a better understanding of the influence of the key parameters on nitric oxide (NO) reduction efficiency of the reburning process and demonstrate the gaseous fuel reburning on a 350 MWe coal-fired boiler in China. The paper described the experimental procedure with particular reference to the experimental facility and measurement; a schematic diagram of the experimental system; experimental fuels; and characteristics of coals for the reburning experiments. Results that were presented included influence of reburn zone residence time; influence of gaseous reburn fuel per cent; influence of excess air coefficient; and unburned carbon in fly ash. It was concluded that both an above 50 per cent NO reduction efficiency and low carbon loss can be obtained by the gaseous fuel reburning process under the optimal operating conditions. 20 refs., 5 tabs., 10 figs

  2. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  3. Vibration signature analysis of compressors in the gaseous diffusion process for uranium enrichment

    International Nuclear Information System (INIS)

    Harbarger, W.B.

    1975-01-01

    Continuous operation of several thousand axial-flow and centrifugal compressors is vital to the gaseous diffusion process for uranium enrichment. Vibration signature analysis using a minicomputer-based Fast Fourier Transform Analyzer is being applied to the evaluation and surveillance of compressor performance at the Portsmouth Gaseous Diffusion Plant. Three areas of application include: (1) new blade design and prototype compressor evaluation; (2) corrective and preventive maintenance of machinery components; and (3) evaluation of machinery health. The present system is being used to monitor signals from accelerometers mounted on the load-bearing housings of 16 on-line compressors. These signals are transmitted by hard-wire to the analyzer for daily monitoring. A program for expansion of this system to monitor more than a thousand compressors and automation of the signature comparison process is planned for all three gaseous diffusion plants operated for the United States Energy Research and Development Administration. (auth)

  4. Chapter 4 Gaseous Elemental Mercury in the Ambient Atmosphere

    DEFF Research Database (Denmark)

    Ariya, Parisa A.; Skov, Henrik; Grage, Mette M L

    2008-01-01

    Understanding the kinetics and mechanisms associated with the atmospheric chemistry of mercury is of great importance to protecting the environment. This review will focus on theoretical calculations to advance understanding of gas phase oxidation of gaseous elemental mercury (GEM) by halogen spe...

  5. gaseous emissions from some industries at ama industrial complex ...

    African Journals Online (AJOL)

    user

    2015-08-11

    Aug 11, 2015 ... air quality standards. Therefore, it is recommended that these companies should determine appropriate control measures to reduce these toxic emissions. Key words: Toxic gaseous emissions, type, concentrations, Ama Industrial Complex, Nigeria. INTRODUCTION. Air pollutants such as carbon dioxide ...

  6. Fast and Slow Precession of Gaseous Debris Disks around Planet-accreting White Dwarfs

    Science.gov (United States)

    Miranda, Ryan; Rafikov, Roman R.

    2018-04-01

    Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission-line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales—from decades down to 1.4 year (recently inferred for the debris disk around HE 1349–2305)—are in rough agreement with the rate of general relativistic (GR) precession in the test-particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to 1 {R}ȯ ) gaseous disk mediated by internal stresses (pressure). Here, we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, r in. For small inner radii, {r}in}≲ (0.2{--}0.4) {R}ȯ , the modes are GR-driven, with periods of ≈1–10 year. For {r}in}≳ (0.2{--}0.4) {R}ȯ , the modes are pressure dominated, with periods of ≈3–20 year. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349–2305 is consistent with its small r in. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.

  7. Gossip: Gaseous pixels

    Science.gov (United States)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  8. Gossip: Gaseous pixels

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N. [Nikhef, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)], E-mail: d77@nikhef.nl

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a {sup 55}Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  9. Gossip: Gaseous pixels

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    2007-01-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55 Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated

  10. Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed

    Directory of Open Access Journals (Sweden)

    S. M. Ball

    2010-07-01

    Full Text Available Time profiles of molecular iodine emissions from seven species of seaweed have been measured at high time resolution (7.5 s by direct spectroscopic quantification of the gas phase I2 using broadband cavity enhanced absorption spectroscopy. Substantial differences were found between species, both in the amounts of I2 emitted when the plants were exposed to air and in the shapes of their emission time profiles. Two species of kelp, Laminaria digitata and Laminaria hyperborea, were found to be the most potent emitters, producing an intense burst of I2 when first exposed to air. I2 was also observed from Saccharina latissima and Ascophyllum nodosum but in lower amounts and with broader time profiles. I2 mixing ratios from two Fucus species and Dictyopteris membranacea were at or below the detection limit of the present instrument (25 pptv. A further set of experiments investigated the time dependence of I2 emissions and aerosol particle formation when fragments of L. digitata were exposed to desiccation in air, to ozone and to oligoguluronate stress factors. Particle formation occurred in all L. digitata stress experiments where ozone and light were present, subject to the I2 mixing ratios being above certain threshold amounts. Moreover, the particle number concentrations closely tracked variations in the I2 mixing ratios, confirming the results of previous studies that the condensable particle-forming gases derive from the photochemical oxidation of the plant's I2 emissions. This work also supports the theory that particle nucleation in the coastal atmosphere occurs in "hot-spot" regions of locally elevated concentrations of condensable gases: the greatest atmospheric concentrations of I2 and hence of condensable iodine oxides are likely to be above plants of the most efficiently

  11. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  13. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    Science.gov (United States)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  14. Lung Cancer Mortality among Uranium Gaseous Diffusion Plant Workers: A Cohort Study 1952–2004

    Directory of Open Access Journals (Sweden)

    LW Figgs

    2013-07-01

    Full Text Available Background: 9%–15% of all lung cancers are attributable to occupational exposures. Reports are disparate regarding elevated lung cancer mortality risk among workers employed at uranium gaseous diffusion plants. Objective: To investigate whether external radiation exposure is associated with lung cancer mortality risk among uranium gaseous diffusion workers. Methods: A cohort of 6820 nuclear industry workers employed from 1952 to 2003 at the Paducah uranium gaseous diffusion plant (PGDP was assembled. A job-specific exposure matrix (JEM was used to determine likely toxic metal exposure categories. In addition, radiation film badge dosimeters were used to monitor cumulative external ionizing radiation exposure. International Classification for Disease (ICD codes 9 and 10 were used to identify 147 lung cancer deaths. Logistic and proportional hazards regression were used to estimate lung cancer mortality risk. Results: Lung cancer mortality risk was elevated among workers who experienced external radiation >3.5 mrem and employment duration >12 years. Conclusion: Employees of uranium gaseous diffusion plants carry a higher risk of lung cancer mortality; the mortality is associated with increased radiation exposure and duration of employment.

  15. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  16. Uranium enrichment export control guide: Gaseous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  17. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  18. A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection

    Science.gov (United States)

    Zhang, Zhiyong; Qi, Binbin; Liu, Chengming; Feng, Jianxin; Liu, Jianbei; Shao, Ming; Zhou, Yi; Hong, Daojin; Lv, You; Song, Guofeng; Wang, Xu; You, Wenhao

    2018-05-01

    Application of micro-pattern gaseous detectors to gaseous photomultiplier tubes has been widely investigated over the past two decades. In this paper, we present a double micro-mesh gaseous structure that has been designed and fabricated for this application. Tests with X-rays and UV laser light indicate that this structure exhibits an excellent gas gain of > 7 × 104 and good energy resolution of 19% (full width at half maximum) for 5.9 keV X-rays. The gas gain can reach up to 106 for single electrons while maintaining a very low ion-backflow ratio down to 0.0005. This structure has good potential for other applications requiring a very low level of ion backflow.

  19. Long-range global warming impact of gaseous diffusion plant operation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    1992-09-01

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO 2 emissions), and the consequent global temperature impacts of these scenarios

  20. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    OpenAIRE

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incand...

  1. Process and system for removing sulfur from sulfur-containing gaseous streams

    Science.gov (United States)

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  2. Radioactive effluents, Portsmouth Gaseous Diffusion Plant, calendar year 1982

    International Nuclear Information System (INIS)

    Acox, T.A.; Hary, L.F.; Klein, L.S.

    1983-03-01

    Radioactive discharges from the Portsmouth Gaseous Diffusion Plant are discussed and tabulated. Tables indicate both the location of the discharge and the nuclides discharged. All discharges for 1982 are well below the Radioactive Concentration Guide limits specified in DOE Order 5480.1, Chapter XI. 1 figure

  3. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  4. Development and prospects of the new gaseous detector 'Micromegas'

    International Nuclear Information System (INIS)

    Giomataris, Y.

    1998-01-01

    We report results obtained with the novel gaseous Micromegas detector (MICRO MEsh GAseous Structure), which is under development at Saclay. A simple theory to explain the advantage of the small amplification gap (50-100 μm) is developed. A set of large detectors was exposed during several months in high-intensity particle beams. Full efficiency and a large plateau has been obtained with a 3 mm conversion gap. With a conversion gap as small as 1 mm the efficiency reaches 96 %. A spatial resolution better then 60 μm has been observed with anode strips of 317 μm pitch. Simulations show that with a pitch of 100 μm and the appropriate gas an accuracy of 10 μm and a time resolution of 1 νs is within reach. This development leads to a new generation of cheap position sensitive detectors which would permit high precision tracking or vertexing close to the interaction region, in very high-rate environments. (author)

  5. High-power laser-metal interactions in pressurized gaseous atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Lugomer, S.; Furic, K.; Ivanda, M. [Ruder Boskovic Institute, Zagreb (Croatia); Stipancic, M. [Electrotechnical faculty, Osijek (Croatia); Stubicar, M. [Faculty of natural sciences and mathematics, Zagreb (Croatia); Gamulin, O. [School of medicine, Univ. of Zagreb, Zagreb (Croatia)

    1996-09-01

    Metal surfaces were irradiated in pressurized gaseous atmospheres by a CO{sub 2} laser beam. The gaseous pressures ranged from 2 atm to 6 atm, the energy density of the light beam was about 20-50 J/cm{sup 2} with a power density {approx} 10{sup 9} W/cm{sup 2} and a pulse duration p 150 ns. In the above conditions some new effects were observed. The laser-material interaction occurred in a highly absorptive plasma regime, meaning that the metal surface was effectively screened from the beam. The interaction ended either with plasma adiabatic expansion, in the case of Mo (in O{sub 2}), Te (in N{sub 2}) and T{sub i} (in N{sub 2}), or with plasma explosion, in the case of T{sub i} (in O{sub 2}). The metal surface properties were studied by means of optical analysis, microhardness tests, X-ray diffraction and Raman backscattering.

  6. Rigorous simulations of emitting and non-emitting nano-optical structures

    NARCIS (Netherlands)

    Janssen, O.T.A.

    2010-01-01

    In the next decade, several applications of nanotechnology will change our lives. LED lighting is about to replace the common light bulb. The main advantages are its energy efficiency and long lifetime. LEDs can be much more efficient, when part of the emitted light that is currently trapped in the

  7. Power output and efficiency of beta-emitting microspheres

    International Nuclear Information System (INIS)

    Cheneler, David; Ward, Michael

    2015-01-01

    Current standard methods to calculate the dose of radiation emitted during medical applications by beta-minus emitting microspheres rely on an over-simplistic formalism. This formalism is a function of the average activity of the radioisotope used and the physiological dimensions of the patient only. It neglects the variation in energy of the emitted beta particle due to self-attenuation, or self-absorption, effects related to the finite size of the sphere. Here it is assumed the sphere is comprised of a pure radioisotope with beta particles being emitted isotropically throughout the material. The full initial possible kinetic energy distribution of a beta particle is taken into account as well as the energy losses due to scattering by other atoms in the microsphere and bremsstrahlung radiation. By combining Longmire’s theory of the mean forward range of charged particles and the Rayleigh distribution to take into account the statistical nature of scattering and energy straggling, the linear attenuation, or self-absorption, coefficient for beta-emitting radioisotopes has been deduced. By analogy with gamma radiation transport in spheres, this result was used to calculate the rate of energy emitted by a beta-emitting microsphere and its efficiency. Comparisons to standard point dose kernel formulations generated using Monte Carlo data show the efficacy of the proposed method. Yttrium-90 is used as a specific example throughout, as a medically significant radioisotope, frequently used in radiation therapy for treating cancer. - Highlights: • Range-energy relationship for the beta particles in yttrium-90 is calculated. • Formalism for the semi-analytical calculation of self-absorption coefficients. • Energy-dependent self-absorption coefficient calculated for yttrium-90. • Flux rate of beta particles from a self-attenuating radioactive sphere is shown. • The efficiency of beta particle emitting radioactive microspheres is calculated

  8. Light-Emitting Pickles

    Science.gov (United States)

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  9. Photodetachment in the gaseous, liquid, and solid states of matter

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Datskos, P.G.; Faidas, H.

    1994-01-01

    We have made absolute cross section measurements of laser photodetachment of C 6 F - 6 ions embedded in gaseous tetramethylsilane (TMS) and compared the results at low gas densities with measurements in nonpolar liquids and solids. The measurements indicate that the photodetachment cross section of C 6 F - 6 in gaseous TMS is about three times larger than in liquid TMS. This is rationalized by considering the effect of the medium on both the photoabsorption and the autodetachment processes. The photodetachment cross section in both the gas and the liquid exhibits (at least) two maxima due to autodetaching negative ion states. It is argued that these are due to σ*→σ* transitions in C 6 F - 6 . The relative positions of these ''superexcited'' anionic states did not change appreciably in going from the gas to the liquid and the solid, indicating similar influences of the medium on them. As expected, the photodetachment threshold in the condensed phase is shifted to higher energies compared to the gaseous phase. This shift is consistent with recent photoelectron studies of photodetachment of C 6 F - 6 clusters. The present study clearly shows that the photodetachment from negative ions embedded in all states of matter proceeds directly or indirectly via negative ion autodetaching states, and that for nonpolar media, the effect of the medium can be accounted for by considering the macroscopic properties of the medium described by its dielectric constant ε and refractive index n

  10. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  11. Aging phenomena in gaseous detectors - perspectives from the 2001 workshop

    CERN Document Server

    Hohlmann, M; Tesch, N; Titov, M

    2002-01-01

    High-Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors, and resistive plate chambers--each with their own specific aging characteristics--have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. The 2001 workshop provided a forum to review the progress since 1986 in understanding aging effects and to exchange recent experiences. A summary of the main results reported at the 2001 workshop is presented providing a systematic review of aging effects in state-of-the-art detectors.

  12. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes

  13. Measuring volatile organic compounds and stable isotopes emitted from trees and soils of the Biosphere 2 Rainforest

    Science.gov (United States)

    Meraz, J. C.; Meredith, L. K.; Van Haren, J. L. M.; Volkmann, T. H. M.

    2017-12-01

    Rainforest trees and soils play an important role in volatile organic compound (VOC) emissions. It is known that many rainforest tree species emit these organic compounds, such as terpenes, which can have an impact on the atmosphere and can be indicative of their metabolic functions. Some VOCs also absorb infrared radiation at wavelengths at which water isotopes are measured with laser spectrometers. Normal concentrations are not high enough for ambient sampling, but increased concentrations resulting from soil and plant samples extracted using equilibrium methods affect observed isotope ratios. There is thus a need to characterize volatile emissions from soil and plant samples, and to develop better methods to account for VOC interference during water isotope measurements. In this study, we collected soil and leaf samples from plants of the Biosphere 2 Rainforest Biome, a mesocosm system created to stimulate natural tropical rainforest habitats . Volatile concentrations were measured using a Gasmet DX4015 FTIR analyzer and a custom sampling system with sulfur hexafluoride (SF6) used as a tracer gas to test for leakage, and a commercial laser spectrometer was used for isotopic analysis. We determined that the different types of tree species emit different kinds of VOCs, such as isoprenes, alcohols, and aldehydes, that will potentially have to be accounted for. This study will help build the understanding of which organic compounds are emitted and develop new methods to test for water isotopes and gas fluxes in clear and precise measures. Such measures can help characterize the functioning of environmental systems such as the Biosphere 2 Rainforest Biome.

  14. Building and commissioning of a setup to study ageing phenomena in gaseous detectors

    International Nuclear Information System (INIS)

    Abuhoza, A.; Schmidt, H.R.; Biswas, S.; Frankenfeld, U.; Hehner, J.; Schmidt, C.J.

    2016-01-01

    In high-rate heavy-ion experiments, gaseous detectors encounter big challenges in terms of degradation of their performance due to a phenomenon called ageing. A setup for high precision ageing studies has been constructed and commissioned at the GSI detector laboratory. The setup as well as the gas system have been carefully optimized to reach a high sensitivity for ageing effects. Two different materials have been examined for their influence on gaseous detectors: RTV-3145 and Gerband 705. The details of the construction of the ageing test setup and the test results will be presented.

  15. Building and commissioning of a setup to study ageing phenomena in gaseous detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abuhoza, A., E-mail: aabuhoza@kacst.edu.sa [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany); King Abdulaziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Goethe-Universität, Frankfurt (Germany); Schmidt, H.R. [Eberhard-Karls-Universität, Tübingen (Germany); Biswas, S. [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Frankenfeld, U.; Hehner, J.; Schmidt, C.J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany)

    2016-07-11

    In high-rate heavy-ion experiments, gaseous detectors encounter big challenges in terms of degradation of their performance due to a phenomenon called ageing. A setup for high precision ageing studies has been constructed and commissioned at the GSI detector laboratory. The setup as well as the gas system have been carefully optimized to reach a high sensitivity for ageing effects. Two different materials have been examined for their influence on gaseous detectors: RTV-3145 and Gerband 705. The details of the construction of the ageing test setup and the test results will be presented.

  16. Characterization of gaseous species in scanning atmospheric rf plasma with transmission infrared spectroscopy

    International Nuclear Information System (INIS)

    Kim, Seong H.; Kim, Jeong Hoon; Kang, Bang-Kwon

    2008-01-01

    A scanning atmospheric radio-frequency (rf) plasma was analyzed with transmission infrared (IR) spectroscopy. The IR analyses were made for the plasmas used for hydrophobic coating deposition and superhydrophobic coating deposition processes. Since the rf plasma was generated in a small open space with a high gas flow rate in ambient air, the density of gas-phase molecules was very high and the plasma-generated reactive species seemed to undergo various reactions in the gas phase. So, the transmission IR spectra of the scanning atmospheric rf plasma were dominated by gas-phase reaction products, rather than plasma-generated intermediate species. In the CH 4 /He plasma used for hydrophobic coating deposition, C 2 H 6 , C 2 H 2 , and a small amount of C 2 H 4 as well as CO were detected in transmission IR. The intensities of these peaks increased as the rf power increased. The CO formation is due to the activation of oxygen and water in the air. In the CF 4 /H 2 /He plasma used for deposition of superhydrophobic coatings, C 2 F 6 , CF 3 H, COF 2 , and HF were mainly detected. When the H 2 /CF 4 ratio was ∼0.5, the consumption of CF 4 was the highest. As the H 2 /CF 4 ratio increased higher, the C 2 F 6 production was suppressed while the CF 3 H peak grew and the formation of CH 4 were detected. In both CH 4 /He and CF 4 /H 2 /He plasma systems, the undissociated feed gas molecules seem to be highly excited vibrationally and rotationally. The information on plasma-generated reactive species and their reactions was deduced from the distribution of these gas-phase reaction products

  17. Correlation and prediction of gaseous diffusion coefficients.

    Science.gov (United States)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  18. Charge amplitude distribution of the Gossip gaseous pixel detector

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, Cora; Schmitz, Jurriaan; Smits, Sander M.; Timmermans, J.; Timmermans, J.; Visschers, J.L.

    2007-01-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few

  19. Model for absorption and release of gaseous materials by forest canopies

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1976-01-01

    A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere

  20. Mevva ion source operated in purely gaseous mode

    International Nuclear Information System (INIS)

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-01-01

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O + and O 2 + ), nitrogen (N + and N 2 + ), argon (Ar + ) and carbon dioxide (C + , CO 2 + , O + and O 2 + ) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 (micro)A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations

  1. Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules

    Science.gov (United States)

    Ishikawa, Atsushi; Kamata, Masahiro; Nakai, Hiromi

    2016-07-01

    The harmonic solvation model (HSM) was applied to the solvation of gaseous molecules and compared to a procedure based on the ideal gas model (IGM). Examination of 25 molecules showed that (i) the accuracy of ΔGsolv was similar for both methods, but the HSM shows advantages for calculating ΔHsolv and TΔSsolv; (ii) TΔSsolv contributes more than ΔHsolv to ΔGsolv in the HSM, i.e. the solvation of gaseous molecules is entropy-driven, which agrees well with experimental understanding (the IGM does not show this); (iii) the temperature dependence of Henry's law coefficient was correctly reproduced with the HSM.

  2. Impact of the volume of gaseous phase in closed reactors on ANC results and modelling

    Science.gov (United States)

    Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise

    2016-04-01

    The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system

  3. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  4. Separation of gaseous air pollutants using membrane contactors

    Science.gov (United States)

    Sverak, T.; Bulejko, P.; Ostrezi, J.; Kristof, O.; Kalivoda, J.; Kejik, P.; Mayerova, K.; Adamcik, M.

    2017-10-01

    This work deals with the separation of CO2 gaseous pollutant from gas mixtures to a water solution using the laboratory contactor. The laboratory set process parameters showed the rate of carbon dioxide transition through the interface in a so promising level the contactor separators can be considered as a very promising pathway to reduce the content of this greenhouse gas from the air.

  5. Trends and new developments in gaseous detectors

    International Nuclear Information System (INIS)

    Hoch, M.

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors

  6. Trends and new developments in gaseous detectors

    Science.gov (United States)

    Hoch, M.

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  7. Trends and new developments in gaseous detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, M. [CERN, Geneva 23 (Switzerland)]. E-mail: michael.hoch@cern.ch

    2004-12-11

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  8. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  9. Uranium deposit removal from the Oak Ridge Gaseous Diffusion Plant K-25 Building

    International Nuclear Information System (INIS)

    Ladd, L.D.; Stinnett, E.C. Jr.; Hale, J.R.; Haire, M.J.

    1993-01-01

    The Oak Ridge Gaseous Diffusion Plant went into operation as the first plant to separate uranium by the gaseous diffusion process. It was built during World War II as part of the U.S. Army Corps of Engineers' Manhattan Project. Its war-time code name was K-25, which was also the name of the first uranium separation building constructed at the installation. The K-25 building was considered an engineering miracle at the time of its construction. Built in a U shape ∼1 mile long and 400 ft wide, it housed complex and unique separation equipment. Despite its size and complexity, it was made fully operational within <2 yr after construction began. The facility operated successfully for more than 20 yr until it was placed in a standby mode in 1964. It is now clear the K-25 gaseous diffusion plant will never again be used to enrich uranium. The U.S. Department of Energy, therefore, has initiated a decontamination and decommission program. This paper discusses various procedures and techniques for addressing critical mass, uranium deposits, and safeguards issues

  10. [A novel yellow organic light-emitting device].

    Science.gov (United States)

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules.

  11. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  12. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, R. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)]. E-mail: romain.ganter@psi.ch; Bakker, R.J. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Gough, C. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Paraliev, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Pedrozzi, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Le Pimpec, F. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Rivkin, L. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Wrulich, A. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)

    2006-09-15

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 {mu}m, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect.

  13. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Huang, Wei, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816 (China)

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  14. THE INFLUENCE OF SELECTED GASEOUS FUELS ON THE COMBUSTION PROCESS IN THE SI ENGINE

    OpenAIRE

    FLEKIEWICZ, Marek; KUBICA, Grzegorz

    2017-01-01

    Summary. This paper presents the results of SI engine tests, carried out for different gaseous fuels. The analysis carried out made it possible to define the correlation between fuel composition and engine operating parameters. The tests covered various gaseous mixtures: methane with hydrogen from 5% to 50% by volume and LPG with DME from 5% to 26% by mass. The first group, considered as low-carbon-content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in thos...

  15. Transference system of gaseous fluoride compounds for infrared spectrofotometric analysis

    International Nuclear Information System (INIS)

    Prado, L.

    1988-07-01

    A vacuum line design for transference of gaseous fluoride compounds involved in the uranium hexafluoride infrared analysis is presented. The text include specific comments about the characteristics of each component and about the possibilities of its acquisition in the national market. (author) [pt

  16. Fabrication of HTR fuel elements by a gaseous impregnation process

    International Nuclear Information System (INIS)

    Blin, J.C.; Berthier, J.; Devillard, J.

    1976-01-01

    The results obtained with the gaseous impregnation process are described. The successive steps of the fabrication in their present state of realization are given together with the results obtained after irradiation. A comparison between this process and a classical method is presented

  17. The feasibility of the liberalization of the russian gaseous industry

    International Nuclear Information System (INIS)

    Locatelli, C.

    2002-11-01

    This paper deals with the main lines of the russian gaseous industry reform, Gazprom. The historical aspect and the objectives are discussed. After this presentation the author analyzes the uncertainties of the reform implementing, the constraints and the liberalization feasibility. (A.L.B.)

  18. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  19. Elementary electron-molecule interactions and negative ion resonances at subexcitation energies and their significance in gaseous dielectrics

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1977-01-01

    Recent knowledge on low-energy (mostly approximately less than 10 eV) electron-molecule interaction processes in dilute and in dense gases is synthesized, discussed, and related to the breakdown strength of gaseous dielectrics. Optimal design of multicomponent gaseous insulators can be made on the basis of such knowledge

  20. Production of gaseous or vaporous fuels from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1951-05-16

    A process for the production of gaseous or vaporous fuels from solid carbonaceous materials consists of subjecting the materials in separate zones to at least three successive thermal treatments at least two of which are carried out at different temperature levels. The materials being maintained in zones in the form of beds of finely divided particles fluidized by the passage of gases or vapors upwardly there-through, and recovering product vapors or gases overhead. The total hot gaseous or vaporous effluent and entrained solids from one of the zones is passed directly without separation to another of the zones situated closely adjacent to and vertically above the first named zone in the same vessel, and the heat required in at least one of the thermal treatment zones is supplied at least in part as the sensible heat of residual solids transferred from a thermal treatment zone operated at a higher temperature.

  1. Growth of planetisimals in a gaseous ring

    International Nuclear Information System (INIS)

    Hourigan, K.

    1981-01-01

    The aggregation of planetesimals in a gaseous ring leads to the development of a dominant body amongst the planetesimal population. The presence of the gas in the form of a differentially rotating ring serves to constrain the orbits of the planetesimals and grains to within a thin toroidal region through the action of gas drag. This situation allows for the efficient aggregation of bodies and, as a result of the low resultant relative velocites, the minimization of collisional fragmentation effects

  2. EURODIF: the uranium enrichment by gaseous diffusion

    International Nuclear Information System (INIS)

    Rougeau, J.P.

    1981-01-01

    During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt

  3. Identification and quantification of priority species from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zheng, L.; Hlavacek, T. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Laboratories

    1996-07-01

    The objective is to quantify and characterize emissions from pulverized coal combustion of seven coals and the circulating fluidized bed combustion of four coals. The species of particular interest are sulphur, nitrogen, chlorine, arsenic, mercury, lead, cadmium, potassium, and sodium. The Facility for Analysis of Chemical Thermodynamics (F{asterisk}A{asterisk}C{asterisk}T) method is used to predict type and amount of priority species. Prediction is made for combustion with and without the presence of limestone. The results show that the combustion technology used influences the amount of priority species emitted. 16 tabs., 3 apps.

  4. Fabrication of White Organic Light Emitting Diode Using Two Types of Zn-Complexes as an Emitting Layer.

    Science.gov (United States)

    Kim, Dong-Eun; Kwon, Young-Soo; Shin, Hoon-Kyu

    2015-01-01

    We have studied white OLED using two types of Zn-complexes as an emitting layer. We synthesized brand new two emissive materials, Zn(HPQ)2 as a yellow emitting material and Zn(HPB)2 as a blue emitting material. The Zn-complexes are low-molecular compounds and stable thermally. The fundamental structures of the fabricated OLED was ITO/NPB (40 nm)/Zn(HPB)2 (30 nm)/Zn(HPQ)2/LiF/Al. We varied the thickness of the Zn(HPQ)2 layer by 20, 30, and 40 nm. When the thickness of the Zn(HPQ)2 layer was 20 nm, the white emission was achieved. The maximum luminance was 12,000 cd/m2 at a current density of 800 mA/cm2. The CIE coordinates of the white emission were (0.319, 0.338) at an applied voltage of 10 V.

  5. Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Quebec

    International Nuclear Information System (INIS)

    Lahoutifard, Nazafarin; Poissant, Laurier; Scott, Susannah L.

    2006-01-01

    One fate of gaseous elemental mercury (GEM) in the Arctic has been identified as gas phase oxidation by halogen-containing radicals, leading to abrupt atmospheric mercury depletion concurrent with ozone depletion. Rapid deposition of oxidized mercury leads to snow enrichment in mercury. In this report, we describe experiments that demonstrate the ability of snow to directly scavenge atmospheric mercury. The study was conducted at Kuujjuarapik, Quebec, Canada (latitude 55 o 17'N). A mercury depletion event (MDE) caused the mercury concentration in the surface snow of the coastal snowpack to double, from (9.4 ± 2.0) to (19.2 ± 1.7) ng/L. Independent of the MDE, mercury concentrations increased five-fold, from (10.0 ± 0.1) to (51.4 ± 6.0) ng/L, upon spiking the snow with 500 μM hydrogen peroxide under solar irradiation. Total organic carbon in the spiked irradiated snow samples also decreased, consistent with the formation of strongly oxidizing species. The role of the snowpack in releasing GEM to the atmosphere has been reported; these findings suggest that snow may also play a role in enhancing deposition of mercury

  6. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1993-04-01

    Under contract DE-AC21-92MC29116, SRI International will develop a unique new instrument that will be capable of providing real-time (< l minute), quantitative, chemical characterization of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument will be capable of detecting and identifying volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup activities. The instrument will be unique in its ability to detect and quantify in real-time these diverse pollutants in both vapor and particulate form. The instrument to be developed under this program will consist of several major components: (1) an isokinetic sampler capable of operating over a wide range of temperatures (up to 500 K) and flow rates; (2) a high pressure to low pressure transition and sampling region that efficiently separates particles from vapor-phase components for separate, parallel analyses; (3) two small mass spectrometers, one optimized for organic analysis using a unique field ionization source and one optimized for particulate characterization using thermal pyrolysis and electron-impact ionization (EI); and (4) a powerful personal computer for control and data acquisition

  7. Radioactive airborne species formed in the air in high energy accelerator tunnels

    International Nuclear Information System (INIS)

    Kondo, K.

    2005-01-01

    Many radioactive airborne species have been observed in the air of high energy accelerator tunnels during machine operation. Radiation protection against these induced airborne radioactivities is one of the key issues for radiation safety, especially at high-energy and high-intense proton accelerators such as the J-PARC (Japan Proton Accelerator Research Complex, Joint project of KEK and JAERI), which is now under construction at the TOKAI site of JAERI. Information on the chemical forms and particle sizes of airborne radioactivities is essential for the estimation of internal doses. For that purpose, the study on radioactive airborne species formed in the air of beam-line tunnels at high-energy accelerators have been extensively conducted by our group. For Be-7, Na-24, S-38, Cl-38,-39, C-11, and N-13, formed by various types of nuclear reactions including nuclear spallation reactions, their aerosol and gaseous fractions are determined by a filter technique. A parallel plate diffusion battery is used for the measurement of aerosol size distributions, and the formation of radioactive aerosols is explained by the attachment of radionuclides to ambient non-radioactive aerosols which are formed through radiation induced reactions. The chemical forms of gaseous species are also determined by using a selective collection method based on a filter technique. A review is given of the physico-chemical properties of these airborne radionuclides produced in the air of accelerator beam-line tunnels.

  8. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

    Science.gov (United States)

    Coleman, Gavin A. L.; Papaloizou, John C. B.; Nelson, Richard P.

    2017-09-01

    The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1-10 au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find the following. (I) Planets with 5 M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8 M⊕ with the planet orbiting at 10 au. (II) Accretion is more efficient on to 10 M⊕ and 15 M⊕ cores. For orbital radii ap ≥ 0.5 au, 15 M⊕ cores always experienced runaway gas accretion. For ap ≥ 5 au, all but one of the 10 M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap = 0.1 au. (III) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15 M⊕ at ≲0.1 au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.

  9. Study on radioactive release of gaseous and liquid effluents during normal operation of AP1000

    International Nuclear Information System (INIS)

    Gong Quan; Zhou Jing; Liu Yu

    2014-01-01

    The gaseous and liquid radioactive releases of pressurized water reactors plant during normal operation are an important content of environmental impact assessment and play a significant role in the design of nuclear power plant. According to the design characters of AP1OOO radioactive waste management system and the study on the calculation method and the release pathways, the calculation model of the gaseous and liquid radioactive releases during normal operation for AP1OOO are established. Base on the established calculation model and the design parameters of AP1000, the expected value of gaseous and liquid radioactive releases of AP1OOO is calculated. The results of calculation are compared with the limits in GB 6249-2011 and explain the adder that is included tu account for anticipated operational occurrences, providing a reference for environmental impact assessment of pressurized water reactor. (authors)

  10. Estimation of radionuclide releases in atmosphere from Cernavoda NPP based on continuous gaseous effluent monitoring

    International Nuclear Information System (INIS)

    Bobric, E.; Murgoci, S.; Popescu, I.; Ibadula, R.

    2001-01-01

    Monitoring of gaseous effluents from Cernavoda NPP is performed to assess the environmental impact of the plant operation. The results of the monitoring program are used to evaluate the population doses in order to ensure that the emissions of radionuclides in air are below regulatory limits and radiation doses are maintained ALARA. It complements, but is independent from the Operational Environmental Monitoring Program for Cernavoda NPP. Gaseous effluent monitors provide continuous indication of the radioactivity content in atmospheric emissions. Except for noble gases, these monitors also collect samples for later detailed analysis in the station Health Physics Laboratory. This paper presents the main equipment and the results of the gaseous effluents monitoring program in order to assess the impact of Cernavoda NPP operation and to predict the future releases as function of radionuclides concentrations in CANDU systems, based on the identified trends.(author)

  11. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    International Nuclear Information System (INIS)

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  12. Adsorption of gaseous RuO4 by various sorbents. II

    International Nuclear Information System (INIS)

    Vujisic, L.; Nikolic, R.

    1983-01-01

    Sorption of gaseous RuO 4 on impregnated Alcoa Alumina H-151, impregnated charcoal, silica gel and HEPA filter was investigated. The results obtained on various sorbents are compared and discussed in connection with possibilities to use the chosen material in air cleaning systems

  13. Gaseous products generated by radiation degradation of N,N-diethylhydroxylamine aqueous solution

    International Nuclear Information System (INIS)

    Wang Jinhua; Wang Shengxiu; Bao Borong; Li Zhen; Li Chun; Zheng Weifang; Zhang Shengdong

    2008-01-01

    In this paper, gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied. The results show that by 10-1000 kGy irradiation of the solution in DEHA concentration of 0.1-0.5 mol·L -1 , the gaseous products were mainly hydrogen, methane, ethane and ethene. The volume fraction of hydrogen did not change much with different concentrations of DEHA. The volume fraction of methane and ethane decreased, but that of ethene increased, with increasing DEHA concentration. The volume fraction of hydrogen, methane and ethane increased with the dose. The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration. (authors)

  14. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-09-15

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m{sup 2}, driving voltage was 4.4 V, and current density was 2.4 mA/cm{sup 2}. A white OLED component was then manufactured by doping red dopant [Os(bpftz){sub 2}(PPh{sub 2}Me){sub 2}] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE{sub x,y} of (0.31,0.35) at a luminance of 1000 cd/m{sup 2}, with a maximum luminance of 15,600 cd/m{sup 2} at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons.

  15. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-01-01

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m 2 , driving voltage was 4.4 V, and current density was 2.4 mA/cm 2 . A white OLED component was then manufactured by doping red dopant [Os(bpftz) 2 (PPh 2 Me) 2 ] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE x,y of (0.31,0.35) at a luminance of 1000 cd/m 2 , with a maximum luminance of 15,600 cd/m 2 at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons

  16. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Three processes are discussed for separating tritium from gaseous and aqueous effluent systems: separation in the gas phase using Pd-25 wt percent Ag alloy diffusion membranes; electrolytic separation in the aqueous phase using ''bipolar'' electrodes; and the countercurrent exchange of tritium-containing hydrogen gas with water on catalytic surfaces combined with separation by direct electrolysis

  17. Distribution of metals between particulate and gaseous forms in a volcanic plume

    Science.gov (United States)

    Hinkley, T.K.

    1991-01-01

    In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.

  18. EVALUATION OF GASEOUS EMISSIONS FROM THE RĂDĂUŢI MUNICIPAL LANDFILL

    Directory of Open Access Journals (Sweden)

    Marinela PETRESCU

    2011-03-01

    Full Text Available Our study presents the evaluation of gaseous emissions generated by a non-compliant municipal landfill after its closure (municipal landfill Rădăuţi. To this end we measured and interpreted the characteristics of gaseous emissions captured in two monitoring boreholes made on the deposit surface (F1 and F2. The main components of landfill gas are CH4 and CO2, and in lower proportions O2, N2 and nitrogen oxides, and also traces of H2S and CO. Their concentrations were measured using a portable gas analyzer GA type 2000Plus, which recorded simultaneously temperature and pressure data of the landfill gas. The high concentration of about 60% CH4 and approximately 39% CO2 in the landfill gas captured in two different areas (F1 and F2 shows the polluting character of those emissions with a direct impact on the environmental component "air", due to the greenhouse effect produced by those two components. Moreover, the characteristics of the measured gaseous emissions (a CH4 content above 50%, a 2-3 l / h flow rate indicates they have significant energy potential and represent a possible source of renewable energy.

  19. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  20. Neutron and thermal dynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    van Dam, H.; Kuijper, J.C.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1989-01-01

    In this paper neutron kinetics and thermal dynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focused on the properties of the fuel gas, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  1. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  2. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants

    NARCIS (Netherlands)

    Dobben, van H.F.; Wamelink, G.W.W.; Braak, ter C.J.F.

    2001-01-01

    A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to

  3. Chemistry of gaseous lower-valent actinide halides. Technical progress report

    International Nuclear Information System (INIS)

    Hildenbrand, D.L.

    1984-01-01

    Objective is to provide thermochemical data for key actinide halide and oxyhalide systems. Progress is reported on bond dissociation energies of gaseous ThCl 4 , ThCl 3 , ThCl 2 , and ThCl; bond dissociation energies of ruthenium fluorides; and mass spectroscopy of UF 6

  4. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    Science.gov (United States)

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  5. Toxicity studies of inhaled beta-emitting radionuclides - Status report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F F; Boeker, B B; Gillett, N A; Griffith, W C; Lundgren, D L; McClellan, R O; Muggenburg, B A; Snipes, M B

    1988-12-01

    The effects of beta-emitting radionuclides inhaled in either a relatively soluble form ({sup 90}SrCl{sub 2}, {sup 144}CeCl{sub 3}, {sup 91}yl{sub 3}, or {sup 137}CsCl) or in a relatively insoluble form ({sup 90}Y, {sup 91}Y, {sup 144}Ce or {sup 90}Sr in fused aluminosilicate particles [FAP]) have been studied in laboratory animals. The results showed that the total beta dose and the dose-rate pattern can modify both the neoplastic and non-neoplastic effects of inhaled beta-emitting radionuclides. In addition, the solubility and chemical characteristics of the radionuclides influence which organs are affected. Effects are seen primarily in organs where the radionuclide is ultimately accumulated, e.g., lung, bone, liver, or tracheobronchial lymph nodes. In addition, effects may be seen in organs where there is little accumulation, but where the radiation dose may still be high, e.g., nasal epithelium and heart. Studies of inhaled {sup 144}Ce-FAP in four different species showed that, compared to mice and dogs, lung tumor risk factors are very low for Syrian hamsters and high for rats. Studies of mice, Syrian hamsters, rats, and dogs repeatedly exposed to aerosols of {sup 144}Ce-FAP showed that lung tumor incidence correlates better with cumulative dose to the lung than with dose rate. Most of the studies in this program are nearing completion and full analyses are in progress. (author)

  6. Liquid and Gaseous Waste Operations Department annual operating report, CY 1995

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1996-03-01

    This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support

  7. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery

    Science.gov (United States)

    Fernandes, Y.; Bry, A.; de Persis, S.

    2018-06-01

    As hazardous situations can occur during the life of a Li-ion battery, it is of great importance to understand its behavior under abusive conditions (mechanical, thermal or electrical). In particular, the study of overcharge, which consists of forcing a current through the cell, can be very helpful in improving battery safety. Very few studies in the literature have focused on the chemical reaction mechanism responsible for failure during overcharge. This is, however, of great interest because a Li-ion battery can produce reactions in a sealed container and is thus a highly reactive system. Here, experimental approaches are employed to understand the reaction mechanisms that occur during overcharge testing. Experiments consist of studying the overcharge kinetics of a commercial battery at an initial state of charge of 100%. The battery is maintained in a known volume and gaseous samples are withdrawn both at the end of the test and continuously during the test. The main gaseous species are then identified and quantified by gas phase chromatography coupled with mass spectrometry and FTIR spectroscopy. This experimental study is completed by a numerical investigation to determine the combustion parameters of the exhaust gases using a detailed reaction mechanism associated with a numerical code.

  8. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu

    2015-12-22

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  9. Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid

    Science.gov (United States)

    Zhan, Ying; Ginder-Vogel, Matthew; Shafer, Martin M.; Rudich, Yinon; Pardo, Michal; Katra, Itzhak; Katoshevski, David; Schauer, James J.

    2018-01-01

    The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)2). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.

  10. Progress in GEM-based gaseous photomultipliers

    CERN Document Server

    Chechik, R; Breskin, Amos; Buzulutskov, A F; Guedes, G P; Mörmann, D; Singh, B K

    2003-01-01

    We discuss recent progress in gaseous photomultipliers (GPMTs) comprising UV-to-visible spectral range photocathodes (PCs) coupled to multiple Gas Electron Multipliers (GEM). The PCs may be either semitransparent or reflective ones directly deposited on the first-GEM surface. These detectors provide high gain, even in noble gases, are sensitive to single photons, have nanosecond time resolution, and offer good localization. The operation of CsI-based GPMTs in CF sub 4 opens new applications in Cherenkov detectors, where both the radiator and the photosensor operate in the same gas. The latest results on sealed visible-light detectors, combining bialkali PCs and Kapton-made GEMs are presented.

  11. IAEA decadal activities in the field of radioactive gaseous waste management

    International Nuclear Information System (INIS)

    Plumb, G.R.

    1991-01-01

    The IAEA has long recognized that gaseous waste management is vital in the design and safe operation of all nuclear facilities such that in the decade of the 1980's the IAEA program covered the important aspects of the entire field. The activities reviewed in this paper were marked at the outset by a comprehensive international symposium on the subject in February 1980 organized by the IAEA jointly with the Nuclear Energy Agency of the OECD when the detailed state-of-the-art was established in 43 papers. In the interim, experts have been convened in IAEA sponsored meetings to result in sixteen technical documents which included summaries of three substantial Co-ordinated Research Programs. Early IAEA activities paid particular attention to management of gas radionuclides which from a matured nuclear industry, could be judged to build-up to long-term sources of irradiation for regional and global populations. Mid-term ongoing activities in handling and retention of gaseous radionuclides arising from abnormal operations in nuclear power plants were given much emphasis following the Chernobyl accident. In the latter years the IAEA activities included detailed examinations of the design and operation of gas cleaning systems for the range of nuclear facilities. Technical reports on gaseous waste management were issued relating to high-level liquid waste conditioning plants (including control of semi-volatiles), nuclear power plants, low- and intermediate-level radioactive materials handling facilities and radioactive waste incinerators

  12. Thermodynamic properties of cesium in the gaseous phase

    International Nuclear Information System (INIS)

    Vargaftik, N.B.; Voljak, L.D.; Stepanov, V.G.

    1985-01-01

    Tables of the thermodynamic properties of caesium in the gaseous phase are presented for a wide range of temperature and pressure. The thermodynamic properties include: enthalpy, entropy, specific heat, specific volume, sound velocity and compressibility factor. The values have been calculated from pressure-volume-temperature measurements by various authors. Experimental apparatus to determine these measurements is described, together with an outline of the method employed to process the results, and the error estimates. (U.K.)

  13. Demister apparatus for gaseous wastes carrying radioactive aerosols

    International Nuclear Information System (INIS)

    Meline, F.G.; Richter, R.J.

    1983-01-01

    In the nuclear industry, more precisely in the field of spent fuel reprocessing, the cleaning of the gaseous wastes, before evacuation, should be realized with a device designed in order to take full account of the constraints that are inherent in the radioactive media. The French Atomic Authority (CEA), in collaboration with the Societe Generale pour les Techniques Nouvelles, have studied and developed types of demister for the nuclear field having good cleaning properties

  14. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface

    Directory of Open Access Journals (Sweden)

    Dhan Prasad Gautam

    2016-06-01

    Full Text Available Abstract Background Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. Methods A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 % on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota’s summer-fall climatic condition. Air and manure sampling was conducted five times at a 20–30 day intervals. Results Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. Conclusions It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  15. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface.

    Science.gov (United States)

    Gautam, Dhan Prasad; Rahman, Shafiqur; Borhan, Md Saidul; Engel, Chanda

    2016-01-01

    Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA) and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 %) on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S) from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota's summer-fall climatic condition. Air and manure sampling was conducted five times at a 20-30 day intervals. Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  16. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    International Nuclear Information System (INIS)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-01-01

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO 2 ) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m 2 s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and

  17. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Tolunay, Doganay [Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul (Turkey); Odabasi, Mustafa [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Elbir, Tolga, E-mail: tolga.elbir@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey)

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO{sub 2}) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m{sup 2} s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta

  18. Multicriteria approach to interpret the variability of the levels of particulate matter and gaseous pollutants in the Madrid metropolitan area, during the 1999-2012 period

    Science.gov (United States)

    Salvador, P.; Artíñano, B.; Viana, M. M.; Alastuey, A.; Querol, X.

    2015-05-01

    The evolution of the mean levels of particulate matter (PM) and gaseous pollutants recorded in the Madrid metropolitan area from 1999 to 2012, were investigated focussing on the impact of mitigation strategies and economic scenarios. Temporal trends have shown that SO2, CO, NO, PM10 and NO2 levels at Madrid kerbside and urban-background sites have been decreasing over the 1999-2012 period, with statistical significance. A small contribution to the annual decreasing rates of SO2, NO and NO2 obtained at these sites could be attributed to the reduction in the regional background levels. The reduction in the emissions of atmospheric pollutants from specific sources of the urban agglomeration, explained most of the annual decreasing rates obtained at the kerbside and urban-background sites. From 1999 to 2007 a reduction of the emissions from road traffic and residential heating was produced, as a consequence of the implementation of a number of management strategies promoted and adopted by European and national public administrations. In contrast, from 2008 to 2012 a deep decrease in fuel consumption and a reduction of construction-demolition and roadwork activities took place in the Madrid metropolitan area, as a consequence of the economic recession. The expected overcoming of the economic crisis within the next few years, will presumably give rise to similar levels of PM and gaseous pollutants as those existing previously to the crisis period. The introduction of new Euro 6/VI vehicles which emit considerably less NOx than previous generation diesel vehicles, as well as the implementation of strategies aimed at reducing resuspended mineral dust from road traffic and construction-demolition activities are thus encouraged.

  19. Emitted Power of Jupiter Based on Cassini CIRS and VIMS Observations

    Science.gov (United States)

    Li, Liming; Baines, Kevin H.; Smith, Mark A.; West, Robert A.; Perez-Hoyos, Santiago; Trammel, Harold J.; Simon-Miller, Amy A.; Conrath, Barney J.; Gierasch, Peter J.; Orton, Glenn S.; hide

    2012-01-01

    The emitted power of Jupiter and its meridional distribution are determined from observations by the Composite Infrared Spectrometer (CIRS) and Visual and Infrared Spectrometer (VIMS) onboard Cassini during its flyby en route to Saturn in late 2000 and early 2001. Jupiter's global- average emitted power and effective temperature are measured to be 14.10+/-0.03 W/sq m and 125.57+/-0.07 K, respectively. On a global scale, Jupiter's 5-micron thermal emission contributes approx. 0.7+/-0.1 % to the total emitted power at the global scale, but it can reach approx. 1.9+/-0.6% at 15degN. The meridional distribution of emitted power shows a significant asymmetry between the two hemispheres with the emitted power in the northern hemisphere 3.0+/-0.3% larger than that in the southern hemisphere. Such an asymmetry shown in the Cassini epoch (2000-01) is not present during the Voyager epoch (1979). In addition, the global-average emitted power increased approx. 3.8+/-1.0% between the two epochs. The temporal variation of Jupiter's total emitted power is mainly due to the warming of atmospheric layers around the pressure level of 200 mbar. The temporal variation of emitted power was also discovered on Saturn (Li et al., 2010). Therefore, we suggest that the varying emitted power is a common phenomenon on the giant planets.

  20. Direct measurement of gaseous activities by diffusion-in long proportional counter method

    International Nuclear Information System (INIS)

    Yoshida, M.; Yamamoto, T.; Wu, Y.; Aratani, T.; Uritani, A.; Mori, C.

    1993-01-01

    Direct measurement of gaseous activities by the diffusion-in long proportional counter method (DLPC method) was studied. The measuring time without end effect was estimated by observing the behavior of 37 Ar in the counter and was long enough to carry out the accurate activity measurement. The correction for wall effect was also examined on the basis of the measured and calculated correction factors. Among the tested gases of methane, P10 gas and propane, P10 gas was made clear to be a suitable counting gas for the DLPC method because of good diffusion properties and small wall effect. This method is quite effective for standardization of gaseous activities used for tracer experiments and calibration works of radioactive gas monitoring instruments. (orig.)

  1. Gaseous 83mKr generator for KATRIN

    Science.gov (United States)

    Sentkerestiová, J.; Dragoun, O.; Lebeda, O.; Ryšavý, M.; Sturm, M.; Vénos, D.

    2018-04-01

    Monoenergetic conversion electrons from the 83mKrKr isomeric state have been proven to be useful in the calibration of several tritium neutrino mass and dark matter experiments. In this paper the design and characteristics of the gaseous 83mKrKr generator, including the 83Rb/83mKrKr source behavior in tritium, for the KATRIN experiment are presented. Using Si(Li) and silicon drift detectors (SDD) detectors, the half-life of the 83mKrKr isomeric state was measured to be 1.8620 ± 0.0019 h.

  2. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  3. Transfer of gaseous iodine from atmosphere to rough rice, brown rice and polished rice

    International Nuclear Information System (INIS)

    Sumiya, Misako; Uchida, Shigeo; Muramatsu, Yasuyuki; Ohmomo, Yoichiro; Yamaguchi, Shuho; Obata, Hitoshi.

    1987-01-01

    Experiments were carried out in order to obtain information required for establishing transfer coefficients of gaseous iodine (I 2 ) to rough rice, brown rice and polished rice. The gaseous iodine deposited on young rice plants before the heading period was scarcely found in the rough rice harvested at the full ripe stage. The biological half life of iodine in hull, however, was much slower than that in leaves of 14 days. The translocation of iodine from leaves and stalks to rough rice was not clearly recognized. Therefore, it was deduced that iodine found in brown rice mainly should originate from that deposited on the hull. The distribution ratios of iodine between rough rice and brown rice, and between brown rice and polished rice were 100:4 and 100:30 on 100 grains basis, respectively. If average normalized deposition velocity (V d(m) ) or derived deposition velocity (V s ) are given, the transfer coefficients of gaseous iodine to rough rice (TF r ), brown rice (TF b ) and polished rice (TF p ) could be calculated. (author)

  4. Micropore structure stabilization in organosilica membranes by gaseous catalyst post-treatment

    NARCIS (Netherlands)

    Dral, A. Petra; van Eck, Ernst R.H.; Winnubst, Louis; ten Elshof, Johan E.

    2018-01-01

    A post-treatment involving repeated exposure to gaseous HCl alternated with heating is demonstrated to strongly accelerate the recently reported structural evolution in organically bridged silica networks. Films, powders and membranes derived from 1,2-bis(triethoxysilyl)ethane were exposed to

  5. Organic synthesis with short-lived positron-emitting radioisotopes

    International Nuclear Information System (INIS)

    Pike, V.W.

    1988-01-01

    Chemistry with short-lived positron-emitting radioisotopes of the non-metals, principally 11 C, 13 N and 18 F, has burgeoned over the last decade. This has been almost entirely because of the emergence of positron emission tomography (PET) as a powerful non-invasive technique for investigating pathophysiology in living man. PET is essentially an external technique for the rapid serial reconstruction of the spatial distribution of any positron-emitting radioisotope that has been administered in vivo. Such a distribution is primarily governed by the chemical form in which the positron-emitting radioisotope is incorporated, and importantly for clinical research, is often perturbed by physical, biological or clinical factors. Judicious choice of the chemical form enables specific biological information to be obtained. For example, the labelling of glucose with a positron-emitting radioisotope could be expected to provide a radiopharmaceutical for the study of glucose utilisation in both health and disease. (author)

  6. Microstructural and compositional Evolution of Compound Layers during Gaseous Nitrocarburizing

    DEFF Research Database (Denmark)

    Du, Hong; Somers, Marcel A.J.; Ågren, John

    2000-01-01

    Compound layers developed at 848 K during gaseous nitrocarburizing of iron and iron-carbon specimens were investigated for several combinations of N and C activities imposed at the specimen surface by gas mixtures of NH3, N2, CO2 and CO. The microstructural evolution of the compound layer was stu...

  7. Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency

    International Nuclear Information System (INIS)

    Janvijitsakul, Kasama; Kuprianov, Vladimir I.

    2008-01-01

    This experimental work investigated major gaseous (CO and NO x ) and PAH emissions from a 400 kW th fluidized-bed combustor with a cone-shaped bed (referred to as 'conical FBC') firing rice husk with high, over 99%, combustion efficiency. Experimental tests were carried out at the fuel feed rate of 80 kg/h for different values of excess air (EA). As revealed by the experimental results, EA had substantial effects on the axial CO and NO x concentration profiles and corresponding emissions from the combustor. The concentration (mg/kg-ash) and specific emission (μg/kW h) of twelve polycyclic aromatic hydrocarbons (PAHs), acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene, were quantified in this work for different size fractions of ash emitted from the conical FBC firing rice husk at EA = 20.9%. The total PAHs emission was found to be predominant for the coarsest ash particles, due to the effects of a highly developed internal surface in a particle volume. The highest emission was shown by acenaphthylene, 4.1 μg/kW h, when the total yield of PAHs via fly ash was about 10 μg/kW h. (author)

  8. Beta-ray depth dose in tissue equivalent material due to gaseous radioactive effluents from nuclear power plants

    International Nuclear Information System (INIS)

    Schadt, W.W.

    1978-01-01

    The magnitude of the absorbed dose to skin from beta particles emitted by the radionuclides in gaseous effluents from boiling water nuclear power reactors is investigated in this dissertation. Using the radionuclide release patterns of F. Brutschy and the beta dosimetry methods of M. Berger, an equation is derived which gives the dose rate in rads per day when the total radionuclide concentration is one microcurie per gram of air. The coefficients in the equation are presented for a wide range of reactor gas hold-up times (48 minutes to 6 days) and plume environmental transit time (0.5 to 60 minutes). The beta dose rates at the skin surface are found to range from 3.9 to 26.7 rads per day. An upper limit of the relative standard deviation in the dose rate is estimated to be 30 percent. The techniques used to develop the equation are applied to data from the Millstone Nuclear Power Station obtained during the summer of 1972. The beta dose at a site 1.7 miles from the reactor is determined to have been 675 millirads per year at the skin surface and 476 millirads per year at a depth of 200 micrometers. At a site 5.1 miles from the reactor these dose rates were 138 and 100 millirads per year respectively

  9. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  10. Process for the separation of contaminant or mixture of contaminants from a Ch4-comprising gaseous feed streem

    NARCIS (Netherlands)

    2012-01-01

    The invention provides a process for the separation of a contaminant or mixture of contaminants from a CH4-comprising gaseous feed streem, comprising the subsequent steps of: a) passing a CH4-comprising gaseous feed streem comprising the contaminant or the mixture of contaminants in to and through a

  11. Colour tuneable light-emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Eva J.; Melzer, Christian; Seggern, Heinz von [Electronic Materials Department, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In recent years the interest in ambipolar organic light-emitting field-effect transistors has increased steadily as the devices combine switching behaviour of transistors with light emission. Usually, small molecules and polymers with a band gap in the visible spectral range serve as semiconducting materials. Mandatory remain balanced injection and transport properties for both charge carrier types to provide full control of the spatial position of the recombination zone of electrons and holes in the transistor channel via the applied voltages. As will be presented here, the spatial control of the recombination zone opens new possibilities towards light-emitting devices with colour tuneable emission. In our contribution an organic light-emitting field-effect transistors is presented whose emission colour can be changed by the applied voltages. The organic top-contact field-effect transistor is based on a parallel layer stack of acenes serving as organic transport and emission layers. The transistor displays ambipolar characteristics with a narrow recombination zone within the transistor channel. During operation the recombination zone can be moved by a proper change in the drain and gate bias from one organic semiconductor layer to another one inducing a change in the emission colour. In the presented example the emission maxima can be switched from 530 nm to 580 nm.

  12. Dynamical behaviour of gaseous halo in a disk galaxy

    International Nuclear Information System (INIS)

    Ikeuchi, S.; Habe, A.

    1981-01-01

    Assuming that the gas in the halo of a disk galaxy is supplied from the disk as a hot gas, the authors have studied its dynamical and thermal behaviour by means of a time dependent, two-dimensional hydrodynamic code. They suppose the following boundary conditions at the disk. (i) The hot gas with the temperature Tsub(d) and the density nsub(d) is uniform at r=4-12 kpc in the disk and it is time independent. (ii) This hot gas rotates with the stellar disk in the same velocity. (iii) This hot gas can escape freely from the disk to the halo. These conditions will be verified if the filling factor of hot gas is so large as f=0.5-0.8, as proposed by McKee and Ostriker (1977). The gas motion in the halo has been studied for wider ranges of gas temperature and its density at the disk than previously studied. At the same time, the authors have clarified the observability of various types of gaseous haloes and discuss the roles of gaseous halo on the evolution of galaxies. (Auth.)

  13. The Effect of Gaseous Ozone in Infected Root Canal

    Science.gov (United States)

    Ajeti, Nova Nexhmije; Pustina-Krasniqi, Teuta; Apostolska, Sonja

    2018-01-01

    OBJECTIVES: During the treatment of chronic apical periodontitis and pulp necrosis the main role is to irrigate the root canal. AIM: The aim of this in vivo study was to irrigate with 0.9% NaCl (Natrium Chloride), 2.5 % NaOCl (Sodium Hypochlorite Solution, Sigma Aldrich - Germany) and 2% CHX (Chlorhexidine Digluconate Solution, Sigma Aldrich - Spain) combined with Gaseous Ozone (Prozone WH, Austria). MATERIAL AND METHODS: This study was realised in the University Dentistry Clinical Centre of Kosovo (UDCCK), respectively in the Department of Endodontic and Dental Pathology, Dental Branch, Faculty of Medicine, Prishtina, Kosovo. The 40 subjects involved in this study belonged to both genders, in age between 15 -65 years. The sample selection was randomised. The retroalveolar radiography for each patient was taken in the suspected tooth. As a therapeutic plan the authors decided to disinfect the root canal with the irrigants, as follows: 2.5 % NaOCl, 2 % CHX and gaseous ozone. RESULTS: The statistical analyses were based on Kruskal - Vallis test, X - test, DF = 3, r irrigants 0.9%, 2.5 % NaOCl and 2% CHX, it was concluded that the number of colonies of aerobic and anaerobic bacteria was reduced. PMID:29531611

  14. Solid-state photoelectrochemical H2 generation with gaseous reactants

    International Nuclear Information System (INIS)

    Iwu, Kingsley O.; Galeckas, Augustinas; Kuznetsov, Andrej Yu.; Norby, Truls

    2013-01-01

    Photocurrent and H 2 production were demonstrated in an all solid-state photoelectrochemical cell employing gaseous methanol and water vapour at the photoanode. Open circuit photovoltage of around −0.4 V and short circuit photocurrent of up to 250 μA/cm 2 were obtained. At positive bias, photocurrent generation was limited by the irradiance, i.e., the amount of photogenerated charge carriers at the anode. Time constants and impedance spectra showed an electrochemical capacitance of the cell of about 15 μF/cm 2 in the dark, which increased with increasing irradiance. With only water vapour at the anode, the short circuit photocurrent was about 6% of the value with gaseous methanol and water vapour. The photoanode and electrocatalyst on carbon paper support were affixed to the proton conducting membrane using Nafion ® as adhesive, an approach that yielded photocurrents up to 15 times better than that of a cell assembled by hot-pressing, in spite of the overall cell resistance of the latter being up to five times less than that of the former. This is attributed, at least partially, to reactants being more readily available at the photoanode of the better performing cell

  15. Gaseous oxygen and hydrogen embrittlements of the uranium-10 weight % molybdenum alloy

    International Nuclear Information System (INIS)

    Corcos, Jean.

    1979-07-01

    The stress corrosion of an Uranium-10 weight % Molybdenum alloy in high purity gaseous oxygen and hydrogen was studied. Tests were performed with fracture-mechanic specimens, fatigue precracked and carried out in tension with a constant sustained load. The experimental procedure enabled to determine the S.C. morphology during the test, and its kinetics. Tests in gaseous oxygen were performed with p02=0.15 MPa from 0 0 C to 100 0 C, and at 20 0 C for p02=0.15, 0.15.10 -2 and 0.15.10 -4 MPa. Two kinetic laws are proposed. Cracking is transgranular with a quasi-clivage type, and occurs on the (1 1 1) planes of the matrix. Tests in gaseous hydrogen were performed with pH2=0.15 MPa from - 50 0 C to + 135 0 C; for all the tests, even those under no exterior load, there is a failure by S.C. and macroscopic hydruration occurs. We propose a kinetic law, which may display that the hydruration phenomenon rules the S.C. propagation. We have performed the identification of the hydride, as well as the study of the precipitation. These phenomena don't occur with pH2=0.15.10 -2 MPa. The embrittlement is thought to be due to a formation-failure cycle of an hydride precipitate at the crack tip [fr

  16. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment.

    Science.gov (United States)

    Davies, A; Pottage, T; Bennett, A; Walker, J

    2011-03-01

    The recent data for hospital-acquired infections suggest that infection rates for meticillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile are beginning to decrease. However, while there is still pressure to maintain this trend, the resistance of C. difficile spores to standard detergents continues to present a problem for many UK hospitals trying to prevent its spread or control outbreaks. Alternative disinfection technologies such as gaseous decontamination are currently being marketed to the healthcare sector as an alternative/supplement to manual disinfection, and have been shown to be effective in reducing environmental contamination. When used correctly, they offer a complementary technology to manual cleaning that increases the probability of an effective reduction in viability and provides a comparatively uniform distribution of disinfectant. Three gaseous decontamination technologies are examined for their suitability in reducing environmental contamination with C. difficile: gaseous hydrogen peroxide, chlorine dioxide and ozone. Air decontamination and UV-based technologies are also briefly described. We conclude that while there is a role to play for these new technologies in the decontamination of ward surfaces contaminated with C. difficile, the requirement for both a preclean before use and the limited 'in vivo' evidence means that extensive field trials are necessary to determine their cost-effectiveness in a healthcare setting. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. Hybrid light emitting transistors (Presentation Recording)

    Science.gov (United States)

    Muhieddine, Khalid; Ullah, Mujeeb; Namdas, Ebinazar B.; Burn, Paul L.

    2015-10-01

    Organic light-emitting diodes (OLEDs) are well studied and established in current display applications. Light-emitting transistors (LETs) have been developed to further simplify the necessary circuitry for these applications, combining the switching capabilities of a transistor with the light emitting capabilities of an OLED. Such devices have been studied using mono- and bilayer geometries and a variety of polymers [1], small organic molecules [2] and single crystals [3] within the active layers. Current devices can often suffer from low carrier mobilities and most operate in p-type mode due to a lack of suitable n-type organic charge carrier materials. Hybrid light-emitting transistors (HLETs) are a logical step to improve device performance by harnessing the charge carrier capabilities of inorganic semiconductors [4]. We present state of the art, all solution processed hybrid light-emitting transistors using a non-planar contact geometry [1, 5]. We will discuss HLETs comprised of an inorganic electron transport layer prepared from a sol-gel of zinc tin oxide and several organic emissive materials. The mobility of the devices is found between 1-5 cm2/Vs and they had on/off ratios of ~105. Combined with optical brightness and efficiencies of the order of 103 cd/m2 and 10-3-10-1 %, respectively, these devices are moving towards the performance required for application in displays. [1] M. Ullah, K. Tandy, S. D. Yambem, M. Aljada, P. L. Burn, P. Meredith, E. B. Namdas., Adv. Mater. 2013, 25, 53, 6213 [2] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nature Materials 2010, 9, 496 [3] T. Takenobu, S. Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, Phys. Rev. Lett. 2008, 100, 066601 [4] H. Nakanotani, M. Yahiro, C. Adachi, K. Yano, Appl. Phys. Lett. 2007, 90, 262104 [5] K. Muhieddine, M. Ullah, B. N. Pal, P. Burn E. B. Namdas, Adv. Mater. 2014, 26,37, 6410

  18. Natural sources of gaseous pollutants in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P

    1958-01-01

    Various gaseous pollutants including ozone, nitrous oxide, nitric oxide, nitrogen dioxide, methane, hydrogen, formaldehyde, ammonia, hydrogen sulfide, mercaptans, chlorine compounds and free radicals can be formed by natural processes such as ultraviolet photochemical processes in the upper atmosphere and microbiological processes. The modes of formation and destruction of these gases, especially of their concentrations in the atmosphere, and the various reactions in which these gases can participate with each other are discussed in detail. 114 references.

  19. EFFICIENCY OF PRE-TREATMENT OF LEACHATE FROM MUNICIPAL WASTE DUMPS BY GASEOUS DESORPTION (STRIPPING OF AMMONIA

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2017-05-01

    Full Text Available The paper studies the efficiency of pre-treatment of landfill leachate by gaseous desorption of ammonia. The research was done on a municipal non-hazardous waste dump in Krosno (Sub-Carpathian Province, Poland. The pretreatment provided a favorable BOD5/COD ratio in leachate. Also concentrations of 16 PAHs and heavy metals did not exceed the legal limits. However, gaseous desorption of ammonia was insufficiently efficient in recovering ammonia nitrogen from leachate.

  20. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  1. PRODUCTION, MANAGEMENT AND THE ENVIRONMENT SYMPOSIUM: Measurement and mitigation of reactive nitrogen species from swine and poultry production.

    Science.gov (United States)

    Powers, W; Capelari, M

    2017-05-01

    Reactive nitrogen (Nr) species include oxides of nitrogen [N; nitric oxide, nitrogen dioxide and nitrous oxide (NO)], anions (nitrate and nitrite), and amine derivatives [ammonia (NH), ammonium salts and urea]. Of the different Nr species, air emissions from swine and poultry facilities are predominantly NH followed by NO. Excreta emissions are NH, ammonium ions, and urea with trace amounts of nitrate and nitrite. Farm systems and practices that handle manure as a wet product without pH modification favor almost exclusive NH production. Systems and practices associated with dry manure handling and bedded systems emit more NH than NO. Results from a turkey grow-out study estimated that just under 1% of consumed N was emitted as NO from housing, compared with just under 11% emitted as NH. Despite generally less NO emissions from animal housing compared with crop field emissions, NO emissions from housing are often greater than estimated. Lagoon systems emit more NO than either slurry or deep pit swine systems. Deep pit swine buildings emit only one-third the NO that is emitted from deep bedded swine systems. Laying hen, broiler chicken, and turkey buildings emit over 4 times as much NO as swine housing, on a weight-adjusted basis. Critical control points for mitigation center on: 1) reducing the amount of N excreted and, therefore, excreted N available for loss to air or water during housing, manure storage, or following land application of manures; 2) capturing excreted N to prevent release of N-containing compounds to air, water, or soil resources; or 3) conversion or treatment of N-containing compounds to non-reactive N gas.

  2. Portsmouth gaseous diffusion plant environmental monitoring report for calendar year 1975

    International Nuclear Information System (INIS)

    Martin, W.E.; Netzer, W.D.

    1976-01-01

    At the Portsmouth Gaseous Diffusion Plant the ambient atmosphere and all effluent streams are sampled and analyzed regularly for conformance to applicable environmental standards. Although neither the State of Ohio nor the federal government has established standards for fluorides in the ambient atmosphere or in vegetation, these parameters also are monitored because fluoride compounds are used extensively in the gaseous diffusion process. Radioactivity is measured in air, water, food, soil, and sediments; and radiation doses are calculated for the public. All public radiation doses are well within federal standards. Non-radioactive effluent parameters either comply with federal standards, or there are projects planned to allow compliance. A disposal facility to remove chromium from recirculating cooling water blowdown will begin operation in June 1976. Also, pH adjustment facilities for liquid effluents and electrostatic precipitators for a coal-fired steam plant are planned for the near future

  3. Studies of gaseous multiplication coefficient in isobutane using a resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Univ. Catolica de Sao Paulo (PUC/SP), SP (Brazil); Lima, Iara B.; Vivaldini, Tulio C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    Full text: Due to the increasing demands concerning High Energy Physics, Nuclear Medicine and other Nuclear Applications about gaseous detectors operating in high electric fields, many efforts have been done about the choice of filling gases that fulfill these requirements. In this context, the electron transport parameters in gases, as the gaseous multiplication coefficient, play an important role not only for detector design but also for simulation and modeling of discharges, allowing the validation of electron impact cross-sections. In the present work the preliminary measurements of gaseous multiplication coefficient, as function of the reduced electric field (from 36V/cm.Torr until 93V/cm.Torr), for isobutane are presented. Among several filling gases, isobutane is widely used in resistive plate chambers RPCs, and other gaseous detectors, due to its timing properties. Although its characteristics, there is a lack of swarm parameters data in literature for this gas, mainly at high electric fields. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. Considering the ratio between the current (I), measured in avalanche mode, and the primary ionization current (I{sub 0}), the effective multiplication coefficient can be determined, since alpha = d{sup -1}ln(I/I{sub 0}), where d is the gap between the electrodes. In our configuration, the experimental setup consists of two parallel plates enclosure in a stainless steel chamber at gas flow regime. The anode, is made of a high resistivity (2.10{sup 12}{omega}.cm) glass (3mm thick and 14mm diameter), while the cathode is of aluminium (40mm diameter). Primary electrons are produced by irradiating the cathode with a nitrogen laser (LTB MNL200-LD) and are accelerated toward the anode by means of a high voltage power supply (Bertan 225-30). In order to validate the technique and to analyze effects of non-uniformity, results for

  4. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.

    Science.gov (United States)

    Zeidler, J; Lichtenthaler, H K

    2001-06-01

    The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.

  5. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  6. Transfer of gaseous iodine to Tradescantia

    International Nuclear Information System (INIS)

    Nakamura, Yuji; Ohmomo, Yoichiro.

    1984-01-01

    Transfer rates of gaseous elemental iodine and methyliodide from atmosphere to Tradescantia were investigated in relation to supposed genetic mutation due to radioactive iodine released from nuclear facilities. The estimated transfer rate of elemental iodine to the young buds of Tradescantia, which was given as the ratio of iodine uptake rate per unit weight of the plant to the concentration of the element in the air, was approximately 7 x 10 -2 cm 3 /g.sec, about 30 to 40 times higher than that of methyliodide. The contribution of direct deposition of elemental iodine was suggested to be significant, although methyliodide was mainly absorbed by respiration through stomata of the plant. (author)

  7. Diffusion coefficients of gaseous scavengers in organic liquids used in radiation chemistry

    International Nuclear Information System (INIS)

    Luthjens, L.H.; De Leng, H.C.; Warman, J.M.; Hummel, A.

    1990-01-01

    Diffusion coefficients have been measured of some gaseous scavengers commonly used in radiation chemical studies: CO 2 , NH 3 , SF 6 and O 2 in trans-decalin, cyclohexane, isooctane and n-hexane, and CO 2 in cis-decalin, at 25 0 C. A modified diaphragm cell method has been used in order to limit the time needed for a measurement to about 6 h. Analysis of the results yields a simple semi-empirical predictive relation for the diffusion coefficient of a (gaseous) solute A in an organic solvent B. Diffusion coefficients calculated using the simple relation appear to give results in fair agreement with published values, over a range of organic solvents including alcohols, and over a range of temperatures. Some measured and predicted values are discussed with reference to results from the literature. (author)

  8. Starlight excitation of permitted lines in gaseous nebulae

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    The weak heavy element permitted lines observed in the spectra of gaseous nebula have, with only a few exceptions, been thought to be excited only by recombination. The accuracy of this assumption for individual lines in nebula spectra is investigated in detail via model nebula calculations. First, approximations and techniques of calculation are considered for the three possible excitation mechanisms: recombination, resonance fluorescence by the starlight continuum, and resonance fluorescence by other nebular emission lines. Next, the permitted lines of O I as observed in gaseous nebulae are discussed. Thirdly, it is shown that varying combinations of recombination, resonance fluorescence by starlight, and resonance fluorescence by other nebula lines can successfully account for the observed strengths in the Orion Nebula of lines of the following ions: C II, N I, N II, N III, O II, Ne II, Si II, Si III, and S III. A similar analysis is performed for the lines in the spectra of the planetary nebulae NGC7662 and NGC7027, and, with some exceptions, satisfactory agreement between the observed and predicted line strengths is found. Finally, observations of the far red spectra of the Orion Nebula, the planetary nebulae NGC3242, NGC6210, NGC2392, IC3568, IC4997, NGC7027, and MGC7662, and the reflection nebulae IC431 and NGC2068 are reported

  9. Characterization of additives typically employed in EPDM formulations by using FT-IR of gaseous pyrolyzates

    Directory of Open Access Journals (Sweden)

    Natália Beck Sanches

    2014-06-01

    Full Text Available In this study, Fourier transform infrared spectroscopy (FT-IR was employed to investigate the gaseous pyrolysis products of ethylene - propylene - diene rubber (EPDM. The objective was to evaluate the potential of FT-IR analysis of gaseous pyrolyzates (PY-G/FT-IR for characterization of EPDM additives. Two EPDM formulations, containing additives typically employed in EPDM rubbers, were analyzed. Initially, gaseous pyrolysis products from paraffin oil, stearic acid, 2,2,4-trimethyl-1,2-dihydroquinoline, tetramethylthiuram monosulfide (TMTM, tetramethylthiuram disulfide (TMTD, and 2-mercaptobenzothiazole (MBT were characterized separately, and their main absorptions were identified. Subsequently, the gaseous pyrolysis products of raw, unvulcanized, and vulcanized EPDM formulations were analyzed. The similarities observed in the FT-IR spectra of unvulcanized and vulcanized EPDM show that the vulcanization process does not interfere with the pyrolysis products. The identification of the functional groups of the studied additives was possible in both unvulcanized and vulcanized EPDM samples, without solvent extraction. Results also demonstrate that the PY-G/FT-IR technique can identify additives containing sulfur in concentrations as low as 1.4 phr (1.26% in both unvulcanized and vulcanized EPDM. However, the method showed some limitation due to overlapping and to similarities of TMTM and TMTD PY-G/FT-IR spectra, which could not be distinguished from each other. The PY-G/FT-IR technique is a faster and cheaper alternative to the sophisticated techniques usually applied to detection of additives in rubbers.

  10. SOR/72-43 Radiation Emitting Devices Regulations

    International Nuclear Information System (INIS)

    1972-01-01

    These Regulations of 10 February 1972, supplemented by SOR/77-895, lay down the classes of radiation emitting devices for the purposes of the Radiation Emitting Devices Act. They lay down their standards of design and construction and warning sign specifications and provide for the procedure to be followed by inspectors of such devices. The devices include inter alia extra-oral dental x-ray equipment, baggage inspection x-ray devices, laser scanners, television receivers. (NEA)

  11. Gaseous photomultipliers for the readout of scintillators and detection Cherenkov radiation

    International Nuclear Information System (INIS)

    Peskov, V.; Borovik-Romanov, A.

    1993-11-01

    The latest achievements in the development of gaseous detectors for registering UV and visible photons are described. Possible modifications of their design for some particular applications such as the readout of crystal scintillators. noble liquids, fibers and for large area Cherenkov detectors are discussed

  12. 78 FR 65389 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Science.gov (United States)

    2013-10-31

    ..., USEC notified the NRC of its decision to permanently cease uranium enrichment activities at the PGDP... Accession Nos. ML13105A010 and ML13176A151, respectively. NRC's PDR: You may examine and purchase copies of... in Paducah, Kentucky, using the gaseous [[Page 65390

  13. Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps

    Science.gov (United States)

    Kent G. Apostol; Kas Dumroese; Jeremy Pinto; Anthony S. Davis

    2015-01-01

    Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure...

  14. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    KAUST Repository

    Rachidi, Mariam El

    2014-05-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280nm show that the analytes mainly absorb at wavelengths less than 280nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0±1.9, 4.0±1.1 and 3.8±1.0 (in units of 10-11cm3molecule-1s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals. © 2014 Elsevier Ltd.

  15. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    KAUST Repository

    Rachidi, Mariam El; El Masri, A.; Roth, E.; Chakir, A.

    2014-01-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280nm show that the analytes mainly absorb at wavelengths less than 280nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0±1.9, 4.0±1.1 and 3.8±1.0 (in units of 10-11cm3molecule-1s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals. © 2014 Elsevier Ltd.

  16. Toxicologic study of electromagnetic radiation emitted by television and video display screens and cellular telephones on chickens and mice

    International Nuclear Information System (INIS)

    Bastide, M.; Youbicier-Simo, B.J.; Lebecq, J.C.; Giaimis, J.; Youbicier-Simo, B.J.

    2001-01-01

    The effects of continuous exposure of chick embryos and young chickens to the electromagnetic fields (EMFs) emitted by video display units (VDUs) and GSM cell phone radiation, either the whole spectrum emitted or attenuated by a copper gauze, were investigated. Permanent exposure to the EMFs radiated by a VDU was associated with significantly increased fetal loss (47-68%) and markedly depressed levels of circulating specific antibodies (lgG), corticosterone and melatonin. We have also shown that under chronic exposure conditions, GSM cell phone radiation was harmful to chick embryos, stressful for healthy mice and, in this species, synergistic with cancer insofar as it depleted stress hormones. The same pathological results were observed after substantial reduction of the microwaves radiated from the cell phone by attenuating them with a copper gauze. (author)

  17. Strategies to reduce gaseous KCl and chlorine in deposits during combustion of biomass in fluidised bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan

    2012-11-01

    Combustion of a biomass with an enhanced content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. In this work, measures were investigated in order to decrease the risk of superheater corrosion by reducing gaseous KCl and the content of chlorine in deposits. The strategies applied were sulphation of KCl by sulphur/sulphate containing additives (i.e. elemental sulphur (S) and ammonium sulphate (AS)) and co-combustion with peat. Both sulphation of KCl and capture of potassium (K) in ash components can be of importance when peat is used. The experiments were mainly performed in a 12 MW circulation fluidised bed (CFB) boiler equipped for research purposes but also in a full-scale CFB boiler. The results were evaluated by means of IACM (on-line measurements of gaseous KCl), conventional gas analysis, deposit and corrosion probe measurements and ash analysis. Ammonium sulphate performed significantly better than elemental sulphur. Thus the presence of SO{sub 3} (i.e. AS) is of greater importance than that of SO{sub 2} (i.e. S) for sulphation of gaseous KCl and reduction of chlorine in deposits. Only a minor reduction of gaseous KCl was obtained during co-combustion with peat although chlorine in the deposits was greatly reduced. This reduction was supposedly due to capture of K by reactive components from the peat ash in parallel to sulphation of KCl. These compounds remained unidentified. The effect of volatile combustibles on the sulphation of gaseous KCl was investigated. The poorest sulphation was attained during injection of ammonium sulphate in the upper part of the combustion chamber during the lowest air excess ratio. The explanation for this is that SO{sub 3} was partly consumed by side reactions due to the presence of combustibles. These experimental results were supported by modelling, although the

  18. White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S.; Jeong, C.H.; Lim, J.T. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Yeom, G.Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); The National Program for Tera-level Devices, Hawolgok-dong, Sungbuk-gu, Seoul, 136-791 (Korea, Republic of)], E-mail: gyyeom@skku.edu

    2008-04-01

    White top-emitting organic light-emitting diodes (TEOLEDs) composed of one doped emissive layer which emits two-wavelength light though the radiative recombination were fabricated. As the emissive layer, 4,4-bis(2,2-diphenylethen-1-yl)biphenyl (DPVBi) was used as the host material and 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) was added as the dopant material. By optimizing the DCJTB concentration (1.2%) and the thickness of the DPVBi layer (30 nm), the intensity ratio of the two wavelengths could be adjusted for balanced white light emission. By using the device composed of glass/Ag (100 nm)/ITO (90 nm)/2-TNATA (60 nm)/NPB (15 nm)/DPVBi:DCJTB (1.2%, 30 nm)/Alq{sub 3} (20 nm)/Li (1.0 nm)/Al (2.0 nm)/Ag (20 nm)/ITO (63 nm)/SiO{sub 2} (42 nm), the Commission Internationale d'Eclairage (CIE) chromaticity coordinate of (0.32, 0.34) close to the ideal white color CIE coordinate could be obtained at 100 cd/m{sup 2}.

  19. Cytogenetic effects of the gaseous phase of cigarette smoke on root-tip cells of Allium sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K.N.; Benner, J.F.; Sabharwal, P.S.

    1978-02-01

    Chromosomal and mitotic abnormalities induced by the gaseous phase of cigarette smoke on the root-tips of garlic, Allium sativum L., were investigated. Chromosomal abnormalities in the form of breakages, bridges, lags, stickiness, and differential condensation were observed. In addition, multinucleate cells, polyploid cells, and multipolar mitotic divisions were observed. In general the results indicate that the percentage of abnormalities increased when root-tips were exposed to higher numbers of smoke puffs. The effect of the gaseous phase of cigarette smoke on the mitotic index is striking. It shows a slight increase at a low number of puffs and a decrease at high numbers, particularly at the 10, 15 and 20 puff levels. The results indicate that the gaseous phase of cigarette smoke induces significant effects on chromosome structure and number.

  20. Gaseous Detector with Sub-keV Threshold to Study Neutrino Scattering at Low Recoil Energies

    International Nuclear Information System (INIS)

    Solomatin, A. E.; Petukhov, V. V.; Kopylov, A. V.; Orekhov, I. V.

    2014-01-01

    Gaseous detector with a sub-keV electron equivalent threshold is a very perspective tool for the precision measurement of the neutrino magnetic moment and for observing coherent scattering of neutrinos on nuclei. The progress in the development of low noise electronics makes it possible to register the rare events at the threshold less than 100 eV. The construction of the gaseous detector is given and the typical pulses with amplitudes of a few eV observed on a bench scale installation are presented. The possible implications for future experiments are discussed

  1. Methodology for assessment of safety risk due to potential accidents in US gaseous diffusion plants

    International Nuclear Information System (INIS)

    Turner, J.H.; O'Kain, D.U.

    1991-01-01

    Gaseous diffusion plants that operate in the United States represent a unique combination of nuclear and chemical hazards. Assessing and controlling the health, safety, and environmental risks that can result from natural phenomena events, process upset conditions, and operator errors require a unique methodology. Such a methodology has been developed for the diffusion plants and is being utilized to assess and control the risk of operating the plants. A summary of the methodology developed to assess the unique safety risks at the US gaseous diffusion plants is presented in this paper

  2. Treatment of gaseous and airborne radioactive waste

    International Nuclear Information System (INIS)

    Leichsenring, C.H.

    1982-01-01

    Gaseous and airborne radionuclides in the fuel cycle are retained in vessel off-gas filter systems and in the dissolver off-gas cleaning system. Those systems have to meet the regulatory requirements for both normal and accident conditions. From the solutions liquid aerosols are formed during liquid transfer (air lifts, steam jets) or by air sparging or by evaporation processes. During dissolution the volatile radionuclides i.e. 85 Kr, 129 I and 14 C are liberated and enter into the dissolver off-gas cleaning system. Flow sheets of different cleaning systems and their stage of development are described. (orig./RW)

  3. Optical modelling of photoluminescence emitted by thin doped films

    International Nuclear Information System (INIS)

    Pigeat, P.; Easwarakhanthan, T.; Briancon, J.L.; Rinnert, H.

    2011-01-01

    Photoluminescence (PL) spectra emitted by doped films are deformed owing to film thickness-dependent wave interference. This hampers knowing well their PL generating mechanisms as well as designing photonic devices with suitable geometries that improve their PL efficiency. We develop in this paper an energy model for PL emitted by doped films considering the interaction between the wavelength-differing incident standing and emitted waves, their energy transfer in-between, and the interferences undergone by both. The film optical constants are estimated fitting the model to the measured PL. This simple model has thus allowed us to interpret the evolution of PL emitted by Er-doped AlN films prepared on Si substrates by reactive magnetron sputtering. The shapes, the amplitudes, and the illusive sub-spectral features of the PL spectra depend essentially on the film thickness. The model further predicts high sensitivity for PL emitted by non-homogenously doped stacked-films to incident light wavelengths and film-thickness variations. This property has potential applications in tracking wavelength variations and in measuring physical quantities producing thickness variations. This model may be used to optimise PL efficiency of photonic devices through different film geometries and optical properties.

  4. Radiation-emitting Electronic Product Codes

    Data.gov (United States)

    U.S. Department of Health & Human Services — This database contains product names and associated information developed by the Center for all products, both medical and non-medical, which emit radiation. It...

  5. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode

    International Nuclear Information System (INIS)

    Mu Ye; Zhang Zhen-Song; Wang Hong-Bo; Qu Da-Long; Wu Yu-Kun; Yan Ping-Rui; Li Chuan-Nan; Zhao Yi

    2015-01-01

    It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multilayer Cs2CO3/Al/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4 cd/A and 12.1 lm/W at a practical brightness of 1000 cd/m 2 at low voltage of 4 V. (paper)

  6. On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities.

    Science.gov (United States)

    Wang, Gang; Cheng, Shuiyuan; Lang, Jianlei; Li, Song; Tian, Liang

    2016-08-01

    A total of 15 light-duty diesel vehicles (LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons (HC) and nitrogen oxides (NOx) at different speeds, chemical species profiles and ozone formation potential (OFP) of volatile organic compounds (VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOx had been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOx emissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%-45.2%, followed by aromatics and alkenes. The most abundant species were propene, ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity (MIR) method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%-91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and 1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene. Copyright © 2016. Published by Elsevier B.V.

  7. Ultraviolet light-emitting diodes in water disinfection.

    Science.gov (United States)

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  8. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters. (LK)

  9. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters

  10. Method for the removal of a gaseous fluid and arrangement therefore

    NARCIS (Netherlands)

    Ursem, W.N.J.; Marijnissen, J.C.M.

    2011-01-01

    The invention provides a method for the removal of a gaseous fluid comprising (a) applying an electric field between a first electrode arranged to generate a corona discharge and a second electrode, comprising a haze-permeable electrically conductive sieve of a plurality of conductive strands, (b)

  11. A radioactive noble gas quantitative analysis of gaseous effluents from NPP

    International Nuclear Information System (INIS)

    Yanev, Y.; Georgiev, K.; Mavrodiev, V.; Kikarin, B.

    1993-01-01

    The radioactive isotopes of argon, krypton and xenon comprise a substantial part of the gaseous emission of a NPP. A quantitative determination of their specific activity in the controlled area and the gaseous effluents requires a special sampling technique, as well as measurement method. The zeolites and the activated charcoals have a differentiated behaviour towards radioisotopes of argon, krypton and xenon. The isotope fractionation is often a problem, especially with argon and xenon. Some additional difficulties arise due to the irreproductibility of temperature and atmospheric moisture. The present paper describes a method for a spectrometric determination of radioactive noble gases after the cryogenic sampling developed at the Radiochemical laboratory of the Sofia University. The quality control of the method, as well as some special difficulties in its performing are discussed. The estimated minimum detectable activity is 5-10 Bq/m 3 for radioactive noble gases with half-life > 1 hour and sampling time for (resp. gamma-spectrometry) 1 hour. (author)

  12. Alkaline cation complexing with calixarenes in electro-spray / mass spectrometry. Specificity for cesium, influence of solvation on ion species and radiolytic stability of the complexing media

    International Nuclear Information System (INIS)

    Allain, Francoise

    2000-01-01

    Radioactive waste management is a rather difficult issue. In order to reduce the volume of waste storage, particularly the Cs 135 (radioactive half-life 2.3 10 6 years), liquid-liquid extraction experiments have shown that crown calixarenes were able to selectively extract cesium cation in wastes. However, the stability under radiolysis of this type of macrocycle is unknown and is the theme of this thesis. Through the coupling of electro-spray and mass spectrometry, the selectivity of crown calixarenes for cesium has been confirmed. The necessity to optimize operating conditions during the utilization of this ionization mode was acknowledged for a correct interpretation of mass spectrum. The solvent nature, source temperature, applied voltage on the cone, gaseous phase stability and species ionization desorption rate are indeed parameters that should be taken into account. Experiments show that the solution species stability is inverse to the one in gaseous phase. In a solution, species stability is linked to the nature of the solvent (solvating power) whereas in gaseous phase, it is linked to the cationic affinity. In the current radiolysis conditions it has been demonstrated that calixarenes have a stable structure. Degradation products are very largely substitution products and do not hinder the caesium cation complexing. Concerning the quantitative aspect, an estimation was produced, however results are not satisfying: reference product synthesis is in fact necessary in order to establish calibration curves that will allow to precisely dose the various components derived from radiolysis [fr

  13. Organic light emitting device architecture for reducing the number of organic materials

    Science.gov (United States)

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  14. A Study of the Operation of Especially Designed Photosensitive Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Periale, L; Lund-Jensen, B; Pavlopoulos, P; Peskov, Vladimir; Picchi, P; Pietropaolo, F

    2006-01-01

    In some experiments and applications there is need for large-area photosensitive detectors to operate at cryogenic temperatures. Nowadays, vacuum PMs are usually used for this purpose. We have developed special designs of planar photosensitive gaseous detectors able to operate at cryogenic temperatures. Such detectors are much cheaper PMs and are almost insensitive to magnetic fields. Results of systematic measurements of their quantum efficiencies, the maximum achievable gains and long-term stabilities will be presented. The successful operation of these detectors open realistic possibilities in replacing PMs by photosensitive gaseous detectors in some applications dealing with cryogenic liquids; for example in experiments using noble liquid TPCs or noble liquid scintillating calorimeters.

  15. Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan

    Science.gov (United States)

    Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu

    2012-12-01

    Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.

  16. p-i-n Homojunction in Organic Light-Emitting Transistors

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Sawabe, Kosuke; Tsuda, Satoshi; Yomogidao, Yohei; Yamao, Takeshi; Hotta, Shu; Adachi, Chihaya; Iwasa, Yoshihiro

    2011-01-01

    A new method for investigating light-emitting property in organic devices is demonstrated. We apply the ambipolar light-emitting transistors (LETS) to directly observe the recombination zone, and find a strong link between the transistor performance and the zone size. This finding unambiguously

  17. A numerical study on the characteristics of gaseous pollutant absorbed by a moving liquid aerosol

    International Nuclear Information System (INIS)

    Deng, J.J.; Du, Y.G.; Yu, Y.; Ding, J.

    2008-01-01

    Atmospheric pollution involving aerosols is becoming increasingly problematic. Since aerosols are small in size and have large specific surface areas, they can enhance some chemical reactions. Liquid aerosols in the air can absorb gaseous pollutants to adversely affect air quality and human health. This paper studied the characteristics of liquid aerosols and the absorption process of gaseous pollutants. Specifically, the paper presented a model to depict the characteristic of the absorption process of gaseous pollutant by a liquid aerosol with internal circulation and chemical reaction. The model assumed that liquid aerosols retain a spherical shape while moving freely in air. The finite volume method was used to develop an algorithm used to numerically simulate the experimental work of Walcek. The paper also discussed the numerical evaluation of the transient momentum and mass transfer characteristics of sulphur dioxide into a droplet. It was concluded that the chemical reaction increased the rate of mass transfer and the quasi-saturation time of aerosols, which provided a theoretical basis for the heterogeneous reaction of liquid aerosols. 3 refs., 6 figs

  18. A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.

    Science.gov (United States)

    Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2018-03-06

    A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.

  19. Trapping technology for gaseous fission products from voloxidation process

    International Nuclear Information System (INIS)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S.

    2005-05-01

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, 14 C, Kr, Xe, I and 3 H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and 14 C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for 3 H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system

  20. Fundamental study on the simultaneous removal of gaseous and particulate matters in room environment by fibrous filters

    International Nuclear Information System (INIS)

    Otani, Y.; Emi, H.; Mori, J.

    1991-01-01

    In order to achieve simultaneous removal of gaseous and particulate room air pollutants, two approaches were taken. The use of activated carbon fiber (ACF) filter, focusing on the improvement of its particle collection efficiency by using electrostatic charge caused by surface modification with chemicals and enhancement of adsorption capacity by chemical impregnation, and conversion of gaseous components to particles so as to collect them by air filters. It was shown that the immersion of ACF filter in hydrogen peroxide solution brings electrostatic charge on the fibers, which markedly increases the collection efficiency for charged particles. The impregnation of aniline is very effective for the adsorption of acetaldehyde, and by the use of corona discharge, acetaldehyde is decomposed to other gaseous matters, but some olefin compounds in cigarette smoke are converted to particles via a reaction with ozone. (author)

  1. Modelling the gas kinematics of an atypical Ly α emitting compact dwarf galaxy

    Science.gov (United States)

    Forero-Romero, Jaime E.; Gronke, Max; Remolina-Gutiérrez, Maria Camila; Garavito-Camargo, Nicolás; Dijkstra, Mark

    2018-02-01

    Star-forming compact dwarf galaxies (CDGs) resemble the expected pristine conditions of the first galaxies in the Universe and are the best systems to test models on primordial galaxy formation and evolution. Here, we report on one of such CDGs, Tololo 1214-277, which presents a broad, single peaked, highly symmetric Ly α emission line that had evaded theoretical interpretation so far. In this paper, we reproduce for the first time these line features with two different physically motivated kinematic models: an interstellar medium composed by outflowing clumps with random motions and an homogeneous gaseous sphere undergoing solid body rotation. The multiphase model requires a clump velocity dispersion of 54.3 ± 0.6 km s-1 with outflows of 54.3 ± 5.1 km s-1 , while the bulk rotation velocity is constrained to be 348^{+75}_{-48} km s-1. We argue that the results from the multiphase model provide a correct interpretation of the data. In that case, the clump velocity dispersion implies a dynamical mass of 2 × 109 M⊙, 10 times its baryonic mass. If future kinematic maps of Tololo 1214-277 confirm the velocities suggested by the multiphase model, it would provide additional support to expect such kinematic state in primordial galaxies, opening the opportunity to use the models and methods presented in this paper to constrain the physics of star formation and feedback in the early generation of Ly α -emitting galaxies.

  2. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  3. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    Science.gov (United States)

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  4. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kishi, Tadao.

    1990-01-01

    The present invention concerns a radioactive gaseous waste processing device used in BWR power plants. A heater is disposed to the lower portion of a dryer for dehydrating radioactive off gases. Further, a thermometer is disposed to a coolant return pipeway on the exit side of the cooling portion of the dryer and signals sent from the thermometer are inputted to an automatic temperature controller. If the load on the dryer is reduced, the value of the thermometer is lowered than a set value, then an output signal corresponding to the change is supplied from the automatic temperature controller to the heater to forcively apply loads to the dryer. Therefore, defrosting can be conducted completely without operating a refrigerator, and the refrigerator can be maintained under a constant load by applying a dummy load when the load in the dryer is reduced. (I.N.)

  5. Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)

    OpenAIRE

    Titov, M L; Hohlmann, M; Padilla, C; Tesch, N

    2002-01-01

    High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific agi...

  6. White organic light-emitting devices with high color purity and stability

    Science.gov (United States)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-04-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.

  7. Liquefied gaseous fuels safety and environmental control assessment program: a status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Progress is reported in research on the safety and environmental aspects of four principal liquefied gaseous material systems: liquefied natural gas (LNG), liquefied petroleum gas (LPG), hydrogen, and ammonia. Each section of the report has been abstracted and indexed individually. (JGB)

  8. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  9. Absorption of continuum radiation in a resonant expanding gaseous sphere

    International Nuclear Information System (INIS)

    Shaparev, N Y

    2014-01-01

    The paper deals with absorption of external continuum radiation in a self-similarly expanding gaseous sphere. Frequency probability and integral probability of radiation absorption in the resonance frequency range are determined depending on the expansion velocity gradient and thickness of the optical medium. It is shown that expansion results in a reduced optical thickness of the medium and enhanced integral absorption. (paper)

  10. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  11. Evaluation of aluminum capsules according to ISO 9978 to irradiation of gaseous samples in nuclear reactor

    International Nuclear Information System (INIS)

    Costa, Osvaldo L. da.; Tiezzi, Rodrigo; Souza, Daiane C.B.; Feher, Anselmo; Moura, Joao A.; Souza, Carla D.; Moura, Eduardo S.; Oliveira, Henrique B.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M.

    2015-01-01

    Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of gaseous samples. This paper describes a method to fabricate and evaluate aluminum capsules to irradiate gaseous samples in nuclear reactor. A semi-circular slotted die from a hydraulic press head was modified to seal aluminum tubes. The aluminum capsules were subjected to leak detection tests, which demonstrated the accordance with standard ISO 9978. (author)

  12. Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor

    International Nuclear Information System (INIS)

    Symons, E. A.; Clermont, M. J.; Paterson, L. M.; Rolston, J. H.

    1985-01-01

    Hydrogen isotope (e.g. deuterium) exchange from liquid water to a gaseous halohydrocarbon (e.g. fluoroform, CF 3 H-CF 3 D) is obtained at an operating temperature in the range 0 0 to 100 0 C. using a catalytically active mass comprising a porous anion exchange resin in the hydroxide ion form and enriched gaseous halohydrocarbon stream is decomposed by isotope selective photo-decomposition into a first, gaseous stream enriched in the hydrogen isotope, which is removed as a product, and a depleted gaseous halohydrocarbon stream, which is recirculated for enrichment again. The catalytically active mass may, for example, be in the form of resin particles suspended in a fluidized bed or packed as resin particles between sheets wound into a roll. One of the sheets may be corrugated and have open interstices to form a packing in a column which permits countercurrent gas and liquid flow past the resin. Preferably the wound sheets are hydrophilic to retard flooding by the liquid water. The liquid water stream may contain dimethyl sulfoxide (DMSO) added as co-solvent

  13. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  14. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  15. Electron emission induced by atomic collisions in gaseous targets and solids

    International Nuclear Information System (INIS)

    Meckbach, W.

    1988-01-01

    In this work, it is considered only the process of single collision with gaseous targets. The possible inelastic processes are: excitation and ionization of both, target and incident beam. The attention was concentrated to the processes of direct ionization which may give rise to electron emission. (A.C.A.S.) [pt

  16. Liquid and Gaseous Waste Operations Department annual operating report CY 1994

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1995-03-01

    This report presents details about the operation of the liquid and gaseous waste department of Oak Ridge National Laboratory for the calendar year 1994. Topics discussed include; process waste system, upgrade activities, low-level liquid radioactive waste solidification project, maintenance activities, and other activities such as training, audits, and tours

  17. Detectors and Concepts for sub-100 ps timing with gaseous detectors

    CERN Document Server

    Gonzalez-Diaz, D.

    2017-01-01

    We give a short compendium of the main ongoing detectors and concepts capable of performing accurate sub-100 ps timing at high particle fluxes and on large areas, through technologies based on gaseous media. We briefly discuss the state-of-the-art, technological limitations and prospects, and a new bizarre idea.

  18. White top emitting OLED with angle independent emission characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Thomschke, Michael; Freitag, Patricia; Schwartz, Gregor; Nitsche, Robert; Walzer, Karsten; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, Georg-Baehr-Strasse 1, 01062 Dresden (Germany)

    2008-07-01

    The general device structure of a top emitting organic light emitting diode (OLED) consists of several organic layers sandwiched in between two metal contacts, with the top one being semitransparent for light outcoupling reasons. Due to the high reflectivity of the electrodes, strong microcavity effects occur which lead to a preferred emission of light of a certain wavelength with main outcoupling in forward direction. This creates rather narrow emission bands, accompanied by strong spectral shifts upon viewing angle variation. By using an organic capping layer on top of the semitransparent metal contact, this unwanted effect can be reduced. This is important especially for white light emission for the use of OLEDs in future lighting applications. Our optical simulations show that the strong angular dependence of the emission color almost vanishes. To verify the simulations we study white top emitting OLEDs based on an approach which are adapted to the top emitting case.

  19. Light collection optics for measuring flux and spectrum from light-emitting devices

    Science.gov (United States)

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  20. Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases

    Science.gov (United States)

    Lee, Jong Suk; Koros, William J.; Bhuwania, Nitesh; Hillesheim, Patrick C.; Dai, Sheng

    2016-01-12

    A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure. In particular embodiments thereof, cooling water is passed through the refractory hollow fibers containing the IL-functionalized sorbent particles in order to facilitate capture of the gaseous electrophilic species, and then steam is passed through the refractory hollow fibers to facilitate release of the gaseous electrophilic species such that the composite structure can be re-used to capture additional gas.

  1. Synthesis and electroluminescent properties of blue emitting materials based on arylamine-substituted diphenylvinylbiphenyl derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kum Hee; You, Jae Nam; Won, Jiyeon; Lee, Jin Yong [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Seo, Ji Hoon [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2011-10-31

    This paper reports the synthesis and electroluminescent properties of a series of blue emitting materials with arylamine and diphenylvinylbiphenyl groups for applications to efficient blue organic light-emitting diodes (OLEDs). All devices exhibited blue electroluminescence with electroluminescent properties that were quite sensitive to the structural features of the dopants in the emitting layers. In particular, the device using dopant 4 exhibited sky-blue emission with a maximum luminance, luminance efficiency, power efficiency, external quantum efficiency and CIE coordinates of 39,000 cd/m{sup 2}, 12.3 cd/A, 7.45 lm/W, 7.71% at 20 mA/cm{sup 2} and (x = 0.17, y = 0.31) at 8 V, respectively. In addition, a blue OLED using dopant 2 with CIE coordinates (x = 0.16, y = 0.18) at 8 V exhibited a luminous efficiency, power efficiency and external quantum efficiency of 4.39 cd/A, 2.46 lm/W and 2.97% at 20 mA/cm{sup 2}, respectively.

  2. GREEN LIGHT EMITTING TRICOMPONENT LUMINOPHORS OF 2-NAPHTHOL FOR CONSTRUCTION OF ORGANIC LIGHT EMITTING DEVICES

    OpenAIRE

    K. G. MANE , P. B. NAGORE , DR. S. R. PUJARI

    2018-01-01

    This article presents a previous study and incredible progress in basic theoretical modeling, and working for organic light-emitting devices (OLEDs) including preparation and characteristic studies of Organo- Luminescent Materials by conventional solid state reaction technique.

  3. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  4. The UK market for gaseous emissions control equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The report analyses the changes in demand for gaseous emissions control equipment in the United Kingdom over the next 5 years. It discusses the factors affecting demand such as legislation reporting of environmental performance, and economic factors. It looks at environmental expenditure by UK industry. Markets are examined, for VOC abatement systems; thermal incinerators; adsorption equipment; catalytic oxidisers; absorption equipment; biological treatments; cryogenic equipment; SO{sub x} abatement equipment; wet FGD; wet dry FGD, dry scrubbers; NOx abatement systems; selective catalytic reduction; and selective non-catalytic reduction. Profiles are given of 16 leading suppliers.

  5. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    Science.gov (United States)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  6. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    Urban air pollution is becoming a significant global problem, especially for large cities around the world. Traffic emissions contribute significantly to both elevated particle concentrations and to gaseous pollutants in cities. The latter also have the potential of forming more particulate mass via their photochemical oxidation in the atmosphere. The International Agency for Research on Cancer and the US EPA have characterised diesel exhausts as a likely human carcinogen that can also contribute to other health problems. In order to meet the challenges with increased transportation and enhanced greenhouse gas emissions, the European Union have decided on a 10% substitution of traditional fuels in the road transport sector by alternative fuels (e.g. biodiesel, CNG) before the year 2020. However, it is also important to study the influence of fuel switches on other primary pollutants as well as the potential to form secondary aerosol mass. This work focuses on the characterisation of the chemical composition of the gas and the condensed phase of fresh bus emissions during acceleration, in order to mimic the exhaust plume that humans would inhale under realistic conditions. In addition, photochemical aging of the exhaust emissions was achieved by employing a Potential Aerosol Mass (PAM) flow reactor, allowing the characterization of the composition of the corresponding aged emissions. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the chamber. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in these measurements corresponded to a range from 4 to 8 days in the atmosphere. During June and July 2015, a total of 29 buses, 5 diesel, 13 CNG and 11 RME (rapeseed methyl ester), were tested in two different locations with limited influence from other types of emissions and traffic

  7. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    OpenAIRE

    Faïn, X.; Obrist, D.; Hallar, A. G.; Mccubbin, I.; Rahn, T.

    2009-01-01

    The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m

  8. Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities

    International Nuclear Information System (INIS)

    Gray, H.E.

    1993-01-01

    The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy's Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques

  9. Creeping gaseous flows through elastic tube and annulus micro-configurations

    Science.gov (United States)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  10. Fragranced consumer products: Chemicals emitted, ingredients unlisted

    International Nuclear Information System (INIS)

    Steinemann, Anne C.; MacGregor, Ian C.; Gordon, Sydney M.; Gallagher, Lisa G.; Davis, Amy L.; Ribeiro, Daniel S.; Wallace, Lance A.

    2011-01-01

    Fragranced consumer products are pervasive in society. Relatively little is known about the composition of these products, due to lack of prior study, complexity of formulations, and limitations and protections on ingredient disclosure in the U.S. We investigated volatile organic compounds (VOCs) emitted from 25 common fragranced consumer products-laundry products, personal care products, cleaning supplies, and air fresheners-using headspace analysis with gas chromatography/mass spectrometry (GC/MS). Our analysis found 133 different VOCs emitted from the 25 products, with an average of 17 VOCs per product. Of these 133 VOCs, 24 are classified as toxic or hazardous under U.S. federal laws, and each product emitted at least one of these compounds. For 'green' products, emissions of these compounds were not significantly different from the other products. Of all VOCs identified across the products, only 1 was listed on any product label, and only 2 were listed on any material safety data sheet (MSDS). While virtually none of the chemicals identified were listed, this nonetheless accords with U.S. regulations, which do not require disclosure of all ingredients in a consumer product, or of any ingredients in a mixture called 'fragrance.' Because the analysis focused on compounds emitted and listed, rather than exposures and effects, it makes no claims regarding possible risks from product use. Results of this study contribute to understanding emissions from common products, and their links with labeling and legislation.

  11. Influences of packaging design on antimicrobial effects of gaseous chlorine dioxide

    Science.gov (United States)

    Chlorine dioxide (ClO2) gas is an effective surface disinfectant, for it has the ability to reach and inactivate bacterial cells in biofilms which are attached to inaccessible sites on produce surfaces. One of the most promising applications of gaseous ClO2 is to be included in the headspace of foo...

  12. Treatment of concentrated waste for storage - fixation of concentrated gaseous waste

    International Nuclear Information System (INIS)

    Penzhorn, R.D.

    1982-01-01

    Among the gaseous primary radioactive isotopes that may require recovery, immobilization and storage, one has to consider 3 H (tsub(1/2)=12,32 a) and 85 Kr (tsub(1/2)=10,76 a). In this paper the most promising immobilization alternatives developed so far for these radio nuclides are discussed. (orig.)

  13. Salt-Doped Polymer Light-Emitting Devices

    Science.gov (United States)

    Gautier, Bathilde

    Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.

  14. Effects of Laser Printer-Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts.

    Science.gov (United States)

    Pirela, Sandra V; Miousse, Isabelle R; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2016-02-01

    Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. We assessed the biological responses of a panel of human cell lines to PEPs. Three physiologically relevant cell lines--small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)--were exposed to PEPs at a wide range of doses (0.5-100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. The in vitro findings obtained in this study suggest that laser printer-emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders.

  15. Effect of microscale gaseous thermal conduction on the thermal behavior of a buckled microbridge

    International Nuclear Information System (INIS)

    Wang Jiaqi; Tang Zhenan; Li Jinfeng; Zhang Fengtian

    2008-01-01

    A microbridge is a basic micro-electro-mechanical systems (MEMS) device and has great potential for application in microsensors and microactuators. The thermal behavior of a microbridge is important for designing a microbridge-based thermal microsensor or microactuator. To study the thermal behavior of a microbridge consisting of Si 3 N 4 and polysilicon with a 2 µm suspended gap between the substrate and the microbridge while the microbridge is heated by an electrical current fed through the polysilicon, a microbridge model is developed to correlate theoretically the input current and the temperature distribution under the buckling conditions, especially considering the effects of the microscale gaseous thermal conduction due to the microbridge buckling. The calculated results show that the buckling of the microbridge changes the microscale gaseous thermal conduction, and thus greatly affects the thermal behavior of the microbridge. We also evaluate the effects of initial buckling on the temperature distribution of the microbridge. The experimental results show that buckling should be taken into account if the buckling is large. Therefore, the variation in gaseous thermal conduction and the suspended gap height caused by the buckling should be considered in the design of such thermomechanical microsensors and microactuators, which requires more accurate thermal behavior

  16. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    1980-01-01

    A method is specified for the operation of a gaseous diffusion cascade wherein electrically driven compressors circulate a process gas through a plurality of serially connected gaseous diffusion stages to establish first and second countercurrently flowing cascade streams of process gas, one of the streams being at a relatively low pressure and enriched in a component of the process gas and the other being at a higher pressure and depleted in the same, and wherein automatic control systems maintain the stage process gas pressures by positioning process gas flow control valve openings at values which are functions of the difference between reference-signal inputs to the systems, and signal inputs proportional to the process gas pressures in the gaseous diffusion stages associated with the systems, the cascade process gas inventory being altered, while the cascade is operating, by simultaneously directing into separate process-gas freezing zones a plurality of substreams derived from one of the first and second streams at different points along the lengths thereof to solidify approximately equal weights of process gas in the zone while reducing the reference-signal inputs to maintain the positions of the control valves substantially unchanged despite the removal of process gas inventory via the substreams. (author)

  17. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  18. Positron-emitting raionuclides: present and future status

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1979-01-01

    A tabulation of 157 positron-emitting radionuclides that have the physical characteristics deemed appropriate for radiopharmaceutical use in conjunction with positron emission tomography is provided. The most promising radionuclides are within the production capabilities of a variable-energy cyclotron accelerating protons to about 40 MeV and deuterons, helium-3, and helium-4 to compatable energies. To data only 27 positron-emitting radionuclides have been subjected to radiopharmaceutical consideration, whereas only 11 C, 13 N, 15 O, 18 F, 38 K, and 68 Ga have proved to be especially promising. 2 tables

  19. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  20. The SLAC high-density gaseous polarized 3He target

    International Nuclear Information System (INIS)

    Johnson, J.R.; Chupp, T.E.; Smith, T.B.; Cates, G.D.; Driehuys, B.; Middleton, H.; Newbury, N.R.; Hughes, E.W.; Meyer, W.

    1995-01-01

    A large-scale high-pressure gaseous 3 He polarized target has been developed for use with a high-intensity polarized electron beam at the Stanford Linear Accelerator Center. This target was used successfully in an experiment to study the spin structure of the neutron. The target provided an areal density of about 7x10 21 nuclei/cm 2 and operated at 3 He polarizations between about 30% and 40% for the six-week duration of the experiment. ((orig.))