WorldWideScience

Sample records for gaseous mixture comprising

  1. Process for the separation of contaminant or mixture of contaminants from a Ch4-comprising gaseous feed streem

    NARCIS (Netherlands)

    2012-01-01

    The invention provides a process for the separation of a contaminant or mixture of contaminants from a CH4-comprising gaseous feed streem, comprising the subsequent steps of: a) passing a CH4-comprising gaseous feed streem comprising the contaminant or the mixture of contaminants in to and through a

  2. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    Science.gov (United States)

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  3. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  4. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    Science.gov (United States)

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  5. Method for separating gaseous mixtures of matter

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.

    1979-01-01

    Molecules to be separated from a mixture of matter of a chemical component are excited in a manner known per se by narrow-band light sources, and a chemical reaction partner for reacting with these molecules is admixed while supplied with energy by electromagnetic radiation or heating, and as additionally required for making chemical reactions possible. A method is described for separating gaseous mixtures of matter by exciting the molecules to be separated with laser radiation and causing the excited species to react chemically with a reaction partner. It may be necessary to supply additional energy to the reaction partner to make the chemical reaction possible. The method is applicable to the separation of hydrogen isotopes by the bromination of normal methanol in a mixture normal methanol and deuterated methanol; of uranium isotope by the reactions of UF 6 with SF 4 , SiCl 4 , HCl, or SO 2 ; and of boron isotopes by the reaction of BH 3 with NH 3

  6. Reduced detonation kinetics and detonation structure in one- and multi-fuel gaseous mixtures

    Science.gov (United States)

    Fomin, P. A.; Trotsyuk, A. V.; Vasil'ev, A. A.

    2017-10-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one-fuel (CH4/air) and (ii) multi-fuel gaseous mixtures (CH4/H2/air and CH4/CO/air) are developed for the first time. The models for multi-fuel mixtures are proposed for the first time. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier’s principle. Constants of the models have a clear physical meaning. Advantages of the kinetic model for detonation combustion of methane has been demonstrated via numerical calculations of a two-dimensional structure of the detonation wave in a stoichiometric and fuel-rich methane-air mixtures and stoichiometric methane-oxygen mixture. The dominant size of the detonation cell, determines in calculations, is in good agreement with all known experimental data.

  7. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  8. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  9. Reduced chemical kinetic model of detonation combustion of one- and multi-fuel gaseous mixtures with air

    Science.gov (United States)

    Fomin, P. A.

    2018-03-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one hydrocarbon fuel CnHm (for example, methane, propane, cyclohexane etc.) and (ii) multi-fuel gaseous mixtures (∑aiCniHmi) (for example, mixture of methane and propane, synthesis gas, benzene and kerosene) are presented for the first time. The models can be used for any stoichiometry, including fuel/fuels-rich mixtures, when reaction products contain molecules of carbon. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier's principle. Constants of the models have a clear physical meaning. The models can be used for calculation thermodynamic parameters of the mixture in a state of chemical equilibrium.

  10. Numerical simulations of cellular detonation diffraction in a stable gaseous mixture

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available In this paper, the diffraction phenomenon of gaseous cellular detonations emerging from a confined tube into a sudden open space is simulated using the reactive Euler equations with a two-step Arrhenius chemistry model. Both two-dimensional and axisymmetric configurations are used for modeling cylindrical and spherical expansions, respectively. The chemical parameters are chosen for a stable gaseous explosive mixture in which the cellular detonation structure is highly regular. Adaptive mesh refinement (AMR is used to resolve the detonation wave structure and its evolution during the transmission. The numerical results show that the critical channel width and critical diameter over the detonation cell size are about 13±1 and 25±1, respectively. These numerical findings are comparable with the experimental observation and confirm again that the critical channel width and critical diameter differ essentially by a factor close to 2, equal to the geometrical scaling based on front curvature theory. Unlike unstable mixtures where instabilities manifested in the detonation front structure play a significant role during the transmission, the present numerical results and the observed geometrical scaling provide again evidence that the failure of detonation diffraction in stable mixtures with a regular detonation cellular pattern is dominantly caused by the global curvature due to the wave divergence resulting in the global decoupling of the reaction zone with the expanding shock front.

  11. Separation of a multicomponent mixture by gaseous diffusion: modelization of the enrichment in a capillary - application to a pilot cascade

    International Nuclear Information System (INIS)

    Doneddu, F.

    1982-01-01

    Starting from the modelization of gaseous flow in a porous medium (flow in a capillary), we generalize the law of enrichment in an infinite cylindrical capillary, established for an isotropic linear mixture, to a multicomponent mixture. A generalization is given of the notion of separation yields and characteristic pressure classically used for separations of isotropic linear mixtures. We present formulas for diagonalizing the diffusion operator, modelization of a multistage, gaseous diffusion cascade and comparison with the experimental results of a drain cascade (N 2 -SF 6 -UF 6 mixture). [fr

  12. Fluorination of uranium compounds by gaseous bromine trifluoride and a bromine-fluorine mixture

    International Nuclear Information System (INIS)

    Sakurai, Tsutomu

    1976-03-01

    This report summarizes the studies of fluorination of uranium compounds by gaseous BrF 3 and a Br 2 -F 2 mixture, which were carried out in Fluorine Chemistry Laboratory of JAERI in connection with the reprocessing method of nuclear fuels. Although thermodynamically more stable than F 2 , BrF 3 has higher reactivity at relatively low temperatures: fluorination of uranium compounds can be carried out at 100 0 -- 200 0 C by using gaseous BrF 3 . This fluorination temperature is lower than those of F 2 , BrF 5 , ClF and SF 4 , and close to that of ClF 3 . The usage of BrF 3 has however the drawbacks that it requires additional devices to heat the corrosive liquid and to remove Br 2 produced as a byproduct. In order to eliminate the difficulties indicated, a new method of fluorination was developed - the use of a Br 2 -F 2 mixture. Addition of small amounts of Br 2 to the fluorine flow (about 6% in relation to the fluorine concentration) gives marked effects on the rate of fluorination. (auth.)

  13. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  14. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  15. Experimental study of the overpressures generated by the detonation of spherical air-hydrocarbon gaseous mixtures

    International Nuclear Information System (INIS)

    Brossard, J.

    1978-01-01

    The characteristics of the pressure waves transmitted by detonation of gaseous mixtures to the surrounding air were measured by tests made near the ground level in 1 to 54 m 3 spherical balloons containing air-acetylene or air-ethylene mixtures. As concerns the peak overpressure Δp, a theoretical dimensional analysis in accordance with the experimental results shows that Δp can be expressed as a function of two independent variables, which are the radial distance R and the volume V of the balloon . A semi-empirical formula, including ground effects, is proposed and its present validity range is given. (author)

  16. Gaseous carburising of self-passivating Fe–Cr-Ni alloys in acetylene-hydrogen mixtures

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2011-01-01

    temperatures, carbon stabilised expanded austenite develops, which has high hardness, while retaining the corrosion performance of the untreated alloy; for relatively high temperatures, Cr based carbides develop, and eventually, the material deteriorates by metal dusting corrosion.......Gaseous carburising of self-passivating Fe–Cr–Ni alloys in acetylene–hydrogen was investigated for temperatures up to 823 K. Acetylene–hydrogen gas mixtures allow both the activation of the surface and the subsequent carburising at a high and adjustable carburising potential. For relatively low...

  17. Investigations of an excimer laser working with a four-component gaseous mixture He-Kr:Xe-HCl

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik J.

    1991-08-01

    The paper presnts working conditions of an XCI excimer laser untypical gas mixture based on KrzXe instead of pure Xe. Such a choice was influenced by the necessity of Findin9 the way to replace imported and expensive Xe by gaseous components accesible in Poland. Determining the range of changes of laser extrnal parameters which enables its proper work with the new gas mixture was the aim of same investigations results of which are presented in this paper. The laser pulse output energy and the pulse duration as a Function of supply voltage and the mixture composition are presented. The range of proper conditions for the laser working with the new mixture He-Kr:Xe--HC1 was determined. The analysis of experimental results showed that using the new mixture ensures value of energy and pulse duration comparable with the ones obtained for the mixture He-''Xe--HCl. Spectral investigations showed the lack of influence of Kr presence in the mixture on the generation spectrum of the laser. L.

  18. Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them

    International Nuclear Information System (INIS)

    Cooper, H.B.H.

    1984-01-01

    A cyclic process for removing lower valence nitrogen oxides from gaseous mixtures includes treating the mixtures with an aqueous media including alkali metal carbonate and alkali metal bicarbonate and a preoxygen oxidant to form higher valence nitrogen oxides and to capture these oxides as alkali metal salts, expecially nitrites and nitrates, in a carbonate/bicarbonate-containing product aqueous media. Highly selective recovery of nitrates in high purity and yield may then follow, as by crystallization, with the carbonate and bicarbonate alkali metal salts strongly increasing the selectivity and yield of nitrates. The product nitrites are converted to nitrates by oxidation after lowering the product aqueous media pH to below about 9. A cyclic process for removing sulfur oxides from gas mixtures includes treating these mixtures includes treating these mixtures with aqueous media including alkali metal carbonate and alkali metal bicarbonate where the ratio of alkali metal to sulfur dioxide is not less than 2. The sulfur values may be recovered from the resulting carbonate/bicarbonate/-sulfite containing product aqueous media as alkali metal sulfate or sulfite salts which are removed by crystallization from the carbonate-containing product aqueous media. As with the nitrates, the carbonate/bicarbonate system strongly increases yield of sulfate or sulfite during crystallization. Where the gas mixtures include both sulfur dioxide and lower valence nitrogen oxides, the processes for removing lower valence nitrogen oxides and sulfur dioxide may be combined into a single removal/recovery system, or may be effected in sequence

  19. Separation of gas mixtures

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus is described for the separation of a gaseous plasma mixture into components in some of which the original concentration of a specific ion has been greatly increased or decreased, comprising: a source for converting the gaseous mixture into a train of plasma packets; an open-ended vessel with a main section and at least one branch section, adapted to enclose along predetermined tracks the original plasma packets in the main section, and the separated plasma components in the branch sections; drive means for generating travelling magnetic waves along the predetermined tracks with the magnetic flux vector of the waves transverse to each of the tracks; and means for maintaining phase coherence between the plasma packets and the magnetic waves at a value needed for accelerating the components of the packets to different velocities and in such different directions that the plasma of each packet is divided into distinctly separate packets in some of which the original concentration of a specific ion has been greatly increased or decreased, and which plasma packets are collected from the branch sections of the vessels. (author)

  20. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  1. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  2. Assessment of methods for analyzing gaseous mixtures of hydrogen isotopes and helium

    International Nuclear Information System (INIS)

    Attalla, A.; Bishop, C.T.; Bohl, D.R.; Buxton, T.L.; Sprague, R.E.; Warner, D.K.

    1976-01-01

    Mass spectrographic methods have served well in the past to analyze gaseous mixtures of the hydrogen isotopes. Alternate methods of analyses are reviewed which offer wider ranges and variety of isotopic determinations. This report describes possible improvements of the mass spectrographic determinations, gas chromatography, anti-Stokes Raman spectroscopy, microwave-induced optical emission spectroscopy, and methods of measuring tritium using radiation detection devices. Precision, accuracy, limitations, and costs are included for some of the methods mentioned. Costs range from $70,000 for the anti-Stokes Raman spectroscopy equipment, which can determine hydrogen isotopes but not helium, to less than $10,000 for the gas chromatographic equipment, which can determine hydrogen isotopes and helium with precision and accuracy comparable to those of the mass spectrometer

  3. Purification of hydrogen under a free or combined form in a gaseous mixture, by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron Charles, M.

    1988-03-01

    Within the framework of the european fusion program, we are dealing with the purification of hydrogen (tritium) under a free or combined form, from a H 2 , N 2 , NH 3 , CH 4 , O 2 , gaseous mixture. The process consists in cracking the hydrogenated molecules and absorbing the impurities by chemical reactions with uranium, without holding back hydrogen. In the temperature range: 950 K [fr

  4. Thermodynamic parameters and transport coefficients of the U-C-F gas mixture in the steady flow gaseous core fission reactor

    International Nuclear Information System (INIS)

    Berg, M.S. van den.

    1995-01-01

    Thermodynamic parameters and transport coefficients have been calculated for a multicomponent reacting U-C-F gas mixture in the steady flow gaseous core fission reactor. Element abundances are consistent with thermodynamic equilibrium between the gas mixture and a cooled solid graphite wall at 2500 K. Results are presented for various pressures, a fluorine potential of 5.6 and temperatures between 2500 and 7000 K. As a result of dissociation processes of uranium and carbon fluoride compounds, ''effective'' values of thermodynamic parameters and transport coefficients show anomalous behaviour with respect to so-called ''frozen'' values. The chemical reaction energy of the U-C-F gas mixture has been calculated as the driving-force behind the process of fuel redistribution to attain criticality conditions inside a functioning reactor. (author)

  5. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  6. Dissolution of di-2-ethylhexyl phosphates of ree in an octane + octanol mixture under the influence of gaseous ammonia

    International Nuclear Information System (INIS)

    Trifonov, Y.I.; Legin, E.K.; Suglobov, D.N.

    1986-01-01

    The authors find that the solubility of di-2-ethylhexyl phosphates rises considerably under the influence of gaseous ammonia on the solvent-LnA 3 system when a mixture of octane and octanol is used as solvent. The dissolving power of ammonia rises with alcohol concentration and attains the maximum at an alcohol content of ca 20 vol. %. An equation is presented that describes the dependence of the LnA 3 solubility on the partial amonia pressure

  7. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant

  8. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  9. Extruder system and method for treatment of a gaseous medium

    Energy Technology Data Exchange (ETDEWEB)

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  10. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  11. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Liverman, James L.

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  12. A theoretical investigation of gaseous absorption by water droplets from SO2-HNO3-NH3-CO2-HCl mixtures

    Science.gov (United States)

    Adewuyi, Y. G.; Carmichael, G. R.

    1982-01-01

    A physical-chemical model is developed and used to investigate gaseous absorption by water droplets from trace gas mixtures. The model is an extension of that of Carmichael and Peters (1979) and includes the simultaneous absorption of SO2, NH3, HNO3, CO2, and HCl. Gas phase depletion is also considered. Presented results demonstrate that the absorption behavior of raindrops is strongly dependent on drop size, fall distance, trace gas concentrations, and the chemical and physical properties of the constituents of the mixture. In addition, when gas phase depletion is considered, the absorption rates and equilibrium values are also dependent on the precipitation rate itself. Also, the trace constituents liquid phase concentrations may be a factor of six or more lower when gas depletion is considered then when the depletion is ignored. However, the hydrogen ion concentration may be insensitive to the gas phase depletion.

  13. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  14. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  15. A gaseous scintillation counter filled with He3 for neutron spectrometry

    International Nuclear Information System (INIS)

    Baldin, S.A.; Matveev, V.V.

    1962-01-01

    The paper describes a gas plant and gaseous scintillation counter, and gives the results of experiments on the recording and spectrometry of neutron beams using a gaseous scintillation counter filled with a mixture of 10% xenene and 90% helium-3 at an overall pressure of 20 ata. Data are given on the design of the gas plant, which makes it possible to operate the counter continuously over long periods of time, as well as providing the required gas mixtures at overall pressures of up to 60 atm and ensuring constant freedom of the gas from contamination. In addition, the paper presents the results of research on the counter's energy resolution and linearity at different energy levels and indicates its efficiency in gamma fields of intensity up to 3 r/h; the possibility of extending the working energy-range of gaseous scintillation counters filled with helium-3 is also considered. (author) [fr

  16. GAS SEPARATION MEMBRANES COMPRISING PERMEABILITY ENHANCING ADDITIVES

    NARCIS (Netherlands)

    Wessling, Matthias; Sterescu, D.M.; Stamatialis, Dimitrios

    2007-01-01

    The present invention relates to polymer compositions comprising a (co)polymer comprising (a) an arylene oxide moiety and (b) a dendritic (co)polymer, a hyperbranched (co)polymer or a mixture thereof, and the use of these polymer compositions as membrane materials for the separation of gases. The

  17. Purification of free hydrogen or hydrogen combined in a gaseous mixture by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron-Charles, M.; Gilot, B.

    1989-01-01

    Within the framework of the European fusion program, the authors are dealing with the tritium technology aspect. Hydrogen, free or under a combined form within a H 2 , N 2 , NH 3 , O 2 , gaseous mixture, can be purified by chemical reactions with uranium metal. The resulting reactions consist in absorbing the impurities without holding back H 2 . Working conditions have been defined according to two main goals: the formation of stable solid products, especially under hydrogenated atmosphere and the optimization of the material quantities to be used. Thermodynamical considerations have shown that the 950-1300 K temperature range should be suitable for this chemical process. Experiments performed with massive uranium set in a closed reactor at 973 K, have produced hydrogen according to the predicted reactions rates. But they have also pointed out the importance of interferences that might occur in the uranium-gas system, on the gases conversion rates. The comparison between the chemical kinetic ratings of the reactions of pure gases and the chemical kinetic ratings of the reactions of the same gases in mixture, has been set up. It proves that simultaneous reactions can modify the working conditions of the solid products formation, and particularly modify their structure. In this case, chemical kinetic ratings are increased up to their maximal value; that means surface phenomena are favoured as with uranium powder gases reactions. (orig.)

  18. The effect of gaseous ammonia on cobalt perrhenate

    International Nuclear Information System (INIS)

    Maslov, L.P.; Men'shikov, O.D.; Borisov, V.V.; Sorokin, S.I.; Krutovertsev, S.A.; Kharkevich, S.I.; Ivanova, O.M.

    1994-01-01

    The influence of humid air ammonia mixture on crystal pentahydrate of cobalt(2) perrhenate has been studied by the methods of PES, IR spectroscopy thermal analysis and electrophysical measurements. It is shown that with an increase in ammonia content in gaseous phase cobalt perrhenate successively transforms into diaquodiammine-, tetrammine- and μ-dioxo-bis-(tetrammine) derivatives of cobalt. Reversibility of dioxocomplex formation and a correlation between the change in electrophysical properties of crystal sample and change in ammonia content in gaseous phase are pointed out. 16 refs.; 4 figs.; 1 tab

  19. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  20. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  1. Method for the removal of a gaseous fluid and arrangement therefore

    NARCIS (Netherlands)

    Ursem, W.N.J.; Marijnissen, J.C.M.

    2011-01-01

    The invention provides a method for the removal of a gaseous fluid comprising (a) applying an electric field between a first electrode arranged to generate a corona discharge and a second electrode, comprising a haze-permeable electrically conductive sieve of a plurality of conductive strands, (b)

  2. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  3. Microstructural and compositional Evolution of Compound Layers during Gaseous Nitrocarburizing

    DEFF Research Database (Denmark)

    Du, Hong; Somers, Marcel A.J.; Ågren, John

    2000-01-01

    Compound layers developed at 848 K during gaseous nitrocarburizing of iron and iron-carbon specimens were investigated for several combinations of N and C activities imposed at the specimen surface by gas mixtures of NH3, N2, CO2 and CO. The microstructural evolution of the compound layer was stu...

  4. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    International Nuclear Information System (INIS)

    Banach, U.; Tiebe, C.; Huebert, Th.

    2009-01-01

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  5. Separation of gaseous air pollutants using membrane contactors

    Science.gov (United States)

    Sverak, T.; Bulejko, P.; Ostrezi, J.; Kristof, O.; Kalivoda, J.; Kejik, P.; Mayerova, K.; Adamcik, M.

    2017-10-01

    This work deals with the separation of CO2 gaseous pollutant from gas mixtures to a water solution using the laboratory contactor. The laboratory set process parameters showed the rate of carbon dioxide transition through the interface in a so promising level the contactor separators can be considered as a very promising pathway to reduce the content of this greenhouse gas from the air.

  6. An oxyde mixture fuel containing uranium and plutonium dioxides and process to obtain this oxyde mixture

    International Nuclear Information System (INIS)

    Hannerz, K.

    1976-01-01

    An oxide-mixture fuel containing uranium and plutonium dioxides having the slage of spherical, or nearly spherical, oxide-mixture particles with a diameter within the range of from 0.2 to 2 mn charactarized in that each oxide-mixture particles is provided with an outer layer comprising mainly UO2, the thickness of which is at least 0.05; whereas the inner portion of the oxide-mixture particles comprises mainly PUO 2

  7. Methods and compositions for removing carbon dioxide from a gaseous mixture

    Science.gov (United States)

    Li, Jing; Wu, Haohan

    2014-06-24

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  8. THE INFLUENCE OF SELECTED GASEOUS FUELS ON THE COMBUSTION PROCESS IN THE SI ENGINE

    Directory of Open Access Journals (Sweden)

    Marek FLEKIEWICZ

    2017-09-01

    Full Text Available This paper presents the results of SI engine tests, carried out for different gaseous fuels. The analysis carried out made it possible to define the correlation between fuel composition and engine operating parameters. The tests covered various gaseous mixtures: methane with hydrogen from 5% to 50% by volume and LPG with DME from 5% to 26% by mass. The first group, considered as low-carbon-content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in those mixtures realizes the function of the combustion process activator. Thus, hydrogen addition improves energy conversion by about 3%. The second group of fuels is constituted by LPG and DME mixtures. DME mixes perfectly with LPG, and differently than other hydrocarbon fuels, consisting of oxygen as well, which makes the stoichiometric mixture less oxygen demanding. In the case of this fuel an improvement in engine volumetric and overall engine efficiency has been noticed compared with LPG. For the 11% DME share in the mixture an improvement of 2% in the efficiency has been noticed. During the tests, standard CNG–LPG feeding systems have been used, which underlines the utility value of the research. The stand-test results have been followed by combustion process simulation including exhaust forming and charge exchange.

  9. Correlation and prediction of gaseous diffusion coefficients.

    Science.gov (United States)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  10. Thermal electron mobilities in low density gaseous mixtures

    International Nuclear Information System (INIS)

    Dmitriev, O.W.; Tchorzewska, W.; Szamrej, I.; Forys, M.

    1992-01-01

    A new method of obtaining thermal electron mobilities from experimental dependencies observed in the electron swarm is described; the method is suitable for both electron accepting and non-accepting systems. The electron mobilities for CO 2 , CH 4 C 2 H 6 as well as for N 2 , Ar, Xe, Kr and their mixtures with carbon dioxide are obtained. (Author)

  11. System for deuterium-tritium mixture filling the working chamber of a dense plasma focus device

    International Nuclear Information System (INIS)

    Bondar', A.I.; Vyskubov, V.P.; Gerasimov, S.A.

    1981-01-01

    A gas-vacuum system designed for filling the gas-discharge chamber of a plasma focus device with equal-coaponent deuterium-tritium mixture is described. The system consists of a unit for gaseous mixture prepa ration and a unit for mixture absorption and device evacuation. The system provides the gaseous mixture purification of O 2 and N 2 impurities. Final tritium content in the gas-discharge chamber after tritium removal is not greater than 2x10 8 Bq/l. Tritium content in a sealed box in which the device is placed does not exceed 30 Bq/l that is less than limiting safe value. The conclusion is made that the described system design gives an opportunity to begin experimental studies at plasma focus devices with deuterium-tritium mixture [ru

  12. Isotope enrichment effect of gaseous mixtures in standing sound vibration

    International Nuclear Information System (INIS)

    Knesebeck, R.L.

    1984-01-01

    When standing acoustic waves are excited in a tube containing a mixture of two gases, a partial zonal fractioning of the components arises as consequence of mass transport by diffusion, driven by the thermal and pressure gradients which are associeted with the standing waves. This effect is present in each zone corresponding to a quarter wavelength, with the heavier component becoming enriched at the nodes fo the standing waves and deplected at the crests. The magnitude of the enrichment in one of the components of a binary gas mixture is given by Δω=ap 2 /lambda [b + (1-bω)] 2 . Where ω is the mass concentration of the component in the mixture, a and b are parameters which are related to molecular proprieties of the gases, p is the relative pressure amplitude of the standing wave and lambda is its wavelength. For a natural mixture of uranium hexafluorate, with 0.715% of the uranium isotope 340 an enrichment of about 2 x 10 -6 % in the concentration of this isotope is theorecticaly attainable per stage consisting of a quarter wavelenght, when a standing acoustical wave of relative pressure amplitude of 0,2 and wavelenght of 20 cm is used. Since standing acoustical waves are easely excited in gas columns, an isotope enrichment plant made of a cascade of tubes in which standing waves are excited, is presumably feasible with relatively low investment and operation costs. (Author) [pt

  13. THE INFLUENCE OF SELECTED GASEOUS FUELS ON THE COMBUSTION PROCESS IN THE SI ENGINE

    OpenAIRE

    FLEKIEWICZ, Marek; KUBICA, Grzegorz

    2017-01-01

    Summary. This paper presents the results of SI engine tests, carried out for different gaseous fuels. The analysis carried out made it possible to define the correlation between fuel composition and engine operating parameters. The tests covered various gaseous mixtures: methane with hydrogen from 5% to 50% by volume and LPG with DME from 5% to 26% by mass. The first group, considered as low-carbon-content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in thos...

  14. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  15. Process and device for separating a gaseous mixture from isotope compounds

    International Nuclear Information System (INIS)

    Gajewski, W.

    1980-01-01

    The UF 6 -gas mixture is adiabatically expanded through a nozzle and cooled to below 100 K. The emerging gas mixture beam is then totally taken up by radiation technology by a large number of sequentially ignited pulsed lasers of the same or different frequencies. The selective initiation and chemical or physical separation takes place along a path 2 cm long. (DG) [de

  16. The role of multidimensional instabilities in direct initiation of gaseous detonations in free space

    KAUST Repository

    Shen, Hua; Parsani, Matteo

    2017-01-01

    We numerically investigate the direct initiation of detonations driven by the propagation of a blast wave into a unconfined gaseous combustible mixture to study the role played by multidimensional instabilities in direct initiation of stable

  17. Recent Advances in the Characterization of Gaseous and Liquid Fuels by Vibrational Spectroscopy

    Directory of Open Access Journals (Sweden)

    Johannes Kiefer

    2015-04-01

    Full Text Available Most commercial gaseous and liquid fuels are mixtures of multiple chemical compounds. In recent years, these mixtures became even more complicated when the suppliers started to admix biofuels into the petrochemical basic fuels. As the properties of such mixtures can vary with composition, there is a need for reliable analytical technologies in order to ensure stable operation of devices such as internal combustion engines and gas turbines. Vibrational spectroscopic methods have proved their suitability for fuel characterization. Moreover, they have the potential to overcome existing limitations of established technologies, because they are fast and accurate, and they do not require sampling; hence they can be deployed as inline sensors. This article reviews the recent advances of vibrational spectroscopy in terms of infrared absorption (IR and Raman spectroscopy in the context of fuel characterization. The focus of the paper lies on gaseous and liquid fuels, which are dominant in the transportation sector and in the distributed generation of power. On top of an introduction to the physical principles and review of the literature, the techniques are critically discussed and compared with each other.

  18. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    Science.gov (United States)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  19. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1980-01-01

    Bulk condensation and heat transfer in a very hot gaseous mixture that contains a vapor component condensable at high temperature are investigated. A general formulation of the problem is presented in various forms. Analytical solutions for three specific cases involving both one- and two-component two-phase mixtures are obtained. It is shown that a detached fog formation is induced by rapid radiative cooling from the mixture. The formation of radiatively induced fog is found to be an interesting and important phenomenon as it not only exhibits unique features different from the conventional diffusion induced fog, but also greatly enhances heat transfer from the mixture to the boundary. (author)

  20. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters. (LK)

  1. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters

  2. Measurements of ion mobility in argon and neon based gas mixtures

    CERN Document Server

    INSPIRE-00507268

    2017-01-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run$\\,3$ with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility $K$ is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different $\\textrm{CO}_2$ fractions. A decrease of $K$ was measured for increasing water content.

  3. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    Science.gov (United States)

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  4. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  5. Ion chemistry in germane/fluorocompounds gaseous mixtures: a mass spectrometric and theoretical study.

    Science.gov (United States)

    Antoniotti, Paola; Rabezzana, Roberto; Turco, Francesca; Borocci, Stefano; Giordani, Maria; Grandinetti, Felice

    2008-10-01

    The ion-molecule reactions occurring in GeH(4)/NF(3), GeH(4)/SF(6), and GeH(4)/SiF(4) gaseous mixtures have been investigated by ion trap mass spectrometry and ab initio calculations. While the NF(x)(+) (x=1-3) react with GeH(4) mainly by the exothermic charge transfer, the open-shell Ge(+) and GeH(2)(+) undergo the efficient F-atom abstraction from NF(3) and form GeF(+) and F-GeH(2)(+) as the only ionic products. The mechanisms of these two processes are quite similar and involve the formation of the fluorine-coordinated complexes Ge-F-NF(2)(+) and H(2)Ge-F-NF(2)(+), their subsequent crossing to the significantly more stable isomers FGe-NF(2)(+) and F-GeH(2)-NF(2)(+), and the eventual dissociation of these ions into GeF(+) (or F-GeH(2)(+)) and NF(2). The closed-shell GeH(+) and GeH(3)(+) are instead much less reactive towards NF(3), and the only observed process is the less efficient formation of GeF(+) from GeH(+). The theoretical investigation of this unusual H/F exchange reaction suggests the involvement of vibrationally-hot GeH(+). Passing from NF(3) to SF(6) and SiF(4), the average strength of the M-F bond increases from 70 to 79 and 142 kcal mol(-1), and in fact the only process observed by reacting GeH(n)(+) (n=0-3) with SF(6) and SiF(4) is the little efficient F-atom abstraction from SF(6) by Ge(+). Irrespective of the experimental conditions, we did not observe any ionic product of Ge-N, Ge-S, or Ge-Si connectivity. This is in line with the previously observed exclusive formation of GeF(+) from the reaction between Ge(+) and C-F compounds such as CH(3)F. Additionally observed processes include in particular the conceivable formation of the elusive thiohypofluorous acid FSH from the reaction between SF(+) and GeH(4).

  6. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    Science.gov (United States)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  7. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G. P. " Bud" (Inventor)

    2016-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  8. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  9. Gas-centrifuge unit

    International Nuclear Information System (INIS)

    Stark, T.M.

    1977-01-01

    An isotope-enrichment unit is described for separating a gaseous mixture feedstock including a compound of a light nuclear isotope at a predetermined concentration and a compound of a heavy nuclear isotope at a predetermined concentration into at least two unit-output fractions including a waste fraction depleted in the light isotope to a predetermined concentration and a product fraction enriched in the light isotope to a predetermined concentration. The unit comprises a first group of cascades of gas centrifuges, each cascade having an enriching stage, a stripping stage, an input, a light-fraction output, and a heavy-fraction output for separating the gaseous-mixture feed stock into light and heavy gaseous-mixture fractions; and an auxillary cascade

  10. Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hann-Sheng; Livengood, Charles David

    1997-12-01

    A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

  11. Experimental studies on ion mobility in xenon-trimethylamine mixtures

    Science.gov (United States)

    Trindade, A. M. F.; Encarnação, P. M. C. C.; Escada, J.; Cortez, A. F. V.; Neves, P. N. B.; Conde, C. A. N.; Borges, F. I. G. M.; Santos, F. P.

    2017-07-01

    In this paper we present experimental results for ion reduced mobilities (K0) in gaseous trimethylamine, TMA—(CH3)3N, and xenon-TMA mixtures for reduced electric fields E/N between 7.5 and 60 Td and in the pressure range from 0.5 to 10 Torr, at room temperature. Both in the mixtures and in pure TMA only one peak was observed in the time of arrival spectra, which is believed to be due to two TMA ions with similar mass, (CH3)3N+ (59 u) and (CH3)2CH2N+ (58 u), whose mobility is indistinguishable in our experimental system. The possibility of ion cluster formation is also discussed. In pure TMA, for the E/N range investigated, an average value of 0.56 cm2V-1s-1 was obtained for the reduced mobility of TMA ions. For the studied mixtures, it was observed that even a very small amount of gaseous TMA (~0.2%) in xenon leads to the production of the above referred TMA ions or clusters. The reduced mobility value of this ion or ions in Xe-TMA mixtures is higher than the value in pure TMA: around 0.8 cm2V-1s-1 for TMA concentrations from 0.2% to about 10%, decreasing for higher TMA percentages, eventually converging to the reduced mobility value in pure TMA.

  12. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  13. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  14. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  15. Detonation velocity in poorly mixed gas mixtures

    Science.gov (United States)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  16. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF/sub 6/. [ClF/sub 3/

    Science.gov (United States)

    Jones, R.L.; Otey, M.G.; Perkins, R.W.

    1980-11-24

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.

  17. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Dept. of Mechanical Engineering

    2004-02-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters. (author)

  18. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2004-01-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters

  19. A 3-stage gated UV-photon gaseous detector with optical imaging

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Sauvage, D.

    1989-03-01

    UV-photons are detected by a low pressure photosensitive multistep gaseous detector. Photoelectrons are multiplied in two charge amplification stages. A third, light amplification stage operating in a scintillation mode, provides light yields >5.10 7 visible photons per single photoelectron avalanche, in Argon-C 2 H 6 -TMAE gas mixture. We present results on absolute photon yields in various TMAE gas mixtures, at low gas pressure and at low charge gains. We describe the operation mechanism and some basic properties of the gated 3-stage detectors, such as stability of operation at high background rates and localization resolutions particularly at large TMAE concentration and high temperature operation conditions. Further applications are discussed. (authors)

  20. Diffusion coefficients of D2 and HT in the medium of gaseous protium and in crystals of NaX zeolite

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1993-01-01

    Coefficients of HT diffusion (absent in literature) in gaseous protium medium and in crystals of the NaX zeolite compared with similar values of these coefficients for deuterium are determined on the basis of analysis of experimental data on effect NaX zeolite grain size and of H 2 -HT gaseous mixture consumption in the sorption column at separation of hydrogen atoms on the value of transfer unit. 15 refs., 1 fig., 1 tab

  1. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    Science.gov (United States)

    Reichner, Philip; Dollard, Walter J.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  2. Method of removing hydrogen sulphide from hot gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, M.

    1987-12-22

    Hydrogen sulphide can be removed from hot gas mixtures by contacting the hot gas mixture at temperatures in the range of 500-900/sup 0/C with an adsorbent consisting of managanese nodules. The nodules may contain additional calcium cations. In sulphided form, the nodules are catalytically active for hydrogen sulphide decomposition to produce hydrogen. Regeneration of the adsorbent can be accomplished by roasting in an oxidizing atmosphere. The nodules can be used to treat gaseous mixtures containing up to 20% hydrogen sulfide, for example, gases produced during pyrolysis, cracking, coking, and hydrotreating processes. Experiments using the processes described in this patent are also outlined. 6 tabs.

  3. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  4. Progress in GEM-based gaseous photomultipliers

    CERN Document Server

    Chechik, R; Breskin, Amos; Buzulutskov, A F; Guedes, G P; Mörmann, D; Singh, B K

    2003-01-01

    We discuss recent progress in gaseous photomultipliers (GPMTs) comprising UV-to-visible spectral range photocathodes (PCs) coupled to multiple Gas Electron Multipliers (GEM). The PCs may be either semitransparent or reflective ones directly deposited on the first-GEM surface. These detectors provide high gain, even in noble gases, are sensitive to single photons, have nanosecond time resolution, and offer good localization. The operation of CsI-based GPMTs in CF sub 4 opens new applications in Cherenkov detectors, where both the radiator and the photosensor operate in the same gas. The latest results on sealed visible-light detectors, combining bialkali PCs and Kapton-made GEMs are presented.

  5. Method of removing iodine and compounds thereof from gaseous effluents

    International Nuclear Information System (INIS)

    Keener, R.L.; Kittle, P.A.

    1976-01-01

    Anion exchange resins including an acrylic backbone formed by the suspension polymerization of a mixture of an acrylic and a crosslinking monomer are useful in the removal of iodine and iodine compounds from gaseous effluents. Removal of radioactive iodine contaminants, particularly alkyl iodine compounds or hydrogen iodine, under extreme conditions, namely temperatures up to 180 0 C and humidities up to 100 percent, from effluents resulting from a major nuclear accident could probably be adsorbed by these resins described herein

  6. Improved gas mixtures for gas-filled particle detectors

    Science.gov (United States)

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  7. Phenomenology of deflagration and detonation of hydrogen-air mixtures in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Lombardi, G.

    1984-01-01

    This paper summarizes fundamentals of the flammability of the hydrogen-air mixtures and hydrogen-air containing added steam or other inerting agent. The flammability behaviour of such gaseous mixtures is described with reference to physical and chemical conditions close enough to those expected in the containment of a nuclear reactor during a LOCA

  8. Contribution to the study of the molecular interactions of gaseous hydrofluoric acid

    International Nuclear Information System (INIS)

    Ostorero, Jean

    1972-01-01

    The experimental study is based on measurements of gaseous viscosity coefficients and on the pure rotational spectrum of HF perturbed by F 2 at pressures up to 200 Bar. The study of viscosity is made with two apparatuses: a capillary viscometer (data on monomeric HF) and a rotating cylinder viscometer (data on mono and polymeric HF, and seven binary gaseous mixtures HF-X (X = He, Ar, N 2 , F 2 , CO 2 , ClF 3 , HCl). The experimental results are used as a criterion of validity for the different interaction models for polar gases found in the literature. The two remaining models are: 1) DANON and AMDUR; 2) MONCHICK and MASON. The viscosity data of mixtures give the values of the intermolecular parameters (ε 0 , σ 0 ) of the potential isotropic part. A semi quantum calculus improves slightly the correlation in the case of the model proposed by MONCHICK and MASON. The interpretation of the pressure viscosity data of HF gives the parameters values (e, o) for the dimer and the cyclic hexamer in the vapor phase. The vanishing of the R 0 rotation line of the HF spectrum perturbed by F 2 is qualitatively interpreted as the influence of the anisotropic part of the intermolecular potential. (author) [fr

  9. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2015-01-01

    The thermodynamic properties of pure gaseous, liquid or supercritical CO2 and CO2 mixtures with hydrocarbons and other compounds such as water, alcohols, and glycols are very important in many processes in the oil and gas industry. Design of such processes requires use of accurate thermodynamic...... models, capable of predicting the complex phase behavior of multicomponent mixtures as well as their volumetric properties. In this direction, over the last several years, the cubic-plus-association (CPA) thermodynamic model has been successfully used for describing volumetric properties and phase...

  10. Methods of forming aluminum oxynitride-comprising bodies, including methods of forming a sheet of transparent armor

    Science.gov (United States)

    Chu, Henry Shiu-Hung [Idaho Falls, ID; Lillo, Thomas Martin [Idaho Falls, ID

    2008-12-02

    The invention includes methods of forming an aluminum oxynitride-comprising body. For example, a mixture is formed which comprises A:B:C in a respective molar ratio in the range of 9:3.6-6.2:0.1-1.1, where "A" is Al.sub.2O.sub.3, "B" is AlN, and "C" is a total of one or more of B.sub.2O.sub.3, SiO.sub.2, Si--Al--O--N, and TiO.sub.2. The mixture is sintered at a temperature of at least 1,600.degree. C. at a pressure of no greater than 500 psia effective to form an aluminum oxynitride-comprising body which is at least internally transparent and has at least 99% maximum theoretical density.

  11. Some properties of explosive mixtures containing peroxides

    International Nuclear Information System (INIS)

    Zeman, Svatopluk; Trzcinski, Waldemar A.; Matyas, Robert

    2008-01-01

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E 0 , and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E 0 values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m -3 . Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities

  12. Some properties of explosive mixtures containing peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, Svatopluk [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)], E-mail: svatopluk.zeman@upce.cz; Trzcinski, Waldemar A. [Institute of Chemistry, Military University of Technology, PL-00-908 Warsaw 49 (Poland); Matyas, Robert [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)

    2008-06-15

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E{sub 0}, and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E{sub 0} values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m{sup -3}. Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities.

  13. Gaseous poison injection device

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko; Inada, Ikuo.

    1983-01-01

    Purpose: To rapidly control the chain reaction due to thermal neutrons in a reactor core by using gaseous poisons as back-up means for control rod drives. Constitution: Gaseous poisons having a large neutron absorption cross section are used as back-up means for control rod drives. Upon failure of control rod insertion, the gaseous poisons are injected into the lower portion of the reactor core to control the reactor power. As the gaseous poisons, vapors at a high temperature and a higher pressure than that of the coolants in the reactor core are injected to control the reactor power due to the void effects. Since the gaseous poisons thus employed rapidly reach the reactor core and form gas bubbles therein, the deccelerating effect of the thermal neutrons is decreased to reduce the chain reaction. (Moriyama, K.)

  14. Development of benzene, toluene, ethylbenzene and xylenes certified gaseous reference materials

    Science.gov (United States)

    Brum, M. C.; Sobrinho, D. C. G.; Fagundes, F. A.; Oudwater, R. J.; Augusto, C. R.

    2016-07-01

    The work describes the production of certified gaseous reference materials of benzene, toluene, ethylbenzene and xylenes (BTEX) in nitrogen from the gravimetric production up to the long term stability tests followed by the certifying step. The uncertainty in the amount fractions of the compounds in these mixtures was approximately 4% (relative) for the range studied from 2 to 16 µmol/mol. Also the adsorption of the BTEX on the cylinder surface and the tubing were investigated as potential uncertainty source.

  15. Fundamental laws of separation by the gaseous diffusion process

    International Nuclear Information System (INIS)

    Bouligand, G.M.

    1964-01-01

    Using the Knudsen's law for the flow of each component of a gaseous mixture through a porous membrane, we derive the overall separation laws and the separation power for one stage of diffusion: Various types of stages differing by the geometrical configuration and the flow nature are considered. For the sake of simplicity physical phenomena causing a loss of separation efficiency are neglected. Computation show the advantages of counter-current type stage with one entering and two leaving flows. A more refined theory of separation can be derived with the same basis of this work. (author) [fr

  16. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  17. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  18. Device for determining heat capacity of gases and gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nachev, N

    1980-01-01

    This article describes the use of a capillary-flow colorimeter to determine the heat capacity of gases and gaseous mixtures. The research and tests confirm the possibility and advisability of making these measurements. The calorimeters are graduated to allow for the influence of the pressure and temperature of the investigated gas and exchange with the environment.

  19. XeCl Excimer Laser with Three- and Four-Component Mixture of Active Gases

    International Nuclear Information System (INIS)

    Iwanejko, L.; Pokora, L.

    1998-01-01

    Selected results of investigations of a XeCl excimer laser employing a new type (four-component)of mixture of gases, He-Kr:Xe-HCl, are presented. The mixture includes, instead of Xe, a mixture of not-separated Kr and Xe gases, much less expensive than pure xenon. A comparison of durations and energies of pulses generated in the XeCl excimer laser using three- or four-component gaseous active medium (He-Xe-HCl or He-Kr:Xe-HCl) is made. The investigations have been carried out with the use of a laser system with UV preionization and self sustained pumping discharge. (author)

  20. Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor

    International Nuclear Information System (INIS)

    Symons, E.A.; Rolston, J.H.; Clermont, M.J.; Paterson, L.M.

    1983-01-01

    This invention provides a process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbons comprising: (a) bringing into contact a water stream, a halohydrocarbon stream, and a catalytic porous anion exchange resin so that the isotope-deficient halohydrocarbon stream is enriched; (b) decomposing the halohydrocarbon stream photolytically into two gaseous streams, one enriched and the other deficient; (c) removing as a product the first, enriched stream; and (d) recycling the second stream for enrichment. An apparatus is also provided

  1. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    CERN Document Server

    Vacek, V; Lindsay, S

    2000-01-01

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  2. Distribution of metals between particulate and gaseous forms in a volcanic plume

    Science.gov (United States)

    Hinkley, T.K.

    1991-01-01

    In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.

  3. Device and method for the preparation of a mixture comprising fibre-reinforced thermoplastic pellets

    NARCIS (Netherlands)

    Beukers, A.; Wiltink, F.J.; Van Breugel, J.H.

    2000-01-01

    This material must be plasticised and in order to be able to process such a mixture by injection moulding or flow moulding it is necessary for, on the one hand, a rise in pressure and, on the other hand, mixing of the material to take place by means of the device. In order as far as possible to

  4. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  5. A 223-nm KrCl excimer laser on a He-Kr-HCl mixture

    International Nuclear Information System (INIS)

    Razhev, A M; Zhupikov, A A; Kargapol'tsev, E S

    2004-01-01

    The results of experimental studies of the parameters of a 223-nm electric-discharge KrCl excimer laser on a He-Kr-HCl mixture depending on the excitation conditions and the composition of the active gaseous medium are presented. To achieve the maximum values of the output energy and the efficiency of the KrCl laser on mixtures with buffer gaseous helium, an excitation system was used that included a circuit with an LC inverter with a high-voltage switch based on an RU-65 spark gap. An output energy of 320 mJ with an efficiency of 0.5% relative to the energy stored in the capacitors is obtained in a KrCl laser with an active medium based on the buffer He gas at a charging voltage of 30 kV. Radiation pulses with a duration of 22±1 ns and a pulse power of 15 MW are obtained. (lasers)

  6. A radioactive noble gas quantitative analysis of gaseous effluents from NPP

    International Nuclear Information System (INIS)

    Yanev, Y.; Georgiev, K.; Mavrodiev, V.; Kikarin, B.

    1993-01-01

    The radioactive isotopes of argon, krypton and xenon comprise a substantial part of the gaseous emission of a NPP. A quantitative determination of their specific activity in the controlled area and the gaseous effluents requires a special sampling technique, as well as measurement method. The zeolites and the activated charcoals have a differentiated behaviour towards radioisotopes of argon, krypton and xenon. The isotope fractionation is often a problem, especially with argon and xenon. Some additional difficulties arise due to the irreproductibility of temperature and atmospheric moisture. The present paper describes a method for a spectrometric determination of radioactive noble gases after the cryogenic sampling developed at the Radiochemical laboratory of the Sofia University. The quality control of the method, as well as some special difficulties in its performing are discussed. The estimated minimum detectable activity is 5-10 Bq/m 3 for radioactive noble gases with half-life > 1 hour and sampling time for (resp. gamma-spectrometry) 1 hour. (author)

  7. A portable gas recirculation unit for gaseous detectors

    Science.gov (United States)

    Guida, R.; Mandelli, B.

    2017-10-01

    The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

  8. Smartphone-Aided Measurements of the Speed of Sound in Different Gaseous Mixtures

    Science.gov (United States)

    Parolin, Sara Orsola; Pezzi, Giovanni

    2013-01-01

    Here we describe classroom-based procedures aiming at the estimation of the speed of sound in different gas mixtures with the help of a plastic drain pipe and two iPhones or iPod touches. The procedures were conceived to be performed with simple and readily available tools.

  9. The Successful Operation of Hole-type Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Pereiale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, P.; Picchi, P.; Pietropaolo, F.; Tokanai, F.

    2004-01-01

    We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same capillary plate combined with CsI photocathodes could operate perfectly well at gains (depending on gas mixtures) of 100-1000. Obtained results may open new fields of applications for capillary plates as detectors of UV light and charge particles at cryogenic temperatures: noble liquid TPCs, WIMP detectors or LXe scintillating calorimeters and cryogenic PETs.

  10. Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures

    Directory of Open Access Journals (Sweden)

    Nadine Schmeling

    2010-08-01

    Full Text Available Functionalized copolyimides continue to attract much attention as membrane materials because they can fulfill the demands for industrial applications. Thus not only good separation characteristics but also high temperature stability and chemical resistance are required. Furthermore, it is very important that membrane materials are resistant to plasticization since it has been shown that this phenomenon leads to a significant increase in permeability with a dramatic loss in selectivity. Plasticization effects occur with most polymer membranes at high CO2 concentrations and pressures, respectively. Plasticization effects are also observed with higher hydrocarbons such as propylene, propane, aromatics or sulfur containing aromatics. Unfortunately, these components are present in mixtures of high commercial relevance and can be separated economically by single membrane units or hybrid processes where conventional separation units are combined with membrane-based processes. In this paper the advantages of carboxy group containing 6FDA (4,4′-hexafluoroisopropylidene diphthalic anhydride -copolyimides are discussed based on the experimental results for non cross-linked, ionically and covalently cross-linked membrane materials with respect to the separation of olefins/paraffins, e.g. propylene/propane, aromatic/aliphatic separation e.g. benzene/cyclohexane as well as high pressure gas separations, e.g. CO2/CH4 mixtures. In addition, opportunities for implementing the membrane units in conventional separation processes are discussed.

  11. Computing Properties Of Chemical Mixtures At Equilibrium

    Science.gov (United States)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  12. Gaseous waste deposition preventive device for glass melting furnace

    International Nuclear Information System (INIS)

    Takano, Sueo

    1998-01-01

    The device of the present invention comprises a heater for heating pressurized air and a moisturizer for mixing steams with the pressurized air heated by the heater to make moisturized pressurized air. Steams are mixed to rise humidity by the moisturizing up to the saturated vapor pressure at the temperature of the heating by heating pressurized air as an object of moisturizing by the heater to prevent dew condensation while increasing the amount of steams to be mixed. With such procedures, moisture enriched pressurized air can be jetted out thereby enabling to prevent deposition of solid materials and crystallized materials of gaseous wastes. (T.M.)

  13. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  14. Low-temperature atmospheric oxidation of mixtures of titanium and carbon black or brown

    International Nuclear Information System (INIS)

    Elizarova, V.A.; Babaitsev, I.V.; Barzykin, V.V.; Gerusova, V.P.; Rozenband, V.I.

    1984-01-01

    This article reports on the thermogravimetric investigation of mixtures of titanium no. 2 and carbon black with various mass carbon contents. Adding carbon black (as opposed to boron) to titanium leads to an increase in the rate of heat release of the oxidation reaction. An attempt is made to clarify the low-temperature oxidation mechanism of titanium mixtures in air. An x-ray phase and chemical (for bound carbon) analysis of specimens of a stoichiometric Ti + C mixture after heating in air to a temperature of 650 0 C at the rate of 10 0 /min was conducted. The results indicate that the oxidation of the titanium-carbon mixture probably proceeds according to a more complex mechanism associated with the transport of the gaseous carbon oxidation products and their participation in the titanium oxidation

  15. Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor

    International Nuclear Information System (INIS)

    Symons, E. A.; Clermont, M. J.; Paterson, L. M.; Rolston, J. H.

    1985-01-01

    Hydrogen isotope (e.g. deuterium) exchange from liquid water to a gaseous halohydrocarbon (e.g. fluoroform, CF 3 H-CF 3 D) is obtained at an operating temperature in the range 0 0 to 100 0 C. using a catalytically active mass comprising a porous anion exchange resin in the hydroxide ion form and enriched gaseous halohydrocarbon stream is decomposed by isotope selective photo-decomposition into a first, gaseous stream enriched in the hydrogen isotope, which is removed as a product, and a depleted gaseous halohydrocarbon stream, which is recirculated for enrichment again. The catalytically active mass may, for example, be in the form of resin particles suspended in a fluidized bed or packed as resin particles between sheets wound into a roll. One of the sheets may be corrugated and have open interstices to form a packing in a column which permits countercurrent gas and liquid flow past the resin. Preferably the wound sheets are hydrophilic to retard flooding by the liquid water. The liquid water stream may contain dimethyl sulfoxide (DMSO) added as co-solvent

  16. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  17. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    International Nuclear Information System (INIS)

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  18. Evaluation of gas migration characteristics of compacted and saturated Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of near-surface pit disposal for low level radioactive waste, compacted bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite mixture until its pressure becomes large enough for it to enter the compacted bentonite mixture as a discrete gaseous phase. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted Ca-bentonite mixture are investigated by the gas migration tests. The effect of stress state on the migration characteristics is also investigated by the gas migration tests and by parametric study using the model of two phase flow through deformable porous media, which was originally developed by CRIEPI. Results of this study imply that : (1) Large gas breakthrough pressure, which is defined as a rapid increase of amount of discharged gas, is affected by initial stress conditions as well as Ca-bentonite content of the mixture. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Axial stress change and volume change of the specimen during the gas migration test can be reproduced by the numerical simulation using the model of two-phase flow through deformable porous media, which was originally developed by CRIEPI. (4) Gas migration of a small scale model is numerically simulated to investigate the

  19. Decomposition of silane on tungsten or other materials

    Science.gov (United States)

    Wiesmann, H.J.

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, from a W or foil heated to a temperature of about 1400 to 1600/sup 0/C, in a vacuum of about 10-/sup 6/ to 10-/sup 4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate independent of and outside the source of thermal decomposition. Hydrogenated amorphous silicon is formed. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  20. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  1. Preparation of standard mixtures of gas hydrocarbons in air by the diffusion dilution method

    International Nuclear Information System (INIS)

    Garcia, M. R.; Perez, M. M.

    1979-01-01

    An original diffusion system able to produce continuously gaseous samples is described. This system can generate samples with concentrations of benzene in air from 0.1 to 1 ppm a reproducible way. The diffusion dilution method used Is also studied. The use of this diffusion system has been extended to the preparation of binary mixtures (benzene-toluene). Whit a secondary dilution device is possible preparing these mixtures over a wide range of concentrations (0.11 to 0.04 ppm for benzene and 0.06 to 0.02 for toluene). (Author) 7 refs

  2. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    Energy Technology Data Exchange (ETDEWEB)

    Shugurov, S.M., E-mail: s.shugurov@spbu.ru; Panin, A.I.; Lopatin, S.I.; Emelyanova, K.A.

    2016-10-15

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO{sub 3} and Pb{sub 2}TeO{sub 4} were calculated by quantum chemistry methods. The formation enthalpies Δ{sub f}H{sup 0} (298.15) = −294 ± 13 for gaseous PbTeO{sub 3} and Δ{sub f}H{sup 0} (298.15) = −499 ± 12 for gaseous Pb{sub 2}TeO{sub 4} were obtained. On the base of these results the formation enthalpies of gaseous PbPoO{sub 3} and Pb{sub 2}PoO{sub 4} were estimated as −249 ± 34 and −478 ± 38, respectively. - Highlights: • Gaseous lead tellurates PbTeO{sub 3}, Pb{sub 2}TeO{sub 4} were discovered. • Their thermodynamic properties were studied using both high temperature mass spectrometry and quantum chemistry computations. • The obtained data allows to predict the formation enthalpies of gaseous lead polonates PbPoO{sub 3}, Pb{sub 2}PoO{sub 4}.

  3. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  4. The Trichel pulse corona in N2 + CCl2F2 mixtures: the shape of pulses

    International Nuclear Information System (INIS)

    Vagnerova, L.; Dindosova, D.; Skalny, J.D.

    1998-01-01

    The formation of regular Trichel pulses in electronegative gaseous mixtures is studied experimentally, with emphasis on the consequences of different electron attachment mechanisms in the used gas mixtures on the behavior of the discharge. Negative ions are believed to be responsible for excitation of the Trichel pulses. The experimental data presented in the paper give evidence that the origin of the negative ions does not play any substantial role in the formation of the initial part of the Trichel pulses. (J.U.)

  5. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  6. A system for removing both oxygen and nitrogen from a rare gas-hydrocarbon mixture

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1989-01-01

    A study has been made how to remove nitrogen from a mixture of a rare gas and a hydrocarbon in addition to the removal of oxygen, H 2 O and gaseous oxides. The purpose was to find a simple method for the purification of drift-chamber gases in a recirculation system. Such a method would reduce the operating costs of the large detectors presently constructed for LEP. A promising technique has been developed. First results of a chemical reactor using the novel technique are presented. The N 2 content of Ar/air mixtures containing up to 28% air could be reduced to a level of 20 ppm at a flow rate of 0.11 m 3 /h (200 ppm at 1.0 m 3 /h); and the O 2 content to 30 and 300 ppm respectively. Water and gaseous oxides concentrations were always below 5 ppm. Some of the practical problems still to be solved are discussed and suggestions are given for further development and applications. The method can in principle be of more general use. (orig.)

  7. The conditions of gaseous fuels development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Face to the actual situation of petrol and gas oil in France, the situation of gaseous fuels appears to be rather modest. However, the aim of gaseous fuels is not to totally supersede the liquid fuels. Such a situation would imply a complete overturn which has not been seriously considered yet. This short paper describes the essential conditions to promote the wider use of gaseous fuels: the intervention of public authorities to adopt a more advantageous tax policy in agreement with the ''Clean Air''law project, a suitable distribution network for gaseous fuels, a choice of vehicles consistent with the urban demand, the development of transformation kits of quality and of dual-fuel vehicles by the car manufacturers. (J.S.)

  8. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  9. Angular resolution of the gaseous micro-pixel detector Gossip

    Science.gov (United States)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  10. Angular resolution of the gaseous micro-pixel detector Gossip

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S. [Nikhef, P.O. Box 41882, 1009 DB Amsterdam (Netherlands); Rogers, M. [Radboud University, P.O. Box 9102, 6500HC Nijmegen (Netherlands); Romaniouk, A.; Veenhof, R. [CERN, CH-1211, Geneve 23 (Switzerland)

    2011-06-15

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO{sub 2} 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  11. Angular resolution of the gaseous micro-pixel detector Gossip

    International Nuclear Information System (INIS)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-01-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  12. Mechanical effects of gaseous detonations on a flexible confinement

    International Nuclear Information System (INIS)

    Brossard, J.; Renard, J.

    1981-01-01

    A mathematical model was developed for evaluating the effect of a detonating gaseous mixture on its elastic circular confinement. The data provided by the model were compared with experimental results. The confinement materials investigated include polyvinylchloride and stainless steel. Measurements of transverse and longitudinal deformations of the confinement material at several detonation velocities and for different material properties made it possible to determine the deformation characteristics, taking into account the precursor effect, the oscillations and their frequencies, the deformation ratio, and the dynamic amplifying factors. A certain lack of agreement between the theoretical data obtained with the aid of the model and the experimental results is probably related to simplified assumptions made in the model regarding the pressure distributions and a failure to take into account viscosity effects

  13. Investigation of Dalton and Amagat's laws for gas mixtures with shock propagation

    Science.gov (United States)

    Wayne, Patrick; Trueba Monje, Ignacio; Yoo, Jason H.; Truman, C. Randall; Vorobieff, Peter

    2016-11-01

    Two common models describing gas mixtures are Dalton's Law and Amagat's Law (also known as the laws of partial pressures and partial volumes, respectively). Our work is focused on determining the suitability of these models to prediction of effects of shock propagation through gas mixtures. Experiments are conducted at the Shock Tube Facility at the University of New Mexico (UNM). To validate experimental data, possible sources of uncertainty associated with experimental setup are identified and analyzed. The gaseous mixture of interest consists of a prescribed combination of disparate gases - helium and sulfur hexafluoride (SF6). The equations of state (EOS) considered are the ideal gas EOS for helium, and a virial EOS for SF6. The values for the properties provided by these EOS are then used used to model shock propagation through the mixture in accordance with Dalton's and Amagat's laws. Results of the modeling are compared with experiment to determine which law produces better agreement for the mixture. This work is funded by NNSA Grant DE-NA0002913.

  14. A new gaseous and combustible form of water

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Ruggero Maria [Institute for Basic Research, P.O. Box 1577, Palm Harbor, FL 34682 (United States)

    2006-08-15

    In this paper we present, apparently for the first time, various measurements on a mixture of hydrogen and oxygen called HHO gas produced via a new electrolyzer (international patents pending by Hydrogen Technologies Applications, Inc. of Clearwater, Florida), which mixture is distinctly different than the Brown and other known gases. The measurements herein reported suggest the existence in the HHO gas of stable clusters composed of H and O atoms, their dimers H-O, and their molecules H{sub 2}, O{sub 2} and H{sub 2}O whose bond cannot entirely be of valence type. Numerous anomalous experimental measurements on the HHO gas are reported in this paper for the first time. To reach their preliminary, yet plausible interpretation, we introduce the working hypothesis that the clusters constituting the HHO gas constitute another realization of a recently discovered new chemical species called for certain technical reasons magnecules as well as to distinguish them from the conventional 'molecules' [Santilli RM. Foundations of hadronic chemistry with applications to new clean energies and fuels. Boston, Dordrecht, London: Kluwer Academic Publisher; 2001]. It is indicated that the creation of the gaseous and combustible HHO from distilled water at atmospheric temperature and pressure occurs via a process structurally different than evaporation or separation, thus suggesting the existence of a new form of water, apparently introduced in this paper for the first time, with the structure (HxH)-O where 'x' represents the new magnecular bond and '-' the conventional molecular bond. The transition from the conventional H-O-H species to the new (HxH)-O species is predicted by a change of the electric polarization of water caused by the electrolyzer. When H-O-H is liquid, the new species (HxH)-O can only be gaseous, thus explaining the transition of state without evaporation or separation energy. Finally, the new species (HxH)-O is predicted to be

  15. Research of heat releasing element of an active zone of gaseous nuclear reactor with pumped through nuclear fuel - uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Batyrbekov, G.; Batyrbekov, E.; Belyakova, E.; Kunakov, S.; Koltyshev, S.

    1996-01-01

    The purpose of the offered project is learning physics and substantiation of possibility of creation gaseous nuclear reactor with pumped through nuclear fuel-hexafluoride of uranium (Uf6).Main problems of this work are'. Determination of physic-chemical, spectral and optical properties of non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. Research of gas dynamics of laminar, non-mixing two-layer current of gases of hexafluoride of uranium and helium at availability and absence of internal energy release in hexafluoride of uranium with the purpose to determinate a possibility of isolation of hexafluoride of uranium from walls by inert helium. Creation and research of gaseous heat releasing element with pumped through fuel Uf6 in an active zone of research nuclear WWR-K reactor. Objects of a research: Non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. With use of specially created ampoules will come true in-reactor probe and spectral diagnostics of plasma. Calculations of kinetics with the account of main elementary processes proceeding in it, will be carried out. Two-layer non-mixed streams of hexafluoride of uranium and helium at availability and absence of internal energy release. Conditions of obtaining and characteristics of such streams will be investigated. Gaseous heat releasing element with pumped through fuel - Uf6 in an active zone of nuclear WWR-K reactor

  16. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  17. A pulsed plasma jet with the various Ar/N2 mixtures

    Science.gov (United States)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.; Rostami Ravari, M. N.

    2017-12-01

    In this paper, using the Optical Emission Spectroscopy technique, the physical properties of a fabricated pulsed DBD plasma jet are studied. Ar/N2 gaseous mixture is taken as operational gas, and Ar contribution in Ar/N2 mixture is varied from 75 to 95%. Through the optical emission spectra analysis of the pulsed DBD plasma jet, the rotational, vibrational and excitation temperatures and density of electrons in plasma medium of the pulsed plasma jet are obtained. It is seen that, at the wavelength of 750.38 nm, the radiation intensity from the Ar 4p → 4 s transition increases at the higher Ar contributions in Ar/N2 mixture. It is found that, for 95% of Ar presence in the mixture, the emission intensities from argon and molecular nitrogen are higher, and the emission line intensities will increase nonlinearly. In addition, it is observed that the quenching of Ar* by N2 results in the higher intensities of N2 excited molecules. Moreover, at the higher percentages of Ar in Ar/N2 mixture, while all the plasma temperatures are increased, the plasma electron density is reduced.

  18. Surface properties of aqueous amino acid solutions II. Leucine-leucine hydrochloride and leucine-sodium leucinate mixtures.

    Science.gov (United States)

    Matubayasi, Norihiro; Matsuyama, Shohei; Akizuki, Ryosuke

    2005-08-15

    To understand the distinction between the effects of zwitterionic, anionic, and cationic l-leucine upon adsorption and lateral interactions at air/water surface, the surface tensions of aqueous solutions of l-leucine-l-leucine hydrochloride and l-leucine-sodium l-leucinate mixtures were measured as a function of concentration and composition at 25 degrees C. The surface activity decreases in the order l-leucine >l-leucine hydrochloride > sodium l-leucinate. Both l-leucine hydrochloride and sodium l-leucinate form gaseous adsorbed films through the experimentally accessible concentration range, while the adsorbed film of zwitterionic l-leucine shows a transition between gaseous and expanded film.

  19. Method for upgrading diene-containing hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, L.E. Jr.; Holcomb, D.E.

    1984-05-22

    There is disclosed a method for upgrading of hydrocarbon mixtures, so as to reduce their content of gum precursors such as diolefins and pseudo-diolefins, and provide a resulting product mixture suitable for mild hydrogenation, for use as a motor fuel or as a feed stock to an extraction unit. The process comprises obtaining a hydrocarbon mixture containing about 60-90 wt. % of aromatic components, about 3-40 wt. % of dienes and pseudodienes, and monoolefins, and up to about 6 wt. % of relatively unreactive organic compounds, reacting this mixture with elemental sulfur in the approximate weight ratio of about 5-95 wt. % of the hydrocarbon mixture with about 95-5 wt. % of elemental sulfur, the reaction being carried out at a temperature in the range of 100/sup 0/-150/sup 0/ C. for about 10 minutes to 24 hours with good mixing, removing the unreacted materials by distillation and separating a sulfur-hydrocarbon reaction product to provide the upgraded hydrocarbon mixture.

  20. Summer Student Project: GEM Simulation and Gas Mixture Characterization

    CERN Document Server

    Oviedo Perhavec, Juan Felipe

    2013-01-01

    Abstract This project is a numerical simulation approach to Gas Electron Multiplier (GEM) detectors design. GEMs are a type of gaseous ionization detector that have proposed as an upgrade for CMS muon endcap. The main advantages of this technology are high spatial and time resolution and outstanding aging resistance. In this context, fundamental physical behavior of a Gas Electron Multiplier (GEM) is analyzed using ANSYS and Garfield++ software coupling. Essential electron transport properties for several gas mixtures were computed as a function of varying electric and magnetic field using Garfield++ and Magboltz.

  1. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  2. An X-ray photoelectron spectroscopy study of the products of the interaction of gaseous IrF6 with fine UO2F2

    Directory of Open Access Journals (Sweden)

    Prusakov Vladimir N.

    2007-01-01

    Full Text Available Nuclear fuel reprocessing by fluorination, a dry method of regeneration of spent nuclear fuel, uses UO2F2 for the separation of plutonium from gaseous mixtures. Since plutonium requires special treatment, IrF6 was used as a thermodynamic model of PuF6. The model reaction of the interaction of gaseous IrF6 with fine UO2F2 in the sorption column revealed a change of color of the sorption column contents from pale-yellow to gray and black, indicating the formation of products of such an interaction. The X-ray photoelectron spectroscopy study showed that the interaction of gaseous IrF6 with fine UO2F2 at 125 °C results in the formation of stable iridium compounds where the iridium oxidation state is close to Ir3+. The dependence of the elemental compositions of the layers in the sorption column on the penetration depth of IrF6 was established.

  3. Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    Directory of Open Access Journals (Sweden)

    Xiaohong Cui

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  4. Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine.

    Science.gov (United States)

    Cui, Xiaohong; Adler, Stuart P; Davison, Andrew J; Smith, Larry; Habib, El-Sayed E; McVoy, Michael A

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  5. X-ray image converters utilizing rare earth phosphor mixtures

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1982-01-01

    In an X-ray screen comprising a transparent support with a photographic film on each side, each film has a coating of a phosphor mixture comprising polyhedral Gd 2 O 2 S:Tb of average size 6 to 20 μ and plate-like LnOX:Tm of average size 2 to 12 μ wherein Ln=La or Gd, X=Cl or Br and Tm is present from 0.05 to 1 mole %. The mixture gives improved resolution and reduces the problem of light crossing over the transparent support. According to whether blue sensitive or green sensitive film is used, the ratio of phosphors is varied. U.V. absorbing and light reflecting layers may be incorporated in the structure. (author)

  6. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Rizvi, S.A.

    1999-01-01

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  7. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  8. Method of separating tritium contained in gaseous wastes

    International Nuclear Information System (INIS)

    Hashimoto, Yasuo; Oozono, Hideaki.

    1981-01-01

    Purpose: To decrease tritium concentration in gaseous wastes to less than the allowable level by removing tritium in gaseous wastes generated upon combustion of radioactive wastes by using a plurality of heat exchangers. Method: Gaseous wastes at high temperature generated upon combustion of radioactive wastes in an incinerator are removed with radioactive solid substances through filters, cooled down to a temperature below 10 0 C by the passage through first and second heat exchangers and decreased with tritium content to less than the allowable concentration by the gaseous wastes at low temperature from the second heat exhcanger. The gaseous wastes at low temperature are used as the cooling medium for the first heat exchanger. They are heat exchanged at the upstream of the second heat exchanger with the cooling water from the third heat exchanger and cooled at the downstream by the cooling water cooled by the cooling medium. The gaseous wastes at low temperature thus cooled below 10 0 C are heated to about 350 0 C in the first heat exchanger and discharged. (Moriyama, K.)

  9. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates

    International Nuclear Information System (INIS)

    Beucher, J.

    2007-10-01

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO 2 has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10 9 by incident hadron and a spatial resolution of 51 μm have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  10. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  11. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  12. Impact of the volume of gaseous phase in closed reactors on ANC results and modelling

    Science.gov (United States)

    Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise

    2016-04-01

    The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system

  13. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  14. A random walk approach to the diffusion of positrons in gaseous media

    International Nuclear Information System (INIS)

    Girardi-Schappo, M.; Tenfen, W.; Arretche, F.

    2013-01-01

    In this work, we present a random walk model to study the positron diffusion in gaseous media. The positron-atom interaction is described through positron-target cross sections. The main idea is to obtain how much energy a positron transfer to the environment atoms, through ionizations and electronic excitations until its annihilation, taking the ratio between each energetically available collision channel to the total one as the probability for each process to occur. As a first application, we studied how the positron diffuse in gases of helium, neon, argon and their mixtures. To characterize the positron dynamics in each system, we calculated the radiation profile generated from the annihilation, their diffusion profiles and the most probable distances for excitation and ionization. (authors)

  15. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  16. Aromatic substitution in the gas phase. Alkylation of arenes by gaseous C4H9+ cations

    International Nuclear Information System (INIS)

    Cacace, F.; Ciranni, G.; Giacomello, P.

    1981-01-01

    Butyl cations, obtained in the dilute gas state from the radiolysis of butane in the pressure range from 70 to 750 torr, have been allowed to react with benzene, toluene, and their mixtures or with trace amounts of o-xylene in the gaseous system. The gas-phase butylation yields invariably sec-butylarenes, remarkably free of isomeric byproducts, namely n- and tert-butylarenes. Other alkylation experiments, where gaseous butyl cations from the reaction of butane with radiolytically formed H 3 + ions were used as reagent, confirmed the exclusive formation of sec-butylarenes. The butylation process displays the positional and substrate selectivity and the dependence of orientation on the pressure of the system, typical of other gas-phase ionic substitutions. At high pressures, orth-para orientation predominates in the sec-butylation of toluene, with a ortho:meta:para ratio of 43:30:27 at 715 torr. As the pressure is reduced, a gradual shift in favor of the thermodynamically most stable meta-substituted arenium ion is observed, leading to a ortho:meta:para ratio of 31:48:21 at 70 torr

  17. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    Science.gov (United States)

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  18. Strategies for reducing the environmental impact of gaseous detector operation at the CERN LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Capeans, M.; Guida, R.; Mandelli, B., E-mail: beatrice.mandelli@cern.ch

    2017-02-11

    A wide range of gas mixtures is used for the operation of different gaseous detectors at the Large Hadron Collider (LHC) experiments. Nowadays some of these gases, as C{sub 2}H{sub 2}F{sub 4}, CF{sub 4} and SF{sub 6}, are indicated as greenhouse gases (GHG) and dominate the overall GHG emission from particle detectors at the LHC experiments. The release of GHG is an important subject for the design of future particle detectors as well as for the operation of the current experiments. Different strategies have been adopted at CERN for reducing the GHG emissions. The standard approach is the recirculation of the gas mixture with complex gas systems where system stability and the possible accumulation of impurities need to be attentively evaluated for the good operation and safety of the detectors. A second approach is based on the recuperation of the gas mixture exiting the detectors and the separation of its gas components for re-use. At long-term, the use of less invasive gases is being investigated, especially for the Resistive Plate Chamber (RPC) systems. Operation of RPC with environmentally friendly gas mixtures is demonstrated for streamer mode while avalanche mode operation needs more complex gas mixtures. - Highlights: • Greenhouse gases (GHG) emission in the LHC experiments and detectors. • Strategies to reduce the GHG emissions: gas recirculation and recuperation systems. • GHG emission: achievements from LHC Run1 to Run2. • Resistive Plate Chambers operation with new environmentally friendly gases.

  19. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  20. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Murakami, Kazuo.

    1997-01-01

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  1. Symposium on Short-Term Genetic Bioassays in the Evaluation of Complex Environmental Mixtures

    CERN Document Server

    Sandhu, Shahbeg; Lewtas, Joellen; Claxton, Larry; Strauss, Gary; Nesnow, Stephen

    1985-01-01

    With this proceedings of the fourth symposium on complex mixtures, we continue to revise and extend our knowledge of genetic methods for the evaluation of chemical mixtures in the environment. The early chapters of this volume are devoted to new bioassay techniques that are directly applicable to the monitoring of environments contaminated with genotoxic chemicals. Microbiological methods have been further refined to meet the special needs of atmospheric monitoring so that very small samples may now be efficiently tested. New in situ methods utilizing green plants actually avoid many of the usual difficulties of sample collection and preparation and offer special advantages in monitoring wastewater, sludges, and hazardous wastes. Insects also are being employed very effectively in the evaluation of gaseous air pollutants in controlled laboratory investigations. Increased emphasis has been placed on a comprehensive assessment of the potential of complex mixtures t9 cause various kinds of genetic damage. New as...

  2. On a Thermodynamic Approach to Material Selection for Service in Aggressive Multi-Component Gaseous and/or Vapor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Glazoff, Michael Vasily [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marschman, Steven Craig [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report fulfills the M4 milestone, M4FT-15IN08020110 UNF Analysis Support, under Work Package Number FT-15IN080201. The issue of materials selection for many engineering applications represents an important problem, particularly in cases where material failure is possible as a result of corrosive environments. For example, 304 dual purpose or 316 stainless steel is used in the construction of many used nuclear fuel storage canisters. Deployed all over the world, these canisters are housed inside shielded enclosures and cooled passively by convective airflow. When located along seaboards or particular industrial areas, salt, other corrosive chemicals, and moisture can become entrained in the air that cools the canisters. It is important to develop an understanding of what impact, if any, that chemical environment will have on those canisters. In many cases of corrosion in aggressive gaseous environments, the material selection process is based on some general recommendations, anecdotal evidence, and/or the past experience of that particular project’s participants. For gaseous mixtures, the theoretical basis is practically limited to the construction of the so-called “Ellingham diagrams” for pure metals. These plots predict the equilibrium temperature between different individual metals, their respective oxides, and oxygen gas. Similar diagrams can be constructed for the reactions with sulfur, nitrogen, carbon, etc. In the generalization of this approach by Richardson and Jeffes, additional scales can be superimposed upon an Ellingham diagram that would correspond to different gaseous mixtures, e.g. CO/CO2, or H2/H2O. However, while the general approach to predicting the stability of a multi-component heterogeneous alloy (e.g., steel or a superalloy) in a multi-component aggressive gaseous environment was developed in very general form, actual examples of its applications to concrete real-life problems are practically absent

  3. Garden hose separation of gaseous isotopes. Part II. Supersonic accelerations

    International Nuclear Information System (INIS)

    Wang, C.G.; Davis, A.G.M.

    1979-01-01

    A mechanical process for separating gaseous mixtures according to their respective molecular weights, by a variation of the time-of-flight process, is proposed. The separative apparatus consists of several sets of nozzle-deflector combinations surrounded by a stationary collector housed in an evacuated chamber. From a rotating supersonic nozzle, a contiguous plurality of successive groups of molecules is ejected to form a continuous stream of the mixture. The molecules of each group of molecules are allowed to accelerate for a predetermined period of time following their supersonic expansion, thereby allowing each group of molecules to form a generally spherical configuration, the outer radius of which will be enriched in molecules of lighter mass, relative to lesser radii. A deflector means co-rotating with the nozzle is used to deflect molecules that have been allowed to move for the predetermined period of time in accordance with their expansion velocities, from at least one desired portion of the stream, and a stationary collector means is disposed to receive the deflected molecules. The estimated separative work produced from such a unit is about the same or better than that of a modern giant diffuser of similar dimensions. However, with an essentially empty chamber, the unit capital cost as well as the energy required is competitive with any of the well-known methods, mechanical or otherwise

  4. Induced luminescence by charged particles on gaseous, liquid and solid argon

    International Nuclear Information System (INIS)

    Carvalho Torres, M.J.

    1980-01-01

    A spectral and a kinetic study of the scintillation induced by β and α particles in gaseous, liquid and solid argon have been made in the wavelength region comprised between 1100 and 3000A. The radiative lifetimes and some spectroscopic parameters of the lowest dimer states ( 1 Σ + sub(u) and 3 Σ + sub(u)) have been determined: tau 0 ( 1 Σ + sub(u)) = 4.2ns; tau 0 ( 3 Σ + sub(u)) = 3.1μs; ΔE( 1 Σ + sub(u)- 3 Σ + sub(u)) = 52 meV; hω = 230 cm -1 . A non radiative de-excitation rate of the 3 Σ + sub(u) state has been measured: approximately 2x10 -17 cm 3 s -1 . By applying an electric field the contribution of the electron-ion recombination mechanism to the gaseous argon scintillation is studied. For condensed argon, the dependence of the ratio between the fluorescence and the phosphorescence intensities on the ionisation power of the impinging particle is verified. The continuum which extends from 1600 to 2900A and that is present only in the gas phase spectra, is ascribed to the radiative de-excitation of molecular ions. A time resolved study of the luminescence of high pressure (1-15atm) argon excited by a pulsed electric discharge has also been performed and is compared with that of the scintillation induced by nuclear particles [fr

  5. Conversion factors for estimating release rate of gaseous radioactivity by an aerial survey

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1988-02-01

    Conversion factors necessary for estimating release rate of gaseous radioactivity by an aerial survey are presented. The conversion factors were determined based on calculation assuming a Gaussian plume model as a function of atmospheric stability, down-wind distance and flight height. First, the conversion factors for plumes emitting mono-energy gamma rays were calculated, then, conversion factors were constructed through convolution for the radionuclides essential in an accident of a nuclear reactor, and for mixtures of these radionuclides considering elapsed time after shutdown. These conversion factors are shown in figures, and also polynomial expressions of the conversion factors as a function of height have been decided with the least-squares method. A user can easily obtain proper conversion factors from data shown here. (author)

  6. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  7. Techniques to limit gaseous releases in case of reactor accident. Choice criteria - present solutions

    International Nuclear Information System (INIS)

    Billard, Francois; Lavie, Jean-Marie

    1964-10-01

    Within the frame of the study of radiological risks associated with a reactor accident in order to define the required responses, this study comprises, on the one hand, an analysis of the different accident types in order to select typical accidents, and on the other hand, a site-based analysis to define the maximum admissible radioactivity release for a given site. The determination of minimum required coefficient of risk reduction results from a compromise between the choice of reactor configuration type and the efficiency of purification devices, while taking into account minimum characteristics of the enclosure mechanical strength, local release conditions, and nature of gaseous effluents to be processed. After a review of available containment techniques, the author applies this analysis method to the different French reactor types. He gives a brief description of adopted solutions for the most typical French reactors in terms of characteristics of venting and filtration devices. As data quality is a crucial requirement, the author outlines the need for further studies regarding fission product emission and transfer, the purification of gaseous effluents and their diffusion in the atmosphere [fr

  8. Diffusion in Poiseuille and Couette flows of binary mixtures of incompressible newtonian fluids

    International Nuclear Information System (INIS)

    Caetano Filho, E.; Qassim, R.Y.

    1981-07-01

    Using the continuum theory of binary mixtures of incompressible Newtonian fluids, Poiseuille and Couette flows are studied with a view to determining whether diffusion occurs in such flows. It is shown that diffusion is absent in the Couette case. However, in Poiseuille flow there are significant differences between the velocities of the species comprising the mixture. This result is in broad agreement with that of Mills for similar mixtures of nonuniform composition. (Author) [pt

  9. Absorbing method of iodine in radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Fukutome, Yutaka; Mifuji, Hiroshi; Ito, Sakae.

    1983-01-01

    Purpose: To maintain an iodine adsorbing efficiency at a high level by keeping the adsorbing atmosphere to more than a predetermined temperature to thereby suppress the degradation and the activity reduction in zeolite. Method: Adsorption and desorption-regeneration of gaseous wastes are performed in parallel by heating gaseous wastes in a heater and switchingly supplying the same to adsorption columns by way of valve operation. Processed gases are cooled in a cooler and desorbed gases are supplied to an after-treatment device to eliminate or recover iodine 131. In the adsorption column, iodine in gaseous wastes is adsorbed to remove by using zeolite, wherein the adsorbing atmosphere is kept at a temperature higher than 40 0 C. This can prevent the formation of an aqueous HNO 3 solution from NO 2 and H 2 O contained in the gaseous wastes and prevent the degradation of the zeolite adsorption layer. (Kawakami, Y.)

  10. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda

    2011-01-01

    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  11. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  12. The Resistive-Plate WELL with Argon mixtures - a robust gaseous radiation detector

    CERN Document Server

    Moleri, Luca; Arazi, Lior; Rocha Azevedo, Carlos Davide; Oliveri, Eraldo; Pitt, Michael; Schaarschmidt, Jana; Shaked-Renous, Dan; Marques Ferreira dos Santos, Joaquim; Veloso, Joao Filipe Calapez de Albuquerque; Breskin, Amos; Bressler, Shikma

    2017-01-01

    A thin single-element THGEM-based, Resistive-Plate WELL (RPWELL) detector was operated with 150 GeV/c muon and pion beams in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$); signals were recorded with 1 cm$^2$ square pads and SRS/APV25 electronics. Detection efficiency values greater than 98% were reached in all the gas mixtures, at average pad multiplicity of 1.2. The use of the 10$^9${\\Omega}cm resistive plate resulted in a completely discharge-free operation also in intense pion beams. The efficiency remained essentially constant at 98-99% up to fluxes of $\\sim$10$^4$Hz/cm$^2$, dropping by a few % when approaching 10$^5$ Hz/cm$^2$. These results pave the way towards cost-effective, robust, efficient, large-scale detectors for a variety of applications in future particle, astro-particle and applied fields. A potential target application is digital hadron calorimetry.

  13. Entrapment process of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Gagneraud, Francis; Gagneraud, Michel.

    1981-01-01

    Process for collecting chemically inert gaseous radioactive waste in melted substances, whereby the gaseous waste is injected under pressure in a molten substance to its saturation point followed by fast cooling. This substance is constituted of glass, ceramics, metallurgical drosses and slag masses in fusion. Its cooling is carried out by quenching by means of running water or a gas fluid, or by casting into vessels with great thermal inertia such as cast iron or similar, before recovery and confinement in receptacles for storage [fr

  14. Biofiltration of Air/Styrene and Air/Styrene/Acetone mixtures in a bubble column reactor

    OpenAIRE

    Vieira, Ana

    2009-01-01

    The goal of this work was the treatment of polluted waste gases in a bubble column reactor (BCR), in order to determinate the maximum value of reactor’s efficiency (RE), varying the inlet concentration (C in) of the pollutants. The gaseous mixtures studied were: (i) air with styrene and (ii) air with styrene and acetone. The liquid phase used to contain the biomass in the reactor was a basal salt medium (BSM), fundamental for the microorganisms’ development. The reactor used in this pro...

  15. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  16. Behaviour of radioiodine in gaseous effluents

    International Nuclear Information System (INIS)

    Barry, P.J.

    1968-01-01

    Because of the different chemical forms in which radioiodine occurs in the gaseous state, it is important when designing efficient filters to know the chemical forms which may be present in the effluent gases when various operations are being carried out and to know the effect of different gaseous environments on the filtration efficiency. To obtain this information it is necessary to have available reliable means of characterizing different chemical forms and to sample gaseous effluents when these operations are being carried out. This paper describes the use for identifying molecular iodine of metallic screens in a multi-component sampling pack in different gaseous environments. Using multi-component sampling packs, the fractionation of iodine nuclides between different chemical forms was measured in the effluent gases escaping from an in-pile test loop in which the fuel was deliberately ruptured by restricting the flow of coolant. Sequential samples were taken for six hours after the rupture and it was possible to follow during this period the individual behaviours of 13 '1I, 133 I and 135 I. Simultaneous samples were also obtained of the noble gases in the effluent gas stream and of the iodine nuclides in the loop coolant. Similar experiments have been carried out with a view to characterizing the different chemical behaviour of radioiodine as it is released from a variety of operations in the nuclear industry including the cutting of fuel sections in metallurgical examination caves and an incinerator. (author)

  17. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  18. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes.

    Science.gov (United States)

    Lee, Mian Rong; Lee, Hiang Kwee; Yang, Yijie; Koh, Charlynn Sher Lin; Lay, Chee Leng; Lee, Yih Hong; Phang, In Yee; Ling, Xing Yi

    2017-11-15

    We demonstrate a one-step precise direct metal writing of well-defined and densely packed gold nanoparticle (AuNP) patterns with tunable physical and optical properties. We achieve this by using two-photon lithography on a Au precursor comprising poly(vinylpyrrolidone) (PVP) and ethylene glycol (EG), where EG promotes higher reduction rates of Au(III) salt via polyol reduction. Hence, clusters of monodisperse AuNP are generated along raster scanning of the laser, forming high-particle-density, well-defined structures. By varying the PVP concentration, we tune the AuNP size from 27.3 to 65.0 nm and the density from 172 to 965 particles/μm 2 , corresponding to a surface roughness of 12.9 to 67.1 nm, which is important for surface-based applications such as surface-enhanced Raman scattering (SERS). We find that the microstructures exhibit an SERS enhancement factor of >10 5 and demonstrate remote writing of well-defined Au microstructures within a microfluidic channel for the SERS detection of gaseous molecules. We showcase in situ SERS monitoring of gaseous 4-methylbenzenethiol and real-time detection of multiple small gaseous species with no specific affinity to Au. This one-step, laser-induced fabrication of AuNP microstructures ignites a plethora of possibilities to position desired patterns directly onto or within most surfaces for the future creation of multifunctional lab-on-a-chip devices.

  19. High temperature behaviour of copper and silver in presence of gaseous carbon and of chlorine-water vapor mixtures

    International Nuclear Information System (INIS)

    Beloucif, Luisa

    1986-01-01

    This research thesis reports the study of the effects of gaseous chlorine, in various conditions, on two metals, copper and silver, the chlorides of which can be precisely characterized and dosed by using different methods. After an overview of different aspects of corrosion of metals by halogens, and of copper and silver behaviour in chloride environment, the author reports and discusses results of tests performed in dry chlorine at high temperature, and the establishment of temperature-pressure semi-thermodynamic diagrams. The next part reports and discusses tests performed in a controlled atmosphere in presence of humidity. For all these tests, the author notably comments and discusses the nature of formed products, sample aspect, reaction progress, and influence of temperature or humidity

  20. Engineering design of the Aries-IV gaseous divertor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Najmabadi, F.; Sharafat, S.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10MPa base pressure. ARIES-IV uses double-null divertors for particle control. Total thermal power recovered from the divertors is 425MW, which is 16% of the total reactor thermal power. Among the desirable goals of divertor design were to avoid the use of tungsten and to use the same structural material and primary coolant as in the blanket design. In order to reduce peak heat flux, the innovative gaseous divertor has been used in ARIES-IV. A gaseous divertor reduces peak heat flux by increasing the surface area and by distributing particle and radiation energy more uniformly. Another benefit of gaseous divertor is the reduction of plasma temperature in the divertor chamber, so that material erosion due to sputtering, can be diminished. This makes the use of low-Z material possible in a gaseous divertor

  1. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  2. Gaseous isotope correlation technique for safeguards at reprocessing facilities

    International Nuclear Information System (INIS)

    Ohkubo, Michiaki.

    1988-03-01

    The isotope correlation technique based on gaseous stable fission products can be used as a means of verifying the input measurement to fuel reprocessing plants. This paper reviews the theoretical background of the gaseous fission product isotope correlation technique. The correlations considered are those between burnup and various isotopic ratios of Kr and Xe nuclides. The feasibility of gaseous ICT application to Pu input accountancy of reprocessing facilities is also discussed. The technique offers the possibility of in situ measurement verification by the inspector. (author). 16 refs, 7 figs

  3. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  4. Effect of mixture formation process of premixed lean diesel combustion. Study of the effect of mixture homogeneity on premixed lean diesel combustion in aid of numerical simulation; Yokongo diesel nensho ni okeru kongoki keisei katei no eikyo. Kongoki no kin`itsusei no eikyo to suchi simulation ni yoru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, N; Miyamoto, T; Akagawa, H; Tsujimura, K

    1997-10-01

    NOx emission was extremely decreased by PREDIC (PREmixed lean DIesel Combustion) in which fuel was injected at very early stage of compression stroke and the combustion started at near the TDC by self ignition. We have considered that NOx reduction is caused the decrease of a region of stoichiometric mixture ratio by means of extremely early injection. Therefore the homogeneity is very important to decrease of NOx. In this study to investigate the effect of mixture homogeneity in the PREDIC, gaseous fuels (DME, CH4) were charged into the intake, by the combination of direct fuel injection, the mixture heterogeneity was positively changed. In addition the mixture formation process is shown in aid of numerical simulation, it is observed that the homogeneous has the advantage of low NOx emission in PREDIC region. 9 refs., 10 figs., 1 tab.

  5. Separation of molecular hydrogen isotope mixtures using zeolite NaX-3M

    International Nuclear Information System (INIS)

    Polevoj, A.S.; Yudin, I.P.

    1984-01-01

    The components of transfer unit height (TUH) at separation of the H 2 -D 2 mixture using zeolite NaX-3M in the countercurrent column are determined. It is shown that the interphase isotopic exchange in the column is limited by gaseous diffusion in sorbent primary pores. On the basis of the TUH dependence the value of the hydrogen diffusion coefficient in primary pores of NaX-3M zeolite equal at 77 K and 87.3 K, respectively, approximately 1.09x10 -15 and approximately 1.69x10 -15 m 2 /s is calculated

  6. Uranium enrichment by the gaseous diffusion process

    International Nuclear Information System (INIS)

    Petit, J.F.

    1977-01-01

    After a brief description of the process and technology (principle, stage constitution, cascade constitution, and description of a plant), the author gives the history of gaseous diffusion and describes the existing facilities. Among the different enrichment processes contemplated in the USA during and after the last world war, gaseous diffusion has been the only one to be developed industrially on a wide scale in the USA, then in the UK, in the USSR and in France. The large existing capacities in the USA provided the country with a good starting base for the development of a light-water nuclear power plant programme, the success of which led to a shortfall in production means. France and the USA, possessing the necessary know-how, have been able to undertake the realization of two industrial programmes: the CIP-CUP programme in the USA and the Eurodif project in France. Current plans still call for the construction of several plants by 1990. Can the gaseous diffusion process meet this challenge. Technically, there is no doubt about it. Economically, this process is mainly characterized by large energy consumption and the necessity to build large plants. This leads to a large investment, at least for the first plant. Other processes have been developed with a view to reducing both energy and capital needs. However, in spite of continuous studies and technological progress, no process has yet proved competitive. Large increments in capacities are still expected to come from gaseous diffusion, and several projects taking into account the improvements in flexibility, automatization, reliability and reduced investment, are analysed in the paper. Combining new facilities with existing plants has already proved to be of great interest. This situation explains why gaseous diffusion is being further investigated and new processes are being studied. (author)

  7. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    Science.gov (United States)

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Process and device for the adsorptive separation of krypton from a krypton/nitrogen gas mixture

    International Nuclear Information System (INIS)

    Ringel, H.; Messler, M.

    1985-01-01

    The gas mixture flows through an adsorption column, which is filled with a means of adsorbing Krypton and nitrogen. The adsorption column is desorbed after adsorption of the gas components by a gaseous flushing material, which flows through the adsorption column in the same direction as the gas mixture. In order to achieve a high degree of separation, the adsorption material is loaded with nitrogen and Krypton from the gas inlet, where Krypton is only absorbed over part of the length of the whole column by the adsorption material. The part of the length is such that on desorption of the adsorption column with the flushing material at first only nitrogen and later only Krypton is obtained at the outlet of the adsorption column. (Waste gas system of a reprocession plant). (orig./HP) [de

  9. Radioactivity in gaseous waste discharged from the separations facilities during 1978

    International Nuclear Information System (INIS)

    Anderson, J.D.; Poremba, B.E.

    1979-01-01

    This document is issued quarterly for the purpose of summarizing the radioactive gaseous wastes that are discharged from the facilities of the Rockwell Hanford Operations. Data on alpha and beta emissions during 1978 are presented where relevant to the gaseous effluent. Emission data are not included on gaseous wastes produced within the 200 Areas by other Hanford contractors

  10. Fuels by Waste Plastics Using Activated Carbon, MCM-41, HZSM-5 and Their Mixture

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert

    2016-01-01

    Full Text Available Waste material was pyrolyzed in a horizontal tubular reactor at 530-540°C using different catalysts, such as activated carbon, MCM-41, HZSM-5 and their mixtures. Products were investigated by gas-chromatography, EDXRFS and standardized methods. Catalysts significantly affected the yields of volatiles; e.g. HZSM-5 catalyst increased especially the yield of gaseous hydrocarbons, while MCM-41 catalyst was responsible for increasing the pyrolysis oil yield. Synergistic effects were found using mixtures of different catalysts. Furthermore the catalysts modified the main carbon frame of the products. Pyrolysis oil obtained over HZSM-5 catalyst contained large amounts of aromatics, while MCM-41 catalyst mainly isomerized the carbon frame. Regarding contaminants it was concluded, that the sulphur content could be significantly decreased by activated carbon, however it had only a slight effect to the other properties of the products.

  11. Boson-fermion mixtures inside an elongated cigar-shaped trap

    International Nuclear Information System (INIS)

    Akdeniz, Z; Vignolo, P; Tosi, M P

    2005-01-01

    We present mean-field calculations of the equilibrium state in a gaseous mixture of bosonic and spin-polarized fermionic atoms with repulsive or attractive interspecies interactions, confined inside a cigar-shaped trap under conditions such that the radial thickness of the two atomic clouds is approaching the magnitude of the s-wave scattering lengths. In this regime, the kinetic pressure of the fermionic component is dominant. Full demixing under repulsive boson-fermion interactions can occur only when the number of fermions in the trap is below a threshold, and collapse under attractive interactions is suppressed within the range of validity of the mean-field model. Specific numerical illustrations are given for values of system parameters obtaining in 7 Li- 6 Li clouds

  12. Experimental ion mobility measurements in Xe-CF4 mixtures

    Science.gov (United States)

    Cortez, A. F. V.; Kaja, M. A.; Escada, J.; Santos, M. A. G.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2018-04-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon with carbon tetrafluoride (Xe-CF4) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 to 25 Td range (2.4-6.1 kVṡcm‑1ṡbar‑1), at room temperature. The time-of-arrival spectra revealed one or two peaks depending on the gas relative abundances, which were attributed to CF3+ and to Xe2+ ions. However, for Xe concentrations above 60%, only one peak remains (Xe2+). The reduced mobilities obtained from the peak centroid of the time-of-arrival spectra are presented for Xe concentrations in the 5%-95% range.

  13. Burning Behaviour of High-Pressure CH4-H2-Air Mixtures

    Directory of Open Access Journals (Sweden)

    Jacopo D'Alessio

    2013-01-01

    Full Text Available Experimental characterization of the burning behavior of gaseous mixtures has been carried out, analyzing spherical expanding flames. Tests were performed in the Device for Hydrogen-Air Reaction Mode Analysis (DHARMA laboratory of Istituto Motori—CNR. Based on a high-pressure, constant-volume bomb, the activity is aimed at populating a systematic database on the burning properties of CH4, H2 and other species of interest, in conditions typical of internal combustion (i.c. engines and gas turbines. High-speed shadowgraph is used to record the flame growth, allowing to infer the laminar burning parameters and the flame stability properties. Mixtures of CH4, H2 and air have been analyzed at initial temperature 293÷305 K, initial pressure 3÷18 bar and equivalence ratio  = 1.0. The amount of H2 in the mixture was 0%, 20% and 30% (vol.. The effect of the initial pressure and of the Hydrogen content on the laminar burning velocity and the Markstein length has been evaluated: the relative weight and mutual interaction has been assessed of the two controlling parameters. Analysis has been carried out of the flame instability, expressed in terms of the critical radius for the onset of cellularity, as a function of the operating conditions.

  14. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.; Pontius, R.B.

    1976-01-01

    The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane

  15. Legal provisions governing gaseous effluents radiological monitoring

    International Nuclear Information System (INIS)

    Winkelmann, I.

    1985-01-01

    This contribution explains the main provisions governing radiological monitoring of gaseous effluents from LWR type nuclear power plants. KTA rule 1503.1 defines the measuring methods and tasks to be fulfilled by reactor operators in order to safeguard due monitoring and accounting of radioactive substances in the plants' gaseous effluents. The routine measurements are checked by a supervisory programme by an independent expert. The routine controls include analysis of filter samples, comparative measurement of radioactive noble gases, interlaboratory comparisons, and comparative evaluation of measured values. (DG) [de

  16. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  17. Conversion of nitric oxide in the combustion products of a gaseous fuel on exposure to a beam of accelerated electrons

    International Nuclear Information System (INIS)

    Belousova, E.V.; Gavrilov, A.F.; Gol'danskii, V.I.; Dzantiev, B.G.; Pavlova, S.U.; Shvedchikov, A.P.

    1986-01-01

    The results are given of an experimental investigation of the radiation chemical effect of a beam of accelerated electrons on the combustion products of a gaseous fuel (propane). The effects of the initial concentration, temperature, and dose on the relative concentration of nitric oxide [NO]/[NO] 0 in the irradiated mixture were studied and the radiation chemical yields for the consumption of nitric oxide G(-NO) were studied. The quite high values of G(-NO) obtained suggest that the method described may be suitable for removing nitrogen oxides from the exhaust gases from thermoelectric power plants

  18. Method of forming a nanocluster comprising dielectric layer and device comprising such a layer

    NARCIS (Netherlands)

    2009-01-01

    A method of forming a dielectric layer (330) on a further layer (114, 320) of a semiconductor device (300) is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer (114, 320), the dielectric precursor compound comprising a

  19. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  20. Study of structural and transport properties of argon, krypton, and their binary mixtures at different temperatures.

    Science.gov (United States)

    Ghimire, Sunil; Adhikari, Narayan Prasad

    2017-03-01

    Molecular dynamics simulation of argon, krypton, and their binary mixtures were performed at different temperatures and constant pressure (P = 1.013 bar) using GROMACS - Groningen Machine for Chemical Simulations. The gases are modeled by Lennard-Jones pair potential, with parameters taken from the literature. The study of radial distribution functions (RDFs) shows a single peak which indicates that there is no packing effect in gaseous state for argon, krypton, and their binary mixtures. The self-diffusion coefficients of argon and krypton is determined by using mean-square displacement(MSD) method and the mutual diffusion coefficients of binary mixtures are determined using Darken's relation. The values of simulated diffusion coefficients are compared with their corresponding theoretical values, numerical estimation, and experimental data. A good agreement between these sets of data is found. The diffusion coefficients obey Arrhenius behavior to a good extent for both pure components and binary mixtures. The values of simulated diffusion coefficient are used to estimate viscosities and thermal conductivities which agree with theoretical values, numerical estimation, and experimental data within 10 %. These results support that the LJ potential is sufficient for description of molecular interactions in argon and krypton.

  1. Near-limit propagation of gaseous detonations in narrow annular channels

    Science.gov (United States)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  2. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  3. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  4. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  5. Compositions comprising free-standing two-dimensional nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel W.; Gogotsi, Yury; Abdelmalak, Michael Naguib; Mashtalir, Olha

    2017-12-05

    The present invention is directed to methods of transferring urea from an aqueous solution comprising urea to a MXene composition, the method comprising contacting the aqueous solution comprising urea with the MXene composition for a time sufficient to form an intercalated MXene composition comprising urea.

  6. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I; Benz, P; Schaeren, R; Bombach, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  7. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  8. A new design of the gaseous imaging detector: Micro Pixel Chamber

    CERN Document Server

    Ochi, A; Koishi, S; Tanimori, T; Nagae, T; Nakamura, M

    2001-01-01

    The novel gaseous detector 'Micro Pixel Chamber (Micro PIC)' has been developed for X-ray, gamma-ray and charged particle imaging. This detector consists of double sided printing circuit board (PCB). The stable operation of Micro PIC is realized by thick substrate and wide anode strips. One of the most outstanding feature is the process of production and the cost. The base technology of producing Micro PIC is same as producing PCB, then detector with large detection area (more than 10 cmx10 cm) can be made by present technology. Our first tests were performed using a 3 cmx3 cm detection area with a readout of 0.4 mm pitch. The gas gain and stability were measured in these tests. The gas gain of 10 sup 4 was obtained using argon ethane (8:2) gas mixture. Also, there was no discharge between anodes and cathodes in the gain of 10 sup 3 during two days of continuous operation. Although some discharges occurred in the higher gain (approximately 10 sup 4), no critical damage on the detector was found.

  9. Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.

    Science.gov (United States)

    Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da

    2015-01-01

    The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  11. Attachment to a mass spectrometer for studying the processes of semiconductor compound deposition from a gaseous phase

    International Nuclear Information System (INIS)

    Belousov, V.I.; Zhuravlev, G.I.; Popenko, N.I.; Novozhilov, A.F.; Matveev, I.V.; Murav'ev, V.V.

    1984-01-01

    An attachment to the mass spectrometer for studying the processes of semiconductor compounds deposition from a gaseous phase at the pressure of 1x10 5 Pa and the temperature of 400-1300 K is described. The attachment consists of the Neer ion source with ionization section cooled upto the temperature of liquid nitrogen, a two-zone vacuum furnace, and a quartz epitaxy reactor of the horzontal type.The attachment is equipped with the systems of process gas distribution in 5 flows and temperature stabilization. The rate of mass spectrum recording constitutes 2 mass/s at the resolution being equal to 1000 at the 10% level. The sensitivity at the steam-gas mixture components partial pressure determination constitutes 1x10 -4 Pa

  12. Monitoring and removal of gaseous carbon-14 species

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1979-01-01

    A simple and efficient method was developed for the monitoring of low level carbon-14 in nuclear power station areas and gaseous effluent. Gaseous carbon compounds (hydrocarbons and CO) are catalytically oxidized to CO 2 , which is then absorbed on solid Ca(OH) 2 at elevated temperatures. The 14 C collected is quantitatively liberated by thermal decomposition of CaCO 3 as CO 2 , which is either measured directly by flow-through detectors or absorbed in alkali hydroxide followed by liquid scintillation counting. The method can also be used for the removal of gaseous 14 C. The Ca 14 CO 3 can be immobilized in concrete for long term disposal. Ca(OH) 2 is an inexpensive absorber. It is selective for CO 2 and has high capacity and efficiency for its absorption and retention. A theoretical evaluation of thee optium conditions for CO 2 absorption and liberation is discussed and experimental investigations are described. There is good agreement between theoretical predictions and experimental findings

  13. Separation of gaseous hydrogen from a water-hydrogen mixture in a fuel cell power system operating in a weightless environment

    Science.gov (United States)

    Romanowski, William E. (Inventor); Suljak, George T. (Inventor)

    1989-01-01

    A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.

  14. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  15. Infrared absorption of gaseous ClCS detected with time-resolved Fourier-transform spectroscopy

    International Nuclear Information System (INIS)

    Chu, Li-Kang; Han, Hui-Ling; Lee, Yuan-Pern

    2007-01-01

    A transient infrared absorption spectrum of gaseous ClCS was detected with a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. ClCS was produced upon irradiating a flowing mixture of Cl 2 CS and N 2 or CO 2 with a KrF excimer laser at 248 nm. A transient band in the region of 1160-1220 cm -1 , which diminished on prolonged reaction, is assigned to the C-S stretching (ν 1 ) mode of ClCS. Calculations with density-functional theory (B3P86 and B3LYP/aug-cc-pVTZ) predict the geometry, vibrational wave numbers, and rotational parameters of ClCS. The rotational contour of the spectrum of ClCS simulated based on predicted rotational parameters agrees satisfactorily with experimental observation; from spectral simulation, the band origin is determined to be at 1194.4 cm -1 . Reaction kinetics involving ClCS, CS, and CS 2 are discussed

  16. Air pollution with gaseous emissions and methods for their removal

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Boycheva, Sylvia; Fidancevska, Emilija

    2009-01-01

    Information concerning gaseous pollutants generated in the atmosphere, as a result of fuel incineration processes in thermal power and industrial plants, was summarized. The main methods and technologies for flue gases purification from the most ecologically hazardous pollutants are comparatively discussed. Keywords: gaseous pollutants, aerosols, flue gas purification systems and technologies, air ecology control

  17. Gaseous radioiodine transport in the air-forage-cow-milk system

    International Nuclear Information System (INIS)

    Black, S.C.; Douglas, R.L.; Barth, D.S.

    1976-04-01

    To study the transport of 131 I in the air-forage-cow milk system, a gaseous form of 131 I was released over a field of growing alfalfa which also contained some baled hay and dairy cows in pens. Some of the alfalfa was converted to hay and fed to cows, and some was used as green chop for other cows and goats. The results of this experiment suggest that the deposition velocity of gaseous iodine is much less than that for iodine bound to particulates; that cows ingesting hay secrete a higher percentage of 131 I in milk than cows ingesting green chop; that gaseous forms do not penetrate hay bales to any great extent; that the gaseous form is transferred to milk in a manner similar to particulate forms; that ingestion of contaminated forage results in 80 times as much 131 I transfer to milk as does inhalation exposure to the same cloud; and that goats transfer 131 I from forage to milk more efficiently than do dairy cows

  18. Anti-fatigue activity of a mixture of seahorse (Hippocampus abdominalis hydrolysate and red ginseng

    Directory of Open Access Journals (Sweden)

    Nalae Kang

    2017-03-01

    Full Text Available Abstract Seahorse, a syngnathidae fish, is one of the important organisms used in Chinese traditional medicine. Hippocampus abdominalis, a seahorse species successfully cultured in Korea, was validated for use in food by the Ministry of Food and Drug Safety in February 2016; however. the validation was restricted to 50% of the entire composition. Therefore, to use H. abdominalis as a food ingredient, H. abdominalis has to be prepared as a mixture by adding other materials. In this study, the effect of H. abdominalis on muscles was investigated to scientifically verify its potential bioactivity. In addition, the anti-fatigue activity of a mixture comprising H. abdominalis and red ginseng (RG was evaluated to commercially utilize H. abdominalis in food industry. H. abdominalis was hydrolyzed using Alcalase, a protease, and the effect of H. abdominalis hydrolysate (HH on the muscles was assessed in C2C12 myoblasts by measuring cell proliferation and glycogen content. In addition, the mixtures comprising HH and RG were prepared at different percentages of RG to HH (20, 30, 40, 50, 60, 70, and 80% RG, and the anti-fatigue activity of these mixtures against oxidative stress was assessed in C2C12 myoblasts. In C2C12 myoblasts, H2O2-induced oxidative stress caused a decrease in viability and physical fatigue-related biomarkers such as glycogen and ATP contents. However, treatment with RG and HH mixtures increased cell viability and the content of fatigue-related biomarkers. In particular, the 80% RG mixture showed an optimum effect on cell viability and ATP synthesis activity. In this study, all results indicated that HH had anti-fatigue activity at concentrations approved for use in food by the law in Korea. Especially, an 80% RG to HH mixture can be used in food for ameliorating fatigue.

  19. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    Science.gov (United States)

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  20. Statistical experimental design for saltstone mixtures

    International Nuclear Information System (INIS)

    Harris, S.P.; Postles, R.L.

    1991-01-01

    We used a mixture experimental design for determining a window of operability for a process at the Savannah River Site Defense Waste Processing Facility (DWPF). The high-level radioactive waste at the Savannah River Site is stored in large underground carbon steel tanks. The waste consists of a supernate layer and a sludge layer. 137 Cs will be removed from the supernate by precipitation and filtration. After further processing, the supernate layer will be fixed as a grout for disposal in concrete vaults. The remaining precipitate will be processed at the DWPF with treated waste tank sludge and glass-making chemicals into borosilicate glass. The leach rate properties of the supernate grout, formed from various mixes of solidified salt waste, needed to be determined. The effective diffusion coefficients for NO 3 and Cr were used as a measure of leach rate. Various mixes of cement, Ca(OH) 2 , salt, slag and flyash were used. These constituents comprise the whole mix. Thus, a mixture experimental design was used

  1. Characterization of Lean Misfire Limits of Mixture Alternative Gaseous Fuels Used for Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2012-03-01

    Full Text Available Increasing on gaseous fuels as clean, economical and abundant fuels encourages the search for optimum conditions of gas-fueled internal combustion engines. This paper presents the experimental results on the lean operational limits of Recardo E6 engine using gasoline, LPG, NG and hydrogen as fuels. The first appearance of almost motoring cycle was used to define the engine lean limit after the fuel flow was reduced gradually. The effects of compression ratio, engine speed and spark timing on the engine operational limits are presented and discussed in detailed. Increasing compression ratio (CR extend the lean limits, this appears obviously with hydrogen, which has a wide range of equivalence ratios, while for hydrocarbon fuel octane number affect gasoline, so it can' t work above CR=9:1, and for LPG it reaches CR=12:1, NG reaches CR=15:1 at lean limit operation. Movement from low speeds to medium speeds extended lean misfire limits, while moving from medium to high speeds contracted the lean misfiring limits. NOx, CO and UBHC concentrations increased with CR increase for all fuels, while CO2 concentrations reduced with this increment. NOx concentration increased for medium speeds and reduced for high speeds, but the resulted concentrations were inconcedrable for these lean limits. CO and CO2 increased with engine speed increase, while UBHC reduced with this increment. The hydrogen engine runs with zero CO, CO2 and UNHC concentrations, and altra low levels of NOx concentrations at studied lean misfire limits

  2. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  3. Direct injection of gaseous LPG in a two-stroke SI engine for improved performance

    International Nuclear Information System (INIS)

    Pradeep, V.; Bakshi, Shamit; Ramesh, A.

    2015-01-01

    Improvements in a two-stroke, spark-ignition (2S–SI) engine can be realized by curtailing short-circuiting losses effectively through direct injection of the fuel. Liquefied petroleum gas (LPG) is an alternative transportation fuel that is used in several countries. However, limited information is available on LPG fuelled direct injected engines. Hence, there is a need to study these systems as applied to 2S–SI engines in order to bring out their potential benefits. A manifold injected 2S–SI engine is modified for direct injection of LPG, in gaseous form, from the cylinder head. This engine is evaluated for performance, emission and combustion. Evaluation at various throttle positions and constant speed showed that this system can significantly improve the thermal efficiency and lower the hydrocarbon (HC) emissions. Up to 93% reduction in HC emissions and improved combustion rates are observed compared to the conventional manifold injection system with LPG. CO emissions are higher and peak NO emissions are lower with this system due to the presence of richer in–cylinder trapped mixtures and charge stratification. This system can operate with similar injection timings at different throttle positions which make electronic control simpler. It can work with low injection pressures in the range of 4–5 bars. All these advantages are attractive for commercial viability of this engine. - Highlights: • Energy saving, low pressure, direct gaseous LPG injection in engine. • Significant reduction in HC emissions at all operating conditions. • No significant changes in injection timings for different throttle positions.

  4. A Population Study of Gaseous Exoplanets

    Science.gov (United States)

    Tsiaras, A.; Waldmann, I. P.; Zingales, T.; Rocchetto, M.; Morello, G.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L. K.; Tennyson, J.; Yurchenko, S. N.

    2018-04-01

    We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 R Jup. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres in around 16 planets out of the 30 analyzed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  5. Preparation of standard mixtures of gas hydrocarbons in air by the diffusion dilution method; Preparacion de mezclas patrones de hidrocarburos gaseosos en aire por el metodo de dilucion por difusion

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M R; Perez, M M

    1979-07-01

    An original diffusion system able to produce continuously gaseous samples is described. This system can generate samples with concentrations of benzene in air from 0.1 to 1 ppm a reproducible way. The diffusion dilution method used Is also studied. The use of this diffusion system has been extended to the preparation of binary mixtures (benzene-toluene). Whit a secondary dilution device is possible preparing these mixtures over a wide range of concentrations (0.11 to 0.04 ppm for benzene and 0.06 to 0.02 for toluene). (Author) 7 refs.

  6. Monitoring of released radioactive gaseous and liquid effluent at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Oka, M.; Keta, S.; Nagai, S.; Kano, M.; Ishihara, N.; Moriyama, T.; Ogaki, K.; Noda, K.

    2009-01-01

    Rokkasho Reprocessing Plant (RRP) Rokkasho Reprocessing Plant started its active tests with spent fuel at the end of March 2006. When spent fuels are sheared and dissolved, radioactive gaseous effluent and radioactive liquid effluent such as krypton-85, tritium, etc. are released into the environment. In order to limit the public dose as low as reasonably achievable in an efficient way, RRP removes radioactive material by evaporation, rinsing, filtering, etc., and then releases it through the main stack and the sea discharge pipeline that allow to make dispersion and dilution very efficiently. Also, concerning the radioactive gaseous and liquid effluent to be released into the environment, the target values of annual release have been defined in the Safety Rule based on the estimated annual release evaluated at the safety review of RRP. By monitoring the radioactive material in gaseous exhaust and liquid effluent RRP controls it not to exceed the target values. RRP reprocessed 430 tUpr of spent fuel during Active Test (March 2006 to October 2008). In this report, we report about: The outline of gaseous and liquid effluent monitoring. The amount of radioactive gaseous and liquid effluent during the active test. The performance of removal of radioactive materials in gaseous and liquid effluents. The impact on the public from radioactive effluents during the active test. (author)

  7. Ionic liquids for separation of olefin-paraffin mixtures

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  8. Development of a gas chromatography-mass spectrometry method for the determination of pesticides in gaseous and particulate phases in the atmosphere.

    Science.gov (United States)

    Borrás, E; Sánchez, P; Muñoz, A; Tortajada-Genaro, L A

    2011-08-05

    A reliable multi-residue method for determining gaseous and particulate phase pesticides in atmospheric samples has been developed. This method, based on full scan gas chromatography-mass spectrometry (GC-MS), allowed the proper determination of sixteen relevant pesticides, in a wide range of concentrations and without the influence of interferences. The pesticides were benfluralin, bitertanol, buprofezin, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, ethalfluralin, fenthion, lindane, malathion, methidathion, propachlor, propanil, pyriproxifen, tebuconazol and trifluralin. Comparisons of two types of sampling filters (quartz and glass fibre) and four types of solid-phase cartridges (XAD-2, XAD-4, Florisil and Orbo-49P) showed that the most suitable supports were glass fibre filter for particulate pesticides and XAD-2 and XAD-4 cartridges for gaseous pesticides (>95% recovery). Evaluations of elution solvents for ultrasonic-assisted extraction demonstrated that isooctane is better than ethylacetate, dichloromethane, methanol or a mixture of acetone:hexane (1:1). Recovery assays and the standard addition method were performed to validate the proposed methodology. Moreover, large simulator chamber experiments allowed the best study of the gas-particle partitioning of pesticides for testing the sampling efficiency for the validation of an analytical multiresidue method for pesticides in air. Satisfactory analytical parameters were obtained, with a repeatability of 5±1%, a reproducibility of 13±3% and detection limits of 0.05-0.18 pg m(-3) for the particulate phase and 26-88 pg m(-3) for the gaseous phase. Finally, the methodology was successfully applied to rural and agricultural samples in the Mediterranean area. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  10. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    Science.gov (United States)

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  11. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  12. Literature study and experimental investigations into the production of organic iodine compounds from alkane-vapour/air mixtures with radioiodine in the radiation field

    International Nuclear Information System (INIS)

    Leskopf, W.; Holl, S.; Bleier, K.

    1992-01-01

    It was assumed in these investigations that these compounds originated in the gas phase by irradiation induced reactions with radioiodine. Alkane(methane, ethane, propane, n-butane) vapour/air mixtures were radiolysed with iodine in a Co-60 gamma source. The parameter varied were the concentrations of iodine (6.85 E-09 mol/ml - 3.43 E-06 mol/ml) and of the alkanes (1.81 E-05 mol/ml - 3.72 E-10 mol/ml) as well as the irradiation doses (4.45 E + 02 Gy - 1.17 E + 05 Gy). The gaseous reaction mixtures were analysed qualitatively and quantitatively by an ECD- and a MSD-detector for iodine compounds difficult to separate. (orig.) [de

  13. An approach for assessing human exposures to chemical mixtures in the environment

    International Nuclear Information System (INIS)

    Rice, Glenn; MacDonell, Margaret; Hertzberg, Richard C.; Teuschler, Linda; Picel, Kurt; Butler, Jim; Chang, Young-Soo; Hartmann, Heidi

    2008-01-01

    Humans are exposed daily to multiple chemicals, including incidental exposures to complex chemical mixtures released into the environment and to combinations of chemicals that already co-exist in the environment because of previous releases from various sources. Exposures to chemical mixtures can occur through multiple pathways and across multiple routes. In this paper, we propose an iterative approach for assessing exposures to environmental chemical mixtures; it is similar to single-chemical approaches. Our approach encompasses two elements of the Risk Assessment Paradigm: Problem Formulation and Exposure Assessment. Multiple phases of the assessment occur in each element of the paradigm. During Problem Formulation, analysts identify and characterize the source(s) of the chemical mixture, ensure that dose-response and exposure assessment measures are concordant, and develop a preliminary evaluation of the mixture's fate. During Exposure Assessment, analysts evaluate the fate of the chemicals comprising the mixture using appropriate models and measurement data, characterize the exposure scenario, and estimate human exposure to the mixture. We also describe the utility of grouping the chemicals to be analyzed based on both physical-chemical properties and an understanding of environmental fate. In the article, we also highlight the need for understanding of changes in the mixture composition in the environment due to differential transport, differential degradation, and differential partitioning to other media. The section describes the application of the method to various chemical mixtures, highlighting issues associated with assessing exposures to chemical mixtures in the environment

  14. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  15. An introduction to technetium in the gaseous diffusion cascades

    International Nuclear Information System (INIS)

    Simmons, D.W.

    1996-09-01

    The radioisotope technetium-99 ( 99 Tc) was introduced into the gaseous diffusion plants (GDP) as a contaminant in uranium that had been reprocessed from spent nuclear reactor fuel. 99 Tc is a product of the nuclear fission of uranium-235 ( 235 U). The significantly higher emitted radioactivity of 99 Tc generates concern in the enrichment complex and warrants increased attention (1) to the control of all site emissions, (2) to worker exposures and contamination control when process equipment requires disassembly and decontamination, and (3) to product purity when the enriched uranium hexafluoride (UF 6 ) product is marketed to the private sector. A total of 101,268 metric tons of RU (∼96% of the total) was fed at the Paducah Gaseous Diffusion Plant (PGDP) between FY1953 and FY1976. An additional 5600 metric tons of RU from the government reactors were fed at the Oak Ridge Gaseous Diffusion Plant (ORGDP), plus an approximate 500 tons of foreign reactor returns. Only a small amount of RU was fed directly at the Portsmouth Gaseous Diffusion Plant (PORTS). The slightly enriched PGDP product was then fed to either the ORGDP or PORTS cascades for final enrichment. Bailey estimated in 1988 that of the 606 kg of Tc received at PGDP from RU, 121 kg was subsequently re-fed to ORGDP and 85 kg re-fed to PORTS

  16. Optical measurements for the gaseous phase speciation of HIx mixtures: experiments and modelling

    International Nuclear Information System (INIS)

    Denis Doizi; Vincent Dauvois; Vincent Delanne; Jean Luc Roujou; Bruno Larousse; Olivier Hercher; Christophe Moulin; Pierre Fauvet; P Carles; Jean Michel Hartmann

    2006-01-01

    To design and optimize the efficiency of the reactive distillation column of HI we have proposed for the HI section of the I-S cycle, analytical optical 'online' techniques have been proposed to measure the partial and total pressures of the liquid vapour equilibrium of the ternary HI/I 2 /H 2 O mixtures: - FTIR spectrometry for the measurement of hydrogen iodide and water vapours, - Visible spectrometry for the measurement of iodine vapour. The use of these optical techniques has been validated in an experimental device around 130 C and 2 bars. This device is composed of a glass cell equipped with two optical path lengths and placed in a thermo-regulated oven to allow the optical measurements of the concentrations of the three species in the vapour phase. Using an experimental design analysis, the infrared spectra of hydrogen iodide and water have been measured in a selected wavelength range versus temperature and for different HI x compositions. The spectra are then analyzed in particular using a model especially developed for this objective. This model relies on the fitting of the experimental infrared data using a root mean square method and an appropriate spectroscopic database. The visible spectrum of iodine has also been measured. (authors)

  17. Method of making Tl-Sr-Ca-Cu-oxide superconductors comprising heating at elevated pressures in a sealed container

    International Nuclear Information System (INIS)

    Lechtev, W.L.; Osofsky, M.S.; Skelton, E.F.; Toth, L.E.

    1992-01-01

    This patent describes a method of forming a Tl-Sr-Ca-Cu-oxide high T c superconductor. It comprises forming a reaction mixture of the oxides of Sr, Cu, Ca, and Tl in stoichiometric proportions to make a Tl-Sr-Ca-Cu-oxide high T c superconducting compound; compressing the reaction mixture into a hard body; placing the hard body into a container for containing thallium vapor; evacuating and sealing the hard body in the container; heating the hard body and the container at a temperature of about 800 degrees C to about 950 degrees C and under pressure of at least about 30,000 psi until the container metal around the hard body and the oxides of Tl, Sr, Ca, and Cu react to form a superconducting compound; and cooling the superconducting compound to room temperature and returning the superconducting compound to atmospheric pressure

  18. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  19. Migration from Gasoline to Gaseous Fuel for Small-scale Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Sukandar Sukandar

    2013-03-01

    Full Text Available This paper describes a study that gives a consideration to change fuel source for electricity generator from gasoline to combustible gas. A gaseous fuel conversion technology is presented and its performance is compared with gasoline. In the experiment, two types of load were tested, resistive and resistive-inductive. By using both fuels mostly the power factor (Cos ? of resistive-inductive load variations were greater than 0.8, and they had slight difference on operational voltage. The drawback of using gaseous fuel is the frequency of the electricity might be up to 10 Hz deviated from the standard frequency (i.e. 50 Hz. In the lab scale experiment, the gasoline consumption increased proportionally with the load increase, while using gaseous fuel the consumption of gas equal for two different load value in the range of 50% maximum load, which is 100 gram per 15 minutes operation. Therefore, the use of gaseous generation system should have average power twice than the required load. The main advantage using gaseous fuel (liquefied petroleum gas or biogas compared to gasoline is a cleaner emitted gas after combustion.

  20. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire, E-mail: gregoire.danger@univ-amu.fr [Aix-Marseille Université, PIIM UMR-CNRS 7345, F-13397 Marseille (France)

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  1. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky. The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume I, provides an introduction, summary and recommendations, and the emergency operations center direction and control

  2. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan with emphasis on the catas trophic earthquake; (2) an Emergency Operations Center Duty Roster Manual; (3) an Integrated Automated Emergency Management Information System (IAEMIS); and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6; Volume III -- Chapter 7; and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is this document numbered as Volume III

  3. The structural and thermodynamical properties of binary ellipsoidal fluid mixture Gay-Berne interaction

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2007-06-01

    Full Text Available  In this paper, a uniform classical fluid mixture comprising ellipsoidal molecules is studied. This mixture is composed of two types of ellipsoidal molecules interacting through the Gay-Berne potential with different sizes at temperature T. For this system, the Ornstein-Zernike equation using the Percus-Yevick closure relation is solved. Then the direct correlation function, pair correlation function and the pressure of the fluid at temperature T are calculated. The obtained results are in agreement with the previous theories and the results of molecular dynamic computer simulation.

  4. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  5. Electrochemical energy storage devices comprising self-compensating polymers

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-01-30

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises a zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.

  6. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw.

    Science.gov (United States)

    Janczak, Damian; Malińska, Krystyna; Czekała, Wojciech; Cáceres, Rafaela; Lewicki, Andrzej; Dach, Jacek

    2017-08-01

    Composting of poultry manure which is high in N and dense in structure can cause several problems including significant N losses in the form of NH 3 through volatilization. Biochar due to its recalcitrance and sorption properties can be used in composting as a bulking agent and/or amendment. The addition of a bulking agent to high moisture raw materials can assure optimal moisture content and enough air-filled porosity but not necessarily the C/N ratio. Therefore, amendment of low C/N composting mixtures with biochar at low rates can have a positive effect on composting dynamics. This work aimed at evaluating the effect of selected doses of wood derived biochar amendment (0%, 5% and 10%, wet weight) to poultry manure (P) mixed with wheat straw (S) (in the ratio of 1:0.4 on wet weight) on the total ammonia emissions (including gaseous emissions of ammonia and liquid emissions of ammonium in the collected condensate and leachate) during composting. The process was performed in 165L laboratory scale composting reactors for 42days. The addition of 5% and 10% of biochar reduced gaseous ammonia emission by 30% and 44%, respectively. According to the obtained results, the measure of emission through the condensate would be necessary to assess the impact of the total ammonia emission during the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  8. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  9. Measurements of gaseous multiplication coefficient in pure isobutane

    International Nuclear Information System (INIS)

    Lima, Iara Batista de

    2010-01-01

    In this work it is presented measurements of gaseous multiplication coefficient (α) in pure isobutane obtained with a parallel plate chamber, protected against discharges by one electrode (anode) of high resistivity glass (ρ = 2 x 10 12 Ω.cm). The method applied was the Pulsed Townsend, where the primary ionization is produced through the incidence of a nitrogen laser beam onto a metallic electrode (cathode). The electric currents measured with the chamber operating in both ionization and avalanche regimes were used to calculate the gaseous multiplication coefficient by the solution of the Townsend equation for uniform electric fields. The validation of the technique was provided by the measurements of gaseous multiplication coefficient in pure nitrogen, a widely studied gas, which has well-established data in literature. The α coefficients in isobutane were measured as a function of the reduced electric field in the range of 139Td up to 208Td. The obtained values were compared with those simulated by Imonte software (version 4.5) and the only experimental results available in the literature, recently obtained in our group. This comparison showed that the results are concordant within the experimental errors. (author)

  10. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  11. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Sevoflurane improves gaseous exchange and exerts protective effects in ... Lung water content and cell count were estimated by standard protocols. ... It reversed LPS-induced oxidative stress, as demonstrated by increase in total antioxidant ...

  12. Statistical experimental design for saltstone mixtures

    International Nuclear Information System (INIS)

    Harris, S.P.; Postles, R.L.

    1992-01-01

    The authors used a mixture experimental design for determining a window of operability for a process at the U.S. Department of Energy, Savannah River Site, Defense Waste Processing Facility (DWPF). The high-level radioactive waste at the Savannah River Site is stored in large underground carbon steel tanks. The waste consists of a supernate layer and a sludge layer. Cesium-137 will be removed from the supernate by precipitation and filtration. After further processing, the supernate layer will be fixed as a grout for disposal in concrete vaults. The remaining precipitate will be processed at the DWPF with treated waste tank sludge and glass-making chemicals into borosilicate glass. The leach-rate properties of the supernate grout formed from various mixes of solidified coefficients for NO 3 and chromium were used as a measure of leach rate. Various mixes of cement, Ca(OH) 2 , salt, slag, and fly ash were used. These constituents comprise the whole mix. Thus, a mixture experimental design was used. The regression procedure (PROC REG) in SAS was used to produce analysis of variance (ANOVA) statistics. In addition, detailed model diagnostics are readily available for identifying suspicious observations. For convenience, trillinear contour (TLC) plots, a standard graphics tool for examining mixture response surfaces, of the fitted model were produced using ECHIP

  13. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Basic processes and trends in gaseous detectors

    CERN Multimedia

    1999-01-01

    Almost a century after the invention of the proportional counter, a large research effort is still devoted to better understand the basic properties of gaseous detectors, and to improve their performances and reliability, particularly in view of use at the high radiation levels expected at LHC. In the first part of the lectures, after a brief introduction on underlying physical phenomena, I will review modern sophisticated computational tools, as well as some classic "back of the envelope" analytical methods, available today for estimating the general performances of gaseous detectors. In the second part, I will analyze in more detail problems specific to the use of detectors at high rates (space charge, discharges, aging), and describe the recent development of powerful and perhaps more reliable devices, particularly in the field of position-sensitive micro-pattern detectors.

  15. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  16. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  17. Rapid monitoring of gaseous fission products in BWRs using a portable spectrometer

    International Nuclear Information System (INIS)

    Yeh, Wei-Wen; Lee, Cheng-Jong; Chen, Chen-Yi; Chung, Chien

    1996-01-01

    Rapid, quantitative determination of gaseous radionuclides is the most difficult task in the field of environmental monitoring for radiation. Although the identification of each gaseous radionuclide is relatively straightforward using its decayed gamma ray as an index, the quantitative measurement is hampered by the time-consuming sample collection procedures, in particular for the radioactive noble gaseous fission products of krypton and xenon. In this work, a field gamma-ray spectrometer consisting of a high-purity germanium detector, portable multichannel anlayzer, and a notebook computer was used to conduct rapid scanning of radioactive krypton and xenon in the air around a nuclear facility

  18. Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-09

    This report draws together activities related to wet and gaseous waste feedstocks into a single document. It enables an amplified focus on feedstocks in the relevant technology and potential markets category. Also, this report helps to inform and support ongoing wet and gaseous resource recovery activities in the Bioenergy Technologies Office (BETO) and in the broader federal space. Historically, the office has identified wet and gaseous waste feedstocks as potentially advantageous, but has not pursued them with a sustained focus. This document seeks to position these waste streams appropriately alongside more traditional feedstocks in BETO efforts.

  19. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  20. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    International Nuclear Information System (INIS)

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-01-01

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered

  1. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro

    Science.gov (United States)

    Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C.

    2018-04-01

    Gaseous microenvironments play important roles in various biological activities in vivo. However, it is challenging to precisely control gaseous microenvironments in vitro for cell culture due to the high diffusivity nature of gases. In recent years, microfluidics has paved the way for the development of new types of cell culture devices capable of manipulating cellular microenvironments, and provides a powerful tool for in vitro cell studies. This paper reviews recent developments of microfluidic cell culture devices for the control of gaseous microenvironments, and discusses the advantages and limitations of current devices. We conclude with suggestions for the future development of microfluidic cell culture devices for the control of gaseous microenvironments.

  2. Chemical and fuel products from mixtures of coal and petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A A; Yulin, M K

    1973-01-01

    From a 1:1 coal-petroleum low-pressure (less than 100 atm) hydrogenation product, C/sub 6-8/ phenols comprising 7.4 percent of the product distilling below 240/sup 0/C were extracted with 10 percent aqueous caustic soda and hydrofined at 325/sup 0/C and 20 atm on cobalt molybdenum alumina catalyst. The combined 240/sup 0/ to 320/sup 0/C and less than or equal to 240/sup 0/C neutral fractions were hydrofined at 400/sup 0/C and 50 atm on cobalt molybdenum alumina catalyst, and the gasoline comprising 42.8 percent of the catalyzate hydroreformed at 490/sup 0/C and 50 atm to raise the octane number from 50.4 to 81.8 to 91.3 and increase the aromatics content from 9.0 to 55.6 percent. Gasoline of 78.5 to 90.5 octane number was prepared by hydrocracking the 180 to 320/sup 0/C catalyzate fraction at 380/sup 0/C and 40 atm on a molybdenum hydrogen sodium yttrium zeolite catalyst greatly favoring C/sub 3-4/ hydrocarbons in the gaseous products (9.0 percent).

  3. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan; Keyser, John

    2013-01-01

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation

  4. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  5. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.

    1976-01-01

    A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area

  6. Paducah Gaseous Diffusion Plant environmental report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  7. Paducah Gaseous Diffusion Plant environmental report for 1992

    International Nuclear Information System (INIS)

    Horak, C.M.

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials

  8. Characteristics and applications of small, portable gaseous air pollution monitors.

    Science.gov (United States)

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed

  9. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  10. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  11. A critical test of bivelocity hydrodynamics for mixtures.

    Science.gov (United States)

    Brenner, Howard

    2010-10-21

    The present paper provides direct noncircumstantial evidence in support of the existence of a diffuse flux of volume j(v) in mixtures. As such, it supersedes an earlier paper [H. Brenner, J. Chem. Phys. 132, 054106 (2010)], which offered only indirect circumstantial evidence in this regard. Given the relationship of the diffuse volume flux to the fluid's volume velocity, this finding adds additional credibility to the theory of bivelocity hydrodynamics for both gaseous and liquid continua, wherein the term bivelocity refers to the independence of the fluid's respective mass and volume velocities. Explicitly, the present work provides a new and unexpected linkage between a pair of diffuse fluxes entering into bivelocity mixture theory, fluxes that were previously regarded as constitutively independent, except possibly for their coupling arising as a consequence of Onsager reciprocity. In particular, for the case of a binary mixture undergoing an isobaric, isothermal, external force-free, molecular diffusion process we establish by purely macroscopic arguments-while subsequently confirming by purely molecular arguments-the validity of the ansatz j(v)=(v(1)-v(2))j(1) relating the diffuse volume flux j(v) to the diffuse mass fluxes j(1)(=-j(2)) of the two species and, jointly, their partial specific volumes v(1),v(2). Confirmation of that relation is based upon the use of linear irreversible thermodynamic principles to embed this ansatz in a broader context, and to subsequently establish the accord thereof with Shchavaliev's solution of the multicomponent Boltzmann equation for dilute gases [M. Sh. Shchavaliev, Fluid Dyn. 9, 96 (1974)]. Moreover, because the terms v(1), v(2), and j(1) appearing on the right-hand side of the ansatz are all conventional continuum fluid-mechanical terms (with j(1) given, for example, by Fick's law for thermodynamically ideal solutions), parity requires that j(v) appearing on the left-hand side of that relation also be a continuum term

  12. [Functional state of various physiological systems of the human body during respiration of neon-oxygen mixture at depth up to 400 meters].

    Science.gov (United States)

    Poleshuk, I P; Genin, A M; Unku, R D; Mikhnenko, A E; Sementsov, V N; Suvorov, A V

    1991-01-01

    Hyperbaric neon-oxygen mixture has been studied for the effect of its high density under pressure of 41 ata on basic physiological functions of human organism. Typical changes of the cardiorespiratory system and tissue respiration parameters are revealed. Changes in physical working capacity are shown. Exposure to gaseous medium of high pressure and density is accompanied by the development of some compensatory-adaptive reactions. The possibility to perform mid-hard physical work is attained with overstrain of respiration and circulation function.

  13. Removing Gaseous NH3 Using Biochar as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Kyoung S. Ro

    2015-09-01

    Full Text Available Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with different thermal conditions and activation techniques were determined using laboratory adsorption column tests. Ammonia adsorption capacities of non-activated biochars ranged from 0.15 to 5.09 mg·N/g, which were comparable to that of other commercial activated carbon and natural zeolite. There were no significant differences in ammonia adsorption capacities of steam activated and non-activated biochars even if the surface areas of the steam activated biochars were about two orders of magnitude greater than that of non-activated biochars. In contrast, phosphoric acid activation greatly increased the biochar ammonia adsorption capacity. This suggests that the surface area of biochar did not readily control gaseous NH3 adsorption. Ammonia adsorption capacities were more or less linearly increased with acidic oxygen surface groups of non-activated and steam-activated biochars. Phosphoric acid bound to the acid activated biochars is suspected to contribute to the exceptionally high ammonia adsorption capacity. The sorption capacities of virgin and water-washed biochar samples were not different, suggesting the potential to regenerate spent biochar simply with water instead of energy- and capital-intensive steam. The results of this study suggest that non-activated biochars can successfully replace commercial activated carbon in removing gaseous ammonia and the removal efficiency will greatly increase if the biochars are activated with phosphoric acid.

  14. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  15. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Directory of Open Access Journals (Sweden)

    Pauline M Snijder

    Full Text Available BACKGROUND: Ischemia-reperfusion injury (IRI is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. RESULTS: Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05. Seven days post-reperfusion, both 10 ppm (p<0.01 and 100 ppm (p<0.05 H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05 and 60% (p<0.001, respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05 and 67% (p<0.01 and ANP by 84% and 63% (p<0.05, respectively. CONCLUSIONS: Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac

  16. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Science.gov (United States)

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  17. Mixture-fraction imaging at 1  kHz using femtosecond laser-induced fluorescence of krypton.

    Science.gov (United States)

    Richardson, Daniel R; Jiang, Naibo; Stauffer, Hans U; Kearney, Sean P; Roy, Sukesh; Gord, James R

    2017-09-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (TALIF) imaging measurements of krypton (Kr) are demonstrated to study mixing in gaseous flows. A measurement approach is presented in which observed Kr TALIF signals are 7 times stronger than the current state-of-the-art methodology. Fluorescence emission is compared for different gas pressures and excitation wavelengths, and the strongest fluorescence signals were observed when the excitation wavelength was tuned to 212.56 nm. Using this optimized excitation scheme, 1-kHz, single-laser-shot visualizations of unsteady flows and two-dimensional measurements of mixture fraction and scalar dissipation rate of a Kr-seeded jet are demonstrated.

  18. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Science.gov (United States)

    McLagan, David S.; Mitchell, Carl P. J.; Steffen, Alexandra; Hung, Hayley; Shin, Cecilia; Stupple, Geoff W.; Olson, Mark L.; Luke, Winston T.; Kelley, Paul; Howard, Dean; Edwards, Grant C.; Nelson, Peter F.; Xiao, Hang; Sheu, Guey-Rong; Dreyer, Annekatrin; Huang, Haiyong; Hussain, Batual Abdul; Lei, Ying D.; Tavshunsky, Ilana; Wania, Frank

    2018-04-01

    Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day-1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m-3, this represents an ability to resolve concentrations to within 0.13 ng m-3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active-passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or

  19. Iterative Mixture Component Pruning Algorithm for Gaussian Mixture PHD Filter

    Directory of Open Access Journals (Sweden)

    Xiaoxi Yan

    2014-01-01

    Full Text Available As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and Lambert W function. Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning algorithm is superior to the typical pruning algorithm based on thresholds.

  20. Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-11

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  1. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  2. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  3. Infrared absorption spectra of gaseous HD. II. Collision-induced fundamental band of HD in HD--Ne and HD--Ar mixtures at room temperature

    International Nuclear Information System (INIS)

    Prasad, R.D.G.; Reddy, S.P.

    1976-01-01

    The collision-induced infrared absorption spectra of the fundamental band of HD in binary mixtures of HD with Ne and Ar at room temperature have been studied with an absorption path length of 105.2 cm for different base densities of HD in the range 8--20 amagat and a number of total gas densities up to 175 amagat. The observed features of the profiles of the enhancement of absorption in these mixtures resemble closely those of the corresponding profiles of the fundamental band of H 2 in binary mixtures with Ne and Ar. The binary absorption coefficients of the band obtained from the measured integrated intensities are (1.84 +- 0.06) x 10 -35 and (4.41 +- 0.06) x 10 -35 cm 6 s -1 for HD--Ne and HD--Ar, respectively. The characteristic half-width parameters, delta/subd/ and delta/subc/ of the overlap transitions and delta/subq/ (and delta/subq//sub prime/) of the quadrupolar transitions, are obtained from an analysis of the profiles of the enhancement of absorption in both these mixtures. The quantity delta/subc/ which is the half-width of the intercollisional interference dip of the Q branch increases with the density of the perturbing gas Ne or Ar, and for HD--Ne it varies in a manner similar to that for HD--He as described in Paper I of this series

  4. Production of 41Ar and 79Kr gaseous radiotracers for industrial applications

    International Nuclear Information System (INIS)

    Yelgaonkar, V.N.; Jagadeesan, K.C.; Shivarudrappa, V.; Sharma, V.K.; Chitra, S.

    2007-01-01

    Radiotracers are extensively used in many industries for trouble shooting and optimization of process parameters leading to considerable savings in time and huge economic benefits. In chemical and petrochemical industries different gases and vapours flowing in the conversion reactors play a major role in the final production. Gaseous radiotracers are ideal to study hydrodynamics of gas phases in process vessels. 41 Ar and 79 Kr are the preferred gaseous radiotracers for such studies. Owing to the increase in demand from Indian industries for gas phase radiotracers, efforts have been made to produce 41 Ar and 79 Kr indigenously by irradiation of 40 Ar and enriched 78 Kr gaseous targets in research reactors. Prequalification of the containers used, safety aspects concerning accidental rupture and mandatory tests necessary for irradiation of gaseous targets in the reactors have been studied. The paper describes some of the important safety aspects involved and the results of trial irradiations on the production of 41 Ar and 79 Kr radiotracers. Standardization of suitable assay protocols for their regular production and supply for applications in industries is also described. (author)

  5. On-line measurement of gaseous iodine species during a PWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Haykal, I.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, 91191 Gif sur Yvette Cedex, (France); Perrin, A. [CNRS-University of Paris Est and Paris 7, Laboratoire Inter-Universitaire des Systemes Atmospheriques, 94010 Creteil, (France); Vincent, B. [University of Burgundy, Laboratoire de physique, CNRS UMR 5027, 9, Avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Manceron, L. [Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); Mejean, G. [University of Joseph Fourier in Grenoble, Laboratoire de Spectrometrie Physique-CNRS UMR 5588, 38402 Saint Martin d' Heres, (France); Ducros, G. [CEA Cadarache, CEA, DEN, Departement d' Etudes des Combustibles, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    A long-range remote sensing of severe accidents in nuclear power plants can be obtained by monitoring the online emission of volatile fission products such as xenon, krypton, caesium and iodine. The nuclear accident in Fukushima was ranked at level 7 of the International Nuclear Event Scale by the NISA (Nuclear and Industrial Safety Agency) according to the importance of the radionuclide release and the off-site impact. Among volatile fission products, iodine species are of high concern, since they can be released under aerosols as well as gaseous forms. Four years after the Fukushima accident, the aerosol/gaseous partition is still not clear. Since the iodine gaseous forms are less efficiently trapped by the Filtered Containment Venting Systems than aerosol forms, it is of crucial importance to monitor them on-line during a nuclear accident, in order to improve the source term assessment in such a situation. Therefore, we propose to detect and quantify these iodine gaseous forms by the use of highly sensitive optical methods. (authors)

  6. Radiolytical oxidation of gaseous iodine by beta radiation

    International Nuclear Information System (INIS)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi; Jokiniemi, Jorma

    2015-01-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH 3 I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  7. Radiolytical oxidation of gaseous iodine by beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi [VTT Technical Research Centre of Finland, Espoo (Finland); Jokiniemi, Jorma [VTT Technical Research Centre of Finland, Espoo (Finland); Eastern Finland Univ., Kuopio (Finland)

    2015-07-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH{sub 3}I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  8. Gas chromatographic quantitative analysis of the gaseous emissions and carbon balance in the alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    C. Chon

    1997-06-01

    ln order to try to answer to this question, methods able to analyse simultaneously and quantitatively the liquid phase, the gaseous emissions and the biomass are needed. Recently, we have shown that under suitable defined conditions 13C NMR spectroscopy allows the quantitative measurement of at least eight components present at a concentration up to 5 x 10-3M (glycerol, glucose, butandiols, tartric, malic, lactic, citric and succinic acids in a short time (one hour with a precision of about 3 p. cent. The measurements of the ethanol concentrations and of the amount of carbon transferred in the biomass are easily achieved using respectively ebullioscopic and standard combustion techniques. We are now able to extend these results and to show that, by using gas chromatography in a continuous dynamic mode and under a sweep of air at the head space of the fermentor, it is possible to measure quantitatively the mixture of volatile substances (composed mainly of air, carbon dioxide, ethanol and water emanating from an alcoholic fermentation. The results obtained, when correlated with quantitative 13C NMR spectroscopy on the medium components permits the total balance sheet of the carbon transfers occuring during the fermentation process betwcen the liquid and the gaseous phases to be established. Our results indicate that the losses of ethanol during the fermentation process conducted under an air flow at the head space of the fermentor, may reach about 10 p. cent of the theoretical maximal amount of ethanol produced. The experiments presented here could explain the ethanol losses observed during some vinification processes conducted in open tanks.

  9. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groenesteijn, Jarno; van der Wouden, E.J.; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realised a fully integrated microfluidic measurement system for real-time determination of both flow rate and composition of gas- and liquid mixtures. The system comprises relative permittivity sensors, pressure sensors, a Coriolis flow and density sensor, a thermal flow sensor

  10. Theory of the separation of a gaseous mixture by diffusion through a porous wall (1962); Theorie de la separation d'un melange gazeux par diffusion a travers une paroi poreuse (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Breton, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The present-day theories of separation by gaseous diffusion (Present and de BETHUNE, KYNCH, BOSANQUET) are all based on the same model in which the pores are cylindrical capillaries. In the theory presented here, we substitute for this model that of a disordered and isotropic bed of identical spheres, which describes more accurately most of the porous media. We take as our starting point DERIAGUINE and BAKANOV'S permeability theory, which expresses the flow of a simple gas in such a bed when the latter is of high porosity. We first generalise this theory in the case of medium and low porosities; then, we go on to a mixture of two gases, from which we deduce our separation theory. Finally we compare our results with those of Present and de BETHUNE. (author) [French] Les theories actuelles de la separation par diffusion gazeuse (PRESENT et de BETHUNE, KYNCH, BOSANQUET) reposent toutes sur le modele des pores capillaires cylindriques. Dans la theorie presentee ici, nous substituons a ce modele celui d'un empilement desordonne et isotropes de spheres identiques, qui decrit plus correctement la plupart des milieux poreux. Nous partons de la theorie de la permeabilite de DERIAGUINE et BAKANOV, qui exprime l'ecoulement d'un gaz simple dans un tel empilement dans le cas ou la porosite en est elevee. Nous generalisons d'abord cette theorie du cas des porosites moyennes ou faibles, puis, passant a un melange de deux gaz, nous en deduisons une theorie de la separation. Pour terminer, nous comparons nos resultats a ceux de PRESENT et de BETHUNE. (auteur)

  11. Interaction of intermetallic compounds formed by rare earths, scandium, yttrium and 3d-transition metals, with gaseous ammonia

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.

    1992-01-01

    Interaction of the RT n intermetallic compounds, where R Sc, Y, rare earths, T = Fe, Co, Ni; n = 2,3,5, with gaseous ammonia under pressure of 1MPa and at temperatures of 293, 723 and 798 K is studied. It is established on the basis of roentgenographic studied, chemical analysis data, X-ray photoelectron spectroscopy and specific surface measurements that metallic matrixes of intermetallides decompose into nitrides and transition metal phases at temperatures of 723 and 798 K under effect of ammonia and independent of structural types of the source materials; partial or complete decomposition of intermetallides through ammonia with formation of transition metal mixture, binary hydrides and nitrides of the most electropositive metal the above systems occurs at the temperature of 293 K depending on the heat of the source compounds and their tendency to decomposition under ammonia effect

  12. Detection of gaseous fission products in water - a method of monitoring fuel sheathing failures

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, P. R.; Whittier, A. C.

    1959-05-15

    The gaseous activities stripped from samples of effluent coolant from the NRU fuel elements tested in the central thimble of the NRX reactor (NRU loop) and from the NRX main effluent have been investigated. The activities obtained from the NRU loop can be attributed to gaseous fission products only. Design data have been obtained for a 'Gaseous Fission Product Monitor' to be installed for use with the NRU reactor. It is expected that this monitor will have high sensitivity to activity indicative of an incipient fuel element sheath failure. No qualitative determination of the various gaseous activities obtained from the NRX effluent has been made. A strong component of 25 {+-}1 seconds half-life is not consistent with O-19. Limited information concerning sheath failures in NRX was obtained. Of six failures observed in parallel with the installed delayed neutron monitors, three of these gave pre-warnings and in each case the gaseous fission product monitor showed a substantially greater sensitivity. An experiment in which small samples of uranium, inserted into the NRX reactor, could be exposed at will to a stream of water showed the behaviour of the two types of monitors to be similar. However, a number of signals were detected only by the gaseous fission product monitor. These can be attributed to its sensitivity to relatively long lived fission products. (author)

  13. Apparatus comprising trace element dosage and method for treating raw water in biofilter

    DEFF Research Database (Denmark)

    2015-01-01

    the inlet (2) to the outlet (3) or in the reverse direction, - the trace element dosage device (13) is positioned upstream of the porous filter material and microbial biomass and is configured to dose trace element(s) to the water flowing through the filter. A method for treating raw water by microbial......Apparatus for treating raw water in a biofilter The present invention relates to an apparatus in which raw water is treated through microbial activity where microbial activity is controlled by nutrients and other parameters. Some of the nutrients controlling the microbial activity are trace...... elements such as certain metals (Cu, Co, Cr, Mo, Ni, W, Zn or a mixture thereof). The apparatus comprising - a volume provided with an inlet (2) for raw water and an outlet (3) for water having been subjected to microbial activity, a filter and a trace element dosage device (13) are placed in this volume...

  14. Effects of radiation and impurities on gaseous iodine behavior in a containment vessel

    International Nuclear Information System (INIS)

    Takahashi, Masato; Watanabe, Atsushi; Hashimoto, Takashi

    2000-01-01

    In order to estimate the effect of impurities and radiation on gaseous iodine behavior in containment vessel, NUPEC has improved IMPAIR-3 code developed by PSI. Several modifications on the iodine oxidation by radiolysis and the production of nitric acid, the existence of boric acid, and the reaction of silver particle with iodine were newly added in evaluating the effect of radiolysis and impurities. pH change resulting from presence of boric acid, nitric acid production by radiolysis of air, and sodium hydroxide addition by AM operation, was also considered. The code verification for pH change was performed using the RTF experimental results. Additionally, the effects of boric acid and silver impurities on gaseous iodine behavior were evaluated by the sensitivity analysis. As a result, the experimental results of iodine concentration transient under pH change were well simulated. The following results were also obtained from the sensitive analysis. The gaseous iodine behavior was not affected by the existence of boric acid. In the case of silver existence in liquid phase, the gaseous iodine concentration rapidly decreased because a large amount of iodine changed into AgI species in liquid phase. The restraint effect of silver on gaseous iodine, production was larger than that of pH change. (author)

  15. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume II, discusses methodology, engineering and environmental analyses, and operational procedures

  16. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc, initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP--Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan, with emphasis on the catas trophic earthquake, (2) an Emergency Operations Center Duty Roster Manual, (3) an Integrated Automated Emergency Management Information System (IAEMIS), and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I--Chapters 1--3; Volume II--Chapters 4--6, Volume III--Chapter 7, and Volume IV--23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume IV contains the appendices to this report

  17. Apparatus and process for passivating an SRF cavity

    Science.gov (United States)

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  18. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  19. Rare earths in iron and steelmaking and gaseous desulphurisation

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Subramanian, S.V.; Meng, V.; Kumar, R.V.

    1985-01-01

    Rare earth (RE) additions, either as mischmetal or rare earth silicide, are used in many ladle treatment processes in modern ferrous metallurgy. In ironmaking they provide the basis for the control of graphite morphology in cast irons and in steelmaking additions are made to aluminum-killed steels for desulphurisation and the control of inclusion composition and morphology. Rare earth oxides may also be used in the desulphurisation of medium calorific value gaseous fuels and stack gases. In this paper, Ce-S-O and La-S-O phase stability diagrams are used to determine the role of the rare earths in the external processing of iron and steel, and gaseous desulphurisation

  20. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  1. Two new sources of reactive gaseous mercury in the free troposphere

    OpenAIRE

    H. Timonen; J. L. Ambrose; D. A. Jaffe

    2012-01-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical ...

  2. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered

  3. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Directory of Open Access Journals (Sweden)

    D. S. McLagan

    2018-04-01

    Full Text Available Passive air samplers (PASs for gaseous mercury (Hg were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day−1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m−3, this represents an ability to resolve concentrations to within 0.13 ng m−3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active–passive concentration further (8.7 ± 5.7 %, but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 % represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed

  4. Automated analysis for large amount gaseous fission product gamma-scanning spectra from nuclear power plant and its data mining

    International Nuclear Information System (INIS)

    Weihua Zhang; Kurt Ungar; Ian Hoffman; Ryan Lawrie; Jarmo Ala-Heikkila

    2010-01-01

    Based on the Linssi database and UniSampo/Shaman software, an automated analysis platform has been setup for the analysis of large amounts of gamma-spectra from the primary coolant monitoring systems of a CANDU reactor. Thus, a database inventory of gaseous and volatile fission products in the primary coolant of a CANDU reactor has been established. This database is comprised of 15,000 spectra of radioisotope analysis records. Records from the database inventory were retrieved by a specifically designed data-mining module and subjected to further analysis. Results from the analysis were subsequently used to identify the reactor coolant half-life of 135 Xe and 133 Xe, as well as the correlations of 135 Xe and 88 Kr activities. (author)

  5. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF6) in the diffusion cascade

    International Nuclear Information System (INIS)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF 6 in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF 6 in plant operations

  6. Re-enrichment of depleted uranium by passage through a gaseous diffusion installation; Reenrichissement de l'uranium appauvri par passage dans une installation de diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, P; Billous, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The reader will find in this paper an economic study of the re-utilization of depleted uranium from nuclear reactors, whether its content be above or under natural proportions. Re-utilization is possible either through bringing the depleted product up to its initial content of {sup 235}U by mixture with a richer concentrate, or else by passing it through a gaseous diffusion plant. The economic area of such re-utilization depends on a number of considerations. We give a general study of it, with reference to some typical gaseous diffusion facilities. (author)Fren. [French] Ce rapport examine au point de vue economique la reutilisation de l'uranium appauvri provenant des reacteurs nucleaires, qu'il soit indifferemment en dessus ou en dessous de la teneur naturelle. Cette reutilisation peut se faire soit en ramenant le produit a sa teneur initiale en isotope 235 par un melange convenable avec un concentre plus riche, soit en le faisant passer dans une usine de Diffusion Gazeuse. La zone de rentabilite de cette reutilisation depend de diverses conditions economiques. Elle est etudiee ci-dessous d'une maniere generale, puis en se referant a des installations-type de diffusion gazeuse. (auteur)

  7. Method for the recovery of uranium values from uranium tetrafluoride

    International Nuclear Information System (INIS)

    Kreuzmann, A.B.

    1984-01-01

    The invention comprises reacting particulate uranium tetrafluoride and alkaline earth metal oxide (e.g. CaO, MgO) in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. (author)

  8. Inhibition of Listeria monocytogenes on Ready-to-Eat Meats Using Bacteriocin Mixtures Based on Mode-of-Action

    Directory of Open Access Journals (Sweden)

    Paul Priyesh Vijayakumar

    2017-03-01

    Full Text Available Bacteriocin-producing (Bac+ lactic acid bacteria (LAB comprising selected strains of Lactobacillus curvatus, Lactococcus lactis, Pediococcus acidilactici, and Enterococcus faecium and thailandicus were examined for inhibition of Listeria monocytogenes during hotdog challenge studies. The Bac+ strains, or their cell-free supernatants (CFS, were grouped according to mode-of-action (MOA as determined from prior studies. Making a mixture of as many MOAs as possible is a practical way to obtain a potent natural antimicrobial mixture to address L. monocytogenes contamination of RTE meat products (i.e., hotdogs. The heat resistance of the bacteriocins allowed the use of pasteurization to eliminate residual producer cells for use as post-process surface application or their inclusion into hotdog meat emulsion during cooking. The use of Bac+ LAB comprising 3× MOAs directly as co-inoculants on hotdogs was not effective at inhibiting L. monocytogenes. However, the use of multiple MOA Bac+ CFS mixtures in a variety of trials demonstrated the effectiveness of this approach by showing a >2-log decrease of L. monocytogenes in treatment samples and 6–7 log difference vs. controls. These data suggest that surface application of multiple mode-of-action bacteriocin mixtures can provide for an Alternative 2, and possibly Alternative 1, process category as specified by USDA-FSIS for control of L. monocytogenes on RTE meat products.

  9. Respiratory system. Part 2: Gaseous exchange.

    Science.gov (United States)

    McLafferty, Ella; Johnstone, Carolyn; Hendry, Charles; Farley, Alistair

    This article, which isthe last in the life sciences series and the second of two articles on the respiratory system, describes gaseous exchange in the lungs, transport of oxygen and carbon dioxide, and internal and external respiration. The article concludes with a brief consideration of two conditions that affect gas exchange and transport: carbon monoxide poisoning and chronic obstructive pulmonary disease.

  10. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  11. Trends and new developments in gaseous detectors

    CERN Document Server

    AUTHOR|(CDS)2069485

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hadron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have p...

  12. Experimental study of the vapour-liquid equilibria of HI-I-2-H2O ternary mixtures, Part 2: Experimental results at high temperature and pressure

    International Nuclear Information System (INIS)

    Larousse, B.; Lovera, P.; Borgard, J.M.; Roehrich, G.; Mokrani, N.; Maillault, C.; Doizi, D.; Dauvois, V.; Roujou, J.L.; Lorin, V.; Fauvet, P.; Carles, P.; Hartmann, J.M.

    2009-01-01

    In order to assess the choice of the sulphur-iodine thermochemical cycle for massive hydrogen production, a precise knowledge of the concentrations of the gaseous species (HI, I 2 , and H 2 O) in thermodynamic equilibrium with the liquid phase of the HI-I 2 -H 2 O ternary mixture is required, in a wide range of concentrations and for temperatures and pressures up to 300 degrees C and 50 bar. In the companion paper (Part 1) the experimental device was described, which enables the measurement of the total pressure and concentrations of the vapour phase (and thus the knowledge of the partial pressures of the different gaseous species) for the HI-I 2 -H 2 O mixture in the 20-140 degrees C range and up to 2 bar. This (Part 2) article describes the experimental device which enables similar measurements but now in the process domain. The results concerning concentrations in the vapour phase for the HI-I 2 -H 2 O initial mixture (with a global composition) in the 120-270 degrees C temperature range and up to 30 bar are presented. As previously, optical online diagnostics are used, based on recordings of infrared transmission spectra for HI and H 2 O and on UV/visible spectrometry for I 2 . The concentrations measured in the vapour phase are the first to describe the vapour composition under thermophysical conditions close to those of the distillation column. The experimental results are compared with a thermodynamic model and will help us to scale up and optimize the reactive distillation column we promote for the HI section of the sulphur-iodine cycle. (authors)

  13. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  14. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  15. Retention of gaseous isotopes

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Mailen, J.C.; Stephenson, M.J.

    1977-01-01

    Retention of gaseous fission products during fuel reprocessing has, in the past, been limited to a modest retention of 131 I when processing fuels decayed less than about 180 days. The projected rapid growth of the nuclear power industry along with a desire to minimize environmental effects is leading to the reassessment of requirements for retention of gaseous fission products, including 131 I, 129 I, 85 Kr, 3 H, and 14 C. Starting in the late 1960s, a significant part of the LMFBR reprocessing development program has been devoted to understanding the behavior of gaseous fission products in plant process and effluent streams and the development of advanced systems for their removal. Systems for iodine control include methods for evolving up to 99% of the iodine from dissolver solutions to minimize its introduction and distribution throughout downstream equipment. An aqueous scrubbing system (Iodox) using 20 M HNO 3 as the scrubbing media effectively removes all significant iodine forms from off-gas streams while handling the kilogram quantities of iodine present in head-end and dissolver off-gas streams. Silver zeolite is very effective for removing iodine forms at low concentration from the larger-volume plant off-gas streams. Removal of iodine from plant liquid effluents by solid sorbents either prior to or following final vaporization appears feasible. Krypton is effectively released during dissolution and can be removed from the relatively small volume head-end and dissolver off-gas stream. Two methods appear applicable for removal and concentration of krypton: (1) selective absorption in fluorocarbons, and (2) cryogenic absorption in liquid nitrogen. The fluorocarbon absorption process appears to be rather tolerant of the normal contaminants (H 2 O, CO 2 , NOsub(x), and organics) present in typical reprocessing plant off-gas whereas the cryogenic system requires an extensive feed gas pretreatment system. Retention of tritium in a reprocessing plant is

  16. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1982-08-01

    Five fuel pins, taken from a PWR fuel assembly with 32000 MWD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developped to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  17. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1983-01-01

    Five fuel pins, taken from a PWR fuel assembly with 32,000 MwD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developed to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  18. Turbulence enhancement by ultrasonically induced gaseous cavitation in the CO2 saturated water

    International Nuclear Information System (INIS)

    Lee, Seung Youp; Choi, Young Don

    2002-01-01

    Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipment is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO 2 saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer

  19. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  20. Gas mixtures for spark gap closing switches with emphasis on efficiency of operation

    International Nuclear Information System (INIS)

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-01-01

    The efficient operation of a spark gap closing switch requires a gaseous medium with large breakdown strength, low conduction voltage, and a short formative time lag. Gas properties necessary to achieve these requirements are identified and discussed. Based on available knowledge of such properties, a number of binary (e.g., c-C 4 F 8 , or l-C 3 F 6 , or n-C 4 F 10 , or C 3 F 8 , or C 6 F 6 in Ar or He or H 2 ) and ternary gas mixtures (e.g., c-C 4 F 8 , or n-C 4 F 10 , or C 3 F 8 in Ar or He + C 2 H 2 or another low ionization onset additive) have been identified which may be suitable for use in spark gap closing switches

  1. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  2. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín

    2011-01-01

    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  3. Distribution of xenon between gaseous and liquid CO2

    International Nuclear Information System (INIS)

    Ackley, R.D.; Notz, K.J.

    1976-10-01

    The distribution of xenon at low concentrations between gaseous and liquid CO 2 was measured over essentially the entire liquid range of CO 2 . These measurements involved using a collimated radiation-detection cell to determine the relative quantities of 133 Xe-traced xenon in the separate phases contained in a vertical cylinder under isothermal conditions. The results are expressed in terms of a distribution ratio (mole fraction of xenon in the gaseous phase divided by mole fraction of xenon in the liquid phase) which decreased from 7.53 at -54.8 0 C to 1.10 at 30.5 0 C. These data were used to calculate various other solubility-related quantities

  4. Method of producing gaseous products using a downflow reactor

    Science.gov (United States)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  5. Evaluation of gas migration characteristics of compacted bentonite and Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of subsurface disposal and near-surface pit disposal for low level radioactive waste, compacted bentonite and Ca-bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides, respectively. Hydrogen gas can be generated inside the engineered barrier of subsurface disposal facilities mainly by anaerobic corrosion of metals used for containers, etc. Hydrogen gas can be also generated inside the engineered barrier of near-surface pit disposal facilities mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite and Ca-bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite and Ca-bentonite mixture until breakthrough occurs. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite and Ca-bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted bentonite and Ca-bentonite mixture are investigated by the gas migration tests. The applicability of the two phase flow model without considering deformability of the specimen is investigated. The applicability of the model of two phase flow through deformable porous media, which was originally developed by CRIEPI, is also investigated. Results of this study imply that : (1) Gas migration mechanism of the compacted bentonite and Ca-bentonite mixture is revealed through gas migration test. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Stress change, pore-water pressure change and volume change of the specimen during the gas migration test can be reproduced by the numerical

  6. Container for gaseous samples for irradiation at accelerators

    International Nuclear Information System (INIS)

    Kupsch, H.; Riemenschneider, J.; Leonhardt, J.

    1985-01-01

    The invention concerns a container for gaseous samples for the irradiation at accelerators especially to generate short-lived radioisotopes. The container is also suitable for storage and transport of the target gas and can be multiply reused

  7. Safety aspects of the design of a PWR gaseous radwaste treatment system using hydrogen recombiners

    International Nuclear Information System (INIS)

    Glibert, R.; Nuyt, G.; Herin, S.; Fossion, P.

    1978-01-01

    PWR Gaseous radwaste treatment system is essential for the reduction of impact on environment of the nuclear power plants. Decay tank system has been used for the retention of the radioactive gaseous fission products generated in the primary coolant. The use of a system combining decay tanks and hydrogen recombiner units is described in this paper. Accent is put on the safety aspects of this gaseous radwaste treatment facilitystudied by BN for a Belgian Power Plant. (author)

  8. Process and device for uranium isotope separation and application for the manufacture of chemical compounds or for the separation of gaseous mixtures otherwise difficult to separate

    International Nuclear Information System (INIS)

    Gregorius, K.; Janner, K.; Kersting, A.; Schuster, E.; Niemann, H.J.

    1987-01-01

    The U235/U238 isotope separation is done by laser excitation with Ur 6 as the initial gaseous material. This has HBr added as the partner for a chemical reaction, preferably in the ratio of 1:10. In order to increase the selectivity and yield, the two partners in the reaction are cooled by adiabatic expansion to below 100 K before irradiation. This makes the absorption bands narrower. The excitation occurs in the Q branch of the rotation vibration spectrum. (DG) [de

  9. Handling of UF6 in U.S. gaseous diffusion plants

    International Nuclear Information System (INIS)

    Legeay, A.J.

    1978-01-01

    A comprehensive systems analysis of UF 6 handling has been made in the three U.S. gaseous diffusion plants and has resulted in a significant impact on the equipment design and the operating procedures of these facilities. The equipment, facilities, and industrial practices in UF 6 handling operations as they existed in the early 1970's are reviewed with particular emphasis placed on the changes which have been implemented. The changes were applied to the systems and operating methods which evolved from the design, startup, and operation of the Oak Ridge Gaseous Diffusion Plant in 1945

  10. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  11. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.

    2005-01-01

    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  12. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  13. Paducah Gaseous Diffusion Plant Environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Counce-Brown, D. (ed.)

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  14. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  15. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  16. Sample size choices for XRCT scanning of highly unsaturated soil mixtures

    Directory of Open Access Journals (Sweden)

    Smith Jonathan C.

    2016-01-01

    Full Text Available Highly unsaturated soil mixtures (clay, sand and gravel are used as building materials in many parts of the world, and there is increasing interest in understanding their mechanical and hydraulic behaviour. In the laboratory, x-ray computed tomography (XRCT is becoming more widely used to investigate the microstructures of soils, however a crucial issue for such investigations is the choice of sample size, especially concerning the scanning of soil mixtures where there will be a range of particle and void sizes. In this paper we present a discussion (centred around a new set of XRCT scans on sample sizing for scanning of samples comprising soil mixtures, where a balance has to be made between realistic representation of the soil components and the desire for high resolution scanning, We also comment on the appropriateness of differing sample sizes in comparison to sample sizes used for other geotechnical testing. Void size distributions for the samples are presented and from these some hypotheses are made as to the roles of inter- and intra-aggregate voids in the mechanical behaviour of highly unsaturated soils.

  17. Purification of iodine-containing mixtures and compositions useful therefor

    International Nuclear Information System (INIS)

    Cobb, R.L.

    1987-01-01

    This patent describes a process for the preparation by distillation of essentially colorless hydrocarbon product substantially free of color-forming impurities, which process comprises: (a) adding 0.02 to 0.10 wt% of a metal, M, to a solution comprising: (i) a hydrocarbon product having 8-30 carbon atoms, and (ii) at least one color-forming impurity selected from the group consisting of: I/sub 2/, and R-I, wherein R is H or an organic radical having 1-30 carbon atoms, inclusive. The color-forming impurity and the metal interact under distillation conditions form a complex, MI/sub n/, where n is equal to the valence of the metal M, and the complex MI/sub n/ is non-volatile and essentially non-decomposable under distillation conditions; (b) subjecting the resulting mixture to distillation conditions; and (c) recovering essentially colorless hydrocarbon product as the overhead fraction from the distillation

  18. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support

  19. Winter forage quality of oats (avena sativa), barley (hordeum vulgare) and vetch (vicia sativa) in pure stand and cereal legume mixture

    International Nuclear Information System (INIS)

    Ullah, Z.

    2015-01-01

    A field study was carried out for two consecutive years in subtropical rainfed conditions of Rawalpindi, Pakistan to evaluate the forage quality of oats, barley and vetch grown in pure stands and cereal-legume mixtures. Treatments comprised oats pure stand, oats in oats-vetch mixture, barley pure stand, barley in barley-vetch mixture, vetch pure stand, vetch in oats-vetch mixture and vetch in barley-vetch mixture. Forage yield and quality of oats and barley were improved in oats-vetch and barley-vetch mixtures than their respective pure stands. The higher values of crude protein (CP) and lower values of neutral detergent fiber (NDF) and acid detergent fiber (ADF) reflected quality forage. CP for oats in oats-vetch -1 -1 mixture and barley in barley-vetch mixture was 175 g kg and 170 g kg, -1 respectively. NDF and ADF for oats in oats-vetch mixture were 494 g kg /sup -1/ and 341 g kg, respectively; while these values for barley in barley-vetch -1 -1 mixture were 340 g kg and 176 g kg, respectively. (author)

  20. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  1. Contribution to the study of gaseous molecular iodine washout by natural rains

    International Nuclear Information System (INIS)

    Fournier-Bidoz, V.

    1991-01-01

    This study is part of researches about nuclear accident prediction consequences on the environment. It concerns transfering of molecular gaseous iodine into liquids and especially precipitation scavenging below the cloud (washout). Bibliographic data directly concerned with this study (iodine's aqueous chemistry, aqueous to gaseous phases transfer) and also with its global frame-work (atmospheric release from a nuclear reactor in accidental situation and the behaviour of atmospheric iodine) are presented. Several experimental approaches have been performed in laboratory and on field. An aqueous to gaseous phase transfer simulator allowed us to isolate parameters involved in absorption and desorption of the halogen. Field experiments permit to quantify dry deposition on different solutions and to get a better insight of the phenomenon. Extrapolation of the whole results to precipitation scavenging of gaseous iodine I 2 by natural rains suggests that the process is an irreversible one. Washout rate values acquired during rainy experiments with molecular iodine emission or in a laboratory rainfall simulator agree with literatures data relative to irreversibility. However and even if reversibility was efficient it was not possible to clearly exhibit it according to experimental conditions. Moreover, the analytical iodine method which leads to a good experimental study has been presented

  2. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es

  3. Salient features in the preparation of gaseous tritium filled luminous light sources

    International Nuclear Information System (INIS)

    Mathew, K.M.; Ravi, S.; Subramanian, T.K.; Ananthakrishnan, M.

    2003-01-01

    Beta radiation emanating from gaseous tritium in close proximity with copper activated zinc sulphide phosphor provides self sustained light sources and these sources are used for nocturnal illumination of liquid crystal display in digital watches and clocks, product advertisements, exit signs etc. We report herein the preparation of low specific radioactivity gaseous tritium (29.5 Ci/m mole; 1.09 TBq/m mole) filled light sources and its effect on light output. (author)

  4. Analytical and numerical study of a gaseous plasma dipole in the UHF frequency band

    NARCIS (Netherlands)

    Melazzi, Davide; Lancellotti, Vito; Capobianco, Antonio Daniele

    2017-01-01

    Gaseous plasma antennas are appealing in applications in which reconfigurability is desired, because the radiation properties can be changed by tuning the plasma parameters. In this paper, an analytical and numerical analysis of a gaseous plasma dipole that works in the 0.3-3 GHz frequency range is

  5. Optimal mixture experiments

    CERN Document Server

    Sinha, B K; Pal, Manisha; Das, P

    2014-01-01

    The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model.  Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture desig...

  6. Artificial skin and patient simulator comprising the artificial skin

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to an artificial skin (10, 12, 14), and relates to a patient simulator (100) comprising the artificial skin. The artificial skin is a layered structure comprising a translucent cover layer (20) configured for imitating human or animal skin, and comprising a light emitting layer

  7. Dissolution and biodegradation of a mixture of immiscible liquids

    International Nuclear Information System (INIS)

    Gandhi, P.; Erickson, L.E.; Fan, L.T.

    1994-01-01

    Subsurface contaminants are frequently encountered as mixtures of nonaqueous phase liquids (NAPLs) at sites contaminated by gasoline or coal tar comprising organic mixtures. The leaching of these organic mixtures from the aquifer has been examined with and without biodegradation. The results obtained have been compared with the limiting case of a single component NAPL. Various physical processes involved have been quantified based on the assumptions that liquid-liquid and sorption equilibria are established at the beginning of each flushing; oxygen required for biochemical oxidation is completely consumed by the end of each flushing; and the rate of biochemical oxidation obeys the Monod kinetics for a multi-substrate system, characterized by an oxygen utilization factor. This has given rise to an equilibrium model expressing the mass fraction of any component remaining in the aquifer, its aqueous concentration, and the composition of the NAPL as functions of the number of flushings. The results of the simulation with the model demonstrate that bioremediation can significantly reduce the time necessary for removing the components of intermediate solubility such as xylene. Highly soluble components of the NAPL are mainly removed by the pump-and-treat mechanism while the components of extremely low solubility are unavailable to the microbes as substrates in a multi-component system

  8. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    Energy Technology Data Exchange (ETDEWEB)

    Huffer, J.E. [Parallax, Inc., Atlanta, GA (United States)

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  9. In vitro screening for population variability in toxicity of pesticide-containing mixtures

    Science.gov (United States)

    Abdo, Nour; Wetmore, Barbara A.; Chappell, Grace A.; Shea, Damian; Wright, Fred A.; Rusyna, Ivan

    2016-01-01

    Population-based human in vitro models offer exceptional opportunities for evaluating the potential hazard and mode of action of chemicals, as well as variability in responses to toxic insults among individuals. This study was designed to test the hypothesis that comparative population genomics with efficient in vitro experimental design can be used for evaluation of the potential for hazard, mode of action, and the extent of population variability in responses to chemical mixtures. We selected 146 lymphoblast cell lines from 4 ancestrally and geographically diverse human populations based on the availability of genome sequence and basal RNA-seq data. Cells were exposed to two pesticide mixtures – an environmental surface water sample comprised primarily of organochlorine pesticides and a laboratory-prepared mixture of 36 currently used pesticides – in concentration response and evaluated for cytotoxicity. On average, the two mixtures exhibited a similar range of in vitro cytotoxicity and showed considerable inter-individual variability across screened cell lines. However, when in vitroto-in vivo extrapolation (IVIVE) coupled with reverse dosimetry was employed to convert the in vitro cytotoxic concentrations to oral equivalent doses and compared to the upper bound of predicted human exposure, we found that a nominally more cytotoxic chlorinated pesticide mixture is expected to have greater margin of safety (more than 5 orders of magnitude) as compared to the current use pesticide mixture (less than 2 orders of magnitude) due primarily to differences in exposure predictions. Multivariate genome-wide association mapping revealed an association between the toxicity of current use pesticide mixture and a polymorphism in rs1947825 in C17orf54. We conclude that a combination of in vitro human population-based cytotoxicity screening followed by dosimetric adjustment and comparative population genomics analyses enables quantitative evaluation of human health hazard

  10. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Directory of Open Access Journals (Sweden)

    Gérard Liger-Belair

    Full Text Available In champagne tasting, gaseous CO(2 and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2 and ethanol was monitored through micro-gas chromatography (μGC, all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2 was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2 visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2 found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2 escaping the liquid phase into the form of bubbles.

  11. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Pron, Hervé; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    In champagne tasting, gaseous CO(2) and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2) and ethanol was monitored through micro-gas chromatography (μGC), all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2) was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2) visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2) found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2) escaping the liquid phase into the form of bubbles.

  12. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  13. Nuclear piston engine and pulsed gaseous core reactor power systems

    International Nuclear Information System (INIS)

    Dugan, E.T.

    1976-01-01

    The investigated nuclear piston engines consist of a pulsed, gaseous core reactor enclosed by a moderating-reflecting cylinder and piston assembly and operate on a thermodynamic cycle similar to the internal combustion engine. The primary working fluid is a mixture of uranium hexafluoride, UF 6 , and helium, He, gases. Highly enriched UF 6 gas is the reactor fuel. The helium is added to enhance the thermodynamic and heat transfer characteristics of the primary working fluid and also to provide a neutron flux flattening effect in the cylindrical core. Two and four-stroke engines have been studied in which a neutron source is the counterpart of the sparkplug in the internal combustion engine. The piston motions which have been investigated include pure simple harmonic, simple harmonic with dwell periods, and simple harmonic in combination with non-simple harmonic motion. The results of the conducted investigations indicate good performance potential for the nuclear piston engine with overall efficiencies of as high as 50 percent for nuclear piston engine power generating units of from 10 to 50 Mw(e) capacity. Larger plants can be conceptually designed by increasing the number of pistons, with the mechanical complexity and physical size as the probable limiting factors. The primary uses for such power systems would be for small mobile and fixed ground-based power generation (especially for peaking units for electrical utilities) and also for nautical propulsion and ship power

  14. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  15. Research on solubility characteristics of gaseous methyl iodide

    International Nuclear Information System (INIS)

    Zhou Yanmin; Sun Zhongning; Gu Haifeng; Wang Junlong

    2014-01-01

    With the deionized water as the absorbent, the solubility characteristics of the gaseous methyl iodide were studied under different temperature and pressure conditions, using a dynamic measuring method. The results show that within the range of experiment parameters, namely temperature is below 80℃ and pressure is lower than 0.3 MPa, the physical dissolution process of gaseous methyl iodide in water obeys Henry's law. The solubility coefficient under different temperature and pressure conditions was calculated based on the measurement results. Further research indicates that at atmospheric pressure, the solubility coefficient of methyl iodide in water decreases exponentially with the increase of temperature. While the pressure changes from 0.1 MPa to 0.3 MPa with equal interval, the solubility coefficient also increases linearly. The variation of the solubility coefficient with temperature under different pressure conditions all decreases exponentially. An equation is given to calculate the solubility coefficient of methyl iodide under different pressure and temperature conditions. (authors)

  16. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Durose, A.; Boakes, J. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  17. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    International Nuclear Information System (INIS)

    Steer, C.A.; Durose, A.; Boakes, J.

    2015-01-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  18. Deflagration of thermite - ammonium nitrate based propellant mixture

    Science.gov (United States)

    Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose

    2001-06-01

    Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.

  19. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  20. ASSESSMENT OF THE MOISTURE EFFECT ON GASEOUS PRODUCTS OF SELF-HEATING OF WOOD CHIPS

    Directory of Open Access Journals (Sweden)

    Hana VĚŽNÍKOVÁ

    2017-12-01

    Full Text Available Biofuels are stored in large quantities and may be susceptible to self-ignition. The possible methods of indication of temperature increase include the analysis of the gaseous products of heating where concentrations of certain gases may increase with increasing temperature. Gas release is also affected by the moisture of the material given that the moisture level changes surface accessibility for oxygen on the one side and serves as a catalyst of the oxidation reactions on the other. The present project analysed the effect of temperature and moisture on gaseous products of heating of wood chips, one of frequently used biofuels, with the aim to determine a suitable gaseous indicator of beginning self-ignition.

  1. Device for taking gaseous samples from irradiated fuel elements

    International Nuclear Information System (INIS)

    Lengacker, B.

    1983-01-01

    The described device allows to take gaseous samples from irradiated fuel elements. It is connected with a gas analyzer and a pressure gage, so that in opening the fuel can the internal pressure can be determined

  2. On-line vibration and analysis system at the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Herricks, D.M.; Strunk, W.D.

    1987-11-01

    The enrichment facility in Paducah, KY uses a unique hard-wired vibration monitoring and analysis system for gaseous diffusion equipment. The axial flow and centrifugal flow compressors used in uranium enrichment range in size from 6 feet in diameter to less than one foot in diameter. These compressors must operate smoothly and safely, without breech of containment, since the working fluid of gaseous diffusion is gaseous UF 6 . The condition of 1925 compressors is monitored by use of the 2500 point vibration analysis system. Since the failure mechanisms of the compressors are well known and documented, only one accelerometer per machine is needed for most machines. The system is completely automated and can generate spectra or broadband levels in either acceleration or velocity units. Levels are stored for historical review. The analyst can, via a custom telecommunications link, view and analyze data from all monitored points with an office PC. 4 figs

  3. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  4. PWR-GALE, Radioactive Gaseous Release and Liquid Release from PWR

    International Nuclear Information System (INIS)

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1988-01-01

    1 - Description of program or function: The PWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from pressurized water reactors (PWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment. 2 - Method of solution: GALE calculates expected releases based on 1) standardized coolant activities derived from ANS Standards 18.1 Working Group recommendations, 2) release and transport mechanisms that result in the appearance of radioactive material in liquid and gaseous waste streams, 3) plant-specific design features used to reduce the quantities of radioactive materials ultimately released to the environs, and 4) information received on the operation of nuclear power plants. 3 - Restrictions on the complexity of the problem: The liquid release portion of GALE uses subroutines taken from the ORIGEN (CCC-217) to calculate radionuclide buildup and decay during collection, processing, and storage of liquid radwaste. Memory requirements for this part of the program are determined by the large nuclear data base accessed by these subroutines

  5. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  6. Deuterium exchange between liquid water and gaseous hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The overall separation factors for the deuterium exchange between liquid water and gaseous hydrogen have been calculated over a wide range of temperature, pressure and deuterium concentrations. These data would be useful in the design and other considerations for heavy water production, based on hydrogen-water exchange. (author)

  7. A new gaseous gap conductance relationship

    International Nuclear Information System (INIS)

    Wesley, D.A.; Yovanovich, M.M.

    1986-01-01

    A new relationship for predicting the gaseous gap conductance between the fuel and clad of a nuclear fuel rod is derived. This relationship is derived from purely analytical considerations and represents a departure from approaches taken in the past. A comparison between the predictions from this new relationship and experimental measurements is presented and the agreement is very good. Predictions can be generated relatively quickly with this relationship making it attractive for fuel pin analysis codes

  8. Analysis of (NH4)2SO4/(NH4)H2PO4 mixtures by thermogravimetry and X-ray diffraction

    International Nuclear Information System (INIS)

    Perez, Jose; Perez, Eduardo; Vas, Beatriz del; Garcia, Luis; Serrano, Jose Luis

    2006-01-01

    (NH 4 ) 2 SO 4 and (NH 4 )H 2 PO 4 are the principal components in the powder material used in fire extinguishers. In this paper the mutual influence in their thermal decomposition is investigated by thermogravimetry. Two methods for the quantification of both salts in mixtures (NH 4 ) 2 SO 4 /(NH 4 )H 2 PO 4 are proposed. The first employs thermogravimetry and is based on the measurement of the mass fraction in the 500-550 deg. C interval, once (NH 4 ) 2 SO 4 has totally decomposed to yield gaseous products. The second uses some selected peaks in the X-ray diffractogram

  9. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  10. Printhead and inkjet printer comprising such a printhead

    NARCIS (Netherlands)

    2007-01-01

    The invention relates to a printhead comprising multiple substantially closed ink chambers (13), the ink chambers being mutually separated by at least one wall (12), wherein each of the chambers comprises an electro-mechanical converter (15), where actuation of the converter leads to a volume change

  11. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates; Recherche et developpement d'un detecteur gazeux PIM (Parallel Ionization Multiplier) pour la trajectographie de particules sous un haut flux de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Beucher, J

    2007-10-15

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO{sub 2} has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10{sup 9} by incident hadron and a spatial resolution of 51 {mu}m have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  12. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  13. Development of a gas chromatography-mass spectrometry method for the determination of pesticides in gaseous and particulate phases in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Borras, E.; Sanchez, P.; Munoz, A. [Instituto Universitario Centro de Estudios Ambientales del Mediterraneo CEAM-UMH (Fundacion CEAM-UMH), 46980 Paterna, Valencia (Spain); Tortajada-Genaro, L.A., E-mail: luitorge@qim.upv.es [Instituto IDM, Departamento de Quimica, Universitat Politecnica de Valencia, Cami de Vera s/n 46022 Valencia (Spain)

    2011-08-05

    Highlights: {yields} An efficient method for the determination of sixteen pesticides in atmospheric samples. {yields} XAD-4 is an interesting support for collecting gas-phase pesticides, with similar performances than the conventional XAD-2. {yields} The ultrasonic extraction is cheaper, less aggressive and time-consuming with excellent analytical parameters. {yields} The method has been successfully tested by using high volume atmospheric simulation chamber and field campaigns. - Abstract: A reliable multi-residue method for determining gaseous and particulate phase pesticides in atmospheric samples has been developed. This method, based on full scan gas chromatography-mass spectrometry (GC-MS), allowed the proper determination of sixteen relevant pesticides, in a wide range of concentrations and without the influence of interferences. The pesticides were benfluralin, bitertanol, buprofezin, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, ethalfluralin, fenthion, lindane, malathion, methidathion, propachlor, propanil, pyriproxifen, tebuconazol and trifluralin. Comparisons of two types of sampling filters (quartz and glass fibre) and four types of solid-phase cartridges (XAD-2, XAD-4, Florisil and Orbo-49P) showed that the most suitable supports were glass fibre filter for particulate pesticides and XAD-2 and XAD-4 cartridges for gaseous pesticides (>95% recovery). Evaluations of elution solvents for ultrasonic-assisted extraction demonstrated that isooctane is better than ethylacetate, dichloromethane, methanol or a mixture of acetone:hexane (1:1). Recovery assays and the standard addition method were performed to validate the proposed methodology. Moreover, large simulator chamber experiments allowed the best study of the gas-particle partitioning of pesticides for testing the sampling efficiency for the validation of an analytical multiresidue method for pesticides in air. Satisfactory analytical parameters were obtained, with a repeatability of 5 {+-} 1%, a

  14. Development of a gas chromatography-mass spectrometry method for the determination of pesticides in gaseous and particulate phases in the atmosphere

    International Nuclear Information System (INIS)

    Borras, E.; Sanchez, P.; Munoz, A.; Tortajada-Genaro, L.A.

    2011-01-01

    Highlights: → An efficient method for the determination of sixteen pesticides in atmospheric samples. → XAD-4 is an interesting support for collecting gas-phase pesticides, with similar performances than the conventional XAD-2. → The ultrasonic extraction is cheaper, less aggressive and time-consuming with excellent analytical parameters. → The method has been successfully tested by using high volume atmospheric simulation chamber and field campaigns. - Abstract: A reliable multi-residue method for determining gaseous and particulate phase pesticides in atmospheric samples has been developed. This method, based on full scan gas chromatography-mass spectrometry (GC-MS), allowed the proper determination of sixteen relevant pesticides, in a wide range of concentrations and without the influence of interferences. The pesticides were benfluralin, bitertanol, buprofezin, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, ethalfluralin, fenthion, lindane, malathion, methidathion, propachlor, propanil, pyriproxifen, tebuconazol and trifluralin. Comparisons of two types of sampling filters (quartz and glass fibre) and four types of solid-phase cartridges (XAD-2, XAD-4, Florisil and Orbo-49P) showed that the most suitable supports were glass fibre filter for particulate pesticides and XAD-2 and XAD-4 cartridges for gaseous pesticides (>95% recovery). Evaluations of elution solvents for ultrasonic-assisted extraction demonstrated that isooctane is better than ethylacetate, dichloromethane, methanol or a mixture of acetone:hexane (1:1). Recovery assays and the standard addition method were performed to validate the proposed methodology. Moreover, large simulator chamber experiments allowed the best study of the gas-particle partitioning of pesticides for testing the sampling efficiency for the validation of an analytical multiresidue method for pesticides in air. Satisfactory analytical parameters were obtained, with a repeatability of 5 ± 1%, a reproducibility of 13

  15. Gaseous radiocarbon measurements of small samples

    International Nuclear Information System (INIS)

    Ruff, M.; Szidat, S.; Gaeggeler, H.W.; Suter, M.; Synal, H.-A.; Wacker, L.

    2010-01-01

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) is a well-established method for samples containing carbon in the milligram range. However, the measurement of small samples containing less than 50 μg carbon often fails. It is difficult to graphitise these samples and the preparation is prone to contamination. To avoid graphitisation, a solution can be the direct measurement of carbon dioxide. The MICADAS, the smallest accelerator for radiocarbon dating in Zurich, is equipped with a hybrid Cs sputter ion source. It allows the measurement of both, graphite targets and gaseous CO 2 samples, without any rebuilding. This work presents experiences dealing with small samples containing 1-40 μg carbon. 500 unknown samples of different environmental research fields have been measured yet. Most of the samples were measured with the gas ion source. These data are compared with earlier measurements of small graphite samples. The performance of the two different techniques is discussed and main contributions to the blank determined. An analysis of blank and standard data measured within years allowed a quantification of the contamination, which was found to be of the order of 55 ng and 750 ng carbon (50 pMC) for the gaseous and the graphite samples, respectively. For quality control, a number of certified standards were measured using the gas ion source to demonstrate reliability of the data.

  16. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  17. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.

    Science.gov (United States)

    Wallenius, Kaisa; Lappi, Kaisa; Mikkonen, Anu; Wickström, Annika; Vaalama, Anu; Lehtinen, Taru; Suominen, Leena

    2012-02-01

    We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.

  18. Optimization of β-casein stabilized nanoemulsions using experimental mixture design.

    Science.gov (United States)

    Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H

    2011-10-01

    The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®

  19. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    Science.gov (United States)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  20. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  1. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 2. Draft environmental statement

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, W. H.

    1976-06-01

    The need for additional uranium enrichment facilities and the environmental impacts of the add-on gaseous diffusion plant proposed for the Portsmouth Gaseous Diffusion Plant are discussed. A detailed description of the proposed facilities is included and unavoidable adverse environmental effects, possible alternatives, and anticipated benefits from the proposed facilities are considered. The flora and fauna of the area are tabulated and possible effects of air and water pollution on aquatic and terrestrial ecosystems are postulated. The extent of anticipated noise impact on the vicinity and the anticipated extent of civic envolvement are discussed. (CH)

  2. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 2. Draft environmental statement

    International Nuclear Information System (INIS)

    1976-06-01

    The need for additional uranium enrichment facilities and the environmental impacts of the add-on gaseous diffusion plant proposed for the Portsmouth Gaseous Diffusion Plant are discussed. A detailed description of the proposed facilities is included and unavoidable adverse environmental effects, possible alternatives, and anticipated benefits from the proposed facilities are considered. The flora and fauna of the area are tabulated and possible effects of air and water pollution on aquatic and terrestrial ecosystems are postulated. The extent of anticipated noise impact on the vicinity and the anticipated extent of civic envolvement are discussed

  3. Deciding which chemical mixtures risk assessment methods work best for what mixtures

    International Nuclear Information System (INIS)

    Teuschler, Linda K.

    2007-01-01

    The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose-response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures

  4. Bench-scale and full-scale studies of nitric oxides reduction by gaseous fuel reburning

    International Nuclear Information System (INIS)

    Su, S.; Xiang, J.; Sun, L.S.; Hu, S.; Zhu, J.M.

    2008-01-01

    Nitrogen oxides (NOx) emissions from coal-fired boilers are significant contributors to atmospheric pollution. China has specified more rigorous legal limits for NOx emissions from power plants. As a result of the need to reduce NOx emissions, cost-effective NOx reduction strategies must be explored. This paper presented detailed experimental studies on a gaseous fuel reburning process that was performed in a 36 kilowatt bench-scale down-fired furnace to define the optimal reburning operating conditions when different Chinese coals were fired in the furnace. In addition, the combustion system of a 350 megawatt full-scale boiler was retrofitted according to the experimental results. Finally, the gaseous fuel reburning was applied to the retrofitted full-scale boiler. The purpose of the study was to obtain a better understanding of the influence of the key parameters on nitric oxide (NO) reduction efficiency of the reburning process and demonstrate the gaseous fuel reburning on a 350 MWe coal-fired boiler in China. The paper described the experimental procedure with particular reference to the experimental facility and measurement; a schematic diagram of the experimental system; experimental fuels; and characteristics of coals for the reburning experiments. Results that were presented included influence of reburn zone residence time; influence of gaseous reburn fuel per cent; influence of excess air coefficient; and unburned carbon in fly ash. It was concluded that both an above 50 per cent NO reduction efficiency and low carbon loss can be obtained by the gaseous fuel reburning process under the optimal operating conditions. 20 refs., 5 tabs., 10 figs

  5. Vibration signature analysis of compressors in the gaseous diffusion process for uranium enrichment

    International Nuclear Information System (INIS)

    Harbarger, W.B.

    1975-01-01

    Continuous operation of several thousand axial-flow and centrifugal compressors is vital to the gaseous diffusion process for uranium enrichment. Vibration signature analysis using a minicomputer-based Fast Fourier Transform Analyzer is being applied to the evaluation and surveillance of compressor performance at the Portsmouth Gaseous Diffusion Plant. Three areas of application include: (1) new blade design and prototype compressor evaluation; (2) corrective and preventive maintenance of machinery components; and (3) evaluation of machinery health. The present system is being used to monitor signals from accelerometers mounted on the load-bearing housings of 16 on-line compressors. These signals are transmitted by hard-wire to the analyzer for daily monitoring. A program for expansion of this system to monitor more than a thousand compressors and automation of the signature comparison process is planned for all three gaseous diffusion plants operated for the United States Energy Research and Development Administration. (auth)

  6. Chapter 4 Gaseous Elemental Mercury in the Ambient Atmosphere

    DEFF Research Database (Denmark)

    Ariya, Parisa A.; Skov, Henrik; Grage, Mette M L

    2008-01-01

    Understanding the kinetics and mechanisms associated with the atmospheric chemistry of mercury is of great importance to protecting the environment. This review will focus on theoretical calculations to advance understanding of gas phase oxidation of gaseous elemental mercury (GEM) by halogen spe...

  7. gaseous emissions from some industries at ama industrial complex ...

    African Journals Online (AJOL)

    user

    2015-08-11

    Aug 11, 2015 ... air quality standards. Therefore, it is recommended that these companies should determine appropriate control measures to reduce these toxic emissions. Key words: Toxic gaseous emissions, type, concentrations, Ama Industrial Complex, Nigeria. INTRODUCTION. Air pollutants such as carbon dioxide ...

  8. Fast and Slow Precession of Gaseous Debris Disks around Planet-accreting White Dwarfs

    Science.gov (United States)

    Miranda, Ryan; Rafikov, Roman R.

    2018-04-01

    Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission-line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales—from decades down to 1.4 year (recently inferred for the debris disk around HE 1349–2305)—are in rough agreement with the rate of general relativistic (GR) precession in the test-particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to 1 {R}ȯ ) gaseous disk mediated by internal stresses (pressure). Here, we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, r in. For small inner radii, {r}in}≲ (0.2{--}0.4) {R}ȯ , the modes are GR-driven, with periods of ≈1–10 year. For {r}in}≳ (0.2{--}0.4) {R}ȯ , the modes are pressure dominated, with periods of ≈3–20 year. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349–2305 is consistent with its small r in. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.

  9. Gossip: Gaseous pixels

    Science.gov (United States)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  10. Gossip: Gaseous pixels

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N. [Nikhef, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)], E-mail: d77@nikhef.nl

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a {sup 55}Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  11. Gossip: Gaseous pixels

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    2007-01-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55 Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated

  12. Adsorptive separation of ethylene/ethane mixtures using carbon nanotubes: a molecular dynamics study

    International Nuclear Information System (INIS)

    Tian, Xingling; Zhou, Bo; Wang, Zhigang; Yang, Zaixing; Xiu, Peng

    2013-01-01

    Ethylene/ethane separation is a very important process in the chemical industry. Traditionally, this process is achieved by cryodistillation, which is extremely energy-intensive. The adsorptive separation is an energy-saving and environmentally benign alternative. In this study, we employ molecular dynamics simulations to study the competitive adsorption of an equimolar mixture of gaseous ethane and ethylene inside single-walled carbon nanotubes (SWNTs) of different diameters at room temperature. We find that for narrow SWNTs, i.e. the (6, 6) and (7, 7) SWNTs, the selectivities towards ethane, f selec , can reach values of 3.1 and 3.7, respectively. Such high selectivities are contrary to the opinion of many researchers that the adsorptive separation of an ethylene/ethane mixture by means of dispersion interaction is difficult due to the same carbon number of ethane and ethylene. The key for our observation is that the role of dispersion interaction of ethane's additional two hydrogen atoms with the SWNT becomes significant under extreme confinement. Interestingly, the (8, 8) SWNT prefers ethylene to ethane with f selec = 0.6. For wider SWNTs, f selec converges to ∼1. The mechanisms behind these observations, as well as the kinetics of single-file nanopore filling and kinetics of confined gas molecules are discussed. Our findings suggest that efficient ethane/ethylene separation can be achieved by using bundles/membranes of SWNTs with appropriate diameters. (paper)

  13. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  14. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  15. Charge amplitude distribution of the Gossip gaseous pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Carballo, V.M. [Twente University, Enschede (Netherlands); Chefdeville, M. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Colas, P.; Giomataris, Y. [Saclay, Gif-sur-Yvette (France); Graaf, H. van der; Gromov, V. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Hartjes, F. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands)], E-mail: F.Hartjes@nikhef.nl; Kluit, R.; Koffeman, E. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Salm, C.; Schmitz, J.; Smits, S.M. [Twente University, Enschede (Netherlands); Timmermans, J.; Visschers, J.L. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands)

    2007-12-11

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10{sup 16} hadrons/cm{sup 2}. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO{sub 2}/DME (dimethyl-ether) and Ar/iC{sub 4}H{sub 10} mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.

  16. Charge amplitude distribution of the Gossip gaseous pixel detector

    Science.gov (United States)

    Blanco Carballo, V. M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S. M.; Timmermans, J.; Visschers, J. L.

    2007-12-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2/DME (dimethyl-ether) and Ar/iC 4H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.

  17. Charge amplitude distribution of the Gossip gaseous pixel detector

    International Nuclear Information System (INIS)

    Blanco Carballo, V.M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; Graaf, H. van der; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S.M.; Timmermans, J.; Visschers, J.L.

    2007-01-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2 . The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2 /DME (dimethyl-ether) and Ar/iC 4 H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature

  18. Lung Cancer Mortality among Uranium Gaseous Diffusion Plant Workers: A Cohort Study 1952–2004

    Directory of Open Access Journals (Sweden)

    LW Figgs

    2013-07-01

    Full Text Available Background: 9%–15% of all lung cancers are attributable to occupational exposures. Reports are disparate regarding elevated lung cancer mortality risk among workers employed at uranium gaseous diffusion plants. Objective: To investigate whether external radiation exposure is associated with lung cancer mortality risk among uranium gaseous diffusion workers. Methods: A cohort of 6820 nuclear industry workers employed from 1952 to 2003 at the Paducah uranium gaseous diffusion plant (PGDP was assembled. A job-specific exposure matrix (JEM was used to determine likely toxic metal exposure categories. In addition, radiation film badge dosimeters were used to monitor cumulative external ionizing radiation exposure. International Classification for Disease (ICD codes 9 and 10 were used to identify 147 lung cancer deaths. Logistic and proportional hazards regression were used to estimate lung cancer mortality risk. Results: Lung cancer mortality risk was elevated among workers who experienced external radiation >3.5 mrem and employment duration >12 years. Conclusion: Employees of uranium gaseous diffusion plants carry a higher risk of lung cancer mortality; the mortality is associated with increased radiation exposure and duration of employment.

  19. Change of mechanical properties of molybdenum after chemical heat treatment

    International Nuclear Information System (INIS)

    Skuratov, L.P.; Yatsimirskij, V.K.; Kirillova, N.V.

    1987-01-01

    Gaseous media (argon, ammonia, nitrogen-hydrogen-ammonia mixture) are studied for their effect on mechanical characteristics of molybdenum at temperatures up to 1000 deg C. It is established that the highest hardening occurs when molybdenum is esposed in the nitrogen-hydrogen medium, while the highest lost of strength takes place in the ammonia medium. An increase of the ammonia concentration in nitrogen-hydrogen-ammonia mixture promotes regular increasing of the deformation rate. With ammonia concentration of 33.3% the gaseous mixture acts the same as pure ammonia. Change of physical-and-mechanical properties of molybdenum under the action of nitrogen-containing gaseous media is associated with formation of molybdenum compounds with nitrogen. During nitriding in ammonia an internal (volume) nitriding proceeds while in the medium of nitrogen-hydrogen mixture surface nitride layers form

  20. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  1. Uranium enrichment export control guide: Gaseous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  2. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  3. A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection

    Science.gov (United States)

    Zhang, Zhiyong; Qi, Binbin; Liu, Chengming; Feng, Jianxin; Liu, Jianbei; Shao, Ming; Zhou, Yi; Hong, Daojin; Lv, You; Song, Guofeng; Wang, Xu; You, Wenhao

    2018-05-01

    Application of micro-pattern gaseous detectors to gaseous photomultiplier tubes has been widely investigated over the past two decades. In this paper, we present a double micro-mesh gaseous structure that has been designed and fabricated for this application. Tests with X-rays and UV laser light indicate that this structure exhibits an excellent gas gain of > 7 × 104 and good energy resolution of 19% (full width at half maximum) for 5.9 keV X-rays. The gas gain can reach up to 106 for single electrons while maintaining a very low ion-backflow ratio down to 0.0005. This structure has good potential for other applications requiring a very low level of ion backflow.

  4. Computed tomography with thermal neutrons and gaseous position sensitive detector

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched 3 He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched 3 He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF 3 detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  5. Simultaneous estimation of a binary mixture of a weak acid and a strong acid by volumetric titration and pH measurement

    International Nuclear Information System (INIS)

    Karmakar, Sanat; Mallika, C.; Kamachi Mudali, U.

    2012-01-01

    High level liquid waste (HLLW) generated in the aqueous reprocessing of spent nuclear fuels for the separation of uranium and plutonium by PUREX process, comprises the fission and corrosion products in 4 M nitric acid. Reduction in waste volume is accomplished by destroying the acidity of the waste solution from 4 to less than 2 M by treating it with formaldehyde and subsequent concentration by evaporation. In the denitration by HCHO, nitric acid in the waste solution is reduced to NOx and water via nitrous acid as the intermediate product: whereas formaldehyde is oxidized to formic acid which is converted to CO 2 and H 2 O subsequently. The reaction is highly exothermic and the release of all gaseous products may lead to uncontrollable process conditions. Hence, for the safe operation, it is desirable to estimate the concentration of residual formic acid as well as nitric acid in the product stream as a function of time. The acidity in the feed solution is 4 M and the concentration of HNO 3 in the product solution is in the range 1- 4 M. Since the formic acid generated during the reaction will be consumed immediately, the concentration of residual acid will be in the range 0.05-0.5 M. A simultaneous titration method based on pH measurement and volumetric analysis has been developed in the present work for the quantitative determination of the weak acid (HCOOH)with known pKa value and the strong acid (HNO 3 ) in the binary mixture

  6. Determination of some toxic gaseous emissions at Ama Industrial ...

    African Journals Online (AJOL)

    Determination of some toxic gaseous emissions at Ama Industrial Complex, Enugu, south eastern Nigeria. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... A study of some gases emitted from three industries at Ama industrial complex, Nigeria, was carried out ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  7. Infrared scintillation: a comparison between gaseous and liquid xenon

    International Nuclear Information System (INIS)

    Bressi, G.; Carugno, G.; Conti, E.; Del Noce, C.; Iannuzzi, D.

    2001-01-01

    Light yield and spectrum of infrared (IR) scintillation in Xe are different in gaseous and liquid phases. In gas, the spectrum consists mainly of a broad line centered at 1300 nm. In liquid, light is emitted primarily below 1200 nm and with a lower yield

  8. Long-range global warming impact of gaseous diffusion plant operation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    1992-09-01

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO 2 emissions), and the consequent global temperature impacts of these scenarios

  9. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin.

    Science.gov (United States)

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-03-01

    Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Effect of the percentage of SF sub 6 (100%-10%-5%) on the decomposition of SF sub 6 -N sub 2 mixtures under negative dc coronas in the presence of water vapour or oxygen

    CERN Document Server

    Díaz, J; Casanovas, J

    2003-01-01

    Low SF sub 6 content SF sub 6 -N sub 2 mixtures have recently been proposed as a replacement for pure SF sub 6 in the insulation of gas insulated lines (GIL). Among the areas of investigation of such gas mixtures, their electrical decomposition under corona discharges must be studied considering the possible occurrence of such stress in GIL. This paper presents data concerning the decomposition of high-pressure SF sub 6 -N sub 2 (5 : 95) mixtures (400 kPa) submitted to negative dc coronas in the absence or presence of 0.3% H sub 2 O or 0.3% O sub 2. The chemical stability of these mixtures is compared with that of SF sub 6 -N sub 2 (10 : 90) mixtures or undiluted SF sub 6 investigated in the same conditions in a previous paper. The corona discharges were generated with a point-to-plane set-up and the gaseous by-products were assayed by gas chromatography at the end of each run carried out over a range of transported charge covering 0-13 C. The following by-products were detected and assayed: SOF sub 4 , SO su...

  11. Process and system for removing sulfur from sulfur-containing gaseous streams

    Science.gov (United States)

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  12. Radioactive effluents, Portsmouth Gaseous Diffusion Plant, calendar year 1982

    International Nuclear Information System (INIS)

    Acox, T.A.; Hary, L.F.; Klein, L.S.

    1983-03-01

    Radioactive discharges from the Portsmouth Gaseous Diffusion Plant are discussed and tabulated. Tables indicate both the location of the discharge and the nuclides discharged. All discharges for 1982 are well below the Radioactive Concentration Guide limits specified in DOE Order 5480.1, Chapter XI. 1 figure

  13. Dynamics of gas bubble growth in oil-refrigerant mixtures under isothermal decompression

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Joao Paulo; Barbosa Junior, Jader R.; Prata, Alvaro T. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: jpdias@polo.ufsc.br, jrb@polo.ufsc.br, prata@polo.ufsc.br

    2010-07-01

    This paper proposes a numerical model to predict the growth of gaseous refrigerant bubbles in oil-refrigerant mixtures with high contents of oil subjected to isothermal decompression. The model considers an Elementary Cell (EC) in which a spherical bubble is surrounded by a concentric and spherical liquid layer containing a limited amount of dissolved liquid refrigerant. The pressure reduction in the EC generates a concentration gradient at the bubble interface and the refrigerant is transported to the bubble by molecular diffusion. After a sufficiently long period of time, the concentration gradient in the liquid layer and the bubble internal pressure reach equilibrium and the bubble stops growing, having attained its stable radius. The equations of momentum and chemical species conservation for the liquid layer, and the mass balance at the bubble interface are solved via a coupled finite difference procedure to determine the bubble internal pressure, the refrigerant radial concentration distribution and the bubble growth rate. Numerical results obtained for a mixture of ISO VG10 ester oil and refrigerant HFC-134a showed that bubble growth dynamics depends on model parameters like the initial bubble radius, initial refrigerant concentration in the liquid layer, decompression rate and EC temperature. Despite its simplicity, the model showed to be a potential tool to predict bubble growth and foaming which may result from important phenomena occurring inside refrigeration compressors such as lubrication of sliding parts and refrigerant degassing from the oil stored in oil sump during compressor start-up. (author)

  14. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  15. Development and prospects of the new gaseous detector 'Micromegas'

    International Nuclear Information System (INIS)

    Giomataris, Y.

    1998-01-01

    We report results obtained with the novel gaseous Micromegas detector (MICRO MEsh GAseous Structure), which is under development at Saclay. A simple theory to explain the advantage of the small amplification gap (50-100 μm) is developed. A set of large detectors was exposed during several months in high-intensity particle beams. Full efficiency and a large plateau has been obtained with a 3 mm conversion gap. With a conversion gap as small as 1 mm the efficiency reaches 96 %. A spatial resolution better then 60 μm has been observed with anode strips of 317 μm pitch. Simulations show that with a pitch of 100 μm and the appropriate gas an accuracy of 10 μm and a time resolution of 1 νs is within reach. This development leads to a new generation of cheap position sensitive detectors which would permit high precision tracking or vertexing close to the interaction region, in very high-rate environments. (author)

  16. High-power laser-metal interactions in pressurized gaseous atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Lugomer, S.; Furic, K.; Ivanda, M. [Ruder Boskovic Institute, Zagreb (Croatia); Stipancic, M. [Electrotechnical faculty, Osijek (Croatia); Stubicar, M. [Faculty of natural sciences and mathematics, Zagreb (Croatia); Gamulin, O. [School of medicine, Univ. of Zagreb, Zagreb (Croatia)

    1996-09-01

    Metal surfaces were irradiated in pressurized gaseous atmospheres by a CO{sub 2} laser beam. The gaseous pressures ranged from 2 atm to 6 atm, the energy density of the light beam was about 20-50 J/cm{sup 2} with a power density {approx} 10{sup 9} W/cm{sup 2} and a pulse duration p 150 ns. In the above conditions some new effects were observed. The laser-material interaction occurred in a highly absorptive plasma regime, meaning that the metal surface was effectively screened from the beam. The interaction ended either with plasma adiabatic expansion, in the case of Mo (in O{sub 2}), Te (in N{sub 2}) and T{sub i} (in N{sub 2}), or with plasma explosion, in the case of T{sub i} (in O{sub 2}). The metal surface properties were studied by means of optical analysis, microhardness tests, X-ray diffraction and Raman backscattering.

  17. Experiments for detection of gaseous Po-210 originated from microbial activity in the environment

    International Nuclear Information System (INIS)

    Ishimoto, A.; Momoshima, N.

    2006-01-01

    We attempted to detect gaseous Po-210 (half-life 138d) emitted from organisms in the environment. Gaseous Po-210 was tried to collect in 0.5 M nitric acid solution after passing the atmospheric air through filters and a distilled water bubbler, which would remove aerosols existing in the air. The activity of Po-210 was determined by alpha spectrometry after radiochemical separation and electrolytic deposition of Po-210 on a silver disk. Twenty seven point four mBq of Po-210 was observed when 800 m 3 atmospheric air was sampled. Blank of Po-210 in regents and the sampling system was 4.9-6.8 mBq. The concentration of Po-210 observed in the atmospheric air was, thus about 5 times higher than the background; the results strongly support existence of gaseous Po-210 in the environment. (author)

  18. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said ...... compounds are able to undergo Lewis acid-base reactions. The interpenetrating polymer network may be used as dielectric electroactive polymers (DEAPs) having a high dielectric permittivity....

  19. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  20. Study on kinetics of description of gases and their mixtures through the interface

    International Nuclear Information System (INIS)

    Ermashkevich, V.N.; Kachalov, A.B.; Shlejfer, A.A.; Redin, Yu.A.

    1986-01-01

    The velocity of release of gases into a bubble and a cavity from liquid has been described. It is shown that at simultaneous desorption of several gases dissolved in liquid, into emerging bubble the contribution of each gas is proportional to its coefficient of solubility and is independent of concentration of these gases in liquid. For gases with solubility coefficients above 1000 kg/(m 3 xMPa), partial pressure readily reaches equilibrium. Nitric oxide dissolved in nitrogen tetroxide ranks among them. Alternatively, for gases with low solubility coefficients (for example, nitrogen in N 2 O 4 ), partial pressure in the cavity (bubble) increases slowly. An effect of any gas on the desorption rate of another gas has not been observed. The study allows to evaluate some parameters in formed cavities or in moving gaseous bubbles in multicomponent mixtures (in particular, in dissociating nitrogen tetroxide and in solutions on the basis of nitrogen tetroxide)

  1. Photodetachment in the gaseous, liquid, and solid states of matter

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Datskos, P.G.; Faidas, H.

    1994-01-01

    We have made absolute cross section measurements of laser photodetachment of C 6 F - 6 ions embedded in gaseous tetramethylsilane (TMS) and compared the results at low gas densities with measurements in nonpolar liquids and solids. The measurements indicate that the photodetachment cross section of C 6 F - 6 in gaseous TMS is about three times larger than in liquid TMS. This is rationalized by considering the effect of the medium on both the photoabsorption and the autodetachment processes. The photodetachment cross section in both the gas and the liquid exhibits (at least) two maxima due to autodetaching negative ion states. It is argued that these are due to σ*→σ* transitions in C 6 F - 6 . The relative positions of these ''superexcited'' anionic states did not change appreciably in going from the gas to the liquid and the solid, indicating similar influences of the medium on them. As expected, the photodetachment threshold in the condensed phase is shifted to higher energies compared to the gaseous phase. This shift is consistent with recent photoelectron studies of photodetachment of C 6 F - 6 clusters. The present study clearly shows that the photodetachment from negative ions embedded in all states of matter proceeds directly or indirectly via negative ion autodetaching states, and that for nonpolar media, the effect of the medium can be accounted for by considering the macroscopic properties of the medium described by its dielectric constant ε and refractive index n

  2. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  3. Aging phenomena in gaseous detectors - perspectives from the 2001 workshop

    CERN Document Server

    Hohlmann, M; Tesch, N; Titov, M

    2002-01-01

    High-Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors, and resistive plate chambers--each with their own specific aging characteristics--have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. The 2001 workshop provided a forum to review the progress since 1986 in understanding aging effects and to exchange recent experiences. A summary of the main results reported at the 2001 workshop is presented providing a systematic review of aging effects in state-of-the-art detectors.

  4. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes

  5. Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study

    International Nuclear Information System (INIS)

    Miranda, Miguel; Cabrita, I.; Pinto, Filomena; Gulyurtlu, I.

    2013-01-01

    The study performed aimed at analysing possible routes for pyrolysis reaction mechanisms of polymeric materials namely RT (rubber tyre) and plastic wastes (PE (polyethylene), PP (polypropylene) and PS (polystyrene)). Consequently, and seeking sustainable transformation of waste streams into valuable chemicals and renewable liquid fuels, mixture of 30% RT, 20% PE, 30% PP and 20% PS was subjected to pyrolysis. Different kinetic models were studied using experimental data. None of the mechanisms found in literature led to a numerical adjustment and different pathways were investigated. Kinetic studies were performed aiming to evaluate direct conversions into new solid, liquid and gaseous products and if parallel reactions and/or reversible elementary steps should be included. Experiments were performed in batch system at different temperatures and reaction times. Kinetic models were evaluated and reaction pathways were proposed. Models reasonably fit experimental data, allow explaining wastes thermal degradation. Kinetic parameters were estimated for all temperatures and dependence of Ea and pre-exponential factor on temperature was evaluated. The rate constant of some reactions exhibited nonlinear temperature dependence on the logarithmic form of Arrhenius law. This fact strongly suggests that temperature has a significant effect on reaction mechanism of pyrolysis of mixtures of rubber tyre and plastic wastes. - Highlights: • Kinetic study of rubber tyre (RT) and different plastic wastes (PE, PP and PS) was performed in batch reactor. • Definition of possible pathways taken into account for the formation of final products. • Kinetic parameters were estimated. • The effect of reaction temperature and reaction time on liquid composition was performed

  6. Method and apparatus for removing volatile hydrocarbons from particulate soils

    International Nuclear Information System (INIS)

    Mendenhall, R.L.

    1992-01-01

    This patent describes an apparatus for heating solid particulate mineral compositions. It comprises: a counterflow ratable drum having a first end and an opposite second end, a first portion of the drum extending from the first end for a first length and having a first diameter along the first length, and a second portion of the drum secured to and extending from the first portion to the second end for a second length and having a second diameter along the second length, the second diameter being less than the first diameter, a burner adjacent the first end for introducing and directing hot gases of combustion into the first portion of the drum toward the second end, means for introducing particulate composition into the drum at the second end, means for directing the particulate composition along the drum from the second end toward the first end, and means for recovering composition at the first end, means for removing a gaseous mixture of organic volatiles, gases of combustion and fine particles of the particulate composition adjacent the second drum end, means for separating fine particles of the particulate composition from the gaseous mixture, and means for returning the separated fine particulate composition particles to the first portion of the drum

  7. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  8. Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis

    Directory of Open Access Journals (Sweden)

    A. R. Rickard

    2010-03-01

    Full Text Available Secondary Organic Aerosol (SOA affects atmospheric composition, air quality and radiative transfer, however major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Ion Trap Mass Spectrometry and Liquid Chromatography. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method, and the potential influence of condensed phase chemistry. Comparisons of the simulated gaseous- and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species, (ii provide evidence for the occurrence of recently suggested radical isomerisation channels not included in the basic model, and (iii explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra.

  9. Building and commissioning of a setup to study ageing phenomena in gaseous detectors

    International Nuclear Information System (INIS)

    Abuhoza, A.; Schmidt, H.R.; Biswas, S.; Frankenfeld, U.; Hehner, J.; Schmidt, C.J.

    2016-01-01

    In high-rate heavy-ion experiments, gaseous detectors encounter big challenges in terms of degradation of their performance due to a phenomenon called ageing. A setup for high precision ageing studies has been constructed and commissioned at the GSI detector laboratory. The setup as well as the gas system have been carefully optimized to reach a high sensitivity for ageing effects. Two different materials have been examined for their influence on gaseous detectors: RTV-3145 and Gerband 705. The details of the construction of the ageing test setup and the test results will be presented.

  10. Building and commissioning of a setup to study ageing phenomena in gaseous detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abuhoza, A., E-mail: aabuhoza@kacst.edu.sa [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany); King Abdulaziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Goethe-Universität, Frankfurt (Germany); Schmidt, H.R. [Eberhard-Karls-Universität, Tübingen (Germany); Biswas, S. [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Frankenfeld, U.; Hehner, J.; Schmidt, C.J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany)

    2016-07-11

    In high-rate heavy-ion experiments, gaseous detectors encounter big challenges in terms of degradation of their performance due to a phenomenon called ageing. A setup for high precision ageing studies has been constructed and commissioned at the GSI detector laboratory. The setup as well as the gas system have been carefully optimized to reach a high sensitivity for ageing effects. Two different materials have been examined for their influence on gaseous detectors: RTV-3145 and Gerband 705. The details of the construction of the ageing test setup and the test results will be presented.

  11. Fundamental laws of separation by the gaseous diffusion process; Lois de separation elementaires en diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Bouligand, G M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Using the Knudsen's law for the flow of each component of a gaseous mixture through a porous membrane, we derive the overall separation laws and the separation power for one stage of diffusion: Various types of stages differing by the geometrical configuration and the flow nature are considered. For the sake of simplicity physical phenomena causing a loss of separation efficiency are neglected. Computation show the advantages of counter-current type stage with one entering and two leaving flows. A more refined theory of separation can be derived with the same basis of this work. (author) [French] A partir de la loi de Knudsen exprimant les debits elementaires des constituants d'un melange gazeux a travers une membrane poreuse on determine les lois et la puissance de separation de differents modeles de diffuseurs definie par leurs configurations et la nature des ecoulements gazeux. Four simplifier il n'a pas ete tenu compte des divers phenomenes physiques inherents a la diffusion et qui reduisent generalement le facteur de separation. Ces calculs font prevoir les avantages des diffuseurs du type contrecourant a trois ouvertures et peuvent servir de guide dans une theorie plus complete de la separation. (auteur)

  12. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  13. I-optimal mixture designs

    OpenAIRE

    GOOS, Peter; JONES, Bradley; SYAFITRI, Utami

    2013-01-01

    In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors in a mixture experiment necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal desi...

  14. Charge amplitude distribution of the Gossip gaseous pixel detector

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, Cora; Schmitz, Jurriaan; Smits, Sander M.; Timmermans, J.; Timmermans, J.; Visschers, J.L.

    2007-01-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few

  15. Model for absorption and release of gaseous materials by forest canopies

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1976-01-01

    A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere

  16. Mevva ion source operated in purely gaseous mode

    International Nuclear Information System (INIS)

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-01-01

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O + and O 2 + ), nitrogen (N + and N 2 + ), argon (Ar + ) and carbon dioxide (C + , CO 2 + , O + and O 2 + ) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 (micro)A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations

  17. Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules

    Science.gov (United States)

    Ishikawa, Atsushi; Kamata, Masahiro; Nakai, Hiromi

    2016-07-01

    The harmonic solvation model (HSM) was applied to the solvation of gaseous molecules and compared to a procedure based on the ideal gas model (IGM). Examination of 25 molecules showed that (i) the accuracy of ΔGsolv was similar for both methods, but the HSM shows advantages for calculating ΔHsolv and TΔSsolv; (ii) TΔSsolv contributes more than ΔHsolv to ΔGsolv in the HSM, i.e. the solvation of gaseous molecules is entropy-driven, which agrees well with experimental understanding (the IGM does not show this); (iii) the temperature dependence of Henry's law coefficient was correctly reproduced with the HSM.

  18. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor.

    Science.gov (United States)

    Zhang, Maolin; An, Taicheng; Fu, Jiamo; Sheng, Guoying; Wang, Xinming; Hu, Xiaohong; Ding, Xuejun

    2006-06-01

    An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.

  19. In situ depot comprising phase-change materials that can sustainably release a gasotransmitter H2S to treat diabetic wounds.

    Science.gov (United States)

    Lin, Wei-Chih; Huang, Chieh-Cheng; Lin, Shu-Jyuan; Li, Meng-Ju; Chang, Yen; Lin, Yu-Jung; Wan, Wei-Lin; Shih, Po-Chien; Sung, Hsing-Wen

    2017-11-01

    Patients with diabetes mellitus are prone to develop refractory wounds. They exhibit reduced synthesis and levels of circulating hydrogen sulfide (H 2 S), which is an ephemeral gaseous molecule. Physiologically, H 2 S is an endogenous gasotransmitter with multiple biological functions. An emulsion method is utilized to prepare a microparticle system that comprises phase-change materials with a nearly constant temperature of phase transitions to encapsulate sodium hydrosulfide (NaHS), a highly water-labile H 2 S donor. An emulsion technique that can minimize the loss of water-labile active compounds during emulsification must be developed. The as-prepared microparticles (NaHS@MPs) provide an in situ depot for the sustained release of exogenous H 2 S under physiological conditions. The sustained release of H 2 S promotes several cell behaviors, including epidermal/endothelial cell proliferation and migration, as well as angiogenesis, by extending the activation of cellular ERK1/2 and p38, accelerating the healing of full-thickness wounds in diabetic mice. These experimental results reveal the strong potential of NaHS@MPs for the sustained release of H 2 S for the treatment of diabetic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A study of the effects of changing burn-up and gap gaseous compound on the gap convection coefficient (in a hot fuel pin) in VVER-1000 reactor

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Rahmani, Y.

    2007-01-01

    In this article we worked on the result and process of calculation of the gap heat transfer coefficient for a hot fuel pin in accordance with burn-up changes in the VVER-1000 reactor at the Bushehr nuclear power plant (Iran). With regard to the fact that in calculating the fuel gap heat transfer coefficient, various parameters are effective and the need for designing a model is being felt, therefore, in this article we used Ross and Stoute gap model to study impacts of different effective parameters such as thermal expansion and gaseous fission products on the h gap change rate. Over time and with changes in fuel burn-up some gaseous fission products such as xenon, argon and krypton gases are released to the gas mixture in the gap, which originally contained helium. In this study, the composition of gaseous elements in the gap volume during different times of reactor operation was found using ORIGEN code. Considering that the thermal conduction of these gases is lower than that of helium, and by using the Ross and Stoute gap model, we find first that the changes in gaseous compounds in the gap reduce the values of gap thermal conductivity coefficient, but considering thermal expansion (due to burn-up alterations) of fuel and clad resulting in the reduction of gap thickness we find that the gap heat transfer coefficient will augment in a broad range of burn-up changes. These changes result in a higher rate of gap thickness reduction than the low rate of decrease of heat conduction coefficient of the gas in the gap during burn-up. Once these changes have been defined, we can proceed with the analysis of the results of calculations based on the Ross and Stoute model and compare the results obtained with the experimental results for a hot fuel pin as presented in the final safety analysis report of the VVER-1000 reactor at Bushehr. It is noteworthy that the results of accomplished calculations based on the Ross and Stoute model correspond well with the existing

  1. Trends and new developments in gaseous detectors

    International Nuclear Information System (INIS)

    Hoch, M.

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors

  2. Trends and new developments in gaseous detectors

    Science.gov (United States)

    Hoch, M.

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  3. Trends and new developments in gaseous detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, M. [CERN, Geneva 23 (Switzerland)]. E-mail: michael.hoch@cern.ch

    2004-12-11

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  4. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  5. Uranium deposit removal from the Oak Ridge Gaseous Diffusion Plant K-25 Building

    International Nuclear Information System (INIS)

    Ladd, L.D.; Stinnett, E.C. Jr.; Hale, J.R.; Haire, M.J.

    1993-01-01

    The Oak Ridge Gaseous Diffusion Plant went into operation as the first plant to separate uranium by the gaseous diffusion process. It was built during World War II as part of the U.S. Army Corps of Engineers' Manhattan Project. Its war-time code name was K-25, which was also the name of the first uranium separation building constructed at the installation. The K-25 building was considered an engineering miracle at the time of its construction. Built in a U shape ∼1 mile long and 400 ft wide, it housed complex and unique separation equipment. Despite its size and complexity, it was made fully operational within <2 yr after construction began. The facility operated successfully for more than 20 yr until it was placed in a standby mode in 1964. It is now clear the K-25 gaseous diffusion plant will never again be used to enrich uranium. The U.S. Department of Energy, therefore, has initiated a decontamination and decommission program. This paper discusses various procedures and techniques for addressing critical mass, uranium deposits, and safeguards issues

  6. Transference system of gaseous fluoride compounds for infrared spectrofotometric analysis

    International Nuclear Information System (INIS)

    Prado, L.

    1988-07-01

    A vacuum line design for transference of gaseous fluoride compounds involved in the uranium hexafluoride infrared analysis is presented. The text include specific comments about the characteristics of each component and about the possibilities of its acquisition in the national market. (author) [pt

  7. Fabrication of HTR fuel elements by a gaseous impregnation process

    International Nuclear Information System (INIS)

    Blin, J.C.; Berthier, J.; Devillard, J.

    1976-01-01

    The results obtained with the gaseous impregnation process are described. The successive steps of the fabrication in their present state of realization are given together with the results obtained after irradiation. A comparison between this process and a classical method is presented

  8. Emission of gaseous organic pollutants and flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun, Y.

    2007-01-01

    Gaseous organic pollutants are emitted into atmosphere from various sources, creating a threat to the environment and man. New, economical technologies are needed for flue gas treatment. Emission sources of pollutants are reviewed and different treatment technologies are discussed in this report. (authors)

  9. The feasibility of the liberalization of the russian gaseous industry

    International Nuclear Information System (INIS)

    Locatelli, C.

    2002-11-01

    This paper deals with the main lines of the russian gaseous industry reform, Gazprom. The historical aspect and the objectives are discussed. After this presentation the author analyzes the uncertainties of the reform implementing, the constraints and the liberalization feasibility. (A.L.B.)

  10. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  11. Elementary electron-molecule interactions and negative ion resonances at subexcitation energies and their significance in gaseous dielectrics

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1977-01-01

    Recent knowledge on low-energy (mostly approximately less than 10 eV) electron-molecule interaction processes in dilute and in dense gases is synthesized, discussed, and related to the breakdown strength of gaseous dielectrics. Optimal design of multicomponent gaseous insulators can be made on the basis of such knowledge

  12. Methods of separating short half-life radionuclides from a mixture of radionuclides

    International Nuclear Information System (INIS)

    Bray, L.A.; Ryan, J.L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of 223 Ra and 225 Ac, from a radionuclide ''cow'' of 227 Ac or 229 Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ''cow'' forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ''cow'' from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ''cow''. In one embodiment the radionuclide ''cow'' is the 227 Ac, the at least one daughter radionuclide is a 227 Th and the product radionuclide is the 223 Ra and the first nitrate form ion exchange column passes the 227 Ac and retains the 227 Th. In another embodiment the radionuclide ''cow'' is the 229 Th, the at least one daughter radionuclide is a 225 Ra and said product radionuclide is the 225 Ac and the 225 Ac and nitrate form ion exchange column retains the 229 Th and passes the 225 Ra/Ac. 8 figs

  13. Production of gaseous or vaporous fuels from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1951-05-16

    A process for the production of gaseous or vaporous fuels from solid carbonaceous materials consists of subjecting the materials in separate zones to at least three successive thermal treatments at least two of which are carried out at different temperature levels. The materials being maintained in zones in the form of beds of finely divided particles fluidized by the passage of gases or vapors upwardly there-through, and recovering product vapors or gases overhead. The total hot gaseous or vaporous effluent and entrained solids from one of the zones is passed directly without separation to another of the zones situated closely adjacent to and vertically above the first named zone in the same vessel, and the heat required in at least one of the thermal treatment zones is supplied at least in part as the sensible heat of residual solids transferred from a thermal treatment zone operated at a higher temperature.

  14. Growth of planetisimals in a gaseous ring

    International Nuclear Information System (INIS)

    Hourigan, K.

    1981-01-01

    The aggregation of planetesimals in a gaseous ring leads to the development of a dominant body amongst the planetesimal population. The presence of the gas in the form of a differentially rotating ring serves to constrain the orbits of the planetesimals and grains to within a thin toroidal region through the action of gas drag. This situation allows for the efficient aggregation of bodies and, as a result of the low resultant relative velocites, the minimization of collisional fragmentation effects

  15. EURODIF: the uranium enrichment by gaseous diffusion

    International Nuclear Information System (INIS)

    Rougeau, J.P.

    1981-01-01

    During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt

  16. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  17. Behaviour of gaseous alkali compounds in coal gasification; Kaasumaisten alkaliyhdisteiden kaeyttaeytyminen kivihiilien kaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    In this project the behaviour of alkali compounds emitting from CO{sub 2}/O{sub 2}- and airblown gasification are studied. This research project is closely connected to an EU-project coordinated by the Delft University of Technology (DUT). In that project alkali emissions from a 1.6 MW pilot plant will be measured. The results from those measurements will be compared with the calculations performed in this LIEKKI 2 project. The equilibrium calculations show that the major gaseous alkali compounds emitting from combustion and gasification are chlorides and hydroxides. This applies both to air- and CO{sub 2}/O{sub 2}-blown processes. In all the cases studied the concentration of gaseous alkali compounds is determined mainly by the amount of chlorides. The key parameters, with respect to alkali behaviour, are the temperature of the process and chlorine content of the coal. By cooling the gases down to 600 deg C prior to a ceramic filter the alkali concentration can be kept about at 100 ppbv. In combustion, the addition of calcium carbonate increases the amount of gaseous alkali compounds by decreasing the amount of alkali sulphates. In the case of gasification the importance of limestone is negligible. The difference between air- and CO{sub 2}/O{sub 2}-blown processes, in terms of gaseous alkali emissions, is small. This is because CO{sub 2} concentration of the gas does not have a strong impact on alkali chlorides. Furthermore, the effect of CO{sub 2}/O{sub 2}-ratio of the recirculation process is negligible. (orig.)

  18. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

    Science.gov (United States)

    Coleman, Gavin A. L.; Papaloizou, John C. B.; Nelson, Richard P.

    2017-09-01

    The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1-10 au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find the following. (I) Planets with 5 M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8 M⊕ with the planet orbiting at 10 au. (II) Accretion is more efficient on to 10 M⊕ and 15 M⊕ cores. For orbital radii ap ≥ 0.5 au, 15 M⊕ cores always experienced runaway gas accretion. For ap ≥ 5 au, all but one of the 10 M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap = 0.1 au. (III) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15 M⊕ at ≲0.1 au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.

  19. Study on radioactive release of gaseous and liquid effluents during normal operation of AP1000

    International Nuclear Information System (INIS)

    Gong Quan; Zhou Jing; Liu Yu

    2014-01-01

    The gaseous and liquid radioactive releases of pressurized water reactors plant during normal operation are an important content of environmental impact assessment and play a significant role in the design of nuclear power plant. According to the design characters of AP1OOO radioactive waste management system and the study on the calculation method and the release pathways, the calculation model of the gaseous and liquid radioactive releases during normal operation for AP1OOO are established. Base on the established calculation model and the design parameters of AP1000, the expected value of gaseous and liquid radioactive releases of AP1OOO is calculated. The results of calculation are compared with the limits in GB 6249-2011 and explain the adder that is included tu account for anticipated operational occurrences, providing a reference for environmental impact assessment of pressurized water reactor. (authors)

  20. Estimation of radionuclide releases in atmosphere from Cernavoda NPP based on continuous gaseous effluent monitoring

    International Nuclear Information System (INIS)

    Bobric, E.; Murgoci, S.; Popescu, I.; Ibadula, R.

    2001-01-01

    Monitoring of gaseous effluents from Cernavoda NPP is performed to assess the environmental impact of the plant operation. The results of the monitoring program are used to evaluate the population doses in order to ensure that the emissions of radionuclides in air are below regulatory limits and radiation doses are maintained ALARA. It complements, but is independent from the Operational Environmental Monitoring Program for Cernavoda NPP. Gaseous effluent monitors provide continuous indication of the radioactivity content in atmospheric emissions. Except for noble gases, these monitors also collect samples for later detailed analysis in the station Health Physics Laboratory. This paper presents the main equipment and the results of the gaseous effluents monitoring program in order to assess the impact of Cernavoda NPP operation and to predict the future releases as function of radionuclides concentrations in CANDU systems, based on the identified trends.(author)

  1. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    International Nuclear Information System (INIS)

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  2. Adsorption of gaseous RuO4 by various sorbents. II

    International Nuclear Information System (INIS)

    Vujisic, L.; Nikolic, R.

    1983-01-01

    Sorption of gaseous RuO 4 on impregnated Alcoa Alumina H-151, impregnated charcoal, silica gel and HEPA filter was investigated. The results obtained on various sorbents are compared and discussed in connection with possibilities to use the chosen material in air cleaning systems

  3. Gaseous products generated by radiation degradation of N,N-diethylhydroxylamine aqueous solution

    International Nuclear Information System (INIS)

    Wang Jinhua; Wang Shengxiu; Bao Borong; Li Zhen; Li Chun; Zheng Weifang; Zhang Shengdong

    2008-01-01

    In this paper, gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied. The results show that by 10-1000 kGy irradiation of the solution in DEHA concentration of 0.1-0.5 mol·L -1 , the gaseous products were mainly hydrogen, methane, ethane and ethene. The volume fraction of hydrogen did not change much with different concentrations of DEHA. The volume fraction of methane and ethane decreased, but that of ethene increased, with increasing DEHA concentration. The volume fraction of hydrogen, methane and ethane increased with the dose. The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration. (authors)

  4. A general mixture theory. I. Mixtures of spherical molecules

    Science.gov (United States)

    Hamad, Esam Z.

    1996-08-01

    We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.

  5. Removal of Pb (II from Aqueous Solutions Using Mixtures of Bamboo Biochar and Calcium Sulphate, and Hydroxyapatite and Calcium Sulphate

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-01-01

    Full Text Available Sorption characteristics of Pb(II from aqueous solutions through a low-cost adsorbent mixture comprising of Bamboo biochar (BB and Calcium Sulphate (CS, and a more expensive mixture of Hydroxyapatite (HAP and Calcium Sulphate (CS, were investigated. The effects of equilibrium contact time, and adsorbate concentration conducted in batch experiments were studied. Adsorption equilibrium was established in 40 (min. The adsorption mechanism of Pb(II from these two adsorbent mixtures was carried out through a kinetic rate order. A pseudo second-order kinetic model was applied for the adsorption processes. The model yielded good correlation (R2 >0.999 of the experimental data. Adsorption of Pb(II using (BB&CS and (HAP&CS correlated well (R2 >0.99 with both the Langmuir and Freundlich isotherm equations under the concentration range studied. Hence, the effectiveness of an inexpensive natural material (BB&CS mixture in Pb(II removal is established, and is promising for use in other heavy metal adsorptions.

  6. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, M. [Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Technical University of Lodz, 90-924 Lodz, Wolczanska 213 (Poland)

    2010-10-15

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel-like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, ''gasoline'' fraction of the liquid hydrocarbons mixture (C{sub 4}-C{sub 10}) made over 50% of the liquid product. It may by used for fuel production or electricity generation. (author)

  7. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    International Nuclear Information System (INIS)

    Stelmachowski, M.

    2010-01-01

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 deg. C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, 'gasoline' fraction of the liquid hydrocarbons mixture (C 4 -C 10 ) made over 50% of the liquid product. It may by used for fuel production or electricity generation.

  8. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Three processes are discussed for separating tritium from gaseous and aqueous effluent systems: separation in the gas phase using Pd-25 wt percent Ag alloy diffusion membranes; electrolytic separation in the aqueous phase using ''bipolar'' electrodes; and the countercurrent exchange of tritium-containing hydrogen gas with water on catalytic surfaces combined with separation by direct electrolysis

  9. EVALUATION OF GASEOUS EMISSIONS FROM THE RĂDĂUŢI MUNICIPAL LANDFILL

    Directory of Open Access Journals (Sweden)

    Marinela PETRESCU

    2011-03-01

    Full Text Available Our study presents the evaluation of gaseous emissions generated by a non-compliant municipal landfill after its closure (municipal landfill Rădăuţi. To this end we measured and interpreted the characteristics of gaseous emissions captured in two monitoring boreholes made on the deposit surface (F1 and F2. The main components of landfill gas are CH4 and CO2, and in lower proportions O2, N2 and nitrogen oxides, and also traces of H2S and CO. Their concentrations were measured using a portable gas analyzer GA type 2000Plus, which recorded simultaneously temperature and pressure data of the landfill gas. The high concentration of about 60% CH4 and approximately 39% CO2 in the landfill gas captured in two different areas (F1 and F2 shows the polluting character of those emissions with a direct impact on the environmental component "air", due to the greenhouse effect produced by those two components. Moreover, the characteristics of the measured gaseous emissions (a CH4 content above 50%, a 2-3 l / h flow rate indicates they have significant energy potential and represent a possible source of renewable energy.

  10. A turbulence model in mixtures. First part: Statistical description of mixture

    International Nuclear Information System (INIS)

    Besnard, D.

    1987-03-01

    Classical theory of mixtures gives a model for molecular mixtures. This kind of model is based on a small gradient approximation for concentration, temperature, and pression. We present here a mixture model, allowing for large gradients in the flow. We also show that, with a local balance assumption between material diffusion and flow gradients evolution, we obtain a model similar to those mentioned above [fr

  11. Neutron and thermal dynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    van Dam, H.; Kuijper, J.C.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1989-01-01

    In this paper neutron kinetics and thermal dynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focused on the properties of the fuel gas, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  12. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  13. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants

    NARCIS (Netherlands)

    Dobben, van H.F.; Wamelink, G.W.W.; Braak, ter C.J.F.

    2001-01-01

    A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to

  14. Chemistry of gaseous lower-valent actinide halides. Technical progress report

    International Nuclear Information System (INIS)

    Hildenbrand, D.L.

    1984-01-01

    Objective is to provide thermochemical data for key actinide halide and oxyhalide systems. Progress is reported on bond dissociation energies of gaseous ThCl 4 , ThCl 3 , ThCl 2 , and ThCl; bond dissociation energies of ruthenium fluorides; and mass spectroscopy of UF 6

  15. Liquid and Gaseous Waste Operations Department annual operating report, CY 1995

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1996-03-01

    This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support

  16. Isotope separation by selective dissociation of trifluoromethane with an infrared laser

    International Nuclear Information System (INIS)

    Hartford, A.J.

    1982-01-01

    A process for obtaining compounds enriched in a desired isotope of an element selected from hydrogen and carbon comprises exposing subatmospheric pressure gaseous trifluoromethane containing said desired isotope and one or more other isotopes of the same element to infrared laser radiation of a predetermined frequency, which selectively dissociates trifluoromethane molecules containing said desired isotope and separating the resulting dissociation product enriched in said desired isotope from the remainder of the gas. The term 'trifluoromethane' (TFM) refers to a mixture of CF 3 H and CF 3 D, the latter constituting about 0.015 percent of the total. TFM is irradiated with a CO 2 laser at an appropriate infrared wavelength

  17. IAEA decadal activities in the field of radioactive gaseous waste management

    International Nuclear Information System (INIS)

    Plumb, G.R.

    1991-01-01

    The IAEA has long recognized that gaseous waste management is vital in the design and safe operation of all nuclear facilities such that in the decade of the 1980's the IAEA program covered the important aspects of the entire field. The activities reviewed in this paper were marked at the outset by a comprehensive international symposium on the subject in February 1980 organized by the IAEA jointly with the Nuclear Energy Agency of the OECD when the detailed state-of-the-art was established in 43 papers. In the interim, experts have been convened in IAEA sponsored meetings to result in sixteen technical documents which included summaries of three substantial Co-ordinated Research Programs. Early IAEA activities paid particular attention to management of gas radionuclides which from a matured nuclear industry, could be judged to build-up to long-term sources of irradiation for regional and global populations. Mid-term ongoing activities in handling and retention of gaseous radionuclides arising from abnormal operations in nuclear power plants were given much emphasis following the Chernobyl accident. In the latter years the IAEA activities included detailed examinations of the design and operation of gas cleaning systems for the range of nuclear facilities. Technical reports on gaseous waste management were issued relating to high-level liquid waste conditioning plants (including control of semi-volatiles), nuclear power plants, low- and intermediate-level radioactive materials handling facilities and radioactive waste incinerators

  18. Thermodynamic properties of cesium in the gaseous phase

    International Nuclear Information System (INIS)

    Vargaftik, N.B.; Voljak, L.D.; Stepanov, V.G.

    1985-01-01

    Tables of the thermodynamic properties of caesium in the gaseous phase are presented for a wide range of temperature and pressure. The thermodynamic properties include: enthalpy, entropy, specific heat, specific volume, sound velocity and compressibility factor. The values have been calculated from pressure-volume-temperature measurements by various authors. Experimental apparatus to determine these measurements is described, together with an outline of the method employed to process the results, and the error estimates. (U.K.)

  19. Demister apparatus for gaseous wastes carrying radioactive aerosols

    International Nuclear Information System (INIS)

    Meline, F.G.; Richter, R.J.

    1983-01-01

    In the nuclear industry, more precisely in the field of spent fuel reprocessing, the cleaning of the gaseous wastes, before evacuation, should be realized with a device designed in order to take full account of the constraints that are inherent in the radioactive media. The French Atomic Authority (CEA), in collaboration with the Societe Generale pour les Techniques Nouvelles, have studied and developed types of demister for the nuclear field having good cleaning properties

  20. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  1. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Aube, Michel, E-mail: 4aubem@videotron.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Laboratoire de Toxicologie, Institut national de sante publique du Quebec, 945 avenue Wolfe, Quebec, QC, Canada G1V 5B3 (Canada)

    2011-04-15

    Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cells and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100x10{sup 3} and 50x10{sup 3} dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10x10{sup 3} and 5x10{sup 3} dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p<0.05 at the 50x10{sup 3} dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, {beta}-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The

  2. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface

    Directory of Open Access Journals (Sweden)

    Dhan Prasad Gautam

    2016-06-01

    Full Text Available Abstract Background Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. Methods A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 % on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota’s summer-fall climatic condition. Air and manure sampling was conducted five times at a 20–30 day intervals. Results Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. Conclusions It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  3. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface.

    Science.gov (United States)

    Gautam, Dhan Prasad; Rahman, Shafiqur; Borhan, Md Saidul; Engel, Chanda

    2016-01-01

    Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA) and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 %) on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S) from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota's summer-fall climatic condition. Air and manure sampling was conducted five times at a 20-30 day intervals. Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  4. Direct measurement of gaseous activities by diffusion-in long proportional counter method

    International Nuclear Information System (INIS)

    Yoshida, M.; Yamamoto, T.; Wu, Y.; Aratani, T.; Uritani, A.; Mori, C.

    1993-01-01

    Direct measurement of gaseous activities by the diffusion-in long proportional counter method (DLPC method) was studied. The measuring time without end effect was estimated by observing the behavior of 37 Ar in the counter and was long enough to carry out the accurate activity measurement. The correction for wall effect was also examined on the basis of the measured and calculated correction factors. Among the tested gases of methane, P10 gas and propane, P10 gas was made clear to be a suitable counting gas for the DLPC method because of good diffusion properties and small wall effect. This method is quite effective for standardization of gaseous activities used for tracer experiments and calibration works of radioactive gas monitoring instruments. (orig.)

  5. Gaseous 83mKr generator for KATRIN

    Science.gov (United States)

    Sentkerestiová, J.; Dragoun, O.; Lebeda, O.; Ryšavý, M.; Sturm, M.; Vénos, D.

    2018-04-01

    Monoenergetic conversion electrons from the 83mKrKr isomeric state have been proven to be useful in the calibration of several tritium neutrino mass and dark matter experiments. In this paper the design and characteristics of the gaseous 83mKrKr generator, including the 83Rb/83mKrKr source behavior in tritium, for the KATRIN experiment are presented. Using Si(Li) and silicon drift detectors (SDD) detectors, the half-life of the 83mKrKr isomeric state was measured to be 1.8620 ± 0.0019 h.

  6. Transfer of gaseous iodine from atmosphere to rough rice, brown rice and polished rice

    International Nuclear Information System (INIS)

    Sumiya, Misako; Uchida, Shigeo; Muramatsu, Yasuyuki; Ohmomo, Yoichiro; Yamaguchi, Shuho; Obata, Hitoshi.

    1987-01-01

    Experiments were carried out in order to obtain information required for establishing transfer coefficients of gaseous iodine (I 2 ) to rough rice, brown rice and polished rice. The gaseous iodine deposited on young rice plants before the heading period was scarcely found in the rough rice harvested at the full ripe stage. The biological half life of iodine in hull, however, was much slower than that in leaves of 14 days. The translocation of iodine from leaves and stalks to rough rice was not clearly recognized. Therefore, it was deduced that iodine found in brown rice mainly should originate from that deposited on the hull. The distribution ratios of iodine between rough rice and brown rice, and between brown rice and polished rice were 100:4 and 100:30 on 100 grains basis, respectively. If average normalized deposition velocity (V d(m) ) or derived deposition velocity (V s ) are given, the transfer coefficients of gaseous iodine to rough rice (TF r ), brown rice (TF b ) and polished rice (TF p ) could be calculated. (author)

  7. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  8. Micropore structure stabilization in organosilica membranes by gaseous catalyst post-treatment

    NARCIS (Netherlands)

    Dral, A. Petra; van Eck, Ernst R.H.; Winnubst, Louis; ten Elshof, Johan E.

    2018-01-01

    A post-treatment involving repeated exposure to gaseous HCl alternated with heating is demonstrated to strongly accelerate the recently reported structural evolution in organically bridged silica networks. Films, powders and membranes derived from 1,2-bis(triethoxysilyl)ethane were exposed to

  9. Methods of separating short half-life radionuclides from a mixture of radionuclides

    Science.gov (United States)

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  10. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste.

    Science.gov (United States)

    Laryea-Goldsmith, René; Oakey, John; Simms, Nigel J

    2011-02-01

    Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  11. Dynamical behaviour of gaseous halo in a disk galaxy

    International Nuclear Information System (INIS)

    Ikeuchi, S.; Habe, A.

    1981-01-01

    Assuming that the gas in the halo of a disk galaxy is supplied from the disk as a hot gas, the authors have studied its dynamical and thermal behaviour by means of a time dependent, two-dimensional hydrodynamic code. They suppose the following boundary conditions at the disk. (i) The hot gas with the temperature Tsub(d) and the density nsub(d) is uniform at r=4-12 kpc in the disk and it is time independent. (ii) This hot gas rotates with the stellar disk in the same velocity. (iii) This hot gas can escape freely from the disk to the halo. These conditions will be verified if the filling factor of hot gas is so large as f=0.5-0.8, as proposed by McKee and Ostriker (1977). The gas motion in the halo has been studied for wider ranges of gas temperature and its density at the disk than previously studied. At the same time, the authors have clarified the observability of various types of gaseous haloes and discuss the roles of gaseous halo on the evolution of galaxies. (Auth.)

  12. The Effect of Gaseous Ozone in Infected Root Canal

    Science.gov (United States)

    Ajeti, Nova Nexhmije; Pustina-Krasniqi, Teuta; Apostolska, Sonja

    2018-01-01

    OBJECTIVES: During the treatment of chronic apical periodontitis and pulp necrosis the main role is to irrigate the root canal. AIM: The aim of this in vivo study was to irrigate with 0.9% NaCl (Natrium Chloride), 2.5 % NaOCl (Sodium Hypochlorite Solution, Sigma Aldrich - Germany) and 2% CHX (Chlorhexidine Digluconate Solution, Sigma Aldrich - Spain) combined with Gaseous Ozone (Prozone WH, Austria). MATERIAL AND METHODS: This study was realised in the University Dentistry Clinical Centre of Kosovo (UDCCK), respectively in the Department of Endodontic and Dental Pathology, Dental Branch, Faculty of Medicine, Prishtina, Kosovo. The 40 subjects involved in this study belonged to both genders, in age between 15 -65 years. The sample selection was randomised. The retroalveolar radiography for each patient was taken in the suspected tooth. As a therapeutic plan the authors decided to disinfect the root canal with the irrigants, as follows: 2.5 % NaOCl, 2 % CHX and gaseous ozone. RESULTS: The statistical analyses were based on Kruskal - Vallis test, X - test, DF = 3, r irrigants 0.9%, 2.5 % NaOCl and 2% CHX, it was concluded that the number of colonies of aerobic and anaerobic bacteria was reduced. PMID:29531611

  13. Solid-state photoelectrochemical H2 generation with gaseous reactants

    International Nuclear Information System (INIS)

    Iwu, Kingsley O.; Galeckas, Augustinas; Kuznetsov, Andrej Yu.; Norby, Truls

    2013-01-01

    Photocurrent and H 2 production were demonstrated in an all solid-state photoelectrochemical cell employing gaseous methanol and water vapour at the photoanode. Open circuit photovoltage of around −0.4 V and short circuit photocurrent of up to 250 μA/cm 2 were obtained. At positive bias, photocurrent generation was limited by the irradiance, i.e., the amount of photogenerated charge carriers at the anode. Time constants and impedance spectra showed an electrochemical capacitance of the cell of about 15 μF/cm 2 in the dark, which increased with increasing irradiance. With only water vapour at the anode, the short circuit photocurrent was about 6% of the value with gaseous methanol and water vapour. The photoanode and electrocatalyst on carbon paper support were affixed to the proton conducting membrane using Nafion ® as adhesive, an approach that yielded photocurrents up to 15 times better than that of a cell assembled by hot-pressing, in spite of the overall cell resistance of the latter being up to five times less than that of the former. This is attributed, at least partially, to reactants being more readily available at the photoanode of the better performing cell

  14. Gaseous oxygen and hydrogen embrittlements of the uranium-10 weight % molybdenum alloy

    International Nuclear Information System (INIS)

    Corcos, Jean.

    1979-07-01

    The stress corrosion of an Uranium-10 weight % Molybdenum alloy in high purity gaseous oxygen and hydrogen was studied. Tests were performed with fracture-mechanic specimens, fatigue precracked and carried out in tension with a constant sustained load. The experimental procedure enabled to determine the S.C. morphology during the test, and its kinetics. Tests in gaseous oxygen were performed with p02=0.15 MPa from 0 0 C to 100 0 C, and at 20 0 C for p02=0.15, 0.15.10 -2 and 0.15.10 -4 MPa. Two kinetic laws are proposed. Cracking is transgranular with a quasi-clivage type, and occurs on the (1 1 1) planes of the matrix. Tests in gaseous hydrogen were performed with pH2=0.15 MPa from - 50 0 C to + 135 0 C; for all the tests, even those under no exterior load, there is a failure by S.C. and macroscopic hydruration occurs. We propose a kinetic law, which may display that the hydruration phenomenon rules the S.C. propagation. We have performed the identification of the hydride, as well as the study of the precipitation. These phenomena don't occur with pH2=0.15.10 -2 MPa. The embrittlement is thought to be due to a formation-failure cycle of an hydride precipitate at the crack tip [fr

  15. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment.

    Science.gov (United States)

    Davies, A; Pottage, T; Bennett, A; Walker, J

    2011-03-01

    The recent data for hospital-acquired infections suggest that infection rates for meticillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile are beginning to decrease. However, while there is still pressure to maintain this trend, the resistance of C. difficile spores to standard detergents continues to present a problem for many UK hospitals trying to prevent its spread or control outbreaks. Alternative disinfection technologies such as gaseous decontamination are currently being marketed to the healthcare sector as an alternative/supplement to manual disinfection, and have been shown to be effective in reducing environmental contamination. When used correctly, they offer a complementary technology to manual cleaning that increases the probability of an effective reduction in viability and provides a comparatively uniform distribution of disinfectant. Three gaseous decontamination technologies are examined for their suitability in reducing environmental contamination with C. difficile: gaseous hydrogen peroxide, chlorine dioxide and ozone. Air decontamination and UV-based technologies are also briefly described. We conclude that while there is a role to play for these new technologies in the decontamination of ward surfaces contaminated with C. difficile, the requirement for both a preclean before use and the limited 'in vivo' evidence means that extensive field trials are necessary to determine their cost-effectiveness in a healthcare setting. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Natural sources of gaseous pollutants in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P

    1958-01-01

    Various gaseous pollutants including ozone, nitrous oxide, nitric oxide, nitrogen dioxide, methane, hydrogen, formaldehyde, ammonia, hydrogen sulfide, mercaptans, chlorine compounds and free radicals can be formed by natural processes such as ultraviolet photochemical processes in the upper atmosphere and microbiological processes. The modes of formation and destruction of these gases, especially of their concentrations in the atmosphere, and the various reactions in which these gases can participate with each other are discussed in detail. 114 references.

  17. Fundamental laws of separation by the gaseous diffusion process; Lois de separation elementaires en diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Bouligand, G.M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Using the Knudsen's law for the flow of each component of a gaseous mixture through a porous membrane, we derive the overall separation laws and the separation power for one stage of diffusion: Various types of stages differing by the geometrical configuration and the flow nature are considered. For the sake of simplicity physical phenomena causing a loss of separation efficiency are neglected. Computation show the advantages of counter-current type stage with one entering and two leaving flows. A more refined theory of separation can be derived with the same basis of this work. (author) [French] A partir de la loi de Knudsen exprimant les debits elementaires des constituants d'un melange gazeux a travers une membrane poreuse on determine les lois et la puissance de separation de differents modeles de diffuseurs definie par leurs configurations et la nature des ecoulements gazeux. Four simplifier il n'a pas ete tenu compte des divers phenomenes physiques inherents a la diffusion et qui reduisent generalement le facteur de separation. Ces calculs font prevoir les avantages des diffuseurs du type contrecourant a trois ouvertures et peuvent servir de guide dans une theorie plus complete de la separation. (auteur)

  18. Composition comprising lignin and antidi arrheal component

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to a composition comprising lignin and at least one compound selected from the group consisting of bromelain, papain, tannin, carvacrol, thymol, alliin, allicin, fenugreek seed, egg, poppy, poppy seeds, humic acid, roots, kaolin, catechu, cellulase, flavonoid...

  19. Mixture for plugging absorption zones

    Energy Technology Data Exchange (ETDEWEB)

    Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh

    1981-01-17

    A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.

  20. EFFICIENCY OF PRE-TREATMENT OF LEACHATE FROM MUNICIPAL WASTE DUMPS BY GASEOUS DESORPTION (STRIPPING OF AMMONIA

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2017-05-01

    Full Text Available The paper studies the efficiency of pre-treatment of landfill leachate by gaseous desorption of ammonia. The research was done on a municipal non-hazardous waste dump in Krosno (Sub-Carpathian Province, Poland. The pretreatment provided a favorable BOD5/COD ratio in leachate. Also concentrations of 16 PAHs and heavy metals did not exceed the legal limits. However, gaseous desorption of ammonia was insufficiently efficient in recovering ammonia nitrogen from leachate.