WorldWideScience

Sample records for gaseous hydrogen effects

  1. Rate-limiting effects of gaseous hydrogen on zircaloy oxidation

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1981-01-01

    Zircaloy-4 oxidation rates have been measured in hydrogen-steam mixtures at 1375 and 1500 0 C for various hydrogen-to-total pressure ratios. For ratios of greater than or equal to 0.5, the oxide-layer growth rate and specimen weight gain decrease as the hydrogen content in the gas mixture increases, which implies a similar dependence for the reaction-heat-generation rate. Implications of the results for core heatup and damage have been evaluated, assuming a scenario of significant hydrogen fraction in the boundary layer of fuel rod and coolant for the upper region of the Three Mile Island-2 Reactor (TMI-2) core during the uncovery period of 100 to 174 min after the turbine trip. Analysis shows that the slower oxidation and core-heatup rates in the hydrogen-steam mixture imply significantly lower peak cladding temperature and less UO 2 liquefaction for the TMI-2 fuel rods than indicated from the previous calculations

  2. The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method

    Science.gov (United States)

    Zhao, Tiejun; Li, Xiaojie; Lee, John H. S.; Yan, Honghao

    2018-02-01

    Using ferrocene, H2 and O2, Carbon nanomaterials were prepared with gaseous detonation (deflagration) method. The effects of H2 on the phase and morphology of carbon nanomaterials were studied by various proportions of H2 in the reaction. The prepared samples were characterized by x-ray diffractometer, transmission electron microscope and Raman spectrometer. The results show that hydrogen proportion has a great influence on the phase and morphology of carbon nanomaterials. The high hydrogen proportion leads to much unreacted hydrogen, which could protect the iron atom from oxidation of carbon and dilute the reactants contributing to uniform particle size. In addition, the graphitization degree of multi-walled carbon nanotubes, observed in samples with high H2 proportion, is high enough to see the lattice fringes, but the degree of graphitization of whole sample is lower than which fabricated with low H2 proportion, and it may result from the low energy generation.

  3. Formation of gaseous hydrogen induced by the effect of gamma rays on clayey materials

    International Nuclear Information System (INIS)

    Fattahi, M.; Grambow, B.; Houee-Levin, Ch.

    1999-01-01

    The irradiation (mainly gamma) of compact clayey materials, like those that would be used as engineered safety barriers for vitrified waste packages, can lead to hydrogen formation because of their water content. The radiolytic formation of gaseous hydrogen has been studied and the radiolytic efficiency of H 2 production with respect to the total initial mass of water in the clay is about 0.45 x 10 -7 mol.J -1 . This production is comparable to the one obtained at the primary stage of pure water radiolysis. (J.S.)

  4. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  5. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    OpenAIRE

    Dugheri, Stefano; Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Mucci, Nicola; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13?mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impre...

  6. Beneficial effects of gaseous hydrogen sulfide in hepatic ischemia/reperfusion injury

    NARCIS (Netherlands)

    Bos, Eelke M.; Snijder, Pauline M.; Jekel, Henrike; Weij, Michel; Leemans, Jaklien C.; van Dijk, Marcory C. F.; Hillebrands, Jan-Luuk; Lisman, Ton; van Goor, Harry; Leuvenink, Henri G. D.

    2012-01-01

    Hydrogen sulfide (H2S) can induce a reversible hypometabolic state, which could protect against hypoxia. In this study we investigated whether H2S could protect livers from ischemia/reperfusion injury (IRI). Male C57BL/6 mice were subjected to partial hepatic IRI for 60 min. Animals received 0 (IRI)

  7. Beneficial effects of gaseous hydrogen sulfide in hepatic ischemia/reperfusion injury

    NARCIS (Netherlands)

    Bos, Eelke M.; Snijder, Pauline M.; Jekel, Henrike; Weij, Michel; Leemans, Jaklien C.; van Dijk, Marcory C. F.; Hillebrands, Jan-Luuk; Lisman, Ton; van Goor, Harry; Leuvenink, Henri G. D.

    Hydrogen sulfide (H2S) can induce a reversible hypometabolic state, which could protect against hypoxia. In this study we investigated whether H2S could protect livers from ischemia/reperfusion injury (IRI). Male C57BL/6 mice were subjected to partial hepatic IRI for 60 min. Animals received 0 (IRI)

  8. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    Science.gov (United States)

    Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835

  9. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride.

    Science.gov (United States)

    Dugheri, Stefano; Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Mucci, Nicola; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2  μ g/filter), and linearity (2.0-4000  μ g/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation.

  10. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    Directory of Open Access Journals (Sweden)

    Stefano Dugheri

    2016-01-01

    Full Text Available Hydrogen fluoride (HF is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC/mass spectrometry (MS. After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90. In addition, precision (relative standard deviation for n=10, 4.3%, sensitivity (0.2 μg/filter, and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913 were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation.

  11. Effect of nanoparticle (Pd, Pd/Pt, Ni deposition on high temperature hydrogenation of Ti-V alloys in gaseous flow containing CO

    Directory of Open Access Journals (Sweden)

    S. Suwarno

    2017-02-01

    Full Text Available The hydrogenation properties of Ti-V hydrides coated with nanoparticles have been studied in gaseous mixtures of argon and hydrogen with and without additions of 1% CO. Nanoparticles of Pd, Ni, and co-deposited Pd/Pt with particle sizes of ~30–60 nm were formed by electroless deposition on the hydride surfaces. The alloy resistance to CO could be significantly improved by particle deposition. Large amounts of hydrogen were absorbed in a CO-containing gas when Ni and Pd/Pt deposition had been applied, while pure Pd deposition had no positive effect. Ni was found to have a stronger effect than those of Pd/Pt and Pd, possibly because of the size effect of Ni nanoparticles.

  12. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    Science.gov (United States)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  13. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh [Primary Contact; Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra

    2011-03-28

    This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255°C; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (Go = -98.7 kJ/mol) is more negative than that of LiH (Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly

  14. Process and composition for drying of gaseous hydrogen halides

    Science.gov (United States)

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  15. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  16. Structural sensitivity of cyclic crack resistance of rotor steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Kozak, L.Yu.

    1984-01-01

    Comparative evaluation of cyclic crack resistance of hardened rotor set steel 35KhN3MFA in different cstructural states during tesis in agea geseous hydrogen, in the air and in vacuum, has been mde made. It is shown, that structural sensitivity of near-threshold crack resistance of the studied rotor steel in gaseous hydrogen is to a high extent determined by the closing and morphology of fatigue crack. The decrease in crack closing (CC) observed during tests in hydrogen in low-strenght and crack branching in high-strength steels results in the fact, that in contrast to well-known notions on a higher sensitivity to hydrogen embrittlement of high-strenght alloys the negative effect of hydrogen on the near-threshold cyclic crack resistance is manifested only in steel in low-strenght state. The considered regularities in crack growth in low-alloyed steel under the effect of gaseous hydrogen are just only for high-frequency loading. In all probability in the case of fatigue crack growth (GCG) at low frequencies of loading not only the medium activity, but also the role o, closing and crack geometty in the kinetics of fatigue fracture, the clarifying of which requires further studieds, will change

  17. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    Science.gov (United States)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  18. Exergoeconomic optimization of coaxial tube evaporators for cooling of high pressure gaseous hydrogen during vehicle fuelling

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Rothuizen, Erasmus Damgaard; Markussen, Wiebke Brix

    2014-01-01

    Gaseous hydrogen as an automotive fuel is reaching the point of commercial introduction. Development of hydrogen fuelling stations considering an acceptable fuelling time by cooling the hydrogen to -40 C has started. This paper presents a design study of coaxial tube ammonia evaporators for three...

  19. Performance evaluation of high-strength steel pipelines for high-pressure gaseous hydrogen transportation.

    Science.gov (United States)

    2009-01-01

    Pipeline steels suffer significant degradation of their mechanical properties in high-pressure : gaseous hydrogen, including their fatigue cracking resistances to cyclic loading. The current : project work was conducted to produce fatigue crack growt...

  20. Process for exchanging tritium between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1981-01-01

    An improved method of exchanging and concentrating the radioactive isotope of hydrogen from water or hydrogen gas is described. This heavy water enrichment system involves a low pressure, dual temperature process. (U.K.)

  1. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism

    OpenAIRE

    Snijder, Pauline M.; de Boer, Rudolf A.; Bos, Eelke M.; van den Born, Joost C.; Ruifrok, Willem-Peter T.; Vreeswijk-Baudoin, Inge; van Dijk, Marcory C. R. F.; Hillebrands, Jan-Luuk; Leuvenink, Henri G. D.; van Goor, Harry

    2013-01-01

    BACKGROUND: Ischemia-reperfusion injury (IRI) is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S) is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6...

  2. Stress corrosion cracking of an uranium-6 weight per cent niobium in gaseous oxygen, nitrogen and hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.

    1989-01-01

    Stress corrosion cracking (SCC) of uranium-6 weight per cent niobium alloy is studied in gaseous oxygen at room temperature (for pressures between 4.10 -7 and 0.15MPa) and 100 0 C (pressure of 0.15 MPa) and in gaseous hydrogen (for pressures between 10 -6 and 0.15 MPa). SCC map and cracking kinetics are determined as fonctions of stress-intensity factor, pressure and temperature. For oxygen, temperature seems to have no effect on the alloy embrittlement within the range of this study but the pressure influence is more complex. At room temperature, hydrogen pressure less than 0.15 MPa has no influence on the cracking kinetics. For a pressure of 0.15 MPa, fracture occurs by hydriding reaction. Complementary analyses on fracture surfaces lead to propose different mechanics responsible for cracking kinetics in these environments [fr

  3. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism

    NARCIS (Netherlands)

    Snijder, Pauline M.; de Boer, Rudolf A.; Bos, Eelke M.; van den Born, Joost C.; Ruifrok, Willem-Peter T.; Vreeswijk-Baudoin, Inge; van Dijk, Marcory C. R. F.; Hillebrands, Jan-Luuk; Leuvenink, Henri G. D.; van Goor, Harry

    2013-01-01

    Background: Ischemia-reperfusion injury (IRI) is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S) is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant

  5. Precipitation of metal sulphides using gaseous hydrogen sulphide : mathematical modelling

    NARCIS (Netherlands)

    Tarazi, Mousa Al-; Heesink, A. Bert M.; Versteeg, Geert F.

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulphides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  6. Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulffides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  7. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    Science.gov (United States)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  8. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Science.gov (United States)

    Snijder, Pauline M; de Boer, Rudolf A; Bos, Eelke M; van den Born, Joost C; Ruifrok, Willem-Peter T; Vreeswijk-Baudoin, Inge; van Dijk, Marcory C R F; Hillebrands, Jan-Luuk; Leuvenink, Henri G D; van Goor, Harry

    2013-01-01

    Ischemia-reperfusion injury (IRI) is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S) is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (pcardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac transplantation, H2S treatment might lead to novel therapeutical modalities.

  9. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Directory of Open Access Journals (Sweden)

    Pauline M Snijder

    Full Text Available BACKGROUND: Ischemia-reperfusion injury (IRI is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. RESULTS: Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05. Seven days post-reperfusion, both 10 ppm (p<0.01 and 100 ppm (p<0.05 H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05 and 60% (p<0.001, respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05 and 67% (p<0.01 and ANP by 84% and 63% (p<0.05, respectively. CONCLUSIONS: Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac

  10. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    Science.gov (United States)

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  11. Gaseous carburising of self-passivating Fe–Cr-Ni alloys in acetylene-hydrogen mixtures

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2011-01-01

    temperatures, carbon stabilised expanded austenite develops, which has high hardness, while retaining the corrosion performance of the untreated alloy; for relatively high temperatures, Cr based carbides develop, and eventually, the material deteriorates by metal dusting corrosion.......Gaseous carburising of self-passivating Fe–Cr–Ni alloys in acetylene–hydrogen was investigated for temperatures up to 823 K. Acetylene–hydrogen gas mixtures allow both the activation of the surface and the subsequent carburising at a high and adjustable carburising potential. For relatively low...

  12. Rugged, Portable, Real-Time Optical Gaseous Analyzer for Hydrogen Fluoride

    Science.gov (United States)

    Pilgrim, Jeffrey; Gonzales, Paula

    2012-01-01

    Hydrogen fluoride (HF) is a primary evolved combustion product of fluorinated and perfluorinated hydrocarbons. HF is produced during combustion by the presence of impurities and hydrogen- containing polymers including polyimides. This effect is especially dangerous in closed occupied volumes like spacecraft and submarines. In these systems, combinations of perfluorinated hydrocarbons and polyimides are used for insulating wiring. HF is both highly toxic and short-lived in closed environments due to its reactivity. The high reactivity also makes HF sampling problematic. An infrared optical sensor can detect promptly evolving HF with minimal sampling requirements, while providing both high sensitivity and high specificity. A rugged optical path length enhancement architecture enables both high HF sensitivity and rapid environmental sampling with minimal gaseous contact with the low-reactivity sensor surfaces. The inert optical sample cell, combined with infrared semiconductor lasers, is joined with an analog and digital electronic control architecture that allows for ruggedness and compactness. The combination provides both portability and battery operation on a simple camcorder battery for up to eight hours. Optical detection of gaseous HF is confounded by the need for rapid sampling with minimal contact between the sensor and the environmental sample. A sensor is required that must simultaneously provide the required sub-parts-permillion detection limits, but with the high specificity and selectivity expected of optical absorption techniques. It should also be rugged and compact for compatibility with operation onboard spacecraft and submarines. A new optical cell has been developed for which environmental sampling is accomplished by simply traversing the few mm-thick cell walls into an open volume where the measurement is made. A small, low-power fan or vacuum pump may be used to push or pull the gaseous sample into the sample volume for a response time of a few

  13. Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology

    Science.gov (United States)

    Bjorklund, Roy A.

    1983-01-01

    An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.

  14. Light exotic atoms in liquid and gaseous hydrogen and deuterium. Atom anti pp, theory and experiment

    International Nuclear Information System (INIS)

    Markushin, V.E.

    1980-01-01

    Considered are the de-eXcitation, absorption and Stark mixing processes in light exotic atoms formed in liquid and gaseous hydrogen (deuteriUm) and presented is the new method of the cascade calculations. Atom anti pp is studied in detail, calculated are: the populations of atomic levels, the absorption probabilities, and the X-rays yields. The present-day experimental data are discussed and it is concluded that all of them (but one result), can be easily reconciled with each other and with the theory

  15. Purification of hydrogen under a free or combined form in a gaseous mixture, by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron Charles, M.

    1988-03-01

    Within the framework of the european fusion program, we are dealing with the purification of hydrogen (tritium) under a free or combined form, from a H 2 , N 2 , NH 3 , CH 4 , O 2 , gaseous mixture. The process consists in cracking the hydrogenated molecules and absorbing the impurities by chemical reactions with uranium, without holding back hydrogen. In the temperature range: 950 K [fr

  16. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    Science.gov (United States)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  17. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    Science.gov (United States)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  18. Exergoeconomic optimization of coaxial tube evaporators for cooling of high pressure gaseous hydrogen during vehicle fuelling

    International Nuclear Information System (INIS)

    Jensen, Jonas K.; Rothuizen, Erasmus D.; Markussen, Wiebke B.

    2014-01-01

    Highlights: • Three concepts of cooling hydrogen were identified. • A numerical heat transfer model of a coaxial-tube evaporator was built. • The cost of exergy destruction and capital investment cost was evaluated for a range of feasible solution. • The exergoeconomic optimum design for all three concepts was identified. • Cooling with a two-stage evaporator reduces total cost 45% compared to a one-stage evaporator. - Abstract: Gaseous hydrogen as an automotive fuel is reaching the point of commercial introduction. Development of hydrogen fuelling stations considering an acceptable fuelling time by cooling the hydrogen to −40 °C has started. This paper presents a design study of coaxial tube ammonia evaporators for three different concepts of hydrogen cooling, one one-stage and two two-stage processes. An exergoeconomic optimization is imposed to all three concepts to minimize the total cost. A numerical heat transfer model is developed in Engineer Equation Solver, using heat transfer and pressure drop correlations from the open literature. With this model the optimal choice of tube sizes and circuit numbers are found for all three concepts. The results show that cooling with a two-stage evaporator after the pressure reduction valve yields the lowest total cost, 45% lower than the highest, which is with a one-stage evaporator. The main contribution to the total cost was the cost associated with exergy destruction, the capital investment cost contributed with 5–14%. The main contribution to the exergy destruction was found to be thermally driven. The pressure driven exergy destruction accounted for 3–9%

  19. Gaseous hydrogen embrittlement of an API X80 ferrito-pearlitic steel; Fragilisation par l'hydrogene gazeux d'un acier ferrito-perlitique de grade API X80

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.

    2009-11-15

    This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)

  20. Water containing deuterium electrolysis to obtain gaseous hydrogen isotope in a high state of purity

    International Nuclear Information System (INIS)

    Bellanger, Gilbert

    1992-01-01

    In this paper, the basic concept is to prepare hydrogen in a high state of purity by electrolysing water using a palladium cathode. During electrolysis, hydrogen is at first adsorbed at the palladium surface, and next it diffuses through it till opposite face of its entry where it is desorbed; thus permitting to regain it in a very pure state for storage. The method can be used from water containing deuterium. To improve hydrogen adsorption, surface effect of palladium must be studied. It was found that heat treatment of palladium improved the hydrogen permeation flux. The diffusivity of hydrogen is controlled by Fick and Sieverts equations in which temperature has a significant influence on permeation rates. Anyway, hydrogen desorption does not cause any difficulty. In a second part, we have studied the isotopic separation factor using water containing deuterium. We remarked in fact that it depends on current density, overpotential, diffusivity of hydrogen and deuterium and isotopic composition of electrolyte as expected. In the last part, we realized an original electrolysis model in a glove-box in which are taken into account the results given before and also the technology components employed in processes involving the use of tritium. (author) [fr

  1. Determination and analysis of uptake of gaseous hydrogen peroxide by red spruce seedlings, determined by CSTR-type chamber experiments

    International Nuclear Information System (INIS)

    Claiborn, C.S.; Aneja, V.P.; Carbonell, R.G.

    1991-01-01

    In order to better understand the pathways for damage, the fate of gaseous hydrogen peroxide in red spruce needles was examined. The uptake of gaseous hydrogen peroxide by red spruce trees was determined from controlled exposure chamber experiments in which the chamber behaved as a Continuous Stirred Tank Reactor (CSTR). The results from these experiments were analyzed using a detailed transport model developed from fundamental principles, in order to determine the fate of hydrogen peroxide in the needles and characterize the exposure. The chamber was specially designed to accommodate highly reactive gases. All inner surfaces were Teflon-coated to minimize wall losses. Fluxes of hydrogen peroxide, carbon dioxide, and water vapor were determined. Both daytime and nighttime conditions were examined. Although other investigators have reported that the flux of other, less water-soluble pollutants to red spruce decreases at night when the stomata closes, the hydrogen peroxide flux did not exhibit this behavior. The results of these studies suggest that, at the concentrations observed in the atmosphere, hydrogen peroxide does not reach the inner, mesophyll tissues, but is lost in water condensing in the cuticular wax residing in the stomatal antechamber, above the stomata. The implications of the condensation in the stomatal antechamber and subsequent reactions occurring in this water for forest damage are discussed

  2. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualification of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed

  3. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    International Nuclear Information System (INIS)

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used

  4. Numerical simulation of a Rotating Detonation with a realistic injector designed for separate supply of gaseous hydrogen and oxygen

    Science.gov (United States)

    Gaillard, T.; Davidenko, D.; Dupoirieux, F.

    2017-12-01

    This paper presents numerical results for a Rotating Detonation (RD) propagating in a layer of combustible mixture, created by injection of gaseous hydrogen and oxygen. 3D Large Eddy Simulations (LES) of a reacting flow have been performed in a domain of planar geometry in order to eliminate possible effects of the chamber curvature. First, the results for a 2D case with uniformly distributed premixed injection are presented to characterize the RD propagation under the most idealized conditions. Then a 3D concept is introduced for the injector composed of a series of injection elements. The RD propagation is simulated under the conditions of premixed and separate injection of the propellants at globally stoichiometric proportions. The case of separate propellant injection is the most realistic one. The computational results, represented by instantaneous and averaged flowfields, are analyzed to characterize the flowfield and the conditions of RD propagation. This analysis allows identifying the effects due to two major factors: the injection through discrete holes with respect to the distributed one and the separate propellant feeding with respect to the premixed one. Macroscopic quantities, such as the RD propagation speed, mean chamber pressure, average parameters of the mixture, and mixing efficiency are evaluated and compared in order to characterize the studied effects.

  5. The Gaseous Explosive Reaction : The Effect of Inert Gases

    Science.gov (United States)

    Stevens, F W

    1928-01-01

    Attention is called in this report to previous investigations of gaseous explosive reactions carried out under constant volume conditions, where the effect of inert gases on the thermodynamic equilibrium was determined. The advantage of constant pressure methods over those of constant volume as applied to studies of the gaseous explosive reaction is pointed out and the possibility of realizing for this purpose a constant pressure bomb mentioned. The application of constant pressure methods to the study of gaseous explosive reactions, made possible by the use of a constant pressure bomb, led to the discovery of an important kinetic relation connecting the rate of propagation of the zone of explosive reaction within the active gases, with the initial concentrations of those gases: s = K(sub 1)(A)(sup n1)(B)(sup n2)(C)(sup n3)------. By a method analogous to that followed in determining the effect of inert gases on the equilibrium constant K, the present paper records an attempt to determine their kinetic effect upon the expression given above.

  6. Technologies for hydrogen production based on direct contact of gaseous hydrocarbons and evaporated water with Molten Pb or Pb-Bi

    International Nuclear Information System (INIS)

    Gulevich, A. V.; Martynov, P. N.; Gulevsky, V. A.; Ulyanov, V. V.

    2007-01-01

    Results of studies intended for the substantiation of a new energy-saving and safe technology for low cost hydrogen production have been presented. The technology's basis is direct mixing of water and (or) gaseous hydrocarbons with heavy liquid metal coolants (HLMC) Pb or Pb-Bi. Preliminary research has been done on thermal dynamics and kinetics of the processes taking place in the interaction of HLMC with hydrocarbon-containing gases. It has been shown as a result that water and gaseous hydrocarbons interact with molten Pb and Pb-Bi relatively quietly in chemical aspect (without ignition and explosions). Therefore, (and taking into account the thermal physics, physical and chemical properties of HLMC such as low pressure of saturated vapor of Pb and Pb- Bi in enhanced temperatures, their good heat conductivity and heat capacity, low viscosity, etc.) heat transfer is possible from the molten metal to water and hydrocarbons without heat transferring partitions (that is, by direct contact of the working media). Devices to implement this method of heating liquid and gaseous media provide essential advantages: - A simple design; - None heat-transferring surfaces subject to corrosion, contamination, thermal fatigue, vibration impacts; - A high effectiveness owing to a larger heat exchanging surface per volume unit; - A small hydraulic resistance. The possibility and effectiveness of heating various gaseous and liquid media in their direct contact with molten Pb and Pb-Bi has been substantiated convincingly by experimental results at IPPE. Besides, the following processes of hydrogen-containing media conversion have been proved feasible thereby. 1. Water decomposition into hydrogen and oxygen. The process can develop at temperatures of 400-1000 degree C. It is necessary to provide constant removal of oxygen from the reaction zone and maintain a minimum possible content of chemically active oxygen in the melt. 2. Pyrolytic decomposition of hydrocarbons into carbon and

  7. Secondary hydrogen isotope effects

    International Nuclear Information System (INIS)

    Melander, L.; Sonders, U.

    1983-01-01

    Secondary isotope effects can be produced by isotopes of elements heavier than hydrogen, but secondary isotope effects of hydrogen are of greater interest, because they are larger and can be measured easier. Such aspects of the problem as solvolytic reactions (in the case of α-position and β-position in organic compounds), reactions of compounds with deuterium remoted from reaction centre, with deuterium in nonsaturated compounds, participation of neighbouring groups in the reaction, are considered. Besides, steric isotope effects and inductive isotope effects are considered

  8. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  9. Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films

    Directory of Open Access Journals (Sweden)

    Iis Sopyan

    2007-01-01

    Full Text Available The characteristics of the UV illumination-assisted degradation of gaseous acetaldehyde, hydrogen sulfide, and ammonia on highly active nanostructured-anatase and rutile films were investigated. It was found that the anatase film showed a higher photocatalytic activity than the counterpart did, however, the magnitude of difference in the photocatalytic activity of both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide. To elucidate the reasons for the observation, the adsorption characteristics and the kinetics of photocatalytic degradation of the three reactants on both films were analyzed. The adsorption analysis examined using a simple Langmuir isotherm, showed that adsorbability on both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide, which can be explained in terms of the decreasing electron-donor capacity. Acetaldehyde and ammonia adsorbed more strongly and with higher coverage on anatase film (1.2 and 5.6 molecules/nm2, respectively than on rutile (0.6 and 4.7 molecules/nm2, respectively. Conversely, hydrogen sulfide molecules adsorbed more strongly on rutile film (0.7 molecules/nm2 than on anatase (0.4 molecules/nm2. Exposure to UV light illumination brought about the photocatalytic oxidation of the three gases in contact with both TiO2 films, and the decrease in concentration were measured, and their kinetics are analyzed in terms of the Langmuir–Hinshelwood kinetic model. From the kinetic analysis, it was found that the anatase film showed the photocatalytic activities that were factors of ~8 and ~5 higher than the rutile film for the degradation of gaseous ammonia and acetaldehyde, respectively. However, the activity was only a factor of ~1.5 higher for the photodegradation of hydrogen sulfide. These observations are systematically explained by the charge separation efficiency and the adsorption characteristics of each catalyst as well as by the physical and electrochemical properties of each

  10. Total projectile electron loss cross sections of U^{28+} ions in collisions with gaseous targets ranging from hydrogen to krypton

    Directory of Open Access Journals (Sweden)

    G. Weber

    2015-03-01

    Full Text Available Beam lifetimes of stored U^{28+} ions with kinetic energies of 30 and 50  MeV/u, respectively, were measured in the experimental storage ring of the GSI accelerator facility. By using the internal gas target station of the experimental storage ring, it was possible to obtain total projectile electron loss cross sections for collisions with several gaseous targets ranging from hydrogen to krypton from the beam lifetime data. The resulting experimental cross sections are compared to predictions by two theoretical approaches, namely the CTMC method and a combination of the DEPOSIT code and the RICODE program.

  11. Effect of low-dose gaseous ozone on pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fontes Belchor

    2012-12-01

    Full Text Available Abstract Background Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 μg/mL ozone/oxygen (1:99 mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (105 bacteria/dish. The cultures were divided into 3 groups: 1- ozone-oxygen gaseous mixture containing 20 μg of O3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents.

  12. Hydrogen Liberation from Gaseous 2-Bora-1,3-diazacycloalkanium Cations

    NARCIS (Netherlands)

    Bendo, J.-A.; Martens, J.; Berden, G.; Oomens, J.; Morton, T.H.

    2017-01-01

    Evidence is presented for cyclization to yield 2-bora-1,3-diazacycloalkanium cations in the gas phase. While the neutral compounds in solution and solid phase are known to possess an acyclic structure (as revealed by X-ray diffraction), the gaseous cations (from which borohydride BH4– ion has been

  13. Hydrogen Liberation from Gaseous 2-Bora-1,3-diazacycloalkanium Cations.

    NARCIS (Netherlands)

    Bendo, J.A.; Martens, J.K.; Berden, G.; Oomens, J.; Morton, T.H.

    2017-01-01

    Evidence is presented for cyclization to yield 2-bora-1,3-diazacycloalkanium cations in the gas phase. While the neutral compounds in solution and solid phase are known to possess an acyclic structure (as revealed by X-ray diffraction), the gaseous cations (from which borohydride BH4(-) ion has been

  14. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  15. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface

    Directory of Open Access Journals (Sweden)

    Dhan Prasad Gautam

    2016-06-01

    Full Text Available Abstract Background Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. Methods A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 % on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota’s summer-fall climatic condition. Air and manure sampling was conducted five times at a 20–30 day intervals. Results Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. Conclusions It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  16. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface.

    Science.gov (United States)

    Gautam, Dhan Prasad; Rahman, Shafiqur; Borhan, Md Saidul; Engel, Chanda

    2016-01-01

    Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA) and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 %) on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S) from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota's summer-fall climatic condition. Air and manure sampling was conducted five times at a 20-30 day intervals. Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  17. Hydrogen effects in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1983-01-01

    The effects of hydrogen on stainless steels have been reviewed and are summarized in this paper. Discussion covers hydrogen solution and transport in stainless steels as well as the effects of hydrogen on deformation and fracture under various loading conditions. Damage is caused also by helium that arises from decay of the hydrogen isotope tritium. Austenitic, ferritic, martensite, and precipitation-hardenable stainless steels are included in the discussion. 200 references

  18. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  19. The exchange reaction between hydrogen and deuterium. II - Proposal for an heterogeneous initiation mechanism of gaseous phase reactions

    International Nuclear Information System (INIS)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, Henri

    1978-01-01

    Investigation of experimental data related to evolution period exhibited by H 2 -D 2 exchange process requires to take into account the variation against time of every atomic species -adsorbed or not- implied in the reaction mechanism. The formation of first chain carriers involves: - chemisorption of either gaseous reactant on the surface active centres (Σ), e.g.: Σ + 1/2 H 2 reversible ΣH; - consecutive generation of atomic species through hetero-homogeneous transfer between chemisorbed species (ΣH) and gaseous molecules: ΣH+H 2 →Σ+H 2 +H 0 , ΣH+D 2 →Σ+HD+D 0 . Therefore, it can be shown that the heterogeneous initiation process of a gas phase reaction identifies to a chain linear mechanism. Such an heterogeneous sequence conditions the further proceeding of the homogeneous chain reaction; both evolutions being kinematically connected. Rate constant of hydrogen adsorption on silica glass: ksub(a1) approximately 10 14 exp(-47/RT)Isup(0,5).molesup(-0,5).S -1 has been evaluated [fr

  20. The effect of selected gaseous air pollutants on woody plants

    Directory of Open Access Journals (Sweden)

    Baciak Michał

    2015-12-01

    Full Text Available The article discusses gaseous air pollutants that have the greatest impact on forest ecosystems. This group of pollutants ncludes sulfur dioxide (SO2, nitric oxides (NO and NO2 and ozone (O3.

  1. Mechanism of heat generation from loading gaseous hydrogen isotopes into palladium nanoparticles

    Science.gov (United States)

    Dmitriyeva, Olga

    I have carried out the study of hydrogen isotope reactions in the presence of palladium nanoparticles impregnated into oxide powder. My goal was to explain the mechanisms of heat generation in those systems as a result of exposure to deuterium gas. Some researchers have associated this heating with a nuclear reaction in the Pd lattice. While some earlier experiments showed a correlation between the generation of excess heat and helium production as possible evidence of a nuclear reaction, the results of that research have not been replicated by the other groups and the search for radiation was unsuccessful. Therefore, the unknown origin of the excess heat produced by these systems is of great interest. I synthesized different types of Pd and Pt-impregnated oxide samples similar to those used by other research groups. I used different characterization techniques to confirm that the fabrication method I used is capable of producing Pd nanoparticles on the surface of alumina support. I used a custom built gas-loading system to pressurize the material with hydrogen and deuterium gas while measuring heat output as a result of these pressurizations. My initial study confirmed the excess heat generation in the presence of deuterium. However, the in-situ radiometry and alpha-particle measurements did not show any abnormal increase in counts above the background level. In the absence of nuclear reaction products, I decided to look for a conventional chemical process that could account for the excess heat generation. It was earlier suggested that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. To prove the chemical nature of the observed phenomena I demonstrated that the reaction can be either exo- or endothermic based on the water isotope trapped in the material and the type of gas provided to the system. The H/D exchange was confirmed by RGA, NMR and FTIR analysis. I quantified the amount of energy that can be released due

  2. Portable and Disposable Paper-Based Fluorescent Sensor for In Situ Gaseous Hydrogen Sulfide Determination in Near Real-Time.

    Science.gov (United States)

    Petruci, João Flávio da Silveira; Cardoso, Arnaldo Alves

    2016-12-06

    Hydrogen sulfide is found in many environments including sewage systems, petroleum extraction platforms, kraft paper mills, and exhaled breath, but its determination at ppb levels remains a challenge within the analytical chemistry field. Off-line methods for analysis of gaseous reduced sulfur compounds can suffer from a variety of biases associated with high reactivity, sorptive losses, and atmospheric oxidative reactions. Here, we present a portable, online, and disposable gas sensor platform for the in situ determination of gaseous hydrogen sulfide, employing a 470 nm light emitting diode (LED) and a microfiber optic USB spectrometer. A sensing layer was created by impregnating 2.5 μL (0.285 nmol) of fluorescein mercury acetate (FMA) onto the surface of a micropaper analytical device with dimensions of 5 × 5 mm, which was then positioned in the optical detection system. The quantitative determination of H 2 S was based on the quenching of fluorescence intensity after direct selective reaction between the gas and FMA. This approach enabled linear calibration within the range 17-67 ppb of H 2 S, with a limit of detection of 3 ppb. The response time of the sensor was within 60 s, and the repeatability was 6.5% (RSD). The sensor was employed to monitor H 2 S released from a mini-scale wastewater treatment tank in a research laboratory. The appropriate integration of optoelectronic and mechanical devices, including LED, photodiode, pumps, and electronic boards, can be used to produce simple, fully automated portable sensors for the in situ determination of H 2 S in a variety of environments.

  3. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  4. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    Science.gov (United States)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  5. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  6. The effect of gaseous ammonia on cobalt perrhenate

    International Nuclear Information System (INIS)

    Maslov, L.P.; Men'shikov, O.D.; Borisov, V.V.; Sorokin, S.I.; Krutovertsev, S.A.; Kharkevich, S.I.; Ivanova, O.M.

    1994-01-01

    The influence of humid air ammonia mixture on crystal pentahydrate of cobalt(2) perrhenate has been studied by the methods of PES, IR spectroscopy thermal analysis and electrophysical measurements. It is shown that with an increase in ammonia content in gaseous phase cobalt perrhenate successively transforms into diaquodiammine-, tetrammine- and μ-dioxo-bis-(tetrammine) derivatives of cobalt. Reversibility of dioxocomplex formation and a correlation between the change in electrophysical properties of crystal sample and change in ammonia content in gaseous phase are pointed out. 16 refs.; 4 figs.; 1 tab

  7. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  8. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting.

    Science.gov (United States)

    Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue; Luo, Yuan

    2017-10-01

    This study investigated the effect of calcium superphosphate on compost maturity and gaseous emissions during pig manure composting with woody peat as the bulking agent. Two treatments were conducted with or without the addition of calcium superphosphate (10% dry weight of the composting mass), which were denoted as the control and superphosphate-amended treatment, respectively. Results show that the composting temperature of both treatments was higher than 50°C for more than 5days, which is typically required for pathogen destruction during manure composting. Compared to the control treatment, the superphosphate-amended treatment increased the emission of nitrogen oxide, but reduced the emission of methane, ammonia and hydrogen sulfide by approximately 35.5%, 37.9% and 65.5%, respectively. As a result, the total greenhouse gas (GHG) emission during manure composting was reduced by nearly 34.7% with the addition of calcium superphosphate. The addition of calcium superphosphate increased the content of humic acid (indicated by E 4 /E 6 ratio). Nevertheless, the superphosphate-amended treatment postponed the biological degradation of organic matter and produced the mature compost with a higher electrical conductivity in comparison with the control treatment. Copyright © 2017. Published by Elsevier Ltd.

  9. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  10. ASSESSMENT OF THE MOISTURE EFFECT ON GASEOUS PRODUCTS OF SELF-HEATING OF WOOD CHIPS

    Directory of Open Access Journals (Sweden)

    Hana VĚŽNÍKOVÁ

    2017-12-01

    Full Text Available Biofuels are stored in large quantities and may be susceptible to self-ignition. The possible methods of indication of temperature increase include the analysis of the gaseous products of heating where concentrations of certain gases may increase with increasing temperature. Gas release is also affected by the moisture of the material given that the moisture level changes surface accessibility for oxygen on the one side and serves as a catalyst of the oxidation reactions on the other. The present project analysed the effect of temperature and moisture on gaseous products of heating of wood chips, one of frequently used biofuels, with the aim to determine a suitable gaseous indicator of beginning self-ignition.

  11. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material.

    Science.gov (United States)

    Mulopo, Jean; Schaefer, L

    2015-01-01

    This paper evaluates the biological regeneration of ferric Fe3+ solution during desulphurisation of gaseous streams. Hydrogen sulphide (H2S) is absorbed into aqueous ferric sulphate solution and oxidised to elemental sulphur, while ferric ions Fe3+ are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous iron oxidation and may probably affect the oxidation rate. In this study, the effect of nutrients and trace minerals on ferrous iron oxidation have been investigated and the results showed that the presence of nutrients and trace minerals affects the efficiency of bacterial Fe2+oxidation. The scanning electron microscopy analysis of the geotextile support material was also conducted and the results showed that the iron precipitate deposits appear to play a direct role on the bacterial biofilm formation.

  12. Influences of packaging design on antimicrobial effects of gaseous chlorine dioxide

    Science.gov (United States)

    Chlorine dioxide (ClO2) gas is an effective surface disinfectant, for it has the ability to reach and inactivate bacterial cells in biofilms which are attached to inaccessible sites on produce surfaces. One of the most promising applications of gaseous ClO2 is to be included in the headspace of foo...

  13. On the effect of pre-oxidation on the kinetics of gaseous nitriding of iron

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Somers, Marcel A.J.

    2000-01-01

    Preheating in an oxidising atmosphere is frequently used prior to gaseous nitriding. The effects of this preoxidation have been investigated and it is found that a preoxidation decrease the incubation time for the nucleation of iron nitrides. This results in a more homogeneous nucleation of iron...

  14. Biological regeneration of ferric ("Fe3+") solution during desulphurisation of gaseous streams: effect of nutrients and support material

    CSIR Research Space (South Africa)

    Mulopo, J

    2015-03-01

    Full Text Available This paper evaluates the biological regeneration of ferric Fe3+ solution during desulphurisation of gaseous streams. Hydrogen sulphide (H2S) is absorbed into aqueous ferric sulphate solution and oxidised to elemental sulphur, while ferric ions Fe3...

  15. Hydrogen sulfide measurement by headspace-gas chromatography-mass spectrometry (HS-GC-MS): application to gaseous samples and gas dissolved in muscle.

    Science.gov (United States)

    Varlet, Vincent; Giuliani, Nicole; Palmiere, Cristian; Maujean, Géraldine; Augsburger, Marc

    2015-01-01

    The aim of our study was to present a new headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable to the routine determination of hydrogen sulfide (H(2)S) concentrations in biological and gaseous samples. The primary analytical drawback of the GC/MS methods for H(2)S measurement discussed in the literature was the absence of a specific H(2)S internal standard required to perform quantification. Although a deuterated hydrogen sulfide (D(2)S) standard is currently available, this standard is not often used because this standard is expensive and is only available in the gas phase. As an alternative approach, D(2)S can be generated in situ by reacting deuterated chloride with sodium sulfide; however, this technique can lead to low recovery yield and potential isotopic fractionation. Therefore, N(2)O was chosen for use as an internal standard. This method allows precise measurements of H(2)S concentrations in biological and gaseous samples. Therefore, a full validation using accuracy profile based on the β-expectation tolerance interval is presented. Finally, this method was applied to quantify H(2)S in an actual case of H(2)S fatal intoxication. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Second order transient effects in a gaseous diffusion plant

    International Nuclear Information System (INIS)

    Bouligand, O.M.

    1963-01-01

    Perturbations applied to various parameters of an isotope separation plant indices an average effect on production. This effect is determined for a finite cascade over infinite reservoir. Perturbations on product flow rate and inter-stage transports are considered. (author) [fr

  17. Kinetics of liquid-phase catalytic heterogeneous protium-tritium isotope exchange with participation of gaseous hydrogen

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kayumov, V.G.; Kaminskij, Yu.L.

    1990-01-01

    Reaction rate constants of catalytic (PdO/BaSO 4 (Al 2 O 3 ) catalyst) heterogeneous protium - tritium isotopic exchange D - [1- 3 H] of carbohydrates and gaseous oxygen have been measured. It is ascertained that the rate of isotopic exchange depends on the nature of carbohydrate, catalyst, buffer and medium acidity. The value of concentration of carbohydrate acyclic forms plays the determining role in the process

  18. Aerodynamic effects in isotope separation by gaseous diffusion

    International Nuclear Information System (INIS)

    Bert, L.A.; Prosperetti, A.; Fiocchi, R.

    1978-01-01

    The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the separation efficiency. The predictions of the model are found to compare very favourably with experiment. In the limit of small suction velocities, results obtained by other investigators for diffusion in a turbulent steam are recovered. (author)

  19. Evaluation of Antifungal Effect of Gaseous Ozone in a Meat Processing Plant.

    Science.gov (United States)

    Vallone, Lisa; Stella, Simone

    2014-04-17

    Ozone is already known as effective food/environmental disinfection agent, thanks to its oxidative action towards microbial cell components. Bactericidal effect of ozone is well documented, while data concerning its inhibitory activity towards fungi are still ambiguous. Our study aims to evaluate the antimicrobial activity of gaseous ozone towards potentially contaminant fungi in a meat production plant in real working conditions. M 2 and M 5 S 5 plates were inoculated with Aspergillus niger , Penicillium roqueforti , Mucor racemosus , Saccharomyces cerevisiae strains and positioned in a deboning room, where gaseous ozone was dispensed throughout the night (until a maximum concentration of 20 ppm). Nine different points were chosen, based on height and distance from the ozone dispenser. After the treatment, the presence of strains growth was evaluated. Gaseous ozone did not show any inhibitory activity against mould strains, as optimum growth during all the trials was observed. An appreciable and constant microbicidal effect against S. cerevisiae was evidenced, with a mean value of 2.8 Log reduction. Our results suggest the importance of the definition of environmental and technical use conditions in order to optimise the antimicrobial efficacy of ozone in real working situations in food industries.

  20. Evaluation of antifungal effect of gaseous ozone in a meat processing plant

    Directory of Open Access Journals (Sweden)

    Lisa Vallone

    2014-06-01

    Full Text Available Ozone is already known as effective food/environmental disinfection agent, thanks to its oxidative action towards microbial cell components. Bactericidal effect of ozone is well documented, while data concerning its inhibitory activity towards fungi are still ambiguous. Our study aims to evaluate the antimicrobial activity of gaseous ozone towards potentially contaminant fungi in a meat production plant in real working conditions. M2 and M5S5 plates were inoculated with Aspergillus niger, Penicillium roqueforti, Mucor racemosus, Saccharomyces cerevisiae strains and positioned in a deboning room, where gaseous ozone was dispensed throughout the night (until a maximum concentration of 20 ppm. Nine different points were chosen, based on height and distance from the ozone dispenser. After the treatment, the presence of strains growth was evaluated. Gaseous ozone did not show any inhibitory activity against mould strains, as optimum growth during all the trials was observed. An appreciable and constant microbicidal effect against S. cerevisiae was evidenced, with a mean value of 2.8 Log reduction. Our results suggest the importance of the definition of environmental and technical use conditions in order to optimise the antimicrobial efficacy of ozone in real working situations in food industries.

  1. Isotope enrichment effect of gaseous mixtures in standing sound vibration

    International Nuclear Information System (INIS)

    Knesebeck, R.L.

    1984-01-01

    When standing acoustic waves are excited in a tube containing a mixture of two gases, a partial zonal fractioning of the components arises as consequence of mass transport by diffusion, driven by the thermal and pressure gradients which are associeted with the standing waves. This effect is present in each zone corresponding to a quarter wavelength, with the heavier component becoming enriched at the nodes fo the standing waves and deplected at the crests. The magnitude of the enrichment in one of the components of a binary gas mixture is given by Δω=ap 2 /lambda [b + (1-bω)] 2 . Where ω is the mass concentration of the component in the mixture, a and b are parameters which are related to molecular proprieties of the gases, p is the relative pressure amplitude of the standing wave and lambda is its wavelength. For a natural mixture of uranium hexafluorate, with 0.715% of the uranium isotope 340 an enrichment of about 2 x 10 -6 % in the concentration of this isotope is theorecticaly attainable per stage consisting of a quarter wavelenght, when a standing acoustical wave of relative pressure amplitude of 0,2 and wavelenght of 20 cm is used. Since standing acoustical waves are easely excited in gas columns, an isotope enrichment plant made of a cascade of tubes in which standing waves are excited, is presumably feasible with relatively low investment and operation costs. (Author) [pt

  2. Effects of liming and nitrogen fertilizer application on soil acidity and gaseous nitrogen oxide emissions in grassland systems

    NARCIS (Netherlands)

    Oenema, O.; Sapek, A.

    2000-01-01

    This book contains 10 articles on the EU research project COGANOG (Controlling Gaseous Nitrogen Oxide Emissions from Grassland Farming Systems in Europe). The papers present the results of studies on the effects of liming and N fertilizer application

  3. Separation of gaseous hydrogen from a water-hydrogen mixture in a fuel cell power system operating in a weightless environment

    Science.gov (United States)

    Romanowski, William E. (Inventor); Suljak, George T. (Inventor)

    1989-01-01

    A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.

  4. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  5. Effect of gaseous ozone for control of stored product pests at low and high temperature

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård; Hansen, Peer; Vagn Jensen, Karl-Martin

    2013-01-01

    Gaseous ozone (O3) has shown potential for control of insects in stored grain. A previous laboratory study determined doses of ozone necessary to control freely exposed and internal stages of eleven stored product pest species at 20 C. In this study the impact of temperature on the effect of ozone...... was tested on two species of stored product pests: Sitophilus granarius and Plodia interpunctella. Insects were exposed to continuous flows of ozone in doses of approximately 33 ppm for 6 d or approximately 131 ppm for 8 d at low temperatures between 7.3 and 7.9 C and high temperatures between 29.6 and 31...

  6. Hydroformylation of Cyclohexene with Carbon Dioxide and Hydrogen Using Ruthenium Carbonyl Catalyst: Influence of Pressures of Gaseous Components

    Directory of Open Access Journals (Sweden)

    Masahiko Arai

    2007-08-01

    Full Text Available Hydroformylation of cyclohexene was studied with a catalyst system ofRu3(CO12 and LiCl using H2 and CO2 instead of CO in NMP. The influence of H2 andCO2 pressures on the total conversion and the product distribution was examined. It wasshown that increasing total pressure of H2 and CO2 promoted the reverse water gas shiftreaction and increased the yield of cyclohexanecarboxaldehyde. Its hydrogenation tocyclohexanemethanol was promoted with increasing H2 pressure but suppressed withincreasing CO2 pressure. Cyclohexane was also formed along with those products and thisdirect hydrogenation was suppressed with increasing CO2 pressure. The roles of CO2 as apromoter as well as a reactant were further examined by phase behavior observations andhigh pressure FTIR measurements.

  7. Hydroformylation of Cyclohexene with Carbon Dioxide and Hydrogen Using Ruthenium Carbonyl Catalyst: Influence of Pressures of Gaseous Components

    Science.gov (United States)

    Fujita, Shin-ichiro; Okamura, Shuhei; Akiyama, Yoshinari; Arai, Masahiko

    2007-01-01

    Hydroformylation of cyclohexene was studied with a catalyst system of Ru3(CO)12 and LiCl using H2 and CO2 instead of CO in NMP. The influence of H2 and CO2 pressures on the total conversion and the product distribution was examined. It was shown that increasing total pressure of H2 and CO2 promoted the reverse water gas shift reaction and increased the yield of cyclohexanecarboxaldehyde. Its hydrogenation to cyclohexanemethanol was promoted with increasing H2 pressure but suppressed with increasing CO2 pressure. Cyclohexane was also formed along with those products and this direct hydrogenation was suppressed with increasing CO2 pressure. The roles of CO2 as a promoter as well as a reactant were further examined by phase behavior observations and high pressure FTIR measurements.

  8. Importance of international standards on hydrogen technologies

    International Nuclear Information System (INIS)

    Bose, T.K.; Gingras, S.

    2001-01-01

    This presentation provided some basic information regarding standards and the International Organization for Standardization (ISO). It also explained the importance of standardization activities, particularly ISO/TC 197 which applies to hydrogen technologies. Standards are established by consensus. They define the minimum requirements that will ensure that products and services are reliable and effective. Standards contribute to the elimination of technical barriers to trade (TBT). The harmonization of standards around the world is desirable in a free trade environment. The influence of the TBT on international standardization was discussed with particular reference to the objectives of ISO/TC 197 hydrogen technologies. One of the priorities for ISO/TC 197 is a hydrogen fuel infrastructure which includes refuelling stations, fuelling connectors, and storage technologies for gaseous and liquid hydrogen. Other priorities include an agreement between the International Electrotechnical Commission (IEC) and the ISO, in particular the IEC/TC 105 and ISO/TC 197 for the development of fuel cell standards. The international standards that have been published thus far include ISO 13984:1999 for liquid hydrogen, land vehicle fuelling system interface, and ISO 14687:1999 for hydrogen fuel product specification. Standards are currently under development for: liquid hydrogen; airport hydrogen fuelling facilities; gaseous hydrogen blends; basic considerations for the safety of hydrogen systems; gaseous hydrogen and hydrogen blends; and gaseous hydrogen for land vehicle filling connectors. It was concluded that the widespread use of hydrogen is dependent on international standardization

  9. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  10. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun; Zacharakis-Jutz, George E.; Kong, Song-Charng

    2014-01-01

    Highlights: • This is the very first study in utilizing direct injection of gaseous ammonia in an SI engine. • Engine combustion using direct injection of gaseous ammonia is proven feasible. • Energy efficiency using ammonia is comparable to that using gasoline. • CO emissions are decreased but emissions of NOx and HC are increased when ammonia is used. - Abstract: The effects of direct injection of gaseous ammonia on the combustion characteristics and exhaust emissions of a spark-ignition engine were investigated. Port-injection gasoline was used to enhance the burning of ammonia that was directly injected into the engine cylinder. Appropriate direct injection strategies were developed to allow ammonia to be used in spark-ignition engines without sacrifice of volumetric efficiency. Experimental results show that with gasoline providing the baseline power of 0.6 kW, total engine power could increase to 2.7 kW when the injection timing of ammonia was advanced to 370 BTDC with injection duration of 22 ms. Engine performance with use of gasoline–ammonia was compared to that with gasoline alone. For operations using gasoline–ammonia, with baseline power from gasoline at 0.6 kW the appropriate ammonia injection timing was found to range from 320 to 370 BTDC for producing 1.5–2.7 kW. The peak pressures were slightly lower than those using gasoline alone because of the lower flame of ammonia, resulting in reduction of cylinder pressure. The brake specific energy consumption (BSEC) with gasoline–ammonia was very similar to that with gasoline alone. Ammonia direct injection caused slight reductions of BSCO for all the loads studied but significantly increased BSHC because of the reduced combustion temperature of ammonia combustion. The use of ammonia resulted in increased NOx emissions because of formation of fuel NOx. Ammonia slip was also detected in the engine exhaust because of incomplete combustion

  11. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  12. Effect of Biodiesel Fuel Injection Timing and Venture for Gaseous Fuel Induction on the Performance, Emissions and Combustion Characteristics of Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2018-02-01

    Full Text Available Advancing or retarding pilot fuel injection timing in a diesel engine provided with either conventional mechanical fuel injection (CMFIS or high pressure injection as in common rail fuel injection (CRDI systems can significantly affect its performance and tail pipe emissions. Performance of diesel engine when fueled with various biofuels as well as gaseous fuels tends to vary with subsequent changes in pilot fuel injection timings. Biodiesel derived from rubber seed oil called Rubber Seed Oil Methyl Ester (RuOME and hydrogen (H2 and hydrogen enriched compressed natural gas called (HCNG both being renewable fuels when used in diesel engines modified to operate in dual fuel mode can provide complete replacement for fossil diesel. In the present study, effect of injection timings and venture design for gas mixing on the performance, combustion and emission characteristics of dual fuel engine fitted with both CMFIS and CRDI injection systems and operated on RuOME and HCNG/hydrogen has been investigated. Results showed that high pressure CRDI assisted injection of RuOME with optimized mixing chamber (carburetor for hydrogen induction in dual fuel engine performed improved compared to that with CMFIS. In addition, for the same fuel combinations, CRDI resulted in lower biodiesel consumption, lower carbon monoxide (BSCO and hydrocarbon (BSHC emissions and increased NOx emissions than CMFIS operation.

  13. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    Science.gov (United States)

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  14. Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.

    1978-01-01

    Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

  15. Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants

    Energy Technology Data Exchange (ETDEWEB)

    Serek, M.; Reid, M.S. (Univ. of California, Davis, CA (United States). Dept. of Environmental Horticulture); Sisler, E.C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Biochemistry)

    1994-11-01

    A 6-hour fumigation of flowering Begonia xelatior hybrida Fotsch. Najada' and Rosa', B. xtuberhybrida Voss. Non-Stop', Kalanchoe blossfeldiana Poelln. Tropicana', and Rosa hybrida L. Victory Parade' plants with 1-MCP, (formerly designated as SIS-X), a gaseous nonreversible ethylene binding inhibitor, strongly inhibited exogenous ethylene effects such as bud and flower drop, leaf abscission, and accelerated flower senescence. The inhibitory effects of 1-MCP increased linearly with concentration, and at 20 nl-liter[sup [minus]1] this compound gave equal protection to that afforded by spraying the plants with a 0.5 STS mM solution. Chemical names used: 1-methylcyclopropene (1-MCP), silver thiosulfate (STS).

  16. The effects of a hot gaseous halo on disc thickening in galaxy minor mergers

    Science.gov (United States)

    Moster, Benjamin P.; Macciò, Andrea V.; Somerville, Rachel S.; Naab, Thorsten; Cox, T. J.

    2012-07-01

    We employ hydrodynamical simulations to study the effects of dissipational gas physics on the vertical heating and thickening of disc galaxies during minor mergers. For the first time we present a suite of simulations that includes a diffuse, rotating, cooling, hot gaseous halo, as predicted by cosmological hydrodynamical simulations as well as models of galaxy formation. We study the effect of this new gaseous component on the vertical structure of a Milky Way-like stellar disc during 1:10 and 1:5 mergers. For 1:10 mergers, we find no increased final thin disc scale height compared to the isolated simulation, leading to the conclusion that thin discs can be present even after a 1:10 merger if a reasonable amount of hot gas is present. The reason for this is the accretion of new cold gas, leading to the formation of a massive new thin stellar disc that dominates the surface brightness profile. In a previous study, in which we included only cold gas in the disc, we showed that the presence of cold gas decreased the thickening by a minor merger relative to the no-gas case. Here, we show that the evolution of the scale height in the presence of a cooling hot halo is dominated by the formation of the new stellar disc. In this scenario, the thick disc is the old stellar disc that has been thickened in a minor merger at z≳ 1, while the thin disc is the new stellar disc that reforms after this merger. When galactic winds are also considered, the final scale height is larger due to two effects. First, the winds reduce the star formation rate, leading to a less massive new stellar disc, such that the thickened old disc still dominates. Secondly, the winds exert a pressure force on the gas in the disc, leading to a shallower gas profile and thus to a thicker new stellar disc. In addition, we study the evolution of the scale height during a 1:5 merger and find that a thin disc can be present even after this merger, provided enough hot gas is available. The final scale

  17. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  18. Hydrogen-related effects in crystalline semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1988-08-01

    Recent experimental and theoretical information regarding the states of hydrogen in crystalline semiconductors is reviewed. The abundance of results illustrates that hydrogen does not preferentially occupy a few specific lattice sites but that it binds to native defects and impurities, forming a large variety of neutral and electrically active complexes. The study of hydrogen passivated shallow acceptors and donors and of partially passivated multivalent acceptors has yielded information on the electronic and real space structure and on the chemical composition of these complexes. Infrared spectroscopy, ion channeling, hydrogen isotope substitution and electric field drift experiments have shown that both static trigonal complexes as well as centers with tunneling hydrogen exist. Total energy calculations indicate that the charge state of the hydrogen ion which leads to passivation dominates, i.e., H + in p-type and H/sup /minus// in n-type crystals. Recent theoretical calculations indicate that is unlikely for a large fraction of the atomic hydrogen to exist in its neutral state, a result which is consistent with the total absence of any Electron Paramagnetic Resonance (EPR) signal. An alternative explanation for this result is the formation of H 2 . Despite the numerous experimental and theoretical results on hydrogen-related effects in Ge and Si there remains a wealth of interesting physics to be explored, especially in compound and alloy semiconductors. 6 refs., 6 figs

  19. Effective hydrogen storage: a strategic chemistry challenge.

    Science.gov (United States)

    David, William I F

    2011-01-01

    This paper gives an overview of the current status and future potential of hydrogen storage from a chemistry perspective and is based on the concluding presentation of the Faraday Discussion 151--Hydrogen Storage Materials. The safe, effective and economical storage of hydrogen is one of the main scientific and technological challenges in the move towards a low-carbon economy. One key sector is transportation where future vehicles will most likely be developed around a balance of battery-electric and hydrogen fuel-cell electric technologies. Although there has been a very significant research effort in solid-state hydrogen storage, high-pressure gas storage combined with conventional metal hydrides is still seen as the current intermediate-term candidate for car manufacturers. Significant issues have arisen in the search for improved solid-state hydrogen storage materials; for example, facile reversibility has been a major challenge for many recently studied complex hydrides while physisorption in porous structures is still restricted to cryogenic temperatures. However, many systems fulfil the majority of necessary criteria for improved hydrogen storage--indeed, the discovery of reversibility in multicomponent hydride systems along with recent chemistry breakthroughs in off-board and solvent-assisted regeneration suggest that the goal of both improved on-board reversible and off-board regenerated hydrogen storage systems can be achieved.

  20. Hydrogen-related effects in crystalline semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    1988-08-01

    Recent experimental and theoretical information regarding the states of hydrogen in crystalline semiconductors is reviewed. The abundance of results illustrates that hydrogen does not preferentially occupy a few specific lattice sites but that it binds to native defects and impurities, forming a large variety of neutral and electrically active complexes. The study of hydrogen passivated shallow acceptors and donors and of partially passivated multivalent acceptors has yielded information on the electronic and real space structure and on the chemical composition of these complexes. Infrared spectroscopy, ion channeling, hydrogen isotope substitution and electric field drift experiments have shown that both static trigonal complexes as well as centers with tunneling hydrogen exist. Total energy calculations indicate that the charge state of the hydrogen ion which leads to passivation dominates, i.e., H/sup +/ in p-type and H/sup /minus// in n-type crystals. Recent theoretical calculations indicate that is unlikely for a large fraction of the atomic hydrogen to exist in its neutral state, a result which is consistent with the total absence of any Electron Paramagnetic Resonance (EPR) signal. An alternative explanation for this result is the formation of H/sub 2/. Despite the numerous experimental and theoretical results on hydrogen-related effects in Ge and Si there remains a wealth of interesting physics to be explored, especially in compound and alloy semiconductors. 6 refs., 6 figs.

  1. Generic report on health effects for the US Gaseous Diffusion Plants. Sect. 8, Pt. 1

    International Nuclear Information System (INIS)

    Just, R.A.; Emler, V.S.

    1984-06-01

    Toxic substances present in uranium enrichment plants include uranium hexafluoride (UF 6 ), hydrogen fluoride (HF), uranyl fluoride (UO 2 F 2 ), chlorine (Cl 2 ), chlorine trifluoride (ClF 3 ), fluorine (F 2 ), uranium tetrafluoride (UF 4 ), and technetium (Tc). The current knowledge of the expected health effects of acute exposures to these substances is described. 10 references, 2 figures, 6 tables

  2. Gaseous NO2 effects on epidermis and stomata related physiochemical characteristics of hybrid poplar leaves: chemical elements composition, stomatal functions, photosynthesis and respiration

    Science.gov (United States)

    Mechanisms controlling effects of gaseous nitrogen dioxide on epidermis and stomata dynamics, and photosynthesis and respirations processes are still not fully understood. In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (4 microliters per lite...

  3. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting.

    Science.gov (United States)

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-02-01

    This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH4, N2O, and NH3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH4 emissions (by 85.8% and 80.5%, respectively) and decreased NH3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N2O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  5. Effects of Gaseous Ozone Exposure on Bacterial Counts and Oxidative Properties in Chicken and Duck Breast Meat.

    Science.gov (United States)

    Muhlisin, Muhlisin; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-01-01

    The effects of gaseous ozone exposure on the bacterial counts and oxidative properties were evaluated in duck and chicken breast fillets, which were stored under a continuous flux of gaseous ozone (10×10(-6) kg O3/m(3)/h) at 4±1℃ for 4 d. The ozone generator was set to on for 15 min and off for 105 min, and this cyclic timer was set during storage. Ozone effectively reduced the growth of coliform, aerobic and anaerobic bacteria in both chicken and duck breast. However, lipid oxidation occurred faster in duck breast than chicken breast with higher degree of discoloration, TBARS value, and antioxidant enzyme (glutathione peroxidase and catalase) activity decline rates. It is concluded that ozone effectively controlled the growth of bacteria in both chicken and duck breast with less effects on oxidative deterioration in chicken breast.

  6. Position Sensitive Gaseous Photomultipliers

    CERN Document Server

    Martinengo, P; Peskov, V

    2010-01-01

    Advances in the technologies associated with position sensitive gaseous detectors especially featuring CsI as reflective photoconverters will be reviewed. These photodetectors represent the most effective solution for what concerns cost and performance in the case of large area Cherenkov imaging applications in relatively low rate (or low occupancy) high energy physics and astrophysics experiments. Moreover, they are the only choice when the Cherenkov detector is embedded in a magnetic field. Recently proposed single photon MPGDs (Micropattern Gaseous Detectors) will be also discussed in view of the successful efforts so far made to extend their sensitivity to visible light. With some modifications, photosensitive gaseous detectors can also be used in the imaging of X-rays and particles.

  7. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  8. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Beijing Municipal Research Institute of Environmental Protection, Beijing 100037 (China); Li, Guoxue, E-mail: yangfan19870117@126.com [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Shi, Hong; Wang, Yiming [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China)

    2015-02-15

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH{sub 4} and NH{sub 3} emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH{sub 4}, N{sub 2}O, and NH{sub 3} were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH{sub 4} emissions (by 85.8% and 80.5%, respectively) and decreased NH{sub 3} emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N{sub 2}O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.

  9. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  10. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  11. New packaging design for fresh produce with effective distribution of antimicrobial gaseous chlorine dioxide

    Science.gov (United States)

    In the last decade, the potential use of chlorine dioxide (ClO2) as an antimicrobial agent for vapor-phase decontamination to extend the shelf-life of fresh produce has been widely studied. Most of the works focused on the dose of gaseous ClO2 for particular food product and/or specific microorganis...

  12. The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo

    NARCIS (Netherlands)

    Marasco, Antonino; Debattista, Victor P.; Fraternali, Filippo; van der Hulst, Thijs; Wadsley, James; Quinn, Thomas; Roškar, Rok

    We present the study of a set of N-body+smoothed particle hydrodynamics simulations of a Milky Way-like system produced by the radiative cooling of hot gas embedded in a dark matter halo. The galaxy and its gaseous halo evolve for 10 Gyr in isolation, which allows us to study how internal processes

  13. Nitrile/Buna N Material Failure Assessment for an O-Ring used on the Gaseous Hydrogen Flow Control Valve (FCV) of the Space Shuttle Main Engine

    Science.gov (United States)

    Wingard, Doug

    2006-01-01

    After the rollout of Space Shuttle Discovery in April 2005 in preparation for return-to-flight, there was a failure of the Orbiter (OV-103) helium signature leak test in the gaseous hydrogen (GH2) system. Leakage was attributed to the Flow Control Valve (FCV) in Main Engine 3. The FCV determined to be the source of the leak for OV-103 is designated as LV-58. The nitrile/Buna N rubber O-ring seal was removed from LV-58, and failure analysis indicated radial cracks providing leak paths in one quadrant. Cracks were eventually found in 6 of 9 FCV O-rings among the three Shuttle Orbiters, though none were as severe as those for LV-58, OV-103. Testing by EM10 at MSFC on all 9 FCV O- rings included: laser dimensional, Shore A hardness and properties from a dynamic mechanical analyzer (DMA) and an Instron tensile machine. The following test data was obtained on the cracked quadrant of the LV-58, OV-103 O-ring: (1) the estimated compression set was only 9.5%, compared to none for the rest of the O-ring; (2) Shore A hardness for the O.D. was higher by almost 4 durometer points than for the rest of the O-ring; and (3) DMA data showed that the storage/elastic modulus E was almost 25% lower than for the rest of the O-ring. Of the 8 FCV O-rings tested on an Instron, 4 yielded tensile strengths that were below the MIL spec requirement of 1350 psi-a likely influence of rubber cracking. Comparisons were made between values of modulus determined by DNA (elastic) and Instron (Young s). Each nitrile/Buna N O-ring used in the FCV conforms to the MIL-P-25732C specification. A number of such O-rings taken from shelf storage at MSFC and Kennedy Space Center (KSC) were used to generate a reference curve of DMA glass transition temperature (Tg) vs. shelf storage time ranging from 8 to 26 years. A similar reference curve of TGA onset temperature (of rubber weight loss) vs. shelf storage time was also generated. The DMA and TGA data for the used FCV O-rings were compared to the reference

  14. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    Science.gov (United States)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  15. Effect of Hypergravity Stress on Gaseous Exchange and Survival of Young and Old Guinea Pigs

    Science.gov (United States)

    Muradian, Kh. K.; Timchenko, A. N.

    Hypergravity tolerance decreases in aging Guinea pigs, the range being lower than in other studied species of laboratory mammals - mice, hamsters, and rats. Moreover, for the gaseous exchange rate and body temperature, the decline during the stress is not characteristic for Guinea pigs of both age groups, in contrast to other species. In general, hypergravity tolerance of Guinea pigs could be more appropriate experimental models.

  16. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  17. Reverse mechanical after effect during hydrogenation of zone refined iron

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, L.V.; Skryabina, N.E.; Kurmaeva, L.D.; Smirnov, L.V. (Permskij Gosudarstvennyj Univ. (USSR); AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The relationship between the process of hydrogenation and the reverse mechanical after effect (RMA) microplastic deformation in the zone refined iron has been studied. Metallographic investigations and mechanical testing of the samples hydrogenated under torsional strain have been performed. It is shown that in the zone refined iron the formation of voids responsible for irreversible hydrogen embrittlement does not occur, but the hydrogen-initiated RMA strain is conserved, i. e. the RMA effects are independent of the presence of discontinuities.

  18. HySDeP: a computational platform for on-board hydrogen storage systems – hybrid high-pressure solid-state and gaseous storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2016-01-01

    A computational platform is developed in the Modelica® language within the DymolaTM environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...

  19. Bactericidal and cytotoxic effects of hypothiocyanite-hydrogen peroxide mixtures.

    OpenAIRE

    Carlsson, J; Edlund, M B; Hänström, L

    1984-01-01

    Lactoperoxidase catalyzes the oxidation of thiocyanate by hydrogen peroxide into hypothiocyanite, a reaction which can protect bacterial and mammalian cells from killing by hydrogen peroxide. The present study demonstrates, however, that lactoperoxidase in the presence of thiocyanate can actually potentiate the bactericidal and cytotoxic effects of hydrogen peroxide under specific conditions, such as when hydrogen peroxide is present in the reaction mixtures in excess of thiocyanate. The toxi...

  20. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    With electrocatalysts it is important to be able to distinguish between the effects of mass transport and reaction kinetics on the performance of the catalyst. When the hydrogen evolution reaction (HER) is considered, an additional and often neglected detail of mass transport in liquid...... is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  1. Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Directory of Open Access Journals (Sweden)

    J.V.S. Moorthy

    2014-03-01

    Full Text Available Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view.

  2. Effective field theories for muonic hydrogen

    Directory of Open Access Journals (Sweden)

    Peset Clara

    2017-01-01

    Full Text Available Experimental measurements of muonic hydrogen bound states have recently started to take place and provide a powerful setting in which to study the properties of QCD. We profit from the power of effective field theories (EFTs to provide a theoretical framework in which to study muonic hydrogen in a model independent fashion. In particular, we compute expressions for the Lamb shift and the hyperfine splitting. These expressions include the leading logarithmic O(mμα6 terms, as well as the leading O(mμα5mμ2ΛQCD2${\\cal O}\\left( {{m_\\mu }{\\alpha ^5}{{m_\\mu ^2} \\over {\\Lambda _{{\\rm{QCD}}}^2}}} \\right$ hadronic effects. Most remarkably, our analyses include the determination of the spin-dependent and spin-independent structure functions of the forward virtualphoton Compton tensor of the proton to O(p3 in HBET and including the Delta particle. Using these results we obtain the leading hadronic contributions to the Wilson coeffcients of the lepton-proton four fermion operators in NRQED. The spin-independent coeffcient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, which is the main source of uncertainty in our computation. The spindependent coeffcient yields the prediction of the hyperfine splitting. The use of EFTs crucially helps us organizing the computation, in such a way that we can clearly address the parametric accuracy of our result. Furthermore, we review in the context of NRQED all the contributions to the energy shift of O(mμα5, as well as those that scale like mrα6× logarithms.

  3. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    Science.gov (United States)

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  4. Mechanochemical hydrogenation of coal

    Science.gov (United States)

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  5. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 2; Appendices

    Science.gov (United States)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the Appendices to the main report.

  6. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 1

    Science.gov (United States)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the findings and recommendations from the NESC assessment.

  7. Hydrogenation apparatus

    Science.gov (United States)

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  8. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...... hydrogen embrittlement and stress corrosion cracking are also discussed....

  9. Magnetic effects of interstitial hydrogen in nickel

    Energy Technology Data Exchange (ETDEWEB)

    León, Andrea [Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso (Chile); Velásquez, E.A. [Facultad de Física y Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago (Chile); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, Medellín (Colombia); Mazo-Zuluaga, J. [Grupo de Instrumentación Científica y Microelectrónica, Grupo de Estado Sólido, IF-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mejía-López, J. [Facultad de Física y Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago (Chile); Florez, J.M. [Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso (Chile); and others

    2017-01-01

    Hydrogen storage in materials is among the most relevant fields when thinking about energy conversion and storage. In this work we present a study that responds to a couple of questions concerning induced electronic changes that H produces in ferromagnetic nickel (Ni) host. We calculate and explain the change of magnetic properties of Ni with different concentrations of H. Density functional theory calculations (DFT) were performed for super-cells of fcc Ni with interstitial H in octahedral sites at different concentrations. In order to physically explain the effect of magnetization diminishing as the hydrogen concentration increases, we propose a simple Stoner type of model to describe the influence of the H impurity on the magnetic properties of Ni. The exchange splitting reduction, as shown in first principles calculations, is clearly explained within this physical model. Using a paramagnetic Ni fcc band with variable number of electrons and a Stoner model allow us to obtain the correct trend for the magnetic moment of the system as a function of the H concentration. - Highlights: • We calculate and explain the change of magnetic properties of Ni with different concentrations of H. • We propose a simple Stoner type of model to describe the influence of the H impurity on the magnetic properties of Ni. • The band exchange splitting reduction as the H concentration increases, is a consequence of the competition between the band energy term (kinetic energy) and the ferromagnetic energy term (Weiss field).

  10. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Eliezer, D. [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Glam, B.; Eliezer, S.; Moreno, D. [Soreq Nuclear Research Center, Yavne, 81800 (Israel)

    2015-11-05

    Hydrogen trapping behavior in a lean duplex stainless steel (LDS) is studied by means of thermal desorption spectrometry (TDS). The susceptibility of a metal to hydrogen embrittlement is directly related to the trap characteristics: source or sink (reversible or irreversible, respectively). Since trapping affects the metal's diffusivity, it has a major influence on the hydrogen assisted cracking (HAC) phenomenon. It is known from previously published works that the susceptibility will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's initial state in the steel. In this research the trapping mechanism of LDS, exposed to different hydrogen charging environments, is analyzed by means of TDS. The TDS analysis was supported and confirmed by means of X-ray diffraction (XRD), hydrogen quantitative measurements and microstructural observations. It was found that gaseous charging (which produces lower hydrogen fugacity) creates ∼22% higher activation energy for hydrogen trapping compared with cathodic charging (which produces higher hydrogen fugacity). These results are due to the different effects on the hydrogen behavior in LDS which causes a major difference in the hydrogen contents and different hydrogen assisted phase transitions. The highest activation energy value in the cathodic charged sample was ascribed to the dominant phase transformation of γ → γ{sup ∗}, whereas in the gaseous charged sample it was ascribed to the dominant formation of intermetallic compound, sigma (σ). The relation between hydrogen distribution in LDS and hydrogen trapping mechanism is discussed in details. - Highlights: • The relation between hydrogen distribution and trapping in LDS is discussed. • Hydrogen's initial state in LDS causes different microstructural changes. • Gaseous charged LDS creates higher trapping energy compared to cathodic charged LDS. • The dominant phase transformation in

  11. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  12. Effect of spectral characterization of gaseous fuel reactors on transmutation and burning of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fung, C.; Anghaie, S. [Florida Univ., Wilmington, NC (United States)

    2007-07-01

    Gaseous Core Reactors (GCR) are fueled with stable uranium compounds in a reflected cavity. The spectral characteristics of neutrons in GCR systems could shift from one end of the spectrum to the other end by changing design parameters such as reflector material and thickness, uranium enrichment, and the average operational temperature and pressure. The rate of actinide generation, transmutation, and burnup is highly influenced by the average neutron energy in reactor core. In particular, the production rate and isotopic mix of plutonium are highly dependent on the neutron spectrum in the reactor. Other actinides of primary interest to this work are neptunium-237 and americium-241 due to their pivotal impact on high-level nuclear waste disposal. In all cavity reactors including GCR's, the reflector material and thickness are the most important design parameters in determining the core spectrum. The increase in the gaseous fuel pressure and enrichment results in relative shift of neutron population toward energies greater than 2 eV. Reflector materials considered in this study are beryllium oxide, lithium hydride, lithium deuteride, zirconium carbide, graphite, lead, and tungsten. Results of the study suggest that the beryllium oxide and tungsten reflected GCR systems set the lower (softest) and upper (hardest) limits of neutron spectra, respectively. The inventory of actinides with half-lives greater than 1000 years can be minimized by increasing neutron flux level in the reactor core. The higher the neutron flux, the lower the inventory of these actinides. The majority of the GCR designs maintained a flux level on the order of 10{sup 15} cm{sup -2}*s{sup -1} while the PWR flux is one order of magnitude lower. The inventory of the feeder isotopes to Np{sup 237} including U{sup 237}, Pu{sup 241}, and Am{sup 241} decreases with relative shift of neutron spectrum toward higher energies. This is due to increased resonance absorption in these isotopes due to higher

  13. Effect of the hydrogen concentration on the ductility of Zry-4

    International Nuclear Information System (INIS)

    Domizzi, G.; Ovejero Garcia, J.

    1996-01-01

    After many years in service, zirconium alloys employed in nuclear reactors may reach high contents of hydride particles, exceeding the hydrogen solid solubility at the service temperature. The brittle character of zirconium hydride promotes the alloy embrittlement. In order to predict the critical hydrogen concentration which causes a ductile-brittle transition in a Zry-4 foil, 0.02mm thick, tensile test specimens were hydride by gaseous charging. To obtain uniform hydride distribution the specimens were electroplated with a film of copper prior to gaseous charge. In absence of oxide film, the foils retained its ductility up to high hydrogen concentration (950 Og/g). The critical hydrogen concentration was attained at 2900-3100 Og/g. (author). 4 refs., 2 figs., 1 tab

  14. Effects of Internal and External Hydrogen on Inconel 718

    Science.gov (United States)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  15. Experimental simulation of irradiation effects on thermomechanical behaviour of UO2 fuel: Impact of solid and gaseous fission products

    International Nuclear Information System (INIS)

    Balland, J.

    2007-12-01

    Predictive simulation of thermomechanical behaviour of nuclear fuel has to take into account irradiation effects. Fission Products (FP) can modify the thermomechanical behaviour of UO 2 . During this thesis, differentiation was made between fission products which create a solid solution with UO 2 and gaseous products, generating pressurized bubbles. SIMFUELS containing gadolinium oxide and pressurized argon bubbles were manufactured, respectively by conventional process and by Gas Pressure Sintering. Brittle and ductile behaviour of UO 2 was investigated, under experimental conditions representative of Pellet-Cladding Interaction (PCI), respectively with 3 points bending tests and compressive creep tests. Investigation of brittle behaviour of UO 2 showed that fracture is mainly controlled by natural defects, like porosities, acting like starting points for cracks propagation. Addition of simulates fission products increase the brittle-to-ductile transition temperature of UO 2 , up to 400-500 C regarding FP in solid solution, and up to 200 C for gaseous products. Fission products although reduce fracture stresses, by a factor between 1.5 and 4, respectively for gas bubbles and solid solutions. Decrease of fracture stress is linked to an increase of microstructural defects due the solid solution and to pressurized bubbles located at grain boundaries. Pellets were tested under compressive solicitation at high temperatures. Experimental results of creep tests are well represented by Norton laws. Creep controlling mechanisms are evidenced by microstructural analysis performed on pellets at different strains. On the basis of calculations made for fuels having the same microstructures than the SIMFUELs, a creep factor is determined. It revealed a strong hardening effect of the solid solution, due to the fact that the added elements anchor the dislocations, whereas pressurized bubbles showed a coupling between hardening and softening effects. (author)

  16. Enhanced hydrogen sorption on modified MIL-101 with Pt/CMK-3 by hydrogen spillover effect

    Energy Technology Data Exchange (ETDEWEB)

    Anbia, Mansoor, E-mail: anbia@iust.ac.ir [Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, Tehran 16846 (Iran, Islamic Republic of); Mandegarzad, Sakineh [Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, Tehran 16846 (Iran, Islamic Republic of)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer High surface area of CMK-3 is deployed as a supporter to deposit Pt nanoparticles catalyst effectively. Black-Right-Pointing-Pointer Adsorption in ambient temperature is increased after enhancing Pt catalytic activities. Black-Right-Pointing-Pointer Modification of MIL-101 with Pt (20 wt%)/CMK-3 increased amount of adsorbed hydrogen duo to hydrogen spillover effect. Black-Right-Pointing-Pointer The hydrogen uptake at 298 K and 20 bar of unmodified and modified MIL-101 are 0.55 wt% and 1.34 wt% respectively. - Abstract: The effect of mesoporous carbon CMK-3 as a support on Pt catalytic activities, dissociation of hydrogen molecules and enhanced hydrogen absorption on modified MIL-101 at ambient temperature have been studied. The isotherms of these unmodified and modified samples have been investigated using volumetric method at 298 K and the pressure ranging from 1 to 20 bar. These modification with Pt (20 wt%)/CMK-3 and carbon bridge, the hydrogen uptake was almost twice that of pristine sample. The storage capacity of modified MIL-101 at 20 bar and 298 K was found to be 1.34 wt% which is significantly improved as compared to the pure MIL-101, it is because of the Pt nanoparticles were uniformly distributed on the mesopores of CMK-3 support. Therefore Pt catalytic activities in dissociation of hydrogen molecules are improved leading to significant changes in hydrogen sorption properties at room temperature. Also The obtained composite is characterized by various techniques such as powder X-ray diffractometry, scanning electron microscopy, porosimetry by nitrogen adsorption and desorption and hydrogen adsorption.

  17. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Science.gov (United States)

    2010-10-01

    ... VEHICLES § 538.8 Gallon Equivalents for Gaseous Fuels. The gallon equivalent of gaseous fuels, for purposes... Natural Gas 0.823 Liquefied Natural Gas 0.823 Liquefied Petroleum Gas (Grade HD-5)* 0.726 Hydrogen 0.259...

  18. Effect of extrinsic lactic acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B9 (Canada)

    2009-03-15

    In this paper we report the effect of extrinsic lactic acid on hydrogen production from a starch-containing medium by a mixed culture. Study of the effect of addition of four metabolites, namely ethanol, lactic acid, butyric acid and acetic acid illustrated that lactic acid had a positive effect on both the maximum hydrogen production and hydrogen production rate. The addition of 10 mM lactic acid to a batch containing starch increased the hydrogen production rate and hydrogen production yield from 4.31 to 8.23 mL/h and 5.70 to 9.08 mmol H{sub 2}/g starch, respectively. This enhancement in hydrogen production rate and yield was associated with a shift from acetic acid and ethanol formation to formation of butyric acid as the predominant metabolite. The increase in hydrogen production yield was attributed to the increase in the available residual NADH for hydrogen production. When lactic acid was used as the sole carbon source, no significant hydrogen production was observed. (author)

  19. Influence of screening effect on hydrogen passivation of hole silicon

    CERN Document Server

    Aleksandrov, O V

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 sup 1 sup 4 to 1.2 x 10 sup 2 sup 0 cm sup - sup 3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level

  20. Hydrogen environment embrittlement

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    Exposure of many metals to gaseous hydrogen causes losses in elongation, reduction of area, and fracture toughness, and causes increases in slow crack growth rate or fatigue life compared with values obtained in air or vacuum. Hydrogen pressure, temperature, and purity significantly influence deleterious effects. The strength and structural characteristics of the metal influence the degradation of its properties by hydrogen. Several theories have been proposed to explain the loss of properties in hydrogen, but none has gained wide acceptance. The embrittlement mechanism and the role of diffusion are, therefore, open questions and need more quantitative experimental data both to test the proposed theories and to allow the development of realistic preventive measures. (U.S.)

  1. effect of hydrogen peroxide and thiourea on dormancy breaking of ...

    African Journals Online (AJOL)

    ACSS

    the hydrogen peroxide (H2O2) (Claassens and. Vreugdenhil, 2000; Suttle, 2004). Hence, the objective of this study was to evaluate the effects of hydrogen peroxide and thiourea on dormancy and sprouting of potato microtubers and field grown tubers is described. MATERIELS AND METHODS. Production of microtubers.

  2. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  3. Hydrogen in niobium-titanium alloys

    International Nuclear Information System (INIS)

    Silva, J.R.G. da; Cabral, F.A.O.; Florencio, O.

    1985-01-01

    High purity Nb-Ti polycrystalline alloys were doped with hydrogen in equilibrium with the gaseous atmosphere at a pressure of 80 torr. at different temperatures. The partial molar enthalpy and entropy of the hydrogen solution at high dilution, ΔH sup(-) 0 and ΔS sup(-) 0 , were calculated from the equilibrium solubility data. The ΔH sup(-) 0 values are compared with the electron screened proton model of metal-hydrogen solutions. The addition of titanium to niobium has the effect to increase the hydrogen solubility at a given equilibrium temperature. (Author) [pt

  4. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  5. Ethylene Oxide Gaseous Sterilization

    Science.gov (United States)

    Ernst, Robert R.; Shull, James J.

    1962-01-01

    The duration of the equilibration period between admission of water vapor and subsequent introduction of gaseous ethylene oxide to an evacuated sterilizer chamber was studied with respect to its effect on the inactivation of spores of Bacillus subtilis var. niger under simulated practical conditions. Introduction of a water-adsorbing cotton barrier between the spores and an incoming gas mixture of water vapor and ethylene oxide caused a marked increase in the observed thermochemical death time of the spore populations. This effect was negated by admission of water vapor one or more minutes prior to introduction of ethylene oxide gas. Increases in temperature and relative humidity of the system promoted passage of water vapor through the cotton barriers and diminished their effect. PMID:13890660

  6. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  7. Three Gaseous Neurotransmitters, Nitric oxide, Carbon Monoxide, and Hydrogen Sulfide, Are Involved in the Neurogenic Relaxation Responses of the Porcine Internal Anal Sphincter.

    Science.gov (United States)

    Folasire, Oladayo; Mills, Kylie A; Sellers, Donna J; Chess-Williams, Russ

    2016-01-31

    The internal anal sphincter (IAS) plays an important role in maintaining continence and a number of neurotransmitters are known to regulate IAS tone. The aim of this study was to determine the relative importance of the neurotransmitters involved in the relaxant and contractile responses of the porcine IAS. Responses of isolated strips of IAS to electrical field stimulation (EFS) were obtained in the absence and presence of inhibitors of neurotransmitter systems. Contractile responses of the sphincter to EFS were unaffected by the muscarinic receptor antagonist, atropine (1 μM), but were almost completely abolished by the adrenergic neuron blocker guanethidine (10 μM). Contractile responses were also reduced (by 45% at 5 Hz, P synthesis (40-50% reduction), zinc protoprophyrin IX (10 μM), an inhibitor of carbon monoxide synthesis (20-40% reduction), and also propargylglycine (30 μM) and aminooxyacetic acid (30 μM), inhibitors of hydrogen sulphide synthesis (15-20% reduction). Stimulation of IAS efferent nerves releases excitatory and inhibitory neurotransmitters: noradrenaline is the predominant contractile transmitter with a smaller component from ATP, whilst 3 gases mediate relaxation responses to EFS, with the combined contributions being nitric oxide > carbon monoxide > hydrogen sulfide.

  8. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  9. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  10. Test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  11. Low temperature gaseous nitriding and carburising of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A.J.

    2005-01-01

    The response of various austenitic and duplex stainless steel grades to low temperature gaseous nitriding and carburising was investigated. Gaseous nitriding was performed in ammonia/hydrogen mixtures at temperatures ,723 K; gaseous carburising was carried out in carbon monoxide/hydrogen mixtures...... for temperatures (783 K. The case developed by thermochemical treatment was examined using reflected light microscopy, X-ray diffraction analysis and microhardness testing. Both nitriding and carburising led to the development of expanded austenite in the surface adjacent zone, irrespective of the phase...... constitution of the substrate. A two step process, consisting of carburising followed by nitriding, provides great flexibility with regard to adjusting the hardness–depth profile....

  12. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  13. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field.

    Science.gov (United States)

    He, Tiehu; Liu, Deyan; Yuan, Junji; Luo, Jiafa; Lindsey, Stuart; Bolan, Nanthi; Ding, Weixin

    2018-02-08

    The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N 2 O, NO and NH 3 ) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha -1 (CN); N fertilizer at an optimal application rate of 125kgNha -1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha -1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha -1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N 2 O, NO, and NH 3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH 3 and N 2 O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N 2 O, NO, and NH 3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N 2 O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH 3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effects of Pollutants and Microorganisms on the Absorption of Electrolytic Hydrogen in Iron

    National Research Council Canada - National Science Library

    Pickering, Howard

    1998-01-01

    ...) develop effective inhibitors for reducing hydrogen absorption. Thiosulfate in acidic solutions increases the hydrogen absorption into iron order of magnitude at 10mM while having little effect on the hydrogen evolution reaction (HER) kinetics...

  15. Transport hysteresis and hydrogen isotope effect on confinement

    Science.gov (United States)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  16. GASEOUS DISCHARGE DEVICE

    Science.gov (United States)

    Gow, J.D.

    1961-01-10

    An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)

  17. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  18. The role of gaseous neurotransmitters in the antinociceptive effects of morphine during acute thermal pain.

    Science.gov (United States)

    Gou, Gemma; Leánez, Sergi; Pol, Olga

    2014-08-15

    Treatment with a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer, CORM-2) or a classical inducible heme oxygenase (HO-1) inducer (cobalt protoporphyrin IX, CoPP) enhanced the antinociceptive effects of morphine during chronic pain but the role played by these compounds in acute thermal nociception was not evaluated. The effects of CORM-2 and CoPP treatments on the local antinociceptive actions of morphine and their interactions with nitric oxide during acute pain were evaluated by using wild type (WT), neuronal (nNOS-KO) or inducible (iNOS-KO) nitric oxide synthase knockout mice and assessing their thermal nociception to a hot stimulus with the hot plate test. Our results showed that the absence of nNOS or iNOS genes did not alter licking and jumping responses nor the antinociceptive effects produced by morphine indicating that the local thermal inhibitory effects produced by this drug in the absence of inflammation or injury are not mediated by the nitric oxide pathway triggered by nNOS or iNOS enzymes. Moreover, while the systemic administration of CORM-2 or CoPP inhibited licking and jumping latencies in all genotypes, these treatments only enhanced the local inhibition of jumping latencies produced by morphine in WT and nNOS-KO mice which effects were reversed by the peripheral administration of an HO-1 inhibitor. These data indicate that the co-administration of morphine with CORM-2 or CoPP produced remarkable local antinociceptive effects in WT and nNOS-KO mice and reveal that a significant interaction between carbon monoxide and nitric oxide systems occurs on the local antinociceptive effects produced by morphine during acute thermal nociception. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    Fischman, G.S.

    1985-01-01

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H 2 :Ar atmosphere at 1400 0 C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  20. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting.

    Science.gov (United States)

    Jiang, Tao; Ma, Xuguang; Yang, Juan; Tang, Qiong; Yi, Zhigang; Chen, Maoxia; Li, Guoxue

    2016-10-01

    This study compared 4 different struvite crystallization process (SCP) during the composting of pig feces. Four combinations of magnesium and phosphate salts (H3PO4+MgO (PMO), KH2PO4+MgSO4 (KPM), Ca(H2PO4)2+MgSO4 (CaPM), H3PO4+MgSO4 (PMS)) were assessed and were also compared to a control group (CK) without additives. The magnesium and phosphate salts were all supplemented at a level equivalent to 15% of the initial nitrogen content on a molar basis. The SCP significantly reduced NH3 emission by 50.7-81.8%, but not the N2O. Although PMS group had the lowest NH3 emission rate, the PMO treatment had the highest struvite content in the end product. The addition of sulphate decreased CH4 emission by 60.8-74.6%. The CaPM treatment significantly decreased NH3 (59.2%) and CH4 (64.9%) emission and yielded compost that was completely matured. Due to its effective performance and low cost, the CaPM was suggested to be used in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of composition on diffusible hydrogen content and hydrogen assisted cracking of steel welds

    International Nuclear Information System (INIS)

    Albert, S.K.; Ramasubbu, V.; Bhaduri, A.K.; Parvathavarthini, N.

    2008-01-01

    Study of hydrogen assisted cracking and measurement of diffusible hydrogen content in different Cr-Mo steel welds showed that for identical conditions, susceptibility to cracking increased and diffusible hydrogen content decreased with increase in alloy content. Hydrogen permeation studies showed that hydrogen diffusivity decreases and solubility increases with increase in alloy content. Thus decrease in diffusible hydrogen content with increase in alloying is attributed to increase in apparent solubility and decrease in apparent diffusivity of hydrogen with increase in alloy content. Analysis of the results indicates that variation of diffusible hydrogen content and apparent diffusivity of hydrogen with alloy content can be represented as a function of alloy composition. (author)

  2. Effects of Preform Density on Structure and Property of C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration

    Directory of Open Access Journals (Sweden)

    CAO Yu

    2016-07-01

    Full Text Available The 3-D needled C/C preforms with different densities deposited by chemical vapor infiltration (CVI method were used to fabricate C/C-SiC composites by gaseous silicon infiltration (GSI. The porosity and CVI C thickness of the preforms were studied, and the effects of preform density on the mechanical and thermal properties of C/C-SiC composites were analyzed. The results show that with the increase of preform density, the preform porosity decreases and the CVI C thickness increases from several hundred nanometers to several microns. For the C/C-SiC composites, as the preform density increases, the residual C content increases while the density and residual Si content decreases. The SiC content first keeps at a high level of about 40% (volume fraction, which then quickly reduces. Meanwhile, the mechanical properties increase to the highest values when the preform density is 1.085g/cm3, with the flexure strength up to 308.31MP and fracture toughness up to 11.36MPa·m1/2, which then decrease as the preform density further increases. The thermal conductivity and CTE of the composites, however, decrease with the increase of preform density. It is found that when the preform porosity is too high, sufficient infiltration channels lead to more residual Si, and thinner CVI C thickness results in the severe corrosion of the reinforcing fibers by Si and lower mechanical properties. When the preform porosity is relatively low, the contents of Si and SiC quickly reduce since the infiltration channels are rapidly blocked, resulting in the formation of large closed pores and not high mechanical properties.

  3. Disinfection with gaseous formaldehyde. Fifth Part: Influence of albumin, mucin and blood on the bactericidal and sporicidal effectiveness.

    Science.gov (United States)

    Casella, M L; Schmidt-Lorenz, W

    1989-10-01

    The influence of 0.1% peptone, 0.2% albumin, 1% mucin solutions and whole human blood on the inactivation of Staphylococcus aureus ATCC 6538 and spores of Bacillus subtilis var. niger DSM 675 was determined. The bactericidal and sporicidal effectiveness of 0.75, 1.5 and 3.2 mg HCHO l-1 air at temperatures of 35, 40, 45 degrees C and a relative humidity (RH) of 90% decreased in the following order of loading substances: peptone, albumin, mucin and blood. The calculated D-values of the microorganisms suspended and dried in 0.1% petone and in 0.2% albumin after exposure to 3.2 mg HCHO l-1 air at 40 degrees C and a relative humidity of approximately 90% were in both suspensions 1.9 min for S. aureus and 6.1 and 7.3 min respectively for B. subtilis spores. Under the same exposure conditions but with an addition of 1% mucin D-values of 2.5 min and 7.7 min for S. aureus and B. subtilis spores respectively were found. In the presence of blood, D-values of 12.3 and 18.3 min were obtained under the same conditions for S. aureus and B. subtilis spores respectively. Thus the suspension in blood caused a 2-fold increase in D-value compared to the other substances. The nature of the anticoagulant in the whole blood did not cause much difference in the inactivation of B.subtilis spores. Decreasing concentrations of blood caused an increase in sensitivity of B.subtilis spores to gaseous formaldehyde, whereby diluting blood 1:6 reduced the D-value from 23.9 min to only 7.1 min.

  4. Solar to hydrogen: Compact and cost effective CPV field for rooftop operation and hydrogen production

    KAUST Repository

    Burhan, Muhammad

    2016-11-25

    Current commercial CPV systems are designed as large units which are targeted to be installed in open desert fields with high DNI availability. It appeared that the CPV is among some of those technologies which gained very little attention of people, with less customers and market. For conventional PV systems, the installations at the rooftop of commercial and residential buildings have a significant share in the total installed capacity of PV systems. That is why for most of the countries, the PV installations at the rooftop of commercial and residential buildings are aimed to be increased to half of total installed PV. On the other hand, there is no commercial CPV system available to be suitable for rooftop operation, giving motivation for the development of CPV field of compact systems. This paper discusses the development of a CPV field for the rooftop operation, comprising of compact CPV system with cost effective but highly accurate solar tracking sensor and wireless master slave control. In addition, the performance of the developed CPV systems is evaluated for production of hydrogen, which can be used as energy carrier or energy storage and a maximum solar to hydrogen efficiency of 18% is obtained. However, due to dynamic nature of the weather data and throughout the day variations in the performance of CPV and electrolyser, the solar to hydrogen performance is proposed to be reported as daily and long term average efficiency. The CPV-Hydrogen system showed daily average conversion efficiency of 15%, with solar to hydrogen production rate of 218 kW h/kg.

  5. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  6. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM

  7. A hypothesis on chemical mechanism of the effect of hydrogen

    Directory of Open Access Journals (Sweden)

    Shi Penghui

    2012-06-01

    Full Text Available Abstract Many studies have shown that hydrogen can play important roles on the antioxidant, anti-inflammatory and other protective effects. Ohsawa et al have proved that hydrogen can electively and directly scavenge hydroxyl radical. But this mechanism cannot explain more new experimental results. In this article, the hypothesis, which is inspired by H2 could bind to the metal as a ligand, come up to explain its extensive biology effect: Hydrogen could regulate particular metalloproteins by bonding (M–H2 interaction it. And then it could affect the metabolization of ROS and signal transduction. Metalloproteins may be ones of the target molecules of H2 action. Metal ions may be appropriate role sites for H2 molecules. The hypothesis pointed out a new direction to clarify its mechanisms.

  8. Effectiveness of gaseous and intravenous inductions on children′s anxiety and distress during extraction of teeth under general anesthesia

    Directory of Open Access Journals (Sweden)

    Giath Gazal

    2015-01-01

    Full Text Available Context: Anxiety and distress regarding dental treatment is a major issue for dental patients and can be exaggerated in pediatric dental patients. Aims: The aim was to investigate how different methods of induction for general anesthesia affect children′s distress for dental procedures such as extraction of teeth. Subjects and Methods: This was an observational clinical study conducted at Manchester University Dental Hospital. The induction of anesthesia in children was achieved with either intravenous (I.V. or a gaseous induction. The Modified Child Smiley Faces Scales were completed for children at various times intervals. Statistical Analysis Used: There were statistically significant differences between the mean distress scores for the I.V. and inhalation groups (P values from independent t-test: P < 0.001 was applied. Results: In gaseous induction group, the number of children who scored severe and very severe distress was greater than those who were in I.V. group. Gaseous induction was used for 23 children. Preoperatively, 56.5% children were in very severe distress, 17.4% in severe distress, 13% in moderate distress, 8.7% in mild distress and only one (4.3% showed no distress. For I.V. induction, 11.2% children were in very severe distress, 9% in severe distress, and 9.6% in moderate distress, 24.2% in mild distress and 46.1% showed no distress. Conclusions: Gaseous induction anesthesia for extractions of teeth does produce high levels of distress than I.V. induction in children for dental extractions. There was no significant difference between both induction methods in terms of distress levels at the time of recovery and 15 min postoperatively.

  9. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-02-19

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  10. Cool gaseous nebulae

    CERN Document Server

    Shaver, P A; Pottasch, S R

    1979-01-01

    The electron temperatures of diffuse gaseous nebulae have long been thought to be close to 10/sup 4/K. Much lower temperatures were derived from some of the early radio continuum and recombination line work, but these were generally considered to be wrong for a variety of reasons. While there is little doubt that the bright nebulae do indeed have temperatures of approximately 8000-9000K, there are strong indications that some nebulae of lower densities have much lower temperatures, effects as collisional de-excitation, stimulated emission, and pressure broadening. Several of these nebulae have been found to have temperatures below 5000K and for two of them which are discussed (RCW94 and G339.1-0.2) absolute upper limits of approximately 4700 K are imposed by the line widths alone. (11 refs).

  11. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  12. Water effect in hydrogen production from methane

    Energy Technology Data Exchange (ETDEWEB)

    Acha, E.; Requies, J.; Barrio, V.L.; Cambra, J.F.; Gueemez, M.B.; Arias, P.L. [Chemical Engineering and Environmental Department, University of the Basque Country (UPV/EHU) 48013 Bilbao (Spain)

    2010-10-15

    Ni/MgO and Ni/Al{sub 2}O{sub 3} catalysts were prepared, by wet impregnation, to compare their performance in hydrogen production from methane CPO, wet-CPO and SR. The catalytic activity was tested at 1073 K, 1 bar and 600-1200 h{sup -1}. Fresh and used catalysts were characterized by different techniques. Both supports, as expected, had a low surface area (27.1 m{sup 2}/g MgO and 6.2 m{sup 2}/g {alpha}-Al{sub 2}O{sub 3}), as determined by BET method. The images obtained with SEM and TEM revealed that the Ni was more dispersed in the MgO support than in the Al{sub 2}O{sub 3} one. By XRD a strong interaction, as solid-solution, between NiO and MgO was found in the 30Ni/MgO and 40Ni/MgO catalysts. The fresh 40Ni/Al{sub 2}O{sub 3} reduced catalyst was partially reduced. But after the activity tests the stability of the reduced Ni became bigger. Some Ni sintering was also observed in the 40Ni/Al{sub 2}O{sub 3} after the wet-CPO and SR tests. The behaviour of the three catalysts was very good in CPO methane conversion (90-93%), but the gradual increase of the steam to carbon ratio, wet-CPO and SR, affected negatively the conversion. (author)

  13. Elucidation of hydrogen mobility in tetralin under coal liquefaction conditions using a tritium tracer method. Effects of the addition of H2S and H2O; Tritium tracer ho wo mochiita sekitan ekika hanno jokenka deno tetralin no suiso idosei hyoka. Ryuka suiso oyobi mizu no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, M.; Saito, M.; Ishihara, A.; Kabe, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-28

    It was previously reported that the tritium tracer method is useful for the quantitative consideration of hydrogen behavior in coal during coal liquefaction reaction. Tetralin is excellent hydrogen donating solvent, and is considered as one of the model compounds of coal. In this study, effects of H2S and H2O on the hydrogen exchange reaction between tetralin and gaseous hydrogen labeled by tritium were investigated. It was suggested that the conversion of tetralin and the hydrogen exchange reaction between gaseous hydrogen and tetralin proceed through the radical reaction mechanism with a tetralyl radical as an intermediate product. When H2S existed in this reaction, the hydrogen exchange yield increased drastically without changing the conversion yield. This suggested that the hydrogen exchange reaction proceeds even in the reaction where radical does not give any effect. In the case of H2O addition, the conversion yield and hydrogen exchange rate decreased into a half or one-third. It was suggested that H2O inhibited the formation process of tetralyl radical. 6 refs., 4 figs.

  14. Effect of residual stresses on hydrogen permeation in iron

    International Nuclear Information System (INIS)

    Mouanga, M.; Bercot, P.; Takadoum, J.

    2010-01-01

    The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses. Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Mueller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained. Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 deg. C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.

  15. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  16. Effects of dimethyl sulfoxide on the hydrogen bonding structure and ...

    Indian Academy of Sciences (India)

    Keywords. Aqueous NMA-DMSO solution; hydrogen-bond lifetime; structural relaxation times; self- diffusion coefficients; orientational relaxation times. 1. Introduction. Dimethyl sulfoxide (DMSO) is an important organic solvent, with immense significance in chemical and biological systems.1 In addition to being an effective.

  17. The effects of incubation period and temperature on the Hydrogen ...

    African Journals Online (AJOL)

    The effects of incubation period and temperature on the Hydrogen sulphide (H 2 S) technique for detection of faecal contamination in water. ... African Journal of Environmental Science and Technology. Journal Home ... A total of 171 water samples from 3 sources were analyzed for the presence of faecal contamination by

  18. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  19. Effect of lactoperoxidase-thiocyanate-hydrogen peroxide system ...

    African Journals Online (AJOL)

    This study was conducted to investigate the preservative effect of the LP-system on raw camel milk. Camel milk samples were obtained from Kajiado, Isiolo and Nanyuki districts, Kenya and LP-system was activated by the addition of hydrogen peroxide (H2O2) to a concentration of 8.5ppm Changes in total viable bacterial ...

  20. Effects of dimethyl sulfoxide on the hydrogen bonding structure

    Indian Academy of Sciences (India)

    Effects of dimethyl-sulfoxide (DMSO) on the hydrogen bonding structure and dynamics in aqueousN-methylacetamide (NMA) solution are investigated by classical molecular dynamics simulations. Themodifications of structure and interaction between water and NMA in presence of DMSO molecules are calculatedby ...

  1. A Comparative Study of the Effect of Hydrogen Peroxide and ...

    African Journals Online (AJOL)

    Contact lens cases contaminated with Pseudomonas aeruginosa are a major risk factor in ocular infections. A comparative study of the effect of 0.6% hydrogen peroxide and 0.0005% polyhexamethlylene biguanide on Pseudomonas aerugunosa isolated from three different sources, and cultured on nutrient agar plates and ...

  2. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  3. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1984-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss of coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, several open-tube tests and more than 100 closed-vessel tests of hydrogen/air combustion, with and without foam were conducted. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by 2 1/2. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam, and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  4. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.; Griffiths, S.; Shepherd, J.

    1983-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, we have conducted several open tube tests and over one hundred closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by a factor of two and one-half. Despite this overall pressure reduction, the flame speed is increase by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  5. Hydrogen and chlorine isotope exchange in n-methylimidazolium chloride

    International Nuclear Information System (INIS)

    Szydlowski, J.; Kimizuka, W.

    1993-01-01

    Isotope exchange of deuterium and 36 Cl between N-methylimidazolium chloride and gaseous hydrogen chloride has been studied over the temperature range of 249-322 K. A mechanism of exchange for both atoms is proposed and the equilibrium isotope effect of deuterium accompanying this reaction is discussed. (author) 10 refs.; 1 tab

  6. Resolution of Unresolved Safety Issue A-48, ''Hydrogen control measures and effects of hydrogen burns on safety equipment''

    International Nuclear Information System (INIS)

    Ferrell, C.M.; Soffer, L.

    1989-09-01

    Unresolved Safety Issue (USI) A-48 arose as a result of the large amount of hydrogen generated and burned within containment during the Three Mile Island accident. This issue covers hydrogen control measures for recoverable degraded-core accidents for all boiling-water reactors (BWRs) and those pressurized-water reactors (PWRs) with ice-condenser containments. The Commission and the nuclear industry have sponsored extensive research in this area, which has led to significant revision of the Commission's hydrogen control regulations, given in Title 10, Code of Federal Regulations, Part 50 (10 CFR 50), Section 50.44. BWRs having Mark I and II containments are presently required to operate with inerted containment atmospheres that effectively prevent hydrogen combustion. BWRs with Mark III containments and PWRs with ice-condenser containments are now required to be equipped with hydrogen control systems to protect containment integrity and safety systems inside containment. Industry has chosen to use hydrogen igniter systems to burn hydrogen produced in a controlled fashion to prevent damage. An independent review by a Committee of the National Research Council concluded that, for most accident scenarios, current regulatory requirements make it highly unlikely that hydrogen detonation would be the cause of containment failure. On the basis of the extensive research effort conducted and current regulatory requirements, including their implementation, the staff concludes that no new regulatory guidance on hydrogen control for recoverable degraded-core accidents for these types of plants is necessary and that USI A-48 is resolved

  7. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  8. The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential.

    Science.gov (United States)

    Shen, Yaqi; Shen, Zhuqing; Luo, Shanshan; Guo, Wei; Zhu, Yi Zhun

    2015-01-01

    Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production.

  9. The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Yaqi Shen

    2015-01-01

    Full Text Available Hydrogen sulfide (H2S is now recognized as a third gaseous mediator along with nitric oxide (NO and carbon monoxide (CO, though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production.

  10. Fundamental study on the simultaneous removal of gaseous and particulate matters in room environment by fibrous filters

    International Nuclear Information System (INIS)

    Otani, Y.; Emi, H.; Mori, J.

    1991-01-01

    In order to achieve simultaneous removal of gaseous and particulate room air pollutants, two approaches were taken. The use of activated carbon fiber (ACF) filter, focusing on the improvement of its particle collection efficiency by using electrostatic charge caused by surface modification with chemicals and enhancement of adsorption capacity by chemical impregnation, and conversion of gaseous components to particles so as to collect them by air filters. It was shown that the immersion of ACF filter in hydrogen peroxide solution brings electrostatic charge on the fibers, which markedly increases the collection efficiency for charged particles. The impregnation of aniline is very effective for the adsorption of acetaldehyde, and by the use of corona discharge, acetaldehyde is decomposed to other gaseous matters, but some olefin compounds in cigarette smoke are converted to particles via a reaction with ozone. (author)

  11. Position sensitive gaseous photomultipliers

    CERN Document Server

    Biteman, V; Peskov, Vladimir; Sakuraï, H; Silin, E; Sokolova, T; Radionov, I

    2001-01-01

    In this paper a simple design of a gaseous photomultiplier, sensitive up to visible light, is described. It consists of a parallel plate chamber combined with a solid photocathode through a capillary plate, which works in a transmission mode and serves to suppress photon feedback. Ion feedback was minimized through the optimization of the gas mixture. A gain >10 sup 3 was achieved.

  12. Variable scaling method and Stark effect in hydrogen atom

    International Nuclear Information System (INIS)

    Choudhury, R.K.R.; Ghosh, B.

    1983-09-01

    By relating the Stark effect problem in hydrogen-like atoms to that of the spherical anharmonic oscillator we have found simple formulas for energy eigenvalues for the Stark effect. Matrix elements have been calculated using 0(2,1) algebra technique after Armstrong and then the variable scaling method has been used to find optimal solutions. Our numerical results are compared with those of Hioe and Yoo and also with the results obtained by Lanczos. (author)

  13. From nitric oxide to hyperbaric oxygen: invisible and subtle but nonnegligible gaseous signaling molecules in acute pancreatitis.

    Science.gov (United States)

    Wang, Gang; Iv, Jia-Chen; Wu, Lin-Feng; Li, Le; Dong, De-Li; Sun, Bei

    2014-05-01

    Nitric oxide (NO), carbon monoxide, and hydrogen sulfide in addition to hydrogen are well established as gaseous signal molecules throughout the body. Although the role of gasotransmitters in acute pancreatitis (AP) has been explored for many years, many details remain to be elucidated. The physiologic effect of NO in AP mainly relies on induced NO synthase, which stimulates the production of cytokines in the blood. Carbon monoxide inhibits nuclear factor-κB activation, which leads to amelioration of the inflammatory response. Hydrogen sulfide displays a dual role in the mechanism of AP according to its concentration in the system. Hydrogen is a newly discovered gaseous signaling molecule, and currently, there is little evidence that it has any function in alleviating inflammation. We discovered that hyperbaric oxygen is a novel gasotransmitter that has potential use in the treatment of AP. The correlation among hyperbaric oxygen, hypoxia inducible factor 1α, and other signaling pathways should be further studied. We also discuss some prospects and issues that remain to be resolved in this review. In summary, the discovery of gaseous signal molecules has established a new platform for deep investigation of the mechanism of AP, and our knowledge of the role of gasotransmitters in AP will increase with further research.

  14. The effect of pre-treatments to the nickel limonite leaching using dissolved gaseous SO2-air

    Science.gov (United States)

    Wulandari, W.; Soerawidjaja, T. H.; Alifiani, D.; Rangga, D. A.

    2018-01-01

    Nickel limonite leaching has been subjected to a number of studies, one of the method is by using dissolved gaseous SO2-air. The selectivity of nickel over iron extracted from leaching using dissolved gaseous SO2-air is advantageous, however the nickel that can be recovered is limited. This paper studies pre-treatments that is applied to the nickel ore prior leaching in order to increase the recovery of dissolved nickel from nickel limonite ore. There two pre-treatments that were carried out in this research, roasting and alkali-roasting using Na2CO3. The extraction was carried out for 180 min with pH 2, 3, 4, and 5 and temperature 30, 55, and 80 °C. It is found that the highest yield is achieved at pH 2 and 80 °C with nickel recovery of 61.39%. At pH 2, for alkali-roasting pre-treatment, the nickel yield raised from 28.17% to 100% and for roasting pre-treatment the nickel yield increased from 20.42% to 61.39%. However, at pH 2, the nickel to iron selectivity decreased from 96272 to 534 for roasting pre-treatment and from 1.8 to 1 for alkali-roasting pre-treatment.

  15. H/D Isotope Effects in Hydrogen Bonded Systems

    Directory of Open Access Journals (Sweden)

    Aleksander Filarowski

    2013-04-01

    Full Text Available An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the proton motion are presented starting from the state without possibility of the proton transfer up to the state with a full ionization. The manifestations of the H/D isotope effect are best reflected in the infra-red absorption spectra. A most characteristic is the run of the relationship between the isotopic ratio nH/nD and position of the absorption band shown by using the example of NHN hydrogen bonds. One can distinguish a critical range of correlation when the isotopic ratio reaches the value of ca. 1 and then increases up to unusual values higher than . The critical range of the isotope effect is also visible in NQR and NMR spectra. In the critical region one observes a stepwise change of the NQR frequency reaching 1.1 MHz. In the case of NMR, the maximal isotope effect is reflected on the curve presenting the dependence of Δd (1H,2H on d (1H. This effect corresponds to the range of maximum on the correlation curve between dH and ΔpKa that is observed in various systems. There is a lack in the literature of quantitative information about the influence of isotopic substitution on the dielectric properties of hydrogen bond except the isotope effect on the ferroelectric phase transition in some hydrogen bonded crystals.

  16. Effect of Magnesium Fluoride on Hydrogenation Properties of Magnesium Hydride

    Directory of Open Access Journals (Sweden)

    Pragya Jain

    2015-11-01

    Full Text Available A cost effective catalyst is of great importance for consideration of MgH2 as potential hydrogen storage material. In this regard, we investigated the catalytic role of alkaline metal fluoride on the hydrogen storage behavior of MgH2. Samples were synthesized by admixing 5 mol % MgF2 into MgH2 powder using planetary ball mill. Hydrogenation measurements made at 335 °C showed that in comparison to only 70% absorption by pure MgH2, catalyzed material absorbed 92% of theoretical capacity in less than 20 min and desorbed completely in almost the same time. Sorption studies done at lower temperatures revealed that complete absorption at temperature as low as 145 °C is possible. This is due to uniform distribution of MgF2 nano particles within the MgH2 powder. X-ray diffraction patterns also showed the presence of stable MgF2 phase that does not decompose upon hydrogen absorption-desorption. Cyclic measurements done at 310 °C showed negligible loss in the overall storage capacity with cycling. These results reveal that the presence of the chemically inert and stable MgF2 phase is responsible for good reversible characteristic and improved kinetics.

  17. Thermodynamics of silicon nitridation - Effect of hydrogen

    Science.gov (United States)

    Shaw, N. J.; Zeleznik, F. J.

    1982-01-01

    Equilibrium compositions for the nitridization of Si were calculated to detect the effectiveness of H2 in removal of the oxide film and in increasing the concentration of SiO and reducing the proportions of O2. Gibbs free energy for the formation of SiN2O was computed above 1685 K, and at lower temperatures. The thermodynamic properties of SiN2O2 were then considered from 1000-3000 K, taking into account the known thermodynamic data for 39 molecular combinations of the Si, Ni, and O. The gases formed were assumed ideal mixtures with pure phase condensed species. The mole fractions were obtained for a system of SiO2 with each Si particle covered with a thin layer of SiO2 before nitridation, and a system in which the nitriding atmosphere had access to the Si. The presence of H2 was determined to enhance the removal of NiO2 in the first system, decrease the partial pressure of O2, increase the partial pressures of SiO, Si, H2O, NH3, and SiH4, while its effects were negligible in the Si system.

  18. Effect of vegetable oil oxidation on the hydrogenation reaction process

    Directory of Open Access Journals (Sweden)

    Kalantari, Faranak

    2010-12-01

    Full Text Available Hydrogenation has been carried out in a batch reactor with three different oxidized bleached oils in order to discover the effect of oxidation on the hydrogenation reaction process. Specifications of hydrogenated oils such as melting point, Iodine value, solid fat content and fatty acid composition of the oxidized oils were compared with their un-oxidized reference oils. Oxidized bleached sunflower oil was hydrogenated to target melting points (34, 39 and 42°C at higher iodine values vs. its reference oil with the same reaction time. Oxidized bleached soybean and canola oils were hydrogenated to target melting points (34, 39 and 42°C at higher iodine values as well, but reaction times were longer than their reference oils. The resulting solid fat content and total trans fatty acids of all hydrogenated oils were less than their references. A peroxide value above 0.5meq O2/kg for non auto-oxidized oils and above 5meq O2/kg for auto-oxidized oils will significantly change the hydrogenation process.

    La hidrogenación fue llevada cabo en un reactor discontinuo con tres aceites decoloradas y oxidadas con objeto de estudiar el efecto de la oxidación en el proceso de hidrogenación. Las especificaciones de los aceites hidrogenados tales como el punto de fusión, índice de yodo, contenido de grasa sólida y composición de ácidos grasos de los aceites oxidados fueron comparados con sus correspondientes aceites de referencia sin oxidar. El aceite de girasol decolorado y oxidado fue hidrogenado hasta alcanzar un punto de fusión (34, 39 and 42°C con altos índices de yodo versus su aceite de referencia con el mismo tiempo de reacción. Aceites decolorado y oxidado de soja y de canola fueron hidrogenados hasta alcanzar puntos de fusión (34,39 y 42°C con altos valores de yodo, pero los tiempo de reacción fueron más largos que en sus aceites de referencia. Los resultados del contenido de grasa sólida y ácidos grasos

  19. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  20. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  1. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  2. Nuclear quantum effects induce metallization of dense solid molecular hydrogen.

    Science.gov (United States)

    Azadi, Sam; Singh, Ranber; Kühne, Thomas D

    2018-02-15

    We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the C2/c, Pc, and P63/m structures at pressures of 250, 300, and 350 GPa are calculated using the diffusion quantum Monte Carlo (DMC) method. The atomic configurations are obtained from ab initio path-integral molecular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point energy and temperature-induced motion of the protons including anharmonic effects. We find that finite temperature and nuclear quantum effects reduce the band-gaps substantially, leading to metallization of the C2/c and Pc phases via band overlap; the effect on the band-gap of the P63/m structure is less pronounced. Our combined DMC-PIMD simulations predict that there are no excitonic or quasiparticle energy gaps for the C2/c and Pc phases at 300 GPa and 300 K. Our results also indicate a strong correlation between the band-gap energy and vibron modes. This strong coupling induces a band-gap reduction of more than 2.46 eV in high-pressure solid molecular hydrogen. Comparing our DMC-PIMD with experimental results available, we conclude that none of the structures proposed is a good candidate for phases III and IV of solid hydrogen. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1982-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some reactor loss-of-coolant reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, the authors have conducted open tube tests and closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen where the peak overpressure is reduced by two and one-half. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  4. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  5. [Effect of reduced oxygen concentrations and hydrogen sulfide on the amino acid metabolism and mesenchymal cells proliferation].

    Science.gov (United States)

    Plotnikova, L N; Berezovskii, V A; Veselskii, S P

    2015-01-01

    We investigated the effect of hydrogen sulfide donor (10(-12) mol/l NaHS--I group) alone and together with the reduced oxygen concentrations (5% O2--II group, 3% O2--III group, 24 h) on the biological processes of human stem cells culture. It was shown that the cells proliferation by the third day of cultivation in I, II and III group decreased 1,7; 2,8 and 4,2 times. On the 4th day of culture proliferation inhibited in I, II and III group by 29; 33 and 54% compared to the control. Thus, adverse effects NaHS enhanced by reducing the oxygen concentration. It was established that in all experimental versions rapidly absorbed from the culture medium amino acids: cysteine and cystine, serine and aspartic acid, valine and tryptophan, proline and hydroxyproline, which are involved in the synthesis of proteins, in particular collagen. In the culture medium increased the concentration of free amino acids of the three factions: arginine, histidine and taurine; glycine and methionine; alanine and glutamine. We believe that in the applied concentration of hydrogen sulfide donor in conditions of low oxygen in a gaseous medium incubation inhibits the proliferation and alters the amino acid metabolism of human cells line 4BL.

  6. Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liwei [Midwest Optoelectronics, LLC, Toledo, OH (United States); Deng, Xunming [Univ. of Toledo, OH (United States); Abken, Anka [Midwest Optoelectronics, LLC, Toledo, OH (United States); Cao, Xinmin [Midwest Optoelectronics, LLC, Toledo, OH (United States); Du, Wenhui [Midwest Optoelectronics, LLC, Toledo, OH (United States); Vijh, Aarohi [Xunlight Corporation, Toledo, OH (United States); Ingler, William [Univ. of Toledo, OH (United States); Chen, Changyong [Univ. of Toledo, OH (United States); Fan, Qihua [Univ. of Toledo, OH (United States); Collins, Robert [Univ. of Toledo, OH (United States); Compaan, Alvin [Univ. of Toledo, OH (United States); Yan, Yanfa [Univ. of Toledo, OH (United States); Giolando, Dean [Univ. of Toledo, OH (United States); Turner, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-10-29

    The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and has an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH

  7. Basic promoters effect over nickel/alumina catalyst on hydrogen production via methane catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Requies, J.; Cabrero, M. A.; Barrio, V. I.; Cambra, J. F.; Arias, P. L.; Guemez, B.; La Oarola, V.; Pena, M. A.; Fierro, J. L. G.

    2005-07-01

    The European Directives concerning the environment protection and the sustainable development include the green fuels production and utilization. Thus, one of their major objectives is related to the research on processes to obtain green fuels and their direct application or their transformation in clean energy carriers and final fuels as hydrogen. Hydrogen is an energy vector that is being considered by most countries and many energy companies as a possible long-term solution in the electricity, heating and transport energy markets, where it will offer greenhouse gas abatement and other local air quality benefits. Before the generalization of hydrogen production from renewable resources, other production processes can fulfil the objective of generating an energy infrastructure based on hydrogen. By the methane catalytic partial oxidation (CPO) process or by an analogous one, like Wet CPO, a synthesis gas can be produced. This gas can be further treated to maximize the hydrogen production or it can also be used to generate clean liquid fuels precursors via Fischer-Tropsch synthesis. In the present work, the hydrogen and/or synthesis gas production via CPO or Wet-CPO is studied using nickel catalyst supported on -Al2O3 promoted by basic metals (Ca and Mg). The conventional nickel supported catalysts are highly effective for these processes. Nevertheless, they are unsatisfactory with respect to coke formation. Deactivation of these catalysts by a coke formation is sometimes a serious limitation. The addition of calcium and magnesium onto Ni/ -Al2O3 aims to eliminate the coke formation, via a reduction on support acidity, and as a result to improve these catalysts performance. The catalysts were prepared by consecutive wet impregnation method, and -Al2O3 was employed as acid support. The nominal contents of nickel were 15 and 25 wt%. The nominal contents of promoters were 5 and 10 wt% of Mg or Ca. The catalyst textural characterization was studied using different

  8. Nuclear quantum effects and hydrogen bond fluctuations in water

    Science.gov (United States)

    Ceriotti, Michele; Cuny, Jérôme; Parrinello, Michele; Manolopoulos, David E.

    2013-01-01

    The hydrogen bond (HB) is central to our understanding of the properties of water. However, despite intense theoretical and experimental study, it continues to hold some surprises. Here, we show from an analysis of ab initio simulations that take proper account of nuclear quantum effects that the hydrogen-bonded protons in liquid water experience significant excursions in the direction of the acceptor oxygen atoms. This generates a small but nonnegligible fraction of transient autoprotolysis events that are not seen in simulations with classical nuclei. These events are associated with major rearrangements of the electronic density, as revealed by an analysis of the computed Wannier centers and 1H chemical shifts. We also show that the quantum fluctuations exhibit significant correlations across neighboring HBs, consistent with an ephemeral shuttling of protons along water wires. We end by suggesting possible implications for our understanding of how perturbations (solvated ions, interfaces, and confinement) might affect the HB network in water. PMID:24014589

  9. Hydrogen embrittlement I. Analysis of hydrogen-enhanced localized plasticity: Effect of hydrogen on the velocity of screw dislocations in α -Fe

    Science.gov (United States)

    Katzarov, Ivaylo H.; Pashov, Dimitar L.; Paxton, Anthony T.

    2017-08-01

    We demonstrate a kinetic Monte Carlo simulation tool, based on published data using first-principles quantum mechanics, applied to answer the question: under which conditions of stress, temperature, and nominal hydrogen concentration does the presence of hydrogen in iron increase or decrease the screw dislocation velocity? Furthermore, we examine the conditions under which hydrogen-induced shear localization is likely to occur. Our simulations yield quantitative data on dislocation velocity and the ranges of hydrogen concentration within which a large gradient of velocity as a function of concentration is expected to be observed and thereby contribute to a self-perpetuating localization of plasticity—a phenomenon that has been linked to hydrogen-induced fracture and fatigue failure in ultrahigh strength steel. We predict the effect of hydrogen in generating debris made up of edge dipoles trailing in the wake of gliding screw dislocations and their role in pinning. We also simulate the competing effects of softening by enhanced kink-pair generation and hardening by solute pinning. Our simulations act as a bridge between first-principles quantum mechanics and discrete dislocation dynamics, and at the same time offer the prospect of a fully physics-based dislocation dynamics method.

  10. The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential

    OpenAIRE

    Yaqi Shen; Zhuqing Shen; Shanshan Luo; Wei Guo; Yi Zhun Zhu

    2015-01-01

    Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, a...

  11. The effect of organic molecules adsorption on hydrogen absorption in relation to the hydrogen evolution reaction

    Directory of Open Access Journals (Sweden)

    LJILJANA VRACAR

    2001-12-01

    Full Text Available The competitive adsorption of organic molecules (2,7-naphthalenedisulfonic acid and adsorbed H is of interest in relation to its influence on H absorption into a Pd-Ni electrodeposited alloy. The experimental results, in acid solution, show an enhancement of the coverage of the electrode surface with adosrbed H due to the competitive adsorption of organic molecules that interfere with H atoms, through lateral attractive interactions between the adsorbed species and communal electronic effects, leading supposedly to a decreased probability of H entry into the alloy. Chemisorbed H is, on the other hand, an intermediate in the HER, so the enhancement of the electrode coverage in the presence of co-adsorbed organic molecules promotes the hydrogen evolution reaction.

  12. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Bhatia Madhav

    2009-12-01

    Full Text Available Abstract Background Hydrogen sulfide (H2S, a gaseous mediator plays an important role in a wide range of physiological and pathological processes. H2S has been extensively studied for its various roles in cardiovascular and neurological disorders. However, the role of H2S in inflammation is still controversial. The current study was aimed to investigate the therapeutic potential of sodium hydrosulfide (NaHS, an H2S donor in in vivo model of acute pancreatitis in mice. Methods Acute pancreatitis was induced in mice by hourly caerulein injections (50 μg/kg for 10 hours. Mice were treated with different dosages of NaHS (5 mg/kg, 10 mg/kg or 15 mg/kg or with vehicle, distilled water (DW. NaHS or DW was administered 1 h before induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and were processed to measure the plasma amylase, myeloperoxidase (MPO activities in pancreas and lung and chemokines and adhesion molecules in pancreas and lung. Results It was revealed that significant reduction of inflammation, both in pancreas and lung was associated with NaHS 10 mg/kg. Further the anti-inflammatory effects of NaHS 10 mg/kg were associated with reduction of pancreatic and pulmonary inflammatory chemokines and adhesion molecules. NaHS 5 mg/kg did not cause significant improvement on inflammation in pancreas and associated lung injury and NaHS 15 mg/kg did not further enhance the beneficial effects seen with NaHS 10 mg/kg. Conclusion In conclusion, these data provide evidence for anti-inflammatory effects of H2S based on its dosage used.

  13. Isotope effects in hydrogen atom transfers. 9. Neighboring group participation

    International Nuclear Information System (INIS)

    Lewis, E.S.; Shen, C.C.

    1977-01-01

    The tritium isotope effects in hydrogen abstraction by bromine atoms from HC(Me) 2 CH 2 X have been measured in the photobromination reaction by a technique which measures the specific activity of the HBr product. At 1 0 C and with the reverse reaction suppressed or irrelevant the values for k/sub H//k/sub T/ are 3.9, 8.2, and 11.6 for X = CH 3 , Cl, and Br, respectively. An isotope effect of 3.5 for X = H was also measured, but the contribution of the reverse reaction was not established. The relatively large isotope effect for X = Br is interpreted in terms of a weakening of the CH bond by neighboring bromine participation. The smaller effect of chlorine may correspond to a minor participation, but the unfavorable inductive effect of the chlorine is also a factor. The case of X = Br is the microscopic reverse of the addition of HBr to 2-methylpropene, and the results are compared with isotope effects in the addition to HBr to olefins. The measurement of isotope effect is, within some described limitations, a convenient and general method for detecting neighboring group participation in hydrogen atom abstractions

  14. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Three processes are discussed for separating tritium from gaseous and aqueous effluent systems: separation in the gas phase using Pd-25 wt percent Ag alloy diffusion membranes; electrolytic separation in the aqueous phase using ''bipolar'' electrodes; and the countercurrent exchange of tritium-containing hydrogen gas with water on catalytic surfaces combined with separation by direct electrolysis

  15. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Wan, Wei; Wang, Jianlong [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)

    2008-12-15

    The inhibitory effect of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production by mixed cultures was investigated in batch tests using glucose as substrate. The experimental results showed that, at 35 C and initial pH 7.0, during the fermentative hydrogen production, the substrate degradation efficiency, hydrogen production potential, hydrogen yield and hydrogen production rate all trended to decrease with increasing added ethanol, acetic acid, propionic acid and butyric acid concentration from 0 to 300 mmol/L. The inhibitory effect of added ethanol on fermentative hydrogen production was smaller than those of added acetic acid, propionic acid and butyric acid. The modified Han-Levenspiel model could describe the inhibitory effects of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production rate in this study successfully. The modified Logistic model could describe the progress of cumulative hydrogen production. (author)

  16. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  17. Assessment of the effectiveness of downward water sprays for mitigating gaseous chlorine releases in partially confined spaces.

    Science.gov (United States)

    Dimbour, J P; Gilbert, D; Dandrieux, A; Dusserre, G

    2003-01-31

    Water sprays are sometimes used as a means of mitigating accidental releases of chlorine gas. This paper gives results of a series of small-scale experimental field tests on the mitigation of chlorine gaseous releases (about 1kg/min) by various downward water sprays. The releases were from a cylinder of liquefied chlorine located in a storage shed. The shed could be configured to simulate confined and semi-confined installations used at public swimming pools. The water sprays were located in the shed. During these tests, different types of spray nozzles and storage configurations were tested under various atmospheric conditions, in order to select the best water spray. It was shown that the best chlorine downstream concentration reduction (factor 3-5 at 10m) was achieved with a flat fan water spray for the semi-confined configuration. Poor absorption in water was observed (fog water spray for the confined configuration. This is expected since chlorine is a low soluble gas. It has been evidenced for the confined configuration, that even if reduction of concentration has been observed (factor 2), downstream concentration remains very high (>10,000ppm), and above critical level of toxicity. Consequently, the use of water sprays in this case without additives to promote absorption seems to be inefficient.

  18. Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys

    Directory of Open Access Journals (Sweden)

    Yingwei Song

    2014-09-01

    Full Text Available Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys. The effect of hydrogen on the corrosion behavior of the Mg–2Zn and Mg–5Zn alloys is investigated by charging hydrogen treatment. The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy (SEM and the corrosion resistance was evaluated by polarization curves. It is found that there are oxide films formed on the surface of the charged hydrogen samples. The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys, while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability. Also, the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.

  19. Effect of hydrogen on mechanical properties of β-titanium alloys

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Abstract. Conflicting opinions exist in the literature on the manner in which hydrogen influences the mechanical properties of β-titanium alloys. This can be attributed to the β-stabilizing effect of hydrogen in these materials leading to major changes in the microstructure as a result of hydrogen charging. The resulting.

  20. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.

    2010-01-01

    The antifouling (AF) potential of hydrogen peroxide (H2O2) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H2O2 inhibited bacterial biofilm formation by eight of nine marine...... Proteobacteria, tested in microtiter plates. However, enzymatically produced H2O2 released from a coating did not impede biofilm formation by bacteria in natural seawater tested in a biofilm reactor. A field trial revealed a noticeable effect of the enzyme system: after immersion in the North Sea for 97 days...

  1. Desulfurizing Coal By Chlorinolysis and Hydrogenation

    Science.gov (United States)

    Kalvinskas, J. J.; Rohatgi, N. K.

    1983-01-01

    85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.

  2. The Effect of Teflon Emulsion on Hydrogen Electrode Properties and Performance in Nickel-Hydrogen Cells

    Science.gov (United States)

    2008-01-30

    MM7,T P. P .P-qNn M Roft ftr-d 13 With the help of a program office and Eagle - Picher , two cells containing hydrogen electrodes made with T30 and two...SUPPLEMENTARY NOTES 14. ABSTRACT The traditional T30 Teflon emulsion used in nickel-hydrogen battery cells is being phased due to EPA concerns with two of its...Oriented Investigation and Experimentation (MOlE) program. 15. SUBJECT TERMS Battery , Nickel-hydrogen, Electrode, Teflon 16. SECURITY CLASSIFICATION OF: 17

  3. Plasma screening effects on the energies of hydrogen atom

    International Nuclear Information System (INIS)

    Soylu, A.

    2012-01-01

    A more general exponential cosine screened Coulomb potential is used for the first time to investigate the screening effects on the hydrogen atom in plasmas. This potential is examined for four different cases that correspond to four different type potentials when the different parameters are used in the potential within the framework of the well-known asymptotic iteration method. By solving the corresponding the radial Schrödinger equation with the screened and exponential cosine screened Coulomb potentials and comparing the obtained energy eigenvalues with the results of other studies, the applicability of the method to this kind of plasma physics problem is shown. The energy values of more general exponential cosine screened Coulomb potential are presented for various parameters in the potential. One of the advantages of the present potential is that it exhibits stronger screening effect than that of the exponential cosine screened Coulomb potential and it is also reduced to screened Coulomb and exponential cosine screened Coulomb as well as Coulomb potentials for special values of parameters. The parameters in the potential would be useful to model screening effects which cause an increase or decrease in the energy values of hydrogen atom in both Debye and quantum plasmas and in this manner this potential would be useful for the investigations of the atomic structure and collisions in plasmas.

  4. Bioconversion of solar energy into gaseous fuel (biogas) at elevated temperatures

    Science.gov (United States)

    Pantskhava, E. S.

    Various bacterial systems that can be used to convert proteins, lipids, and polysaccharides into gaseous fuel (biogas) and thus to replace the diminishing sources of natural fuels are discussed. Consideration is given to the individual reaction stages (i.e., the hydrolytic, acidogenic, and methanogenic steps) of the anaerobic fermentation process that produces methane and CO2 from raw biochemicals and to particular bacterial cultures responsible for these reactions. Special attention is given to the effects of various conditions of culture maintenance, such as hydrogenation and the rate and the manner of substrate renewal, on the yield of CH4 in the industrial production of biogas.

  5. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Original Research Article. Sevoflurane improves gaseous exchange and exerts protective effects in lipopolysaccharide-induced lung injury in mice models .... field microscope [20]. Statistical analysis. All data are expressed as mean ± standard error of the mean (SEM). One-way ANOVA followed by Tukey's test were used ...

  6. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment.

    Science.gov (United States)

    Davies, A; Pottage, T; Bennett, A; Walker, J

    2011-03-01

    The recent data for hospital-acquired infections suggest that infection rates for meticillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile are beginning to decrease. However, while there is still pressure to maintain this trend, the resistance of C. difficile spores to standard detergents continues to present a problem for many UK hospitals trying to prevent its spread or control outbreaks. Alternative disinfection technologies such as gaseous decontamination are currently being marketed to the healthcare sector as an alternative/supplement to manual disinfection, and have been shown to be effective in reducing environmental contamination. When used correctly, they offer a complementary technology to manual cleaning that increases the probability of an effective reduction in viability and provides a comparatively uniform distribution of disinfectant. Three gaseous decontamination technologies are examined for their suitability in reducing environmental contamination with C. difficile: gaseous hydrogen peroxide, chlorine dioxide and ozone. Air decontamination and UV-based technologies are also briefly described. We conclude that while there is a role to play for these new technologies in the decontamination of ward surfaces contaminated with C. difficile, the requirement for both a preclean before use and the limited 'in vivo' evidence means that extensive field trials are necessary to determine their cost-effectiveness in a healthcare setting. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Aubert, Isabelle; Olive, Jean-Marc; Saintier, Nicolas

    2010-01-01

    A statistical analysis of the effect of internal hydrogen on the surface slip morphology of relatively high nickel content AISI 316L type austenitic stainless steel was carried out on high resolution data obtained by atomic force microscopy. Surface plastic strain localisation was studied for different hydrogen contents, two grain sizes, and two plastic strain levels. The height and spacing of approximately 8000 slip bands, observed on 12 specimens, are shown to follow log-normal distributions. Hydrogen increased the mean slip-band height and the mean slip-band spacing for the two macroscopic plastic strain levels considered, and for the two hydrogen concentrations in coarse-grained specimens. The hydrogen effect was also observed for fine-grained specimens, but only for the highest hydrogen concentration. In addition, the emerging dislocation velocity increased by a factor 3 for high hydrogen content.

  8. Effect of hydrogen on the mechanical properties of titanium and its alloys

    Science.gov (United States)

    Beck, F. H.

    1975-01-01

    Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.

  9. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  10. Effect of hydrogen on reduction of burden materials

    Energy Technology Data Exchange (ETDEWEB)

    Hooey, P.L. [Rautaruukki Oy, Raahe (Finland). Raahe Steel

    1996-12-31

    Efficient operation of iron blast furnaces requires that the iron bearing burden material have good reduction, softening and melting characteristics. These characteristics are determined by the physical operation of the blast furnace and the mineralogical composition of the agglomerate. Increasing oil injection rates will increase the hydrogen content of the reducing gas significantly. The aim of this work is to establish how different burden materials react to this change in gas environment, and develop sinters which have optimal properties. The testing of sinter and pellets is broken into two areas: development of the test methods; and determination of sinter and pellet characteristics. The test method requires development because recent testwork has shown that the reducibility of the sinter is now so high that the reduction under load test is no longer sensitive. A new control program and more realistic gas compositions are currently being tested. The softening and melting characteristics of sinters of varying composition, acid pellets and olivine pellets have been tested using the reduction under load test at Rautaruukki Oy Research Centre. The effect of hydrogen in the reducing gas on the different iron ore agglomerates has been evaluated SULA 2 Research Programme; 6 refs.

  11. Low temperature isotope effects of hydrogen diffusion in metallic glasses

    International Nuclear Information System (INIS)

    Hofmann, A.; Kronmueller, H.

    1989-01-01

    Snoek-like relaxation peaks of Hydrogen and Deuterium in amorphous Fe 80 B 20 , Fe 40 Ni 40 P 14 B 6 and Fe 91 Zr 9 are detected. At low H, D concentrations the peaks are near 200 K and show small isotope effects of the average activation energies (anti Q H ≅ 0.6 eV, anti Q D - anti Q H ≤ 10 meV). For higher H, D-contents the peaks shift to lower temperatures around to 120 K and show distinct isotope effects in the activation energies (anti Q H ≅ 0.3 eV, anti Q D - anti Q H ≅ 30 meV) and in the amplitude of the low temperature tails of the relaxation peaks. This points to isotope mass dependent deviations from the Arrhenius law due to nonthermal tunneling processes. (orig.)

  12. Possibilities of hydrogen removal. Phase 2: Limitation of hydrogen effects in hypothetical severe accidents in PWR reactors

    International Nuclear Information System (INIS)

    Langer, G.; Koehling, A.; Nikodem, H.

    1984-01-01

    In the event of hypothetical severe accidents in light-water reactors, considerable amounts of hydrogen may be produced and released into the containment. Combustion of the hydrogen may jeopardize the integrity of the containment. The study reported here aimed to identify methods to mitigate the hydrogen problem. These methods should either prevent hydrogen combustion, or limit its effects. The following methods have been investigated: pre-inerting; chemical oxygen absorption; removal of oxygen by combustion; post-inerting with N 2 , CO 2 , or halon; aqueous foam; water fog; deliberate ignition; containment purging; and containment venting. The present state of the art in both nuclear and non-nuclear facilities, has been identified. The assessment of the methods was based on accident scenarios assuming significant release of hydrogen and the spectrum of requirements derived from these scenarios was used to determine the advantages and drawbacks of the various methods, assuming their application in a pressurized water reactor of German design. (orig./RW) [de

  13. Effects of Nd-addition on the structural, hydrogen storage, and electrochemical properties of C14 metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Nei, J.; Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Ng, K.Y.S. [Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2015-10-25

    Nd-addition to the AB{sub 2}-based alloy Ti{sub 12}Zr{sub 22.8−x}V{sub 10}Cr{sub 7.5}Mn{sub 8.1}Co{sub 7.0}Ni{sub 32.2}Al{sub 0.4}Nd{sub x} is studied for its effects on the structure, gaseous-phase hydrogen storage, and electrochemical properties. This study follows a series of Cu, Mo, Fe, Y, Si, and La doping studies in similar AB{sub 2}-based alloys. Limited solubility of Nd in the main Laves phase promotes the formation of secondary phases (AB and Zr{sub 7}Ni{sub 10}) to provide catalytic effects and synergies for improved capacity and high-rate dischargeability (HRD) performance. The main C14 storage phase has smaller lattice constants and cell volumes, and these effects reduce the storage capacity at higher Nd levels. Different hydrogen absorption mechanisms can occur in these multi-component, multi-phase alloys depending on the interfaces of the phases, and they have effects on the alloy properties. Higher Nd-levels improve the HRD performance despite having lower bulk diffusion and surface exchange current. Magnetic susceptibility measurements indicate large percentage of larger metallic nickel clusters are present in the surface oxide of alloys with higher Nd-content, and AC impedance studies show very low charge-transfer resistance with high catalytic capability in the alloys. The −40 °C charge-transfer resistance of 8.9 Ω g in this Nd-series of alloys is the lowest measured out of the studies investigating doped AB{sub 2}-based MH alloys for improved low-temperature characteristics. The improvement in HRD and low-temperature performance appears to be related to the proportion of the highly catalytic NdNi-phase at the surface, which must offset the increased bulk diffusion resistance in the alloy. - Graphical abstract: Schematics of hydrogen flow and corresponding PCT isotherms in funneling mode. - Highlights: • Structural and hydrogen storage properties of Nd-substituted AB{sub 2} metal hydride are reported. • Nd contributes to the lowest

  14. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant

  15. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Liverman, James L.

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  16. HYDROGEN EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M

    2008-03-28

    The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50-60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation.

  17. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    Science.gov (United States)

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  18. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  19. Hydrogen assisted catalytic biomass pyrolysis. Effect of temperature and pressure

    DEFF Research Database (Denmark)

    Stummann, M.Z.; Høj, M.; Schandel, C. B.

    2018-01-01

    . The effect of varying the temperature (365–511 °C) and hydrogen pressure (1.6–3.6 MPa) on the product yield and organic composition was studied. The mass balance closed by a mass fraction between 90 and 101% dry ash free basis (daf). The yield of the combined condensed organics and C4+ varied between a mass...... fraction of 17 and 22% daf, corresponding to an energy recovery of between 40 and 53% in the organic product. The yield of the non-condensable gases varied between a mass fraction of 24 and 32% daf and the char yield varied between 9.6 and 18% daf. The condensed organics contained a mass fraction of 42...

  20. Assessment of Effective Factor of Hydrogen Diffusion Equation Using FE Analysis

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2010-01-01

    The coupled model with hydrogen transport and elasto-plasticity behavior was introduced. In this paper, the effective factor of the hydrogen diffusion equation has been described. To assess the effective factor, finite element (FE) analyses including hydrogen transport and mechanical loading for boundary layer specimens with low-strength steel properties are carried out. The results of the FE analyses are compared with those from previous studies conducted by Taha and Sofronis (2001)

  1. Effects of hydrogen doping on UPd2Al3

    Science.gov (United States)

    Kim, W. W.; Stewart, G. R.

    1994-10-01

    We have succeeded in doping hydrogen into the ``semiheavy'' UPd2Al3 up to a stable concentration of UPd2Al3H1.3. Magnetism is depressed in UPd2Al3Hx: TN falls from 14.5 K with an initial slope of about 55 mK/%H, χ(1.8 K) initially remains relatively constant but rises substantially for x>0.34 to 21.4 memu/mole at x=1.30, while the effective moment inferred from the Curie-Weiss behavior in the susceptibility above 100 K falls monotonically with hydrogen doping from 3.39μB for x=0 to 2.82μB for x=1.30. Superconductivity is totally suppressed by approximately x=0.5. At the same time as the antiferromagnetic peak in the specific heat is being depressed to lower temperatures with increasing x, the specific heat divided by temperature data show more and more of an upturn below 10 K, reminiscent of the behavior seen in heavy fermion systems like CeCu2Si2. Whether or not this upturn in C/T is magnetic in character was checked via measurements of the magnetization at 1.8 K, which showed no signs of saturation up to 5.5 T, and of the field dependence of the low-temperature (0.3 KUPd2Al3H1.3 is indicative of an electron effective mass increased by a factor of 4 vs pure UPd2Al3, or due to magnetic correlations/short-range magnetic order remains an open question.

  2. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  3. Dosimeter for measuring gaseous contaminants

    International Nuclear Information System (INIS)

    Kring, E.V.; Lautenberger, W.J.

    1980-01-01

    A personal dosimeter for measuring the time-average concentration of a gaseous contaminant in the atmosphere in a manner substantially independent of atmospheric motion relative to the dosimeter is provided. The dosimeter comprises a detector substance capable of chemically or physically combining with the gaseous contaminant disposed tightly between two substantially flat members, at least one of which has a plurality of throughand-through channels. The members have corresponding, meshing shapes such that the channels provide the only communication between the atmosphere and the detector substance, allowing the gaseous contaminant to diffuse through the channels

  4. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  5. Active carbons for the storage of gaseous fuels; Charbons actifs pour le stockage de combustibles gazeux

    Energy Technology Data Exchange (ETDEWEB)

    Celzard, A.; Mareche, J.F. [Nancy-1 Univ. Henri Poincare, CNRS, Lab. de Chimie du Solide Mineral, 33 - Pessac (France); David, P. [CEA Centre d' Etudes du Ripault, Lab. Carbone et Composites, 37 - Tours (France); Goetz, V. [Universite de Perpignan, Lab. Procedes Materiaux et Energie Solaire, CNRS-PROMES (UPR 8521), 66 - Perpignan (France)

    2006-03-15

    Requirements for storing efficiently alternative gaseous fuels like methane and hydrogen are detailed, and the target to be reached is recalled in each case. The preparation of a suitable material for methane storage by adsorption is described, while systems for densifying hydrogen are reviewed. Engineering problems for filling and emptying adsorptive storage vessels are finally discussed. (authors)

  6. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  7. Effect of heat treatments on the hydrogen embrittlement ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Delayed failure tests were carried out on hydrogen charged API X-65 grade line-pipe steel in as received (controlled rolled), normalized, and quenched and tempered conditions. The resistance to hydrogen embrittlement was found in the order of controlled rolled > quenched and tempered > normalized. The frac-.

  8. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    Molecular dynamics simulations of dilute and concentrated aqueous NaCl solutions are carried out to investigate the changes of the hydrogen bonded structures in the vicinity of ions for different ion concentrations. An analysis of the hydrogen bond population in the first and second solvation shells of the ions and in the bulk ...

  9. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  10. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  11. Trace hydrogen extraction from liquid lithium tin alloy

    International Nuclear Information System (INIS)

    Xie Bo; Hu Rui; Xie Shuxian; Weng Kuiping

    2010-01-01

    In order to finish the design of tritium extraction system (TES) of fusion fission hybrid reactor (FFHR) tritium blanket, involving the dynamic mathematical model of liquid metal in contact with a gaseous atmosphere, approximate mathematical equation of tritium in lithium tin alloy was deduced. Moreover, carrying process used for trace hydrogen extraction from liquid lithium tin alloy was investigated with hydrogen being used to simulate tritium in the study. The study results indicate that carrying process is effective way for hydrogen extraction from liquid lithium tin alloy, and the best flow velocity of carrier gas is about 4 L/min under 1 kg alloy temperatures and carrying numbers are the main influencing factors of hydrogen number. Hydrogen extraction efficiency can reach 85% while the alloy sample is treated 6 times at 823 K. (authors)

  12. Effect of the chemical composition and the structural and phases states of materials on hydrogen retention

    Science.gov (United States)

    Chernov, I. I.; Stal'tsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu.; Korshunov, S. N.

    2017-07-01

    The results of investigation of the effect of chemical composition and structural and phase states of reactor steels and vanadium alloys on their capture and retention of hydrogen introduced into the materials in various ways are presented. It is shown that, in the case of identical conditions of hydrogen introduction, the amount of hydrogen captured by austenitic steels is substantially higher than that captured by ferritic/ martensitic steels. At the same time, the EP450 ODS ferritic/martensitic steel dispersion-strengthened with nanosized yttrium oxide particles retains a substantially higher amount of hydrogen as compared to that retained in the EP450 matrix steel. The alloying of vanadium with tungsten, zirconium, and titanium leads to an increase in the amount of retained hydrogen. The effect of titanium content on hydrogen retention is found to be nonmonotonic; the phenomenon is explained from a physical view point.

  13. Effect of hydrogenation on the band gap of graphene nano-flakes

    International Nuclear Information System (INIS)

    Tachikawa, Hiroto; Iyama, Tetsuji; Kawabata, Hiroshi

    2014-01-01

    The effects of hydrogenation on the band gap of graphene have been investigated by means of density functional theory method. It is generally considered that the band gap increases with increasing coverage of hydrogen atom on the graphene. However, the present study shows that the band gap decreases first with increasing hydrogen coverage and reaches the lowest value at finite coverage (γ = 0.3). Next, the band gap increases to that of insulator with coverage from 0.3 to 1.0. This specific feature of the band gap is reasonably explained by broken symmetry model and the decrease of pi-conjugation. The electronic states of hydrogenated graphene are discussed. - Highlights: • Density functional theory calculations were carried out for hydrogen on graphene • Effects of hydrogenation on the band gap of graphene were examined. • The band gap showed a minimum at a finite coverage. • Mechanism of specific band gap feature was discussed

  14. Hydrogen technology survey: Thermophysical properties

    Science.gov (United States)

    Mccarty, R. D.

    1975-01-01

    The thermodynamic functions, transport properties, and physical properties of both liquid and gaseous hydrogen are presented. The low temperature regime is emphasized. The tabulation of the properties of normal hydrogen in both Si and engineering units is given along with the tabulation of parahydrogen.

  15. Charge separation in branched TiO{sub 2} nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxia [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062 (China); Ni, Qian [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Zeng, Dawen, E-mail: dwzeng@mail.hust.edu.cn [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062 (China); Liao, Guanglan [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Xie, Changsheng [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China)

    2016-12-15

    Highlights: • Charge separation in homojunction based on the broadened band gap by quantum effect. • Absolute charge separation by the passivation effect of TiO{sub 2} nanorod. • Long-distance electron transfer behavior in photocatalysis. • Roughed surface for enhanced light harvesting by light trapping effect. - Abstract: As known, the electron transfer behavior in photocatalysis is short-distance transportation, which leads the photo-induced electrons and holes to be localized. The temporarily separated electrons and holes will recombine with each other in the localized region. In this paper, we successfully achieved electron transfer in a homojunction of branched rutile TiO{sub 2} nanorod @nanoparticle core-shell architecture by quantum confinement effect aroused by the nanoparticle, which is proved by the blue-shifting in UV–vis absorption spectrum of the homojunction. Meanwhile, an absolute charge separation is also achieved by the long-distance electron transfer along the single-crystalline rutile TiO{sub 2} nanorod as uninterrupted high-speed electron transfer channel to FTO substrates. Based on the effective charge separation, the photocatalytic decomposition of gaseous benzene by the homojunction is significantly enhanced, yielding 10 times CO{sub 2} than that of the nanorod array. This homojunction interfacial charge separation, aroused by quantum effect, through long-distance transfer along the single-crystalline nanorod gives us inspiration to achieve efficient charge separation with defect-less interfaces, which might can be utilized for real-time environmental abatement and energy generation simultaneously.

  16. Short-term effects of ambient particulates and gaseous pollutants on the incidence of transient ischaemic attack and minor stroke: a case-crossover study

    Directory of Open Access Journals (Sweden)

    Bedada Getahun

    2012-10-01

    Full Text Available Abstract Background While several studies have investigated the effects of short-term air pollution on cardiovascular disease, less is known about its effects on cerebrovascular disease, including stroke and transient ischaemic attack (TIA. The aim of the study was to assess the effects of short-term variation in air pollutants on the onset of TIA and minor stroke. Methods We performed secondary analyses of data collected prospectively in the North West of England in a multi-centre study (NORTHSTAR of patients with recent TIA or minor stroke. A case - crossover study was conducted to determine the association between occurrence of TIA and the concentration of ambient PM10 or gaseous pollutants. Results A total of 709 cases were recruited from the Manchester (n = 335 and Liverpool (n = 374 areas. Data for the Manchester cohort showed an association between ambient nitric oxide (NO and risk of occurrence of TIA and minor stroke with a lag of 3 days (odds ratio 1.06, 95% CI: 1.01 – 1.11, whereas negative association was found for the patients from Liverpool. Effects of similar magnitude, although not statistically significant, were generally observed with other pollutants. In a two pollutant model the effect of NO remained stronger and statistically significant when analysed in combination with CO or SO2, but was marginal in combination with NO2 or ozone and non-significant with PM10. There was evidence of effect modification by age, gender and season. Conclusions Our data suggest an association between NO and occurrence of TIA and minor stroke in Greater Manchester.

  17. Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: Effect of surface modification.

    Science.gov (United States)

    Mendoza, Joseph Albert; Lee, Dong Hoon; Kang, Joo-Hyon

    2017-09-01

    Photocatalytic nanoparticles have been receiving considerable attention for their potential use in many environmental management applications, including urban air quality control. This paper investigates the performance of surface modified WO 3 /TiO 2 composite particles in removing gaseous nitrogen oxides (NO x ) under visible light irradiation. The WO 3 /TiO 2 composite particles were synthesized using a modified wet chemical method with different concentrations of NaOH solution used as a surface modification agent for the host TiO 2 particles. The NO x removal efficiency of the WO 3 /TiO 2 particles was evaluated using a lab-scale continuous gas flow photo-reactor with a gas contact time of 1 min. Results showed that surface modification using NaOH can enhance the photocatalytic activity of the WO 3 /TiO 2 particles. The NO x removal efficiency of the surface modified WO 3 /TiO 2 was greater than 90%, while that of WO 3 /TiO 2 particles prepared by the conventional wet chemical method was ∼75%. The enhanced removal efficiency might be attributed to the formation of oxygen vacancies on the TiO 2 surface, providing sites for WO 3 particles to effectively bind with TiO 2 . However, excess amount of NaOH >3 M deteriorated the photocatalytic performance due to the increased agglomeration of the host TiO 2 particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of vitamin A supplementation at different gaseous environments on in vitro development of pre-implantation sheep embryos to the blastocyst stage.

    Science.gov (United States)

    Rajesh, N; Shankar, M B; Deecaraman, M

    2010-11-01

    Vitamin A (all-trans retinol) is an important antioxidant whose role in embryo development in vitro and in vivo is well established. Oxidative stress is a major cause of defective embryo development. This study evaluated the effects of all-trans retinol supplementation to maturation and embryo culture media under different gaseous environments on the development of ovine oocytes and embryos in vitro. The percentages of cleavage, morula and blastocyst, total cell count and comet assay were taken as indicators of developmental competence of embryos. In experiments I and II, all-trans retinol at concentrations of 0, 2, 4, 6, 8 and 10 μM were supplemented to the oocyte maturation medium and cultured in an environment of 5% or 20% O2 respectively. All-trans retinol supplementation (6 μM) to the maturation medium at 5% O2 levels significantly increased blastocyst yield and total cell number (P embryo culture media under a 5% or 20% O2 environment, respectively. All-trans retinol supplementation to the embryo culture medium at 5% O2 levels did not yield any significant result whereas the culture at 20% O2 levels gave significantly higher blastocyst yield in the 6 μM supplemented group compared with the control group (P < 0.01).

  19. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

    International Nuclear Information System (INIS)

    Quijano, Guillermo; Rocha-Rios, Jose; Hernandez, Maria; Villaverde, Santiago; Revah, Sergio; Munoz, Raul; Thalasso, Frederic

    2010-01-01

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a g ) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a g were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a g were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O 2 L -1 h -1 and 1.3 g O 2 L -1 h -1 were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a g rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  20. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Quijano, Guillermo [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico); Rocha-Rios, Jose [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Ingenieria de Procesos e Hidraulica (IPH), Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Hernandez, Maria; Villaverde, Santiago [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Revah, Sergio [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa, c/o IPH, UAM-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Munoz, Raul, E-mail: mutora@iq.uva.es [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Thalasso, Frederic [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico)

    2010-03-15

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a{sub g}) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a{sub g} were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a{sub g} were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O{sub 2} L{sup -1} h{sup -1} and 1.3 g O{sub 2} L{sup -1} h{sup -1} were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a{sub g} rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  1. The effects of atomic hydrogen and flake on mechanical properties of a tyre steel

    International Nuclear Information System (INIS)

    Ren, X.C.; Chu, W.Y.; Su, Y.J.; Li, J.X.; Qiao, L.J.; Jiang, B.; Zhang, M.R.; Chen, G.

    2008-01-01

    The effects of hydrogen and flake on the fracture toughness, hydrogen-induced delayed cracking (HIDC), impact toughness and fatigue properties of a tyre steel have been investigated. The results showed that there was no effect of flake and atomic hydrogen on the fracture toughness K IC . Atomic hydrogen could induce delayed failure under constant displacement. The threshold stress intensity factor of hydrogen-induced delayed cracking, K IH , decreased linearly with diffusible hydrogen concentration C 0 , i.e., K IH (MPa m 1/2 ) = K IC - 4.0C 0 (ppm) (C 0 > 0.5 ppm). Atomic hydrogen had no effect on impact toughness and fatigue properties when the C 0 was low (C 0 ≤ 0.5 ppm). The flakes decreased impact toughness and caused it to fluctuate. Atomic hydrogen increased the fatigue crack growth rate when the diffusible hydrogen concentration was high enough (C 0 ≥ 2.5 ppm). The flakes increased and undulated the fatigue crack growth rate

  2. Short-Term Effects of Gaseous Pollutants and Particulate Matter on Daily Hospital Admissions for Cardio-Cerebrovascular Disease in Lanzhou: Evidence from a Heavily Polluted City in China

    Directory of Open Access Journals (Sweden)

    Shan Zheng

    2013-01-01

    Full Text Available Panel studies show a consistent association between increase in the cardiovascular hospitalizations with air pollutants in economically developed regions, but little evidence in less developed inland areas. In this study, a time-series analysis was used to examine the specific effects of major air pollutants [particulate matter less than 10 microns in diameter (PM10, sulfur dioxide (SO2, and nitrogen dioxides (NO2] on daily hospital admissions for cardio-cerebrovascular diseases in Lanzhou, a heavily polluted city in China. We examined the effects of air pollutants for stratified groups by age and gender, and conducted the modifying effect of seasons on air pollutants to test the possible interaction. The significant associations were found between PM10, SO2 and NO2 and cardiac disease admissions, SO2 and NO2 were found to be associated with the cerebrovascular disease admissions. The elderly was associated more strongly with gaseous pollutants than younger. The modifying effect of seasons on air pollutants also existed. The significant effect of gaseous pollutants (SO2 and NO2 was found on daily hospital admissions even after adjustment for other pollutants except for SO2 on cardiac diseases. In a word, this study provides the evidence for the detrimental short-term health effects of urban gaseous pollutants on cardio-cerebrovascular diseases in Lanzhou.

  3. Solvent Effects in the Hydrogenation of 2-Butanone

    Energy Technology Data Exchange (ETDEWEB)

    Akpa, B. S.; DAgostino, C.; Gladden, L. F.; Hindle, K.; Manyar, H.; McGregor, J.; Li, Ruoyu; Neurock, Matthew; Sinha, N.; Stitt, E. H.; Weber, D.; Zeitler, J. A.; Rooney, D. W.

    2012-03-27

    In liquid-phase reaction systems, the role of the solvent is often limited to the simple requirement of dissolving and/or diluting substrates. However, the correct choice, either pure or mixed, can significantly influence both reaction rate and selectivity. For multi-phase heterogeneously catalysed reactions observed variations may be due to changes in mass transfer rates, reaction mechanism, reaction kinetics, adsorption properties and combinations thereof. The liquid-phase hydrogenation of 2-butanone to 2- butanol over a Ru/SiO2 catalyst, for example, shows such complex rate behaviour when varying water/isopropyl alcohol (IPA) solvent ratios. In this paper, we outline a strategy which combines measured rate data with physical property measurements and molecular simulation in order to gain a more fundamental understanding of mixed solvent effects for this heterogeneously catalysed reaction. By combining these techniques, the observed complex behaviour of rate against water fraction is shown to be a combination of both mass transfer and chemical effects.

  4. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  5. Aqueous chloride stress corrosion cracking of titanium: A comparison with environmental hydrogen embrittlement

    Science.gov (United States)

    Nelson, H. G.

    1973-01-01

    The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sqm) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment. Further, it is shown that if hydrogen is the causal species, the effective hydrogen fugacity at the surface of titanium exposed to an aqueous chloride environment is equivalent to a molecular hydrogen pressure of approximately 10 N/sqm.

  6. Electrical anharmonicity and dampings contributions to Cl-H → stretching band in gaseous (CH3)2O…HCl complex: Quantum dynamic study and prediction of the temperature effects

    Science.gov (United States)

    Rekik, Najeh; Alshammari, Majid F.

    2017-06-01

    In a previous work (Rekik et al., 2017), we demonstrated the ability of a simple anharmonic model of the dipole moment function of the X-H stretching band to explain a set of spectroscopic features of hydrogen bonding formation. Within the context of this model, we have shown that the origins of the broadening of the X - H → stretching band is attributed to large terms in the expansion of the autocorrelation functions due to the electrical anharmonicity. However, the question remained as to the ability of this model to treat the more complex situation in which we take into account the relaxation mechanisms that look at the effect of the surroundings and thereby gives rise to signatures of the medium to the X - H → stretching band lineshapes. Thus, in the present study, we investigated this situation by envisaging that the direct relaxation mechanism is due to the coupling between the fluctuating local electric field and the dipole moment of the complex as rationalized by Rosh and Ratner and the indirect damping resulting from the interaction of the X - H → stretch with its environment via the H-bond bridge mode. Theoretical experiments show that mixing of all these effects results in a speard and complicated structure. Using an ensemble of physically sound parameters as input into this approach, we have captured the main features in the experimental Cl - H → band in gaseous (CH3)2O…HCl complex and shown that the direct relaxation entrains a broadening of the spectra and is capable of qualitatively capturing the main features in the experimental spectra and quantitatively capturing the characteristic time scale of the vibrational dynamics of the Cl - H → stretching band. Furthermore, due to the decent agreement obtained between the theoretical and experimental line shapes at 226 K, the evolution of the IR spectra with the varaiation of temperature is proposed. The findings gained herein underscore the utility of combining simultaneously the effects of

  7. Method of removing iodine and compounds thereof from gaseous effluents

    International Nuclear Information System (INIS)

    Keener, R.L.; Kittle, P.A.

    1976-01-01

    Anion exchange resins including an acrylic backbone formed by the suspension polymerization of a mixture of an acrylic and a crosslinking monomer are useful in the removal of iodine and iodine compounds from gaseous effluents. Removal of radioactive iodine contaminants, particularly alkyl iodine compounds or hydrogen iodine, under extreme conditions, namely temperatures up to 180 0 C and humidities up to 100 percent, from effluents resulting from a major nuclear accident could probably be adsorbed by these resins described herein

  8. Effect of Systematic Hydrogenation on the Phase Behavior and Nanostructural Dimensions of Block Copolymers.

    Science.gov (United States)

    Ashraf, Arman R; Ryan, Justin J; Satkowski, Michael M; Smith, Steven D; Spontak, Richard J

    2018-01-31

    Unsaturated polydienes are frequently hydrogenated to yield polyolefins that are more chemically stable. Here, the effects of partial hydrogenation on the phase behavior and nanostructure of polyisoprene-containing block copolymers are investigated. To ensure access to the order-disorder transition temperature (T ODT ) over a wide temperature range, we examine copolymers with at least one random block. Dynamic rheological and scattering measurements indicate that T ODT increases linearly with increasing hydrogenation. Small-angle scattering reveals that the temperature-dependence of the Flory-Huggins parameter changes and the microdomain period increases, while the interfacial thickness decreases. The influence of hydrogenation becomes less pronounced in more constrained multiblock copolymers.

  9. Effect of reversible hydrogen alloying and plastic deformation on microstructure development in titanium alloys

    International Nuclear Information System (INIS)

    Murzinova, M.A.

    2011-01-01

    Hydrogen leads to degradation in fracture-related mechanical properties of titanium alloys and is usually considered as a very dangerous element. Numerous studies of hydrogen interaction with titanium alloys showed that hydrogen may be considered not only as an impurity but also as temporary alloying element. This statement is based on the following. Hydrogen stabilizes high-temperature β-phase, leads to decrease in temperature of β→α transformation and extends (α + β )-phase field. The BCC β-phase exhibits lower strength and higher ductility in comparison with HCP α -phase. As a result, hydrogen improves hot workability of hard-to-deform titanium alloys. Hydrogen changes chemical composition of the phases, kinetics of phase transformations, and at low temperatures additional phase transformation (β→α + TiH 2 ) takes place, which is accompanied with noticeable change in volumes of phases. As a result, fine lamellar microstructure may be formed in hydrogenated titanium alloys after heat treatment. It was shown that controlled hydrogen alloying improves weldability and machinability of titanium alloys. After processing hydrogenated titanium preforms are subjected to vacuum annealing, and the hydrogen content decreases up to safe level. Hydrogen removal is accompanied with hydrides dissolution and β→α transformation that makes possible to control structure formation at this final step of treatment. Thus, reversible hydrogen alloying of titanium alloys allows to obtain novel microstructure with enhanced properties. The aim of the work was to study the effect of hydrogen on structure formation, namely: i) influence of hydrogen content on transformation of lamellar microstructure to globular one during deformation in (α+β)-phase field; ii) effect of dissolved hydrogen on dynamic recrystallization in single α- and β- phase regions; iii) influence of vacuum annealing temperature on microstructure development. The work was focused on the optimization of

  10. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

    International Nuclear Information System (INIS)

    Zhang, Shiqi; Huang, Yunhua; Sun, Bintang; Liao, Qingliang; Lu, Hongzhou; Jian, Bian; Mohrbacher, Hardy; Zhang, Wei; Guo, Aimin; Zhang, Yue

    2015-01-01

    The effect of Nb addition (0.022, 0.053, 0.078 wt%) on the hydrogen-induced delayed fracture resistance of 22MnB5 was studied by constant load test and electrochemical hydrogen permeation method. It is shown that the appropriate addition of Nb is beneficial to the improvement of the delayed fracture resistance of tested steel, especially when the steel contains high concentration of hydrogen, and the maximum delayed fracture resistance is obtained at a Nb content of 0.053%.The result of hydrogen permeation test shows that the diffusion coefficient of hydrogen in the steel containing niobium is lower than that in steel without niobium, which indicates that it is harder for hydrogen in the steels containing niobium to diffuse and aggregate. In addition, the reason for Nb improving the delayed fracture resistance of steels is discussed from two aspects: hydrogen trap effect and grain refinement effect. The analysis shows that the main reason leading to the improvement of the delayed fracture resistance is the hydrogen trapping effect of NbC while the grain refinement effect of Nb(C,N) secondary

  11. An effective temperature compensation approach for ultrasonic hydrogen sensors

    Science.gov (United States)

    Tan, Xiaolong; Li, Min; Arsad, Norhana; Wen, Xiaoyan; Lu, Haifei

    2018-03-01

    Hydrogen is a kind of promising clean energy resource with a wide application prospect, which will, however, cause a serious security issue upon the leakage of hydrogen gas. The measurement of its concentration is of great significance. In a traditional approach of ultrasonic hydrogen sensing, a temperature drift of 0.1 °C results in a concentration error of about 250 ppm, which is intolerable for trace amount of gas sensing. In order to eliminate the influence brought by temperature drift, we propose a feasible approach named as linear compensation algorithm, which utilizes the linear relationship between the pulse count and temperature to compensate for the pulse count error (ΔN) caused by temperature drift. Experimental results demonstrate that our proposed approach is capable of improving the measurement accuracy and can easily detect sub-100 ppm of hydrogen concentration under variable temperature conditions.

  12. Effect of heat treatments on the hydrogen embrittlement ...

    Indian Academy of Sciences (India)

    pipe steel in as received (controlled rolled), normalized, and quenched and tempered conditions. The resistance to hydrogen embrittlement was found in the order of controlled rolled > quenched and tempered > normalized. The fracture mode ...

  13. Magnetic Field Effect on Photochemical Thin Film Formation from a Gaseous Mixture of Trimethyl(2-propynyloxy)silane and Glyoxal

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Kumagai, T.; Bastl, Zdeněk

    2004-01-01

    Roč. 17, č. 1 (2004), s. 53-60 ISSN 0914-9244 Grant - others: MEXT (JP) Area767-15085203 Institutional research plan: CEZ:AV0Z4040901 Keywords : thin film formation * aerosol particles * magnetic field effect Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.024, year: 2002

  14. Excitation wavelength dependence and magnetic field effect on aerosol particle formation from a gaseous mixture of carbon disulphide and glyoxal

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Kanaya, S.; Bastl, Zdeněk

    2006-01-01

    Roč. 104, č. 19 (2006), s. 3003-3009 ISSN 0026-8976 Grant - others: MEXT (JP) 15085203 Institutional research plan: CEZ:AV0Z40400503 Keywords : aerosol particles * gas-phase photochemical reaction * magnetic field effect * carbon disulphide * glyoxal Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.690, year: 2006

  15. Effect of hydrogen passivation on polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Oswald, Jiří; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2005-01-01

    Roč. 487, - (2005), s. 152-156 ISSN 0040-6090 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogen passivation * polycrystalline silicon * photoluminescence * Raman spectroscopy * Si-H 2 * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.569, year: 2005

  16. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

  17. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  18. The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Kumar, R.K.; Tamm, H.

    1984-01-01

    The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)

  19. Parity violation effects in the hydrogen atom in the field of a strong electromagnetic wave

    International Nuclear Information System (INIS)

    Labzovsky, L.N.; Mitrushchenkov, A.O.

    1989-01-01

    The parity violation effects in the hydrogen atom in a strong electromagnetic laser field are considered. It is shown that there is the possibility of hyperrate measurements of different constants of the weak interaction in the hydrogen magnetic resonance experiments. (orig.)

  20. Effect of hydrogen addition on the microstructure of TC21 alloy

    International Nuclear Information System (INIS)

    Zhu Tangkui; Li Miaoquan

    2010-01-01

    Research highlights: → The aim of this paper is to study the effect of hydrogen content (0-0.887 wt.%H) on microstructure, phase composition, microhardness and β transus temperature of TC21 alloy. The results show that, with increasing hydrogen content, the β phase increases, the α/β interfaces of lamellar transformed β phase disappear, the lattice parameter of β phase increases and the β transus temperature decreases for the hydrogenated TC21 alloy. In comparison to the as-received TC21 alloy, the contrasts of primary α phase and transformed β phase under optical microscope in the TC21 alloy with high hydrogen content are reversed completely. Furthermore, the γ and δ hydrides are detected in the hydrogenated TC21 alloy. In addition, the variations of phase compositions for the hydrogenated TC21 alloy have influence on microhardness and β transus temperature. → In conclusion, this paper shows some significant rules about the influence of hydrogen on TC21 alloy. - Abstract: TC21 alloy was hydrogenated at 750 deg. C with different hydrogen contents ranging from 0 to 0.873 wt.%H, and its microstructural evolution and phase transformations were investigated by optical microscopy (OM) and X-ray diffraction (XRD). The microhardness and the β transus temperature for the hydrogenated TC21 alloy were determined by microhardness testing and metallographical approach, respectively. The results show that, hydrogen addition has a noticeable influence on microstructure, phase composition, microhardness and β transus temperature of TC21 alloy. With increasing hydrogen content, the β phase increases, the α/β interfaces of lamellar transformed β phase disappear, the lattice parameter of β phase increases and the β transus temperature decreases for the hydrogenated TC21 alloy. In comparison to the as-received TC21 alloy, the contrasts of primary α phase and transformed β phase under optical microscope in the hydrogenated TC21 alloy with high hydrogen

  1. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  2. Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Hao-Xin Zhou

    Full Text Available Acute pancreatitis (AP is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2 is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight. Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP.

  3. Electronic isotope effects in the palladium-hydrogen system

    International Nuclear Information System (INIS)

    Oppeneer, P.M.

    1987-01-01

    The main objective of this investigation is the determination of the physical origin of the isotope effects measured in the de Haas-van Alphen quantities of dilute Pd(H), Pd(D) and Pd(T) alloys. A computational method for the numerical evaluation of interstitial Green functions, which are indispensable for the descriptions of interactions of conducting electrons with interstitial atoms, is presented. The Green functions are tested in ab initio calculations of the dHvA quantities for the frozen interstitial impurities H, B and C in Pd using a KKR-Green function formulation for interstitial effects. The results are in good agreement with the experimental data and it is concluded that the interstitial Green functions, in combination with the KKR-Green function approach, are applicable for the description of electron scattering by interstitial defects. The influence of zero-point motion of a light interstitial on the electron scattering is evaluated in a computational model. Computations show that the influence on the dHvA quantities is quite small. The anharmonicity of the octahedral potential well in a Pd lattice is considered because it can cause differences in the vibrational properties of hydrogen isotopes. The influence of resonant vibrations on the electron-defect scattering is investigated. It is shown that the occurrence of a resonant mode depends sensitively on the isotope's mass and force constants. It is concluded that the isotope effect in dHvA quantities can be explained by the occurrence of a low-frequency resonant vibration in the Pd(D) system. 264 refs.; 9 figs.; 10 tabs

  4. Effect of Hydrogen Sulfide Donors on Intraocular Pressure in Rabbits.

    Science.gov (United States)

    Salvi, Ankita; Bankhele, Pratik; Jamil, Jamal; Chitnis, Madhura Kulkarni; Njie-Mbye, Ya Fatou; Ohia, Sunny E; Opere, Catherine A

    2016-01-01

    In this study, we investigated the effect of a slow-releasing hydrogen sulfide (H2S) donor, GYY 4137, on intraocular pressure (IOP) in normotensive rabbits. Furthermore, we compared the IOP-lowering action of GYY 4137 with those elicited by other H2S-producing compounds, l-cysteine and ACS67 (a hybrid compound of latanoprost with an H2S-releasing moiety). IOP was measured in New Zealand normotensive male albino rabbits using a pneumatonometer (model 30 classic; Reichert Ophthalmic Instruments, Depew, NY). At 0 h, 50 μL of test compounds were applied topically to 1 eye of each animal, while the contralateral eye received the same quantity of vehicle (saline). IOP was measured hourly until baseline IOP readings were attained and animal eyes monitored for potential side effects (i.e., tearing, hyperemia). GYY 4137 (0.1%-2%) produced a dose-dependent decrease in IOP reaching a maximum of 27.8% ± 3.14% (n = 5) after 6 h. Interestingly, a significant contralateral effect was observed in vehicle-treated controls eyes at all doses tested. l-cysteine (5%) and ACS67 (0.005%) also elicited a significant (P vehicle-treated control eyes. We conclude that GYY 4137 and other H2S-producing donors can reduce IOP in normotensive rabbits. However, the profile of IOP-lowering action of GYY 4137 was different from the other H2S donors affirming its ability to act as a slow-releasing gas donor.

  5. Three-body effects from the density dependence of the neutron structure factor of gaseous 36 Ar at 140 K

    International Nuclear Information System (INIS)

    Magli, R.; Fredrikze, H.; Barocchi, F.

    1991-01-01

    We present an analysis of the density dependence of the static structure factor in low density 36 Ar gas at T = 140 K, from which we derive the three-body contribution. Within the experimental accuracy, the three-body contribution in the linear density expansion for the Fourier transform of the direct correlation function C(k) agrees, for 3 -1 , with theoretical calculations based on a pair potential and the Axilrod-Teller three-body potential, eventually modified for short-range effects; for k -1 the neutron diffraction data show a behaviour significantly different with respect to the theoretical predictions

  6. Effect of Gaseous Ozone Exposure on the Bacteria Counts and Oxidative Properties of Ground Hanwoo Beef at Refrigeration Temperature.

    Science.gov (United States)

    Cho, Youngjae; Muhlisin; Choi, Ji Hye; Hahn, Tae-Wook; Lee, Sung Ki

    2014-01-01

    This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10(-6) kg O3 h(-1)) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (pOzone exposure reduced (pozone had no clear effect. Ozone exposure increased the TBARS values during 1 to 3 d of storage (pozone exposure until 2 and 3 d of storage, respectively. This study provides information about the use of ozone exposure as an antimicrobial agent for meat under refrigerated storage. The results of this study provide a foundation for the further application of ozone exposure by integrating an ozone generator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed.

  7. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    Science.gov (United States)

    Rach, J.J.; Schreier, Theresa M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  8. The evolution of hydrogen and iodine by the decomposition of ammonium iodide and hydrogen iodide

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Nakane, Masanori; Ishii, Eiichi; Uehara, Itsuki; Miyake, Yoshizo

    1977-01-01

    As a fundamental study on thermochemical production of hydrogen from water, the evolution of hydrogen and iodine from ammonium iodide and hydrogen iodide was investigated. Hydrogen was evolved by the reaction of nickel with ammonium iodide or with hydrogen iodide, and the resulting nickel(II) iodide was decomposed thermally at 600 -- 700 0 C to form nickel. First, the iodination of powdered nickel with ammonium iodide was studied by heating their powder mixture. The maximum yield of hydrogen was obtained at a temperature near 430 0 C. The iodination of powdered nickel with gaseous ammonium iodide or with dry hydrogen iodide gas was also investigated. In this case, coating of nickel particles with a layer of resulting nickel(II) iodide prevented further conversion of nickel and lowered the reaction rate. Such a retardation effect was appreciably lessened by use of carrier. When nickel was supported on such a carrier as ''isolite'', the nickel was converted into nickel(II) iodide easily. In a reaction temperature from 400 to 500 0 C, the rate of reaction between nickel and hydrogen iodide increased slightly with the elevation of the reaction temperature. In the case of ammonium iodide, the reaction rate was higher than that for hydrogen iodide and decreased apparently with the elevation of the reaction temperature, because ammonium iodide decomposed to ammonia and hydrogen iodide. Tests using a fixed bed reactor charged with 8 -- 10 mesh ''isolite''-nickel (30 wt%) were also carried out. The maximum yield of hydrogen was about 80% for ammonium iodide at 430 0 C of reaction temperature and 60% for hydrogen iodide at 500 0 C. (auth.)

  9. Effects of high-pressure hydrogen charging on the structure of austenitic stainless steels

    International Nuclear Information System (INIS)

    Hoelzel, M.; Danilkin, S.A.; Ehrenberg, H.; Toebbens, D.M.; Udovic, T.J.; Fuess, H.; Wipf, H.

    2004-01-01

    The effects of high-pressure hydrogen and deuterium charging on the structure of AISI type 304 and AISI type 310 austenitic stainless steels have been investigated by neutron and X-ray diffraction. Rietveld analyses of the neutron diffraction data revealed that hydrogen atoms occupy exclusively the octahedral interstitial sites in both steels. No phase transformations have been observed in 310 stainless steel within the whole range of hydrogen-to-metal atomic ratios H/Me up to ∼ 1. In 304 stainless steel, the formation of ε-martensite was observed not only after hydrogenation at 3.0 GPa (H/Me = 0.56), but also after applying a pressure of 4.0 GPa without hydrogen. The results differ significantly from published studies on cathodically hydrogenated samples, where high amounts of ε-martensite were observed in both steels. High-pressure hydrogenation and cathodic hydrogen charging result in different phase transformation behaviour. The discrepancies can be explained by different hydrogen distributions resulting in quite different stress states

  10. Effect of Gaseous Ozone Exposure on the Bacteria Counts and Oxidative Properties of Ground Hanwoo Beef at Refrigeration Temperature

    Science.gov (United States)

    Cho, Youngjae; Hahn, Tae-Wook

    2014-01-01

    This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10−6 kg O3 h−1) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (prefrigerated storage. The results of this study provide a foundation for the further application of ozone exposure by integrating an ozone generator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed. PMID:26761291

  11. Hydrogen/deuterium isotope effects in water and aqueous solutions of organic molecules and proteins

    International Nuclear Information System (INIS)

    Price, David L.; Fu, Ling; Bermejo, F. Javier; Fernandez-Alonso, Felix; Saboungi, Marie-Louise

    2013-01-01

    Highlights: ► Hydrogen/deuterium substitution has significant effects in hydrogenous materials. ► The effects can involve structure, phase behavior and protein stability. ► The effects must be kept in mind in the interpretation of scattering experiments. ► The effects may be mitigated by an appropriate choice of experimental conditions. - Abstract: It is pointed out that hydrogen/deuterium substitution, frequently used in neutron scattering studies of the structure and dynamics of hydrogenous samples, can have significant effects on structure, phase behavior and protein stability. The effects must be kept in mind in the interpretation of such experiments. In suitable cases, these effects can be mitigated by an appropriate choice of experimental conditions

  12. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Murakami, Kazuo.

    1997-01-01

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  13. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11.

    Science.gov (United States)

    Nath, Kaushik; Kumar, Anish; Das, Debabrata

    2006-06-01

    Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. The effects of initial substrate concentration, initial medium pH, and temperature were investigated. Results showed that at an initial glucose concentration of 1.0% (m/v), the molar yield of hydrogen was 3.31 mol (mol glucose)(-1). However, at higher initial glucose concentration, both the rate and cumulative volume of hydrogen production decreased. The pH of 6.5 +/- 0.2 at a temperature of 37 degrees C was found most suitable with respect to maximum rate of production of hydrogen in batch fermentation. Activation enthalpies of fermentation and that of thermal deactivation of the present process were estimated following a modified Arrhenius equation. The values were 47.34 and 118.67 kJ mol(-1) K(-1), respectively. The effect of the addition of Fe(2+) on hydrogen production was also studied. It revealed that the presence of iron (Fe(2+)) in the media up to a concentration of 20 mg L(-1) had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was applied to estimate the hydrogen production potential, production rate, and lag-phase time in a batch process, based on the cumulative hydrogen production curves, using the software program Curve Expert 1.3.

  14. Effect of air infiltration in the reactor refrigerant on the radiation measurement systems of gaseous effluents treatment

    International Nuclear Information System (INIS)

    Zorrilla, S.; Padilla, I.

    1991-01-01

    The system of treatment of gassy effluents of the CLV, well-known as the off-gas this gifted one in turn of a mensuration system and registration (monitoring) that consists of diverse established radiation monitors in the discharge point to the atmosphere and in other intermediate points of the process. The purpose of the monitoring system is to maintain continually informed to the operators about the effectiveness of the treatment system, to take registrations of the total quantity of liberated radioactive materials and to give warning by means of an alarm system of any abnormal situation that could end in an approach to the limits marked by the technical specifications. In September 1989 an event happened in the one that the high alarms corresponding to the post-treatment of the off-gas were activated. For this situation the personnel proceeded to diminish the power of the reactor to be able to investigate the causes that gave place to the event. It was observed that the alarms of the monitor were activated by significant infiltrations of air in the primary circuit of the refrigerant, for what it was proceeded to enlarge the scales of the implied monitor or to reduce the sensibility of their readings

  15. The effect of seasonal variation on biomethane production from seaweed and on application as a gaseous transport biofuel.

    Science.gov (United States)

    Tabassum, Muhammad Rizwan; Xia, Ao; Murphy, Jerry D

    2016-06-01

    Biomethane produced from seaweed may be used as a transport biofuel. Seasonal variation will have an effect on this industry. Laminaria digitata, a typical Irish brown seaweed species, shows significant seasonal variation both in proximate, ultimate and biochemical composition. The characteristics in August were optimal with the lowest level of ash (20% of volatile solids), a C:N ratio of 32 and the highest specific methane yield measured at 327LCH4kgVS(-1), which was 72% of theoretical yield. The highest yield per mass collected of 53m(3)CH4t(-1) was achieved in August, which is 4.5 times higher than the lowest value, obtained in December. A seaweed cultivation area of 11,800ha would be required to satisfy the 2020 target for advanced biofuels in Ireland, of 1.25% renewable energy supply in transport (RES-T) based on the optimal gross energy yield obtained in August (200GJha(-1)yr(-1)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product.

    Science.gov (United States)

    Santos, Cátia; Fonseca, João; Aires, Alfredo; Coutinho, João; Trindade, Henrique

    2017-01-01

    The use of spent coffee grounds (SCG) in composting for organic farming is a viable way of valorising these agro-industrial residues. In the present study, four treatments with different amounts of spent coffee grounds (SCG) were established, namely, C 0 (Control), C 10 , C 20 and C 40 , containing 0, 10, 20 and 40% of SCG (DM), respectively; and their effects on the composting process and the end-product quality characteristics were evaluated. The mixtures were completed with Acacia dealbata L. shoots and wheat straw. At different time intervals during composting, carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions were measured and selected physicochemical characteristics of the composts were evaluated. During the composting process, all treatments showed a substantial decrease in total phenolics and total tannins, and an important increase in gallic acid. Emissions of greenhouse gases were very low and no significant difference between the treatments was registered. The results indicated that SCG may be successfully composted in all proportions. However C 40 , was the treatment which combined better conditions of composting, lower GHG emissions and better quality of end product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quantifying the effect of hydrogen on dislocation dynamics: A three-dimensional discrete dislocation dynamics framework

    Science.gov (United States)

    Gu, Yejun; El-Awady, Jaafar A.

    2018-03-01

    We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.

  18. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline

    International Nuclear Information System (INIS)

    Clairotte, M.; Adam, T.W.; Zardini, A.A.; Manfredi, U.; Martini, G.; Krasenbrink, A.; Vicet, A.; Tournié, E.; Astorga, C.

    2013-01-01

    Highlights: ► Most of the pollutants studied were emitted during the cold start of the vehicle. ► More carbonyls were associated with oxygenated fuel (E85–E75) than with E5. ► Acetaldehyde emissions were found particularly enhanced at −7 °C with E75. ► Elevated methane and ozone precursor emissions were measured at −7 °C with E75. ► Ammonia and toluene emissions associated to E75–E85 were lower than with E5. -- Abstract: According to directives 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, since 2011 all fuels on the market used for transport purpose must contain a fraction of 5.75% renewable energy sources. Ethanol in gasoline is a promising solution to reach this objective. In addition to decrease the dependence on fossil fuel, ethanol contributes to reducing air pollutant emissions during combustion (carbon monoxide and total hydrocarbons), and has a positive effect on greenhouse gas emissions. These considerations rely on numerous emission studies performed in standard conditions (20–30 °C), however, very few emission data are available for cold ambient temperatures, as they prevail in winter times in e.g., Northern Europe. This paper presents a chassis dynamometer study examining the effect of ethanol (E75–E85) versus gasoline (E5) at standard and low ambient temperatures (22 °C and −7 °C, respectively). Emissions of modern passenger cars complying with the latest European standards (Euro4 and Euro5a) were recorded over the New European Driving Cycle (NEDC) and the Common Artemis Driving Cycle (CADC). Unregulated compounds such as methane, ammonia, and small chain hydrocarbons were monitored by an online Fourier Transformed Infra-Red spectrometer. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected and analyzed offline by liquid and gas chromatography in order to evaluate the ozone formation

  19. Influence of Intramolecular Charge Transfer and Nuclear Quantum Effects on Intramolecular Hydrogen Bonds in Azopyrimidines.

    Science.gov (United States)

    Bártová, Kateřina; Čechová, Lucie; Procházková, Eliška; Socha, Ondřej; Janeba, Zlatko; Dračínský, Martin

    2017-10-06

    Intramolecular hydrogen bonds (IMHBs) in 5-azopyrimidines are investigated by NMR spectroscopy and DFT computations that involve nuclear quantum effects. A series of substituted 5-phenylazopyrimidines with one or two hydrogen bond donors able to form IMHBs with the azo group is prepared by azo coupling. The barrier of interconversion between two rotamers of the compounds with two possible IMHBs is determined by variable temperature NMR spectroscopy and it is demonstrated that the barrier is significantly affected by intramolecular charge transfer. Through-hydrogen-bond scalar coupling is investigated in 15 N labeled compounds and the stability of the IMHBs is correlated with experimental NMR parameters and rationalized by path integral molecular dynamics simulations that involve nuclear quantum effects. Detailed information on the hydrogen bond geometry upon hydrogen-to-deuterium isotope exchange is obtained from a comparison of experimental and calculated NMR data.

  20. Effect of hydrogen on Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Costa, J.E.

    1985-01-01

    The effect of hydrogen on the physical and mechanical properties of the metastable β alloy Ti-10V-2Fe-3Al was examined. This study had three main goals. The first was to improve the understanding of the effects of hydrogen in the β phase. The second goal was to determine the effects of hydrogen on the specific alloy Ti-10V-2Fe-3Al. The third goal was to identify possible in-service problems that could occur in Ti-10V-2Fe-3Al and in similar alloys. The effects of hydrogen were examined in three different microstructures: beta-annealed and water-quenched (B/WQ), beta-annealed and furnace cooled (B/FC), and solution treated and aged (STA). The B/WQ microstructure was nominally all-β with some athermal omega phase while the B/FC and STA microstructures were α + β microstructures. Hydrogen concentrations from approx.0 to >30 at.% were used. Hydrogen was introduced into test specimens using either Sieverts charging or cathodic charging techniques. When the B/WQ microstructure was deformed, the β phase was transformed to orthorhombic α'' martensite. Hydrogen effects in the B/FC and STA microstructures were largely the result of hydride formation at α/β interfaces. The effect of hydride formation was observed as decreases in the reduction of area for tensile specimens

  1. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  2. Texture-geometric deformational effects in some metal-hydrogen systems

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.

    1992-01-01

    Possible deformation effects were studied in vanadium, tantalum, niobium, palladium and iron which occurred during electrolytic hydrogenation of specimens preliminarily deformed by torsion and then annealed. Noticeable texture-geometric effects were observed and related to the system tendency to enhance the degree of specimen form symmetry during hydrogenation. The latter was an off-beat realization of Le-Chatelier principle. It was assumed that the nature of deformation effects was connected with one of minimization channels for overall elastic stress fields in metals being hydrogenated. Some distinction was revealed in behaviour of 5a group metal, palladium and iron

  3. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  4. Fiscal 1998 research report on International Clean Energy Network using Hydrogen Conversion (WE-NET). Subtask 2. Research on promotion of international cooperation (research on standardization of hydrogen energy technologies); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) sub task. 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the fiscal 1998 research result on the basic research on standardization of hydrogen energy technologies, and ISO/TC197. As for the standardization, in relation to the hydrogen station in the WE-NET second phase research, the laws related to handling of gaseous hydrogen, and the basic issues on facility and safe handling were studied. As for ISO/TC197, the following draft standards were examined: Fuel supply system interface for liquid hydrogen vehicles, fuel tank for liquid hydrogen vehicles, container for liquid hydrogen transport, specification of hydrogen fuel, hydrogen fuel supply facility for air ports, gaseous hydrogen and hydrogen mixture fuel system for vehicles, gaseous hydrogen fuel connector for vehicles, gaseous hydrogen fuel tank for vehicles, and basic items for hydrogen system safety. Final examination of the fuel supply system interface for liquid hydrogen vehicles, and the specification of hydrogen fuel was finished, and these are scheduled to be registered for ISO. (NEDO)

  5. Refining effect of the liquid phase (in coal hydrogenation)

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1942-11-07

    Experiments were run in a 10-liter oven at 600 atm. on various starting materials to determine what percentage of the original content of nitrogen, oxygen, and sulfur impurities were removed during liquid-phase processing. It was determined that the liquid phase removed most of these impurities, with nitrogen being affected to a lesser extent than the other two. In general, the raw materials which could most easily be hydrogenated had the greatest percentage of impurities removed. Also, in general, the more drastic the processing, the more effective the impurity-removal, especially in the case of nitrogen. Removal of oxygen as oxides of carbon happened in the case of brown coal to about twice the extent that it did in the case of bituminous coal, and happened to an even greater extent in the case of high-temperature tar. In the case of sulfur, the following percentages were removed in the following processes: 79% in processing low-temperature-carbonization tar to heavy oil, 75% to 87% in processing high-temperature-carbonization tar to heavy oil, 82% to 92% in processing high-temperature-carbonization tar to gasoline and middle oil, 80% to 97% in processing bituminous coal to gasoline and middle oil, and 86% to 89% in processing brown coal to gasoline and middle oil. In the case of oxygen, the corresponding figures (in the same order) were 73%, 36% to 70%, 44% to 70%, 86% to 91%, and 89% to 92%. In the case of nitrogen, they were 56%, 38% to 51%, 53% to 73%, 60% to 67%, and 64% to 79%. 1 table.

  6. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor

    International Nuclear Information System (INIS)

    Brulin, Q.

    2006-01-01

    results. However, these results were obtained without taking into account the presence of atomic hydrogen in the plasma. A thorough study of the effect of atomic hydrogen on the metastable structures produced in simulation is thus carried out. The study of the interaction of atomic hydrogen on the surface of the cluster gives the possibility of finding the proportion of mechanisms (Eley-Rideal hydrogen desorption, hot atom mechanism or absorption on the surface of the cluster) in agreement with experiments on recombination on silicon surfaces. The interaction of atomic hydrogen with the surface of the clusters also induces a modification of the internal organization of the silicon atoms. The organization of the internal silicon atoms of the clusters as a function of cluster size (magic number) makes it possible to understand why the experimental observations indicate the presence of crystalline structures. Finally this study leads to the prediction of a particularly stable structure which could be used as precursor for the growth of silicon nano-wires. (author)

  7. 14N and 17O electric field gradient tensors in benzamide clusters: Theoretical evidence for cooperative and electronic delocalization effects in N H⋯O hydrogen bonding

    Science.gov (United States)

    Esrafili, Mehdi D.; Behzadi, Hadi; Hadipour, Nasser L.

    2008-06-01

    Nuclear quadrupole coupling tensors of 14N and 17O nuclei in benzamide clusters (up to n = 6) were calculated via density functional theory. Results revealed that N-H⋯O hydrogen bonds around the benzamide molecule in crystalline lattice have significant influence on 14N and 17O nuclear quadrupole coupling tensors. n-dependent trend in 14N quadrupole coupling tensors significantly correlates with cooperative effects of R(N-H⋯O) hydrogen bond distance. Natural bonding orbital analysis, NBO, was used to rationalize the quadrupole coupling results in terms of substantial n→σN-H∗ charge transfer in (benzamide) n=1-6 clusters. It was found that intermolecular n→σN-H∗ interactions play a key role in cooperative change of 14N and 17O quadrupole coupling tensors. There is an acceptable linear correlation between 14N or 17O quadrupole coupling tensors with strength of Fock matrix elements (Fij). This suggests that both 14N and 17O quadrupole coupling measurements can provide a useful probe for electron delocalization effects in both gaseous and condensed media.

  8. Hydrogen-powered road vehicles. Positive and negative health effects of new fuel

    International Nuclear Information System (INIS)

    2008-09-01

    Because of the political, social and environmental problems associated with dependency on fossil fuels, there is considerable interest in alternative energy sources. Hydrogen is regarded as a promising option, particularly as a fuel for road vehicles. The Dutch Energy research Centre of the Netherlands (ECN) recently published a vision of the future, in which it suggested that by 2050 more than half of all cars in the Netherlands could be running on hydrogen. Assuming that the hydrogen is produced from renewable energy sources, migration to hydrogen-powered vehicles would also curb carbon dioxide emissions. In the United States, Japan and Europe, considerable public and private investment is therefore being made with a view to developing the technologies needed to make the creation of a hydrogen-based economy possible within a few decades. A switch to using hydrogen as the primary energy source for road vehicles would have far-reaching social consequences. As with all technological developments, opportunities would be created, but drawbacks would inevitably be encountered as well. Some of the disadvantages associated with hydrogen are already known, and are to some degree manageable. It is likely, however, that other drawbacks would come to light only once hydrogen-powered cars were actually in use With that thought in mind, and in view of the social significance of a possible transition to hydrogen, it was decided that the Health Council should assess the positive and negative effects that hydrogen use could have on public health. It is particularly important to make such an assessment at the present early stage in the development of hydrogen technologies, so that gaps in existing scientific knowledge may be identified and appropriate strategies may be developed for addressing such gaps. This report has been produced by the Health and Environment Surveillance Committee, which has special responsibility for the identification of important correlations between

  9. Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella Enteritidis on cherry tomatoes.

    Science.gov (United States)

    Daş, Elif; Gürakan, G Candan; Bayindirli, Alev

    2006-08-01

    In recent years, outbreaks of infections associated with raw and minimally processed fruits and vegetables have been reported. The objective of this study was to analyse the growth/survival of Salmonella Enteritidis at spot-inoculated or stem-injected cherry tomatoes during passive modified atmosphere packaging (MAP), controlled atmosphere (CA) and to compare the results with those of air storage at 7 and 22 degrees C. During MAP, the gas composition equilibrated to 6% O2/4% CO2. CO2 level was maintained as 5% through the term of CA storage at 7 and 22 degrees C. The results demonstrate that S. Enteritidis can survive and/or grow during the storage of tomatoes depending on the location site of the pathogen on fruit, suspension cell density and storage temperature. During MAP, CA and air storage, S. Enteritidis with initial population of 7.0 log10 cfu/tomato survived on tomato surfaces with an approximate decrease of 4.0-5.0 log10 cfu/tomato in population within the storage period; however, in the case of initial population of 3.0 log10 cfu/tomato, cells died completely on day 4 during MAP storage and on day 6 during both CA and air storage. The death rate of S. Enteritidis on the surfaces of tomatoes that were stored in MAP was faster than that of stored in air and in CA. Storage temperature was effective on the survival of S. Enteritidis for the samples stored at ambient atmosphere; cells died completely on day 6 at 7 degrees C and on day 8 at 22 degrees C. Stem scars provided protective environments for Salmonella; an approximate increase of 1.0 log10 cfu/tomato in stem-scar population was observed during MAP, CA and air storage at 22 degrees C within the period of 20 days. Cells survived with no significant change in number at 7 degrees C. During the research, the effect of ozone treatment (5-30 mg/l ozone gas for 0-20 min) was also considered for surface sanitation before storage. Gaseous ozone treatment has bactericidal effect on S. Enteritidis, inoculated on

  10. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V.

    1984-08-01

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H 2 S O 4 solution containing As 2 O 3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  11. Effect of hydrogen on the microstructure, mechanical properties and phase transformations in austenitic steels

    International Nuclear Information System (INIS)

    Li, Y.Y.; Xing, Z.S.

    1989-01-01

    Effect of high-pressure hydrogen charging on the microstructure, mechanical properties and phase transformations in austenitic steels has been investigated and discussed. The results show that the strength and impact toughness of the steels increase slightly and that the ductility decreases after hydrogen charging. The existence of δ-ferrite deteriorates the resistance to hydrogen embrittlement (HE) of the steels. The occurrence of carbide in the steel resulted from aging reduces the ductility of the steel and makes the steel sensitive to HE. The existence of sufficient hydrogen promotes the ε-martensitic transformation and suppresses the α'-martensitic transformation. The permeabilities and diffusivities of hydrogen in the steels have also been determined. (orig.)

  12. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    International Nuclear Information System (INIS)

    Matsuyama, M.; Kondo, M.; Noda, N.; Tanaka, M.; Nishimura, K.

    2015-01-01

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  13. Effect of hydrogen on mechanical properties of -titanium alloys

    Indian Academy of Sciences (India)

    Monotonic and cyclic strength increase at the expense of ductility with increasing hydrogen concentration. The brittle to ductile transition temperature shifts to higher values and the fatigue crack propagation threshold value decreases. The microstructure of the metastable, usually two-phase -titanium alloys is strongly ...

  14. Effect of piperidones on hydrogen permeation and corrosion ...

    Indian Academy of Sciences (India)

    mild steel surfaces from H2SO4 obeys Temkin's adsorption isotherm. Keywords. Corrosion inhibition; piperidones; hydrogen permeation; metal embrittlement; impedance measurements. 1. Introduction. The inhibiting influence of piperidine and cyclohexanone on the corrosion of copper in acidic solutions has already been ...

  15. Effect of hydrogen peroxide and thiourea on dormancy breaking of ...

    African Journals Online (AJOL)

    Potato (Solanum tuberosum L.) microtubers or field-grown tubers have a dormant apical bud (also called tuber dormancy). They do not readily sprout even if environmental conditions are favorable, including optimum temperature and humidity. The objective of this study was to evaluate the involvement of hydrogen peroxide ...

  16. Production of hydrogen from renewable resources and its effectiveness

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2012-01-01

    Roč. 37, č. 16 (2012), s. 11563-11578 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen production * biological processes * conventional methods Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.548, year: 2012

  17. Synergetic effects in novel hydrogenated F-doped TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Samsudin, Emy Marlina [Nanotechnology and Catalysis Research Center, University of Malaya, 50603 Kuala Lumpur (Malaysia); Abd Hamid, Sharifah Bee, E-mail: sharifahbee@um.edu.my [Nanotechnology and Catalysis Research Center, University of Malaya, 50603 Kuala Lumpur (Malaysia); Juan, Joon Ching, E-mail: jcjuan@um.edu.my [Nanotechnology and Catalysis Research Center, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, Wan Jefrey [Nanotechnology and Catalysis Research Center, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centi, Gabriele [Section Industrial Chemistry, Univ. Messina, INSTM and ERIC aisbl, V.le F. Stagno D’Alcontres 31, 98166 Messina (Italy)

    2016-05-01

    Highlights: • Novel hydrogenated F-doped TiO{sub 2}. • UV, visible and infrared light absorption. • Large presence of surface active sites. • Inhibit electrons and holes recombination. • Superior photocatalytic activity. - Abstract: The synergistic effect between fluorine and hydrogen in hydrogenated F-doped TiO{sub 2} photocatalysts is evaluated for the photocatalytic degradation of atrazine. The interaction between fluorine and hydrogen species in hydrogenated F-doped TiO{sub 2} overcomes the limitations of individual F-doped TiO{sub 2} and hydrogenated TiO{sub 2} photocatalyst properties. Hydrogenated F-doped TiO{sub 2} is photo-active under UV, visible and infrared light illumination with efficient electrons and holes separations. The optimized concentration of surface vacancies and Ti{sup 3+} centers coupled with enhanced surface hydrophilicity facilitates the production of surface-bound and free hydroxyl radicals. The surface of the catalyst contains =Ti−F, =Ti−OH, =Ti−O{sub vacancy} and =Ti−H bonds as evidenced by XPS, Raman, FTIR and HR-TEM analysis. This combination also triggers the formation of new Ti{sup 3+} occupied states under the conduction band of hydrogenated F-doped TiO{sub 2}. Moreover, the change in the pore structure from cylindrical to slits and larger surface area facilitates surface charge interactions. The thermal stability is also enhanced and a single anatase phase is obtained. The size of the particles of hydrogenated F-doped TiO{sub 2} is also uniform with defined and homogeneous crystal structure. This synergetic effect between fluorine and hydrogen opens up new alternatives in improving the properties of TiO{sub 2} and its photocatalytic activity.

  18. Hydrogen effects in nitrogen-alloyed austenitic steels; Wirkung von Wasserstoff in stickstofflegierten austenitischen Staehlen

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, M.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Shehata, M.F. [National Research Centre, Cairo (Egypt)

    1998-12-31

    Hydrogen increases the yield strength of nitrogen-alloyed steels, but on the other hand adversely affects properties such as tensile strength and elongation to fracture. The effect is enhanced with increasing nitrogen and hydrogen contents. Under the effect of hydrogen addition, the discontinuous stress-strain characteristic and the distinct elongation limit of hydrogen-free, nitrogen containing steels is no longer observed in the material. This change of mechanical properties is attributed to an interatomic interaction of nitrogen and hydrogen in the lattice, which is shown for instance by such effects as reduction of hydrogen velocity, high solubility, and a particularly strong lattice expansion. The nature of this interaction of nitrogen and hydrogen in the fcc lattice remains to be identified. (orig./CB) [Deutsch] Wasserstoff fuehrt in stickstofflegierten Staehlen zu einer Erhoehung der Streckgrenze, aber gleichzeitig zu einer Abnahme der Zugfestigkeit und Bruchdehnung. Dieser Effekt verstaerkt sich mit zunehmenden Stickstoff- und Wasserstoffgehalten. Ein diskontinuierlicher Spannungs-Dehnungsverlauf mit einer ausgepraegten Streckgrenze in wasserstofffreien hochstickstoffhaltigen Staehlen wird nach Wasserstoffeinfluss nicht mehr beobachtet. Die Aenderung der mechanischen Eigenschaften, wird auf eine interatomare Wechselwirkung von Stickstoff und Wasserstoff im Gitter zurueckgefuehrt, die sich u.a. in geringer Wasserstoffdiffusionsgeschwindigkeit, hoher Loeslichkeit und vor allem in extremer Gitteraufweitung aeussert. Insgesamt ist die Natur der Wechselwirkung zwischen Stickstoff und Wasserstoff im kfz Gitter noch nicht aufgeklaert. (orig.)

  19. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kawabe, Ken-ichi; Uchiyama, Yoshio; Konno, Masanobu; Suzuki, Kunihiko; Kimura, Tadahiro.

    1991-01-01

    A main steam bypass line is disposed to a main steam line of an air extractor for directly sending diluting steams to an exhaust gas line disposed upstream of a preheater not by way of the extractor. Then, a hydrogen flowmeter is disposed to a hydrogen injection line of a hydrogen supply device for measuring the amount of hydrogen to be injected. Further, a control means is disposed to the main steam bypass line for controlling the injection of the diluting steams based on a signal from the hydrogen flowmeter. With such a constitution, the amount of the hydrogen gas supplied from the hydrogen supply device is detected by the hydrogen flowmeter. The control means disposed to the main steam bypass line or the control means disposed directly to the main steam line injects the diluting steams to the exhaust gas line based on the signal from the hydrogen flowmeter. This can reduce the hydrogen concentration in the exhaust gas upstream of the pre-heater to less than an explosive limit, to enable a countermeasure for preventing hydrogen explosion upon hydrogen injection. (T.M.)

  20. Effect of hydrogen on the behavior of metals II - Hydrogen embrittlement of titanium alloy TV13CA - effect of oxygen - comparison with non-alloyed titanium

    International Nuclear Information System (INIS)

    Arditty, Jean-Pierre

    1973-01-01

    The effect of oxygen on the hydrogen embrittlement of non-alloyed titanium and the metastable β titanium alloy, TV13 CA, was studied during dynamic mechanical tests, the concentrations considered varying from 1000 to 5000 ppm (oxygen) and from 0 to 5000 ppm (hydrogen) respectively. TV13 CA alloy has a very high solubility for hydrogen. The establishment of a temperature range and a rate of deformation region in which the embrittlement of the alloy is maximum leads to the conclusion that an embrittlement mechanism occurs involving the dragging and accumulation of hydrogen by dislocations. This is the case for all annealings effected in the medium temperature range, which, by favoring the re-establishment of the stable two-phase α + β state of the alloy, produce hardening. The same is true for oxygen which, in addition to hardening the alloy by the solid solution effect, tends to increase its instability and, in consequence, favors the decomposition of the β phase. Nevertheless oxygen concentrations of up to 1500 ppm contribute to increasing the mechanical resistance without catastrophically reducing the deformation capacity. In the case of non-alloyed titanium, the hardening effect also leads to an increase in E 0.2p c and R, and to a reduction in the deformation capacity. Nevertheless, hydrogen is only very slightly soluble at room temperature and a distribution of the hydride phase linked to the thermal history of the sample predominates. Thus a fine acicular structure obtained from the β phase by quenching, enables an alloy having a good mechanical resistance to be conserved even when large quantities of hydrogen are present; the deformation capacity remains small. On the other hand, when the hydride phase separates the metallic phase into large grains, a very small elongation leads to a breakdown in mechanical resistance. (author) [fr

  1. Recovery of deformed and hydrogen-charge palladium

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Lynn, K.G.; Lynch, J.F.

    1982-01-01

    Positron lifetime and Doppler-broadening studies made at 300 K have been used to investigate the interaction between interstitial hydrogen and lattice defects in deformed Pd. Specimens were charged with hydrogen at 300 K to levels up to 0.1%. The presence of hydrogen was found to have no effect on the recovery curves of Pd upon annealing to 400 0 C. By 400 0 C the values for both lifetime and Doppler-broadening for both cold worked and cold worked plus hydrogen were below the values obtained for annealed pure Pd. This can be interpreted as gaseous-impurity-trapped vacancies being present after the 1200 0 C anneal, but being swept away by the dislocation microstructure recovery between 200 to 400 0 C

  2. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  3. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  4. Slush Hydrogen Technology Program

    Science.gov (United States)

    Cady, Edwin C.

    1994-01-01

    A slush hydrogen (SH2) technology facility (STF) was designed, fabricated, and assembled by a contractor team of McDonnell Douglas Aerospace (MDA), Martin Marietta Aerospace Group (MMAG), and Air Products and Chemicals, Inc. (APCI). The STF consists of a slush generator which uses the freeze-thaw production process, a vacuum subsystem, a test tank which simulates the NASP vehicle, a triple point hydrogen receiver tank, a transfer subsystem, a sample bottle, a pressurization system, and a complete instrumentation and control subsystem. The STF was fabricated, checked-out, and made ready for testing under this contract. The actual SH2 testing was performed under the NASP consortium following NASP teaming. Pre-STF testing verified SH2 production methods, validated special SH2 instrumentation, and performed limited SH2 pressurization and expulsion tests which demonstrated the need for gaseous helium pre-pressurized of SH2 to control pressure collapse. The STF represents cutting-edge technology development by an effective Government-Industry team under very tight cost and schedule constraints.

  5. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  6. Stress corrosion mechanisms of alloy-600 polycrystals and monocrystals in primary water: effect of hydrogen

    International Nuclear Information System (INIS)

    Foct, F.

    1999-01-01

    The aim of this study is to identify the mechanisms involved in Alloy 600 primary water stress corrosion cracking. Therefore, this work is mainly focussed on the two following points. The first one is to understand the influence of hydrogen on SCC of industrial Alloy 600 and the second one is to study the crack initiation and propagation on polycrystals and single crystals. A cathodic potential applied during slow strain rate tests does not affect crack initiation but increases the slow crack growth rate by a factor 2 to 5. Cathodic polarisation, cold work and 25 cm 3 STP/kg hydrogen content increase the slow CGR so that the K ISCC (and therefore fast CGR) is reached. The influence of hydrogenated primary water has been studied for the first time on Alloy 600 single crystals. Cracks cannot initiate on tensile specimens but they can propagate on pre-cracked specimens. Transgranular cracks present a precise crystallographic aspect which is similar to that of 316 alloy in MgCl 2 solutions. Moreover, the following results improve the description of the cracking conditions. Firstly, the higher the hydrogen partial pressure, the lower the Alloy 600 passivation current transients. Since this result is not correlated with the effect of hydrogen on SCC, cracking is not caused by a direct effect of dissolved hydrogen on dissolution. Secondly, hydrogen embrittlement of Alloy 600 disappears at temperatures above 200 deg.C. Thirdly, grain boundary sliding (GBS) does not directly act on SCC but shows the mechanical weakness of grain boundaries. Regarding the proposed models for Alloy 600 SCC, it is possible to draw the following conclusions. Internal oxidation or absorbed hydrogen effects are the most probable mechanisms for initiation. Dissolution, internal oxidation and global hydrogen embrittlement models cannot explain crack propagation. On the other hand, the Corrosion Enhanced Plasticity Model gives a good description of the SCC propagation. (author)

  7. Effect of the oxidation front penetration on in-clad hydrogen migration

    Science.gov (United States)

    Feria, F.; Herranz, L. E.

    2018-03-01

    In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.

  8. Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014

    DEFF Research Database (Denmark)

    Bandopadhyay, A.; Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    Cathodic hydrogen charging in 3.5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10(-3)/s) strain rate tensile testing technique. UTS and YS decreased in the caw of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density...... surface (brittle) to the core (ductile) was observed. The presence of hydrogen increased the hardness, mostly indicative of solution strengthening and it decreased with depth confirming the existence of hydrogen concentration gradient. The effects were similar in 2014-T6, but to a slightly smaller extent....

  9. The effect of hydrogen on the conductivity of Ag-Pd thick film resistors

    Science.gov (United States)

    Aleksandrov, V. A.; Kalyuzhnyi, D. G.; Aleksandrovich, E. V.

    2013-01-01

    The resistance of silver-palladium thick film resistors decreases and their surface conduction type changes upon heating in a flow of hydrogen at temperatures within 50-100°C or hydrogenation in an aqueous acid electrolyte at room temperature. These effects are due to the reduction of PdO (present in the Ag-Pd film) to Pd by hydrogen entering into the resistor material. In the electrolyte, the resistance of samples starts decreasing at the moment of the current being switched on.

  10. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    OpenAIRE

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  11. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.

    Science.gov (United States)

    Figi, Renato; Nagel, Oliver; Schreiner, Claudia; Hagendorfer, Harald

    2015-03-01

    Since incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need. Here, a straightforward and wet-chemistry-based analytical strategy for the determination of gaseous and non-gaseous mercury in commercially available fluorescent lamps is presented. It can be adapted in any analytical laboratory, without or with only minimum modifications of already installed equipment. The analytical figures of merit, as well as application of the method to a series of commercially available fluorescent lamps, are presented. Out of 14 analysed and commercially available lamp types, results from this study indicate that only one contains a slightly higher amount of mercury than set by the legislative force. In all new lamps the amount of gaseous mercury is negligible compared with the non-gaseous fraction (88%-99% of total mercury). © The Author(s) 2015.

  12. Thermal decomposition of silane to form hydrogenated amorphous Si film

    Science.gov (United States)

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  13. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  14. InGaP/InGaAs field-effect transistor typed hydrogen sensor

    Science.gov (United States)

    Tsai, Jung-Hui; Liou, Syuan-Hao; Lin, Pao-Sheng; Chen, Yu-Chi

    2018-02-01

    In this article, the Pd-based mixture comprising silicon dioxide (SiO2) is applied as sensing material for the InGaP/InGaAs field-effect transistor typed hydrogen sensor. After wet selectively etching the SiO2, the mixture is turned into Pd nanoparticles on an interlayer. Experimental results depict that hydrogen atoms trapped inside the mixture could effectively decrease the gate barrier height and increase the drain current due to the improved sensing properties when Pd nanoparticles were formed by wet etching method. The sensitivity of the gate forward current from air (the reference) to 9800 ppm hydrogen/air environment approaches the high value of 1674. Thus, the studied device shows a good potential for hydrogen sensor and integrated circuit applications.

  15. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of a Balanced Concentration of Hydrogen on Graphene CVD Growth

    Directory of Open Access Journals (Sweden)

    S. Chaitoglou

    2016-01-01

    Full Text Available The extraordinary properties of graphene make it one of the most interesting materials for future applications. Chemical vapor deposition (CVD is the synthetic method that permits obtaining large areas of monolayer graphene. To achieve this, it is important to find the appropriate conditions for each experimental system. In our CVD reactor working at low pressure, important factors appear to be the pretreatment of the copper substrate, considering both its cleaning and its annealing before the growing process. The carbon precursor/hydrogen flow ratio and its modification during the growth are significant in order to obtain large area graphene crystals with few defects. In this work, we have focused on the study of the methane and the hydrogen flows to control the production of single layer graphene (SLG and its growth time. In particular, we observe that hydrogen concentration increases during a usual growing process (keeping stable the methane/hydrogen flow ratio resulting in etched domains. In order to balance this increase, a modification of the hydrogen flow results in the growth of smooth hexagonal SLG domains. This is a result of the etching effect that hydrogen performs on the growing graphene. It is essential, therefore, to study the moderated presence of hydrogen.

  17. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  18. Method of producing gaseous products using a downflow reactor

    Science.gov (United States)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  19. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  20. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    Science.gov (United States)

    Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.

    2015-01-01

    Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

  1. NbCl 5 and CrCl 3 catalysts effect on synthesis and hydrogen ...

    Indian Academy of Sciences (India)

    Two kinds of novel materials, Mg–1.6 mol% Ni–0.4 mol% NiO–2 mol% MCl (MCl = NbCl5, CrCl3), along with Mg–1.6 mol% Ni–0.4 mol% NiO for comparison, were examined for their potential use in hydrogen storage applications, having been fabricated via cryomilling. The effects of NbCl5 and CrCl3 on hydrogen storage ...

  2. NbCl5 and CrCl3 catalysts effect on synthesis and hydrogen storage ...

    Indian Academy of Sciences (India)

    Two kinds of novel materials, Mg–1.6 mol% Ni–0.4 mol% NiO–2 mol% MCl (MCl = NbCl5, CrCl3), along with Mg–1.6 mol% Ni–0.4 mol% NiO for comparison, were examined for their potential use in hydrogen storage applications, having been fabricated via cryomilling. The effects of NbCl5 and CrCl3 on hydrogen storage ...

  3. Effect of Exogenous Application of Hydrogen Peroxide on Drought Tolerance of Glob Amaranth (Gomphrena globosa L.

    Directory of Open Access Journals (Sweden)

    M Goldani

    2012-12-01

    Full Text Available Drought is one of the important environmental stresses that reduce the crop growth. Oxidative stress is a secondary stress due to drought and other abiotic stresses. In order to study the effect of exogenous application of hydrogen peroxide on drought tolerance of glob amaranth (Gomphrena globosa L., an experiment was conducted in greenhouse conditions. This study was designed as factorial based on completely randomized design with 3 replications. Different concentrations of hydrogen peroxide (0, 2.5 and 5 mM and three levels of irrigation intervals (after 4, 7 and 10 days were treated in this study. The results showed that foliar application of hydrogen peroxide can improve shoot and root dry weight and alleviate adverse effects of drought stress. With increasing drought stress stomatal conductance, flower number, total chlorophyll and root volume decreased significantly. So that the lowest of these characterestics was in the irrigation after 10 days. Interaction effects of drought and hydrogen peroxide in shoot dry weight was significantly different in 5% level and in electrolyte leakage, relative water content, free proline and total root length was significantly different in 1% level. In control (4 day irrigation interval with increasing hydrogen peroxide of 2.5 mM, shoot dry weight and total root length increased 20% and 91%, respectively. In control, with increasing hydrogen peroxide to 5 mM total chlorophyll was increased 30.8% compared to 0 mM hydrogen peroxide application (control. The final result showed that foliar application of hydrogen peroxide decreased the adverse effects of drought stress.

  4. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    International Nuclear Information System (INIS)

    Tolley, George S.; Jones, Donald W.; Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-01-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, 'Overall Employment in a Hydrogen Economy', requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment (types) in the United States. As required by Section 1820, the present report considers: (1) Replacement effects of new goods and services; (2) International competition; (3) Workforce training requirements; (4) Multiple possible fuel cycles, including usage of raw materials; (5) Rates of market penetration of technologies; (6) Regional variations based on geography; and (7) Specific recommendations of the study Both the Administration's National Energy Policy and the Department's Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America's future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  5. Separate effects tests on hydrogen combustion during direct containment heating events

    International Nuclear Information System (INIS)

    Meyer, L.; Albrecht, G.; Kirstahler, M.; Schwall, M.; Wachter, E.

    2008-01-01

    In the frame of severe accident research for light water reactors Forschungszentrum Karlsruhe (FZK/IKET) operates the facilities DISCO-C and DISCO-H since 1998, conceived to investigate the direct containment heating (DCH) issue. Previous DCH experiments have investigated the corium dispersion and containment pressurization during DCH in different European reactor geometries using an iron-alumina melt and steam as model fluids. The analysis of these experiments showed that the containment was pressurized by the debris-to-gas heat transfer but also to a large part by hydrogen combustion. The need was identified to better characterize the hydrogen combustion during DCH. To address this issue separate effect tests in the DISCO-H facility were conducted. These tests reproduced phenomena occurring during DCH (injection of a hot steam-hydrogen mixture jet into the containment and ignition of the air-steam-hydrogen mixture) with the exception of corium dispersion. The effect of corium particles as igniters was simulated using sparkler systems. The data will be used to validate models in combustion codes and to extrapolate to prototypic scale. Tests have been conducted in the DISCO-H facility in two steps. First a small series of six tests was done in a simplified geometry to study fundamental parameters. Then, two tests were done with a containment geometry subdivided into a subcompartment and the containment dome. The test conditions were as follows: As initial condition in the containment an atmosphere was used either with air or with a homogeneous air-steam mixture containing hydrogen concentrations between 0 and 7 mol%, temperatures around 100 C and pressure at 2 bar (representative of the containment atmosphere conditions at vessel failure). Injection of a hot steam-hydrogen jet mixture into the reactor cavity pit at 20 bar, representative of the primary circuit blow down through the vessel and hydrogen produced during this phase. The most important variables

  6. An Experimental Study of Unconfined Hydrogen/Oxygen and Hydrogen/Air Explosions

    Science.gov (United States)

    Richardson, Erin; Skinner, Troy; Blackwood, James; Hays, Michael; Bangham, Mike; Jackson, Austin

    2014-01-01

    Development tests are being conducted to characterize unconfined Hydrogen/air and Hydrogen/Oxygen blast characteristics. Most of the existing experiments for these types of explosions address contained explosions, like shock tubes. Therefore, the Hydrogen Unconfined Combustion Test Apparatus (HUCTA) has been developed as a gaseous combustion test device for determining the relationship between overpressure, impulse, and flame speed at various mixture ratios for unconfined reactions of hydrogen/oxygen and hydrogen/air. The system consists of a central platform plumbed to inject and mix component gasses into an attached translucent bag or balloon while monitoring hydrogen concentration. All tests are ignited with a spark with plans to introduce higher energy ignition sources in the future. Surrounding the platform are 9 blast pressure "Pencil" probes. Two high-speed cameras are used to observe flame speed within the combustion zone. The entire system is raised approx. 6 feet off the ground to remove any ground reflection from the measurements. As of this writing greater than 175 tests have been performed and include Design of Experiments test sets. Many of these early tests have used bags or balloons between approx. 340L and approx. 1850L to quantify the effect of gaseous mixture ratio on the properties of interest. All data acquisition is synchronized between the high-speed cameras, the probes, and the ignition system to observe flame and shock propagation. Successful attempts have been made to couple the pressure profile with the progress of the flame front within the combustion zone by placing a probe within the bag. Overpressure and impulse data obtained from these tests are used to anchor engineering analysis tools, CFD models and in the development of blast and fragment acceleration models.

  7. Effect of cooperative hydrogen bonding in azo-hydrazone tautomerism of azo dyes.

    Science.gov (United States)

    Ozen, Alimet Sema; Doruker, Pemra; Aviyente, Viktorya

    2007-12-27

    Azo-hydrazone tautomerism in azo dyes has been modeled by using density functional theory (DFT) at the B3LYP/6-31+G(d,p) level of theory. The most stable tautomer was determined both for model compounds and for azo dyes Acid Orange 7 and Solvent Yellow 14. The effects of the sulfonate group substitution and the replacement of the phenyl group with naphthyl on the tautomer stability and on the behavior in solvent have been discussed. Intramolecular hydrogen bond energies have been estimated for the azo and hydrazone tautomers to derive a relationship between the tautomer stability and the hydrogen bond strength. The transition structures for proton transfer displayed resonance assisted strong hydrogen bonding properties within the framework of the electrostatic-covalent hydrogen bond model (ECHBM). Evolution of the intramolecular hydrogen bond with changing structural and environmental factors during the tautomeric conversion process has been studied extensively by means of the atoms-in-molecules (AIM) analysis of the electron density. The bulk solvent effect was examined using the self-consistent reaction field model. Special solute-solvent interactions were further investigated by means of quantum mechanical calculations after defining the first-solvation shell by molecular dynamics simulations. The effect of cooperative hydrogen bonding with solvent molecules on the tautomer stability has been discussed.

  8. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R.

    Science.gov (United States)

    Sivarajah, Ahila; Collino, Massimo; Yasin, Mohammed; Benetti, Elisa; Gallicchio, Margherita; Mazzon, Emanuela; Cuzzocrea, Salvatore; Fantozzi, Roberto; Thiemermann, Christoph

    2009-03-01

    Hydrogen sulfide (H2S) is a novel gaseous mediator produced by cystathionine-beta-synthase and cystathionine-gamma-lyase in the cardiovascular system, including the heart. Using a rat model of regional myocardial ischemia/reperfusion, we investigated the effects of an H2S donor (sodium hydrogen sulfide [NaHS]) on the infarct size and apoptosis caused by ischemia (25 min) and reperfusion (2 h). Furthermore, we investigated the potential mechanism(s) of the cardioprotective effect(s) afforded by NaHS. Specifically, we demonstrate that NaHS (1) attenuates the increase in caspase 9 activity observed in cardiac myocytes isolated from the area at risk (AAR) of hearts subjected in vivo to regional myocardial I/R and (2) ameliorates the decrease in expression of Bcl-2 within the AAR obtained from rat hearts subjected to regional myocardial I/R. The cardioprotective effects of NaHS were abolished by 5-hydroxydeconoate, a putative mitochondrial adenosine triphosphate-sensitive potassium channel blocker. Furthermore, NaHS attenuated the increase in the I/R-induced (1) phosphorylation of p38 mitogen-activated protein kinase and Jun N-terminal kinase, (2) translocation from the cytosol to the nucleus of the p65 subunit of nuclear factor-kappaB, (3) intercellular adhesion molecule 1 expression, (4) polymorphonuclear leukocyte accumulation, (5) myeloperoxidase activity, (6) malondialdehyde levels, and (7) nitrotyrosine staining determined in the AAR obtained from rat hearts subjected to regional myocardial I/R. In conclusion, we demonstrate that the cardioprotective effect of NaHS is secondary to a combination of antiapoptotic and anti-inflammatory effects. The antiapoptotic effect of NaHS may be in part due to the opening of the putative mitochondrial adenosine triphosphate-sensitive potassium channels.

  9. Nuclear Quantum Effects Induce Metallization of Dense Solid Molecular Hydrogen

    OpenAIRE

    Azadi, Sam; Singh, Ranber; Kühne, T. D.

    2017-01-01

    We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the $C2/c$, $Pc$, and $P6_3/m$ structures at pressures of 250, 300, and 350 GPa are calculated using the diffusion quantum Monte Carlo (DMC) method. The atomic configurations are obtained from ab-initio path-integral molecular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point energy and tempera...

  10. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    Science.gov (United States)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  11. Planar Reflection of Gaseous Detonations

    Science.gov (United States)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  12. Radiation imaging with gaseous detectors

    Science.gov (United States)

    Sauli, Fabio

    2018-01-01

    Modern position-sensitive fast gaseous detectors, developed primarily to satisfy the needs of particle physics experiments, have been tailored by many research groups for the use in other applied fields, owing to their main performances: high rate capability, sub-mm position resolution, large covered areas at moderate costs. Implemented with electronic or optical detection systems, the devices are successfully used to image various radiation fields: X-rays, low energy electrons, neutrons.

  13. Hydrogen diffusion and distribution in alloy 600 and related effects on the plasticity

    International Nuclear Information System (INIS)

    Lecoester, F.; Brass, A.M.; Chene, J.; Noel, D.

    1997-01-01

    Hydrogen can play a part in several mechanisms proposed for explaining the stress corrosion cracking of nickel based alloy 600, used in steam generators of pressurized water nuclear reactors. This study presents data on diffusion and hydrogen trapping in alloy 600 as well as the embrittlement which results from it. Distribution data were obtained by deuterium analysis of samples cathodically charged with heavy water. Secondary ion mass spectrometry, liquid scintillation counting and tritium autoradiography have been used for analysis. Data on hydrogen embrittlement were obtained by imposed tensile tests on samples with or without cathodic charging. Different microstructures were studied. The results show that alloy 600 embrittlement greatly depend on the structure and increases with the degree of intergranular precipitation. An effect of hydrogen on the plasticity of the alloy was noted. (author)

  14. Effect of coal-derived-liquid solvent on the hydrogenation and restrictive diffusion of nickel porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.H.; Massoth, F.E.; Lee, S.Y.; Seader, J.D. (University of Utah, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1991-12-01

    Hydrogenation of nickel porphyrins was carried out at 335{degree}C and 50 atm hydrogen pressure with two Ni-Mo/alumina catalysts of different pore sizes. Solvents employed were a triple-hydrotreated coal-derived-liquid and four pure hydrocarbons (n-decane, decalin, tetralin, and mesitylene). Reaction rates in the hydrotreated coal-derived-liquid solvent were higher than those in pure solvents with higher hydrogen solubilities. The results were attributed to the greater hydrogen-donor ability of the hydrotreated coal-derived-liquid solvent. Reaction rates of different catalyst particle sizes were used to calculate effective diffusivities under processing conditions. Reactivity was significantly affected by catalyst deactivation via coke buildup at catalyst pore mouths. Accounting for this additional diffusional constraint, restrictive diffusion in the coal-liquid solvent under processing conditions was found to be in reasonable agreement with approximate hydrodynamic theory for non-reactive conditions. 33 refs., 6 figs., 4 tabs.

  15. Data compilation for radiation effects on hydrogen recycle in fusion reactor materials

    International Nuclear Information System (INIS)

    Ozawa, Kunio; Fukushima, Kimichika; Ebisawa, Katsuyuki.

    1984-05-01

    Irradiation tests of materials by hydrogen isotopes are under way, to investigate the hydrogen recycling process where exchange of fuel particles takes place between plasma and the wall of the nuclear fusion reactor. In the report, data on hydrogen irradiation are collected and reviewed from the view point of irradiation effects. Data are classified into, (1) Re-emmission, (2) Retention, (Retained hydrogen isotopes, Depth profile in the materials and Thermal desorption spectroscopy), (3) Permeation and (4) Ion impact desorption. Research activities in each area are arranged according to the date of publication, research institutes, materials investigated, so that overview of present status can be made. Then, institute, author and reference are shown for each classification with tables. The list of literature is also attached. (author)

  16. Effects of hydrogen on the tensile strength characteristics of stainless steels

    International Nuclear Information System (INIS)

    Blanchard, R.; Pelissier, J.; Pluchery, M.; Commissariat a l'Energie Atomique, Saclay

    1961-01-01

    This paper deals with the effects of hydrogen on stainless steel, that might possibly be used as a canning material in hydrogen-cooled reactors. Apparent ultimate-tensile strength is only 80 per cent of initial value for hydrogen content about 50 cc NTP/ 100 g, and reduction in area decreases from 80 to 55 per cent. A special two-stage replica technique has been developed which allows fracture surface of small tensile specimens (about 0.1 mm diam.) to be examined in an electron microscope. All the specimens showed evidence of ductile character throughout the range of hydrogen contents investigated, but the aspect of the fracture surfaces gradually changes with increasing amounts. (author) [fr

  17. The effect of tensile stress on hydrogen diffusion in metal alloys

    Science.gov (United States)

    Danford, M. D.

    1992-01-01

    The effect of tensile stress on hydrogen diffusion has been determined for Type 303 stainless steel, A286 CRES, and Waspaloy and IN100 nickel-base alloys. It was found that hydrogen diffusion coefficients are not significantly affected by stress, while the hydrogen permeabilities are greatly affected in Type 303 stainless steel and A286 CRES (iron-based alloys), but are affected little in Waspaloy (nickel-base) and not affected in all in IN100 (nickel base). These observations might be taken as an indication that hydrogen permeabilities are affected by stress in iron-based alloys, but only slightly affected in nickel-based alloys. However, it is too early to make such a generalization based on the study of only these four alloys.

  18. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  19. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  20. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Fukuhara, Yuka.

    1991-01-01

    Radioactive gaseous wastes are introduced to a cooling tower and cooled by cooling water discharged from a cooling water discharging nozzle. Cooled radioactive gaseous wastes are cleaned by cleaning water in the cleaning tower and introduced accompanied with water to a condenser. Water in the gases is condensed in a condenser and gathered in a condensated water receiving tank. Water-removed gases are removed with fine particles by way of filters and then released out of the system by using a blower. Further, water used for cleaning the radioactive gaseous wastes in the cleaning tower is gathered to the liquid wastes receiving tank and sent to a radioactive liquid wastes processing device. On the other hand, condensates collected to the condensates receiving tank are returned to a cooling water discharging nozzle by a pump and re-utilized as cooling water. This can reduce the amount of radioactive liquid wastes, to reduce the processing amount of the radioactive liquid waste processing devices. (I.N.)

  1. L X-ray emission from fast highly charged Cu ions in collisions with gaseous targets: Saturation effect in excitation and transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay [Tata Institute of Fundamental Research, Colaba, Mumbai-400 005 (India); Misra, D. [Tata Institute of Fundamental Research, Colaba, Mumbai-400 005 (India); Kadhane, U. [Tata Institute of Fundamental Research, Colaba, Mumbai-400 005 (India); Kelkar, A.H. [Tata Institute of Fundamental Research, Colaba, Mumbai-400 005 (India); Dhal, B.B. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Tribedi, L.C. [Tata Institute of Fundamental Research, Colaba, Mumbai-400 005 (India)]. E-mail: lokesh@tifr.res.in

    2006-11-15

    We have measured L X-ray production cross sections for highly charged 156 MeV Be-like Cu ions in collisions with gaseous targets of H{sub 2}, Ne, Ar, Kr and Xe. In the present collision systems, measured projectile L X-ray intensity is contributed by the excitation as well as electron transfer processes. The projectile L X-ray production cross sections are found to increase initially and then saturate with increasing target atomic number. The charge state dependence of projectile L X-ray production cross sections have been measured with Kr target.

  2. Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size

    Energy Technology Data Exchange (ETDEWEB)

    Culp, J.T.; Natesakhawat, Sittichai; Smith, M.R.; Bittner, E.; Matranga, C.S.; Bockrath, B.

    2008-05-01

    The effects of pore size on the hydrogen storage properties of a series of pillared layered solids based on the M(L)[M'(CN)4] structural motif, where M ) Co or Ni, L ) pyrazine (pyz), 4,4'-bipyridine (bpy), or 4,4'-dipyridylacetylene (dpac), and M' ) Ni, Pd, or Pt, has been investigated. The compounds all possess slitlike pores with constant in-plane dimensions and similar organic functionality. The pore heights vary as a function of L and provide a means for a systematic investigation of the effects of pore dimension on hydrogen storage properties in porous materials. Hydrogen isotherms were measured at 77 and 87 K up to a pressure of 1 atm. The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to that of liquid hydrogen. The adsorbed hydrogen density drops by a factor of 2 as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series and weakly correlate with pore size.

  3. Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Jeffery T. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Natesakhawat, Sittichai [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Smith, Milton R. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Bittner, Edward [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Matranga, Christopher [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Bockrath, Bradley [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2008-05-01

    The effects of pore size on the hydrogen storage properties of a series of pillared layered solids based on the M(L)[M'(CN)(4)] structural motif, where M = Co or Ni, L = pyrazine (pyz), 4,4'-bipyridine (bpy), or 4,4'-dipyridylacetylene (dpac), and M' = Ni, Pd, or Pt, has been investigated. The compounds all possess slitlike pores with constant in-plane dimensions and similar organic functionality. The pore heights vary as a function of L and provide a means for a systematic investigation of the effects of pore dimension on hydrogen storage properties in porous materials. Hydrogen isotherms were measured at 77 and 87 K up to a pressure of 1 atm. The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to that of liquid hydrogen. The adsorbed hydrogen density drops by a factor of 2 as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series and weakly correlate with pore size.

  4. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5......, and methanogenesis and homoacetogenesis could only be inhibited by proper control of fermentation pH and temperature. Methanogenic activity could be inhibited at pH lower than 6, both under mesophilic and thermophilic conditions, while homoacetogenic activity could only be inhibited under thermophilic condition...

  5. The use of gaseous fuels mixtures for SI engines propulsion

    Science.gov (United States)

    Flekiewicz, M.; Kubica, G.

    2016-09-01

    Paper presents results of SI engine tests, carried on for different gaseous fuels. Carried out analysis made it possible to define correlation between fuel composition and engine operating parameters. Tests covered various gaseous mixtures: of methane and hydrogen and LPG with DME featuring different shares. The first group, considered as low carbon content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in those mixtures realizes the function of combustion process activator. That is why hydrogen addition improves the energy conversion by about 3%. The second group of fuels is constituted by LPG and DME mixtures. DME mixes perfectly with LPG, and differently than in case of other hydrocarbon fuels consists also of oxygen makes the stoichiometric mixture less oxygen demanding. In case of this fuel an improvement in engine volumetric and overall engine efficiency has been noticed, when compared to LPG. For the 11% DME share in the mixture an improvement of 2% in the efficiency has been noticed. During the tests standard CNG/LPG feeding systems have been used, what underlines utility value of the research. The stand tests results have been followed by combustion process simulation including exhaust forming and charge exchange.

  6. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    Science.gov (United States)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  7. Characterization of Lean Misfire Limits of Mixture Alternative Gaseous Fuels Used for Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2012-03-01

    Full Text Available Increasing on gaseous fuels as clean, economical and abundant fuels encourages the search for optimum conditions of gas-fueled internal combustion engines. This paper presents the experimental results on the lean operational limits of Recardo E6 engine using gasoline, LPG, NG and hydrogen as fuels. The first appearance of almost motoring cycle was used to define the engine lean limit after the fuel flow was reduced gradually. The effects of compression ratio, engine speed and spark timing on the engine operational limits are presented and discussed in detailed. Increasing compression ratio (CR extend the lean limits, this appears obviously with hydrogen, which has a wide range of equivalence ratios, while for hydrocarbon fuel octane number affect gasoline, so it can' t work above CR=9:1, and for LPG it reaches CR=12:1, NG reaches CR=15:1 at lean limit operation. Movement from low speeds to medium speeds extended lean misfire limits, while moving from medium to high speeds contracted the lean misfiring limits. NOx, CO and UBHC concentrations increased with CR increase for all fuels, while CO2 concentrations reduced with this increment. NOx concentration increased for medium speeds and reduced for high speeds, but the resulted concentrations were inconcedrable for these lean limits. CO and CO2 increased with engine speed increase, while UBHC reduced with this increment. The hydrogen engine runs with zero CO, CO2 and UNHC concentrations, and altra low levels of NOx concentrations at studied lean misfire limits

  8. Infrared Light Absorption Computed Tomography Measurements for Gaseous Hydrocarbon Fuel Concentration

    Science.gov (United States)

    Kawazoe, Hiromitsu; Emi, Yasuyuki; Nakamura, Yoshiaki

    A system to measure gaseous fuel distribution was devised, which is based on infra-red light absorption by carbon-hydrogen stretch mode of vibration and the computed tomography method (IR-CT method). Since the incident light intensity from an infra-red laser fluctuated temporally, the effect was diminished by dividing the beam to two, one of which was monitored for better measurement accuracy. It was found that the error due to the laser fluctuation was within 0.8% and the feasibility of the IR-CT method was confirmed by applying the system to the measurements of the methane fuel concentration in an internal combustion engine model and a burner with diffusion flame. Furthermore, calibration to determine absorptivity was undertaken, which was used for the conversions from the measured line absorption coefficients to spatial fuel concentration in the combustion field.

  9. Effective and Durable Co Single Atomic Cocatalysts for Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Zhao, Qi; Yao, Weifeng; Huang, Cunping; Wu, Qiang; Xu, Qunjie

    2017-12-13

    This research reports for the first time that single cobalt atoms anchored in nitrogen-doped graphene (Co-NG) can serve as a highly effective and durable cocatalyst for visible light photocatalytic hydrogen production from water. Results show that, under identical conditions, the hydrogen production rate (1382 μmol/h) for 0.25 wt % Co-NG-loaded CdS photocatalyst (0.25 wt % Co-NG/CdS) is 3.42 times greater than that of nitrogen-doped graphene (NG) loaded CdS photocatalyst (NG/CdS) and about 1.3 times greater than the greatest hydrogen production rate (1077 μmol/h) for 1.5 wt % Pt nanoparticle loaded CdS photocatalyst (1.5 wt % Pt-NPs/CdS). At 420 nm irradiation, the quantum efficiency of the 0.25 wt % Co-NG/CdS photocatalyst is 50.5%, the highest efficiency among those literature-reported non-noble metal cocatalysts. The Co-NG/CdS nanocomposite-based photocatalyst also has an extended durability. No activity decline was detected during three cyclic photocatalytic life span tests. The very low cocatalyst loading, along with the facile preparation technology for this non-noble metal cocatalyst, will significantly reduce the hydrogen production costs and finally lead to the commercialization of the solar catalytic hydrogen production process. Based on experimental results, we conclude that Co-NG can successfully replace noble metal cocatalysts as a highly effective and durable cocatalyst for renewable solar hydrogen production. This finding will point to a new way for the development of highly effective, long life span, non-noble metal-based cocatalysts for renewable and cost-effective hydrogen production.

  10. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  11. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  12. METHOD OF COMBINING HYDROGEN AND OXYGEN

    Science.gov (United States)

    McBride, J.P.

    1962-02-27

    A method is given for the catalytic recombination of radiolytic hydrogen and/or deulerium and oxygen resulting from the subjection or an aqueous thorium oxide or thorium oxide-uranium oxide slurry to ionizing radiation. An improved catalyst is prepared by providing paliadium nitrate in an aqueous thorium oxide sol at a concentration of at least 0.05 grams per gram of thorium oxide and contacting the sol with gaseous hydrogen to form flocculated solids. The solids are then recovered and added to the slurry to provide a palladium concentration of 100 to 1000 parts per million. Recombination is effected by the calalyst at a rate sufficient to support high nuclear reactor power densities. (AEC)

  13. Hydrogenation process for solid carbonaceous materials

    Science.gov (United States)

    Cox, John L.; Wilcox, Wayne A.

    1979-01-01

    Coal or other solid carbonaceous material is contacted with an organic solvent containing both hydrogen and a transition metal catalyst in solution to hydrogenate unsaturated bonds within the carbonaceous material. This benefaction step permits subsequent pyrolysis or hydrogenolysis of the carbonaceous fuel to form gaseous and liquid hydrocarbon products of increased yield and quality.

  14. Effect of hydrogen uptake on the electrochemical corrosion of N18 zircaloy under gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Z.Y. [Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H., E-mail: yhling@mail.tsinghua.edu.cn [Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China); Bai, Y.K.; Zeng, C.; Wang, S. [Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China); Clara, J.C. [Department of Chemistry, University of Western Ontario, London N6A 5B7, Ontario (Canada)

    2016-12-01

    Highlights: • Hydrogen permeation can promote the corrosion rate of N18 zircaloy. • Gamma irradiation can further accelerate the corrosion process. • A novel mechanism based on point defects was proposed to explain the relevant phenomena. - Abstract: It has been well recognized that dramatic hydrogen uptake occurred in zircaloy after kinetic transition and porous structure was observed subsequently due to phase transformation of tetragonal to monoclinic zirconia. Therefore, how hydrogen solute and gamma-induced capillary-embedded hydrolysis influence the corrosion of zircaloy is an intriguing issue. In this work, the effect of hydrogen uptake and gamma irradiation on corrosion of N18 zircaloy was studied. Raman spectra and atomic force microscopy (AFM) were employed to analyse phase structure and surface morphology. Potentiodynamic polarization and electrochemical impedance spectroscopy were utilized to qualitatively evaluate the electron transfer properties of the oxide film formed on the zircaloy surface after corrosion. The depth profile and surface chemical states of involving elements were analysed by auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), respectively. It was found that hydrogen permeation can decline the integrity and impedance semicircle of the oxide films, the more the hydrogen uptake is; the smaller magnitude of impedance will be. In view of the gamma irradiation, it is demonstrated that it promotes the corrosion rate slightly. Based on the irradiation theory and existing phenomena, the underlying mechanism is proposed.

  15. The effect of TTNT nanotubes on hydrogen sorption using MgH2

    Directory of Open Access Journals (Sweden)

    Mariana Coutinho Brum

    2013-06-01

    Full Text Available Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH2 with the addition of TTNT (TiTanate NanoTubes. The MgH2-TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (% on the hydrogen capacity was evaluated. The milling of pure MgH2 was performed for 24 hours and afterwards the MgH2-TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM and Scanning Electron Microscopy (SEM were used to evaluate the nanotube synthesis and show the particle morphology of the MgH2-TTNT composite, respectively. The Differential Scanning Calorimetry (DSC examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%.

  16. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-11-01

    The inhibitory effects of furan derivatives [i.e. furfural and 5-hydroxymethylfurfural (5-HMF)] and phenolic compounds (i.e. vanillin and syringaldehyde) on dark hydrogen fermentation from glucose were comparatively evaluated. Phenolic compounds exhibited stronger inhibition on hydrogen production and glucose consumption than furan derivatives under the same 15mM concentration. Furan derivatives were completely degraded after 72h fermentation, while over 55% of phenolic compounds remained unconverted after 108h fermentation. The inhibition coefficients of vanillin (14.05) and syringaldehyde (11.21) were higher than those of 5-HMF (4.35) and furfural (0.64). Vanillin exhibited the maximum decrease of hydrogen yield (17%). The consumed reducing power by inhibitors reduction from R-CHO to RCH2OH was a possible reason contributed to the decreased hydrogen yield. Vanillin exhibited the maximum delay of peak times of hydrogen production rate and glucose consumption. Soluble metabolites and carbon conversion efficiency decreased with inhibitors addition, which were consistent with hydrogen production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The effect of TTNT nanotubes on hydrogen sorption using MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Mariana Coutinho; Jardim, Paula Mendes; Conceicao, Monique Osorio Talarico da; Santos, Dilson Silva dos, E-mail: monique@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH{sub 2} with the addition of TTNT (TiTanate nanotubes). The MgH{sub 2} -TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (%)) on the hydrogen capacity was evaluated. The milling of pure MgH{sub 2} was performed for 24 hours and afterwards the MgH{sub 2} -TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to evaluate the nanotube synthesis and show the particle morphology of the MgH{sub 2} -TTNT composite, respectively. The Differential Scanning Calorimetry (DSC) examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%). (author)

  18. Effect of hydrogen on the fracture toughness of 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Capeletti, T.L.

    1976-01-01

    Fracture toughness (K/sub c/) of 17-4 PH stainless steel decreased significantly with increased hydrogen test pressure for a variety of heat treatment conditions: solution annealed, underaged, peak-aged, and overaged. Minimum toughness (13 MPa√m) was obtained with peak-aged samples tested in 69.5-MPa hydrogen; toughness was maximum (100 MPa√m) for samples tested in helium. Aging treatments increased the hardness from 28 R/sub c/ for solution-annealed material to 42 R/c/ for peak-aged material and correspondingly decreased the fracture toughness in high-pressure hydrogen (K/sub H/) from 31 to 13 MPa√m. However, increased hardness had no substantial effect on the K/sub c/ in helium. Fracture mechanism changed from predominantly ductile rupture in helium to cleavage in 69.5-MPa hydrogen, with mixed-mode fractures at lower hydrogen pressure (3.5-MPa). On the basis of these data, 17-4 PH stainless steel is not recommended for hydrogen service

  19. Effects of Hydrogen-Rich Saline on Hepatectomy-Induced Postoperative Cognitive Dysfunction in Old Mice.

    Science.gov (United States)

    Tian, Yue; Guo, Shanbin; Zhang, Yan; Xu, Ying; Zhao, Ping; Zhao, Xiaochun

    2017-05-01

    This study aims to investigate the protective effects and underlying mechanisms of hydrogen-rich saline on the cognitive functions of elder mice with partial hepatectomy-induced postoperative cognitive dysfunction (POCD). Ninety-six old male Kunming mice were randomly divided into 4 groups (n = 24 each): control group (group C), hydrogen-rich saline group (group H), POCD group (group P), and POCD + hydrogen-rich saline group (group PH). Cognitive function was subsequently assessed using Morris water-maze (MWM) test. TNF-α and IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, along with NF-κB activity determined by ELISA. The morphology of hippocampal tissues were further observed by HE staining. Learning and memory abilities of mice were significantly impaired at day 10 and day 14 post-surgery, as partial hepatectomy significantly prolonged the escape latency, decreased time at the original platform quadrant and frequency of crossing in group P when compared to group C (p hydrogen-rich saline (group PH) partially rescued spatial memory and learning as it shortened escape latency and increased time and crossing frequency of original platform compared to group P (p hydrogen-rich saline. Hydrogen-rich saline can alleviate POCD via inhibiting NF-κB activity in the hippocampus and reducing inflammatory response.

  20. Effect of Hydrogen on Vacancy Formation in Sputtered Cu Films Studied by Positron Annihilation Spectroscopy

    Science.gov (United States)

    Yabuuchi, Atsushi; Kihara, Teruo; Kubo, Daichi; Mizuno, Masataka; Araki, Hideki; Onishi, Takashi; Shirai, Yasuharu

    2013-04-01

    As a part of the LSI interconnect fabrication process, a post-deposition high-pressure annealing process is proposed for embedding copper into trench structures. The embedding property of sputtered Cu films has been recognized to be improved by adding hydrogen to the sputtering argon gas. In this study, to elucidate the effect of hydrogen on vacancy formation in sputtered Cu films, normal argon-sputtered and argon-hydrogen-sputtered Cu films were evaluated by positron annihilation spectroscopy. As a result, monovacancies with a concentration of more than 10-4 were observed in the argon-hydrogen-sputtered Cu films, whereas only one positron lifetime component corresponding to the grain boundary was detected in the normal argon-sputtered Cu films. This result means monovacancies are stabilized by adding hydrogen to sputtering gas. In the annealing process, the stabilized monovacancies began clustering at around 300 °C, which indicates the dissociation of monovacancy-hydrogen bonds. The introduced monovacancies may promote creep deformation during high-pressure annealing.

  1. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor; Modelisation des effets de l'hydrogene sur la morphogenese des nanostructures de silicium hydrogene dans un reacteur plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brulin, Q

    2006-01-15

    results. However, these results were obtained without taking into account the presence of atomic hydrogen in the plasma. A thorough study of the effect of atomic hydrogen on the metastable structures produced in simulation is thus carried out. The study of the interaction of atomic hydrogen on the surface of the cluster gives the possibility of finding the proportion of mechanisms (Eley-Rideal hydrogen desorption, hot atom mechanism or absorption on the surface of the cluster) in agreement with experiments on recombination on silicon surfaces. The interaction of atomic hydrogen with the surface of the clusters also induces a modification of the internal organization of the silicon atoms. The organization of the internal silicon atoms of the clusters as a function of cluster size (magic number) makes it possible to understand why the experimental observations indicate the presence of crystalline structures. Finally this study leads to the prediction of a particularly stable structure which could be used as precursor for the growth of silicon nano-wires. (author)

  2. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  3. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  4. Liquefied gaseous fuels safety and environmental control assessment program: a status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Progress is reported in research on the safety and environmental aspects of four principal liquefied gaseous material systems: liquefied natural gas (LNG), liquefied petroleum gas (LPG), hydrogen, and ammonia. Each section of the report has been abstracted and indexed individually. (JGB)

  5. Determination of yields of gaseous products of carbohydrates radiolysis by mass spectrometry method

    International Nuclear Information System (INIS)

    Ivko, A.A.; Gol'din, S.I.; Bondarenko, N.T.; Markevich, S.V.; Sharpatyj, V.A.

    1977-01-01

    Possible complications are treated involved in the mass spectral study of the radiolytic products of deuterated carbohydrates. A method is proposed suitable for the evaluation of hydrogen isotopes relations and the content of deuterium in water. It has been possible to identify the major gaseous radiolytic products of glucose, polyglucan and dextran, and also to assess their radiation-chemical yields [ru

  6. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  7. Hydrogen peroxide catalytic decomposition

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  8. Effectiveness of thermal ignition devices in lean hydrogen-air-steam mixtures

    International Nuclear Information System (INIS)

    Tamm, H.; McFarlane, R.; Liu, D.D.S.

    1985-03-01

    Deliberate ignition of hydrogen at low concentrations in reactor containment systems is one method of controlling hydrogen during degraded core accidents. Since many postulated accident conditions have substantial amounts of steam present, experiments have been performed to determine the hydrogen-air-steam concentration regimes in which ignitors would be effective. In these experiments, both a GM AC 7G thermal flow plug and a Tayco Model 3442 ignitor have been used. These ignitors have been installed in PWR containments with ice condensers and in BWR Mark III containments. This report presents the results of these ignitor effectiveness experiments, and gives the ignition limits and the effect of steam on the ignitor surface temperatures required for ignition

  9. Effect of small cage guests on hydrogen bonding of tetrahydrofuran in binary structure II clathrate hydrates.

    Science.gov (United States)

    Alavi, Saman; Ripmeester, John A

    2012-08-07

    Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.

  10. Photovoltaic Hydrogen Sensor

    Science.gov (United States)

    Daud, Taher; Janesick, James R.; Lambe, John

    1989-01-01

    Photovoltaic device senses hydrogen developed to test degradation of diodes with platinum flash gates on backs. Sensing element is p/n junction rather than conventional Schottky barrier or metal oxide/silicon field-effect transistor. Hydrogen-indicating electrical signal modulated optically rather than electrically. Layered structure of hydrogen detector and principle of operation resemble silicon solar photovoltaic cell. Hydrogen detector responds to hydrogen in atmosphere within minutes and recovers quickly when hydrogen removed.

  11. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants

    NARCIS (Netherlands)

    Dobben, van H.F.; Wamelink, G.W.W.; Braak, ter C.J.F.

    2001-01-01

    A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to

  12. [Effects of hydrogen on the lung damage of mice at early stage of severe burn].

    Science.gov (United States)

    Qin, C; Bian, Y X; Feng, T T; Zhang, J H; Yu, Y H

    2017-11-20

    Objective: To investigate the effects of hydrogen on the lung damage of mice at early stage of severe burn. Methods: One hundred and sixty ICR mice were divided into sham injury, hydrogen, pure burn, and burn+ hydrogen groups according to the random number table, with 40 mice in each group. Mice in pure burn group and burn+ hydrogen group were inflicted with 40% total body surface area full-thickness scald (hereafter referred to as burn) on the back, while mice in sham injury group and hydrogen group were sham injured. Mice in hydrogen group and burn+ hydrogen group inhaled 2% hydrogen for 1 h at post injury hour (PIH) 1 and 6, respectively, while mice in sham injury group and pure burn group inhaled air for 1 h. At PIH 24, lung tissue of six mice in each group was harvested, and then pathological changes of lung tissue were observed by HE staining and the lung tissue injury pathological score was calculated. Inferior vena cava blood and lung tissue of other eight mice in each group were obtained, and then content of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) in serum and lung tissue was determined by enzyme-linked immunosorbent assay. Activity of superoxide dismutase (SOD) in serum and lung tissue was detected by spectrophotometry. After arterial blood of other six mice in each group was collected for detection of arterial partial pressure of oxygen (PaO(2)), the wet and dry weight of lung tissue were weighted to calculate lung wet to dry weight ratio. The survival rates of the other twenty mice in each group during post injury days 7 were calculated. Data were processed with one-way analysis of variance, LSD test and log-rank test. Results: (1) At PIH 24, lung tissue of mice in sham injury group and hydrogen group showed no abnormality. Mice in pure burn group were with pulmonary interstitial edema, serious rupture of alveolar capillary wall, and infiltration of a large number of inflammatory cells. Mice in burn+ hydrogen group were with mild

  13. Toxicity levels to humans during acute exposure to hydrogen fluoride

    International Nuclear Information System (INIS)

    Halton, D.M.; Dranitsaris, P.; Baynes, C.J.

    1984-11-01

    A literature review was conducted of the acute toxicity of hydrogen fluoride (HF) with emphasis on the effects of inhalation of gaseous HF. The data and findings of the relevant references were summarized under four categories: animal studies, controlled human studies, community exposure and industrial exposure. These were critically reviewed and then lethal concentration-time relationships were developed for humans, corresponding to LCsub(LO), LCsub(10) and LCsub(50) levels. The effects of age, health and other physiological variables on the sensitivity to HF were discussed, as well as antagonistic and synergistic effects with other substances

  14. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    roughness. Here, we present a series of laboratory experiments that reproduce the effect observed on Mars and explore possible causes. We show that the hydrogen peak intensity increases significantly with increasing exposure of the target surface to the LIBS plasma, and that these variations are specific......On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...

  15. Platinum nanoparticle shape effects on benzene hydrogenation selectivity.

    Science.gov (United States)

    Bratlie, Kaitlin M; Lee, Hyunjoo; Komvopoulos, Kyriakos; Yang, Peidong; Somorjai, Gabor A

    2007-10-01

    Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide (TTAB). Infrared spectroscopy indicated that TTAB binds to the Pt surface through a weak C-H...Pt bond of the alkyl chain. The catalytic selectivity was found to be strongly affected by the nanoparticle shape. Both cyclohexane and cyclohexene product molecules were formed on cuboctahedral nanoparticles, whereas only cyclohexane was produced on cubic nanoparticles. These results are the same as the product selectivities obtained on Pt(111) and Pt(100) single crystals in earlier studies. The apparent activation energy for cyclohexane production on cubic nanoparticles is 10.9 +/- 0.4 kcal/mol, while for cuboctahedral nanoparticles, the apparent activation energies for cyclohexane and cyclohexene production are 8.3 +/- 0.2 and 12.2 +/- 0.4 kcal/mol, respectively. These activation energies are lower, and corresponding turnover rates are three times higher than those obtained with single-crystal Pt surfaces.

  16. Sensitization of erbium in silicon-rich silica : the effect of annealing temperature and hydrogen passivation

    International Nuclear Information System (INIS)

    Wilkinson, A.R.; Forcales, M.; Elliman, R.G.

    2005-01-01

    This paper reports on the effect of annealing temperature and hydrogen passivation on the excitation cross-section and photoluminescence of erbium in silicon-rich silica. Samples were prepared by co-implantation of Si and Er into SiO 2 followed by a single thermal anneal at temperatures ranging from 800 to 1100 degrees C, and with or without hydrogen passivation performed at 500 degrees C. Using time-resolved photoluminescence, the effective erbium excitation cross-section is shown to increase by a factor 3, while the number of optically active erbium ions decreases by a factor of 4 with increasing annealing temperature. Hydrogen passivation is shown to increase the luminescence intensity and to shorten the luminescence lifetime at 1.54 μm only in the presence of Si nanocrystals. The implications fo these results for realizing a silicon-based optical amplifier are also discussed. (author). 19 refs., 3 figs

  17. Study of low energy hydrogen ion implantation effects in silicon: electric properties

    International Nuclear Information System (INIS)

    Barhdadi, A.

    1985-07-01

    Several analysis methods have been developed: hydrogen distribution analysis by nuclear reaction, crystal disorder evaluation by R.B.S., chemical impurities identification by SIMS, optical measurements, electrical characterization of surface barriers, deep level spectroscopy DLTS, ... All these analyses have been made after implantation then after thermal annealing. A model explaining the effect of implantation then after thermal annealing. A model explaining the effect of implanted hydrogen is proposed, the implantation creates an important quantity of defects in a thin layer near the surface; a chemical attack removes them. In Schottky devices, this layer has a basic role on carrier transport phenomena. Other results are given, some of them allow to give an account of the passivation by hydrogen implantation [fr

  18. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    Directory of Open Access Journals (Sweden)

    Q. J. Guo

    2018-02-01

    Full Text Available Boron carbide (B4C coatings are prepared by an RF inductively coupled plasma (ICP torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM. The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  19. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  20. Effect of Nb addition on the terminal solid solubility of hydrogen for Zr and Zircaloy-4

    International Nuclear Information System (INIS)

    Ito, Masato; Ko, Kazuhira; Muta, Hiroaki; Uno, Masayoshi; Yamanaka, Shinsuke

    2007-01-01

    The terminal solid solubility of hydrogen (TSS) for pure Zr, Zr-Nb binary alloys with different Nb concentrations, and Nb added Zircaloy-4 was examined from the view point of the integrity of new-type nuclear fuel cladding. These alloys were hydrogenated by a modified UHV Sieverts' apparatus at 973 K. The hydrogen concentration and the hydride dissolution temperature of specimen were measured by using a hydrogen analyzer and a differential scanning calorimeter (DSC), respectively, and then the terminal solid solubility of hydrogen was determined. The TSS of the α single-phase Zr-0.3Nb (Zr-0.3 wt.% Nb) specimen appeared to be almost same as that of pure Zr. On the contrary, the TSS of the Zr-1.0Nb and Zr-2.5Nb alloys, which were α + β biphasic specimens, were larger than that of pure Zr and slightly increased with Nb concentration. The increment of TSS by Nb addition was slightly larger than that by the traditional additive elements of Sn, Ni, and Cr in Zircaloys. The Nb added Zircaloy-4 had higher TSS than the Zircaloy-2 and -4, which was attributed to the further additive effect by βZr precipitation in Zircaloy besides the traditional additive element effects

  1. Effect of cold rolling on the hydrogen absorption and desorption kinetics of Zircaloy-4

    International Nuclear Information System (INIS)

    Dupim, I.S.; Moreira, J.M.L.; Huot, J.; Santos, S.F.

    2015-01-01

    Metal matrix composites have been considered promising candidates as nuclear fuels for pressurized water reactors and also for nuclear waste management. Among others, Zircaloy is considered an excellent alternative for metallic matrix in such composites due to its excellent mechanical properties, high thermal conductivity and high corrosion resistance at operating temperatures. For manufacturing these fuels, a necessary step is the production of Zircaloy powder to be used as raw material. A feasible route to produce powders of refractory metals and alloys like Zircaloy is the hydriding and dehydriding process. For this type of processing route, hydrogen absorption and desorption should be performed at the lowest temperature and pressure possible in order to reduce the processing costs. In this paper, we investigated the hydrogen sorption kinetics of Zircaloy and the effect of cold rolling on the reaction rate. It was found that cold rolling greatly increases the hydrogenation kinetics and drastically reduces the dehydrogenation temperature. - Highlights: • The effects of temperature and pressure on the hydrogen reaction kinetics in Zircaloy-4 are analyzed. • The incubation time during absorption measurements increased for higher H2 pressures. • Changes in hydriding reaction kinetics at 1500 kPa of H 2 and 1.25 wt.% of absorption. • Cold rolling increased the hydrogen absorption kinetics and decreased the hydride decomposition temperature

  2. Effects of dexamethasone and pheniramine hydrogen maleate on stress response in patients undergoing elective laparoscopic cholecystectomy.

    Science.gov (United States)

    Karaman, Kerem; Bostanci, Erdal Birol; Aksoy, Erol; Ulas, Murat; Yigit, Tuba; Erdemli, Mehmet Ozcan; Ercin, Ugur; Bilgihan, Ayse; Saydam, Gul; Akoglu, Musa

    2013-02-01

    Laparoscopic cholecystectomy (LC) still leads to significant postoperative nausea and vomiting (PONV) and pain. Our aim was to evaluate the efficacy of dexamethasone or pheniramine hydrogen maleate, either alone or combined, in reducing the stress response and symptoms after LC. Patients were randomly assigned to 1 of 4 groups, each consisting of 20 patients: control, dexamethasone (8 mg/2 mL), pheniramine hydrogen maleate (45.5 mg/2 mL), and the combined group. The drugs were given before anesthesia induction. C-reactive protein levels (CRP) and visual analog scale (VAS) scores were significantly less in the dexamethasone (P = .003) and combined groups (P pheniramine hydrogen maleate (P = .005) significantly reduced PONV. Dexamethasone significantly reduced postoperative pain and the systemic acute-phase response, whereas these effects were only partially attained with pheniramine hydrogen maleate. Both dexamethasone and pheniramine hydrogen maleate significantly reduced PONV. An additive effect seemed to occur if these drugs were used in combination. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Comparative effects of ionizing radiation and two gaseous chemical mutagens on somatic mutation induction in one mutable and two non-mutable clones of Tradescantia

    International Nuclear Information System (INIS)

    Nauman, C.H.; Sparrow, A.H.; Schairer, L.A.

    1976-01-01

    The X-ray dose responses of mutable clone 0106 of Tradescantia (mutable for blue to pink), and its parent clone 02 have been determined for pink and colorless mutations in stamen hair cells, and are compared to the previously determined X-ray response for pink mutations of a third unrelated clone, clone 4430 (hybrid of T. subacaulis and T. hirsutiflora). X-ray response curves are compared to the response curves of the same three clones after exposure to the gaseous phase of the alkylating agent ethyl methanesulfate (EMS) and the fumigant and gasoline additive 1,2-dibromoethane (DBE). X-irradiation induces a pink mutation rate in mutable clone 0106 that is significantly higher than that of the nearly identical pink mutation rates in clones 02 and 4430. However, the colorless mutation rates of clones 02 and 0106 are not significantly different from one another. In clones 02 and 0106, pink mutations occur more frequently than colorless mutations at lower doses, but colorless dose-response curves saturate at higher doses than do those for pink mutations. Exposure-response curves for EMS and DBE have characteristics similar to those of X-ray response curves: exponential rise followed by an area of saturation. However, it was found that the relative sensitivities of the three clones to the gaseous mutagens and to ionizing radiation do not parallel one another. Where clones 02 and 4430 are equally sensitive to X-rays, at equal mutagen concentration clone 4430 is 6-7 times more sensitive to EMS and 7-9 times more sensitive to DBE than is clone 02. Mutable clone 0106 shows intermediate sensitivities to both EMS and DBE

  4. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  5. Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization.

    Science.gov (United States)

    Rogez-Kreuz, C; Yousfi, R; Soufflet, C; Quadrio, I; Yan, Z-X; Huyot, V; Aubenque, C; Destrez, P; Roth, K; Roberts, C; Favero, M; Clayette, P

    2009-08-01

    Prions cause various transmissible spongiform encephalopathies. They are highly resistant to the chemical and physical decontamination and sterilization procedures routinely used in healthcare facilities. The decontamination procedures recommended for the inactivation of prions are often incompatible with the materials used in medical devices. In this study, we evaluated the use of low-temperature hydrogen peroxide gas plasma sterilization systems and other instrument-processing procedures for inactivating human and animal prions. We provide new data concerning the efficacy of hydrogen peroxide against prions from in vitro or in vivo tests, focusing on the following: the efficiency of hydrogen peroxide sterilization and possible interactions with enzymatic or alkaline detergents, differences in the efficiency of this treatment against different prion strains, and the influence of contaminating lipids. We found that gaseous hydrogen peroxide decreased the infectivity of prions and/or the level of the protease-resistant form of the prion protein on different surface materials. However, the efficiency of this treatment depended strongly on the concentration of hydrogen peroxide and the delivery system used in medical devices, because these effects were more pronounced for the new generation of Sterrad technology. The Sterrad NX sterilizer is 100% efficient (0% transmission and no protease-resistant form of the prion protein signal detected on the surface of the material for the mouse-adapted bovine spongiform encephalopathy 6PB1 strain and a variant Creutzfeldt-Jakob disease strain). Thus, gaseous or vaporized hydrogen peroxide efficiently inactivates prions on the surfaces of medical devices.

  6. Thermodynamic analysis of hydrogen production via hydrothermal gasification of hexadecane

    KAUST Repository

    Alshammari, Yousef M.

    2012-04-01

    This work reports the equilibrium behaviour of the hydrothermal gasification of hexadecane, a heavy saturate model compound, under non-oxidative isothermal and oxidative adiabatic conditions, using the Peng-Robinson equation of state and the direct minimisation of Gibbs free energy employed within the Aspen HYSYS. This modelling enabled establishing both the limits and optimum conditions at which the hydrogen molar yield may be theoretically maximised. The effects of parameters including the reactor isothermal temperature, pressure, water to carbon ratio, and oxygen to carbon ratio on the molar yields of produced gaseous species were analysed. The model has been validated by comparing its results with different reported modelling and experimental data under identical conditions which resulted in a good agreement. The results reported in this work show the potential of achieving economic yields of hydrogen and syngas from liquid hydrocarbons under downhole hydrothermal conditions. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights.

  7. Antiprotonic atoms in gaseous H/sub 2/ and He and in liquid H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lindemuth, J.R.; Eckhause, M.; Giovanetti, K.L.; Kane, J.R.; Pandey, M.S.; Rushton, A.M.; Vulcan, W.F.; Welsh, R.E.; Winter, R.G.; Barnes, P.D.; Craig, J.N.; Eisenstein, R.A.; Sherman, J.D.; Sutton, R.B.; Wharton, W.R.; Miller, J.P.; Roberts, B.L.; Kunselman, A.R.; Powers, R.J.

    1984-11-01

    Antiprotons were brought to rest in targets of gaseous H/sub 2/ and gaseous He at temperatures of 30 K and also in a target of liquid H/sub 2/. High-resolution x-ray detectors were used to measure the energies of x rays from p-bar-He and to search for x rays from p-bar-H. The p-bar-He data are compared with similar measurements at different densities and with the theoretical predictions of Landua and Klempt. The p-bar-H data provide upper limits for the yields of nP..-->..1S x rays in liquid and gaseous hydrogen.

  8. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets

    Directory of Open Access Journals (Sweden)

    N Jiao

    2012-06-01

    Full Text Available Using first-principles calculations within the framework of density-functional theory, we studied the modulation effect of hydrogen/fluorine chemical decoration on the surface work function of BN sheets. We found that the difference in the work function (ΔWBN between two surfaces of the chair structure varies with the different decoration. Geometric distortion and chemical effects cause opposite modulation effects, and the chemical effect plays a leading role by inducing charge redistribution in the system.

  9. Isotopic and spin-nuclear effects in solid hydrogens (Review Article)

    Science.gov (United States)

    Freiman, Yuri A.; Crespo, Yanier

    2017-12-01

    The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.

  10. Effect of microstructures on the hydrogen attack to gamma titanium aluminide at low temperature

    International Nuclear Information System (INIS)

    Hamzah, E.; Suardi, K.; Ourdjini, A.

    2005-01-01

    Intermetallic alloys based on gamma titanium aluminide are now regarded as promising candidates for high temperature applications such as for aerospace, marine and automotive engine components, due to their high specific strength and modulus. Their oxidation resistance is good, especially at intermediate and high temperature; oxidation resistance can be obtained up to 800 deg. C. One critical area of application is in combustion engines in aerospace vehicles such as hypersonic airplanes and high-speed civil transport airplanes. This entails the use of hydrogen as a fuel component and it has been widely reported by researchers that these materials exhibit corrosion in the form of environment embrittlement in the presence of hydrogen. A fair amount of research has been carried out to investigate the influence of hydrogen in γ-titanium aluminide. Some researchers reported that α 2 and lamellar phases had major influence in the susceptible of hydrogen to alloys, while hydrogen is too low to penetrate the γ-phases. This research focused on the effect of different microstructures of γ-titanium aluminide to the diffusion coefficient of hydrogen (D) and the corrosion product after hydrogen attack. Modification of γ-titanium aluminide can be achieved by heat treatment of as-cast binary samples Ti-45% Al and Ti-48% Al. All samples were then subjected to corrosion attack under cathodically charged with galvanostatic mode for 6 h. The potential variation with time was monitored from these data the values of the diffusion coefficient of hydrogen (D) to γ-titanium aluminide was obtained. D was calculated based on Fick's second Law. These results were compared with that obtained from micro-Vickers hardness profiling, which was measured at cross-section area per depth from the top corroded surface. The hardness values were calculated using the error function equation. An image analyzer; X-ray diffraction (XRD); scanning electron microscope (SEM) and secondary ion mass

  11. Effect of microstructures on the hydrogen attack to gamma titanium aluminide at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, E. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia)]. E-mail: esah@fkm.utm.my; Suardi, K. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia); Ourdjini, A. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia)

    2005-04-25

    Intermetallic alloys based on gamma titanium aluminide are now regarded as promising candidates for high temperature applications such as for aerospace, marine and automotive engine components, due to their high specific strength and modulus. Their oxidation resistance is good, especially at intermediate and high temperature; oxidation resistance can be obtained up to 800 deg. C. One critical area of application is in combustion engines in aerospace vehicles such as hypersonic airplanes and high-speed civil transport airplanes. This entails the use of hydrogen as a fuel component and it has been widely reported by researchers that these materials exhibit corrosion in the form of environment embrittlement in the presence of hydrogen. A fair amount of research has been carried out to investigate the influence of hydrogen in {gamma}-titanium aluminide. Some researchers reported that {alpha}{sub 2} and lamellar phases had major influence in the susceptible of hydrogen to alloys, while hydrogen is too low to penetrate the {gamma}-phases. This research focused on the effect of different microstructures of {gamma}-titanium aluminide to the diffusion coefficient of hydrogen (D) and the corrosion product after hydrogen attack. Modification of {gamma}-titanium aluminide can be achieved by heat treatment of as-cast binary samples Ti-45% Al and Ti-48% Al. All samples were then subjected to corrosion attack under cathodically charged with galvanostatic mode for 6 h. The potential variation with time was monitored from these data the values of the diffusion coefficient of hydrogen (D) to {gamma}-titanium aluminide was obtained. D was calculated based on Fick's second Law. These results were compared with that obtained from micro-Vickers hardness profiling, which was measured at cross-section area per depth from the top corroded surface. The hardness values were calculated using the error function equation. An image analyzer; X-ray diffraction (XRD); scanning electron

  12. Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions.

    Science.gov (United States)

    Rakoczy, Jana; Schleinitz, Kathleen M; Müller, Nicolai; Richnow, Hans H; Vogt, Carsten

    2011-08-01

    Syntrophic mineralisation of benzene, as recently proposed for a sulphate-reducing enrichment culture, was tested in product inhibition experiments with acetate and hydrogen, both putative intermediates of anaerobic benzene fermentation. Using [(13)C(6)]-benzene enabled tracking the inhibition of benzene mineralisation sensitively by analysis of (13)CO(2). In noninhibited cultures, hydrogen was detected at partial pressures of 2.4 × 10(-6) ± 1.5 × 10(-6) atm. Acetate was detected at concentrations of 17 ± 2 μM. Spiking with 0.1 atm hydrogen produced a transient inhibitory effect on (13)CO(2) formation. In cultures spiked with higher amounts of hydrogen, benzene mineralisation did not restart after hydrogen consumption, possibly due to the toxic effects of the sulphide produced. An inhibitory effect was also observed when acetate was added to the cultures (0.3, 3.5 and 30 mM). Benzene mineralisation resumed after acetate was degraded to concentrations found in noninhibited cultures, indicating that acetate is another key intermediate in anaerobic benzene mineralisation. Although benzene mineralisation by a single sulphate reducer cannot be ruled out, our results strongly point to an involvement of syntrophic interactions in the process. Thermodynamic calculations revealed that, under in situ conditions, benzene fermentation to hydrogen and acetate yielded a free energy change of ΔG'=-83.1 ± 5.6 kJ mol(-1). Benzene mineralisation ceased when ΔG' values declined below -61.3 ± 5.3 kJ mol(-1) in the presence of acetate, indicating that ATP-consuming reactions are involved in the pathway. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Manganese rescues adverse effects on lifespan and development in Podospora anserina challenged by excess hydrogen peroxide.

    Science.gov (United States)

    Grimm, Carolin; Osiewacz, Heinz D

    2015-03-01

    For biological systems, balancing cellular levels of reactive oxygen species (ROS) is of great importance because ROS are both, essential for cellular signaling and dangerous in causing molecular damage. Cellular ROS abundance is controlled by a delicate network of molecular pathways. Within this network, superoxide dismutases (SODs) are active in disproportion of the superoxide anion leading to the formation of hydrogen peroxide. The fungal aging model Podospora anserina encodes at least three SODs. One of these is the mitochondrial PaSOD3 isoform containing manganese as a cofactor. Previous work resulted in the selection of strains in which PaSod3 is strongly overexpressed. These strains display impairments in growth and lifespan. A computational model suggests a series of events to occur in Sod3 overexpressing strains leading to adverse effects due to elevated hydrogen peroxide levels. In an attempt to validate this model and to obtain more detailed information about the cellular responses involved in ROS balancing, we further investigated the PaSod3 overexpressing strains. Here we show that hydrogen peroxide levels are indeed strongly increased in the mutant strain. Surprisingly, this phenotype can be rescued by the addition of manganese to the growth medium. Strikingly, while we obtained no evidence for an antioxidant effect of manganese, we found that the metal is required for induction of components of the ROS scavenging network and lowers the hydrogen peroxide level of the mutant. A similar effect of manganese on lifespan reversion was obtained in wild-type strains challenged with exogenous hydrogen peroxide. It appears that manganese is limited under high hydrogen peroxide and suggests that a manganese-dependent activity leads to the induction of ROS scavenging components. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Study of Knocking Effect in Compression Ignition Engine with Hydrogen as a Secondary Fuel

    Directory of Open Access Journals (Sweden)

    R. Sivabalakrishnan

    2014-01-01

    Full Text Available The aim of this project is detecting knock during combustion of biodiesel-hydrogen fuel and also the knock is suppressed by timed injection of diethyl ether (DEE with biodiesel-hydrogen fuel for different loads. Hydrogen fuel is an effective alternate fuel in making a pollution-free environment with higher efficiency. The usage of hydrogen in compression ignition engine leads to production of knocking or detonation because of its lower ignition energy, wider flammability range, and shorter quenching distance. Knocking combustion causes major engine damage, and also reduces the efficiency. The method uses the measurement and analysis of cylinder pressure signal for various loads. The pressure signal is to be converted into frequency domain that shows the accurate knocking combustion of fuel mixtures. The variation of pressure signal is gradually increased and smoothly reduced to minimum during normal combustion. The rapid rise of pressure signal has occurred during knocking combustion. The experimental setup was mainly available for evaluating the feasibility of normal combustion by comparing with the signals from both fuel mixtures in compression ignition engine. This method provides better results in predicting the knocking feature of biodiesel-hydrogen fuel and the usage of DEE provides complete combustion of fuels with higher performance, and lower emission.

  15. Isotope separation factor and kinetic isotope effect of the hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Krishtalik, L.I.

    2001-01-01

    In the framework of junified approach the experimentally observed dependences of kinetic isotopic effects (KIE) of the reaction of hydrogen electrolytic evolution on the value of potential on electrode were explained. It is shown that hydrogen isotope separation factor depends on KIE for two stages of the reaction, i.e. discharge on the electrode and electrochemical desorption, moreover, decrease in KIE with potential for the desorption stage overbalances its growth for the discharge stage. The reason for KIE decrease is non-activation character of the process, therefore, there is no dependence on potential of relative contribution of the product vibration-excited states [ru

  16. Effect of water fogs on the deliberate ignition of hydrogen. Final report

    International Nuclear Information System (INIS)

    Zalosh, R.G.; Bajpai, S.N.

    1982-11-01

    This report presents an experimental evaluation of the effects of water fog density, droplet diameter, and temperature on the lower flammable limit (LFL) of hydrogen-air-steam mixtures. The results show that the LFL for hydrogen in air at 20 0 C is only marginally higher with fog than without. Most of the nozzles tested at 20 0 C raised the hydrogen LFL from 4.0 vol % to about 4.8%, for the case of dense fogs with volume-average drop size in the range 45 to 90 microns. The lower flammable limit at 50 0 C was typically 7.2% for dense fogs with drop size in the range 25 to 50 microns. The lower flammable limit at 70 0 C was typically 7.6%. Typical fog concentrations ranged from 0.03 to 0.09 vol % at 20 0 C and decreased with increasing fog temperature. 7 figures, 4 tables

  17. Methods for evaluation of hydrogen effect on service behaviour of titanium base alloys

    International Nuclear Information System (INIS)

    Mal'kov, A.V.; Kolachev, B.A.

    1979-01-01

    A comparative evaluation of the effect of hydrogen upon the service ability of α, β, α+β and pseudo-α titanium alloys is carried out using the results of various mechanical tests. Presented are the values of the critical concentration of hydrogen, determined by impact strength tests, tensile tests of notched specimens, fracture toughness tests, slow failure tests and the determination of the energy of failure. A hypothesis is advanced that the failure energy of titanium alloys depends directly upon the type of stressed state. This hypothesis explains the S shapes of the curves describing the dependences of the impact strength, the coefficient of stress intensity and the ratios of the tensile strength of smooth and notched specimens upon the hydrogen content

  18. Isotope effects in the diffusion of hydrogen and deuterium in ferromagnetic binary alloys of the Cu3Au type

    International Nuclear Information System (INIS)

    Hirscher, M.; Maier, C.U.; Schwendemann, B.; Kronmueller, H.

    1989-01-01

    The diffusion behaviour of hydrogen and deuterium at low temperatures was investigated in ordered and disordered alloys of Ni 3 Fe, Ni 3 Mn, and Fe 3 Pt by means of magnetic after-effect (MAE) measurements. After hydrogen charging all specimens show characteristic MAE relaxation spectra, which can be described taking into account the different octahedral positions of the hydrogen atoms in the Cu 3 Au structure. The observed isotope effect can qualitatively be explained by a thermally activated tunnelling process of the hydrogen isotopes. (orig.)

  19. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  20. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters

  1. On the Jeans Criterion of a Stratified Heat Conducting Gaseous ...

    Indian Academy of Sciences (India)

    homogeneous stratified gaseous medium with finite thermal conductiv- ity and infinite electrical conductivity, in the presence of non-uniform rotation and magnetic field in the Chandrasekhar's frame of reference, is studied. It is found that the magnetic field, whether uniform or non- uniform, has no effect on the Jeans' criterion ...

  2. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters. (LK)

  3. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate t...

  4. Thermal hydrocracking of indan. Effects of the hydrogen pressure on the kinetics and Arrhenius parameters

    NARCIS (Netherlands)

    van Boven, M.; Roskam, G.J.; Penninger, J.M.L.

    1975-01-01

    The kinetics of the thermal hydrocracking of indan were investigatedin a high-pressure flow reactor at temperatures from 470 to 530°C, total pressures of up to 300 atm, and molar ratios from 3 to 40. The effect of the hydrogen pressure was reflected especially in a change of the experimental rate

  5. Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity

    Czech Academy of Sciences Publication Activity Database

    Burkhanov, G.S.; Kolchugina, N.B.; Tereshina, Evgeniya; Tereshina, I. S.; Politova, G.A.; Chzhan, V.B.; Badurski, D.; Chistyakov, O.D.; Paukov, M.; Drulis, H.; Havela, L.

    2014-01-01

    Roč. 104, č. 24 (2014), "242402-1"-"242402-5" ISSN 0003-6951 R&D Projects: GA ČR GAP204/12/0150 Institutional support: RVO:68378271 Keywords : high-purity rare-earth metals * gadolinium * magnetocaloric effect * hydrogenation * structural studies Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  6. Effect of foliar application of salicylic acid, hydrogen peroxide and a ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  7. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...

  8. effect of the hydrogen absorption on the plastic deformation localization of a 316L stainless steel

    International Nuclear Information System (INIS)

    Aubert, I.

    2007-01-01

    This study is realized in the context of the aging evaluation resulting from the coupling between a mechanical constraint and corrosive conditions, as the stress corrosion or the fatigue corrosion. In this study the authors evaluate quantitatively the hydrogen effect on the plasticity at the grain scale. (A.L.B.)

  9. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static” ...

  10. Interaction of heavy ion beams with a hydrogen plasma: plasma lens effect and stopping power enhancement

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Della-Negra, S.; Dumail, M.; Kubica, B.; Richard, A.; Rivet, M.F.; Servajean, A.; Deutsch, C.; Maynard, G.

    1988-01-01

    By coupling a hydrogen plasma to a Tandem accelerator, transmission and energy losses of 2 MeV/u carbon and sulfur beams passing through a plasma target have been investigated. Fluctuations in beam transmission have been observed and attributed to a plasma lens effect. Moreover, energy loss measurements indicate an enhanced stopping power of the plasma relative to its cold matter equivalent

  11. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate...

  12. Effect of hydrogen on mechanical properties of β-titanium alloys

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    effects the charging was carried out during one step of the two-step heat treat- ment typical of ... are the wings and the fuselage of future hydrogen-fueled aircrafts, which shall leave earth´s atmosphere in order to ... function of temperature and prior heat treatment, in order to assess the annealing time which is necessary to ...

  13. The effects of fermentation and boiling on the level of hydrogen ...

    African Journals Online (AJOL)

    The effects of fermentation and boiling on the level of hydrogen cyanide in Mucuna pruriens (velvet bean) were investigated. Qualitative phytochemical analysis of Mucuna pruriens revealed the presence that tannins, saponins, cardiac glycosides and cyanogenic glycosides. Quantitative analysis revealed that raw Mucuna ...

  14. Effect of hydrogen on properties of diode structures with Pd/GaAs/InGaAs quantum wells

    CERN Document Server

    Karpovich, I A; Shobolov, E L; Zvonkov, B N

    2002-01-01

    The effect of hydrogen on the photoelectric properties and on the photoluminescence of the Pd/GaAs/InGaAs quantum well diode structures was investigated. The effect of the GaAs anodic oxide thickness on the structure parameters was found and its optimal thickness for the hydrogen sensors was determined. The essential importance of the metal bridges in the thin oxide layers for the current voltage characteristic was established. It was shown that quantum wells increase the sensitivity of the structures to hydrogen. The defect formation during the deposition of the Pd electrode on the natural and anodized GaAs surface was investigated using the quantum wells as the local defect probes. The possibility of the hydrogen passivation of the defects in the diode structures by introduction of the atomic hydrogen through the Pd electrode in a molecular hydrogen atmosphere was proved

  15. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  16. Kinetics, isotope effects, and mechanism for the hydrogenation of carbon monoxide on supported nickel catalysts

    International Nuclear Information System (INIS)

    Mori, T.; Masuda, H.; Imai, H.; Miyamoto, A.; Baba, S.; Murakami, Y.

    1982-01-01

    Kinetics and hydrogen-deuterium isotope effects in the methanation of adsorbed CO molecules on a Ni/SiO 2 catalyst were precisely measured by using pulse surface reaction rate analysis (PSRA). When a CO pulse was injected into flowing hydrogen, it was immediately adsorbed on the catalyst and gradually hydrogenated to CH 4 and H 2 O. The amounts of CH 4 and H 2 O produced by the hydrogenation of the adsorbed CO were determined up to various times, and it was found that CH 4 and H 2 O were produced at the same rate. When O 2 instead of CO was injected, H 2 O was immediately produced. From these results, the rate-determining step of the reaction was found to be C-O bond dissociation of an adsorbed CO molecule or a partially hydrogenated CO species. By PSRA, the rate constant for the C-O bond dissocition process per adsorbed CO molecule (k/sub H/) was determined at various temperatures, and the Arrhenius parameters of the rate constant were obtained. The rate constant in flowing deuterium (k/sub D/) was also determined. it was found that k/sub D/ is considerably larger than k/sub H/, indicating an inverse isotope effect. The average value of k/sub H//k/sub D/ was 0.75. From these results, it was concluded that adsorbed CO is not directly dissociated to surface carbon and oxygen atoms but it is partially hydrogenated before C-O bond dissociation under the conditions of the PSRA experiment. 8 figures

  17. Measurements of low energy hydrogen ion effective sticking coefficients on titanium in the Wisconsin Levitated Octupole

    Energy Technology Data Exchange (ETDEWEB)

    Garner, H.; Post, R. S.

    1981-02-01

    The effective sticking coefficient for low energy (< 30 eV) hydrogen ions on titanium gettered aluminium walls has been measured in the Wisconsin Levitated Octupole. A value of greater than 0.75 was measured. The H/sub 2/ effective sticking coefficient for the same conditions is less than 0.01. Seventy-four percent of the wall area of the Octupole is gettered. The effects of recycling on plasma parameters is also discussed.

  18. Relative extents of hydrogen-deuterium exchange of nitrosamines: relevance to biological isotope effect studies

    International Nuclear Information System (INIS)

    Singer, G.M.; Lijinsky, W.

    1979-01-01

    Relative extents of base-catalyzed, hydrogen-deuterium exchange have been determined for a number of nitrosamines. Observed trends in the exchanges are discussed in terms of substitution, ring size and conformation. The relevance of the exchanges to deuterium isotope effects in carcinogenesis tests is discussed. Those compounds which give pronounced biological isotope effects undergo exchange only to a small extent. No biological isotope effect is found for compounds which undergo extensive exchange. (author)

  19. Effect of argon ion sputtering of surface on hydrogen permeation through vanadium

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Namba, Takashi; Yoneoka, Toshiaki; Kanno, Masayoshi; Shida, Koji.

    1983-01-01

    In order to measure the hydrogen permeation rate through V with atomically cleaned surface, an Ar ion sputtering apparatus has been installed in the hydrogen permeability measuring system. The permeation rate of the initial specimen was found to be increased by about one order of magnitude after Ar ion sputtering of its upstream side surface. Repeating of such a sputter-cleaning was not so much effective in increasing the steady state permeation rate as the initial sputtering was, but it accelerated the transient response rate by a factor of 2 or 3. The transient response rate was also accelerated by the increase of hydrogen pressure, but this effect tended to be diminished by the sputter-cleaning of specimen surface. The surface impurity layer on the downstream side of specimen was also inferred to act as a diffusion barrier affecting the steady state permeation rate. The present value of activation energy for hydrogen permeation through V at temperatures below 873K was the smallest one ever obtained, showing that the surface effect was minimized in the present study on account of the surface sputter-cleaning in addition to the ultra high vacuum system. (author)

  20. Different effects of sonication pretreatment on carbon nanomaterials under low hydrogen peroxide concentrations.

    Science.gov (United States)

    Zhang, Chengdong; Chen, Xiaoyan

    2017-01-01

    Dispersing carbon nanomaterials with the aid of sonication has become a widely used procedure for generating homogenous solutions. A systematic study was performed to evaluate the effects of a practical sample preparation procedure that involves mild sonication with/without low concentrations of hydrogen peroxide. Hydrogen peroxide is ubiquitously present in surface water and involved in advanced oxidation processes. Significant oxidation was observed for fullerene in the liquid phase, whereas an appreciable amount of hydrogen was covalently attached to the carbon cage of solid fullerene. Under the same conditions, only the removal of oxidized amorphous carbon was detected for carbon nanotubes. The presence of a low concentration of hydrogen peroxide during sonication exacerbated the effects. The changes in physicochemical properties were characterized quantitatively using X-ray photoelectron spectroscopy and elemental chemical analysis and qualitatively using matrix-assisted laser desorption ionization mass spectroscopy, 1 H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Our results highlight the effects that can occur during sample preparation step and the potential for misinterpreting the toxicity, reactivity and environmental fate of carbon nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of Ti/Cr content on the microstructures and hydrogen storage properties of Laves phase-related body-centered-cubic solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering and Materials Science, Wayne State University, MI 48202 (United States); Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States)

    2015-02-15

    Highlights: • Influences of Ti/Cr to BCC to hydrogen storage properties were reported. • A new activation using hydrogen pressure at 5 MPa was developed. • A discharge capacity of 463 mA h g{sup −1} was reported on a C14(36%)/BCC(64%) alloy. • Increase in Ti/Cr increases storage capacity and decreases high-rate performance. • The high-rate performance was dominated by the surface reaction. - Abstract: A series of BCC/C14 mixed phase alloys with the chemical composition of Ti{sub 13.6+x}Zr{sub 2.1}V{sub 44}Cr{sub 13.2−x}Mn{sub 6.9}Fe{sub 2.7}Co{sub 1.4}Ni{sub 15.7}Al{sub 0.3}, x = 0, 2, 4, 6, 8, 10, and 12, was fabricated, and their structural, gaseous phase and electrochemical hydrogen storage properties were studied. Raising the maximum pressure for measuring the gaseous hydrogen storage capacity allowed these alloys to reach full activation, and the maximum discharge capacities ranged from 375 to 463 mA h g{sup −1}. As the Ti/Cr ratio in the alloy composition increased, the maximum gaseous hydrogen storage capacity improved due to the expansion in both BCC and C14 unit cells. However, reversibility decreased due to the higher stability of the hydride phase, as indicated by the lower equilibrium pressures measured for these alloys. As with most other metal hydride alloys, the electrochemical capacities measured at 50 and 4 mA g{sup −1} fell between the boundaries set by the maximum and reversible gaseous hydrogen storage capacities. The poorer high-rate dischargeability observed with higher Ti/Cr ratios was attributed to the lower surface exchange current (less catalytic). Two other negative impacts observed with higher Ti/Cr ratios in the alloy composition are poorer cycle stability and lower open-circuit voltage.

  2. The effect of dissolved hydrogen on the air oxidation of Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seonggi; Park, Kwangheon [Department of Nuclear Engineering/Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-05-15

    Studies on the factors affecting the cladding oxidation are very required. Among the factors affecting the oxidation, effect of hydrogen contained in cladding metal has been mentioned recently. In this study, we observed the effect of dissolved hydrogen on the air and steam oxidation of Zircaloy-4 claddings. The oxidation process is taken place by chemical reaction to the direction where Gibbs free energy is low at each temperature. As Gibbs energy of ZrO{sub 2} is lower than ZrN, most of zirconium is reacted with oxygen. However, as shown on Fig. 3, ZrN is generated between oxide layer and metal layer. In other words, at the sub-stoichiometric oxide, ZrO{sub x}N{sub y} is considered to be generated as a result of zirconium being reacted together with oxygen and nitrogen and then ZrN is generated additionally. As ZrN is generated in this process, penetration is formed and as the oxidation rate is accelerated more abruptly, weight gain is taken place rapidly. In the meanwhile, this rapid increase oxidation rate is more generated in dissolved hydrogen claddings. In addition, it could be confirmed that hydride exists in local oxidation. In other words, hydrogen is considered to affect formation of ZrN. Cristal growth mechanism is generated depending on free energy change. In other words, when total free energy change exceeds critical free energy, it is generated as embryo. Radius of the nucleus being generated at this time is critical radius. It is believed that this critical radius is affected by hydrogen. In view of solubility of each temperature under this study, dissolved hydrogen is to be completely dissolved in metal. It is considered that as this completely dissolved hydrogen affects variation in free energy of zirconium oxidation, critical radius is reduced and growth of ZrN is enhanced. Finally, a favorable condition where ZrN could grow is provided. Therefore, a study on how this hydrogen affects free energy is required to be further performed in the future.

  3. Effects of atmospheric hydrogen sulfide on plant metabolism

    NARCIS (Netherlands)

    de Kok, Luit J.

    1989-01-01

    In order to obtain more insight into the background of the effects of H2S on plants, the relation between foliar deposition and metabolism of H2S was studied in the present thesis. The effects of H2S-on sulfur metabolism were compared with those observed in leaf tissue exposed to high levels of

  4. Effect of 2-propenyltrimethylsilane and magnetic field effect on photochemical Fe/Co fine particle formation from a ternary gaseous mixture

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Hattori, K.; Šubrt, Jan

    2011-01-01

    Roč. 218, č. 1 (2011), s. 111-116 ISSN 1010-6030 Institutional research plan: CEZ:AV0Z40320502 Keywords : gas phase photochemical reaction * aerosol particle * magnetic field effect * iron pentacarbonyl * cobalt tricarbonyl nitrosyl Subject RIV: CA - Inorganic Chemistry Impact factor: 2.421, year: 2011

  5. Effects of hydrogen on the behavior of metals. III. Mechanicals behavior of the TD12ZrE titanium alloy in presence of hydrogen; influence of heat treatments and oxygen content

    International Nuclear Information System (INIS)

    Criqui, Bernard.

    1976-04-01

    The influence of heat treatments, hydrogen state and concentration are studied. Tensile tests on specimens STA at 510 deg C show opposite behavior according to the hydrogen loading mode, either cathodic (embrittlement increases with small hydrogen content) or during aging (embrittlement begins at about 4500ppm). As aging and hydrogen loading temperatures increase, hydrogen-induced β stabilization decreases. Previous cold-work or oxygen loading favor α phase nucleation. More severe biaxial disk pressure tests, conducted on the alloy aged and loaded at 510 deg C, reveal various embrittlement caused by dissolved hydrogen, one due to hydrogen dragging by dislocations at medium epsilon and beginning at 1500ppm, one at high epsilon due to the Kolachev effect. Disk pressure testing of hydrogen gas embrittlement shows the competitition between film rupture and repassivation phenomena together with the influence of heat treatments, surface conditions and trace impurities [fr

  6. Effects of Exhaust Gas Recirculation on Performance and Emission Characteristic of SI Engine using Hydrogen and CNG Blends

    Science.gov (United States)

    Nitnaware, Pravin Tukaram; Suryawanshi, Jiwak G.

    2018-01-01

    This paper shows exhaust gas recirculation (EGR) effects on multi-cylinder bi-fuel SI engine using blends of 0, 5, 10 and 15% hydrogen by energy with CNG. All trials are performed at a speed of 3000, 3500 and 4000 rpm with EGR rate of 0, 5, 10 and 15%, with equal spark timing and injection pressure of 2.6 bar. At specific hydrogen percentage with increase in EGR rate NOx emission reduces drastically and increases with increase in hydrogen addition. Hydrocarbon (HC) and carbon monoxide (CO) emission decreases with increase in speed and hydrogen addition. There is considerable improvement in brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) at 15% EGR rate. At 3000 rpm, 5% EGR rate with 5% hydrogen had shown maximum cylinder pressure. Brake specific fuel consumption (b.s.f.c) increased with increase in EGR rate and decreased with increase in hydrogen addition for all speeds.

  7. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  8. Effects of hydrogen on the single crystalline elastic constants of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Schlader, Daniel Michael [Iowa State Univ., Ames, IA (United States)

    1977-06-01

    A special hydriding system was designed and constructed to satisfy conditions for hydriding niobium. This system controlled the temperature and hydrogen atmosphere surrounding the niobium while ultrasonic measurements were recorded. Ultrasonic wave velocities were determined by measurement of the times for ultrasonic pulses to transit and then echo through known dimensions of test specimens. The method which was employed is commonly known as the pulse-echo-overlap method. This study confirmed the general trends of earlier investigations. In this study C' continued to decrease and C44 continued to increase up to 4.69 atomic percent hydrogen which is the maximum concentration which has yet been examined. In the case of the niobium-hydrogen system the Snoek effect may well be a contributory factor to the decrease of C' with increasing hydrogen concentration. However, crystallographic considerations preclude this effect from contributing a concentration dependence to C44 or B. The observation of the present work implies that other factors must also be contributing to the overall behavior.

  9. Effects of hydrogen on the single crystalline elastic constants of niobium

    International Nuclear Information System (INIS)

    Schlader, D.M.

    1977-06-01

    A special hydriding system was designed and constructed to satisfy conditions for hydriding niobium. This system controlled the temperature and hydrogen atmosphere surrounding the niobium while ultrasonic measurements were recorded. Ultrasonic wave velocities were determined by measurement of the times for ultrasonic pulses to transit and then echo through known dimensions of test specimens. The method which was employed is commonly known as the pulse-echo-overlap method. This study confirmed the general trends of earlier investigations. In this study C' continued to decrease and C 44 continued to increase up to 4.69 atomic percent hydrogen which is the maximum concentration which has yet been examined. In the case of the niobium-hydrogen system the Snoek effect may well be a contributory factor to the decrease of C' with increasing hydrogen concentration. However, crystallographic considerations preclude this effect from contributing a concentration dependence to C 44 or B. The observation of the present work implies that other factors must also be contributing to the overall behavior

  10. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Start Up of Biohydrogen Production System and Effect of Metal Ions on Hydrogen Production

    Science.gov (United States)

    Jiao, An-ying; Li, Yong-feng; Yue, Li-ran; Yang, Chuan-ping

    2010-11-01

    Fermentative hydrogen production is a promising biochemical route to produce renewable H2. The effect of organic loading rate on the biohydrogen production during the start-up phase and effect of Fe2+ and Mg2+ concentration on biohydrogen production of a continuous stirred tank reactor using molasses wastewater as substrate were investigated. It was found that an initial biomass of 14.07 gVSS/L and an organic loading rate of 6.0 kgCOD/m3ṡd, an equilibrial microbial community in the butyric-type fermentation could be established with in 30 days. It was demonstrated that both Fe2+ and Mg2+ were able to enhance the hydrogen production capacity of microorganism flora. Different concentration of Fe2+ was added to the biohydrogen producing system (50 mg/L, 100 mg/L, 200 mg/L and 500 mg/L), the maximum biogas production yield of 6.78 L/d and the maximum specific hydrogen production rate of 10.1 ml/gVSSṡh were obtained at Fe2+ concentration of 500 mg/L and 200 mg/L, respectively. The maximum biogas production yield of 6.84 L/d and the maximum specific hydrogen production rate of 10.2 ml/gVSSṡh were obtained at Mg2+ concentration of 100 mg/L and 50 mg/L, respectively.

  12. Hydrogen isotope recovering and reutilizing method and its device

    International Nuclear Information System (INIS)

    Ide, Takahiro.

    1988-01-01

    Purpose: To enable safety and convenient recovery and reutilization of gaseous tritium and other hydrogen isotopes. Constitution: Two kinds of metal hydrides different from each other in the dissociation pressure at an identical temperature are combined, in which a metal hydride of higher dissociation pressure is used for recovery and reutilization for most portion of gaseous hydrogen isotope gases, while the metal hydride of lower dissociation pressure is used for the recovery and reutilization of the remaining gaseous hydrogen isotopes. This enables to extremely lower the concentration of the remaining gaseous hydrogen isotopes, that is, the concentration of tritium in the recoverying system. In addition, since the heating temperature required for releasing the gaseous hydrogen isotopes absorbed in both of the metal hydrides is within such a range as causing no problem for the permeation of the gaseous hydrogen isotopes, there is no requirement for the countermeasure to tritium permeation or the facility for recovering permeated tritium and there is no problem for the material degradation due to the heating at high temperature. (Kawakami, Y.)

  13. Effects of three hydrogen-rich liquids on hemorrhagic shock in rats.

    Science.gov (United States)

    Du, Zunmin; Jia, Haipeng; Liu, Jing; Zhao, Xiaomin; Xu, Wei

    2015-01-01

    Hydrogen-rich saline provides a high concentration of hydrogen, which selectively reduces levels of hydroxyl radicals and alleviates acute oxidative stress in many models. We investigated the protective effects and mechanisms of three different hydrogen-rich liquid resuscitation preparations on lung injury-induced uncontrolled-hemorrhagic shock (UHS) in rats. A UHS rat model was prepared using the method of Capone et al. of arterial bleeding and tail amputation. Healthy male Wistar rats were randomly divided into seven groups (10 per group) to receive: sham treatment; Ringer solution; hydrogen-rich Ringer solution (H-Ringer solution); hydroxyethyl starch (HES); hydrogen-rich hydroxyethyl starch (H-HES); hypertonic saline/hydroxyethyl starch (HSH); and hydrogen-rich hypertonic saline/hydroxyethyl starch (H-HSH). At 72 h after successful resuscitation, lung tissue was Hematoxylin Eosin stained to score any pathologic changes. We also determined wet-to-dry (W/D) lung weight ratios and lung tissue concentrations of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, malondialdehyde (MDA), and superoxide dismutase (SOD) and myeloperoxidase (MPO) activities. Compared with the non-H groups, polymorphonuclear neutrophil accumulation in alveoli in the H groups was significantly reduced (P value), and capillary leakage and wall edema were ameliorated. Compared with the sham group, pathologic pulmonary injury scores, W/D ratios, IL-6, TNF-α, IL-10, MDA concentrations, and MPO activity in the other groups were all increased, whereas SOD activity was decreased (P < 0.01). Comparing the H-Ringer, H-HES, and H-HSH groups respectively with the Ringer, HES, and HSH groups, pathologic pulmonary injury scores, W/D ratios, IL-6, TNF-α, MDA concentrations, and MPO activity were all reduced, whereas IL-10 concentrations and SOD activity were increased (P < 0.01). Each hydrogen-rich liquid resuscitation preparation could protect the lung against acute injury secondary to

  14. Beneficial Effects of Hydrogen-Rich Saline on Early Burn-Wound Progression in Rats

    Science.gov (United States)

    Guo, Song Xue; Jin, Yun Yun; Fang, Quan; You, Chuan Gang; Wang, Xin Gang; Hu, Xin Lei; Han, Chun-Mao

    2015-01-01

    Introduction Deep burn wounds undergo a dynamic process known as wound progression that results in a deepening and extension of the initial burn area. The zone of stasis is more likely to develop more severe during wound progression in the presence of hypoperfusion. Hydrogen has been reported to alleviate injury triggered by ischaemia/reperfusion and burns in various organs by selectively quenching oxygen free radicals. The aim of this study was to investigate the possible protective effects of hydrogen against early burn-wound progression. Methods Deep-burn models were established through contact with a boiled, rectangular, brass comb for 20 s. Fifty-six Sprague-Dawley rats were randomly divided into sham, burn plus saline, and burn plus hydrogen-rich saline (HS) groups with sacrifice and analysis at various time windows (6 h, 24 h, 48 h) post burn. Indexes of oxidative stress, apoptosis and autophagy were measured in each group. The zone of stasis was evaluated using immunofluorescence staining, ELISA, and Western blot to explore the underlying effects and mechanisms post burn. Results The burn-induced increase in malondialdehyde was markedly reduced with HS, while the activities of endogenous antioxidant enzymes were significantly increased. Moreover, HS treatment attenuated increases in apoptosis and autophagy postburn in wounds, according to the TUNEL staining results and the expression analysis of Bax, Bcl-2, caspase-3, Beclin-1 and Atg-5 proteins. Additionally, HS lowered the level of myeloperoxidase and expression of TNF-α, IL-1β, and IL-6 in the zone of stasis while augmenting IL-10. The elevated levels of Akt phosphorylation and NF-κB p65 expression post burn were also downregulated by HS management. Conclusion Hydrogen can attenuate early wound progression following deep burn injury. The beneficial effect of hydrogen was mediated by attenuating oxidative stress, which inhibited apoptosis and inflammation, and the Akt/NF-κB signalling pathway may be

  15. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  16. The effect of hydrogen peroxide and solvent on photolysis of PCBs to reduce occupational exposure

    OpenAIRE

    Hasan Asilian; Reza Gholamnia; Abbas Rezaee; Ahmad Jonidi Jafari; Ali Khavanin; Elmira Darabi

    2010-01-01

    Background: Polychlorinated biphenyls (PCBs) are toxic bio-accumulate components and may increase risk of adverse effects on human health and the environment. For different social, technical and economic reasons, significant quantities of PCBs contaminated transformer oil are still in use or storied. The study aimed to determine the effect of hydrogen peroxide and solvent on photolysis of PCBs to reduce occupational exposure. Methods: The photochemical annular geometry (500 ml volume) reactor...

  17. The effects of incubation period and temperature on the Hydrogen ...

    African Journals Online (AJOL)

    EJIRO

    incubation period and temperature had significant effects (P = 0.05) on the efficiency of H2S technique. The times when H2S bottles take to turn ..... because at reduced temperature cellular metabolic activi- ties and growth decreases, therefore ..... that the rate of blackening depended on the concen- tration and temperature.

  18. Effect of acetone extract of Rumex japonicas Houtt on hydrogen ...

    African Journals Online (AJOL)

    Purpose: To investigate the protective effect of the acetone extract of Rumex japonicas Houtt. (AER) on rat myocardial cells. Methods: R. japonicas was extracted with 75 % aqueous ethanol by reflux to afford total extract (TER). TER was suspended in water and then extracted with acetone to afford acetone fraction of R.

  19. The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive

    Science.gov (United States)

    Arakawa, Masashi; Kagi, Hiroyuki; Fernandez-Baca, Jaime A.; Chakoumakos, Bryan C.; Fukazawa, Hiroshi

    2011-08-01

    The existence of ferroelectric ice XI with ordered hydrogen in space becomes of interest in astronomy and physical chemistry because of the strong electrostatic force. However, the influence was believed to be limited because it forms in a narrow temperature range. From neutron diffraction experiments, we found that small hydrogen-ordered domains exist at significantly higher temperature and the domains induce the growth of “bulk” ice XI. The small ordered domain is named “memory” of hydrogen ordered ice because it is the residual structure of ice XI. Since the memory exists up to at least 111 K, most of ices in the solar system are hydrogen ordered and may have ferroelectricity. The small hydrogen-ordered domains govern the cosmochemical properties of ice and evolution of icy grains in the universe.

  20. [Study on thermal decompositon properties of hexafluoropropane clean gaseous fire-extinguishing agent].

    Science.gov (United States)

    Tan, Ling-hua; Li, Qin-hua; Gao, Fei; Pan, Ren-ming; Li, Feng-sheng; Wang, Jun-de

    2010-07-01

    The thermal decomposition properties of hexafluoropropane clean gaseous fire-extinguishing agent were studied in tubular reactor from 500 to 750 degrees C and the decomposed gas was characterized by gas chromatography(GC), Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS). Hydrogen fluoride was detected after the decomposed gas was analyzed by pH testing, while pentafluoropropylene was found by GC-MS. The results showed that hydrogen fluoride eliminated from hexafluoropropane was the main reaction, while pentafluoropropylene was the primary product during hexafluoropropane decomposition under high temperature. GC and FTIR results indicated that the reaction temperatures had significant effects on the thermal decomposition of hexafluoropropane. Haxafluropropane was steady at 500 degrees C, whereas started to decompose weakly at 600 degrees C. The degree of the thermal decomposition of hexafluoropropane was enhanced with the temperature increase. And hexafluoropropane underwent intense decompositon at 750 degrees C. FTIR can be used as a new method to study extinguishing mechanism of fluorine-containing fire extinguishing agent online.

  1. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  2. CO impurities effect on LaNi4∙ 7Al0∙ 3 hydrogen storage alloy ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 4. CO impurities effect on LaNi4.7Al0.3 hydrogen storage alloy hydrogenation/dehydrogenation properties. Qi Wan Ping Li Yunlong Li Fuqiang Zhai Weina Zhang Liqun Cui Alex A Volinsky Xuanhui Qu. Volume 37 Issue 4 June 2014 pp 837-842 ...

  3. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    Science.gov (United States)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  4. The effects of rare earth elements on an anaerobic hydrogen producing microorganism

    Science.gov (United States)

    Fujita, Y.; St Jeor, J. D.; Reed, D. W.

    2016-12-01

    Rapid growth of new energy technologies and consumer electronics is leading to increased fluxes of rare earth elements (REE), during the phases of resource extraction, product usage, recycling, and disposal. However, little is known about the impacts of these increased REE fluxes on environmental ecosystems, whether natural or engineered (e.g., biological waste treatment systems). We have been evaluating the effects of europium and yttrium on hydrogen production by an anaerobic fermenting microorganism, Sporacetigenium mesophilum, originally isolated from an anaerobic digester at a wastewater treatment plant.1 Europium and yttrium are important components of phosphors used in fluorescent lighting, and are expected to be recycled in larger quantities in the future. Also tested was the compound tributyl phosphate (TBP), a widely used complexing agent in lanthanide and actinide separations. TBP and related compounds may be used in recycling processes for REE. S. mesophilumcultures were amended with Eu at 100 ppb, 1 ppm and 10 ppm and hydrogen production was measured. While the lowest Eu concentration had minimal effect on hydrogen production compared to the no Eu control, the two higher Eu amendment levels appeared to enhance hydrogen production. TBP at 0.1 g/L completely inhibited hydrogen production. Measurements of aqueous Eu concentrations indicated that >85% of the added Eu remained soluble at all three of the Eu addition levels tested. Experiments to ascertain whether enhancement (or inhibition) occurs at even higher Eu concentrations are underway, as are corresponding experiments with yttrium. This work contributes to the assessment of the potential impacts of increased REE recycling and processing on ecosystems, and supports decision making with respect to disposal of wastewaters generated during these industrial practices. 1Chen, S., Song, L. and X. Dong. Int J. Syst. Evol. Microbiol. 56, 721-725, doi: 10.1099/ijs.0.63686-0 (2006).

  5. Water content and porosity effect on hydrogen radiolytic yields of geopolymers

    Science.gov (United States)

    Chupin, Frédéric; Dannoux-Papin, Adeline; Ngono Ravache, Yvette; d'Espinose de Lacaillerie, Jean-Baptiste

    2017-10-01

    The behavior of geopolymers under irradiation is a topic that has not been thoroughly investigated so far. However, if geopolymers are considered to be used as radioactive waste embedding matrices, their chemical and mechanical stability under ionizing radiation as well as low hydrogen production must be demonstrated. For that purpose, a particular focus is put on water radiolysis. Various formulations of geopolymers have been irradiated either with γ-rays (60Co source) or 95 MeV/amu 36Ar18+ ions beams and the hydrogen production has been quantified. This paper presents the results of radiolytic gas analysis in order to identify important structural parameters that influence confined water radiolysis. A correlation between geopolymers nature, water content on the one side, and the hydrogen radiolytic yield (G(H2)) on the other side, has been demonstrated. For both types of irradiations, a strong influence of the water content on the hydrogen radiolytic yield G(H2) is evidenced. The geopolymers porosity effect has been only highlighted under γ-rays irradiation.

  6. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.

    Science.gov (United States)

    O'Brien, Casey P; Dostert, Karl-Heinz; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-10-24

    The selectivity in the hydrogenation of acrolein over Fe 3 O 4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fracture toughness of the F-82H steel-effect of loading modes, hydrogen, and temperature

    International Nuclear Information System (INIS)

    Li, H.-X.; Jones, R.H.; Hirth, J.P.; Gelles, D.S.

    1996-01-01

    The effects of loading mode, hydrogen, and temperature on fracture toughness and tearing modulus were examined for a ferritic/martensitic steel (F-82H). The introduction of a shear load component, mode III, significantly decreased the initiation and propagation resistance of cracks compared to the opening load, mode I, behavior. Mode I crack initiation and propagation exhibited the highest resistance. A minimum resistance occurred when the mode I and mode III loads were nearly equal. The presence of 4 wppm hydrogen decreased the cracking resistance compared to behavior without H regardless of the loading mode. The minimum mixed-mode fracture toughness with the presence of hydrogen was about 30% of the hydrogen-free mode I fracture toughness. The mixed-mode toughness exhibited a lesser sensitivity to temperature than the mode I toughness. The J IC value was 284 kJ/m 2 at room temperature, but only 60 kJ/m 2 at -55 C and 30 kJ/m 2 at -90 C. The ductile to brittle transition temperature (DBTT) was apparently higher than -55 C. (orig.)

  8. Modeling the effects of dissolved helium pressurant on a liquid hydrogen rocket propellant tank

    Science.gov (United States)

    Richardson, I. A.; Leachman, J. W.

    2017-12-01

    A model was developed using NASA’s Generalized Fluid System Simulation Program (GFSSP) for the self-pressurization of a liquid hydrogen propellant tank due to boil-off to determine the significance of mixture non-idealities. The GFSSP model compared the tank performance for the traditional model that assumes no helium pressurant dissolves into the liquid hydrogen propellant to an updated model that accounts for dissolved helium pressurant. Traditional NASA models have been unable to account for this dissolved helium due to a lack of fundamental property information. Recent measurements of parahydrogen-helium mixtures enabled the development of the first multi-phase Equation Of State (EOS) for parahydrogen-helium mixtures. The self-pressurization GFSSP model was run assuming that the liquid propellant was pure liquid hydrogen and assuming helium dissolved into the liquid utilizing the new helium-hydrogen EOS. The analysis shows that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate for typical tank conditions (-423 °F and 30 psia).

  9. The effect of hydrogen enrichment towards the flammability limits of natural gas in conventional combustion

    International Nuclear Information System (INIS)

    Izirwan Izhab; Nur Syuhada Mohd Shokri; Nurul Saadah Sulaiman; Mohd Zulkifli Mohamad Noor; Siti Zubaidah Sulaiman; Rosmawati Naim; Norida Ridzuan, Mohd Masri Razak; Abdul Halim Abdul Razik; Zulkafli Hassan

    2010-01-01

    The use of hydrogenated fuels shows a considerable promise for the applications in gas turbines and internal combustion engines. The aims of this study are to determine the flammability limits of natural gas/ air mixtures and to investigate the effect of hydrogen enrichment on the flammability limits of natural gas/ air mixtures up to 60 vol % of hydrogen/fuel volume ratio at atmospheric pressure and ambient temperature. The experiments were performed in a 20 L closed explosion vessel where the mixtures were ignited by using a spark permanent wire that was placed at the centre of the vessel. The pressure-time variations during explosions of natural gas/ air mixtures in an explosion vessel were recorded. Moreover, the explosion pressure data is used to determine the flammability limits that flame propagation is considered to occur if explosion pressure is greater than 0.1 bar. Therefore, in this study, the results show that the range of flammability limits are from 6 vol % to 15 vol % and by the addition of hydrogen in natural gas proved to extend the initial lower flammability limit of 6 vol % to 2 vol % of methane. (author)

  10. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  11. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    International Nuclear Information System (INIS)

    Filali, Larbi; Brahmi, Yamina; Sib, Jamal Dine; Bouhekka, Ahmed; Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi

    2016-01-01

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  12. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Filali, Larbi, E-mail: larbifilali5@gmail.com [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Brahmi, Yamina; Sib, Jamal Dine [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Bouhekka, Ahmed [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Département de Physique, Université Hassiba Ben Bouali, 02000 Chlef (Algeria); Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria)

    2016-10-30

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  13. Effect of hydrogen on transformation characteristics and deformation behavior in a Ti-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Ando, Hiroei; Den, Shoji; Katsuta, Hiroshi.

    1992-01-01

    Transformation characteristics and deformation behavior of hydrogenated Ti-50.5 at% Ni alloys, which were occluded in a low pressure range of hydrogen between 1.1 and 78.5 kPa, have been studied by electrical resistivity measurement, tensile test, X-ray diffraction analysis and microstructural observation. M S temperature of the Ti-Ni alloys decreased with an increase in hydrogen content. This corresponds to the stabilization of the parent phase during cooling, which was confirmed by X-ray diffraction: The suppression effect of hydrogen takes place on the martensitic transformation. Critical stress for slip deformation of hydrogenated Ti-Ni alloys changed with hydrogen content and thus hydrogen had a major influence on deformation behavior of those alloys. With hydrogen contents above 0.032 mol%, hardening was distinguished from softening which was pronounced in the contents from 0 to 0.032 mol% H. Hydrides were formed in hydrogen contents over 1.9 mol%. The hydride formation results in the reorientation in variants of the R phase and increase in the lattice strains of the parent phase. (author)

  14. Studies of Evaluation of Hydrogen Embrittlement Property of High-Strength Steels with Consideration of the Effect of Atmospheric Corrosion

    Science.gov (United States)

    Akiyama, Eiji; Wang, Maoqiu; Li, Songjie; Zhang, Zuogui; Kimura, Yuuji; Uno, Nobuyoshi; Tsuzaki, Kaneaki

    2013-03-01

    Hydrogen embrittlement of high-strength steels was investigated by using slow strain rate test (SSRT) of circumferentially notched round bar specimens after hydrogen precharging. On top of that, cyclic corrosion tests (CCT) and outdoor exposure tests were conducted prior to SSRT to take into account the effect of hydrogen uptake under atmospheric corrosion for the evaluation of the susceptibility of high-strength steels. Our studies of hydrogen embrittle properties of high-strength steels with 1100 to 1500 MPa of tensile strength and a prototype ultrahigh-strength steel with 1760 MPa containing hydrogen traps using those methods are reviewed in this article. A power law relationship between notch tensile strength of hydrogen-precharged specimens and diffusible hydrogen content has been found. It has also been found that the local stress and the local hydrogen concentration are controlling factors of fracture. The results obtained by using SSRT after CCT and outdoor exposure test were in good agreement with the hydrogen embrittlement fracture property obtained by means of long-term exposure tests of bolts made of the high-strength steels.

  15. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  16. Hydrogen converters

    International Nuclear Information System (INIS)

    Mondino, Angel V.

    2003-01-01

    The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author)

  17. Photoluminescence from Si nanocrystals in silica: The effect of hydrogen

    International Nuclear Information System (INIS)

    Cheylan, S.; Elliman, R.G.

    2001-01-01

    The effect of H passivation on the PL emission of Si nanocrystals produced in silica by ion-implantion and annealing is shown to depend on the implant fluence. At low fluences, where the nanocrystals are small, passivation causes an enhancement of the emission intensity that is uniform over the full spectral range and therefore appears to be independent of nanocrystal size. For higher fluences, where the average size and size distribution of the nanocrystals are larger, the enhancement occurs preferentially at longer wavelengths, giving rise to a red-shift in the emission spectra. Both the enhancement and the red-shift increase monotonically with increasing fluence. These data are shown to be consistent with a model in which the probability to contain a non-radiative defect increases with nanocrystal size

  18. Effect of odd hydrogen on ozone depletion by chlorine reactions

    Science.gov (United States)

    Donahue, T. M.; Cicerone, R. J.; Liu, S. C.; Chameides, W. L.

    1976-01-01

    The present paper discusses how the shape of the ozone layer changes under the influence of injected ClX for several choices of two key HOx reaction rates. The two HOx reactions are: OH + HO2 yields H2O + O2 and O + HO2 yields OH + O2. Results of calculations are presented which show that the two reaction rates determine the stratospheric concentrations of OH and HO2, and that these concentrations regulate the amount by which the stratospheric ozone column can be reduced due to injections of odd chlorine. It is concluded that the amount of ozone reduction by a given mixing ratio of ClX will remain very uncertain until the significance of several possible feedback effects involving HOx in a chlorine-polluted atmosphere are determined and measurements of the reaction rates and HOx concentrations are made at the relevant temperatures.

  19. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  20. The defect passivation effect of hydrogen on the optical properties of solution-grown ZnO nanorods

    International Nuclear Information System (INIS)

    Urgessa, Z.N.; Mbulanga, C.M.; Tankio Djiokap, S.R.; Botha, J.R.; Duvenhage, M.M.; Swart, H.C.

    2016-01-01

    In this study the effect of annealing environment on both low temperature and room temperature photoluminescence (PL) characteristics of ZnO nanorods, grown in solution, is presented. Particular attention is given to the effect of hydrogen defect passivation and its PL related line. It is shown that, irrespective of annealing ambient, an optimum annealing temperature of 300 °C suppresses the defect related emission and significantly improves the UV emission. By considering the stability of hydrogen impurities, the observed results in the PL spectra are analyzed. There is an observed asymmetric broadening on the low energy side of the bound exciton luminescence in the low temperature annealed samples which is explained by a high concentration of ionized impurities related to hydrogen. This has been attributed primarily to the conversion of hydrogen molecule to substitutional hydrogen on the oxygen site (H O ) as a result of annealing.

  1. The defect passivation effect of hydrogen on the optical properties of solution-grown ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N., E-mail: zelalem.urgessa@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Mbulanga, C.M.; Tankio Djiokap, S.R.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Duvenhage, M.M.; Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    In this study the effect of annealing environment on both low temperature and room temperature photoluminescence (PL) characteristics of ZnO nanorods, grown in solution, is presented. Particular attention is given to the effect of hydrogen defect passivation and its PL related line. It is shown that, irrespective of annealing ambient, an optimum annealing temperature of 300 °C suppresses the defect related emission and significantly improves the UV emission. By considering the stability of hydrogen impurities, the observed results in the PL spectra are analyzed. There is an observed asymmetric broadening on the low energy side of the bound exciton luminescence in the low temperature annealed samples which is explained by a high concentration of ionized impurities related to hydrogen. This has been attributed primarily to the conversion of hydrogen molecule to substitutional hydrogen on the oxygen site (H{sub O}) as a result of annealing.

  2. Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

    International Nuclear Information System (INIS)

    Kim, Hyun Sik; Kang, Soon Hyung

    2013-01-01

    Hydrogen (H 2 ) treatment using a two-step TiO 2 nanotube (TONT) film was performed under various annealing temperatures from 350 .deg. C to 550 .deg. C and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the H 2 treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at 550 .deg. C exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 mA/cm 2 at 0.32 V vs. NHE was achieved for the H:TONT film (550 .deg. C) versus 0.43 mA/cm 2 for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, η) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material

  3. The effect of stress on hydrogen uptake and desorption by A-286

    Science.gov (United States)

    Danford, Merlin D.

    1991-01-01

    The uptake and desorption of hydrogen by A-286 as a function of stress was studied using electrochemical methods. It was found that the apparent surface hydrogen concentration, the mean hydrogen concentration, and the hydrogen distribution uniformity all increased up to a stress level 50 percent of yield and decreased thereafter. The value of the hydrogen diffusion coefficient was relatively unaffected by stress while the percent of trapped hydrogen appeared to decrease with increasing stress.

  4. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    International Nuclear Information System (INIS)

    Green, Michael A.

    2005-01-01

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs

  5. Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2005-08-20

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

  6. A measurement of hydrogen transport in deuterium discharges using the dynamic response of the effective mass

    International Nuclear Information System (INIS)

    Dudok de Wit, T.; Duval, B.P.; Joye, B.; Lister, J.B.

    1992-02-01

    Particle tagging in a tokamak provides an attractive method for studying transport mechanisms. The injection of test particles at the plasma edge and the subsequent measurement of the evolution of their concentration at the centre can be used to quantify the underlying transport mechanisms. This has been carried out on the TCA tokamak by injecting hydrogen into a deuterium discharge, and simultaneously measuring the temporal evolution of the effective mass and the edge ionisation rate. (author) 3 figs., 9 refs

  7. Thermophysicochemical Reaction of ZrCo-Hydrogen-Helium System

    Science.gov (United States)

    Jung, Kwangjin; Kang, Hee-Seok; Yun, Sei-Hun; Chung, Hongsuk

    2017-11-01

    Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo-H2-He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which ZrCoHx is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which ZrCoHx decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.

  8. Nuclear quantum effect on hydrogen adsorption site of zeolite-templated carbon model using path integral molecular dynamics

    International Nuclear Information System (INIS)

    Suzuki, Kimichi; Kayanuma, Megumi; Tachikawa, Masanori; Ogawa, Hiroshi; Nishihara, Hirotomo; Kyotani, Takashi; Nagashima, Umpei

    2011-01-01

    Research highlights: → The stable hydrogen adsorption sites on C 36 H 12 were evaluated at 300 K using path integral molecular dynamics. → In the static MO calculation and conventional MD simulation, five stable adsorption sites of hydrogen atom were found. → In path integral simulation, only four stable adsorption sites were obtained. → The thermal and nuclear quantum effects are key role to settle the hydrogen adsorption sites on carbon materials. - Abstract: To settle the hydrogen adsorption sites on buckybowl C 36 H 12 , which is picked up from zeolite-templated carbon (ZTC), we have performed path integral molecular dynamics (PIMD) simulation including thermal and nuclear quantum fluctuations under semi-empirical PM3 method. In the static PM3 calculation and classical simulation the five stable adsorption sites of hydrogen atom are optimized inside a buckybowl C 36 H 12 , which are labeled as α-, β 1 -, β 2 -, γ-, and δ-carbons from edge to innermost carbon. In PIMD simulation, meanwhile, stable adsorption site is not appeared on δ-carbon, but on only α-, β 1 -, β 2 -, and γ-carbons. This result is due to the fact that the adsorbed hydrogen atom can easily go over the barrier for hydrogen transferring from δ- to β 1 -carbons by thermal and nuclear quantum fluctuations. The thermal and nuclear quantum effects are key role to settle the hydrogen adsorption sites on carbon materials.

  9. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping.

    Science.gov (United States)

    Cabria, I; López, M J; Alonso, J A

    2008-04-14

    Density functional calculations are reported for the adsorption of molecular hydrogen on carbon nanopores. Two models for the pores have been considered: (i) The inner walls of (7,7) carbon nanotubes and (ii) the highly curved inner surface of nanotubes capped on one end. The effect of Li doping is investigated in all cases. The hydrogen physisorption energies increase due to the concavity effect inside the clean nanotubes and on the bottom of the capped nanotubes. Li doping also enhances the physisorption energies. The sum of those two effects leads to an increase by a factor of almost 3 with respect to the physisorption in the outer wall of undoped nanotubes and in flat graphene. Application of a quantum-thermodynamical model to clean cylindrical pores of diameter 9.5 A, the diameter of the (7,7) tube, indicates that cylindrical pores of this size can store enough hydrogen to reach the volumetric and gravimetric goals of the Department of Energy at 77 K and low pressures, although not at 300 K. The results are useful to explain the experiments on porous carbons. Optimizations of the pore size, concavity, and doping appear as promising alternatives for achieving the goals at room temperature.

  10. Hydrogen storage by adsorption on activated carbon: Investigation of the thermal effects during the charging process

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla-Lara, G. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France); Momen, G.; Le Neindre, B.; Hassouni, K. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Marty, P.H. [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France)

    2007-07-15

    This paper presents an investigation of the thermal effects during high-pressure charging of a packed bed hydrogen storage tank. The studied column is packed with activated IRH3 carbon, which has an average surface area of 2600m{sup 2}g{sup -1} and is fed with hydrogen or helium from an external high-pressure source. The temperature at six locations in the storage tank and the pressure value at the bottom of the tank are recorded during the charging stage. Several experiments were carried out to investigate the effect of the initial flow rate on the temperature field in the reservoir and on the duration of the charging process. A study of the respective contribution of adsorption and mechanical dissipation effects to the thermal phenomena is done in the case of hydrogen. Experimental results are compared to those obtained with the commercial code Fluent. A fair agreement is found when comparing typical pressure and temperature evolutions during the tank filling. (author)

  11. Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate.

    Science.gov (United States)

    Cardeña, René; Valdez-Vazquez, Idania; Buitrón, Germán

    2017-02-01

    Purple non-sulfur bacteria generate hydrogen and polyhydroxybutyrate (PHB) as a mechanism for disposing of reducing equivalents generated during substrate consumption. However, both pathways compete for the reducing equivalents released from bacteria growing under certain substrates, thus the formation of hydrogen or PHB is detrimental to the formation of each other. The effect of mixtures of acetic, propionic and butyric acids on the formation of H 2 and PHB was evaluated using Box-Behnken design. A bacterial community mainly constituted by Rhodopseudomonas palustris was used as inoculum. It was observed that the three volatile fatty acids had a significant effect on the specific PHB production. However, only the propionic acid had a significant effect on the specific H 2 production activity and the highest value was observed when acetate was the main component in the mixture. The maximum values for the specific PHB and hydrogen production rates were 16.4 mg-PHB/g-TSS/day and 391 mL-H 2 /g-TSS/day, respectively.

  12. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    Science.gov (United States)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  13. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  14. Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells.

    Science.gov (United States)

    Guan, Zhong; Li, Huai-Fang; Guo, Li-Li; Yang, Xiang

    2015-08-01

    This study aimed to investigate the effects of three different antioxidants, namely vitamin C, vitamin E, and molecular hydrogen, on cytotrophoblasts in vitro. Two trophoblast cell lines, JAR and JEG-3, were exposed to different concentrations of vitamin C (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), vitamin E (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), and molecular hydrogen (0, 25, 50, 100, 500 μmol/L) for 48 h. The cell viability was detected using the MTS assay. The secretion of human chorionic gonadotropin (hCG) and the tumor necrosis factor-α (TNF-α) were assessed and the expression of TNF-α mRNA was observed by real-time RT-PCR. Cell viability was significantly suppressed by 500 μmol/L vitamins C and E (P 0.05). The expression of TNF-α was increased by 100 μmol/L vitamin C and 50 μmol/L vitamins E, separately or combined (P vitamin C and E, separately or combined. High levels of antioxidant vitamins C and E may have significant detrimental effects on placental function, as reflected by decreased cell viability and secretion of hCG; and placental immunity, as reflected by increased production of TNF-a. Meanwhile hydrogen showed no such effects on cell proliferation and TNF-α expression, but it could affect the level of hCG, indicating hydrogen as a potential candidate of antioxidant in the management of preeclampsia (PE) should be further studied.

  15. Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames

    International Nuclear Information System (INIS)

    Yılmaz, İlker; Taştan, Murat; İlbaş, Mustafa; Tarhan, Cevahir

    2013-01-01

    Highlights: • Numerical simulation of propane and propane–hydrogen blending fuel was performed. • The effects of turbulence and radiation model on combustion were examined. • Comparison showed that RNG and P–I models give a better agreement with measurements. • As burner and combustor fuel, hydrogen may be considered a good alternative. - Abstract: This paper presents numerical simulation results of propane, propane–hydrogen blending diffusion flames in a combustion chamber. The numerical simulations using Fluent CFD code were carried out by changing fuel blending from pure propane (100% C 3 H 8 ) to propane–hydrogen blending including 90% C 3 H 8 –10% H 2 , 80% C 3 H 8 –20% H 2 , 10% C 3 H 8 –90% H 2 , 20% C 3 H 8 –80% H 2 by volume. A two-dimensional axis-symmetric numerical model was solved to investigate the effects of the turbulence and radiation models on the combustion characteristics such as temperature, and gas concentration distributions. The combustion reaction scheme in the flame region was modeled using eddy dissipation model with global reaction scheme. The effects of two turbulence models including RNG k–ε, and Reynolds Stress Model, RSM, and two different radiation models including P–I and discrete transfer model were examined on combustion characteristics. The predictions are validated and compared with the published experimental and simulation results. Numerical results show that the velocity profiles, temperature gradients, CO 2 and O 2 concentrations profiles are overall agreement with published measurement and simulation results in the literature

  16. Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Hsing [Department of Environmental Engineering, National Ilan University, I-Lan 260 (China); Sung, Shihwu [Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011-3232 (United States); Chen, Shen-Yi [Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811 (China)

    2009-01-15

    An anaerobic sequencing batch reactor (ASBR) was used to evaluate biological hydrogen production from carbohydrate-rich organic wastes. The goal of the proposed project was to investigate the effects of pH (4.9, 5.5, 6.1, and 6.7), and cyclic duration (4, 6, and 8 h) on hydrogen production. With the ASBR operated at 16-h HRT, 25 g COD/L, and 4-h cyclic duration, the results showed that the maximum hydrogen yield of 2.53 mol H{sub 2}/mol sucrose{sub consumed} appeared at pH 4.9. The carbohydrate removal efficiency declined to 56% at pH 4.9, which indirectly resulted in the reduction of total volatile fatty acid production. Acetate fermentation was the dominant metabolic pathway at pH 4.9. The concentration of mixed liquor volatile suspended solid (MLVSS) also showed a decrease from nearly 15,000 mg/L between pHs 6.1 and 6.7 to 6000 mg/L at pH 4.9. Investigation of the effect of cyclic duration found that hydrogen yield reached the maximum of 1.86 mol H{sub 2}/mol sucrose{sub consumed} at 4-h cyclic duration while ASBR was operating at 16-h HRT, 15 g COD/L, and pH 4.9. The experimental results showed that MLVSS concentration increased from 6200 mg/L at 4-h cyclic duration to 8500 mg/L at 8-h cyclic duration. However, there was no significant change in effluent volatile suspended solid concentration. The results of butyrate to acetate ratio showed that using this ratio to correlate the performance of hydrogen production is not appropriate due to the growth of homoacetogens. In ASBR, the operation is subject to four different phases of each cycle, and only the complete mix condition can be achieved at react phase. The pH and cyclic duration under the unique operations profoundly impact fermentative hydrogen production. (author)

  17. Hydrogenation of organic solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.R.K.; Kawa, W.

    1980-02-01

    Eight organic solid wastes, six cellulosic and two noncellulosic, were hydrogenated batchwise with and without a catalyst. Conversions obtained range from 64 to 98 % of moisture- and ash-free (maf) raw material; oil yields, 10 to 59 %; and gaseous hydrocarbon yields, 7 to 16 %. Based on batch hydrogenation results, the oil production from large-scale hydrogenation of the wastes is projected to be 1.6 to 3.5 bbl/ton of maf raw material; the gaseous-hydrocarbon production, 2000 to 4100 standard cubic feet (scf). Activities of the two catalysts (SnCl/sub 2// and a combination of Fe/sub 2/O/sub 3/ and H/sub 2/S) used in the hydrogenation of the wastes are discussed. Also discussed are the chemical reactions and mechanisms involved in the hydrogenation, potential market for the product oil, and possible improvement of the oil yield. Elemental compositions of the hydrogenation oils and types of hydrocarbons including oxygenated hydrocarbons found in the oils are presented. The energy equivalent of the organic solid wastes generated in the United States in 1973 is shown to be 27 % of the nation's total 1972 energy production.

  18. Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas

    International Nuclear Information System (INIS)

    Sattar, Anwar; Leeke, Gary A.; Hornung, Andreas; Wood, Joseph

    2014-01-01

    Steam gasification of biochars has emerged as a promising method for generating syngas that is rich in hydrogen. In this study four biochars formed via intermediate pyrolysis (wood pellet, sewage sludge, rapeseed and miscanthus) were gasified in a quartz tubular reactor using steam. The dynamic behaviour of the process and effects of temperature, steam flow and particle size were studied. The results show that increases in both steam flow and temperature significantly increase the dry gas yield and carbon conversion, but hydrogen volume fraction decreases at higher temperatures whilst particle size has little effect on gaseous composition. The highest volume fraction of hydrogen, 58.7%, was obtained at 750 °C from the rapeseed biochar. - Highlights: • Four biochars from intermediate pyrolysis were gasified. • High hydrogen concentration was achieved in all cases. • Peak hydrogen was 165 mg min −1  g −1 biochar at 700–750 °C. • High mineral content biochars had the highest reactivities. • Varying particle size had very little effect on gaseous composition

  19. Effect of post weld heat treatments on the resistance to the hydrogen embrittlement of soft martensitic stainless steel

    International Nuclear Information System (INIS)

    Hazarabedian, Alfredo; Ovejero Garcia, Jose; Bilmes, P.; Llorente, C.

    2003-01-01

    The effect of external hydrogen on the tensile properties of an all weld sample of a soft martensitic stainless steel was studied. The material was tested in the as weld condition and after tempered conditions modifying the austenite content, and changing the quantity, type and distribution of precipitates. Hydrogen was introduced by cathodic charge or by immersion in an acid brine saturated whit 1 atm hydrogen sulphide, during the mechanical test. The as weld condition showed a good resistance in the hydrogen sulphide, were the tempered samples were embrittled. Under cathodic charge, all samples were susceptible to hydrogen damage. The embritting mechanisms were the same in both environments. When the austenite content, was below 10% the crack path is on the primary austenite grain boundary. At higher austenite content, the crack is transgranular. (author)

  20. Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility.

    Science.gov (United States)

    Tommasi, T; Sassi, G; Ruggeri, B

    2008-01-01

    The present study is aimed to test the effectiveness and the reproducibility of the acid pre-treatment of sewage sludge to suppress the methanogenic bacteria activity, in order to increase the hydrogen forming bacteria activity, mainly Clostridium species. The treated sludge has been tested on glucose reach medium under mesophilic conditions (35 degrees C), in batch mode to quantify the biological fermentative hydrogen production. In the whole series of experiments, the main components of biogas are hydrogen (52-60%) and carbon dioxide (40-48%); no methane and hydrogen sulphide were present in it. The rate of biogas production reached a maximum of 75 ml/lh. An overall mean hydrogen conversion efficiency was 11.20% on the assumption of maximum of 3 mol H2/mol glucose. Clostridium spp. multiplied ten times after 10 h of fermentation and over that thousand times at the end of fermentation. IWA Publishing 2008.