Sample records for gas-phase spectroscopic studies

  1. Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed

    Directory of Open Access Journals (Sweden)

    S. M. Ball


    Full Text Available Time profiles of molecular iodine emissions from seven species of seaweed have been measured at high time resolution (7.5 s by direct spectroscopic quantification of the gas phase I2 using broadband cavity enhanced absorption spectroscopy. Substantial differences were found between species, both in the amounts of I2 emitted when the plants were exposed to air and in the shapes of their emission time profiles. Two species of kelp, Laminaria digitata and Laminaria hyperborea, were found to be the most potent emitters, producing an intense burst of I2 when first exposed to air. I2 was also observed from Saccharina latissima and Ascophyllum nodosum but in lower amounts and with broader time profiles. I2 mixing ratios from two Fucus species and Dictyopteris membranacea were at or below the detection limit of the present instrument (25 pptv. A further set of experiments investigated the time dependence of I2 emissions and aerosol particle formation when fragments of L. digitata were exposed to desiccation in air, to ozone and to oligoguluronate stress factors. Particle formation occurred in all L. digitata stress experiments where ozone and light were present, subject to the I2 mixing ratios being above certain threshold amounts. Moreover, the particle number concentrations closely tracked variations in the I2 mixing ratios, confirming the results of previous studies that the condensable particle-forming gases derive from the photochemical oxidation of the plant's I2 emissions. This work also supports the theory that particle nucleation in the coastal atmosphere occurs in "hot-spot" regions of locally elevated concentrations of condensable gases: the greatest atmospheric concentrations of I2 and hence of condensable iodine oxides are likely to be above plants of the most efficiently

  2. Conformational Heterogeneity of Methyl 4-Hydroxycinnamate: A Gas-Phase UV-IR Spectroscopic Study

    NARCIS (Netherlands)

    Tan, E.M.M.; Amirjalayer, S.; Smolarek, S.; Vdovin, A.; Rijs, A.M.; Buma, W.J.


    UV excitation and IR absorption spectroscopy on Jet cooled molecules is used to study the conformational heterogeneity of methyl 4-hydroxycinnamate, a model chromophore of the Photoactive Yellow Protein (PYP), and to determine the spectroscopic properties of the various conformers UV-UV depletion

  3. A computational and spectroscopic study of the gas-phase conformers of adrenaline (United States)

    Çarçabal, P.; Snoek, L. C.; van Mourik, T.

    The conformational landscapes of the neurotransmitter l-adrenaline (l-epinephrine) and its diastereoisomer pseudo-adrenaline, isolated in the gas phase and un-protonated, have been investigated by using a combination of mass-selected ultraviolet and infrared holeburn spectroscopy, following laser desorption of the sample into a pulsed supersonic argon jet, and DFT and ab initio computation (at the B3LYP/6-31+G*, MP2/6-31+G* and MP2/aug-cc-pVDZ levels of theory). Both for adrenaline and its diastereoisomer, pseudo-adrenaline, one dominant molecular conformation, very similar to the one seen in noradrenaline, has been observed. It could be assigned to an extended side-chain structure (AG1a) stabilized by an OH → N intramolecular hydrogen bond. An intramolecular hydrogen bond is also formed between the neighbouring hydroxyl groups on the catechol ring. The presence of further conformers for both diastereoisomers could not be excluded, but overlapping electronic spectra and low ion signals prevented further assignments.

  4. Two dimensional laser induced fluorescence in the gas phase: a spectroscopic tool for studying molecular spectroscopy and dynamics (United States)

    Gascooke, Jason R.; Lawrance, Warren D.


    Two dimensional laser induced fluorescence (2D-LIF) extends the usual laser induced fluorescence technique by adding a second dimension, the wavelength at which excited states emit, thereby significantly enhancing the information that can be extracted. It allows overlapping absorption features, whether they arise from within the same molecule or from different molecules in a mixture, to be associated with their appropriate "parent" state and/or molecule. While the first gas phase version of the technique was published a decade ago, the technique is in its infancy, having been exploited by only a few groups to date. However, its potential in gas phase spectroscopy and dynamics is significant. In this article we provide an overview of the technique and illustrate its potential with examples, with a focus on those utilising high resolution in the dispersed fluorescence dimension.

  5. Study of ions - molecules reactions in the gas phase with collision reaction cell devices: Applications to the direct resolution of spectroscopic interferences in ICP-MS

    International Nuclear Information System (INIS)

    Favre, G.


    Inductively Coupled Plasma Mass Spectrometry emerged as the most widespread mass spectrometry technique in inorganic analytical chemistry for determining the concentration of a given isotope or an isotope ratio. The problem of spectroscopic interferences, inherent to this technique, finds a solution through the use of reaction cell devices. An in situ interference removal is feasible with the addition of a well selected gas in the cell. The understanding of the chemistry of ions-molecules interactions in the gas phase is however fundamental to optimize the efficiency of such devices. An accurate knowledge of experimental conditions in the reaction zone according to instrumental parameters appears crucial in order to interpret observed reactivities. This preliminary study is then used for the resolution of two nuclear field characteristic interferences. (author)

  6. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Yaghlane, Saida Ben [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Cotton, C. Eric; Francisco, Joseph S., E-mail:, E-mail: [Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707 (United States); Linguerri, Roberto; Hochlaf, Majdi, E-mail:, E-mail: [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France)


    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.

  7. Spectroscopic study on the active site of a SiO2 supported niobia catalyst used for the gas-phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. (United States)

    Maronna, M M; Kruissink, E C; Parton, R F; Soulimani, F; Weckhuysen, B M; Hoelderich, W F


    NbOx/SiO2 with a very high catalytic activity for the gas-phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam, was investigated by different spectroscopic methods in order to obtain new insights in the formation and nature of the active sites. FT-IR spectroscopy in combination with pyridine adsorption measurements revealed that the catalyst material contains Lewis-acidic sites, most probably related to the Nb[double bond, length as m-dash]O groups of isolated tetrahedral NbO4 surface species, whereas no Brønsted-acidic sites were observed. Results from in situ Raman and complementary FT-IR measurements strongly suggest that Brønsted-acidic Nb-OH sites can be generated from Nb[double bond, length as m-dash]O groups by reaction with ethanol. This is in agreement with the observation that ethanol is essential for obtaining a very good catalyst performance. However, the Brønsted-acidic sites can be detected in significant amounts in particular in the presence of a Lewis-base, e.g. pyridine, most probably because the formation and/or the stability of these Brønsted-acidic sites are enhanced by a basic molecule. Assuming that cyclohexanone oxime, being a base, can play a similar role as pyridine, we propose on the basis of the spectroscopic findings obtained in this work and our kinetic results published recently, a reaction scheme for the formation of the active site at the Nb[double bond, length as m-dash]O group as well as for the recovery of the Nb[double bond, length as m-dash]O site during the final stage of the gas-phase Beckmann rearrangement.

  8. Ab initio study of gas phase and water-assisted tautomerization of ...

    Indian Academy of Sciences (India)


    Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide. 623. Figure 4. Keto to enol conversion of (a) maleimide and (b) formamide in gas phase. (c) maleimide and (d) forma- mide with water.

  9. Conformational Study of Taurine in the Gas Phase (United States)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.


    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  10. Spectroscopic study

    International Nuclear Information System (INIS)

    Flores, M.; Rodriguez, R.; Arroyo, R.


    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  11. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.


    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  12. Gas Phase Structure of Amino Acids: La-Mb Studies (United States)

    Mata, I. Pena S.; Sanz, M. E.; Vaquero, V.; Cabezas, C.; Perez, C.; Blanco, S.; López, J. C.; Alonso, J. L.


    Recent improvements in our laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectrometer such as using Laval-type nozzles and picoseconds Nd:YAG lasers (30 to 150 ps) have allowed a major step forward in the capabilities of this experimental technique as demonstrated by the last results in serine cysteine and threonine^a for which seven, six and seven conformers have been respectively identified. Taking advantage of these improvements we have investigated the natural amino acids metionine, aspartic and glutamic acids and the γ-aminobutyric acid (GABA) with the aim of identify and characterize their lower energy conformers. Searches in the rotational spectra have lead to the identification of seven conformers of metionine, six and five of aspartic and glutamic acids, respectively, and seven for the γ-aminobutyric. These conformers have been unambiguously identified by their spectroscopic constants. In particular the ^{14}N nuclear quadrupole coupling constants, that depend heavily on the orientation of the amino group with respect to the principal inertial axes of the molecule, prove to be a unique tool to distinguish unambigously between conformations with similar rotational constants. For the γ-aminobutyric acid two of the seven observed structures are stablized by an intramolecular interaction n-π*. Two new conformers of proline have been identified together with the two previously observed. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys.Chem.Chem.Phys., 2009, 11, 617. D. B. Atkinson, M. A. Smith, Rev. Sci. Instrum. 1995, 66, 4434 S. Blanco, M. E. Sanz, J. C. López, J. L. Alonso, Proc. Natl. Acad. Sci. USA2007, 104, 20183. M. E. Sanz, S. Blanco, J. C. López, J. L. Alonso, Angew. Chem. Int. Ed.,2008, 120, 6312. A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J.C. López, J. L. Alonso, Angew. Chem. Int. Ed. , 2002, 41, 4673

  13. Studies of gas phase ion/molecule reactions by Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Kleingeld, J.C.


    An important field in which Fourier-transform ion cyclotron resonance has useful applications is that of gas phase ion chemistry, the subject of this thesis. First, the general picture of ion-molecule reactions in the gas phase is discussed. Next, some positive ion-molecule reactions are described, whereas the remaining chapters deal with negative ion-molecule reactions. Most of these studies have been performed using the FT-ICR method. Reactions involving H 3 O - and NH 4 - ions are described whereas the other chapters deal with larger organic complexes. (Auth.)

  14. Study of Iodine Behavior in the Gas Phase during a Severe Accident

    International Nuclear Information System (INIS)

    Kim, Hanchul; Cho, Yeonghun; Ryu, Myunghyun


    Among the iodine species, the organic iodides produced from the reaction between iodine and organics such as paint, are not easily trapped by the filters during the containment venting following a severe accident. Korea Institute of Nuclear Safety (KINS) has been studying this issue, joining international research programs such as ISTP-EPICUR, OECDBIP and OECD-STEM. In the course of this study, a simple iodine model, RAIM (Radio-Active Iodine chemistry Model) has been developed (Oh et al., 2011), based on the IMOD methodology, and other previous studies. This paper deals with our recent activities on this study, including the development of the model for the iodine reactions in gas phase. Iodine reactions in gas phase were modeled and added to the RAIM code, taking into account several relevant reactions such as formation of ARP, iodine oxide, and organic iodides in gas phase. RAIM was then applied to analyze the S2-6-5-2 test for which iodine-loaded coupons were tested in gas phase. The analysis results show a reasonable estimation of volatile iodine concentration with the desorption rate constant of about 10 -6 s -1 , while those of the other iodine species overestimated for the whole period of the test. It reveals the need to determine appropriate values for the rate constants for formation of iodine oxides and organic iodides

  15. DFT study of the reactions of Mo and Mo with CO 2 in gas phase

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. DFT study of the reactions of Mo and Mo+ with CO2 in gas phase. Deman Han Guoliang Dai Hao Chen Hua Yan Junyong Wu Chuanfeng Wang Aiguo Zhong. Volume 123 Issue 3 May 2011 pp 299-309 ...

  16. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    International Nuclear Information System (INIS)

    Carr, J. K.; Roy, S.; Skinner, J. L.; Zabuga, A. V.; Rizzo, T. R.


    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala) 5 -Lys-H + in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13 C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13 C 18 O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm −1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides

  17. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations. (United States)

    Carr, J K; Zabuga, A V; Roy, S; Rizzo, T R; Skinner, J L


    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed "maps," which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H(+) in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly (13)C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and (13)C(18)O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm(-1) for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.

  18. ICR studies of some anionic gas phase reactions and FTICR software design

    International Nuclear Information System (INIS)

    Noest, A.J.


    This thesis consists of two parts. Part one (Chs. 1-5) reports experimental results from mostly drift-cell ICR studies of negative ion-molecule reactions; part two (Chs. 6-11) concerns the design of software for an FTICR instrument. The author discusses successively: 1. ion cyclotron resonance spectrometry; 2. the gas phase allyl anion; 3. the (M-H) and (M-H2) anions from acetone; 4. negative ion-molecule reactions of aliphatic nitrites studied by cyclotron resonance; 5. homoconjugation versus charge-dipole interaction effects in the stabilization of carbanions in the gas phase; 6. the Fourier Transform ICR method; 7. the FTICR-software; 8. an efficient adaptive matcher filter for fast transient signals; 9. reduction of spectral peak height errors by time-domain weighing; 10. Chirp excitation; 11. Compact data storage. The book concludes with a Dutch and English summary (G.J.P.)

  19. Theoretical Studies of Gas Phase Elementary and Carbon Nanostructure Growth Reactions (United States)


    photodissociation reactions of ketene, methylamine, formic acid , methyl ethyl ketone, acetone and NO3. For instance, for NO3, a totally photodissociation reactions of ketene, methylamine, formic acid , methyl ethyl ketone, acetone and NO3. For instance, for NO3, a totally unknown...THEORETICAL STUDIES OF GAS PHASE ELEMENTARY AND CARBON NANOSTRUCTURE GROWTH REACTIONS KEIJI MOROKUMA EMORY UNIVERSITY 09/19/2013 Final Report

  20. Conformational Study of DNA Sugars: from the Gas Phase to Solution (United States)

    Uriarte, Iciar; Vallejo-López, Montserrat; Cocinero, Emilio J.; Corzana, Francisco; Davis, Benjamin G.


    Sugars are versatile molecules that play a variety of roles in the organism. For example, they are important in energy storage processes or as structural scaffolds. Here, we focus on the monosaccharide present in DNA by addressing the conformational and puckering properties in the gas phase of α- and β-methyl-2-deoxy-ribofuranoside and α- and β-methyl-2-deoxy-ribopiranoside. Other sugars have been previously studied in the gas phase The work presented here stems from a combination of chemical synthesis, ultrafast vaporization methods, supersonic expansions, microwave spectroscopy (both chirped-pulsed and Balle-Flygare cavity-based spectrometers) and NMR spectroscopy. Previous studies in the gas phase had been performed on 2-deoxyribose, but only piranose forms were detected. However, thanks to the combination of these techniques, we have isolated and characterized for the first time the conformational landscape of the sugar present in DNA in its biologically relevant furanose form. Our gas phase study serves as a probe of the conformational preferences of these biomolecules under isolation conditions. Thanks to the NMR experiments, we can characterize the favored conformations in solution and extract the role of the solvent in the structure and puckering of the monosaccharides. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J.-U. Grabow, J. A. Fernández, F. Castaño, Angew. Chem. Int. Edit. 2012, 51, 3119. P. Écija, I. Uriarte, L. Spada, B. G. Davis, W. Caminati, F. J. Basterretxea, A. Lesarri, E. J. Cocinero, Chem. Commun. 2016, 52, 6241. I. Peña, E. J. Cocinero, C. Cabezas, A. Lesarri, S. Mata, P. Écija, A. M. Daly, Á. Cimas, C. Bermúdez, F. J. Basterretxea, S. Blanco, J. A. Fernández, J. C. López, F. Castaño, J. L. Alonso, Angew. Chem. Int. Edit. 2013, 52, 11840.

  1. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J.


    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions.

  2. Ab initio studies of aspartic acid conformers in gas phase and in solution. (United States)

    Chen, Mingliang; Lin, Zijing


    Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD/6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP/6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP/6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP/6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide

  3. Pulse radiolysis studies of some atomic and molecular processes in the gas phase

    International Nuclear Information System (INIS)

    Hatano, Y.; Takao, S.; Shimamori, H.; Ueno, T.; Yokoyama, A.


    The technique of pulse radiolysis has been applied to the study of some atomic and molecular processes in gas phase. The first application was to the determination of the Penning ionization rate constant. He-N 2 mixture was irradiated with nano-second pulses of 600 keV electrons, and the optical emission of N 2 + was measured. The result was compared with those obtained by other techniques. The second application was to the study of the lowest triplet state of benzene. The triplet state relaxation of benzene in gas phase was studied by measuring the phosphorescence of biacetyl induced by the energy transfer to biacetyl from triplet benzene in the pulse radiolysis of benzene-biacetyl mixture. The third application was to the study of thermal electron attachment to O 2 , in which microwave cavity method combined with pulse radiolysis has been used to observe the disappearance of thermal electrons directly with the fast response by attachment to O 2 . (Aoki, K.)

  4. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions. (United States)

    O'Hair, Richard A J; Rijs, Nicole J


    promoting the formation of the organometallic ion. Where isomeric organometallic ions are generated and normal MS approaches cannot distinguish them, we describe approaches to elucidate the decarboxylation mechanism via determination of their structure. These "unmasked" organometallic ions, [RM(L)n](x), can also be structurally interrogated spectroscopically or via CID. We have thus compared the gas-phase structures and decomposition of several highly reactive and synthetically important organometallic ions for the first time. Perhaps the most significant aspect of this work is the study of bimolecular reactions, which provides experimental information on mechanistically obscure bond-formation and cross-coupling steps and the intrinsic reactivity of ions. We have sought to understand transformations of substrates including acid-base and hydrolysis reactions, along with reactions resulting in C-C bond formation. Our studies also allow a direct comparison of the performance of different metal catalysts in the individual elementary steps associated with protodecarboxylation and decarboxylative alkylation cycles. Electronic structure (DFT and ab initio) and dynamics (RRKM) calculations provide further mechanistic insights into these reactions. The broad implications of this research are that new reactions can be discovered and that the performance of metal catalysts can be evaluated in terms of each of their elementary steps. This has been particularly useful for the study of metal-mediated decarboxylation reactions.

  5. Femtosecond time-resolved studies of coherent vibrational Raman scattering in large gas-phase molecules

    International Nuclear Information System (INIS)

    Hayden, C.C.; Chandler, D.W.


    Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics

  6. Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge


    The unimolecular gas-phase thermolyses of the four methyl and ethyl monothioacetates (5)–(8) have been studied by the flash vacuum thermolysis–field ionization mass spectrometry technique in the temperature range 883–1 404 K. The types of reactions verified were keten formation, thiono–thiolo rea......The unimolecular gas-phase thermolyses of the four methyl and ethyl monothioacetates (5)–(8) have been studied by the flash vacuum thermolysis–field ionization mass spectrometry technique in the temperature range 883–1 404 K. The types of reactions verified were keten formation, thiono...

  7. Gas-Phase Reactions of Dimethyl Disulfide with Aliphatic Carbanions - A Mass Spectrometry and Computational Study (United States)

    Franczuk, Barbara; Danikiewicz, Witold


    Ion-molecule reactions of Me2S2 with a wide range of aliphatic carbanions differing by structure and proton affinity values have been studied in the gas phase using mass spectrometry techniques and DFT calculations. The analysis of the spectra shows a variety of product ions formed via different reaction mechanisms, depending on the structure and proton affinity of the carbanion. Product ions of thiophilic reaction ( m/z 47), SN2 ( m/z 79), and E2 elimination - addition sequence of reactions ( m/z 93) can be observed. Primary products of thiophilic reaction can undergo subsequent SN2 and proton transfer reactions. Gibbs free energy profiles calculated for experimentally observed reactions using PBE0/6-311+G(2d,p) method show good agreement with experimental results.

  8. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.


    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  9. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.


    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  10. Tris(trifluoromethyl)borane carbonyl, (CF3)3BCO-synthesis, physical, chemical and spectroscopic properties, gas phase, and solid state structure. (United States)

    Finze, Maik; Bernhardt, Eduard; Terheiden, Annegret; Berkei, Michael; Willner, Helge; Christen, Dines; Oberhammer, Heinz; Aubke, Friedhelm


    . A corresponding shift of nu(CO) from 2267 cm(-)(1) in the solid state to 2251 cm(-)(1) in the gas phase is noted in the vibrational spectra. The structural and vibrational study is supported by DFT calculations, which provide, in addition to the equilibrium structure, confirmation of experimental vibrational wavenumbers, IR-band intensities, atomic charge distribution, the dipole moment, the B-CO bond energy, and energies for the elimination of CF(2) from (CF(3))(x)()BF(3)(-)(x)(), x = 1-3. In the vibrational analysis 21 of the expected 26 fundamentals are observed experimentally. The (11)B-, (13)C-, and (19)F-NMR data, as well as the structural parameters of (CF(3))(3)BCO, are compared with those of related compounds.

  11. Time-resolved EPR study of singlet oxygen in the gas phase. (United States)

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J


    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  12. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study (United States)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik


    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  13. Joint experimental and DFT study of the gas-phase unimolecular elimination kinetic of methyl trifluoropyruvate. (United States)

    Tosta, María M; Mora, José R; Córdova, Tania; Chuchani, Gabriel


    The elimination kinetics of methyl trifluoropyruvate in the gas phase was determined in a static system, where the reaction vessel was always deactivated with allyl bromide, and in the presence of at least a 3-fold excess of the free-radical chain inhibitor toluene. The working temperature range was 388.5-430.1 degrees C, and the pressure range was 38.6-65.8 Torr. The reaction was found to be homogeneous and unimolecular and to obey a first-order rate law. The products of the reaction are methyl trifluoroacetate and CO gas. The Arrhenius equation of this elimination was found to be as follows: log k(1) (s(-1)) = (12.48 +/- 0.32) - (204.2 +/- 4.2) kJ mol(-1)(2.303RT)(-1) (r = 0.9994). The theoretical calculation of the kinetic and thermodynamic parameters and the mechanism of this reaction were carried out at the B3LYP/6-31G(d,p), B3LYP/6-31++G(d,p), MPW1PW91/6-31G(d,p), MPW1PW91/6-31++G(d,p), PBEPBE/6-31G(d,p), and PBEPBE/6-31G++(d,p) levels of theory. The theoretical study showed that the preferred reaction channel is a 1,2-migration of OCH(3) involving a three-membered cyclic transition state in the rate-determining step.

  14. A Kinetic Study of the Gas-Phase Reaction of OH with Br2 (United States)

    Bryukov, Mikhail G.; Dellinger, Barry; Knyazev, Vadim D.


    An experimental, temperature-dependent kinetic study of the gas-phase reaction of the hydroxyl radical with molecular bromine (reaction 1) has been performed using a pulsed laser photolysis/pulsed-laser-induced fluorescence technique over a wide temperature range of 297 – 766 K, and at pressures between 6.68 and 40.29 kPa of helium. The experimental rate coefficients for reaction 1 demonstrate no correlation with pressure and exhibit a negative temperature dependence with a slight negative curvature in the Arrhenius plot. A non-linear least-squares fit with two floating parameters of the temperature dependent k1(T) data set using an equation of the form k1(T) = ATn yields the recommended expression k1(T) = 1.85×10−9T − 0.66 cm3 molecule−1 s−1 for the temperature dependence of the reaction 1 rate coefficient. The potential energy surface (PES) of reaction 1 was investigated using quantum chemistry methods. The reaction proceeds through formation of a weakly bound OH···Br2 complex and a PES saddle point with an energy below that of the reactants. Temperature dependence of the reaction rate coefficient was modeled using the RRKM method on the basis of the calculated PES. PMID:16854030

  15. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Philip X; Michelini, Maria C.; Bray, Travis H.; Russo, Nino; Marcalo, Joaquim; Gibson, John K.


    Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX{sub 2}{sup +} and YbX(OH){sup +} (X = OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations - kinetics and extent of hydration - are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.

  16. Structures of gas-phase Ag-Pd nanoclusters: A computational study (United States)

    Negreiros, Fabio R.; Kuntová, Zdenka; Barcaro, Giovanni; Rossi, Giulia; Ferrando, Riccardo; Fortunelli, Alessandro


    Gas-phase Ag-Pd clusters in the size range of 38-100 atoms are studied via a combined density-functional/empirical-potential (DF-EP) approach. Many-body EPs describing Pd-Pd, Ag-Ag, and Ag-Pd interactions are reparametrized and used in thorough global optimization searches at sizes N =38, 60, and 100 and compositions 25%, 50%, and 75%. The results are analyzed in terms of structural families, whose lowest-energy isomers are reoptimized at the DF level to investigate the crossover among structural motifs. It is found that the reparametrized EPs show a better qualitative and quantitative agreement with DF results when compared to the original potentials taken from literature: Both methods agree on which is the lowest-energy isomer at each size and composition, and the energy differences in the various isomers are in good qualitative agreement, especially for 60- and 100-atom clusters. The reparametrized potentials should thus be applicable to large clusters, where DF calculations are not feasible any more.

  17. DFT study of the reactions of Mo and Mo with CO2 in gas phase

    Indian Academy of Sciences (India)

    Abstract. Density functional theory (DFT) calculations have been performed to explore the potential energy surfaces of C–O bond activation in CO2 molecule by gas-phase Mo. + cation and Mo atom, in order to better understanding the mechanism of second-row metal reacting with CO2. The minimum energy reaction path is.

  18. Ab initio study of gas phase and water-assisted tautomerization of ...

    Indian Academy of Sciences (India)


    Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2⋅83 kcal/mol from 10⋅41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule. Keywords. Ab Initio calculations; maleimide; formamide; ...

  19. Gas-phase dissociation study of erythrinian alkaloids by electrospray ionization mass spectrometry and computational methods. (United States)

    Guaratini, T; Feitosa, L G P; Silva, D B; Lopes, N P; Lopes, J L C; Vessecchi, R


    Alkaloids from plants of the genus Erythrina display important biological activities, including anxiolytic action. Characterization of these alkaloids by mass spectrometry (MS) has contributed to the construction of a spectral library, has improved understanding of their structures and has supported the proposal of fragmentation mechanisms in light of density functional calculations. In this study, we have used low-resolution and high-resolution MS n analyses to investigate the fragmentation patterns of erythrinian alkaloids; we have employed the B3LYP/6-31+G(d,p) model to obtain their reactive sites. To suggest the fragmentation mechanism of these alkaloids, we have studied their protonation sites by density functional calculation, and we have obtained their molecular electrostatic potential map and their gas-phase basicity values. These analyses have indicated the most basic sites on the basis of the proton affinities of the nitrogen and oxygen atoms. The protonated molecules were generated by two major fragmentations, namely, neutral loss of CH 3 OH followed by elimination of H 2 O. High-resolution analysis confirmed elimination of NH 3 by comparison with the losses of H 2 and •CH 3 . NH 3 was eliminated from compounds that did not bear a substituent on ring C. The benzylic carbocation initiated the dissociation mechanism, and the first reaction involved charge transfer from a lone pair of electrons in the oxygen atoms. The second reaction consisted of ring contraction with loss of a CO molecule. The presence of hydroxy and epoxy groups could change the intensity or the occurrence of the fragmentation pathways. Given that erythrinian alkaloids are applied in therapeutics and are promising leads for the development of new drugs, the present results could aid identification of several analogues of these alkaloids in biological samples and advance pharmacokinetic studies of new plant derivatives based on MS n and MS/MS analyses. Copyright © 2017 John Wiley

  20. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T


    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  1. Kinetics and mechanistic study of the gas-phase reaction of ozone with methylbutenol (United States)

    Klawatsch-Carrasco, N.; Doussin, J. F.; Rea, G.; Wenger, J.; Carlier, P.


    Biogenic volatile organic compounds (BVOCs) account for around 90% of hydrocarbon emissions into the Earth's atmosphere ([1], [2]). Several thousand different BVOCs have been identified, the most well known being unsaturated hydrocarbons. However, over the last ten years an increasing number of oxygenated BVOCs, such as methylbutenol (MBO), have also been detected in field measurement campaigns and plant emission studies ([3], [4]). In order to determine the environmental impact of BVOCs, a thorough knowledge of the rates and mechanisms for their atmospheric degradation is required. The major atmospheric degradation processes for BVOCs are gas-phase reaction with hydroxyl radicals (OH), nitrate radicals (NO_3) and ozone (O_3). These reactions produce oxidised hydrocarbons, ozone and secondary organic aerosol and, as a result, exert a strong influence on the chemical composition of the atmosphere. Very few studies are available concerning the reactivity of MBO. To extend the available database on the atmospheric chemistry of biogenic compounds, the reaction of O_3 with MBO at 296(±2) K has been investigated in atmospheric simulation chambers at LISA in Créteil (France) and CRAC in Cork (Ireland), using complementary techniques such as FTIR spectroscopy, PFBHA derivatization with GC-MS detection and a particle sizer and counter. The rate constant for the reaction was determined using an absolute rate technique, yielding a value of (8.3±0.9)× 10-18 cm^3 molecule-1s-1. Mechanistic studies of the reaction lead to the following observations: a primary formation of only three carbonyl compounds, formaldehyde (yield=0.40±0.03), acetone (yield=0.27±0.02) and 2-methyl-2-hydroxy-propanal. In addition, there is a noticeable formation of aerosols at the very beginning of the reaction that seemed to depend on the relative humidity. References: [1] Wayne, R. P. (2000). 3rd edition. Oxford university press inc. Edition. [2] Finlayson-Pitts, B. and Pitts Jr, J. N. ( 2000

  2. Are ionic liquids pairwise in gas phase? A cluster approach and in situ IR study. (United States)

    Dong, Kun; Zhao, Lidong; Wang, Qian; Song, Yuting; Zhang, Suojiang


    In this work, we discussed the vaporization and gas species of ionic liquids (ILs) by a cluster approach of quantum statistical thermodynamics proposed by R. Luwig (Phys. Chem. Chem. Phys., 10, 4333), which is a controversial issue up to date. Based on the different sized clusters (2-12 ion-pairs) of the condensed phase, the molar enthalpies of vaporization (ΔvapH, 298.15 K, 1bar) of four representative ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][NTf2]) 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([Emmim][NTf2]) 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) and ethylammonium nitrate ([EtAm][NO3]), were calculated. The predicted ΔvapH were increased remarkably; even the values of [EtAm][NO3] were larger than 700 kJ mol(-1) when the charged isolated ions were assumed to be gas species. However, the ΔvapH were close to experimental measurements when the gas species assumed to be anion-cation pairwise, indicating that the different conformational ion-pairs can coexist in the gas phase when the IL is evaporated. Particularly for the protic IL, [EtAm][NO3], even the neutral precursor molecules by proton transfer can occur in gas phase. In addition, it's found that the effect of hydrogen bonds on the vaporization cannot be negligible by comparing the ΔvapH of [Emim][NTf2] with [Emmim][NTf2]. The in situ and calculated IR spectra provided the further proof that the ions are pairwise in gas phase.

  3. Applying ion-molecule reactions to studies of gas-phase protein structure

    Energy Technology Data Exchange (ETDEWEB)

    Ogorzalek Loo, R.R.; Loo, J.A.; Smith, R.D.


    Whether solution phase differences in protein higher order structure persist in the gas phase, is examined by means of proton transfer reactions on ions generated by electrospray ionization of different solution conformations. Ion-molecule reactions were carried out in the atmosphere-vacuum interface of a quadrupole mass spectrometer with a Y-shaped capillary inlet-reactor. An amine (dimethyl-, trimethyl-, or diethyl-) were delivered to one inlet arm. Reactivities of bovine cytochrome c ions sprayed from denatured and native solutions were determined; the ions generated shifted to about the same charge states. Addition of equal amounts of amine to ions generated from different solution conformations of bovine ubiquitin also yielded similar final charge states; however, the average charge state increased with temperature. Myoglobin and apomyoglobin also yielded similar final charge states. The results suggest that for the non-disulfide linked proteins, either there are not significant differences in gas phase higher order structure, or proton transfer reactions are not sensitive enough to detect higher order structural differences arising from noncovalent interactions. 2 refs, 2 figs. (DLC)

  4. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies (United States)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.


    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  5. The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density functional method. (United States)

    Sebastian, S; Sundaraganesan, N


    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine (4-HP). The FT-IR solid phase (4000-400 cm(-1)), FT-IR gas phase (5000-400 cm(-1)) and FT-Raman spectra (3500-50 cm(-1)) of 4-HP was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of 4-HP in the ground-state have been calculated by using the density functional methods (BLYP, B3LYP) with 6-311G (d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the sigma* antibonding orbitals and E (2) energies confirms the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethanol solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Gas-phase thermolysis reaction of formaldehyde diperoxide. Kinetic study and theoretical mechanisms

    International Nuclear Information System (INIS)

    Jorge, Nelly Lidia; Romero, Jorge Marcelo; Grand, André; Hernández-Laguna, Alfonso


    Highlights: ► Kinetic and mechanism of the gas-phase thermolysis of tetroxane were determined. ► Gas chromatography and computational potential energy surfaces were performed. ► A mechanism in steps looked like the most probable mechanism. ► A spin–orbit coupling appeared at the singlet and triple diradical open structures. ► A non-adiabatic crossing from the singlet to the triplet state occurred. - Abstract: Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463–503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 ± 0.8 kcal/mol and 5.2 × 10 13 s −1 , respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G ∗∗ level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin–orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.

  7. Gas-phase thermolysis reaction of formaldehyde diperoxide. Kinetic study and theoretical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Nelly Lidia [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain); Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Romero, Jorge Marcelo [Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Grand, Andre [INAC, SCIB, Laboratoire ' Lesions des Acides Nucleiques' , UMR CEA-UJF E3, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble cedex 9 (France); Hernandez-Laguna, Alfonso, E-mail: [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain)


    Highlights: Black-Right-Pointing-Pointer Kinetic and mechanism of the gas-phase thermolysis of tetroxane were determined. Black-Right-Pointing-Pointer Gas chromatography and computational potential energy surfaces were performed. Black-Right-Pointing-Pointer A mechanism in steps looked like the most probable mechanism. Black-Right-Pointing-Pointer A spin-orbit coupling appeared at the singlet and triple diradical open structures. Black-Right-Pointing-Pointer A non-adiabatic crossing from the singlet to the triplet state occurred. - Abstract: Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463-503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 {+-} 0.8 kcal/mol and 5.2 Multiplication-Sign 10{sup 13} s{sup -1}, respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G{sup Asterisk-Operator Asterisk-Operator} level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin-orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.

  8. Study of the antibacterial activity in the gas phase of a chemical formulation for household waste management. (United States)

    Motta, O; Zarrella, I; Cucciniello, R; Vigliotta, G; Proto, A


    The aim of this study was to formulate a product (microbicide mixture) that could slow down the bacterial proliferation during the storage of household waste. We used harmless and natural components, known for their antimicrobial properties, in the liquid phase at direct contact with the microbes. The antimicrobial activity of the microbicide mixture formulated was evaluated over a range of concentration in two types of tests, in the liquid and in the gas phase. Once the efficacy of antimicrobial agent in the liquid phase in direct contact with the microbe (Escherichia coli) was confirmed, we adopted a new approach to evaluate the effect of the vapour phase both on the microbes' growth and on its duration. Here, we show that the perfect combination that gives rise to an antimicrobial mixture useful to control microbial growth (Staphylococcus aureus, Escherichia coli, Debaryomyces hansenii or Penicillium citrinum) up to 4 weeks is the one between more volatile agents (2-propanol and limonene) and a less volatile agent (cinnamaldehyde). The pleasant smell as well as the synergic antibacterial and antifungal function of the natural components of this mixture makes it attractive in domestic waste management. The novelty of this work is two-fold: on the one hand, to test various antimicrobial components of different volatility in a single microbicide mixture, and on the other, to study antimicrobial activity in the gas phase, other than the liquid phase. While previous authors tested the components individually as antimicrobial agents in the liquid phase at direct contact with the microbes, we tested them altogether as a mixture both in the liquid and in gas phase. The aim of this study was to disinfect small environments, such as garbage containers, by favouring the diffusion of the vapour phase to avoid the growth of microbes. This study proposes a new approach in the management and storage of household waste by inhibiting bacterial proliferation in the garbage can.

  9. Studies of cluster-assembled materials: From gas phase to condensed phase (United States)

    Gao, Lin

    . After being mass gated in a reflectron equipped time-of-flight mass spectrometer (TOF-MS) and deposited onto TEM grids, the resultant specimens can be loaded onto high-resolution TEM investigation via electron diffraction. In conclusion, soft-landing of mass selected clusters has been shown to be a successful approach to obtain structural information on Zr-Met-Car cluster-assembled materials collected from the gas phase. TEM images indicate the richness of the morphologies associated with these cluster crystals. However, passivation methods are expected to be examined further to overcome the limited stabilities of these novel clusters. From this initial study, it's shown the promising opportunity to study other Met-Cars species and more cluster-based materials. Experimental results of reactions run with a solvothermal synthesis method obtained while searching for new Zr-C cluster assembled materials, are reported. One unexpected product in single crystal form was isolated and tentatively identified by X-ray diffraction to be [Zr6i O(OH)O12·2(Bu)4], with space group P2 1/n and lattice parameters of a = 12.44 A, b = 22.06 A, c = 18.40 A, alpha = 90°, beta = 105°, gamma = 90°, V = 4875 A3 and R 1 = 3.15% for the total observed data (I ≥ 2 sigma I) and oR2 = 2.82%. This novel hexanuclear Zr(IV)-oxo-hydroxide cluster anion may be the first member in polyoxometalates class with metal atoms from the IVB group and having Oh symmetry. Alternatively, it may be the first member in {[(Zr6Z)X 12]X6}m- class with halides replaced by oxo- and hydroxyl groups and with an increased oxidation state of Zr. It is predicted to bear application potentials directed by both families. This work could suggest a direction in which the preparation of Zr-C cluster-assembled materials in a liquid environment may be eventually fulfilled. 1,3-Bis(diethylphosphino)propane (depp) protected small gold clusters are studied via multiple techniques, including Electrospray Ionization Mass Spectrometry

  10. Study of the composition and gas-phase release characteristics of salt material extracted from MSW ash particles using STA

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming; Koukios, E.G.


    The ash material generated from the MSW incineration contains large amounts of alkali metals, heavy metals, chlorine and sulfur mainly deposited as inorganic salts and/or oxides on the surface of the Si-rich ash particles. In this work, the composition and gas-phase release characteristics of salt...... material extracted from MSW ash particles using a six-stage leaching process is studied using simultaneous thermal analysis (STA). The produced results provide useful information regarding the composition of the salt material and its melting behavior that is considered to play an important role...

  11. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations


    Carr, J. K.; Zabuga, Aleksandra; Roy, S.; Rizzo, Thomas R.; Skinner, J. L.


    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the...

  12. Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol (United States)

    Axson, Jessica L.; Takahashi, Kaito; De Haan, David O.; Vaida, Veronica


    In aqueous solution, aldehydes, and to a lesser extent ketones, hydrate to form geminal diols. We investigate the hydration of methylglyoxal (MG) in the gas phase, a process not previously considered to occur in water-restricted environments. In this study, we spectroscopically identified methylglyoxal diol (MGD) and obtained the gas-phase partial pressures of MG and MGD. These results, in conjunction with the relative humidity, were used to obtain the equilibrium constant, KP, for the water-mediated hydration of MG in the gas phase. The Gibbs free energy for this process, ΔG°, obtained as a result, suggests a larger than expected gas-phase diol concentration. This may have significant implications for understanding the role of organics in atmospheric chemistry. PMID:20142510

  13. Can Supported Reduced Vanadium Oxides form H2from CH3OH? A Computational Gas-Phase Mechanistic Study. (United States)

    González-Navarrete, Patricio; Andrés, Juan; Calatayud, Monica


    A detailed density functional theory study is presented to clarify the mechanistic aspects of the methanol (CH 3 OH) dehydrogenation process to yield hydrogen (H 2 ) and formaldehyde (CH 2 O). A gas-phase vanadium oxide cluster is used as a model system to represent reduced V(III) oxides supported on TiO 2 catalyst. The theoretical results provide a complete scenario, involving several reaction pathways in which different methanol adsorption sites are considered, with presence of hydride and methoxide intermediates. Methanol dissociative adsorption process is both kinetically and thermodynamically feasible on V-O-Ti and V═O sites, and it might lead to form hydride species with interesting catalytic reactivity. The formation of H 2 and CH 2 O on reduced vanadium sites, V(III), is found to be more favorable than for oxidized vanadium species, V(V), taking place along energy barriers of 29.9 and 41.0 kcal/mol, respectively.

  14. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study. (United States)

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M


    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  15. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T


    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  16. Photo-fragmentation and electron-detachment studies of gas-phase chromophore ions

    DEFF Research Database (Denmark)

    Rahbek, Dennis Bo

    During my time as a PhD-student I have worked on increasing our knowledge of biologically relevant photoactive proteins. More specifically, I have studied chromophores that are found within some of these proteins. Upon absorbing a photon, the chromophore initiates a process within the protein....... Depending on the function of the protein, this may result in human vision, emission of light at a higher wavelength, fluorescence, or harvesting of energy used as an energy source by bacteria, algae or plants. The interaction between these chromophores and the surrounding protein is crucial for fine......-tuning the absorption properties of the chromophore to match specific tasks. I have taken part in studying this by mimicking specific interactions by chemically altering the chromophore and observing the effect on the photo-physical properties. The work presented in this thesis deals with studying the photo...


    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  18. Ab initio study of gas phase and water-assisted tautomerization of ...

    Indian Academy of Sciences (India)

    Maleimide serves as an important starting material in the synthesis of drugs and enzyme inhibitors. In the present paper, knowing the importance of tautomerization in maleimide for its drug action, potential energy surface of maleimide is studied and its tautomerization has been discussed and compared with tautomerization ...

  19. Theoretical spectroscopic investigations of HNS{sup q} and HSN{sup q} (q = 0, +1, −1) in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Ben Yaghlane, S., E-mail:, E-mail:; Jaidane, N.-E. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Cotton, C. E.; Francisco, J. S. [Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707 (United States); Al Mogren, M. M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Linguerri, R., E-mail:, E-mail:; Hochlaf, M. [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)


    We performed accurate ab initio investigations of the geometric parameters and the vibrational structure of neutral HNS/HSN triatomics and their singly charged anions and cations. We used standard and explicitly correlated coupled cluster approaches in connection with large basis sets. At the highest levels of description, we show that results nicely approach those obtained at the complete basis set limit. Moreover, we generated the three-dimensional potential energy surfaces (3D PESs) for these molecular entities at the coupled cluster level with singles and doubles and a perturbative treatment of triple excitations, along with a basis set of augmented quintuple-zeta quality (aug-cc-pV5Z). A full set of spectroscopic constants are deduced from these potentials by applying perturbation theory. In addition, these 3D PESs are incorporated into variational treatment of the nuclear motions. The pattern of the lowest vibrational levels and corresponding wavefunctions, up to around 4000 cm{sup −1} above the corresponding potential energy minimum, is presented for the first time.

  20. Gas-phase studies of copper catalyzed aerobic cross coupling of thiol esters and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Tsybizová, A.; Schröder, Detlef; Roithová, J.; Henke, A.; Šrogl, Jiří


    Roč. 27, č. 3 (2014), s. 198-203 ISSN 0894-3230 R&D Projects: GA ČR GAP207/12/0846 Grant - others:GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : boronic acids * catalysis * copper * cross coupling * electrospray ionization * mass spectrometry * kinetic studies Subject RIV: CC - Organic Chemistry Impact factor: 1.380, year: 2014

  1. Theoretical Mechanistic and Kinetic Studies on Homogeneous Gas-Phase Formation of Polychlorinated Naphthalene from 2-Chlorophenol as Forerunner

    Directory of Open Access Journals (Sweden)

    Fei Xu


    Full Text Available Polychlorinated naphthalenes (PCNs are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs and polychlorinated dibenzofurans (PCDFs in thermal and combustion procedures. Chlorophenols (CPs are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600–1200 K using canonical variational transition-state theory (CVT with small curvature tunneling contribution (SCT method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential.

  2. a Comprehensive Study of the Milan Urban Plume: Gas Phase, Aerosols and ROG/NOx-SENSITIVITY (United States)

    Dommen, J.; Bärtsch-Ritter, N.; Andreani-Aksoyoglu, S.; Keller, J.; Prevot, A. S. H.


    Three-dimensional photochemical models were used to investigate the temporal and spatial dynamics of the photooxidant and aerosol production in the highly polluted Milan area (Italy). A simulation of the 13 May, 1998 event is presented, when peak ozone levels of 190 ppb were measured in the urban plume. The model base case is able to reproduce the ozone concentration in the center of the plume but more peroxide is formed than in the adjacent areas in contradiction to observation. This can be interpreted as a tendency of the model towards a stronger NOx sensitivity compared to observation. The emission inventory was modified based on experimental evidence. Ozone levels did not differ much between the base case simulation and those with a modified emission inventory, while peroxide formation and NOx concentrations in the urban plume did. That lead to a better agreement with measurements. Based on this measurement-model comparison we studied the ROG/NOx sensitivity of the ozone production in this area. We also investigated the effects of various meteorological conditions and the resolution of the emission inventory on the ozone mixing ratio and the ROG/NOx sensitivity. It was found, that the net ozone formation in northern Italy depends stronger on temperature than humidity, while the humidity is more important for the ROG/NOx sensitivity of the ozone production. NOx sensitive areas increase only if much coarser emission inventories were used. Higher wind speeds increased ROG sensitive areas. The influence of strong point emission source was also investigated. The study was then extended to the calculation of secondary aerosol species such as particulate nitrate, ammonium, sulfate, and SOC (secondary organic carbon) for the particle sizes below 2.5 µm. The comparison between model results and observations will be presented and discussed.

  3. A Multipronged Comparative Study of the Ultraviolet Photochemistry of 2-, 3-, and 4-Chlorophenol in the Gas Phase. (United States)

    Harris, S J; Karsili, T N V; Murdock, D; Oliver, T A A; Wenge, A M; Zaouris, D K; Ashfold, M N R; Harvey, J N; Few, J D; Gowrie, S; Hancock, G; Hadden, D J; Roberts, G M; Stavros, V G; Spighi, G; Poisson, L; Soep, B


    The S1((1)ππ*) state of the (dominant) syn-conformer of 2-chlorophenol (2-ClPhOH) in the gas phase has a subpicosecond lifetime, whereas the corresponding S1 states of 3- and 4-ClPhOH have lifetimes that are, respectively, ∼2 and ∼3-orders of magnitude longer. A range of experimental techniques-electronic spectroscopy, ultrafast time-resolved photoion and photoelectron spectroscopies, H Rydberg atom photofragment translational spectroscopy, velocity map imaging, and time-resolved Fourier transform infrared emission spectroscopy-as well as electronic structure calculations (of key regions of the multidimensional ground (S0) state potential energy surface (PES) and selected cuts through the first few excited singlet PESs) have been used in the quest to explain these striking differences in excited state lifetime. The intramolecular O-H···Cl hydrogen bond specific to syn-2-ClPhOH is key. It encourages partial charge transfer and preferential stabilization of the diabatic (1)πσ* potential (relative to that of the (1)ππ* state) upon stretching the C-Cl bond, with the result that initial C-Cl bond extension on the adiabatic S1 PES offers an essentially barrierless internal conversion pathway via regions of conical intersection with the S0 PES. Intramolecular hydrogen bonding is thus seen to facilitate the type of heterolytic dissociation more typically encountered in solution studies.

  4. Quantum-chemical study and FTIR jet spectroscopy of CHCl(3)-NH(3) association in the gas phase. (United States)

    Hippler, Michael; Hesse, Susanne; Suhm, Martin A


    High level ab initio quantum chemical calculations have been performed on the association of chloroform with ammonia in the gas phase (counterpoise corrected MP2 and coupled-cluster CCSD(T) calculations with 6-311++G(d,p) basis functions). Minimum energy equilibrium structures have been found for CHCl(3)-NH(3) dimer, CHCl(3)-(NH(3))(2) trimer and CHCl(3)-(NH(3))(3) tetramer. Association is characterised by a CHN hydrogen bond between a chloroform and an ammonia molecule, with further ammonia units attached by hydrogen bonds to ammonia and by an electrostatic NHCl interaction to chloroform. Cooperative effects provide additional stabilisation. The complexes exhibit characteristic shifts of vibrational bands and change of IR intensity; in particular there is a pronounced progressive shift of the CH-stretching vibration towards lower wavenumber with each unit of ammonia attached in the complex. The shift is accompanied by an up to 600 fold increase in IR intensity. The experimental FTIR jet spectra have provided firm evidence of CHCl(3)-NH(3) association, with the clearest effects seen in the region of the CH-stretching vibration. First tentative assignments have been made based on the dependence of relative intensities of cluster features on the concentration of monomers, and assignments have been corroborated by the quantum chemical calculations. The present combined ab initio and FTIR spectroscopy study reveals the structure and energetics of cluster formation and intermolecular bonding in CHCl(3)-NH(3) association.

  5. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models

    Directory of Open Access Journals (Sweden)

    Shamiria Ahmad


    Full Text Available A comparative study describing gas-phase propylene polymerization in fluidized-bed reactors using Ziegler-Natta catalyst is presented. The reactor behavior was explained using a two-phase model (which is based on principles of fluidization as well as simulation using the Aspen Polymers process simulator. The two-phase reactor model accounts for the emulsion and bubble phases which contain different portions of catalysts with the polymerization occurring in both phases. Both models predict production rate, molecular weight, polydispersity index (PDI and melt flow index (MFI of the polymer. We used both models to investigate the effect of important polymerization parameters, namely catalyst feed rate and hydrogen concentration, on the product polypropylene properties, such as production rate, molecular weight, PDI and MFI. Both the two-phase model and Aspen Polymers simulator showed good agreement in terms of production rate. However, the models differed in their predictions for weight-average molecular weight, PDI and MFI. Based on these results, we propose incorporating the missing hydrodynamic effects into Aspen Polymers to provide a more realistic understanding of the phenomena encountered in fluidized bed reactors for polyolefin production.

  6. Studies of some elementary processes involving electrons in the gas phase by pulse-radiolysis microwave-cavity technique

    International Nuclear Information System (INIS)

    Sunagawa, Takeyoshi; Makita, Takeshi; Musasa, Hirofumi; Tatsumi, Yoshitsugu; Shimamori, Hiroshi


    The pulse radiolysis-microwave cavity technique has been employed for detection of free electrons in the gas phase. Presented are results of the observation of electron disappearance by attachment to molecules, the electron thermalization (energy loss) processes in the presence of an electron-attaching compound, and the formation of electrons by Penning ionization. (author)

  7. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.


    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research)

  8. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.


    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R ampersand D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  9. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.


    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  10. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.


    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections 2A, 2B, 2C, and 2D, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  11. Discriminating Properties of Alkali Metal Ions Towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies. (United States)

    Rodgers, Mary T; Armentrout, Peter B


    Quantitative insight into the structures and thermodynamics of alkali metal cations interacting with biological molecules can be obtained from studies in the gas phase combined with theoretical work. In this chapter, the fundamentals of the experimental and theoretical techniques are first summarized and results for such work on complexes of alkali metal cations with amino acids, small peptides, and nucleobases are reviewed. Periodic trends in how these interactions vary as the alkali metal cations get heavier are highlighted.

  12. A long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implications

    Energy Technology Data Exchange (ETDEWEB)

    Sorribas, M., E-mail: [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain); Adame, J.A. [‘El Arenosillo’ — Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130 (Spain); Olmo, F.J. [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain); Vilaplana, J.M.; Gil-Ojeda, M. [‘El Arenosillo’ — Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130 (Spain); Alados-Arboledas, L. [Department of Applied Physics, University of Granada, Granada, 18071 (Spain); Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006 (Spain)


    New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O{sub 3}, SO{sub 2}, CO and NO{sub 2}) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2 ± 4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2 ± 1.7 cm{sup −3} s{sup −1}, with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8 ± 2.4 nm h{sup −1} with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM{sub 10} and condensation sink, showed a moderate or high connection with both formation and growth rates. - Highlights: • New

  13. A long-term study of new particle formation in a coastal environment: meteorology, gas phase and solar radiation implications. (United States)

    Sorribas, M; Adame, J A; Olmo, F J; Vilaplana, J M; Gil-Ojeda, M; Alados-Arboledas, L


    New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O3, SO2, CO and NO2) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2±4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2±1.7 cm(-3) s(-1), with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8±2.4 nm h(-1) with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM10 and condensation sink, showed a moderate or high connection with both formation and growth rates. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mossbauer spectroscopic studies in ferroboron (United States)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.


    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  15. Vitamin C: an experimental and theoretical study on the gas-phase structure and ion energetics of protonated ascorbic acid. (United States)

    Ricci, Andreina; Pepi, Federico; Cimino, Paola; Troiani, Anna; Garzoli, Stefania; Salvitti, Chiara; Di Rienzo, Brunella; Barone, Vincenzo


    In order to investigate the gas-phase mechanisms of the acid catalyzed degradation of ascorbic acid (AA) to furan, we undertook a mass spectrometric (ESI/TQ/MS) and theoretical investigation at the B3LYP/6-31 + G(d,p) level of theory. The gaseous reactant species, the protonated AA, [C 6 H 8 O 6 ]H + , were generated by electrospray ionization of a 10 -3  M H 2 O/CH 3 OH (1 : 1) AA solution. In order to structurally characterize the gaseous [C 6 H 8 O 6 ]H + ionic reactants, we estimated the proton affinity and the gas-phase basicity of AA by the extended Cooks's kinetic method and by computational methods at the B3LYP/6-31 + G(d,p) level of theory. As expected, computational results identify the carbonyl oxygen atom (O2) of AA as the preferred protonation site. From the experimental proton affinity of 875.0 ± 12 kJ mol -1 and protonation entropy ΔS p 108.9 ± 2 J mol -1  K -1 , a gas-phase basicity value of AA of 842.5 ± 12 kJ mol -1 at 298 K was obtained, which is in agreement with the value issuing from quantum mechanical computations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Gas-Phase Tautomerism in the Triazoles and Tetrazoles: A Study by Photoelectron Spectroscopy and ab Initio Molecular Orbital Calculations (United States)

    Palmer, Michael H.; Simpson, Isobel; Wheeler, J. Ross


    The photoelectron spectra of the tautomeric 1,2,3,- and 1,2,4-triazole and 1,2,3,4-tetrazole systems have been compared with the corresponding N-methyl derivatives. The dominant tautomers in the gas phase have been identified as 2 H-1,2,3-triazole, 1 H-1,2,4-triazole and 2H-tetrazole. Full optimisation of the equilibrium geometry by ab initio molecular orbital methods leads to the same conclusions, for relative stability of the tautomers in each of the triazoles, but the calculations wrongly predict the tetrazole tautomerism.

  17. Theoretical investigation of the long-lived metastable AlO2+ dication in gas phase

    International Nuclear Information System (INIS)

    Sghaier, Onsi; Abdallah, Hassan H.; Abdullah, Hewa Y.; Jaidane, Nejm Eddine; Al Mogren, Muneerah Mogren; Hochlaf, Majdi


    Highlights: • Theoretical investigation of gas-phase molecular species AlO 2+ . • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of AlO. - Abstract: We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO 2+ using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO 2+ is X 2 Π. The internuclear equilibrium distance of AlO 2+ (X 2 Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  18. A Numerical Study on Effect of Gas-Phase Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames

    International Nuclear Information System (INIS)

    Sohn, Chae Hoon


    Extinction characteristics of hydrogen-air diffusion flames are investigated numerically by adopting counterflow flame configuration. At various pressures, effect of radiative heat loss on flame extinction is examined. Only gas-phase radiation is considered here. Radiative heat loss depends on flame thickness, temperature, H 2 O concentration, and pressure. From flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of H 2 O increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate

  19. Application of structured illumination to gas phase thermometry using thermographic phosphor particles: a study for averaged imaging (United States)

    Zentgraf, Florian; Stephan, Michael; Berrocal, Edouard; Albert, Barbara; Böhm, Benjamin; Dreizler, Andreas


    Structured laser illumination planar imaging (SLIPI) is combined with gas phase thermometry measurements using thermographic phosphor (TGP) particles. The technique is applied to a heated jet surrounded by a coflow which is operated at ambient temperature. The respective air flows are seeded with a powder of BaMgAl10O17:Eu2+ (BAM) which is used as temperature-sensitive gas phase tracer. Upon pulsed excitation in the ultraviolet spectral range, the temperature is extracted based on the two-color ratio method combined with SLIPI. The main advantage of applying the SLIPI approach to phosphor thermometry is the reduction of particle-to-particle multiple light scattering and diffuse wall reflections, yielding a more robust calibration procedure as well as improving the measurement accuracy, precision, and sensitivity. For demonstration, this paper focuses on sample-averaged measurements of temperature fields in a jet-in-coflow configuration. Using the conventional approach, which in contrast to SLIPI is based on imaging with an unmodulated laser light sheet, we show that for the present setup typically 40% of the recorded signal is affected by the contribution of multiply scattered photons. At locations close to walls even up to 75% of the apparent signal is due to diffuse reflection and wall luminescence of BAM sticking at the surface. Those contributions lead to erroneous temperature fields. Using SLIPI, an unbiased two-color ratio field is recovered allowing for two-dimensional mean temperature reconstructions which exhibit a more realistic physical behavior. This is in contrast to results deduced by the conventional approach. Furthermore, using the SLIPI approach it is shown that the temperature sensitivity is enhanced by a factor of up to 2 at 270 °C. Finally, an outlook towards instantaneous SLIPI phosphorescence thermometry is provided.

  20. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.


    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  1. Gas-phase chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)


    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  2. In-situ Fourier transform infrared spectroscopy gas phase studies of vanadium (IV) oxide coating by atmospheric pressure chemical vapour deposition using vanadyl (IV) acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Vernardou, D. [Institute for Materials Research, University of Salford, Cockroft Building, Salford, Manchester, M5 4WT (United Kingdom); Pemble, M.E. [Tyndall National institute, Lee Maltings, Prospect Row, Cork (Ireland)], E-mail:; Sheel, D.W. [Institute for Materials Research, University of Salford, Cockroft Building, Salford, Manchester, M5 4WT (United Kingdom)


    This paper describes the use of in-situ Fourier transform infrared spectroscopy to monitor the gas phase reactions of the formation of VO{sub 2} thin films from VO(acac){sub 2} under atmospheric pressure chemical vapour deposition conditions. In the absence of O{sub 2}, it is found that anhydride species may form, while there is also some evidence of ester species. In the presence of O{sub 2}, the spectra obtained are almost identical to those in the absence of O{sub 2}. However in this case, there is also some indication for the enhanced production of CO and the suppression of the formation of C-H species. A possible mechanism for the formation of VO{sub 2} is proposed, which involves the release of two C{sub 3}H{sub 4} molecules and the decomposition of vanadyl (IV) acetylacetonate into VO(CH{sub 3}COO){sub 2}, which then further decomposes to yield (CH{sub 3}CO){sub 2}O and VO{sub 2}. However, while spectroscopic evidence for the formation of these species is presented, the mechanism proposed cannot be confirmed on the basis of these data alone.

  3. Gas-phase standard enthalpies of formation of urea-derived compounds: A quantum-chemical study (United States)

    Gratzfeld, Dennis; Olzmann, Matthias


    Gas-phase standard enthalpies of formation of selected ureas and s-triazines were calculated at the CCSD(F12∗)(T)/cc-pVTZ-F12//ωB97X-D/cc-pVTZ level of theory by employing isodesmic reactions. The following values were obtained (T = 298.15 K, units: kJ mol-1, estimated confidence interval 95%): urea, -231.9 ± 2.8; biuret, -430.0 ± 4.5; triuret, -620.3 ± 6.3; cyanuric acid, -451.6 ± 6.3; ammelide, -303.9 ± 6.4; ammeline, -106.5 ± 6.2; melamine, 70.1 ± 7.0. The standard enthalpies of formation of methanimine and methylamine, which were required for the isodesmic reactions, were calculated from atomization reactions by using several variants of the HEAT approach. The following results were considered most reliable (T = 298.15 K, units: kJ mol-1, estimated confidence interval 95%): methanimine, 89.0 ± 1.0; methylamine, -20.7 ± 1.0.

  4. A mass spectrometric study of the acid-catalysed d-fructose dehydration in the gas phase. (United States)

    Pepi, Federico; Ricci, Andreina; Garzoli, Stefania; Troiani, Anna; Salvitti, Chiara; Di Rienzo, Brunella; Giacomello, Pierluigi


    5-hydroxymethylfuraldehyde (5-HMF) and simpler compounds, such as levulinic acid (LA) and glyceraldehyde, are platform molecules produced by the thermal acid-catalyzed dehydration of carbohydrates coming from biomass. Understanding sugar degradation pathways on a molecular level is necessary to increase selectivity, reduce degradation by-products yields and optimize catalytic strategies, fundamental knowledge for the development of a sustainable renewable industry. In this work gaseous protonated d-fructose ions, generated in the ESI source of a triple quadrupole mass spectrometer, were allowed to undergo Collisionally Activated Decomposition (CAD) into the quadrupole collision cell. The ionic intermediates and products derived from protonated d-fructose dehydration were structurally characterized by their fragmentation patterns and the relative water-loss dehydration energies measured by energy-resolved CAD mass spectra. The data were compared with those obtained from protonated d-glucose decomposition in the same experimental conditions. In the gas phase, d-fructose dehydration leads to the formation of a mixed population of isomeric [C6H6O3]H(+) ions, whose structures do not correspond exclusively to 5-hydroxymethyl-2-furaldehyde protonated at the more basic aldehydic group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators (United States)

    Palmiste, Ü.; Voll, H.


    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  6. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Chang-Wei Hu


    Full Text Available The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T//BPW91/6-311++G(d, p, Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔEint, which is the actual interaction energy between the deformed reactants in the transition state.

  7. Conclusively Addressing the CoPc Electronic Structure : A Joint Gas-Phase and Solid-State Photoemission and Absorption Spectroscopy Study

    NARCIS (Netherlands)

    Brumboiu, I. E.; Lanzilotto, V.; Luder, J.; Grazioli, C.; Giangrisostomi, E.; Ovsyannikov, R.; Sass, Y.; Bidermane, I.; Stupar, M.; de Simone, M.; Coreno, M.; Ressel, B.; Pedio, M.; Rudolf, P.; Brena, B.; Puglia, C.


    The occupied and empty densities of states of cobalt phthalocyanine (CoPc) were investigated by photoelectron and X-ray absorption spectroscopies in the gas phase and in thin films deposited on a Au(111) surface. The comparison between the gas-phase results and density functional theory

  8. Synthesis, Spectroscopic and Pharmacological Studies of Bivalent ...

    African Journals Online (AJOL)

    Synthesis, Spectroscopic and Pharmacological Studies of Bivalent Copper, Zinc and Mercury Complexes of Thiourea. ... All the metal complexes were characterized by elemental chemical analysis, molar conductance, magnetic susceptibility measurements and IR spectroscopy. Cu(II) complexes were additionally ...

  9. Resolving Gas-Phase Metallicity In Galaxies (United States)

    Carton, David


    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  10. The nature of ionic liquids in the gas phase. (United States)

    Leal, João P; Esperança, José M S S; da Piedade, Manuel E Minas; Lopes, José N Canongia; Rebelo, Luís P N; Seddon, Kenneth R


    Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) experiments showed that when aprotic ionic liquids vaporize under pressure and temperature conditions similar to those of a reduced-pressure distillation, the gas phase is composed of discrete anion-cation pairs. The evolution of the mass spectrometric signals recorded during fractional distillations of binary ionic liquid mixtures allowed us to monitor the changes of the gas-phase composition and the relative volatility of the components. In addition, we have studied a protic ionic liquid, and demonstrated that it exists as separated neutral molecules in the gas phase.

  11. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)


    Abstract. Time resolved spectroscopy is an important tool for studying photophysical processes in phosphors. Present work investigates the steady state and time resolved photoluminescence (PL) spectroscopic characteristics of ZnS, ZnO and (Zn, Mg)O nanophosphors both in powder as well as thin film form.

  12. Synthesis, Spectroscopic and Pharmacological Studies of Bivalent ...

    African Journals Online (AJOL)


    Synthesis, Spectroscopic and Pharmacological Studies of. Bivalent Copper, Zinc and Mercury Complexes of Thiourea. Shikha Parmar*, Yatendra Kumar and Ashu Mittal. I.T.S Paramedical College (Pharmacy), Delhi Meerut Road, Muradnagar, Ghaziabad 201206, India. Received 4 June 2010, revised 14 June 2010, ...

  13. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)


    Abstract. The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflec-.


    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  15. Techniques in Gas-Phase Thermolyses. Part 6. Pulse Pyrolysis: Gas Kinetic Studies in an Inductively Heated Flow Reactor

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Bo, P.; Carlsen, Lars


    A prototype of an inductively heated flow reactor for gas kinetic studies is presented. The applicability of the system, which is based on a direct coupling between the reactor and the ion source of a mass spectrometer, is illustrated by investigations of a series of simple bond fission reactions...

  16. Mechanistic and Kinetic Studies on the Homogeneous Gas-Phase Formation of PCTA/DTs from 2,4-Dichlorothiophenol and 2,4,6-Trichlorothiophenol

    Directory of Open Access Journals (Sweden)

    Fei Xu


    Full Text Available Polychlorinated thianthrene/dibenzothiophenes (PCTA/DTs are sulfur analogues compounds to polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs. Chlorothiophenols (CTPs are key precursors to form PCTA/DTs. 2,4-DCTP has the minimum number of Cl atoms to form 2,4,6,8-tetrachlorinated dibenzothiophenes (2,4,6,8-TeCDT, which is the most important and widely detected of the PCDTs. In this paper, quantum chemical calculations were carried out to investigate the homogeneous gas-phase formation of PCTA/DTs from 2,4-DCTP and 2,4,6-TCTP precursors at the MPWB1K/6-311+G(3df,2p//MPWB1K/6-31+G(d,p level. Several energetically feasible pathways were revealed to compare the formation potential of PCTA/DT products. The rate constants of the crucial elementary reactions were evaluated by the canonical variational transition-state (CVT theory with the small curvature tunneling (SCT correction over a wide temperature range of 600–1200 K. This study shows that pathways that ended with elimination of Cl step were dominant over pathways ended with elimination of the H step. The water molecule has a negative catalytic effect on the H-shift step and hinders the formation of PCDTs from 2,4-DCTP. This study, together with works already published from our group, clearly illustrates an increased propensity for the dioxin formation from CTPs over the analogous CPs.

  17. Time resolved studies of the addition reactions of silylenes and unsaturated hydrocarbons in the gas phase (an investigation of the strain energies of silirane and silirene rings)

    CERN Document Server

    Dormer, G


    This thesis reports the measurement of absolute rate constants for number of silylene addition reactions with unsaturated hydrocarbons. The reactions of SiH sub 2 , SiD sub 2 and Me sub 2 Si with alkene and alkynes were studied. The silylenes were formed, in situ, by the photolysis of an organosilicon precursor, and the rate constants obtained by the direct observation of the absorption decay of the silylene reactant. The reactions were studied in the gas phase and their temperature and pressure dependence investigated. The reaction of SiH sub 2 and 1,3-butadiene was investigated and found to be pressure dependent. The following Arrhenius equation was yielded at infinite pressure; log(k supinfinity/cm sup 3 molecule sup - sup 1 s sup - sup 1) = (-9.57 +- 0.05) + (3.22 +- 0.35) kJmol sup - sup 1 /RT ln 10. The reaction was found to proceed via a two-channel pathway, leading to the products vinylsilirane and silacyclopentane. RRKM modelling of the system was carried out and led to the calculation of the strain ...

  18. Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study. (United States)

    Blocquet, M; Guo, F; Mendez, M; Ward, M; Coudert, S; Batut, S; Hecquet, C; Blond, N; Fittschen, C; Schoemaecker, C


    The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions. (United States)

    Ju, Li-Ping; Han, Ke-Li; Zhang, John Z H


    In this review article, we present a systematic comparison of the theoretical rate constants for a range of bimolecular reactions that are calculated by using three different classes of theoretical methods: quantum dynamics (QD), quasi-classical trajectory (QCT), and transition state theory (TST) approaches. The study shows that the difference of rate constants between TST results and those of the global dynamics methods (QD and QCT) are seen to be related to a number of factors including the number of degrees-of-freedom (DOF), the density of states at transition state (TS), etc. For reactions with more DOF and higher density of states at the TS, it is found that the rate constants from TST calculations are systematically higher than those obtained from global dynamics calculations, indicating large recrossing effect for these systems. The physical insight of this phenomenon is elucidated in the present review. (c) 2008 Wiley Periodicals, Inc.

  20. Tuning the Adsorption of Elemental Mercury by Small Gas-Phase Palladium Clusters: First-Principles Study. (United States)

    Kalita, Bulumoni


    Density functional theory (DFT) calculations were performed to study the nature of interaction of elemental mercury (Hg) with small palladium clusters (Pd n , n = 1-6) using generalized gradient approximation method. Results of these calculations showed stronger binding of Hg with Pd 2 cluster, which, therefore, was chosen for further investigation as presented in the latter part of the third section of this report. This extended study explains the binding mechanism of Hg with alloys of Pd dimers, PdM (M = Pd, Pt, Cu, Ag, Au) in neutral, cationic, and anionic states. Interaction energy of Hg with palladium dimer follows the trend Pd 2 + > Pd 2 > Pd 2 - . For all of the above PdM complexes, the strength of Hg binding is found to be highest in their cationic states. Mixing of Pt and Au enhances the reactivity of the cationic Pd 2 dimers, decreases it for their neutral counterparts, and does not affect much in the anionic states. Natural bond orbital (NBO) analysis indicates that Hg binding takes place because of the charge transfer from its s-orbitals primarily to the d-orbitals of M atoms followed by back-donation of charges from their s-orbitals to the p-orbitals of Hg atom. Moreover, the amount of charge transfer from Hg(s)→M(d) correlates with the Hg binding energy in Hg-PdM 0,± complexes. Binding of Hg in cationic Hg-PdM complexes conjointly depends on energies of the lowest unoccupied molecular orbitals of the PdM + dimers as well as NBO partial charges on adsorbed Hg.

  1. NH+-F hydrogen bonding in a fluorinated "proton sponge" derivative: integration of solution, solid-state, gas-phase, and computational studies. (United States)

    Scerba, Michael T; Leavitt, Christopher M; Diener, Matthew E; DeBlase, Andrew F; Guasco, Timothy L; Siegler, Maxime A; Bair, Nathaniel; Johnson, Mark A; Lectka, Thomas


    We report detailed studies on the characterization of an intramolecular NH-F hydrogen bond formed within a fluorinated "proton sponge" derivative. An ammonium ion, generated from 8-fluoro-N,N-dimethylnaphthalen-1-amine, serves as a charged hydrogen bond donor to a covalently bound fluorine appropriately positioned on the naphthalene skeleton. Potentiometric titrations of various N,N-dimethylnaphthalen-1-amines demonstrate a significant increase in basicity when hydrogen bonding is possible. X-ray crystallography reveals that NH-F hydrogen bonding in protonated 8-fluoro-N,N-dimethylnaphthalen-1-amine is heavily influenced by ion pairing in the solid state; bifurcated and trifurcated hydrogen bonds are formed depending on the counterion utilized. Compelling evidence of hydrogen bonding in the 8-fluoro-N,N-dimethylnaphthyl-1-ammonium cation is provided by gas-phase cryogenic vibrational photodissociation spectroscopy. Solution-phase infrared spectroscopy provides complementary results, and the frequencies of the N-H stretching mode in both phases are in excellent agreement with the computed vibrational spectra. NMR analysis of protonated 8-fluoro-N,N-dimethylnaphthalen-1-amine demonstrates significant H-F coupling between the N-H hydrogen and fluorine that cannot be attributed to long-range, through-bond interactions; the couplings correlate favorably with calculated values. The results obtained from these experiments are congruent with the formation of an NH-F hydrogen bond upon protonation of 8-fluoro-N,N-dimethylnaphthalen-1-amine.

  2. Photochemical Conversion of Surrogate Emissions for Use in Toxicological Studies: Role of Particulate- and Gas-Phase Products. (United States)

    Krug, Jonathan D; Lewandowski, Michael; Offenberg, John H; Turlington, John M; Lonneman, William A; Modak, Nabanita; Krantz, Q Todd; King, Charly; Gavett, Stephen H; Gilmour, M Ian; DeMarini, David M; Kleindienst, Tadeusz E


    The production of photochemical atmospheres under controlled conditions in an irradiation chamber permits the manipulation of parameters that influence the resulting air-pollutant chemistry and potential biological effects. To date, no studies have examined how contrasting atmospheres with a similar Air Quality Health Index (AQHI), but with differing ratios of criteria air pollutants, might differentially affect health end points. Here, we produced two atmospheres with similar AQHIs based on the final concentrations of ozone, nitrogen dioxide, and particulate matter (PM 2.5 ). One simulated atmosphere (SA-PM) generated from irradiation of ∼23 ppmC gasoline, 5 ppmC α-pinene, 529 ppb NO, and 3 μg m -3 (NH 4 ) 2 SO 4 as a seed resulted in an average of 976 μg m -3 PM 2.5 , 326 ppb NO 2 , and 141 ppb O 3 (AQHI 97.7). The other atmosphere (SA-O 3 ) generated from 8 ppmC gasoline, 5 ppmC isoprene, 874 ppb NO, and 2 μg m -3 (NH 4 ) 2 SO 4 resulted in an average of 55 μg m -3 PM 2.5 , 643 ppb NO 2 , and 430 ppb O 3 (AQHI of 99.8). Chemical speciation by gas chromatography showed that photo-oxidation degraded the organic precursors and promoted the de novo formation of secondary reaction products such as formaldehyde and acrolein. Further work in accompanying papers describe toxicological outcomes from the two distinct photochemical atmospheres.

  3. Gas phase reactive collisions, experimental approach

    Directory of Open Access Journals (Sweden)

    Canosa A.


    Full Text Available Since 1937 when the first molecule in space has been identified, more than 150 molecules have been detected. Understanding the fate of these molecules requires having a perfect view of their photochemistry and reactivity with other partners. It is then crucial to identify the main processes that will produce and destroy them. In this chapter, a general view of experimental techniques able to deliver gas phase chemical kinetics data at low and very low temperatures will be presented. These techniques apply to the study of reactions between neutral reactants on the one hand and reactions involving charge species on the other hand.

  4. Spectroscopic studies of hydrogen collisions

    International Nuclear Information System (INIS)

    Kielkopf, J.


    Low energy collisions involving neutral excited states of hydrogen are being studied with vacuum ultraviolet spectroscopy. Atomic hydrogen is generated by focusing an energetic pulse of ArF, KrF, or YAG laser light into a cell of molecular hydrogen, where a plasma is created near the focal point. The H 2 molecules in and near this region are dissociated, and the cooling atomic hydrogen gas is examined with laser and dispersive optical spectroscopy. In related experiments, we are also investigating neutral H + O and H + metal - atom collisions in these laser-generated plasmas

  5. Exploration of Unimolecular Gas-Phase Detoxication Pathways of Sarin and Soman: A Computational Study from the Perspective of Reaction Energetics and Kinetics. (United States)

    Ash, Tamalika; Debnath, Tanay; Banu, Tahamida; Das, Abhijit Kumar


    A mechanistic investigation has been carried out to explore all possible gas phase unimolecular isomerization as well as decomposition pathways of toxic organophosphorus compounds (OPCs), namely, sarin (GB) and soman (GD), which are better known as nerve agents. We have identified a total of 13 detoxication pathways for sarin, where the α-H, β-H, and γ-H take part in the H-transfer process. However, for soman, due to the presence of ω-H, three additional detoxication pathways are obtained, where the ω-H is involved in the H-transfer process. Among all the pathways, the D3 decomposition pathway, where the phosphorus oxoacid derivative and alkene are generated via the formation of a six-membered ring in the transition state, is identified as the most feasible pathway from the perspective of both activation barrier and reaction enthalpy values. Moreover, we have studied the feasibility of the isomerization and decomposition pathways by performing the reaction kinetics in the temperature range of 300 K-1000 K using the one-dimensional Rice-Ramsperger-Kassel-Marcus (RRKM) master equation. From the RRKM calculation also, D3 pathway is confirmed as the most feasible pathway for both OPCs. The rate constant values associated with the D3 pathway within the temperature range of 600 K-700 K imply that the degradation of the OPCs is possible within this temperature range via the D3 pathway, which is in good agreement with the earlier reported experimental result. It is also observed that at higher temperature range (∼900 K), the increased rate constant values of other detoxication pathways indicate that along with D3, all other pathways become more or less equally feasible. Therefore, the entire work provides a widespread idea about the kinetic as well as thermodynamic feasibility of the explored detoxication pathways of the titled OPCs.

  6. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.


    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  7. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A. Ch.


    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase. (author)

  8. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A.C.


    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase

  9. Nuclear spectroscopic studies: Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.


    The Nuclear Physics Group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility (HHIRF) and the Niels Bohr Institute Tandem Accelerator. Also, we are active in a collaboration (WA80) to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland. Our experimental work is four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  10. Synchrotron and small bio-molecules in gas phase and liquid environment: new opportunities in Brazil

    International Nuclear Information System (INIS)

    Naves de Brito, A.


    Full text: Two techniques are critically related to the photoelectric law, namely: photoelectron spectroscopy and photoelectron-photoion coincidence spectroscopy. Both are strongly used now a day within synchrotron laboratories. Our group is employing both to investigate fragmentation of bio-molecules in gas phase such as amino acids and DNA basis using V UV and soft x-ray photons. In the near future lager scale instruments developed in Brazil will allow unique opportunities to apply these two spectroscopic methods to molecules immersed in liquids such as water. We will present details from this advanced x-ray source and experimental stations with capabilities not present in other places in the world. Experiments connected to the molecular origin of live will be shown. Among them an experiment where we mimic the atmosphere at Titan moon producing bio- molecules will discussed. Another experiment will be presented where we test the Panspermia viability using special bacteria. We will also present experiments where frozen simple molecules connected to pre-biotic mate- rial are bombardment by UV photons and energetic particles showing interesting trends. Spectroscopic studies of gas phase photo-fragmentation of bio-molecules may be critical to understand in the future these molecules immersed in liquids. We plan to spend some time showing our recent results in this area. (author)

  11. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    International Nuclear Information System (INIS)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong


    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future

  12. Spectroscopic and theoretical study of the o-vanillin hydrazone of the mycobactericidal drug isoniazid (United States)

    González-Baró, Ana C.; Pis-Diez, Reinaldo; Parajón-Costa, Beatriz S.; Rey, Nicolás A.


    A complete and detailed study of the hydrazone obtained from condensation of antituberculous isoniazid (hydrazide of the isonicotinic acid, INH) and o-vanillin (2-hydroxy-3-methoxybenzaldehyde, o-HVa) is performed. It includes structural and spectroscopic analyses, comparing experimental and theoretical results. The compound was obtained as a chloride of the pyridinic salt (INHOVA +Cl -) but it will be referred as INHOVA for the sake of simplicity. The conformational space was searched and optimized geometries were determined both in gas phase and including solvent effects. Vibrational (IR and Raman), electronic and NMR spectra were registered and assigned with the help of computational methods based on the Density Functional Theory. Isoniazid hydrazones are good candidates for therapeutic agents against tuberculosis with conserved efficiency and lower toxicity and resistance than parent INH.

  13. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong [Gyeongsang National University, Jinju (Korea, Republic of)


    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future.


    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim


    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  15. Rate processes in gas phase

    International Nuclear Information System (INIS)

    Hansen, C.F.


    Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies of the reaction. The effect of cross section function shape and of excited state contributions to the reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved

  16. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C2H6 reaction and kinetics study of rate constants and kinetic isotope effects. (United States)

    Rangel, Cipriano; Espinosa-Garcia, Joaquin


    Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the

  17. SVOC partitioning between the gas phase and settled dust indoors (United States)

    Weschler, Charles J.; Nazaroff, William W.


    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients ( Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions ( R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.

  18. Time-Resolved Gas-Phase Kinetic, Quantum Chemical, and RRKM Studies of the Reaction of Silylene with 2,5-Dihydrofuran. (United States)

    Becerra, Rosa; Cannady, J Pat; Pfrang, Christian; Walsh, Robin


    Time-resolved kinetics studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, were performed to obtain rate coefficients for its bimolecular reaction with 2,5-dihydrofuran (2,5-DHF). The reaction was studied in the gas phase over the pressure range of 1-100 Torr in SF6 bath gas, at five temperatures in the range of 296-598 K. The reaction showed pressure dependences characteristic of a third body assisted association. The second-order rate coefficients obtained by Rice-Ramsperger-Kassel-Marcus (RRKM)-assisted extrapolation to the high-pressure limit at each temperature fitted the following Arrhenius equation where the error limits are single standard deviations: log(k/cm(3) molecule(-1) s(-1)) = (-9.96 ± 0.08) + (3.38 ± 0.62 kJ mol(-1))/RT ln 10. End-product analysis revealed no GC-identifiable product. Quantum chemical (ab initio) calculations indicate that reaction of SiH2 with 2,5-DHF can occur at both the double bond (to form a silirane) and the O atom (to form a donor-acceptor, zwitterionic complex) via barrierless processes. Further possible reaction steps were explored, of which the only viable one appears to be decomposition of the O-complex to give 1,3-butadiene + silanone, although isomerization of the silirane cannot be completely ruled out. The potential energy surface for SiH2 + 2,5-DHF is consistent with that of SiH2 with Me2O, and with that of SiH2 with cis-but-2-ene, the simplest reference reactions. RRKM calculations incorporating reaction at both π- and O atom sites, can be made to fit the experimental rate coefficient pressure dependence curves at 296-476 K, giving values for k(∞)(π) and k(∞)(O) that indicate the latter is larger in magnitude at all temperatures, in contrast to values from individual model reactions. This unexpected result suggests that, in 2,5-DHF with its two different reaction sites, the O atom exerts the more pronounced electrophilic attraction on the approaching silylene. Arrhenius parameters

  19. Exploratory multivariate spectroscopic study on human skin. (United States)

    Lauridsen, Rikke Kragh; Everland, Hanne; Nielsen, Lene Feldskov; Engelsen, Søren Balling; Nørgaard, Lars


    Spectroscopy on human skin is a field that is being adopted increasingly because of its rapidity and high reproducibility. Infrared reflectance (IR), near-infrared reflectance (NIR), and fluorescence spectroscopy have previously been applied to human skin in vivo to compare healthy and sick skin, including skin cancer, atopy, and leprosy. Exploratory data analysis/chemometrics is a tool for evaluating multivariate data such as spectroscopic measurements. The objective of this study was to explore the spectral variance spanned by people with normal integument, and to demonstrate the advantages of multivariate analysis to skin research. IR, NIR and fluorescence spectroscopy have been carried out in vivo on 216 volunteers' forearms before and after four tape strippings. The subjects were asked to fill in a questionnaire regarding factors suspected to influence the measurement results. Principal Component Analysis (PCA) was used to investigate whether the population can be divided into groups on the basis of their skin chemistry. Unless otherwise stated, the results are from the measurements prior to stripping. In contrast to IR and fluorescence spectra, NIR spectra proved able to detect gender differences. By use of PCA, classifications on male and female subjects were observed from the IR and NIR measurements, and as an indication from the fluorescence measurements. The NIR and fluorescence measurements varied between elderly and young subjects. The largest variance in the fluorescence landscapes was seen between pigmented and non-pigmented skin. No connection was found between the spectroscopic measurements and smoking or drinking habits. Future spectroscopic skin investigations should be balanced as regards to gender and age, as these can possibly affect the measurement results. Chemometrics proved to be superior to traditional attempts of interpreting the spectra.

  20. Laboratory Studies on the Formation of Carbon-Bearing Molecules in Extraterrestrial Environments: From the Gas Phase to the Solid State (United States)

    Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.


    A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides

  1. Spectroscopic studies of pulsed-power plasmas

    International Nuclear Information System (INIS)

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.


    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  2. Laboratory and Ambient Studies of the Products of Gas-Phase Hydroxyl and Nitrate Ion Radical-Initiated Reactions with Selected PAHs (United States)

    Zimmermann, Kathryn Jean

    Nitrated polycyclic aromatic hydrocarbon (nitro-PAH) product distributions from the gas-phase hydroxyl (OH) and nitrate (NO3) radical-initiated reactions with selected PAHs, as well as the heterogeneous reactions of surface-bound PAHs with N2O5 and HNO3, were investigated. Chapter 2 presents formation yields of nitro-PAHs from the gas-phase OH radical-initiated reactions of 1,7- and 2,7-dimethylnaphthalene (DMN) as a function of NO 2 concentration over the range 0.04-0.14 ppmv. The measured formation yields of dimethylnitronaphthalenes (DMNNs) under conditions that the OH-DMN adducts reacted solely with NO2 were 0.252 ± 0.094% for Σ1,7-DMNNs and 0.010 ± 0.005% for Σ2,7-DMNNs. 1,7-dimethyl-5-nitronaphthalene (1,7DM5NN) was the major nitro-isomer formed, with a limiting high-NO 2 concentration yield of 0.212 ± 0.080% and with equal reactions of the 1,7-DMN-OH adduct with NO2 and O2 occurring in air at 60 ± 39 ppbv of NO2, indicating that the OH-DMN adduct reaction with NO2 can be important at NO2 concentrations commonly found in urban atmospheres. Although the yields of the DMNNs are low, ≤0.3%, the DMNN (and ethylnitronaphthalene) profiles from chamber experiments match well with those observed in polluted urban areas under conditions where OH radical-initiated chemistry is dominant, such as Mexico City, Mexico. Chapter 3 examines the nitro-PAH products of gas-phase OH and NO 3 radicals and heterogeneous N2O5 reactions with fluoranthene, pyrene, benz[a]anthracene, chrysene, and triphenylene. Analysis of nitro-PAHs in the NIST diesel particulate SRM (1975) and selected ambient samples are also presented. 2-Nitrofluoranthene (2-NFL) was the most abundant nitro-PAH in Riverside, CA and Mexico City, and the mw 273 nitro-PAHs were observed in lower concentrations. However, in Tokyo, Japan, concentrations of 1- + 2-nitrotriphenylene (NTP) were more similar to those of 2-NFL. Comparing specific nitro-PAH ratios in ambient particulate samples from Tokyo, Mexico City

  3. Gas phase equilibrium structure of histamine. (United States)

    Tikhonov, Denis S; Rykov, Anatolii N; Grikina, Olga E; Khaikin, Leonid S


    The first gas electron diffraction (GED) experiment for histamine was carried out. The equilibrium structure of histamine in the gas phase was determined on the basis of the data obtained. The refinement was also supported by the rotational constants obtained in previous studies [B. Vogelsanger, et al., J. Am. Chem. Soc., 1991, 113, 7864-7869; P. Godfrey, et al., J. Am. Chem. Soc., 1998, 120, 10724-10732] and quantum chemical calculations. The proposed mechanism of tautomerization by simultaneous intermolecular transfer of hydrogens in a histamine dimer helps to explain the distribution of tautomers in different experiments. The estimations of the conformational interconversion times provided the explanation for the absence of some conformers in the rotational spectroscopy experiments.

  4. SVOC partitioning between the gas phase and settled dust indoors

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.


    for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured...... in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more...


    International Nuclear Information System (INIS)

    Harada, Nanase; Herbst, Eric; Wakelam, Valentine


    We present a new interstellar chemical gas-phase reaction network for time-dependent kinetics that can be used for modeling high-temperature sources up to ∼800 K. This network contains an extended set of reactions based on the Ohio State University (OSU) gas-phase chemical network. The additional reactions include processes with significant activation energies, reverse reactions, proton exchange reactions, charge exchange reactions, and collisional dissociation. Rate coefficients already in the OSU network are modified for H 2 formation on grains, ion-neutral dipole reactions, and some radiative association reactions. The abundance of H 2 O is enhanced at high temperature by hydrogenation of atomic O. Much of the elemental oxygen is in the form of water at T ≥ 300 K, leading to effective carbon-rich conditions, which can efficiently produce carbon-chain species such as C 2 H 2 . At higher temperatures, HCN and NH 3 are also produced much more efficiently. We have applied the extended network to a simplified model of the accretion disk of an active galactic nucleus.

  6. Time dependent density functional study of the absorption spectra of 1,3-benzoxazole and three substituted benzoxazole in gas phase and liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquilla, Rafael J; Neira, Oscar L, E-mail: [Grupo de Espectroscopia Optica y Laser, Universidad Popular del Cesar, Valledupar (Colombia)


    Time dependent density functional (TD-DFT) calculations were performed on 1,3-benzoxazole and substituted benzoxazoles using the B3LYP functional and the 6-31+G(d) basis sets. The geometry of the S{sub 0} and S{sub 1} singlet ground and excited states were optimized in gas phase, toluene and methanol using B3LYP/6-31+G(d) y CIS/6-31+G(d) methods, respectively, and the vertical {pi} {yields} {pi}{sup *} absorption largest wavelength transitions were determined. Several global molecular descriptors were considered such as the hardness, chemical potential, electronegativity and the dipole moment for each molecule and was determined the influence that has, about the values of these descriptors, the alteration of the main molecular chain of an initial structure (1,3 not substituted Benzoxazole). Generally, the predicted spectra are in agreement with the experimental data.

  7. Kinetics and Mechanism of the Oxidation of Cyclic Methylsiloxanes by Hydroxyl Radical in the Gas Phase: An Experimental and Theoretical Study. (United States)

    Xiao, Ruiyang; Zammit, Ian; Wei, Zongsu; Hu, Wei-Ping; MacLeod, Matthew; Spinney, Richard


    The ubiquitous presence of cyclic volatile methylsiloxanes (cVMS) in the global atmosphere has recently raised environmental concern. In order to assess the persistence and long-range transport potential of cVMS, their second-order rate constants (k) for reactions with hydroxyl radical ((•)OH) in the gas phase are needed. We experimentally and theoretically investigated the kinetics and mechanism of (•)OH oxidation of a series of cVMS, hexamethylcyclotrisiloxane (D3), octamethycyclotetrasiloxane (D4), and decamethycyclopentasiloxane (D5). Experimentally, we measured k values for D3, D4, and D5 with (•)OH in a gas-phase reaction chamber. The Arrhenius activation energies for these reactions in the temperature range from 313 to 353 K were small (-2.92 to 0.79 kcal·mol(-1)), indicating a weak temperature dependence. We also calculated the thermodynamic and kinetic behaviors for reactions at the M06-2X/6-311++G**//M06-2X/6-31+G** level of theory over a wider temperature range of 238-358 K that encompasses temperatures in the troposphere. The calculated Arrhenius activation energies range from -2.71 to -1.64 kcal·mol(-1), also exhibiting weak temperature dependence. The measured k values were approximately an order of magnitude higher than the theoretical values but have the same trend with increasing size of the siloxane ring. The calculated energy barriers for H-atom abstraction at different positions were similar, which provides theoretical support for extrapolating k for other cyclic siloxanes from the number of abstractable hydrogens.

  8. Spectroscopic study of natural quartz samples

    International Nuclear Information System (INIS)

    Nunes, Eduardo H.M.; Lameiras, Fernando S.; Houmard, Manuel; Vasconcelos, Wander L.


    In this work we performed a spectroscopic characterization of natural amethyst, citrine, and prasiolite samples from different localities. These materials were examined by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy (UV–vis), electron paramagnetic resonance (EPR), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Samples were used in this study in as-received, gamma-irradiated, UV-irradiated, and heat-treated conditions. We observed the changes in the FTIR, UV–vis, and EPR spectra of these samples as a function of the condition they were analyzed. We noticed that gamma radiation had a great effect on the color of amethyst and citrine samples used in this work. It was observed that light colored samples showed a deepening of their colors upon gamma-irradiation and a bleaching upon heat treatment at 450 °C. However, we observed that gamma radiation had a slight effect on the color of citrine. UV-irradiations revealed that the coloration of both amethyst and prasiolite can be bleached by UV radiation. On the other hand, the color of citrine was not affected by UV radiation. - Highlights: • Spectroscopic characterization of natural amethyst, citrine, and prasiolite samples. • Gamma radiation had a great effect on the color of amethyst and citrine samples. • The coloration of citrine was not affected by UV radiation. • Resonance lines observed in EPR spectra of some samples were associated to Fe 3+ . • Broad resonance signal observed in EPR spectra of citrine samples

  9. Uncatalyzed thermal gas phase aziridination of alkenes by organic ...

    Indian Academy of Sciences (India)

    Alkene aziridination by azides through uncatalyzed thermal gas phase routes has been studiedusing the DFT B3LYP/6-31G(d,p) method, where the possible role of discrete nitrene intermediates is emphasized.The thermal decomposition of azides is studied using the MP2/aug-cc-pVDZ strategy as well. The MP2(but not the ...

  10. Gas phase and solution structures of 1-methoxyallenyllithium. (United States)

    Dixon, Darryl D; Tius, Marcus A; Pratt, Lawrence M


    A combined computational and (13)C NMR study was used to determine the solution structures of 1-methoxyallenyllithium. The gas phase calculations indicated that this species is aggregated as a hexamer. The NMR spectra in THF solution, together with the calculated aggregation energies and chemical shifts, are consistent with a dimer-tetramer equilibrium.

  11. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification (United States)

    Hindle, Francis; Cuisset, Arnaud; Bocquet, Robin; Mouret, Gaël


    Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H 2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength ≈200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles. To cite this article: F. Hindle et al., C. R. Physique 9 (2008).

  12. Preparation of cesium targets for gamma-spectroscopic studies (United States)

    Bhattacharyya, S.; Basu, S. K.; Chanda, S.; Deb, P.; Eqbal, Md; Kundu, S.; Joseph, D.


    A procedure to prepare monoisotopic cesium compound targets for gamma-spectroscopic experiments is described. Using this procedure, uniform targets up to thicknesses of 0.6-1.2 mg/cm 2 were prepared and used for in-beam spectroscopic studies. The purity of the target was tested by energy dispersive X-ray fluorescence (EDXRF) measurements.

  13. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)


    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  14. Deformed shell model studies of spectroscopic properties of Zn and ...

    Indian Academy of Sciences (India)


    Apr 5, 2014 ... the generating coordinate method framework (GCM+PNAMP), (v) projected Hartree– ... shall first study its spectroscopic properties using deformed shell model (DSM) to test the effectiveness of the model for ... Section. 3 gives DSM results for 64Zn for spectroscopic properties and then the results for both 2ν.

  15. Study of the aluminium content in AGB winds using ALMA. Indications for the presence of gas-phase (Al2O3)n clusters (United States)

    Decin, L.; Richards, A. M. S.; Waters, L. B. F. M.; Danilovich, T.; Gobrecht, D.; Khouri, T.; Homan, W.; Bakker, J. M.; Van de Sande, M.; Nuth, J. A.; De Beck, E.


    Context. The condensation of inorganic dust grains in the winds of evolved stars is poorly understood. As of today, it is not yet known which molecular clusters form the first dust grains in oxygen-rich (C/O histories in the winds of oxygen-rich AGB stars. Methods: We obtained Atacama Large Millimeter/sub-millimeter array (ALMA) observations with a spatial resolution of 120 × 150 mas tracing the dust formation region of the low mass-loss rate AGB star, R Dor, and the high mass-loss rate AGB star, IK Tau. We detected emission line profiles of AlO, AlOH, and AlCl in the ALMA data and used these line profiles to derive a lower limit of atomic aluminium incorporated in molecules. This constrains the aluminium budget that can condense into grains. Results: Radiative transfer models constrain the fractional abundances of AlO, AlOH, and AlCl in IK Tau and R Dor. We show that the gas-phase aluminium chemistry is completely different in both stars with a remarkable difference in the AlO and AlOH abundance stratification. The amount of aluminium locked up in these three molecules is small, ≤1.1 × 10-7 w.r.t. H2, for both stars, i.e. only ≤2% of the total aluminium budget. An important result is that AlO and AlOH, which are the direct precursors of alumina (Al2O3) grains, are detected well beyond the onset of the dust condensation, which proves that the aluminium oxide condensation cycle is not fully efficient. The ALMA observations allow us to quantitatively assess the current generation of theoretical dynamical-chemical models for AGB winds. We discuss how the current proposed scenario of aluminium dust condensation for low mass-loss rate AGB stars within a few stellar radii from the star, in particular for R Dor and W Hya, poses a challenge if one wishes to explain both the dust spectral features in the spectral energy distribution (SED) in interferometric data and in the polarized light signal. In particular, the estimated grain temperature of Al2O3 is too high for

  16. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface (United States)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel

  17. Spectroscopic study of ohmically heated Tokamak discharges

    International Nuclear Information System (INIS)

    Breton, C.; Michelis, C. de; Mattioli, M.


    Tokamak discharges interact strongly with the wall and/or the current aperture limiter producing recycling particles, which penetrate into the discharge and which can be studied spectroscopically. Working gas (hydrogen or deuterium) is usually studied observing visible Balmer lines at several toroidal locations. Absolute measurements allow to obtain both the recycling flux and the global particle confinement time. With sufficiently high resolution the isotopic plasma composition can be obtained. The impurity elements can be divided into desorbed elements (mainly oxygen) and eroded elements (metals from both walls and limiter) according to the plasma-wall interaction processes originating them. Space-and time-resolved emission in the VUV region down to about 20 A will be reviewed for ohmically-heated discharges. The time evolution can be divided into four phases, not always clearly separated in a particular discharge: a) the initial phase, lasting less than 10 ms (the so-called burn-out phase), b) the period of increasing plasma current and electron temperature, lasting typically 10 - 100 ms, c) an eventual steady state (plateau of the plasma current with almost constant density and temperature), d) the increase of the electron density up to or just below the maximum value attainable in a given device. For all these phases the results reported from different devices will be described and compared

  18. Probing the Low-Barrier Hydrogen Bond in Hydrogen Maleate in the Gas Phase: A Photoelectron Spectroscopy and ab Initio Study

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hin-koon; Wang, Xue B.; Wang, Lai S.; Lau, Kai Chung


    The strength of the low-barrier hydrogen bond in hydrogen maleate in the gas phase was investigated by low-temperature photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of maleic and fumaric acid monoanions (cis-/trans-HO2CCHdCHCO2 -) were obtained at low temperatures and at 193 nm photon energy. Vibrational structure was observed for trans-HO2CCHdCHCO2 - due to the OCO bending modes; however, cis-HO2CCHdCHCO2 - yielded a broad and featureless spectrum. The electron binding energy of cis-HO2CCHdCHCO2 - is about 1 eV blue-shifted relative to trans-HO2CCHdCHCO2 - due to the formation of intramolecular hydrogen bond in the cis-isomer. Theoretical calculations (CCSD(T)/ aug-cc-pVTZ and B3LYP/aug-cc-pVTZ) were carried out to estimate the strength of the intramolecular hydrogen bond in cis-HO2CCHdCHCO2 -. Combining experimental and theoretical calculations yields an estimate of 21.5 ( 2.0 kcal/mol for the intramolecular hydrogen bond strength in hydrogen maleate.

  19. Mechanism of alpha-amino acids decomposition in the gas phase. experimental and theoretical study of the elimination kinetics of N-benzyl glycine ethyl ester. (United States)

    Tosta, Maria; Oliveros, Jhenny C; Mora, Jose R; Córdova, Tania; Chuchani, Gabriel


    The gas-phase elimination kinetics of N-benzylglycine ethyl ester was examined in a static system, seasoned with allyl bromide, and in the presence of the free chain radical suppressor toluene. The working temperature and pressure range were 386.4-426.7 degrees C and 16.7-40.0 torr, respectively. The reaction showed to be homogeneous, unimolecular, and obeys a first-order rate law. The elimination products are benzylglycine and ethylene. However, the intermediate benzylglycine is unstable under the reaction conditions decomposing into benzyl methylamine and CO(2) gas. The variation of the rate coefficients with temperature is expressed by the following Arrhenius equation: log k(1) (s(-1)) = (11.83 +/- 0.52) - (190.3 +/- 6.9) kJ mol(-1) (2.303RT)(-1). The theoretical calculation of the kinetic parameters and mechanism of elimination of this ester were performed at B3LYP/6-31G*, B3LYP/6-31+G**, MPW1PW91/6-31G*, and MPW1PW91/6-31+G** levels of theory. The calculation results suggest a molecular mechanism of a concerted nonsynchronous six-membered cyclic transition state process. The analysis of bond order and natural bond orbital charges implies that the bond polarization of C(=O)O-C, in the sense of C(=O)O(delta-)...C(delta+), is rate determining. The experimental and theoretical parameters have been found to be in reasonable agreement.

  20. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas (United States)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  1. Theoretical investigation of the long-lived metastable AlO{sup 2+} dication in gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Sghaier, Onsi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Abdallah, Hassan H. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Chemistry, College of Education, Salahaddin University, 44001 Erbil (Iraq); Abdullah, Hewa Y. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Physics, College of Education, Salahaddin University, 44001 Erbil (Iraq); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Al Mogren, Muneerah Mogren [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Hochlaf, Majdi, E-mail: [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)


    Highlights: • Theoretical investigation of gas-phase molecular species AlO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of AlO. - Abstract: We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO{sup 2+} using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO{sup 2+} is X{sup 2}Π. The internuclear equilibrium distance of AlO{sup 2+}(X{sup 2}Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  2. Gas-phase reaction studies of dipositive hafnium and hafnium oxide ions: generation of the peroxide HfO2(2+). (United States)

    Lourenço, Célia; Michelini, Maria del Carmen; Marçalo, Joaquim; Gibson, John K; Oliveira, Maria Conceição


    Fourier transform ion cyclotron resonance mass spectrometry was used to characterize the gas-phase reactivity of Hf dipositive ions, Hf(2+)and HfO(2+), toward several oxidants: thermodynamically facile O-atom donor N(2)O, ineffective donor CO, and intermediate donors O(2), CO(2), NO, and CH(2)O. The Hf(2+) ion exhibited electron transfer with N(2)O, O(2), NO, and CH(2)O, reflecting the high ionization energy of Hf(+). The HfO(2+) ion was produced by O-atom transfer to Hf(2+) from N(2)O, O(2), and CO(2), and the HfO(2)(2+) ion by O-atom transfer to HfO(2+) from N(2)O; these reactions were fairly efficient. Density functional theory revealed the structure of HfO(2)(2+) as a peroxide. The HfO(2)(2+) ion reacted by electron transfer with N(2)O, CO(2), and CO to give HfO(2)(+). Estimates were made for the second ionization energies of Hf (14.5 ± 0.5 eV), HfO (14.3 ± 0.5 eV), and HfO(2) (16.2 ± 0.5 eV), and also for the bond dissociation energies, D[Hf(2+)-O] = 686 ± 69 kJ mol(-1) and D[OHf(2+)-O] = 186 ± 98 kJ mol(-1). The computed bond dissociation energies, 751 and 270 kJ mol(-1), respectively, are within these experimental ranges. Additionally, it was found that HfO(2)(2+) oxidized CO to CO(2) and is thus a catalyst in the oxidation of CO by N(2)O and that Hf(2+) activates methane to produce a carbene, HfCH(2)(2+).

  3. Is the Gas-phase OH+H2CO Reaction a Source of HCO in Interstellar Cold Dark Clouds? A Kinetic, Dynamic, and Modeling Study (United States)

    Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.


    The chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T ˜ 10-100 K). Scarce kinetic information is currently available for these kinds of reactions at T values greatly increase from 2.1 × 10-11 cm3 s-1 at 107 K to 1.2 × 10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface that generates highly accurate potential and includes long-range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10 K (2.6 × 10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yr. The different sources of production of HCO are presented and the uncertainties in the chemical networks are discussed. The present reaction is shown to account for a few percent of the total HCO production rate. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. Extensions to photodissociation regions and diffuse cloud environments are also addressed.

  4. Kinetics and mechanisms of the unimolecular elimination of 2,2-diethoxypropane and 1,1-diethoxycyclohexane in the gas phase: experimental and theoretical study. (United States)

    Rosas, Felix; Maldonado, Alexis; Lezama, Jesus; Domínguez, Rosa M; Mora, José R; Cordova, Tania; Chuchani, Gabriel


    The gas-phase thermal elimination of 2,2-diethoxypropane was found to give ethanol, acetone, and ethylene, while 1,1-diethoxycyclohexane yielded 1-ethoxycyclohexene and ethanol. The kinetics determinations were carried out, with the reaction vessels deactivated with allyl bromide, and the presence of the free radical suppressor cyclohexene and toluene. Temperature and pressure ranges were 240.1-358.3 °C and 38-102 Torr. The elimination reactions are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are given by the following Arrhenius equations: for 2,2-diethoxypropane, log k(1) (s(-1)) = (13.04 ± 0.07) - (186.6 ± 0.8) kJ mol(-1) (2.303RT)(-1); for the intermediate 2-ethoxypropene, log k(1) (s(-1)) = (13.36 ± 0.33) - (188.8 ± 3.4) kJ mol(-1) (2.303RT)(-1); and for 1,1-diethoxycyclohexane, log k = (14.02 ± 0.11) - (176.6 ± 1.1) kJ mol(-1) (2.303RT)(-1). Theoretical calculations of these reactions using DFT methods B3LYP, MPW1PW91, and PBEPBE, with 6-31G(d,p) and 6-31++G(d,p) basis set, demonstrated that the elimination of 2,2-diethoxypropane and 1,1-diethoxycyclohexane proceeds through a concerted nonsynchronous four-membered cyclic transition state type of mechanism. The rate-determining factor in these reactions is the elongation of the C-O bond. The intermediate product of 2,2-diethoxypropane elimination, that is, 2-ethoxypropene, further decomposes through a concerted cyclic six-membered cyclic transition state mechanism.

  5. SILP catalysis in gas-phase hydroformylation and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Riisager, A.; Fehrmann, R. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry; Haumann, M.; Wasserscheid, P. [Univ. Erlangen-Nuernberg (Germany). Lehrstuhl fuer Chemische Reaktionstechnik


    Supported ionic liquid phase (SILP) catalysts are new materials consisting of an ionic liquid-metal catalyst solution highly dispersed on a porous support. The use of a non-volatile, ionic liquid catalyst phase in SILP catalysts results in a stable heterogeneous-type material with selectivity and efficiency like homogeneous catalysts. The silica-supported SILP Rh-bisphosphine hydroformylation catalyst exhibited good activities and excellent selectivities in gas phase hydroformylation with stability exceeding 700 hours time-on-stream. Spectroscopic and kinetic data confirmed the homogeneous nature of the catalyst. In the Rh- SILP catalysed carbonylation of methanol the formation of undesired by-products could be suppressed by variation of residence time and gas pressure. (orig.)

  6. Gas-Phase Infrared; JCAMP Format (United States)

    SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase)   This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.

  7. Techniques in Gas Phase Thermolyses

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Larsen, Elfinn; Carlsen, Lars


    Basic principles, capabilities and limitations of collision activation mass spectrometry are reported, with special reference to real-time analysis of flash vacuum thermolytically generated products. The analytical utility is demonstrated in terms of structure elucidation and isomerization studie...

  8. Spectroscopic studies on colloid-borne uranium

    International Nuclear Information System (INIS)

    Ulrich, K.U.; Weiss, S.; Foerstendorf, H.; Brendler, V.; Zaenker, H.; Rossberg, A.; Scheinost, A.C.


    Full text of publication follows: Information on molecular speciation provides a basis for the reliable assessment of actinide migration in the environment. We use several methods for the separation of colloids from liquids (e.g. ultracentrifugation, ultrafiltration) in combination with spectroscopic techniques (EXAFS, ATR-FTIR, Moessbauer) and modeling of surface complexation reactions. This enables us to investigate the speciation of colloid-borne uranium in waters occurring in or escaping from abandoned uranium mines during the remediation process. Mine flooding was simulated on a 100 L scale by mixing acid mine water of elevated U concentration with oxic, near-neutral groundwater until pH ∼ 5.5 was reached. The freshly formed colloids adsorbed 95% of the total uranium and consisted mainly of 2-line ferri-hydrite (Fh) besides traces of aluminum, sulfur, silica, and carbon compounds. EXAFS analysis at the U-LIII absorption edge suggested a bidentate surface complex of UO 2 2+ on FeO 6 octahedra, but two minor backscattering contributions in close vicinity to the absorber remained unexplained. Since only Al could be excluded as backscattering atom, we studied U sorption on Fh at pH 5.5 in presence and in absence of sulfate, silicate, and atmospheric CO 2 to clarify the bond structure. EXAFS showed the unknown backscattering contributions in all the sorption samples regardless of the presence or absence of the tested components. Contrary to structural models proposed in the literature, bi-dentately complexed carbonate ligands do not explain our experimental EXAFS data. But ATR-IR spectra showed that U-carbonato complexes must be involved in the sorption of uranyl on Fh. These results are not contradictory if the carbonate ligands were bound mono-dentately. Nevertheless, carbon cannot act as backscattering atom in carbonate-free samples prepared in N 2 atmosphere. We propose a new structural model including exclusively Fe, H, and O atoms in which the bi

  9. Ab initio treatment of gas phase GeO{sup 2+} doubly charged ion

    Energy Technology Data Exchange (ETDEWEB)

    Mogren Al Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Ben Abdallah, D. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Department of General Studies, Riyadh Corporation of Technology, Technical and Vocational Training Corporation, PO Box 42826, Riyadh 11551 (Saudi Arabia); Hochlaf, M., E-mail: [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)


    Highlights: • Theoretical investigation of the novel gas-phase molecular species GeO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of GeO. - Abstract: Using multi reference configuration interaction methodology in connection with a large basis set, we show that GeO{sup 2+} is a metastable species either in the ground or in the electronically excited states. This confirms the observation of this dication in gas phase by mass spectrometry. In addition, we derived a set of accurate spectroscopic terms for GeO{sup 2+} bound states. At the MRCI/aug-cc-pV5Z level of theory, the adiabatic double ionization energy of GeO is computed to be ∼28.93 eV.

  10. Study by crossed beams and ab initio techniques of an environmentally interesting process: Gas-phase high energy collisions between N2O(1Σ+) and Li+(1S0)

    International Nuclear Information System (INIS)

    Andrés, J. de; Lucas, J.M.; Albertí, M.; Bofill, J.M.; Aguilar, A.


    Highlights: • Gas phase high-energy N 2 O + Li + collisions can take place in the troposphere giving N 2 O + . • They have been studied at 0.1–5 keV both experimentally and by ab initio treatment. • Only Li(2p 2 P 1/2,3/2 ) and Li(3d 2 D 3/2,5/2 ) were detected. N 2 O does not dissociate. • Calculations confirm reaction channels leading only to ground and excited N 2 O + . - Abstract: The environmentally relevant gas phase collisions between ground states N 2 O molecules and lithium ions have been studied by crossed-beams techniques and fluorescent emissions. Total emission cross-sections for Li( 2 P u ) and Li( 2 D g ) formation in the 0.100–5.00 keV laboratory energy range have been measured in absolute units. Different potential energy surfaces involved in the non-adiabatic electron transfer processes have been calculated at the ab initio complete active space interaction configuration (CASCI) level of theory in the collinear configuration system. These gave information on different excited states including those asymptotically correlating the prominent process leading to the formation of Li( 2 P u ) and N 2 O + . Also, a detailed full dimensional analysis of the systems’ ground PES has been made at the perturbation second order Möller–Plesset (MP2) level. From the ab initio calculations and using simple model analytical equations for excitation functions a qualitative interpretation of the measured data for the dominant non-adiabatic process is given.

  11. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands (United States)

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.


    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular Osbnd H⋯N interactions in salicylaldehyde derivatives between the Osbnd H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory.

  12. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation. (United States)

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A


    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  13. Spectroscopic techniques to study the immune response in human saliva (United States)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.


    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  14. Gas phase thermochemistry of organogermanium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Engel, John P. [Iowa State Univ., Ames, IA (United States)


    A variety of silyl- and alkyl-germylene precursors have been synthesized and subsequently pyrolyzed in the gas phase. Arrhenius parameters were obtained employing a pulsed-stirred flow reactor for these unimolecular decompositions. These precursors are divided into two major categories by mechanism of germylene extrusion: α-elimination precursors and germylacetylenes. The extrusion of germylenes from germylacetylene precursors is of primary interest. A mechanism is proposed employing a germacyclopropene intermediate. Evidence supporting this mechanism is presented. In the process of exploring germylacetylenes as germylene precursors, an apparent dyatropic rearrangement between germanium and silicon was observed. This rearrangement was subsequently explored.

  15. Fluorescence resonance energy transfer of gas-phase ions under ultra high vacuum and ambient conditions. (United States)

    Frankevich, Vladimir; Chagovets, Vitaliy; Widjaja, Fanny; Barylyuk, Konstantin; Yang, Zhiyi; Zenobi, Renato


    We report evidence for fluorescence resonance energy transfer (FRET) of gas-phase ions under ultra high vacuum conditions (10(-9) mbar) inside a mass spectrometer as well as under ambient conditions inside an electrospray plume. Two different FRET pairs based on carboxyrhodamine 6G (donor) and ATTO590 or Bodipy TR (acceptor) dyes were examined and their gas-phase optical properties were studied. Our measurements indicate a different behavior for the two FRET pairs, which can be attributed to their different conformations in the gas phase. Upon desolvation via electrospray ionization, one of the FRET pairs undergoes a conformational change that leads to disappearance of FRET. This study shows the promise of FRET to obtain a direct correlation between solution and gas-phase structures.

  16. Trimethyl(phenylsilane — a precursor for gas phase processes of SiCx:H film deposition: Synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Evgeniya N. Ermakova


    Full Text Available The technique of synthesis and purification of trimethyl(phenylsilane PhSiMe3, allowing to obtain the product with high yield. Individuality of the product was confirmed by elemental analysis for C, H, Si was developed. IR, UV and 1H NMR-spectroscopic studies were used to define its spectral characteristics. Complex thermal analysis and thermogravimetry defined thermoanalytical behavior of PhSiMe3 in an inert atmosphere. Tensimetric studies have shown that the compound has sufficient volatility and thermal stability for use as a precursor in the process of chemical vapor deposition (CVD. The composition and temperature limits of the possible crystalline phase complexes in equilibrium with the gas phase of different composition has been determined by method of thermodynamic modeling. Calculated CVD diagrams allow us to select the optimal conditions of film deposition. The possibility of using trimethyl(phenylsilane in CVD processes for producing dielectric films of hydrogenated silicon carbide has been demonstrated.

  17. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Indian Academy of Sciences (India)

    Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment ... The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied.

  18. Contributions of gas-phase plasma chemistry to surface modifications and gas-surface interactions: investigations of fluorocarbon rf plasmas (United States)

    Cuddy, Michael F., II

    The fundamental aspects of inductively coupled fluorocarbon (FC) plasma chemistry were examined, with special emphasis on the contributions of gas-phase species to surface modifications. Characterization of the gas-phase constituents of single-source CF4-, C2F6-, C3F 8-, and C3F6-based plasmas was performed using spectroscopic and mass spectrometric techniques. The effects of varying plasma parameters, including applied rf power (P) and system pressure (p) were examined. Optical emission spectroscopy (OES) and laser-induced fluorescence (LIF) spectroscopy were employed to monitor the behavior of excited and ground CFx (x = 1,2) radicals, respectively. Mass spectrometric techniques, including ion energy analyses, elucidated behaviors of nascent ions in the FC plasmas. These gas-phase data were correlated with the net effect of substrate processing for Si and ZrO2 surfaces. Surface-specific analyses were performed for post-processed substrates via x-ray photoelectron spectroscopy (XPS) and contact angle goniometry. Generally, precursors with lower F/C ratios tended to deposit robust FC films of high surface energy. Precursors of higher F/C ratio, such as CF4, were associated with etching or removal of material from surfaces. Nonetheless, a net balance between deposition of FC moieties and etching of material exists for each plasma system. The imaging of radicals interacting with surfaces (IRIS) technique provided insight into the phenomena occurring at the interface of the plasma gas-phase and substrate of interest. IRIS results demonstrate that CFx radicals scatter copiously, with surface scatter coefficients, S, generally greater than unity under most experimental conditions. Such considerable S values imply surface-mediated production of the CFx radicals at FC-passivated sites. It is inferred that the primary route to surface production of CFx arises from energetic ion bombardment and ablation of surface FC films. Other factors which may influence the observed CFx

  19. A spectroscopic study of southern binary Cepheids (United States)

    Petterson, O. K. L.; Albrow, Michael D.; Cottrell, P. L.; Fokin, A.


    High-resolution spectroscopic observations have been made of a number of southern binary Cepheids to determine their dynamical masses. The stars are part of a long-term program to observe southern variable starsf or which a valuable long-term database has been obtained. The most recent radial velocities have a precision of ~300 ms-1, allowing the detection of velocity differences of ~1 kms-1 with confidence. Masses were determined for three systems: the 9-day Cepheid S Mus (6.0±0.4 MSolar), the double-mode Cepheid Y Car (4.5±1.8 MSolar) and the 5-day Cepheid V350 Sgr (6.0±0.9 MSolar). For five Cepheids (YZ Car, AX Cir, V636 Sco, W Sgr and T Mon) new or improved orbital solutions were found. Line level effects have been observed in several species of lines. Most Cepheids were observed to show the same progression of line level effects. Using non-linear radiative hydrodynamical models, we have compared the results of these models with our observations. These have shown that AX Cir and YZ Car have the following properties: L = 2050 LSolar, M = 4.8 MSolar, Teff = 5900 K and L = 9350 LSolar, M = 7.7 MSolar, Teff = 5590 K. Our models show no strong shockwaves being produced. Good agreement was found between the observed and modelled spectral lines Fe I 5576Å, SiII 6347Å, BaII 5853Å and CaII 8542Å.

  20. Spectroscopic study of low-lying 16N levels

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott


    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented

  1. Activation of methane by zinc: gas-phase synthesis, structure, and bonding of HZnCH3. (United States)

    Flory, Michael A; Apponi, Aldo J; Zack, Lindsay N; Ziurys, Lucy M


    The methylzinc hydride molecule, HZnCH3, has been observed in the gas phase for the first time in the monomeric form using high-resolution spectroscopic techniques. The molecule was synthesized by two methods: the reaction of dimethylzinc with hydrogen gas and methane in an AC discharge and the reaction of zinc vapor produced in a Broida-type oven with methane in a DC discharge. HZnCH3 was identified on the basis of its pure rotational spectrum, which was recorded using millimeter/submillimeter direct-absorption and Fourier transform microwave techniques over the frequency ranges 332-516 GHz and 18-41 GHz, respectively. Multiple rotational transitions were measured for this molecule in seven isotopic variants. K-ladder structure was clearly present in all of the spectra, indicating a molecule with C3v symmetry and a (1)A1 ground electronic state. Extensive quadrupole hyperfine structure arising from the (67)Zn nucleus was observed for the H(67)ZnCH3 species, suggesting covalent bonding to the zinc atom. From the multiple isotopic substitutions, a precise structure for HZnCH3 has been determined. The influence of the axial hydrogen atom slightly distorts the methyl group but stabilizes the Zn-C bond. This study suggests that HZnCH3 can be formed through the oxidative addition of zinc to methane in the gas phase under certain conditions. HZnCH3 is the first metal-methane insertion complex to be structurally characterized.

  2. Moessbauer spectroscopic study of South Italic Greek-type pottery

    International Nuclear Information System (INIS)

    Moessbauer spectroscopic (M.S.) study of 19 South Italic Greek-type ceramics was carried out. Two groups can be distinguished, on the grounds of Fe 3+ -sites content. However, the results of archeological and neutron activation analysis run contrary to this classification. (author)

  3. Comparative study of spectroscopic properties of the low-lying ...

    Indian Academy of Sciences (India)

    985–994. c Indian Academy of Sciences. Comparative study of spectroscopic properties of the low-lying electronic states of 2,4-pentadien-1-iminium cation and its N-substituted analogues. ANJAN CHATTOPADHYAY. Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani –KK Birla Goa Campus,.

  4. Structural, spectroscopic and electrochemical study of V 5 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 4. Structural, spectroscopic and electrochemical study of V5+ substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries. A Venkateswara Rao V Veeraiah A V Prasada Rao B Kishore Babu B Swarna Latha K Rama Rao. Volume 37 Issue 4 June 2014 pp ...

  5. 129I Moessbauer spectroscopic study of metallocene-iodine adducts

    International Nuclear Information System (INIS)

    Nakashima, Satoru; Sakai, Hiroshi; Watanabe, Masanobu; Maeda, Yutaka


    A 129 I Moessbauer spectroscopic study of iodine adducts of ferrocenophane, biruthenocene, and osmocene is reported. The spectra show the existence of iodine bonded to the central metals of metallocenes in addition to triiodide anions. The valence state of iron in the ferrocenophane-iodine adduct is the same as those of ruthenium and osmium in their adducts. (orig.)

  6. AC impedance and dielectric spectroscopic studies of Mg ion ...

    Indian Academy of Sciences (India)

    Mater. Sci., Vol. 34, No. 5, August 2011, pp. 1063–1067. c Indian Academy of Sciences. AC impedance and dielectric spectroscopic studies of Mg. 2+ ion conducting PVA–PEG blended polymer electrolytes. ANJI REDDY POLU. ∗ and RANVEER KUMAR. Department of Physics, Dr H S Gour University, Sagar 470 003, India.

  7. Raman Spectroscopic Study of the Vapour Phase of 1-Methylimidazolium Ethanoate, a Protic Ionic Liquid

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Canongia Lopes, Jose N.; Ferreira, Rui


    The gas phase over the ionic liquid 1-methylimidazolium ethanoate, [Hmim][O2CCH3], was studied by means of Raman spectroscopy. Raman spectra are presented, the species in the gas phase are identified, and their bands are assigned. The results are interpreted using ab initio quantum mechanical...... calculations that also predict vibrational spectra. The obtained data reinforce a previous interpretation, based on FT-ICR mass spectrometric data, that the vapor phase over [Hmim][O2CCH3] consists predominantly of two neutral molecules, monomeric ethanoic acid and 1-methylimidazole....

  8. Kinetics and thermochemistry of the reversible gas phase reaction HONO+NH3->3N-HONO studied by infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, P.; Ratajczak, E.; Sillesen, A.


    The kinetics of the reversible reaction HONO+NH3 reversible H3N-HONO (1) was studied by monitoring trans-HONO relaxation kinetics. The rate of approach towards equilibrium was studied as a function of the ammonia concentration to obtain values of the rate constants for the forward and reverse...... reactions as well as the equilibrium constant. At 298 K we have determined the following values for the forward rate constant and the equilibrium constant, k(if)=(2.2+/-0.2) x 10(3) M-1 s-1 and K(c)=(1.5+/-0.2) x 10(5) M-1. The equilibrium constant was determined at temperatures in the range of 287-319 K...

  9. Chirped-pulsed FTMW spectra of valeric acid, 5-aminovaleric acid, and δ-valerolactam: A study of amino acid mimics in the gas phase (United States)

    Bird, Ryan G.; Vaquero-Vara, Vanesa; Zaleski, Daniel P.; Pate, Brooks H.; Pratt, David W.


    The lowest energy conformations of valeric acid (VA) and δ-valerolactam (DVL) were determined using chirped-pulsed Fourier transform microwave spectroscopy. DVL was produced by heating 5-aminovaleric acid (AVA) in a metal nozzle. A study of the reaction pathway leading to DVL identified the preferred structure of AVA and demonstrated that an n → π* interaction plays the key role in the transformation of reactant into product. An inverse kinetic isotope effect was detected for this process. Additionally, the spectra of single and double water complexes of DVL along with the 13C and 15N-substituted species (in natural abundance) were collected and analyzed.

  10. DFT and PM3 Computational Studies of the Reaction Mechanism of the Oxidation of L-Tyrosine by Iodine in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Gideon A. Shallangwa


    Full Text Available Abstract - The oxidation of L-Tyrosine by molecular iodine was studied using semi-empirical and density functional theory methods. Molecular information such as net charges, values of frontier orbital energies, composition, proportions and bonding contribution were obtained and analyzed. Thus, possible reactive sites were proposed and the reaction mechanism was postulated. The postulated transition states, intermediates and products were also computed using the PM3 and DFT methods. Computed enthalpies of the oxidation reaction at standard conditions for the PM3 and DFT calculation were 216.97 kJ/mol and -36327404.72 kJ/mol respectively. The calculated ΔGo andΔSo, for the transition states according to the DFT model were both large and negative indicating that the processes were exergonic associative substitution reactions.

  11. Modelling Studies With a Coupled Canopy Atmospheric Chemistry Emission Model on Trace Gas Exchange and Gas Phase Chemistry in a Norway Spruce Forest (United States)

    Forkel, R.; Klemm, O.; Graus, M.; Rappengl{Ü}Ck, B.; Stockwell, W. R.; Grabmer, W.; Held, A.; Hansel, A.; Steinbrecher, R.


    Within the joint project BEWA2000 modelling studies were performed in combination with field campaigns in a Norway spruce forest at the Waldstein site in NE Bavaria. Although located in a comparatively remote region the Waldstein site is still affected by a certain background of anthropogenic pollution which can influence BVOC degradation and product formation. The role of chemical degradation of biogenic volatile organic compounds and the effect of dynamical processes on BVOC and product mixing ratios within and above forest canopies have been investigated by applying the one-dimensional canopy-chemistry model CACHE. The simulations with CACHE permit the interpretation of observed features of the diurnal cycles of ozone and VOC mixing ratios by investigating the effect of turbulent exchange, chemical formation and degradation, emission, and deposition during the course of the day. For the conditions given at the Waldstein site chemical BVOC degradation within the canopy was found to reduce the BVOC fluxes into the atmosphere by 10 - 15 % as compared to the emission fluxes on branch basis. Furthermore, the simulations show that BVOC degradation by the NO3 can occur in the lower part of the canopy also during daytime and that this effect is strongly influenced by the presence of advected NOx and local NO emissions from the soil. The simulation results emphasize the role of deposition for the concentrations of BVOC oxidation products and indicate that further research is still necessary concerning the emission and deposition of aldehydes and ketones.

  12. [Secondary Structure of Aβ(1-16) Complexes with Zinc: A Study in the Gas Phase Using Deuterium/Hydrogen Exchange and Ultra-High-Resolution Mass Spectrometry]. (United States)

    Kostyukevich, Yu I; Kononikhin, A S; Indeykina, M I; Popov, I A; Bocharov, K V; Spassky, A I; Kozin, S A; Makarov, A A; Nikolaev, E N


    Complexes of peptide fragment 1-16 of beta-amyloid with transition metals play an important role in the development of a broad class of neurodegenerative diseases, which determines the interest in investigating the structures of these complexes. In this work, we have applied the method of the deuterium/hydrogen exchange in combination with ultra-high-resolution mass spectrometry to study conformational changes in (1-16) beta-amyloid peptide induced by binding of zinc(II) atoms. The efficiency of the deuterium/hydrogen exchange depended on the number of zinc atoms bound to the peptide and on the temperature of the ionization source region. Deuterium/hydrogen exchange reactions have been performed directly in the ionization source. The number of exchanges decreased considerably with an increasing numbers of zinc atoms. The relationship has been described with a damped exponential curve, which indicated that the binding of zinc atoms altered the conformation of the peptide ion by making it less open, which limits the access to inner areas of the molecule.

  13. Kinetic and Mechanistic Studies for the Gas-phase Reaction of Ozone with 2, 3-Dimethyl-2-Butene and 1, 3-Butadiene

    Directory of Open Access Journals (Sweden)

    Ismael Abdulsatar AL Mulla


    Full Text Available The reactions of ozone with 2,3-Dimethyl-2-Butene (CH32C=C(CH32 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides and give a good information for the effect of the methyl group on the degradation pathways. The results have been discussed from the view point of their importance in the atmospheric oxidation of these pollutants.


    Energy Technology Data Exchange (ETDEWEB)

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio, E-mail: [Departamento de Quimica Fisica y Quimica Inorganica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)


    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  15. Studies of the gas phase reactions of linalool, 6-methyl-5-hepten-2-ol and 3-methyl-1-penten-3-ol with O3 and OH radicals. (United States)

    Bernard, François; Daële, Véronique; Mellouki, Abdelwahid; Sidebottom, Howard


    The reactions of three unsaturated alcohols (linalool, 6-methyl-5-hepten-2-ol, and 3-methyl-1-penten-3-ol) with ozone and OH radicals have been studied using simulation chambers at T ∼ 296 K and P ∼ 760 Torr. The rate coefficient values (in cm(3) molecule(-1) s(-1)) determined for the three compounds are linalool, k(O3) = (4.1 ± 1.0) × 10(-16) and k(OH) = (1.7 ± 0.3) × 10(-10); 6-methyl-5-hepten-2-ol, k(O3) = (3.8 ± 1.2) × 10(-16) and k(OH) = (1.0 ± 0.3) × 10(-10); and 3-methyl-1-penten-3-ol, k(O3) = (5.2 ± 0.6) × 10(-18) and k(OH) = (6.2 ± 1.8) × 10(-11). From the kinetic data it is estimated that, for the reaction of O(3) with linalool, attack at the R-CH═C(CH(3))(2) group represents around (93 ± 52)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the overall reaction, with reaction at the R-CH═CH(2) group accounting for about (1.3 ± 0.5)% (k(3-methyl-1-penten-3-ol)/k(linalool)). In a similar manner it has been calculated that for the reaction of OH radicals with linalool, attack of the OH radical at the R-CH═C(CH(3))(2) group represents around (59 ± 18)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the total reaction, while addition of OH to the R-CH═CH(2) group is estimated to be around (36 ± 6)% (k(3-methyl-1-penten-3-ol)/k(linalool)). Analysis of the products from the reaction of O(3) with linalool confirmed that addition to the R-CH═C(CH(3))(2) group is the predominant reaction pathway. The presence of formaldehyde and hydroxyacetone in the reaction products together with compelling evidence for the generation of OH radicals in the system indicates that the hydroperoxide channel is important in the loss of the biradical [(CH(3))(2)COO]* formed in the reaction of O(3) with linalool. Studies on the reactions of O(3) with the unsaturated alcohols showed that the yields of secondary organic aerosols (SOAs) are higher in the absence of OH scavengers compared to the yields in their presence. However, even under low-NO(X) concentrations, the

  16. Frequency metrology of a photomixing source for gas phase spectroscopy (United States)

    Hindle, Francis; Mouret, Gael; Yang, Chun; Cuisset, Arnaud; Bocquet, Robin; Lours, Michel; Rovera, Daniele


    The availability of frequency combs has opened new possibilities for the measurement of optical frequencies. Photomixing is an attractive solution for high resolution THz spectroscopy of gases due to the narrow spectral resolution and ability to access the 100 GHz to 3.5 THz range. One limitation of present photomixing spectrometers is the accuracy with which the THz frequency is established. Measurement of the centre frequency gas phase molecular transitions requires an accuracy better than 100 kHz in order to allow spectroscopic constants to be determined. Standard optical techniques like those employed in wavelength meters can only provide accuracies in the order of 50 MHz. We have used a turnkey fibre based frequency comb and a standard photomixing configuration to realize a THz synthesizer with an accuracy of around 50kHz. Two ECDLs used to pump the photomixer are phase locked onto the frequency comb and provide a tuning range of 10 MHz. In order to extend the tuning range an additional phase locked ECLD has been added to obtain a range in excess of 100 MHz. The absorption profiles of many Doppler limited transitions of carbonyl sulphide and formaldehyde have been measured to validate this instrument.

  17. Electron-induced damage of biotin studied in the gas phase and in the condensed phase at a single-molecule level (United States)

    Keller, Adrian; Kopyra, Janina; Gothelf, Kurt V.; Bald, Ilko


    Biotin is an essential vitamin that is, on the one hand, relevant for the metabolism, gene expression and in the cellular response to DNA damage and, on the other hand, finds numerous applications in biotechnology. The functionality of biotin is due to two particular sub-structures, the ring structure and the side chain with carboxyl group. The heterocyclic ring structure results in the capability of biotin to form strong intermolecular hydrogen and van der Waals bonds with proteins such as streptavidin, whereas the carboxyl group can be employed to covalently bind biotin to other complex molecules. Dissociative electron attachment (DEA) to biotin results in a decomposition of the ring structure and the carboxyl group, respectively, within resonant features in the energy range 0-12 eV, thereby preventing the capability of biotin for intermolecular binding and covalent coupling to other molecules. Specifically, the fragment anions (M-H)-, (M-O)-, C3N2O-, CH2O2-, OCN-, CN-, OH- and O- are observed, and exemplarily the DEA cross section of OCN- formation is determined to be 3 × 10-19 cm2. To study the response of biotin to electrons within a complex condensed environment, we use the DNA origami technique and determine a dissociation yield of (1.1 ± 0.2) × 10-14 cm2 at 18 eV electron energy, which represents the most relevant energy for biomolecular damage induced by secondary electrons. The present results thus have important implications for the use of biotin as a label in radiation experiments.

  18. Kinetic study of the gas-phase reactions of chlorine atoms with 2-chlorophenol, 2-nitrophenol, and four methyl-2-nitrophenol isomers. (United States)

    Bejan, Iustinian; Duncianu, Marius; Olariu, Romeo; Barnes, Ian; Seakins, Paul W; Wiesen, Peter


    Anthropogenic activities are the main source of nitrophenols and chlorophenols in the atmosphere. Nitro and chlorophenols have a high potential to form ozone and secondary organic aerosol, thus investigations on the major photo oxidation pathways of these compounds are important to assess their contribution to urban air pollution and human health. Presented here are rate coefficients determined at atmospheric pressure and (298 ± 2) K using a relative kinetic method for the reactions of chlorine atoms with 2-chlorophenol (2ClP), 2-nitrophenol (2NP) and four methyl-2-nitrophenol (2-nitrocresol, nM2NP (n = 3,4,5,6)) isomers. The following rate coefficients (in units of cm(3) molecule(-1) s(-1)) have been obtained: (5.9 ± 1.5) × 10(-12) for 2ClP, (6.8 ± 2.3) × 10(-12) for 2NP, and (14.0 ± 4.9) × 10(-11), (4.3 ± 1.5) × 10(-11), (1.94 ± 0.67) × 10(-11) and (2.68 ± 0.75) × 10(-11) for the four methyl-2-nitrophenol isomers 3M2NP, 4M2NP, 5M2NP, and 6M2NP, respectively. This study represents the first kinetic investigation for the reaction of chlorine atoms with all the nitrophenols. In addition, to assist in the interpretation of the results, rate coefficients for the reactions of Cl atoms with the cresol ortho, meta, and para isomers have been determined for the first time. The rate coefficient for the reaction with 2ClP is in good agreement with previous data and the relative reactivity of 2NP, 4M2NP, 5M2NP, and 6M2NP can be rationalized based on known substituent effects. The rate coefficient for 3M2NP is anomalously large; the observation of significant NO2 production in only this reaction suggests that an ipso substitution mechanism is the cause of the enhanced reactivity.

  19. Soft X-ray photoemission spectroscopy of selected neurotransmitters in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Maris, Assimo; Melandri, Sonia; Evangelisti, Luca; Caminati, Walther [Dipartimento di Chimica ' G. Ciamician' dell' Universita, Via Selmi 2, I-40126 Bologna (Italy); Giuliano, Barbara M. [Departamento de Quimica da Universidade de Coimbra, 3004-535 Coimbra (Portugal); Plekan, Oksana [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); Feyer, Vitaliy [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); Electronic Properties (PGI-6), Peter Gruenberg Institute, Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse, 52428 Juelich (Germany); Richter, Robert [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); Coreno, Marcello [CNR-IMIP, Montelibretti, I-00016 Rome (Italy); Prince, Kevin C., E-mail: [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); CNR-IOM, Laboratorio TASC, I-34149 Basovizza, Trieste (Italy)


    Highlights: Black-Right-Pointing-Pointer Neurotransmitter molecules. Black-Right-Pointing-Pointer Photoelectron spectroscopy. Black-Right-Pointing-Pointer Electronic structure. Black-Right-Pointing-Pointer Weak hydrogen bonding. -- Abstract: The valence molecular orbitals and core levels of tyramine, tryptamine and tryptophol in the gas phase have been studied using X-ray photoelectron spectroscopy (XPS) and theoretical methods. The energies of the outer valence region spectrum are found to be in agreement with previously reported He I spectra, while new data on the inner valence molecular orbitals are reported. The structures in the carbon, nitrogen and oxygen core level spectra of these molecules have been identified and assigned. These compounds are characterised by conformers with hydrogen bonding in which the {pi} systems of the phenol and indole groups act as hydrogen acceptors, but a spectroscopic signature of this hydrogen bond was not observed. This is in contrast with our previous spectra of amino acids, where conformers with specific hydrogen bonding showed strong effects in core level spectra. We attribute the difference to the weaker strength of the {pi}-hydrogen bonding.

  20. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)


    . 1. Introduction. Time resolved spectroscopy is an important tool for study- ing energy and charge transfer processes, coupling of electronic and vibrational degrees of freedom, vibrational and conformational relaxation, isomerization, etc. The.

  1. Closed-cage tungsten oxide clusters in the gas phase. (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan


    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  2. Inhibition of urinary calculi -- a spectroscopic study (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis


    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.


    African Journals Online (AJOL)

    Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both n (CN) and n (CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...


    African Journals Online (AJOL)

    Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close proximity of the Van Vleck values. IR studies suggest the coordination of the ligand is through the azomethine, the phenolic oxygen atom and the carbonyl oxygen of the hydrazonic moiety. The nitrate ion is also ...

  5. Synthesis, spectroscopic, electrochemical and luminescence studies ...

    Indian Academy of Sciences (India)


    with hydrazine to form its N2 complex which is of great interest in the chemistry of N2 fixation. Triazoles are also the subject of extensive studies in view of their synthetic properties and other theoretical aspects 9. Ruthenium (II) polypyridyl complexes have opened a new door for enthusiastic researchers since they act as ...

  6. IR spectroscopic techniques to study isolated biomolecules

    NARCIS (Netherlands)

    Rijs, A.M.; Oomens, J.; Rijs, A.M.; Oomens, J.


    The combination of mass spectrometry, infrared action spectroscopy and quantum-chemical calculations provides a variety of approaches to the study of the structure of biologically relevant molecules in vacuo. This chapter reviews some of the experimental methods that are currently in use, which can

  7. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar


    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation


    Directory of Open Access Journals (Sweden)

    Carmen Mihaela Topală


    Full Text Available The application of sea buckthorn oil is to incorporate the oil into foodstuffs such as milk, yoghurt, cheese, butter, juice and snacks which represents new opportunities for food manufacturers, food supplements and nutraceuticals providing nutritional supports. The FTIR spectroscopy is a powerful technique for assessing food production and studied materials provides fundamental information on the behavior of the spectral metabolites and bio product. The extracts were studied from two varieties of sea buckthorn oil Pitesti I and II. Oil obtained from peel and seeds by the Soxhlet extraction with hexane solvent and CO2 supercriticalwas analyzed by FTIR spectroscopy. The concentration of fatty acids in oil extracted from seeds and peels was similar in both extraction techniques.

  9. Spectroscopic analysis of bones for forensic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tofanelli, Mirko [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy); Pardini, Lorenzo [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Borrini, Matteo [Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool (United Kingdom); Bartoli, Fulvio; Bacci, Alessandra [Department of Biology, University of Pisa, Via A. Volta, 4, 56126 Pisa (Italy); D’Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy); Holanda Cavalcanti, Gildo de [Instituto de Fìsica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no Campus da Praia Vermelha, CEP 24210-346, Niterói, Rio de Janeiro (Brazil); Lezzerini, Marco [Department of Earth Sciences, University of Pisa, Via Santa Maria, 53, 56126 Pisa (Italy); Palleschi, Vincenzo, E-mail: [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy)


    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied. - Highlights: • The LIBS analysis of (animal) bones is presented, to establish its feasibility for forensic studies. • Untreated bones and bones subjected to high temperatures (boiled, burned) were analyzed. • A simple calibration, using a single reference sample, gave reasonable quantitative results. • The comparison of the results demonstrates that LIBS analysis can provide nutritional information. • The nutritional information obtained are the same on untreated, boiled and burned bones.

  10. Spectroscopic analysis of bones for forensic studies

    International Nuclear Information System (INIS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D’Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; Holanda Cavalcanti, Gildo de; Lezzerini, Marco; Palleschi, Vincenzo


    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied. - Highlights: • The LIBS analysis of (animal) bones is presented, to establish its feasibility for forensic studies. • Untreated bones and bones subjected to high temperatures (boiled, burned) were analyzed. • A simple calibration, using a single reference sample, gave reasonable quantitative results. • The comparison of the results demonstrates that LIBS analysis can provide nutritional information. • The nutritional information obtained are the same on untreated, boiled and burned bones

  11. Nonlinear spectroscopic studies of interfacial molecular ordering

    International Nuclear Information System (INIS)

    Superfine, R.


    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs

  12. Spectroscopic studies of silver boro tellurite glasses (United States)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.


    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  13. Spectroscopic studies of silver boro tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ramesh, E-mail:; Kumari, K. Rajani, E-mail:; Rao, B. Appa, E-mail:; Bhikshamaiah, G., E-mail: [Department of Physics, Osmania University, Hyderabad-500007 (India)


    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  14. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia


    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  15. Spectroscopic Studies of the Nucleus GOLD-195 (United States)

    Fischer, Susan Marie

    The nucleus ^{195}Au has been studied via in-beam gamma -ray and electron spectroscopy with the reactions ^{196}Pt(p,2n)^ {195}Au at beam energies of 12 and 16 MeV, and the reaction ^{rm nat }Ir(alpha,2n) ^{195}Au at a beam energy of 26 MeV. All experiments were performed at the University of Notre Dame tandem accelerator facility and utilized elements of the University of Pittsburgh multi-detector gamma-array and ICEBall mini-orange electron spectrometer. Fifty-five new transitions and thirty-six new energy levels have been observed. The U(6/4) supersymmetric algebra has been proposed to provide a simultaneous description for the positive parity states of the pair of nuclei ^{194 }Pt and ^{195}Au. The observed energy spectra for these nuclei show satisfactory agreement with the U(6/4) predicted spectra. The collective properties including relative B(E2) values for the Pt and Au nuclei in this mass region are also consistent with theoretical predictions. However, the measured E2/M1 mixing ratios for transitions in ^{195} Au indicate that the single particle description for the odd-A nucleus is incomplete. The new data for ^{195}Au is further combined with the existing data for ^{194} Pt and ^{195}Pt within the context of the larger U_{ nu}(6/12) otimes U_{pi}(6/4) supersymmetry. A consistent fit to the energy eigenvalue equation is obtained and a modified prediction for the negative parity states in the odd-odd nucleus ^{196} Au is made. Thus, the proposal of an underlying supersymmetry for the quartet of nuclei ^ {194}Pt-^{195} Pt-^{195}Au- ^{196}Au also appears valid. New transitions and levels involved in the negative parity h_{11/2} decoupled band in ^{195}Au have also been observed. The band appears to be much more fragmented at high spins than the analogous structures in the lighter odd-A Au nuclei, but it is unclear what the source of this difference is. It is, however, proposed that a consistent description for both the positive and negative parity

  16. Comparison of catalytic ethylene polymerization in slurry and gas phase

    NARCIS (Netherlands)

    Daftaribesheli, Majid


    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different

  17. Axial Dispersion and Back-mixing of Gas Phase in Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rahman Al-Musafir


    Full Text Available Despite the worldwide attended of pebble bed reactors (PBRs, there is a lack of fundamental understanding of the complex flow pattern. In this work, the non-ideal flow behavior of the gas phase which is used for cooling has been investigated experimentally in a 0.3 m diameter pebble bed. The extent of mixing and dispersion of the gas phase has been qualified. The effect of gas velocity on the axial dispersion has been investigated with range from 0.05 to 0.6 m/s covering both the laminar and turbulent flow regimes. Glass bead particles of 1.2 cm diameter and 2.5 gm/cm3 which is randomly and closely packed have been used to mimic the pebbles. An advanced gas tracer technique was applied to measure the residence time distribution (RTD of gas phase using impulse tracer. The axial dispersion coefficients of gas phase in the studied pebble bed have been estimated using the axial dispersion model (ADM. It was found that the flow pattern of the gas phase deviates from plug flow depending on the superficial gas velocity. The results showed that the dispersion of the gas reduces as the gas velocity and Reynolds numbers increased.

  18. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)


    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  19. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)


    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  20. Structures and vibrational spectra of SO(n)(p-) sulfur oxides, MSO(n)(-) anions, and MSO(n), M2SO(n) salts in the gas phase (n = 1-3; p = 0-2; M = Li, Na, K). A density functional theory study. (United States)

    Bruna, Pablo J; Grein, Friedrich


    This theoretical study focuses on geometries, vibrational spectra, charge distributions, electron affinities, and reaction energies for SO(n)(p-) anions and alkali salts MSO(n)(-), M(1,2)SO(n) in the gas phase (n = 1-3; p = 0-2; M = Li-K). Most of our data for compounds with the S oxidation states 0, 2, and 4 are new in the literature. The bulk of the results are obtained at the B3PW91 level, with CCSD(T)=FC calculations carried out for relative energy calibrations; the 6-311+G(3df) basis set is used throughout. The formation of contact ion pairs is prevalent; they are of type: (i) M(+)(SO(n)(-)) for the π-radicals MSO, MSO(2), MSO(3) of doublet multiplicity; (ii) (M(+))(2)(SO(n)(2-)) for M(2)SO, M(2)SO(2), M(2)SO(3) in their singlet ground states; and (iii) M(ns)(SO(n)(-)) for the radicals MSO(-), MSO(2)(-), MSO(3)(-) in their triplet states. When isolated in matrices, M(2)SO and M(2)SO(2) will facilitate the spectroscopic study of the little known SO(2-) and SO(2)(2-) ions. Divalent M(2)SO(n) salts, due to their large dipole moments, should be highly soluble in polar solvents, first dissociating into MSO(n)(-) + M(+) products. For MSO(3), bidentate coordination OS(O(2)M) is preferred over tridentate S(O(3)M) binding. We confirm that all MSO(2) molecules are planar, at variance with an ESR study assigning to NaSO(2) a nonplanar structure. This study partially support the assignment of an experimental frequency at 918.2 cm(-1) (932 cm(-1), calculated) to the antisymmetric ν(a)(SO) mode of the elusive sulfoxilate ion, SO(2)(2-). A definitive identification, however, would require to record the vibrational spectrum below 800 cm(-1) (apparently not done in the original work) because the missing symmetric ν(s)(SO) mode is here found to lie around 760 cm(-1), exhibiting high intensity in both IR and Raman spectra.

  1. Photoresponse of the protonated Schiff-base retinal chromophore in the gas phase

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahbek, Dennis Bo; Kiefer, H V


    The fragmentation, initiated by photoexcitation as well as collisionally-induced excitation, of several retinal chromophores was studied in the gas phase. The chromophore in the protonated Schiff-base form (RPSB), essential for mammalian vision, shows a remarkably selective photoresponse. The sel......The fragmentation, initiated by photoexcitation as well as collisionally-induced excitation, of several retinal chromophores was studied in the gas phase. The chromophore in the protonated Schiff-base form (RPSB), essential for mammalian vision, shows a remarkably selective photoresponse...... modifications of the chromophore. We propose that isomerizations play an important role in the photoresponse of gas-phase retinal chromophores and guide internal conversion through conical intersections. The role of protein interactions is then to control the specificity of the photoisomerization in the primary...

  2. Oxidative potential of gas phase combustion emissions - An underestimated and potentially harmful component of air pollution from combustion processes (United States)

    Stevanovic, S.; Vaughan, A.; Hedayat, F.; Salimi, F.; Rahman, M. M.; Zare, A.; Brown, R. A.; Brown, R. J.; Wang, H.; Zhang, Z.; Wang, X.; Bottle, S. E.; Yang, I. A.; Ristovski, Z. D.


    The oxidative potential (OP) of the gas phase is an important and neglected aspect of environmental toxicity. Whilst prolonged exposure to particulate matter (PM) associated reactive oxygen species (ROS) have been shown to lead to negative health effects, the potential for compounds in gas phase to cause similar effects is yet to be understood. In this study we describe: the significance of the gas phase OP generated through vehicle emissions; discuss the origin and evolution of species contributing to measured OP; and report on the impact of gas phase OP on human lung cells. The model aerosol for this study was exhaust emitted from a Euro III Common-rail diesel engine fuelled with different blends of diesel and biodiesel. The gas phase of these emissions was found to be potentially as hazardous as the particle phase. Fuel oxygen content was found to negatively correlate with the gas phase OP, and positively correlate with particle phase OP. This signifies a complex interaction between reactive species present in gas and particle phase. Furthermore, this interaction has an overarching effect on the OP of both particle and gas phase, and therefore the toxicity of combustion emissions.

  3. Sugar Synthesis from a Gas-Phase Formose Reaction (United States)

    Jalbout, Abraham F.; Abrell, Leif; Adamowicz, Ludwik; Polt, Robin; Apponi, A. J.; Ziurys, L. M.


    Prebiotic possibilities for the synthesis of interstellar ribose through a protic variant of the formose reaction under gas-phase conditions were studied in the absence of any known catalyst. The ion-molecule reaction products, diose and triose, were sought by mass spectrometry, and relevant masses were observed. Ab initio calculations were used to evaluate protic formose mechanism possibilities. A bilateral theoretical and experimental effort yielded a physical model for glycoaldehyde generation whereby a hydronium cation can mediate formaldehyde dimerization followed by covalent bond formation leading to diose and water. These results advance the possibility that ion-molecule reactions between formaldehyde (CH2O) and H3O+ lead to formose reaction products and inform us about potential sugar formation processes in interstellar space.

  4. Radiation polymerization of tetrafluoroethylene in gas-phase

    International Nuclear Information System (INIS)

    Enslin, S.E.; Schnautz, N.G.; Van der Ende, E.


    The radiation polymerization of tetrafluoroethylene in gas-phase was studied over a temperature range of -80 to 200 degrees Celsius and an irradiation dose-rate of 0,30 to 10,8 kGy h sup(-1). The rate of polymerization was observed during the course of the polymerization process, to be a zero-order function of monomer pressure. However, the rate of polymerization was profoundly influenced by the initial monomer pressure, in this case exhibiting a 4,6-order dependence. The rate of polymerization was also observed to exhibit a 0,36-order dependence on radiation intensity. Both the rate of polymerization and the molecular mass of the product, polytetrafluoroethylene, reached maximum values over the temperature range of 90 to 150 degrees Celsius. The activation energy for the polymerization process was determined to be 8,7 kJ mol sup(-1) over the temperature range of -80 to 90 degrees Celsius

  5. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.


    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  6. Acrolein Production by Gas-Phase Glycerol Dehydration Using PO₄/Nb₂O5 Catalysts. (United States)

    Lee, Kyu Am; Ryoo, HeeKyoung; Ma, Byung Chol; Kim, Youngchul


    In this study, modified niobium oxide were prepared to study the addictive effects on the catalytic performance for gas-phase glycerol dehydration. The catalysts were characterized by N2 adsorption/desorption, XRD, NH3-TPD, FT-IR. The amount of phosphoric acid was up to 50 wt% in niobium. As a result, the highest glycerol conversion was achieved over 20 wt% PO4/Nb2O5. It indicates that the optimal amount of phosphoric acid leads the catalyst to have appropriate acidity which is an important factor for gas-phase glycerol dehydration.

  7. Weighted averaging in spectroscopic studies improves statistical power


    Miller, JJ; Cochlin, L; Clarke, K; Tyler, D


    Purpose In vivo MRS is often characterized by a spectral signal‐to‐noise ratio (SNR) that varies highly between experiments. A common design for spectroscopic studies is to compare the ratio of two spectral peak amplitudes between groups, e.g. individual PCr/γ‐ATP ratios in 31P‐MRS. The uncertainty on this ratio is often neglected. We wished to explore this assumption. Theory The canonical theory for the propagation of uncertainty on the ratio of two spectral peaks and its incorporation in th...

  8. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films (United States)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans


    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  9. Gas-phase reactions of the bare Th2+ and U2+ ions with small alkanes, CH4, C2H6, and C3H8: experimental and theoretical study of elementary organoactinide chemistry. (United States)

    Di Santo, Emanuela; Santos, Marta; Michelini, Maria C; Marçalo, Joaquim; Russo, Nino; Gibson, John K


    The gas-phase reactions of two dipositive actinide ions, Th(2+) and U(2+), with CH(4), C(2)H(6), and C(3)H(8) were studied by both experiment and theory. Fourier transform ion cyclotron resonance mass spectrometry was employed to study the bimolecular ion-molecule reactions; the potential energy profiles (PEPs) for the reactions, both observed and nonobserved, were computed by density functional theory (DFT). The experiments revealed that Th(2+) reacts with all three alkanes, including CH(4) to produce ThCH(2)(2+), whereas U(2+) reacts with C(2)H(6) and C(3)H(8), with different product distributions than for Th(2+). The comparative reactivities of Th(2+) and U(2+) toward CH(4) are well explained by the computed PEPs. The PEPs for the reactions with C(2)H(6) effectively rationalize the observed reaction products, ThC(2)H(2)(2+) and UC(2)H(4)(2+). For C(3)H(8) several reaction products were experimentally observed; these and additional potential reaction pathways were computed. The DFT results for the reactions with C(3)H(8) are consistent with the observed reactions and the different products observed for Th(2+) and U(2+); however, several exothermic products which emerge from energetically favorable PEPs were not experimentally observed. The comparison between experiment and theory reveals that DFT can effectively exclude unfavorable reaction pathways, due to energetic barriers and/or endothermic products, and can predict energetic differences in similar reaction pathways for different ions. However, and not surprisingly, a simple evaluation of the PEP features is insufficient to reliably exclude energetically favorable pathways. The computed PEPs, which all proceed by insertion, were used to evaluate the relationship between the energetics of the bare Th(2+) and U(2+) ions and the energies for C-H and C-C activation. It was found that the computed energetics for insertion are entirely consistent with the empirical model which relates insertion efficiency to the

  10. Formation of 9,10-phenanthrenequinone by atmospheric gas-phase reactions of phenanthrene (United States)

    Wang, Lin; Atkinson, Roger; Arey, Janet

    Phenanthrene is a 3-ring polycyclic aromatic hydrocarbon which exists mainly in the gas-phase in the atmosphere. Recent concern over the presence of 9,10-phenanthrenequinone in ambient particles led us to study the products of the gas-phase reactions of phenanthrene with hydroxyl radicals, nitrate radicals and ozone. The formation yields of 9,10-phenanthrenequinone were measured to be ˜3%, 33±9%, and ˜2% from the OH radical, NO 3 radical and O 3 reactions, respectively. Calculations suggest that daytime OH radical-initiated and nighttime NO 3 radical-initiated reactions of gas-phase phenanthrene may be significant sources of 9,10-phenanthrenequinone in ambient atmospheres. In contrast, the ozone reaction with phenanthrene is unlikely to contribute significantly to ambient 9,10-phenanthrenequinone.

  11. Molecular structure and conformational composition of 1,3-dihydroxyacetone studied by combined analysis of gas-phase electron diffraction data, rotational constants, and results of theoretical calculations. Ideal gas thermodynamic properties of 1,3-dihydroxyacetone. (United States)

    Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V


    The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.

  12. Visible and ultraviolet spectroscopy of gas phase protein ions. (United States)

    Antoine, Rodolphe; Dugourd, Philippe


    Optical spectroscopy has contributed enormously to our knowledge of the structure and dynamics of atoms and molecules and is now emerging as a cornerstone of the gas phase methods available for investigating biomolecular ions. This article focuses on the UV and visible spectroscopy of peptide and protein ions stored in ion traps, with emphasis placed on recent results obtained on protein polyanions, by electron photodetachment experiments. We show that among a large number of possible de-excitation pathways, the relaxation of biomolecular polyanions is mainly achieved by electron emission following photo-excitation in electronically excited states. Electron photodetachment is a fast process that occurs prior to relaxation on vibrational degrees of freedom. Electron photodetachment yield can then be used to record gas phase action spectra for systems as large as entire proteins, without the limitation of system size that would arise from energy redistribution on numerous modes and prevent fragmentation after the absorption of a photon. The optical activity of proteins in the near UV is directly related to the electronic structure and optical absorption of aromatic amino acids (Trp, Phe and Tyr). UV spectra for peptides and proteins containing neutral, deprotonated and radical aromatic amino acids were recorded. They displayed strong bathochromic shifts. In particular, the results outline the privileged role played by open shell ions in molecular spectroscopy which, in the case of biomolecules, is directly related to their reactivity and biological functions. The optical shifts observed are sufficient to provide unambiguous fingerprints of the electronic structure of chromophores without the requirement of theoretical calculations. They constitute benchmarks for calculating the absorption spectra of chromophores embedded in entire proteins and could be used in the future to study biochemical processes in the gas phase involving charge transfer in aromatic amino acids

  13. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.


    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  14. Gas phase THz spectroscopy of toxic agent simulant compounds using the AILES synchrotron beamline (United States)

    Cuisset, A.; Smirnova, I.; Bocquet, R.; Hindle, F.; Mouret, G.; Yang, C.; Pirali, O.; Roy, P.


    A new study is currently underway aiming at recording and assigning the gas phase rovibrational spectra of several organophosphorus and organosulphur compounds in the THz frequency domain. Thanks to the exceptional properties of flux, brilliance and spectral range of the AILES beamline coupled to the FTIR spectrometer, the gas phase vibrational spectra of low volatility organophosphorous compounds have been recorded across the entire THz frequency range. High resolution FTIR spectroscopy was used to record the pure rotational and the low-frequency rovibrational spectrum of DMSO. A comparison between the spectra measured with the AILES beamline and the spectra obtained with optoelectronic THz sources is possible.

  15. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B


    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  16. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B


    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  17. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)


    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  18. Spectroscopic Studies on Complex Formation of U(VI)-thiosalicylate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, Hye Ryun; Park, Kyoung Kyun; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The dynamic interaction between radionuclides and organic ligands is largely dependent on the composition of functional groups in a ligand chemical structure. Therefore, the structural mimics of natural ligands possessing specific functional groups, such as hydroxy, phenol, carboxyl, thiol and amine groups, have been studied to understand their influence on the migration of radionuclides including actinide species under geological groundwater conditions. In previous studies, we demonstrated that the fraction of hydrolyzed U(VI) species occurring in weak acidic solutions (pH {approx}4.5) is significantly influenced by the presence of salicylate (Sal) ligand due to the simultaneous participation of both phenol and carboxyl groups in the formation of U(VI)-complexes. Thiosalicylic acid (TSalH{sub 2}) is a good model compound for studying the effects of both carboxyl and thiol (-SH) groups. The fraction of di-anionic ligand form (TSal{sup 2-}) is higher at near neutral pH due to the lower pKa ({approx} 8) of the thiol group than the case of salicylic acid (pKa, {approx}13 for salicylic -OH), despite the structural similarity. In addition, the redox capability of the thiol group is expected to influence the reducible radiouclides and the chemical structures of natural ligands by creating cross-linkage (-S-S-) upon oxidation. The goal of the present study is to investigate aqueous U(VI)-TSal complexation equilibrium via laser-based spectroscopic techniques including time resolved laser-induced fluorescence spectroscopy (TRLFS). In this preliminary work, we report the results of spectroscopic studies using conventional UVVis absorbance and fluorescence (FL) measurement methods. The photo-stability of U(VI)-TSal complex or ligand itself upon exposure to a series of laser pulses is estimated by monitoring the change in their absorption bands. Additionally, TSal FL-quenching effect by U(VI) ions is discussed in comparison with that of Sal FL-quenching

  19. Spectroscopic studies on the photochemical decarboxylation mechanisms of synthetic pyrethroids. (United States)

    Suzuki, Yusuke; Ishizaka, Shoji; Kitamura, Noboru


    A novel radical trapping technique combined with a fluorescence spectroscopic analysis has been employed to investigate the radical intermediates produced by photodecarboxylation of four synthetic pyrethroids: fenvalerate (SMD), fenpropathrin (DTL), cyphenothrin (GKL), and cypermethrin (AGT). Under photoirradiation at >290 nm, all pyrethroids underwent direct photolysis via homolytic cleavage of the carbon-oxygen bonds in the ester groups. The consumed amount of a nitroxide free radical, as a trapping agent for the intermediate radical of a pyrethroid, was determined by ESR, which was the measure of the reaction yield of a photochemically generated α-cyano-3-phenoxybenzyl radical common to all pyrethroids. The reactivities of the pyrethroids studied was in the sequence of SMD > DTL > GKL > AGT. Furthermore, nanosecond transient absorption spectroscopy demonstrated that geminate recombination of the radical pair within a solvent cage is the main deactivation route of the photochemically generated α-cyano-3-phenoxybenzyl radical common for all pyrethroids studied.

  20. [Raman spectroscopic study on silicone fluid as pressure gauge]. (United States)

    Liu, Jin; Sun, Qiang


    Within a diamond-anvil cell, the in-situ Raman spectroscopic study of silicone fluid was operated at room temperature 298. 1 K and under pressures from 0.1 to 5140.2 MPa. The present study analyzed the correlation of the modes 2906 and 2967 cm(-1) with different pressures, indicating that their wavenumbers linearly increased with increasing pressure. Therefore, this provided the potential to consider the pressure medium silicone fluid as a pressure gauge. The result suggested that silicone fluid could be used as a reliable pressure gauge in high-pressure experiments using diamond-anvil cells with Raman spectrometer, and the correlations between pressure and (delta nu p)2906, (delta nu p)2967 are, p = -0.05[(delta nu p)2967]2 + 73.07 (delta nu p)2967 + 91.54 and p = 0.14 [(delta nu p)2906]2 + 81.9 (delta nu p)2906 + 92.01, respectively.

  1. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.


    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  2. Gas-phase salt bridge interactions between glutamic acid and arginine

    NARCIS (Netherlands)

    Jaeqx, S.; Oomens, J.; Rijs, A.M.


    The gas-phase side chain-side chain (SC-SC) interaction and possible proton transfer between glutamic acid (Glu) and arginine (Arg) residues are studied under low-temperature conditions in an overall neutral peptide. Conformation-specific IR spectra, obtained with the free electron laser FELIX, in

  3. Gas-phase photoemission with soft x-rays: cross sections and angular distributions

    International Nuclear Information System (INIS)

    Shirley, D.A.; Kobrin, P.H.; Truesdale, C.M.; Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Becker, U.; Kerkhoff, H.G.; Southworth, S.H.


    A summary is presented of typical gas-phase photoemission studies based on synchrotron radiation in the 50-5000 eV range, using beam lines at the Stanford Synchrotron Radiation Laboratory. Three topics are addressed: atomic inner-shell photoelectron cross sections and asymmetries, correlation peaks in rare gases, and core-level shape resonances in molecules

  4. Residence time distribution of the gas phase in a mechanically agitated gas-liquid reactor

    NARCIS (Netherlands)

    Thijert, M.P.G.; Oyevaar, M.H.; Kuper, W.J.; Westerterp, K.R.


    In this study we present a measuring method and extensive experimental data on the gas phase RTD in a mechanically agitated gas-liquid reactor with standard dimensions over a wide range of superficial gas velocities, agitation rates and agitator sizes. The results are modelled successfully, using

  5. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, Timothy [Arizona State Univ., Tempe, AZ (United States)


    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  6. Velocity Curve Studies of Spectroscopic Binary Stars V380 Cygni ...

    Indian Academy of Sciences (India)

    Abstract. Using measured radial velocity data of five double lined spectroscopic binary systems V380 Cygni, V401 Cyg, V523 Cas, V373 Cas and V2388 Oph, we find corresponding orbital and spectroscopic elements via the method introduced by Karami & Mohebi (2007) and Karami &. Teimoorinia (2007). Our numerical ...

  7. Spectroscopic study of photo and thermal destruction of riboflavin (United States)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat


    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  8. Ultrasonic and spectroscopic studies on photoactivation of euglena (United States)

    Saito, Mitsunori; Morita, Shin


    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  9. Raman spectroscopic study of cyclohexane at pressures below 1000 MPa (United States)

    Qiao, Erwei; Zheng, Haifei


    At present, the room temperature freezing pressure of cyclohexane is still uncertain, and the phase transition pressure of solid I - solid III is not reliable at ambient temperature. In this work, we have performed a Raman spectroscopic study of cyclohexane in a Moissanite anvil cell at pressures below 1000 MPa at 25 °C, and analyzed the characteristic of Raman brands νs(CH2), νas(CH2) and νb(Ring). Two phase transition pressures 80 MPa and 550 MPa were determined by a quartz pressure gauge, and they are the room temperature freezing pressure of cyclohexane and the phase transition pressure of solid I to solid III, respectively. Furthermore, from the phase diagram of cyclohexane, it is inferred that pressure plays an important role on the stability of cyclohexane as the main constituent of oil, and it can be beneficial to understanding the formation, migration and preservation of petroleum in subterranean rock strata.

  10. Raman spectroscopic study of "The Malatesta": a Renaissance painting? (United States)

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J


    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Gas-phase kinetics modifies the CCN activity of a biogenic SOA. (United States)

    Vizenor, A E; Asa-Awuku, A A


    Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t 50 , above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t 50 agrees well with CCN measured t 50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.

  12. Multiple Multidentate Halogen Bonding in Solution, in the Solid State, and in the (Calculated) Gas Phase. (United States)

    Jungbauer, Stefan H; Schindler, Severin; Herdtweck, Eberhardt; Keller, Sandro; Huber, Stefan M


    The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan


    The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously homogene......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...... homogeneous systems are required to characterize the gas-phase formation of alkali sulfates. We have measured the temperature and gas-phase concentrations of KCl and HCl, and detected the presence of aerosols in the post-flame region of a range of hydrocarbon flames seeded with KCl, with and without...... and HCl and aerosols formed, most pronounced in flames with the lowest post-flame temperatures. This shows that KCl is sulfated in the gas phase to K2SO4, and this is followed by homogeneous nucleation of K2SO4 to form aerosols. Predictions from a kinetic model of the S/Cl/K chemistry agreed well...

  14. Gas-phase metalloprotein complexes interrogated by ion mobility-mass spectrometry (United States)

    Faull, Peter A.; Korkeila, Karoliina E.; Kalapothakis, Jason M.; Gray, Andrew; McCullough, Bryan J.; Barran, Perdita E.


    Gas-phase biomolecular structure may be explored through a number of analytical techniques. Ion mobility-mass spectrometry (IM-MS) continues to prove itself as a sensitive and reliable bioanalytical tool for gas-phase structure determination due to intense study and development over the past 15 years. A vast amount of research interest, especially in protein and peptide conformational studies has generated a wealth of structural information for biological systems from small peptides to megadalton-sized biomolecules. In this work, linear low field IM-MS has been used to study gas-phase conformations and determine rotationally averaged collision cross-sections of three metalloproteins--cytochrome c, haemoglobin and calmodulin. Measurements have been performed on the MoQToF, a modified QToF 1 instrument (Micromass UK Ltd., Manchester, UK) modified in house. Gas-phase conformations and cross-sections of multimeric cytochrome c ions of the form [xM + nH+]n+ for x = 1-3 (monomer to trimer) have been successfully characterised and measured. We believe these to be the first reported collision cross-sections of higher order multimeric cytochrome c. Haemoglobin is investigated to obtain structural information on the associative mechanism of tetramer formation. Haemoglobin molecules, comprising apo- and holo-monomer chains, dimer and tetramer are transferred to the gas phase under a range of solution conditions. Structural information on the proposed critical intermediate, semi-haemoglobin, is reported. Cross-sections of the calcium binding protein calmodulin have been obtained under a range of calcium-bound conditions. Metalloprotein collision cross-sections from ion mobility measurements are compared with computationally derived values from published NMR and X-ray crystallography structural data. Finally we consider the change in the density of the experimentally measured rotationally averaged collision cross-section for compact geometries of the electrosprayed proteins.

  15. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    CSIR Research Space (South Africa)

    Andreev, GN


    Full Text Available of normal vibrations of the corresponding individual compounds. The latter facilitated the Raman spectroscopic elucidation of the reaction products formed on the chalcopyrite surface in real industrial flotation conditions with a sodium isopropyl xanthate...

  16. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    International Nuclear Information System (INIS)

    Simmons, D. W.


    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF 3 ) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF 6 ) gas. The potential existence of chlorine dioxide (ClO 2 ) during gas phase decontamination with ClF 3 has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO 2 in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO 2 was not detected in the flow loop in the absence of ClF 3 ; (2) ClO 2 was not detected in the static reactors in the absence of both ClF 3 and ClF; and (3) ClO 2 was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO 2 will not exist in the presence of ClF 3 , ClF, or UF 6 . The data analyzed to date is insufficient to determine the stability of ClO 2 in the presence of ClO 2 F. Thermodynamic calculations of the ClF 3 + H 2 O system support the experimental evidence, and suggest that ClO 2 will not exist in the presence of ClO 2 F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF 3 treatments and the product gases. However, preliminary evidence to date suggests that ClO 2 should not be present as a product during the normal operations of the gas phase decontamination project

  17. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W


    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  18. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.


    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  19. Gas-Phase Thermolysis of a Thioketen-S-Oxide

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge; Schaumann, Ernst


    The unimolecular gas-phase thermolytic decomposition of 1,1,3,3-tetramethyl-2-thiocarbonylcyclohexane S-oxide (3) has been studied as a function of temperature by a flash vacuum thermolysis (f.v.t.) technique. The products detected are the carbenes (4) and (5), the ketone (6), the keten (7), the ......-thiololactone (11) followed by loss of CO, minor amounts of the ketone (6), formed analogously, and the keten (7), as a result of simple sulphur extrusion.......), the thioketone (8), and the thioketen (9). The product ratio is highly dependent on the thermolysis temperature. The thermolysis of (3) is mechanistically rationalized by assuming the existence of only two concurrent primary processes, which are (a) extrusion of atomic oxygen, leading to the thioketen (9......), and (b) electrocyclic ring closure into the corresponding three-membered oxathiiran (10). The latter is dominant at lower temperatures, whereas higher thermolysis temperatures favour atomic oxygen extrusion. At further elevated temperatures additional concurrent primary reactions, i.e. extrusions of SO...

  20. Experimental Determination of Gas Phase Thermodynamic Properties of Bimolecular Complexes (United States)

    Hansen, Anne S.; Maroun, Zeina; Mackeprang, Kasper; Kjaergaard, Henrik G.


    Accurate determination of the atmospheric abundance of hydrogen bound bimolecular complexes is necessary, as hydrogen bonds are partly responsible for the formation and growth of aerosol particles. The abundance of a complex is related to the Gibbs free energy of complex formation (Δ G), which is often obtained from quantum chemical calculations that rely on calculated values of the enthalpy (Δ H) and entropy (Δ S) of complex formation. However, calculations of Δ H and in particular Δ S are associated with large uncertainties, and accurate experimental values are therefore crucial for theoretical benchmarking studies. Infrared measurements of gas phase hydrogen bound complexes were performed in the 300 to 373 K range, and lead to a purely experimental determination of Δ H using the van't Hoff equation. Equilibrium constants were determined by combining an experimental and calculated OH-stretching intensity, from which values of Δ G and hence Δ S could be determined. Thus we can determine Δ G, Δ H and Δ S for a bimolecular complex. We find that in the 300 to 373 K temperature range the determined Δ H and Δ S values are independent of temperature.

  1. In search of the X{sub 2}BO and X{sub 2}BS (X = H, F) free radicals: Ab initio studies of their spectroscopic signatures

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, Dennis J., E-mail: [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States)


    The F{sub 2}BO free radical is a known, although little studied, species but similar X{sub 2}BY (X = H, D, F; Y = O, S) molecules are largely unknown. High level ab initio methods have been used to predict the molecular structures, vibrational frequencies (in cm{sup −1}), and relative energies of the ground and first two excited electronic states of these free radicals, as an aid to their eventual spectroscopic identification. The chosen theoretical methods and basis sets were tested on F{sub 2}BO and found to give good agreement with the known experimental quantities. In particular, complete basis set extrapolations of coupled-cluster single and doubles with perturbative triple excitations/aug-cc-pVXZ (X = 3, 4, 5) energies gave excellent electronic term values, due to small changes in geometry between states and the lack of significant multireference character in the wavefunctions. The radicals are found to have planar C{sub 2v} geometries in the X{sup ~2}B{sub 2} ground state, the low-lying A{sup ~2}B{sub 1} first excited state, and the higher B{sup ~2}A{sub 1} state. Some of these radicals have very small ground state dipole moments hindering microwave measurements. Infrared studies in matrices or in the gas phase may be possible although the fundamentals of H{sub 2}BO and H{sub 2}BS are quite weak. The most promising method of identifying these species in the gas phase appears to be absorption or laser-induced fluorescence spectroscopy through the allowed B{sup ~}-X{sup ~} transitions which occur in the visible-near UV region of the electromagnetic spectrum. The ab initio results have been used to calculate the Franck-Condon profiles of the absorption and emission spectra, and the rotational structure of the B{sup ~}-X{sup ~}0{sub 0}{sup 0} bands has been simulated. The calculated single vibronic level emission spectra provide a unique, readily recognizable fingerprint of each particular radical, facilitating the experimental identification of new X{sub 2}BY

  2. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.


    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  3. Spectroscopic Studies of Molecular Systems relevant in Astrobiology (United States)

    Fornaro, Teresa


    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  4. Gas-phase synthesis and structure of monomeric ZnOH: a model species for metalloenzymes and catalytic surfaces. (United States)

    Zack, Lindsay N; Sun, Ming; Bucchino, Matthew P; Clouthier, Dennis J; Ziurys, Lucy M


    Monomeric ZnOH has been studied for the first time using millimeter and microwave gas-phase spectroscopy. ZnOH is important in surface processes and at the active site of the enzyme carbonic anhydrase. In the millimeter-wave direct-absorption experiments, ZnOH was synthesized by reacting zinc vapor, produced in a Broida-type oven, with water. In the Fourier-transform microwave measurements, ZnOH was produced in a supersonic jet expansion of CH(3)OH and zinc vapor, created by laser ablation. Multiple rotational transitions of six ZnOH isotopologues in their X(2)A' ground states were measured over the frequency range of 22-482 GHz, and splittings due to fine and hyperfine structure were resolved. An asymmetric top pattern was observed in the spectra, showing that ZnOH is bent, indicative of covalent bonding. From these data, spectroscopic constants and an accurate structure were determined. The Zn-O bond length was found to be similar to that in carbonic anhydrase and other model enzyme systems.

  5. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking. (United States)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata


    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488nm and 785nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Directory of Open Access Journals (Sweden)

    Min Yang


    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  7. Spectroscopic and electrochemical study of polynuclear clusters from ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.


    The chemistry of the trinuclear clusters [Ru sub(3) O (CH sub(3) CO sub(2)) sub(4) L sub(3)] where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multisite species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltammograms exhibited a series of four or five mono electronic waves ascribed to the sucessive Ru sup(IV) Ru sup(III) Ru sup(III) / Ru sup(III) Ru sup(III) Ru sup(III)/ --- Ru sup(II) Ru sup(II) Ru sup(II) redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru sub(3) centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. Resonance Raman studies for the pyrazine cluster showed selective intensification of the vibrational modes of the Ru-pyrazine chromophore, and the trinuclear centre, using excitation wavelengths coinciding with the metal-to-pyrazine and metal-metal bands, respectively. (author)

  8. Spectroscopic study of small absorptions in optical coatings (United States)

    Hansen, W. N.


    This report concerns research performed by the Utah University surface physics group for the Air Force Weapons Laboratory (AFWL), Kirtland Air Force Base, New Mexico. It is a supplement to AFWL-TR-79-197. It reports the continued study of thorium fluoride (ThF4) as an optical coating, showing that the moisture found in the ThF4 films probably originated from the preparation itself, and that ThF4 may not degrade by moisture absorption from the atmosphere as rapidly as previously thought. Further advances are reported in the characterization procedures themselves, including computer methods for data handling. New procedures were instituted for determining the optical constants of liquids. To test the procedures, the optical constants of liquid water were determined and compared with values found in literature. The procedures used are reported. A sample of Si3N4 film on germanium was analyzed spectroscopically. The dominant feature was a large infrared band revealing the presence of large amounts of silicon hydride. Finally, new procedures are reported for determining impurity concentrations in optical thin films which takes into account the local electromagnetic field strength seen by an impurity in a known optical material as matrix.

  9. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug. (United States)

    Uma Maheswari, J; Muthu, S; Sundius, Tom


    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Molecular spectroscopic study for suggested mechanism of chrome tanned leather. (United States)

    Nashy, Elshahat H A; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat


    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Precursor-Less Coating of Nanoparticles in the Gas Phase

    NARCIS (Netherlands)

    Pfeiffer, T.V.; Kedia, P.; Messing, M.E.; Valvo, M.; Schmidt-Ott, A.


    This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nano)particles using a type of physical vapor deposition (PVD) at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing

  12. Condensed phase decomposition and gas phase combustion of hydrazinium nitroformate

    NARCIS (Netherlands)

    Dragomir, O.E.; Tummers, M.J.; Veen, E.H. van; Heijden, A.E.D.M. van der; Roekaerts, D.J.E.M.


    This paper presents the results of a series of experiments on the condensed phase decomposition and the gas phase combustion of hydrazinium nitroformate (HNF). The experiments include SEM analysis of quenched samples that showed evidence of the formation of a foam layer. FTIR spectrometry and mass

  13. Nanoparticles-chemistry, new synthetic approaches, gas phase ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, an overview of the synthesis, chemistry and applications of nanosystems carried out in our laboratory is presented. The discussion is divided into four sections, namely (a) chemistry of nanoparticles, (b) development of new synthetic approaches, (c) gas phase clusters and (d) device structures and ...

  14. Nanoparticles-chemistry, new synthetic approaches, gas phase ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Nanoparticles-chemistry ... in our laboratory is presented. The discussion is divided into four sections, namely (a) chemistry of nanoparticles, (b) development of new synthetic approaches, (c) gas phase clusters and (d) device structures and applications.

  15. Gas phase toluene isopropylation over high silica mordenite

    Indian Academy of Sciences (India)

    Mordenite (HM) catalysts with three different Si/Al ratios were compared for their activity and selectivities in gas phase toluene isopropylation with isopropanol. Catalyst with Si/Al ratio 44.9 offered better cumene selectivity, hence, it was chosen for detailed kinetic investigations. The influence of various process parameters ...

  16. Gas-Phase IR Spectroscopy of Deprotonated Amino Acids

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.; Redlich, B.


    Gas-phase infrared multiple photon dissociation (IRMPD) spectra have been recorded for the conjugate bases of a series of amino acids (Asp, Cys, Glu, Phe, Set, Trp, Tyr). The spectra are dominated by strong symmetric and antisymmetric carboxylate stretching modes around 1300 and 1600 cm(-1),

  17. Infrared spectroscopy of ionized corannulene in the gas phase

    NARCIS (Netherlands)

    Alvaro Galué, H.; Rice, C.A.; Steill, J.D.; Oomens, J.


    The gas-phase infrared spectra of radical cationic and protonated corannulene were recorded by infrared multiple-photon dissociation (IRMPD) spectroscopy using the IR free electron laser for infrared experiments. Electrospray ionization was used to generate protonated corannulene and an IRMPD

  18. Opportunities from the nanoworld : Gas phase nanoparticles

    NARCIS (Netherlands)

    Palasantzas, G.; Koch, S. A.; Vystavel, T.; De Hosson, J. Th. M.


    In this paper we present studies related to coalescence and oxidation of transition metal nanoparticles with sizes ranging between 2 and 10 nm. For cobalt and iron exposure to air leads to thin oxide shell formation (thickness

  19. Isotope effects in gas-phase chemistry

    International Nuclear Information System (INIS)

    Various aspects of isotope effects in chemical reactions and photochemical reactions are presented. Most studies consider kinetic isotope effects with emphasis on hydrogen, deuterium, and muonium containing molecules and atoms. Theoretical origins of kinetic isotope effects are considered in several papers. A few of the latter papers consider atmospheric chemistry with respect to isotope effects

  20. Techniques in Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars


    The application of filaments exhibiting an inert surface, e.g., gold, for Curie-point pyrolysis is shown to minimize the degree of possible reactions induced by the presence of hot metal surfaces such as nickel and iron. The manufacture of gold-plated filaments is described and their utility in t...... in the study of pyrolytic reactions illustrated....

  1. Gas phase radiation chemistry of ethyl bromide

    International Nuclear Information System (INIS)

    Frank, A.J.; Hanrahan, R.J.


    The γ radiolysis of ethyl bromide has been investigated at 100 Torr pressure and 23 0 C. In the pure system between an absorbed dose of 1.0 x 10 20 and 1.5 x 10 20 eV/g the major products and their respective G values are as follows: hydrogen bromide, 3.89; ethane, 2.70; ethylene, 2.17; acetylene, 0.31; hydrogen, 1.39; 1,1-dibromoethane, 0.88; 1,2-dibromoethane, 0.12; vinyl bromide, 0.32; methane, 0.083; methyl bromide, 0.080; and bromoform, 0.0078. When oxygen is added, the G values in this dose range become the following: hydrogen bromide, 4.89; ethane, 0.31; ethylene, 0.78; acetylene, 0.27; hydrogen, 1.38; 1,1-dibromoethane, 0.028; 1,2-dibromoethane, 0.56; vinyl bromide, 0.0; methane 0.03; methyl bromide, 0.32; and bromoform, 0.0034. Bromine is also formed with a G value of 2.4 when oxygen is added. The presence of hydrogen and acetylene in the radiolysis indicates that these species must be formed from higher energy processes not accessible in the 253.7-nm photolysis, which was studied in a parallel investigation. The product distribution indicates that the probabilities of single bond rupture in the primary event are approximately C 2 H 5 --Br:C 2 H 4 Br--H:CH 3 --CH 2 Br = 1.00:0.40:0.06. Either a hot hydrogen atom abstraction reaction or direct molecular H 2 elimination accounts for about 16 percent of the hydrogen yield. Strong similarities in dose-yield plots suggest that many of the secondary processes involved in the photolysis are important in the radiolysis of ethyl bromide as well. The high pressure mass spectrometry of the system indicates the role of ionic species. Differences in radiolytic behavior of ethyl chloride, bromide, and iodide can largely be explained in terms of the energetics of the primary and secondary processes in each system

  2. Study of the spectroscopic characteristics of methyl (ligand ...

    Indian Academy of Sciences (India)


    Abstract. Spectroscopic characterization (IR, NMR and electronic spectra) of methyl (ligand) coba- loxime was done, where ligand = pyrazole, dimethyl pyrazole, alanine and alanine methyl ester. The fre- quency changes in the IR spectra and shifts in the NMR were explained on the basis of basicity of the ligand, steric ...

  3. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase (United States)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.


    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  4. Vibrational spectra of discrete UO22+ halide complexes in the gas phase

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; van Stipdonk, Michael J.; de Jong, Wibe A.; Oomens, Jos; Gresham, Garold L.


    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions, that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition (UO2(X)(ACO)3)+ (X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric v3 UO2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter the binding in the complex. The v3 peak in the spectrum of the F-containing complex was ∼ 10 cm-1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to the blue was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the v1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes were conducted by measuring the v3 UO2 frequencies of (UO2X3)-, where X = Cl-, Br- and I-. The trifluoro complex could not be photodissociated. In these negatively charged complexes, the UO2 v3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that dissociation

  5. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.


    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  6. Ultraslow isomerization in photoexcited gas-phase carbon cluster [Formula: see text]. (United States)

    Saha, K; Chandrasekaran, V; Heber, O; Iron, M A; Rappaport, M L; Zajfman, D


    Isomerization and carbon chemistry in the gas phase are key processes in many scientific studies. Here we report on the isomerization process from linear [Formula: see text] to its monocyclic isomer. [Formula: see text] ions were trapped in an electrostatic ion beam trap and then excited with a laser pulse of precise energy. The neutral products formed upon photoexcitation were measured as a function of time after the laser pulse. It was found using a statistical model that, although the system is excited above its isomerization barrier energy, the actual isomerization from linear to monocyclic conformation takes place on a very long time scale of up to hundreds of microseconds. This finding may indicate a general phenomenon that can affect the interstellar medium chemistry of large molecule formation as well as other gas phase processes.

  7. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase. (United States)

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio


    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels.

  8. Spectroscopic and theoretical studies of dalbergin and Methyldalbergin (United States)

    Shweta; Khan, Eram; Tandon, Poonam; Bharti, Purnima; Kumar, Padam; Maurya, Rakesh


    Molecular structure and vibrational analysis of methyldalbergin (MDLBG) and dalbergin (DLBG) are presented using vibrational spectroscopy (infrared and Raman) and quantum chemical calculations. Difference in the Osbnd H stretching vibration wavenumber of two conformers of DLBG was observed as in one conformer this bond is making an intramolecular H-bond while in other it is free. The spectral calculations, ground state geometry and electronic structure calculations were performed based on the density functional theory (DFT) using the standard B3LYP/6-311++G(d,p) methodology. FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution analysis. The UV-visible absorption spectrum was examined in DMSO solvent and compared with one calculated in gas phase as well as in solvent environment using TD-DFT/6-311G++(d,p) basis set. HOMO-LUMO energy gap results show chemical reactivity of conformers of DLBG and MDLBG.

  9. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method. (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T


    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  10. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup


    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  11. Quantum mechanical computations and spectroscopy: from small rigid molecules in the gas phase to large flexible molecules in solution. (United States)

    Barone, Vincenzo; Improta, Roberto; Rega, Nadia


    Interpretation of structural properties and dynamic behavior of molecules in solution is of fundamental importance to understand their stability, chemical reactivity, and catalytic action. While information can be gained, in principle, by a variety of spectroscopic techniques, the interpretation of the rich indirect information that can be inferred from the analysis of experimental spectra is seldom straightforward because of the subtle interplay of several different effects, whose specific role is not easy to separate and evaluate. In such a complex scenario, theoretical studies can be very helpful at two different levels: (i) supporting and complementing experimental results to determine the structure of the target molecule starting from its spectral properties; (ii) dissecting and evaluating the role of different effects in determining the observed spectroscopic properties. This is the reason why computational spectroscopy is rapidly evolving from a highly specialized research field into a versatile and widespread tool for the assignment of experimental spectra and their interpretation in terms of chemical physical effects. In such a situation, it becomes important that both computationally and experimentally oriented chemists are aware that new methodological advances and integrated computational strategies are available, providing reliable estimates of fundamental spectral parameters not only for relatively small molecules in the gas phase but also for large and flexible molecules in condensed phases. In this Account, we review the most significant methodological contributions from our research group in this field, and by exploiting some recent results of their application to the computation of IR, UV-vis, NMR, and EPR spectral parameters, we discuss the microscopic mechanisms underlying solvent and vibrational effects on the spectral parameters. After reporting some recent achievements for the study of excited states by first principle quantum mechanical

  12. Gas-phase photocatalysis in μ-reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj


    Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high-sensitivity reac......Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high......-sensitivity reactors. We demonstrate that the system exhibits great versatility in terms of photocatalyst, illumination source and target reaction....

  13. Deformed shell model studies of spectroscopic properties of 64 Zn ...

    Indian Academy of Sciences (India)


    Apr 5, 2014 ... The spectroscopic properties of 64Zn and 64Ni are calculated within the framework of the deformed shell model (DSM) based on Hartree–Fock states. GXPF1A interaction in 1 f 7 / 2 , 2 p 3 / 2 , 1 f 5 / 2 and 2 p 1 / 2 space with 40Ca as the core is employed. After ensuring that DSM gives good description of ...

  14. Ion-beam spectroscopic studies of the 69As nucleus

    International Nuclear Information System (INIS)

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.


    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  15. Spectroscopic Tools for Quantitative Studies of DNA Structure and Dynamics

    DEFF Research Database (Denmark)

    Preus, Søren

    The main objective of this thesis is to develop quantitative fluorescence-based, spectroscopic tools for probing the 3D structure and dynamics of DNA and RNA. The thesis is founded on six peer-reviewed papers covering mainly the development, characterization and use of fluorescent nucleobase...... analogues. In addition, four software packages is presented for the simulation and quantitative analysis of time-resolved and steady-state UV-Vis absorption and fluorescence experiments....

  16. Study of various spectroscopic properties of the Ds meson

    Directory of Open Access Journals (Sweden)

    Kher Virendrasinh H.


    Full Text Available Spectroscopic parameters of the Ds (cs̄ meson are obtained using phenomenological quark antiquark potential(coulomb plus power model consisting of O(1/m correction to the potential. Within Variational scheme Gaussian wave function is employed with a hamiltonian incorporating kinematic relativistic corrections to obtain various properties such as the mass spectra, decay constants, electromagnetic transitions. The results are compared with various experimental measurement as well as other theoretical predictions.

  17. Improved machine learning method for analysis of gas phase chemistry of peptides

    Directory of Open Access Journals (Sweden)

    Ahn Natalie


    Full Text Available Abstract Background Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. Results We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. Conclusion The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future.

  18. Gas Phase Hydrogenation of Levulinic Acid to gamma-Valerolactone

    NARCIS (Netherlands)

    Bonrath, Werner; Castelijns, Anna Maria Cornelia Francisca; de Vries, Johannes Gerardus; Guit, Rudolf Philippus Maria; Schuetz, Jan; Sereinig, Natascha; Vaessen, Henricus Wilhelmus Leonardus Marie

    The gas phase hydrogenation of levulinic acid to gamma-valerolactone over copper and ruthenium based catalysts in a continuous fixed-bed reactor system was investigated. Among the catalysts a copper oxide based one [50-75 % CuO, 20-25 % SiO2, 1-5 % graphite, 0.1-1 % CuCO3/Cu(OH)(2)] gave

  19. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.


    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  20. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.


    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF 6 gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF 6 -handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D ampersand D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D ampersand D, as will the other UF 6 -handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF 6 . These reagents include ClF 3 , F 2 , and other compounds. The scope of D ampersand D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs

  1. Diurnal variability of gas phase and surface water ethanol in southeastern North Carolina, USA (United States)

    Kieber, R. J.; Powell, J. P.; Foley, L.; Mead, R. N.; Willey, J. D.; Avery, G. B.


    Diurnal variations in gas phase and surface water concentrations of ethanol and acetaldehyde were investigated at five locations in southeastern North Carolina, USA. There were distinct diurnal oscillations observed in gas phase concentrations with maxima occurring in late afternoon suggesting that photochemical production is an important process in the cycling of these analytes in the troposphere. The rapid decrease in concentrations after the mid day maximum suggests that there is also an atmospheric photochemical sink for both analytes most likely involving photo produced hydroxyl radicals with a half-life on the order of hours rather than days at ground level. Ethanol concentrations in the surface microlayer taken at the same time as gas phase samples had a very similar diurnal profile suggesting photochemical processes, in addition to atmospheric deposition, play a role in the aqueous phase cycling of both analytes. The concentration of ethanol and acetaldehyde increased significantly in flasks containing freshwater collected from the Cape Fear River exposed to simulated sunlight for 6 h underscoring the importance of in situ photochemical production. Results of this study are significant because they represent the first simultaneous analyses of the temporal variability of ethanol and acetaldehyde concentrations in the gas and aqueous phases. These measurements are essential in order to better define the processes involved in the global biogeochemical cycling of ethanol both now and in the future as our use of the biofuel continues to grow.

  2. Statistical parameter characteristics of gas-phase fluctuations for gas-liquid intermittent flow

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, G.; Monji, H.; Takaguchi, M. [Univ. of Tsukuba (Japan)


    This study deals with theoretical analysis on the general behaviour of statistical parameters of gas-phase fluctuations and comparison of statistical parameter characteristics for the real void fraction fluctuations measured with those for the wave form modified the real fluctuations. In order to investigate the details of the relation between the behavior of the statistical parameters in real intermittent flow and analytical results obtained from information on the real flow, the distributions of statistical parameters for general fundamental wave form of gas-phase fluctuations are discussed in detail. By modifying the real gas-phase fluctuations to a trapezoidaly wave, the experimental results can be directly compared with the analytical results. The analytical results for intermittent flow show that the wave form parameter, and the total amplitude of void fraction fluctuations, affects strongly on the statistical parameter characteristics. The comparison with experiment using nitrogen gas-water intermittent flow suggests that the parameters of skewness and excess may be better as indicators of flow pattern. That is, the macroscopic nature of intermittent flow can be grasped by the skewness and the excess, and the detailed flow structure may be described by the mean and the standard deviation.

  3. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew


    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  4. Preparation of cold ions in strong magnetic field and its application to gas-phase NMR spectroscopy

    International Nuclear Information System (INIS)

    Fuke, K.; Ohshima, Y.; Tona, M.


    Nuclear Magnetic Resonance (NMR) technique is widely used as a powerful tool to study the physical and chemical properties of materials. However, this technique is limited to the materials in condensed phases. To extend this technique to the gas-phase molecular ions, we are developing a gas-phase NMR apparatus. In this note, we describe the basic principle of the NMR detection for molecular ions in the gas phase based on a Stern-Gerlach type experiment in a Penning trap and outline the apparatus under development. We also present the experimental procedures and the results on the formation and the manipulation of cold ions under a strong magnetic field, which are the key techniques to detect the NMR by the present method

  5. Transport and spectroscopic studies of liquid and polymer electrolytes (United States)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  6. Spectroscopic studies of the cytochrome P450 reaction mechanisms. (United States)

    Mak, Piotr J; Denisov, Ilia G


    The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Photometric and Spectroscopic studies of Ap star Cyg V1584

    Directory of Open Access Journals (Sweden)

    D. M. Z Jassur


    Full Text Available   UBV photometric observations of Ap star Cyg V1584 have been presented. To find the rotational period of the star, a sinusoidal wave function has been fitted to the noramal points of UBV filters. Assuming that a circular hot spot located at the magnetic pole of the star is responsible for the observed light variations, both physical an geometrical parameters of the spot have been determined. Finally, the angle between the magnetic and the rotational axis has been calculated from combining the spectroscopic and photometric data and the magnetic structure of the star has been discussed.

  8. Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen. (United States)

    Yang, Bin; Zhou, Minghua; Lei, Lecheng


    The technology of combined liquid and gas phase discharges (LGD) using pulsed high voltage for dyes degradation was developed in this study. Apparent synergistic effects for Acid orange II (AO) degradation in the presence of oxygen were observed. The enhancement of AO degradation rate was around 302%. Furthermore, higher energy efficiency was obtained comparing with individual liquid phase discharge (LD) or gas phase discharge process (GD). The AO degradation in the presence of oxygen by LGD proceeded through the direct ozone oxidation and the ozone decomposition induced by LD. Important operating parameters such as electrode distance, applied voltage, pulse repetition rate, and types of dyes were further investigated.

  9. Is it biologically relevant to measure the structures of small peptides in the gas-phase? (United States)

    Barran, Perdita E.; Polfer, Nick C.; Campopiano, Dominic J.; Clarke, David J.; Langridge-Smith, Patrick R. R.; Langley, Ross J.; Govan, John R. W.; Maxwell, Alison; Dorin, Julia R.; Millar, Robert P.; Bowers, Michael T.


    investigate their structural core. Defr1, with five cysteines, exists as a covalently bound disulphide linked dimer; Defr1 Y5C with six cysteines also is observed as a dimer, but non-covalently bound, suggesting that this defensin has a tendency to aggregate. The activity of Defr1 is 10 times higher than that of Defr1 Y5C when tested against the pathogen Pseudomonas aeruginosa. The results from these studies could inform future design of novel GnRH type ligands and anti-microbial agents, and illustrate the power of gas-phase based techniques for solving peptide structures.

  10. Spectroscopic study on the stability of morin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bark, Ki Min [Dept. of Chemical Education and Research Institute of Life Science, Gyeongsang National University, Chinju (Korea, Republic of); Im, Seo Eun; Seo, Jung Ja; Park, Ok Hyun; Park, Hyoung Ryun [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of); Park, Chul Ho [Dept. of Cosmetic Science, Nambu University, Gwangju (Korea, Republic of)


    Morin (3,2,4,5,7-pentahydroxyflavone) is a flavonol conjugated to a resorcinol moiety at the C-2 position, different from many other flavonoids. The UV–vis spectrum of morin in neat water reveals two major absorption bands with maxima at 265 and 387 nm. The substance is stable in acidic solution and neat water. However, its absorption maximum at 387 nm continuously shifts to longer wavelengths and new peaks appeared at wavelengths of 312 nm with increasing pH of the solution. The shape of the absorption spectrum of morin depends on the storage time at a given pH, indicating the occurrence of other successive chemical reactions. The fluorescence spectroscopic results also prove that new conjugated double bonds are formed in the deaerated basic solution at the initial state and decompose with time. This behavior indicates that morin is very unstable, and therefore its decomposition occurs by a sequence of multistep reactions in basic solution. Probable reaction pathways for the reaction are suggested based on the spectroscopic results.

  11. Effects of donor-acceptor electronic interactions on the rates of gas-phase metallocene electron-exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, D.K.; Gord, J.R.; Freiser, B.S.; Weaver, M.J. (Purdue Univ., West Lafayette, IN (United States))


    Rate constants for electron self-exchange, k{sub ex}, of five cobaltocenium-cobaltocene and ferrocenium-ferrocene couples in the gas phase have been measured by means of Fourier transform ion cyclotron resonance mass spectrometry in order to explore the possible effects of donor-acceptor electronic coupling on gas-phase redox reactivity. The systems studied, Cp{sub 2}Co{sup +/0}, Cp{sub 2}Fe{sup +/0} (Cp = cyclopentadienyl), the decamethyl derivative Cp{prime}{sub 2}Fe{sup +/0}, carboxymethyl(cobaltocenium-cobaltocene) (Cp{sub 2}{sup e}Co{sup +/0}), and hydroxymethyl(ferrocenium-ferrocene) (HMFc{sup +/0}), were selected in view of the substantial variations in electronic coupling inferred on the basis of their solvent-dependent reactivities and theoretical grounds. The sequence of k{sub ex} values determined in the gas phase, Cp{sub 2}{sup e}Co{sup +/0} {approx} Cp{sub 2}Co{sup +/0} > Cp{prime}{sub 2}Fe{sup +/0} > HMFc{sup +/0} > Cp{sub 2}Fe{sup +/0}, is roughly similar to that observed in solution, although the magnitude (up to 5-fold) of the k{sub ex} variations is smaller in the former case. The likely origins of these differences in gas-phase reactivity are discussed in light of the known variations in the electronic coupling matrix element H{sub 12}, inner-shell reorganization energy {Delta}E*, and gas-phase ion-molecule interaction energy {Delta}E{sub w} extracted from solution-phase rates, structural data, and theoretical calculations. It is concluded that the observed variations in gas-phase k{sub ex} values, especially for Cp{sub 2}Fe{sup +/0} versus Cp{sub 2}Co{sup +/0}, arise predominantly from the presence of weaker donor-acceptor orbital overlap for the ferrocene couples, yielding inefficient electron tunneling for a substantial fraction of the gas-phase ion-molecule encounters. The anticipated differences as well as similarities of such nonadiabatic effects for gas-phase and solution electron-transfer processes are briefly outlined.

  12. Unimolecular Gas-Phase Thermolysis of Ethyl Acetate

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars


    The unimolecular gas-phase thermolysis of ethyl acetate has been investigated by the Flash-Vacuum-Thermolysis/Field-Ionization Mass Spectrometry (FVT/FI-MS) method in combination with Collision Activation (CA) mass spectrometry at 1253K. Two predominant reactions are observed: elimination...... of ethylene affording acetic acid, the latter to some extent consecutively yielding ketene, and intramolecular oxygen to oxygen ethyl group migration. Additionally minor amounts of acetaldehyde is formed. The mechanistic aspects are discussed based on 18O and 18O/ 13C labelling....

  13. Removal of volatile to semi-volatile organic contaminants from water using hollow fiber membrane contactors and catalytic destruction of the contaminants in the gas phase


    Tarafder, Shamsul Abedin


    Abstract Chlorinated organic compounds and ether compounds are frequently found in groundwater and efficient treatment options are needed. In this study, the efficient transferal of the compounds from the water phase to the gas phase was studied followed by the catalytic treatment of the gas phase. For the removal of the organic contaminants from water, a microporous polypropylene hollow fiber membrane (HFM) module was operated under low strip gas flow to water flow ratios (_< 5:1). Rem...

  14. Structural and spectroscopic studies of a commercial glassy carbon (United States)

    Parker, Stewart F.; Imberti, Silvia; Callear, Samantha K.; Albers, Peter W.


    Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.

  15. Raman spectroscopic study of a genetically altered kidney cell (United States)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.


    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  16. Raman spectroscopic studies on matrix-isolated arsenic and antimony molecules As 4 and Sb 4 in noble gas matrices (United States)

    Kornath, Andreas J.; Kaufmann, Alexander; Cappellacci, Sebastian


    The Raman spectra of As 4 and Sb 4 molecules have been studied in neon, argon, krypton, and xenon matrices at 7 K. The vibrational frequencies of the As 4 molecule are up to 17 cm -1 higher than the experimental gas phase data. This evident blue-shift is not caused by matrix effects but originates from an underestimation of the fundamentals in the gas phase as a course of the elevated temperatures. The observed frequencies of As 4 and Sb 4 show a linear dependence toward the matrix host polarizability. Extrapolated values for zero polarizability which best represent a free molecule, are considered fundamental frequencies. The general valence force fields of As 4 and Sb 4 were calculated from the extrapolated frequencies.

  17. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei


    Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air...

  18. UV spectra and kinetics of radicals produced in the gas phase reactions of Cl, F and OH with toluene

    DEFF Research Database (Denmark)

    Markert, F.; Pagsberg, P.


    The gas phase reactions of Cl, F and OH with toluene have been studied by pulse radiolysis combined with time-resolved UV spectroscopy. The formation of benzyl radicals via the abstraction reactions C6H5-CH3 + X --> C6H5-CH2 + HX was observed with X = Cl, F and OH. In the reaction with chlorine...

  19. Polaronic exciton behavior in gas-phase water (United States)

    Udal'tsov, Alexander V.


    Features of the absorption spectrum of gas-phase water in the energy range 7-10 eV have been considered applying polaronic exciton theory. The interaction of the incident photon generating polaronic exciton in water is described taking into account angular momentum of the electron so that polaronic exciton radii have been estimated in dependence on spin-orbit coupling under proton sharing. The suggested approach admits an estimate of kinetic and rotation energies of the polaronic exciton. As a result sixteen steps of half Compton wavelength, λC/2 = h/(2mec) changing polaronic exciton radius were found consistent with local maxima and shoulders in the spectrum. Thus, the absorption of gas-phase water in the energy range 8.5-10 eV has been interpreted in terms of polaronic exciton rotation mainly coupled with the proton sharing. The incident photon interaction with water is also considered in terms of Compton interaction, when the rotation energy plays a role like the energy loss of the incident photon under Compton scattering. The found symmetry and the other evidence allowed to conclude about polaronic exciton migration under the interaction angle 90°.

  20. Preconceptual design of the gas-phase decontamination demonstration cart

    International Nuclear Information System (INIS)

    Munday, E.B.


    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF 6 , which is generated from the reaction of ClF 3 with the uranium deposits, by use of NaF traps

  1. DSMC Convergence for Microscale Gas-Phase Heat Conduction (United States)

    Rader, D. J.; Gallis, M. A.; Torczynski, J. R.


    The convergence of Bird's Direct Simulation Monte Carlo (DSMC) method is investigated for gas-phase heat conduction at typical microscale conditions. A hard-sphere gas is confined between two fully accommodating walls of unequal temperature. Simulations are performed for small system and local Knudsen numbers, so continuum flow exists outside the Knudsen layers. The ratio of the DSMC thermal conductivity to the Chapman-Enskog value in the central region is determined for over 200 combinations of time step, cell size, and number of computational molecules per cell. In the limit of vanishing error, this ratio approaches 1.000 to within the correlation uncertainty. In the limit of infinite computational molecules per cell, the difference from unity depends quadratically on time step and cell size as these quantities become small. The coefficients of these quadratic terms are in good agreement with Green-Kubo values found by Hadjiconstantinou, Garcia, and co-workers. These results demonstrate that DSMC can accurately simulate microscale gas-phase heat conduction. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Spectroscopic and structural studies of a new para-iodo-N-benzyl amide of salinomycin (United States)

    Antoszczak, Michał; Janczak, Jan; Rutkowski, Jacek; Brzezinski, Bogumił; Huczyński, Adam


    A new para-iodo-N-benzyl amide of salinomycin was synthesized and characterized by NMR, FT-IR, DFT, single crystal X-ray diffraction and theoretical methods. The results obtained for the crystal, in solution and in gas phase provided evidence of pseudo-cyclic structure of this compound stabilized by intramolecular hydrogen bonds. It was shown that the compound studied forms stable 1:1 complexes with monovalent (Li+, Na+, K+, Rb+ and Cs+) and divalent (Mg2+, Ca2+, Sr2+ and Ba2+) cations demonstrating that the chemical modification of salinomycin carboxyl group considerably changes the ionophoretic properties of this antibiotic. For the first time, the ESI MS fragmentations of the complex of para-iodo-N-benzyl amide of salinomycin with Na+ are also discussed in details.

  3. Stabilization of gas-phase uranyl complexes enables rapid speciation using electrospray ionization and ion mobility-mass spectrometry. (United States)

    Davis, Austen L; Clowers, Brian H


    Significant challenges exist when characterizing f-element complexes in solution using traditional approaches such as electrochemical and spectroscopic techniques as they do not always capture information for lower abundance species. However, provided a metal-complex with sufficient stability, soft ionization techniques such as electrospray offer a means to quantify and probe the characteristics of such systems using mass spectrometry. Unfortunately, the gas-phase species observed in ESI-MS systems do not always reflect the solution phase distributions due to the inherent electrochemical mechanism of the electrospray process, ion transfer from ambient to low pressures conditions, and other factors that are related to droplet evaporation. Even for simple systems (e.g. hydrated cations), it is not always clear whether the distribution observed reflects the solution phase populations or whether it is simply a result of the ionization process. This complexity is further compounded in mixed solvent systems and when multiply charged species are present. Despite these challenges, the benefits of mass spectrometry with respect to speed, sensitivity, and the ability to resolve isotopes continue to drive efforts to develop techniques for the speciation of metal complexes. Using an electrospray ionization atmospheric pressure ion mobility mass spectrometer (ESI-apIMS-MS), we demonstrate an approach to stabilize simple uranyl complexes during the ionization process and mobility separation to aid speciation and isotope profile analysis. Specifically, we outline and demonstrate the capacity of ESI-apIMS-MS methods to measure mobilities of different uranyl species, in simple mixtures, by promoting stable gas phase conformations with the addition of sulfoxides (i.e. dimethyl sulfoxide (DMSO), dibutyl sulfoxide (DBSO), and methyl phenyl sulfoxide (MPSO)). Addition of these sulfoxides, as observed in the mass spectrum and mobility domain, produce stable gas-phase conformations that

  4. Enantioselective supramolecular devices in the gas phase. Resorcin[4]arene as a model system

    Directory of Open Access Journals (Sweden)

    Caterina Fraschetti


    Full Text Available This review describes the state-of-art in the field of the gas-phase reactivity of diastereomeric complexes formed between a chiral artificial receptor and a biologically active molecule. The presented experimental approach is a ligand-displacement reaction carried out in a nano ESI-FT-ICR instrument, supported by a thermodynamic MS-study and molecular-mechanics and molecular-dynamics (MM/MD computational techniques. The noncovalent ion–molecule complexes are ideal for the study of chiral recognition in the absence of complicating solvent and counterion effects.

  5. Electrochemical and spectroscopic studies of uranium(IV), -(V), and -(VI) in carbonate-bicarbonate buffers

    International Nuclear Information System (INIS)

    Wester, D.W.; Sullivan, J.C.


    Recently a need for more detailed knowledge of the chemistry of actinide ions in basic media has arisen in connection with deducing their chemistry in the environment. In this work the results of polarographic, cyclic voltammetric, and spectroscopic studies of U(IV), -(V), and -(VI) in carbonate and bicarbonate media are reported. Polarographic studies were in excellent agreement with those reported previously. Cyclic voltammetric scans confirmed the irreversible reduction to U(V) in both solutions, but disproportionation of the U(V) was observed only in the bicarbonate solutions. The oxidation of U(V) in carbonate was followed spectroscopically for the first time. Reduction in bicarbonate produced U(IV), the spectrum of which is now reported and the oxidation of which was also followed spectroscopically for the first time

  6. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies (United States)

    Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.


    Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential

  7. Dielectric and impedance spectroscopic studies of neodymium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Sakhya, Anup Pradhan, E-mail: [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)


    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  8. Gas-phase hydrogen/deuterium exchange in a traveling wave ion guide for the examination of protein conformations. (United States)

    Rand, Kasper D; Pringle, Steven D; Murphy, James P; Fadgen, Keith E; Brown, Jeff; Engen, John R


    Accumulating evidence suggests that solution-phase conformations of small globular proteins and large molecular protein assemblies can be preserved for milliseconds after electrospray ionization. Thus, the study of proteins in the gas phase on this time scale is highly desirable. Here we demonstrate that a traveling wave ion guide (TWIG) of a Synapt mass spectrometer offers a highly suitable environment for rapid and efficient gas-phase hydrogen/deuterium exchange (HDX). Gaseous ND(3) was introduced into either the source TWIG or the TWIG located just after the ion mobility cell, such that ions underwent HDX as they passed through the ND(3) on the way to the time-of-flight analyzer. The extent of deuterium labeling could be controlled by varying the quantity of ND(3) or the speed of the traveling wave. The gas-phase HDX of model peptides corresponded to labeling of primarily fast exchanging sites due to the short labeling times (ranging from 0.1 to 10 ms). In addition to peptides, gas-phase HDX of ubiquitin, cytochrome c, lysozyme, and apomyoglobin were examined. We conclude that HDX of protein ions in a TWIG is highly sensitive to protein conformation, enables the detection of conformers present on submilliseconds time scales, and can readily be combined with ion mobility spectrometry.

  9. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. (United States)

    Borysik, Antoni J; Hewitt, Dominic J; Robinson, Carol V


    Recent studies have suggested that detergents can protect the structure of membrane proteins during their transition from solution to the gas-phase. Here we provide mechanistic insights into this process by interrogating the structures of membrane protein-detergent assemblies in the gas-phase using ion mobility mass spectrometry. We show a clear correlation between the population of native-like protein conformations and the degree of detergent attachment to the protein in the gas-phase. Interrogation of these protein-detergent assemblies, by tandem mass spectrometry, enables us to define the mechanism by which detergents preserve native-like protein conformations in a solvent free environment. We show that the release of detergent is more central to the survival of these conformations than the physical presence of detergent bound to the protein. We propose that detergent release competes with structural collapse for the internal energy of the ion and permits the observation of transient native-like membrane protein conformations that are otherwise lost to structural rearrangement in the gas-phase.

  10. Source characterization and exposure modeling of gas-phase polycyclic aromatic hydrocarbon (PAH) concentrations in Southern California (United States)

    Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun


    Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.

  11. Laboratory Measurements of Gas Phase Pyrolysis Products from Southern Wildland Fuels using Infrared Spectroscopy (United States)

    Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.


    Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.

  12. New set-up for high-quality soft-X-ray absorption spectroscopy of large organic molecules in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Holch, Florian; Huebner, Dominique [Universitaet Wuerzburg, Experimentelle Physik VII, Am and Roentgen Reasearch Center for Complex Materials (RCCM) Hubland, 97074 Wuerzburg (Germany); Fink, Rainer [Universitaet Erlangen-Nuernberg, ICMM and CENEM, Egerlandstrasse 3, 91058 Erlangen (Germany); Schoell, Achim, E-mail: [Universitaet Wuerzburg, Experimentelle Physik VII, Am and Roentgen Reasearch Center for Complex Materials (RCCM) Hubland, 97074 Wuerzburg (Germany); Umbach, Eberhard [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)


    Highlights: {yields} We present a new set-up for x-ray absorption (NEXAFS) on large molecules in the gas-phase. {yields} The cell has a confined volume and can be heated. {yields} The spectra can be acquired fast, are of very high quality with respect tosignal-to-noise ratio and energy resolution. {yields} This allowsthe analysis of spectroscopic details (e.g. solid state effects by comparing gas- and condensed phase data). - Abstract: We present a new experimental set-up for the investigation of large (>128 amu) organic molecules in the gas-phase by means of near-edge X-ray absorption fine structure spectroscopy in the soft X-ray range. Our approach uses a gas cell, which is sealed off against the surrounding vacuum and which can be heated above the sublimation temperature of the respective molecular compound. Using a confined volume rather than a molecular beam yields short acquisition times and intense signals due to the high molecular density, which can be tuned by the container temperature. In turn, the resulting spectra are of very high quality with respect to signal-to-noise ratio and energy resolution, which are the essential aspects for the analysis of fine spectroscopic details. Using the examples of ANQ, NTCDA, and PTCDA, specific challenges of gas phase measurements on large organic molecules with high sublimation temperatures are addressed in detail with respect to the presented set-up and possible ways to tackle them are outlined.

  13. Gas Phase Vibrational Spectroscopy of Weakly Volatil Safe Taggants Using a Synchrotron Source (United States)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Gruet, Sebastien; Pirali, Olivier; Roy, Pascale


    The high performances of the AILES beamline of SOLEIL allow to study at medium resolution (0.5 cm^{-1}) the gas phase THz vibrational spectra of weakly volatil compounds. Between 2008 and 2010 we recorded and analyzed the THz/Far-IR spectra of phosphorous based nerve agents thanks to sufficient vapour pressures from liquid samples at room temperature. Recently, we extended these experiments towards the vibrational spectroscopy of vapour pressures from solid samples. This project is quite challenging since we target lower volatile compounds, and so requires very high sensitive spectrometers. Moreover a specially designed heated multipass-cell have been developped for the gas phase study of very weak vapor pressures. Thanks to skills acquired during initial studies and recent experiments performed on AILES with solid PAHs, we have recorded and assigned the gas phase vibrational fingerprints from the THz to the NIR spectral domain (10-4000 cm-1) of a set of targeted nitro-derivatives. The study was focused onto the para, ortho-mononitrotoluene (p-NT, o-NT), the 1,4 Dinitrobenzene (1,4 DNB), the 2,3-dimethyl-2,3-dinitrobutane (DMNB), and 2,4 and 2,6-dinitrotoluene (2,4-2,6 DNT), which are safe taggants widely used for the detection of commercial explosives. These taggants are usually added to plastic explosives in order to facilitate their vapour detection. Therefore, there is a continuous interest for their detection and identification in realistic conditions via optical methods. A first step consists in the recording of their gas phase vibrational spectra. These expected spectra focused onto molecules involved into defence and security domains are not yet available to date and will be very useful for the scientific community. This work is supported by the contract ANR-11-ASTR-035-01. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O

  14. Gas-Phase Photocatalytic Oxidation of Dimethylamine: The Reaction Pathway and Kinetics

    Directory of Open Access Journals (Sweden)

    Anna Kachina


    Full Text Available Gas-phase photocatalytic oxidation (PCO and thermal catalytic oxidation (TCO of dimethylamine (DMA on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in minor amounts to nitrous oxide and nitrogen dioxide. Effective at 573 K, TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The PCO kinetic data fit well to the monomolecular Langmuir-Hinshelwood model, whereas TCO kinetic behaviour matched the first-order process. No deactivation of the photocatalyst during the multiple long-run experiments was observed.

  15. Wettability in the liquid Cu-Ag alloy – fireproof material – gas phase system

    Directory of Open Access Journals (Sweden)

    G. Siwiec


    Full Text Available In the present paper, results of wettability studies on the liquid metal – fireproof material – gas phase system using copper and Cu-Ag alloys as well as typical fireproof materials, i.e. aluminium oxide, magnesium oxide and graphite, are presented. Contact angle measurements were conducted at 1 373–1 573 K by means of a high-temperature microscope coupled with a camera and a computer equipped with a program for recording and analysing images. For the measurements, the sessile drop method was used.

  16. Solvation of ions in the gas-phase: a molecular dynamics simulation (United States)

    Cabarcos, Orlando M.; Lisy, James M.


    Molecular dynamics simulations have been performed on the collision between a cesium ion and a cluster of twenty methanol molecules. This process, generating a solvated ion, was studied over a range (1 to 25 eV) of eight collision energies. Preliminary analysis of this gas phase solvation has included the distribution of final ion cluster sizes, fragmentation patterns, solvation timescales and energetics. Two distinct patterns have emerged: a ballistic penetration of the neutral cluster at the higher collision energies and an evaporative evolution of the cluster ion at lower collision energies.

  17. Gas-phase hydrosilylation of cyclohexene in an experimental radiation-chemical accelerator apparatus

    International Nuclear Information System (INIS)

    Pecherkin, A.S.; Sidorov, V.I.; Chernyshev, E.A.


    A process for the synthesis of methylcyclohexyldichlorosilane (a basic monomer for the production of organosilicon photoresists) has been investigated and perfected on an experimental apparatus with an ELV-2 electron accelerator; this synthesis involves gas-phase radiation-induced hydrosilylation of cyclohexene by methyldichlorosilane. Basic characteristics of the yield of the desired product under static conditions were determined. With the help of experiments on the synthesis of methylcyclohexyldichlorosilane in a flow- through mode, the technical features of the process of radiation-chemical hydrosilylation of cyclohexene on an accelerator apparatus were determined and studied, the optimal conditions for the synthesis were determined, and an experimental batch of the desired product was produced

  18. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Indian Academy of Sciences (India)

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  19. Elastic properties and spectroscopic studies of Na2O–ZnO–B2O3 ...

    Indian Academy of Sciences (India)


    Abstract. Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  20. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)


    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  1. Gas-phase simulated moving bed: Propane/propylene separation on 13X zeolite. (United States)

    Martins, Vanessa F D; Ribeiro, Ana M; Plaza, Marta G; Santos, João C; Loureiro, José M; Ferreira, Alexandre F P; Rodrigues, Alírio E


    In the last years several studies were carried out in order to separate gas mixtures by SMB technology; however, this technology has never been implemented on an industrial scale. In the present work, a gas phase SMB bench unit was built and tested for the separation of propane and propylene mixtures, using 13X zeolite extrudates as adsorbent and isobutane as desorbent. Three experiments were performed to separate propane/propylene by gas phase SMB in the bench scale unit with a 4-2-2 configuration, i.e., open loop circuit by suppressing section IV (desorbent regeneration followed by a recycle). Consequently, all the experiments were conducted using an external supply of pure isobutane as desorbent. Parameters such as switching time, extract and raffinate stream flow rates were changed to improve the efficiency of the process. Experimental results have shown that it is feasible to separate propylene from propane by gas phase SMB at a bench scale and that this process is a potential candidate to replace the conventional technologies for the propane/propylene separation. The performance parameters obtained are very promising for future development of this technology, since propylene was obtained in the extract stream with a purity of 99.93%, a recovery of 99.51%, and a productivity of [Formula: see text] . Propane was obtained in the raffinate stream with a purity of 98.10%, a recovery of 99.73% and a productivity of [Formula: see text] . The success of the above mentioned bench scale tests is a big step for the future implementation of this technology in a larger scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.


    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  3. Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers. (United States)

    Fokin, Andrey A; Zhuk, Tatyana S; Blomeyer, Sebastian; Pérez, Cristóbal; Chernish, Lesya V; Pashenko, Alexander E; Antony, Jens; Vishnevskiy, Yury V; Berger, Raphael J F; Grimme, Stefan; Logemann, Christian; Schnell, Melanie; Mitzel, Norbert W; Schreiner, Peter R


    The covalent diamantyl (C 28 H 38 ) and oxadiamantyl (C 26 H 34 O 2 ) dimers are stabilized by London dispersion attractions between the dimer moieties. Their solid-state and gas-phase structures were studied using a multitechnique approach, including single-crystal X-ray diffraction (XRD), gas-phase electron diffraction (GED), a combined GED/microwave (MW) spectroscopy study, and quantum chemical calculations. The inclusion of medium-range electron correlation as well as the London dispersion energy in density functional theory is essential to reproduce the experimental geometries. The conformational dynamics computed for C 26 H 34 O 2 agree well with solution NMR data and help in the assignment of the gas-phase MW data to individual diastereomers. Both in the solid state and the gas phase the central C-C bond is of similar length for the diamantyl [XRD, 1.642(2) Å; GED, 1.630(5) Å] and the oxadiamantyl dimers [XRD, 1.643(1) Å; GED, 1.632(9) Å; GED+MW, 1.632(5) Å], despite the presence of two oxygen atoms. Out of a larger series of quantum chemical computations, the best match with the experimental reference data is achieved with the PBEh-3c, PBE0-D3, PBE0, B3PW91-D3, and M06-2X approaches. This is the first gas-phase confirmation that the markedly elongated C-C bond is an intrinsic feature of the molecule and that crystal packing effects have only a minor influence.

  4. Gas-phase experiments on Au(III) photochemistry. (United States)

    Marcum, Jesse C; Kaufman, Sydney H; Weber, J Mathias


    Irradiation of AuCl(4)(-) and AuCl(2)(OH)(2)(-) in the gas-phase using ultraviolet light (220-415 nm) leads to their dissociation. Observed fragment ions for AuCl(4)(-) are AuCl(3)(-) and AuCl(2)(-) and for AuCl(2)(OH)(2)(-) are AuCl(2)(-) and AuClOH(-). All fragment channels correspond to photoreduction of the gold atom to either Au(II) or Au(I) depending on the number of neutral ligands lost. Fragment branching ratios of AuCl(4)(-) are observed to be highly energy dependent and can be explained by comparison of the experimental data to calculated threshold energies obtained using density functional theory. The main observed spectral features are attributed to ligand-to-metal charge transfer transitions. These results are discussed in the context of the molecular-level mechanisms of Au(III) photochemistry.

  5. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin


    The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation...... of the mixing in the SNR process using injection of NH3 with carrier gas into the flue gas in crossflow by a quartz nozzle.Experiments were made with variation in NH3 flow, carrier gas flow, carrier gas composition (O2 concentration) and reactor temperature. Natural gas has been used as an addition...

  6. UV Action Spectroscopy of Gas-Phase Peptide Radicals. (United States)

    Nguyen, Huong T H; Shaffer, Christopher J; Pepin, Robert; Tureček, František


    UV photodissociation (UVPD) action spectroscopy is reported to provide a sensitive tool for the detection of radical sites in gas-phase peptide ions. UVPD action spectra of peptide cation radicals of the z-type generated by electron-transfer dissociation point to the presence of multiple structures formed as a result of spontaneous isomerizations by hydrogen atom migration. N-terminal Cα radicals are identified as the dominant components, but the content of isomers differing in the radical defect position in the backbone or side chain depends on the nature of the aromatic residue with phenylalanine being more prone to isomerization than tryptophan. These results illustrate that spontaneous hydrogen atom migrations can occur in peptide cation-radicals upon electron-transfer dissociation.

  7. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti


    the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...... between K-containing species and radical pool under combustion conditions has been improved. The available K/O/H/Cl chemistry has been updated by using both experimental work and detailed kinetic modeling. The experimental work was done by introducing gaseous KCl to CO oxidation system under reducing...... level, but the effect levels off at high concentrations. The experimental data were interpreted in terms of a detailed chemical kinetic model and used to update the K/O/H/Cl chemistry. The oxidation of SO2 to SO3 under combustion conditions has been suggested to be the rate limiting step in the gaseous...

  8. Technical Procedures Management in Gas-Phase Detoxification Laboratory

    International Nuclear Information System (INIS)

    Cardona Garcia, A. I.; Sanchez Cabrero, B.


    The natural cycle of Volatile Organic Compounds (VOCs) has been disturbed by the industrial and socioeconomic activities of human beings. This imbalance in the environment has affected the ecosystems and the human health. Initiatives have been planned to mitigate these adverse effects. In order to minimize the hazardous effects, initiatives have been proposed for the treatment of gaseous emissions. The solar photo catalysis appears as a clear and renewable technology in front of the conventional ones.In CIEMAT this line is being investigated as the base of a future implementation at a pre industrial scale.Technical procedures are written in this document for testing Gas-Phase detoxification at lab scale in the Renewable Energy Department (DER) CIEMAT- Madrid to eliminate the VOCs by using the solar photo catalysis technology. (Author) 34 refs

  9. Inferring gas-phase metallicity gradients of galaxies at the seeing limit: a forward modelling approach (United States)

    Carton, David; Brinchmann, Jarle; Shirazi, Maryam; Contini, Thierry; Epinat, Benoît; Erroz-Ferrer, Santiago; Marino, Raffaella A.; Martinsson, Thomas P. K.; Richard, Johan; Patrício, Vera


    We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission-line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept, we also apply the model to real IFS observations of high-redshift galaxies. From our testing, we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies with sizes approximately equal to the half width at half-maximum of the point spread function. However, we also find that the presence of star-forming clumps can significantly complicate the interpretation of metallicity gradients in moderately resolved high-redshift galaxies. Therefore, we emphasize that care should be taken when comparing nearby well-resolved observations to high-redshift observations of partially resolved galaxies.

  10. [sup 129]I Moessbauer spectroscopic study of metallocene-iodine adducts

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Satoru (Dept. of Chemistry, Faculty of Science, Hiroshima Univ. (Japan)); Sakai, Hiroshi (Dept. of Chemistry, Faculty of Science, Hiroshima Univ. (Japan)); Watanabe, Masanobu (Dept. of Chemistry, Coll. of Arts and Sciences, Univ. of Tokyo (Japan)); Maeda, Yutaka (Research Reactor Inst., Kyoto Univ., Osaka (Japan))


    A [sup 129]I Moessbauer spectroscopic study of iodine adducts of ferrocenophane, biruthenocene, and osmocene is reported. The spectra show the existence of iodine bonded to the central metals of metallocenes in addition to triiodide anions. The valence state of iron in the ferrocenophane-iodine adduct is the same as those of ruthenium and osmium in their adducts. (orig.)

  11. A comparative study of the spectroscopic features of the low-lying ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 2. A comparative study of the spectroscopic features ... Both of them are having bent ground state (1A1) equilibrium geometries, but there is a huge difference (∼ 1.93 eV) between their energy barrier to linearity. Their first two excited states are found to be ...

  12. Photochemical reactions of triplet benzophenone and anthraquinone molecules with amines in the gas phase

    International Nuclear Information System (INIS)

    Zalesskaya, G.A.; Sambor, E.G.; Belyi, N.N.


    The intermolecular photoinduced reactions between triplet ketone molecules and aliphatic amines and pyridine are studied by the quenching of delayed fluorescence of anthraquinone and benzophenone vapors by diethylamine, dibutylamine, cyclohexylamine, triethylamine, and pyridine. In the temperature range 423-573 K, the delayed fluorescence quenching rate constants k q are estimated from changes in the decay rate constant and the intensity of delayed fluorescence upon increasing pressure of bath gases. It is ascertained that, in the gas phase, the mixtures under study exhibit both a negative and a positive dependence of k q on temperature, which indicates that some photoinduced reactions do not have activation barriers. The rate constant k q is shown to increase with decreasing ionization potential of the electron donors. This points to the importance of interactions with charge transfer in the photoreaction of triplet ketone molecules with aliphatic amines and pyridine in the gas phase. The relationship between k q and the change in the free energy ΔG upon the photoinduced intermolecular electron transfer, which is the primary stage of the photochemical reaction, is studied. It is shown that the dependence k q (ΔG) for the donor-acceptor pairs under study is described well by the Marcus equation, in which the average vibrational energies of the donor and acceptor are taken into account for the estimate of ΔG

  13. Aluminum-doped ZnO nanoparticles: gas-phase synthesis and dopant location (United States)

    Schilling, Carolin; Zähres, Manfred; Mayer, Christian; Winterer, Markus


    Aluminum-doped ZnO (AZO) nanoparticles are studied widely as transparent conducting alternatives for indium tin oxide. However, the properties of AZO vary in different investigations not only with the amount of dopant and the particle size, but also with other parameters such as synthesis method and conditions. Hence, AZO nanoparticles, synthesized in the gas phase, were investigated to study the influence of the synthesis parameters dopant level, reactor temperature and residence time in the reaction zone on the particle characteristics. The local structure of the dopant in semiconductors determines whether the doping is functional, i.e., whether mobile charge carriers are generated. Therefore, information obtained from 27Al solid-state NMR spectroscopy, X-ray diffraction, photoluminescence and UV-Vis spectroscopy was used to understand how the local structure influences particles characteristics and how the local structure itself can be influenced by the synthesis parameters. In addition to AZO particles of different Al content, pure ZnO, Al2O3, ZnAl2O4 and core-shell particles of ZnO and Al2O3 were synthesized for comparison and aid to a deeper understanding of the formation of AZO nanoparticles in the gas phase.

  14. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations (United States)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.


    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  15. Thermodynamic-Controlled Gas Phase Process for the Synthesis of Nickel Nanoparticles of Adjustable Size and Morphology

    International Nuclear Information System (INIS)

    Kauffeldt, Elena; Kauffeldt, Thomas


    Gas phase processes are a successful route for the synthesis of nano materials. Nickel particles are used in applications ranging from catalysis to nano electronics and energy storage. The application field defines the required particle size, morphology, crystallinity and purity. Nickel tetracarbonyl is the most promising precursor for the synthesis of high purity nickel particles. Due to the toxicity of this precursor and to obtain an optimal process control we developed a two-step flow type process. Nickel carbonyl and nickel particles are synthesized in a sequence of reactions. The particles are formed in a hot wall reactor at temperatures below 400 deg. C in different gas compositions. Varying the process conditions enables the adjustment of the particle size in a range from 3 to 140 nm. The controllable crystalline habits are polycrystalline, single crystals or multiple twinned particles (MTP). Spectroscopic investigations show an excellent purity. We report about the process and first investigations of the properties of the synthesized nickel nanomaterial

  16. Gas-phase synthesis of semiconductor nanocrystals and its applications (United States)

    Mandal, Rajib

    Luminescent nanomaterials is a newly emerging field that provides challenges not only to fundamental research but also to innovative technology in several areas such as electronics, photonics, nanotechnology, display, lighting, biomedical engineering and environmental control. These nanomaterials come in various forms, shapes and comprises of semiconductors, metals, oxides, and inorganic and organic polymers. Most importantly, these luminescent nanomaterials can have different properties owing to their size as compared to their bulk counterparts. Here we describe the use of plasmas in synthesis, modification, and deposition of semiconductor nanomaterials for luminescence applications. Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications in several areas. To date, however, luminescent silicon nanocrystals (NCs) have been used exclusively in traditional rigid devices. For the field to advance towards new and versatile applications for nanocrystal-based devices, there is a need to investigate whether these NCs can be used in flexible and stretchable devices. We show how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (Si NCs) change when they are deposited on stretchable substrates made of polydimethylsiloxane (PDMS). Synthesis of these NCs was performed in a nonthermal, low-pressure gas phase plasma reactor. To our knowledge, this is the first demonstration of direct deposition of NCs onto stretchable substrates. Additionally, in order to prevent oxidation and enhance the luminescence properties, a silicon nitride shell was grown around Si NCs. We have demonstrated surface nitridation of Si NCs in a single step process using non?thermal plasma in several schemes including a novel dual-plasma synthesis/shell growth process. These coated NCs exhibit SiNx shells with composition depending on process parameters. While measurements including

  17. Radical Generation from the Gas-Phase Activation of Ionized Lipid Ozonides (United States)

    Ellis, Shane R.; Pham, Huong T.; in het Panhuis, Marc; Trevitt, Adam J.; Mitchell, Todd W.; Blanksby, Stephen J.


    Reaction products from the ozonolysis of unsaturated lipids at gas-liquid interfaces have the potential to significantly influence the chemical and physical properties of organic aerosols in the atmosphere. In this study, the gas-phase dissociation behavior of lipid secondary ozonides is investigated using ion-trap mass spectrometry. Secondary ozonides were formed by reaction between a thin film of unsaturated lipids (fatty acid methyl esters or phospholipids) with ozone before being transferred to the gas phase as [M + Na]+ ions by electrospray ionization. Activation of the ionized ozonides was performed by either energetic collisions with helium buffer-gas or laser photolysis, with both processes yielding similar product distributions. Products arising from the decomposition of the ozonides were characterized by their mass-to-charge ratio and subsequent ion-molecule reactions. Product assignments were rationalized as arising from initial homolysis of the ozonide oxygen-oxygen bond with subsequent decomposition of the nascent biradical intermediate. In addition to classic aldehyde and carbonyl oxide-type fragments, carbon-centered radicals were identified with a number of decomposition pathways that indicated facile unimolecular radical migration. These findings reveal that photoactivation of secondary ozonides formed by the reaction of aerosol-bound lipids with tropospheric ozone may initiate radical-mediated chemistry within the particle resulting in surface modification.

  18. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.


    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  19. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution. (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla


    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  20. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo


    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  1. Liquid and gas phase NMR spectra of 13CH313CHO acetaldehyde (United States)

    Makulski, Włodzimierz; Wikieł, Agata J.


    The gas phase NMR experiments perform a vital role in establishing the magnetic shielding and spin-spin coupling constants which are free from intermolecular interactions, equivalent to the parameter of isolated molecules. This work is concerned with an acetaldehyde molecule. Small amounts of acetaldehyde 13CH313CHO in gaseous matrices of CO2 and Xe were studied using high-precision 1H and 13C NMR measurements. Results were extrapolated to the zero-density limit permitting the determinations of the 1H and 13C absolute nuclear magnetic shielding of an isolated acetaldehyde molecule. The difference between the experimental and recent theoretical DFT results is discussed. Several samples of 13CH313CHO dissolved in popular organic and inorganic solvents were also investigated. Gas-to-solution shifts show the influence of the association process when acetaldehyde is transferred from gas to liquid state. Several spin-spin coupling constants in the gas phase and in different solvents were precisely measured.

  2. Gas-Phase Photolysis of Pyruvic Acid: The Effect of Pressure on Reaction Rates and Products. (United States)

    Reed Harris, Allison E; Doussin, Jean-Francois; Carpenter, Barry K; Vaida, Veronica


    In this work, we investigate the impact of pressure and oxygen on the kinetics of and products from the gas-phase photolysis of pyruvic acid. The results reveal a decrease in the photolysis quantum yield as pressure of air or nitrogen is increased, a trend not yet documented in the literature. A Stern-Volmer analysis demonstrates this effect is due to deactivation of the singlet state of pyruvic acid when the photolysis is performed in nitrogen, and from quenching of both the singlet and triplet state in air. Consistent with previous studies, acetaldehyde and CO 2 are observed as the major products; however, other products, most notably acetic acid, are also identified in this work. The yield of acetic acid increases with increasing pressure of buffer gas, an effect that is amplified by the presence of oxygen. At least two mechanisms are necessary to explain the acetic acid, including one that requires reaction of photolysis intermediates with O 2 . These findings extend the fundamental understanding of the gas-phase photochemistry of pyruvic acid, highlighting the importance of pressure on the photolysis quantum yields and products.

  3. Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase. (United States)

    Rodrigues-Silva, Caio; Miranda, Sandra M; Lopes, Filipe V S; Silva, Mário; Dezotti, Márcia; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P; Pinto, Eugénia


    In the last decade, environmental risks associated with wastewater treatment plants (WWTPs) have become a concern in the scientific community due to the absence of specific legislation governing the occupational exposure limits (OEL) for microorganisms present in indoor air. Thus, it is necessary to develop techniques to effectively inactivate microorganisms present in the air of WWTPs facilities. In the present work, ultraviolet light A radiation was used as inactivation tool. The microbial population was not visibly reduced in the bioaerosol by ultraviolet light A (UVA) photolysis. The UVA photocatalytic process for the inactivation of microorganisms (bacteria and fungi, ATCC strains and isolates from indoor air samples of a WWTP) using titanium dioxide (TiO 2 P25) and zinc oxide (ZnO) was tested in both liquid-phase and airborne conditions. In the slurry conditions at liquid phase, P25 showed a better performance in inactivation. For this reason, gas-phase assays were performed in a tubular photoreactor packed with cellulose acetate monolithic structures coated with P25. The survival rate of microorganisms under study decreased with the catalyst load and the UVA exposure time. Inactivation of fungi was slower than resistant bacteria, followed by Gram-positive bacteria and Gram-negative bacteria. Graphical abstract Inactivation of fungi and bacteria in gas phase by photocatalitic process performed in a tubular photoreactor packed with cellulose acetate monolith structures coated with TiO 2 .

  4. Liquid-gas phase transition in strange hadronic matter with relativistic models (United States)

    Torres, James R.; Gulminelli, F.; Menezes, Débora P.


    Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and Λ hyperons using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons. Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected to be unstable with respect to the formation of hyperclusters. Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly fitted to ab initio calculations of nuclear and Λ matter.

  5. Gas phase collision dynamics by means of pulse-radiolysis methods

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko


    After a brief survey of recent advances in gas-phase collision dynamics studies using pulse radiolysis methods, the following two topics in our research programs are presented with emphasis on the superior advantages of the pulse radiolysis methods over the various methods of gas-phase collision dynamics, such as beam methods, swarm methods and flow methods. One of the topics is electron attachment to van der Waals molecules. The attachment rates of thermal electrons to O 2 and other molecules in dense gases have been measured in wide ranges of both gas temperatures and pressures, from which experimental evidence has been obtained for electron attachment to van der Waals molecules. The results have been compared with theories and discussed in terms of the effect of van der Waals interaction on the electron attachment resonance. The obtained conclusions have been related with investigations of electron attachment, solvation and localization in the condensed phase. The other is Penning ionization and its related processes. The rate constants for the de-excitation of He(2 1 P), He(2 3 S), Ne( 3 P 0 ), Ne( 3 P 1 ), Ne( 3 P 2 ), Ar( 1 P 1 ), Ar( 3 P 1 ), by atoms and molecules have been measured in the temperature range from 100 to 300 K, thus obtaining the collisional energy dependence of the de-excitation cross sections. The results are compared in detail with theories classified according to the excited rare gas atoms in the metastable and resonance states. (author)

  6. Gas-Phase Intercluster Thiyl-Radical Induced C-H Bond Homolysis Selectively Forms Sugar C2-Radical Cations of Methyl D-Glucopyranoside: Isotopic Labeling Studies and Cleavage Reactions (United States)

    Osburn, Sandra; Speciale, Gaetano; Williams, Spencer J.; O'Hair, Richard A. J.


    A suite of isotopologues of methyl D-glucopyranosides is used in conjunction with multistage mass spectrometry experiments to determine the radical site and cleavage reactions of sugar radical cations formed via a recently developed `bio-inspired' method. In the first stage of CID (MS2), collision-induced dissociation (CID) of a protonated noncovalent complex between the sugar and S-nitrosocysteamine, [H3NCH2CH2SNO + M]+, unleashes a thiyl radical via bond homolysis to give the noncovalent radical cation, [H3NCH2CH2S• + M]+. CID (MS3) of this radical cation complex results in dissociation of the noncovalent complex to generate the sugar radical cation. Replacement of all exchangeable OH and NH protons with deuterons reveals that the sugar radical cation is formed in a process involving abstraction of a hydrogen atom from a C-H bond of the sugar coupled with proton transfer to the sugar, to form [M - H• + D+]. Investigation of this process using individual C-D labeled sugars reveals that the main site of H/D abstraction is the C2 position, since only the C2-deuterium labeled sugar yields a dominant [M - D• + H+] product ion. The fragmentation reactions of the distonic sugar radical cation, [M - H•+ H+], were studied by another stage of CID (MS4). 13C-labeling studies revealed that a series of three related fragment ions each contain the C1-C3 atoms; these arise from cross-ring cleavage reactions of the sugar.

  7. Experimental study of the reactive processes in the gas phase K{sup +}+i-C{sub 3}H{sub 7}Cl collisions: A comparison with Li and Na ions

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.; Lucas, J. M.; Andres, J. de; Alberti, M.; Aguilar, A. [Departament de Quimica Fisica, Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Bassi, D. [Dipartimento di Fisica, Universita degli Studi di Trento, 38123 Povo-Trento (Italy)


    Reactive collisions between alkali ions (Li{sup +}, Na{sup +}, and K{sup +}) and halogenated hydrocarbon molecules have been studied recently in our research group. In this paper, we have reported on the K{sup +}+i-C{sub 3}H{sub 7}Cl system in the 0.20-14.00 eV center-of-mass energy range using a radio frequency guided-ion beam apparatus developed in our laboratory. Aiming at increasing our knowledge about this kind of reactions, we compare our latest results for K{sup +} with those obtained previously for Li{sup +} and Na{sup +}. While the reaction channels are the same in all three cases, their energy profiles, reactivity, measured reactive cross-section energy dependences, and even their reaction mechanisms, differ widely. By comparing experimentally measured reactive cross-sections as a function of the collision energy with the ab initio calculations for the different potential energy surfaces, a qualitative interpretation of the dynamics of the three reactive systems is presented in the present work.

  8. An experimental guided-ion-beam and ab initio study of the ion-molecule gas-phase reactions between Li+ ions and iso-C3H7Cl in their ground electronic state

    International Nuclear Information System (INIS)

    Lucas, J. M.; Andres, J. de; Sogas, J.; Alberti, M.; Aguilar, A.; Bofill, J. M.; Bassi, D.; Ascenzi, D.; Tosi, P.


    Reactive collisions between Li + ions and i-C 3 H 7 Cl molecules have been studied in the 0.20-12.00 eV center-of-mass energy range using an octopole radio frequency guided-ion beam apparatus recently developed in our laboratory. At low collision energies, dehydrohalogenation reactions giving rise to Li(C 3 H 6 ) + and Li(HCl) + are the main reaction channels, while at higher ones C 3 H 7 + and C 2 H 3 + become dominant, all their reactive cross sections having been measured as a function of the collision energy. To obtain information about the potential energy surfaces (PESs) on which the reactive processes take place, ab initio calculations at the MP2 level have been performed. For dehydrohalogenations, the reactive ground singlet PES shows ion-molecule adduct formation in both the reactant and product sides of the surface. Following the minimum energy path connecting both minima, an unstable intermediate and the corresponding barriers, both lying below the reactant's energy, have been characterized. The entrance channel ion-molecule adduct is also involved in the formation of C 3 H 7 + , which then generates C 2 H 3 + via an CH 4 unimolecular elimination. A qualitative interpretation of the experimental results based on ab initio calculations is also included.

  9. Computational study of the CF4 /CHF3 / H2 /Cl2 /O2 /HBr gas phase plasma chemistry (United States)

    Tinck, Stefan; Bogaerts, Annemie


    A modelling study is performed of high-density low-pressure inductively coupled CF4/CHF3/H2/Cl2/O2/HBr plasmas under different gas mixing ratios. A reaction set describing the complete plasma chemistry is presented and discussed. The gas fraction of each component in this mixture is varied to investigate the sensitivity of the plasma properties, like electron density, plasma potential and species densities, towards the gas mixing ratios. This research is of great interest for microelectronics applications because these gases are often combined in two (or more)-component mixtures, and mixing gases or changing the fraction of a gas can sometimes yield unwanted reaction products or unexpected changes in the overall plasma properties due to the increased chemical complexity of the system. Increasing the CF4 fraction produces more F atoms for chemical etching as expected, but also more prominently lowers the density of Cl atoms, resulting in an actual drop in the etch rate under certain conditions. Furthermore, CF4 decreases the free electron density when mixed with Cl2. However, depending on the other gas components, CF4 gas can also sometimes enhance free electron density. This is the case when HBr is added to the mixture. The addition of H2 to the gas mixture will lower the sputtering process, not only due to the lower overall positive ion density at higher H2 fractions, but also because more H+, \\text{H}2+ and \\text{H}3+ are present and they have very low sputter yields. In contrast, a larger Cl2 fraction results in more chemical etching but also in less physical sputtering due to a smaller abundance of positive ions. Increasing the O2 fraction in the plasma will always lower the etch rate due to more oxidation of the wafer surface and due to a lower plasma density. However, it is also observed that the density of F atoms can actually increase with rising O2 gas fraction. This is relevant to note because the exact balance between fluorination and oxidation is

  10. Precursor-Less Coating of Nanoparticles in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Tobias V. Pfeiffer


    Full Text Available This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nanoparticles using a type of physical vapor deposition (PVD at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing the aerosol through the spark zone using a hollow electrode configuration. The mixing process rapidly quenches the vapor, which condenses onto the core particles at a timescale of several tens of milliseconds in a manner that can be modeled as bimodal coagulation. Gold was deposited onto core nanoparticles consisting of silver or polystyrene latex, and silver was deposited onto gold nanoparticles. The coating morphology depends on the relative surface energies of the core and coating materials, similar to the growth mechanisms known for thin films: a coating made of a substance having a high surface energy typically results in a patchy coverage, while a coating material with a low surface energy will normally “wet” the surface of a core particle. The coated particles remain gas-borne, allowing further processing.

  11. Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies, and Biological and Biomedical Properties and Applications (United States)

    Aaron, J. J.; Gaye Seye, M. D.; Trajkovska, S.; Motohashi, N.

    Recent progress in spectroscopic, photophysical, photochemical and analytical studies, as well as in the biological and biomedical properties of bioactive phenothiazines and benzophenothiazines, is reviewed. Their electronic absorption and luminescence properties, and their complexation and interactions in organized media are discussed. Various applications, including analytical studies, relative to phenothiazines and benzophenothiazines are described. Among the important biological and biomedical properties of these compounds, their neurological effects, their antibacterial, antifungal, antiviral, antiparasitic and antitumour activities, and their cytotoxicity are particularly reviewed.

  12. Homolytic iodination and nitration of some benzene derivatives in the gas phase

    International Nuclear Information System (INIS)

    Vonk, W.F.M.


    Two gas phase reactions, involving the iodination and nitration of benzene derivatives, are described. The experimental techniques of the apparatus and the methods used are outlined. The kinetic H/D isotope effect in the gas phase nitration of benzene with NO 2 is determined. (C.F.)

  13. Spectroscopic and time domain reflectometry studies on acetonitrile - Ethylene glycol binary solutions (United States)

    Mahendraprabu, A.; Kumbharkhane, A. C.; Joshi, Y. S.; Shaikh, S. S.; Kannan, P. P.; Karthick, N. K.; Arivazhagan, G.


    Spectroscopic (FTIR and 13C NMR) and time domain reflectometry (in the frequency range from 10 MHz to 25 GHz) studies have been carried out on the binary solutions of acetonitrile (AN) with ethylene glycol (EG). The presence of EG-EG multimers of various orders in neat EG has been confirmed by spectroscopic studies. AN-EG association through the formation of ∁ ≡ N ⋯ H - O , ∁ ≡ N ⋯ H - C(EG) and (EG) C - O ⋯ H - C(AN) hydrogen bonds have been identified using spectral studies. The principal relaxation process of the heteromolecular entities that involve higher order alcohol association in ethylene glycol rich solutions is found to be relatively slower than that in acetonitrile rich solutions in which lower order alcohol association involves in heterointeraction. The angular correlation among the dipoles appears to be described more precisely when the experimental ε∞ values rather than ε∞ =n2 are used for the calculation of geff .

  14. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Indian Academy of Sciences (India)

    microorganisms such as bacteria and yeast were used. Untreated PS films show very fast rate of growth of bacteria within few hours. The study involves developments of polymer surfaces with bacterial growth and further studies after giving antibacterial treatment such as plasma treatment. Major emphasis has been given to ...

  15. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    Doped samples are characterized using various techniques such as – characteristics, UV-visible spectroscopy, X-ray diffractometry (XRD), FTIR and photoluminescence (PL) studies. A significant enhancement in d.c. conductivity has been observed with the introduction of binary dopant. UV-visible study shows that ...

  16. Spectroscopic study of the reaction between Br2 and dimethyl sulfide (DMS), and comparison with a parallel study made on Cl2 + DMS: possible atmospheric implications. (United States)

    Beccaceci, Sonya; Ogden, J Steven; Dyke, John M


    The reaction between molecular bromine and dimethyl sulfide (DMS) has been studied both as a co-condensation reaction in low temperature matrices by infrared (IR) matrix isolation spectroscopy and in the gas-phase at low pressures by UV photoelectron spectroscopy (PES). The co-condensation reaction leads to the formation of the molecular van der Waals adduct DMS-Br(2). This was identified by IR spectroscopy supported by results of electronic structure calculations. Calculation of the minimum energy structures in important regions of the reaction surface and computed IR spectra of these structures, which could be compared with the experimental spectra, allowed the structure of the adduct (C(s)) to be determined. The low pressure (ca. 10(-5) mbar) gas-phase reaction was studied by UV-PES, but did not yield any observable products, indicating that a third body is necessary for the adduct to be stabilised. These results are compared with parallel co-condensation and gas-phase reactions between DMS and Cl(2). For this reaction, a similar van der Waals adduct DMS-Cl(2) is observed by IR spectroscopy in the co-condensation reactions, but in the gas-phase, this adduct converts to a covalently bound structure Me(2)SCl(2), observed in PES studies, which ultimately decomposes to monochlorodimethylsulfide and HCl. For these DMS + X(2) reactions, computed relative energies of minima and transition states on the potential energy surfaces are presented which provide an interpretation for the products observed from the two reactions studied. The implications of the results obtained to atmospheric chemistry are discussed.

  17. Synthesis and spectroscopic study of nitroxide mono- and bi- radicals

    International Nuclear Information System (INIS)

    Michon, Pierre


    Synthesis and study of nitroxide mono- and bi- radicals derived from oxazolidine: - The first part is the synthesis of amines and radicals, and the I.R. U.V., E.P.R. spectroscopy study. - Conformational analysis of two biradicals has been carried out by measurement of dipolar interaction, on the E.P.R. spectra in the second part. - The final part is an application of N.M.R. study to the determination of the sign and magnitude of nuclear-electron spin-spin couplings and conformations analysis in five mono-radicals. (author) [fr


    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Steven G.


    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.


    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop


    Full Text Available Two new adducts have been synthesized and studied by infrared and NMR spectroscopy. The suggested structures are discrete or of infinite chain type with a phosphate behaving as a bidentate ligand, a phosphonate acting as a monodentate ligand, the environments around the tin centre being tetrahedral or trigonal bipyramidal. In all the studied compounds, supramolecular architectures are obtained when hydrogen bonds are considered.

  20. Spectroscopic, thermal and biological studies on some trivalent ruthenium and rhodium NS chelating thiosemicarbazone complexes. (United States)

    Sharma, Vinod K; Srivastava, Shipra; Srivastava, Ankita


    The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III) and rhodium(III) chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, (1)H and (13)C NMR) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed a 1 : 3 electrolytic nature of the complexes. The resulting colored products are monomeric in nature. On the basis of the above studies, three ligands were suggested to be coordinated to each metal atom by thione sulphur and azomethine nitrogen to form low-spin octahedral complexes with ruthenium(III) while forming diamagnetic complexes with rhodium(III). Both ligands and their complexes have been screened for their bactericidal activities and the results indicate that they exhibit a significant activity.

  1. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Parvinder; Kaur, Simranpreet [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, Gurinder Pal [Department of Physics, Khalsa College, Amritsar 143002 (India); Arora, Deepawali; Kumar, Sunil [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, D.P., E-mail: [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)


    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV‐Vis absorption spectra and fluorescence spectra (λ{sub exc}.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO{sub 4} units thus supporting the density results. The UV‐ Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  2. Spectrochemistry of Solutions: A Vibrational Spectroscopic Study of ...

    African Journals Online (AJOL)

    Ion pairing and upper stage transition of magnesium (II) and calcium (II) with thiocyanate ion has been studied by Infrared and Raman spectroscopy. A complete picture of species present in thiocyanate solutions has been established. The spectral profile consists of five thiocyanate species namely; a triple-ion, [SCN - M ...

  3. Comparative study of spectroscopic properties of the low-lying ...

    Indian Academy of Sciences (India)

    due to the substitutions by methyl (II), isopropyl (III) and fluoromethyl (IV) groups on nitrogen. Some theo- retical studies on PSB (I) have been earlier reported at different level of calculations. AM1/CISD, MP4, MRCI calculations have been carried out by Dobado and. Nonella,25 while MNDO-CI method has been applied.

  4. Spectroscopic Studies of the Electron Donor-Acceptor Interaction of ...

    African Journals Online (AJOL)

    Purpose: The electron donor-acceptor interaction between drugs which act as electron donors and some electron-deficient compounds (π acceptors) has severally been utilized as an analytical tool for the quantitation and qualitative assessment of such drugs. The objective of this study, therefore, was to develop an assay ...

  5. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)


    Abstract. In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with changing the composition. The shifting of absorption and emission peak in shorter wave- length is obtained with increasing the mole fraction of zinc. The quantum yield (QY) value decreases with increasing the ...

  6. Spectroscopic studies of some lanthanide(III) nitrate complexes ...

    African Journals Online (AJOL)

    ... chemical analysis, conductance, magnetic moment measurements and infrared spectra. Infrared study indicates that the ligand behaves both as neutral and ionic O donors and as neutral N donors. KEY WORDS: Lanthanide(III) complexes, Schiff base, 2,6-bis-(Salicylaldehydehydrazone)-4-chlorophenol, Infrared spectra, ...

  7. preparation, spectroscopic studies and x-ray structure of ...

    African Journals Online (AJOL)


    Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close proximity of the Van Vleck values. IR studies suggest the coordination of the ligand is through the azomethine, the phenolic oxygen atom and the carbonyl oxygen of the hydrazonic moiety. The nitrate ion is also ...

  8. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)



    Determination of bond dissociation energies and heats of formation of hydrocarbon radicals and carbenes requires knowledge of their structures, but this is not provided by standard mass spectrometric studies; what is needed is high-resolution spectroscopy, often best achieved at centimeter and millimeter wavelengths. Nearly 60 reactive organic molecules were investigated in the period from 1988--1998.

  9. Infrared absorption spectroscopic study of Nd substituted Zn–Mg ...

    Indian Academy of Sciences (India)


    dependent behaviour of force constant are attributed to the cation oxygen bond distances. The structural distortion in case of chromium substituted nickel ferrites was studied by Ghatage et al (1996) and the existence of fine structure is attributed to the Jahn-Teller effect. The IR spectra of Cd, Co, Mg, Ni, Zn, Cu etc containing ...

  10. Synthesis and Spectroscopic, Thermal and Crystal Structure Studies ...

    African Journals Online (AJOL)


    The salt undergoes melting followed by decomposition to give gaseous products. KEYWORDS. Hydrazine, succinic acid, hydrazinium hydrogensuccinate, crystal structure, thermal studies. 1. Introduction. Dibasic acids are known to form N2H5HA, (N2H5)2A and. N2H5HA.H2A type salts (H2A = dibasic acid) with hydrazine.

  11. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    study shows structural modifications in functional groups with doping in PANI. Photoluminescence spectra exhibit emission properties of the samples. Keywords. Polyaniline; D.C. conductivity; UV-visible; XRD; FTIR; PL. 1. Introduction. Polymers are typically utilized in electrical, optical and electronic devices as insulators ...

  12. Fluorescence spectroscopic studies on binding of a flavonoid ...

    Indian Academy of Sciences (India)

    Binding of quercetin to human serum albumin (HSA) was studied and the binding constant measured by following the red-shifted absorption spectrum of quercetin in the presence of HSA and the quenching of the intrinsic protein fluorescence in the presence of different concentrations of quercetin. Fluorescence lifetime ...

  13. Infrared absorption spectroscopic study of Nd substituted Zn–Mg ...

    Indian Academy of Sciences (India)


    results from IR absorption study can be used to interpret the electrical and magnetic properties of the ferrites. (Braber 1969). The absorption bands, from which the details regarding functional groups and their linkages can be explored, are found to be dependent on atomic mass, cationic radius, cation–anion bond distances, ...

  14. Spectroscopic Studies of the Electron Donor-Acceptor Interaction of ...

    African Journals Online (AJOL)


    The objective of this study, therefore, was to develop an assay procedure for dosage forms of chloroquine phosphate based on its reaction with chloranilic acid which resulted in the formation of a charge-transfer complex. Methods: The complex formation between chloroquine phosphate and chloranilc acid as evidenced by.

  15. Thermophysical and spectroscopic studies of room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate in Tritons

    International Nuclear Information System (INIS)

    Chaudhary, Ganga Ram; Bansal, Shafila; Mehta, S.K.; Ahluwalia, A.S.


    Highlights: ► Thermophysical studies of new formulations of [BMIM][PF 6 ]+TX(45,100) have been made. ► Strong intermolecular interactions between [BMIM][PF 6 ] and TX (45, 100) is observed. ► Magnitude of interactions increases with the addition of oxyethylene groups in TX. ► With rise in temperature, intermolecular interactions increases. ► Spectroscopic studies show that interactions are via aromatic rings of RTIL and TX. - Abstract: The thermophysical properties viz. density ρ, speed of sound u, and specific conductivity κ of pure room temperature ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and its binary formulations with Triton X-45 and Triton X-100 have been studied over the entire composition range at different temperatures (293.15 to 323.15) K. Excess molar volume V E , deviation in isentropic compressibility ΔK S , partial molar excess volume V i E , deviation in partial molar isentropic compressibility ΔK S,i , deviation in specific conductivity Δκ have also been estimated and analysed. Spectroscopic properties (IR, 1 H and 13 C NMR) of these mixtures have been investigated in order to understand the structural and interactional behaviour of formulations studied. The magnitude of interactions between the two components increases with addition of number of oxyethylene groups in Tritons and with rise in temperature. Spectroscopic measurements indicate that interactions are mainly taking place through the five member ring of room temperature ionic liquid and six member ring of Tritons.

  16. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry (United States)

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.


    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  17. Spectroscopic studies with the use of deep-inelastic heavy-ion reactions

    International Nuclear Information System (INIS)

    Broda, R


    Gamma spectroscopic studies exploiting deep-inelastic heavy-ion reactions in thick target experiments are reviewed. The description of physical motivation, history of early experiments, analysis of the N/Z equilibration process as well as the outline of the experimental method and data analysis are followed by the presentation of main results obtained in various regions of the nuclide chart. Brief comments on thin target spectroscopy experiments involving fragment detection and future outlook are summarized. (topical review)

  18. Isolation and spectroscopic studies of curcumin from Philippine Curcuma longa L

    International Nuclear Information System (INIS)

    Torres, Rosalinda C.; Bonifacio, Teresita S.; Herrera, Celia L.; Lanto, Eduardo A.


    Curcumin, the yellow coloring matter was isolated from the rhizomes of Philippine Curcuma longa L. (turmeric) by Soxhlet extraction with toluene followed by concentration and slow crystallization. The isolated curcumin was then subjected to chromatographic and spectroscopic studies with the Merck curcumin standard. The infra red and UV-vis spectra of both compounds were found to be almost identical indicating a high purity of the isolate. The % yield obtained was 2-3%. (Author)

  19. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie


    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  20. Spectroscopic and transport studies of Cu 2 ion doped in (40–x ...

    Indian Academy of Sciences (India)

    The preparation of (40 – )Li2O–LiF–60Bi2O3 glassy system and spectroscopic and transport studies of this system are reported. IR results show that this glass consists of [BiO3] units and indicate formation of Bi–F bonds with the addition of LiF. From the ESR spectra of Cu2+ ion, the effective values are found to vary ...

  1. Studies of tropical fruit ripening using three different spectroscopic techniques. (United States)

    Zhang, Hao; Huang, Jing; Li, Tianqi; Wu, Xiuxiang; Svanberg, Sune; Svanberg, Katarina


    We present a noninvasive method to study fruit ripening. The method is based on the combination of reflectance and fluorescence spectroscopies, as well as gas in scattering media absorption spectroscopy (GASMAS). Chlorophyll and oxygen are two of the most important constituents in the fruit ripening process. Reflectance and fluorescence spectroscopies were used to quantify the changes of chlorophyll and other chromophores. GASMAS, based on tunable diode laser absorption spectroscopy, was used to measure free molecular oxygen in the fruit tissue at 760 nm, based on the fact that the free gases have much narrower spectral imprints than those of solid materials. The fruit maturation and ripening processes can be followed by studying the changes of chlorophyll and oxygen contents with these three techniques.

  2. Spectroscopic studies of laser ablation plumes of artwork materials (United States)

    Oujja, M.; Rebollar, E.; Castillejo, M.


    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  3. FT-IR spectroscopic studies of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Salisbury, D.W.; Allen, J.E. Jr.; Donn, B.; Moore, W.J.; Khanna, R.K.


    Proper assessment of the hypothesis which correlates polycyclic aromatic hydrocarbons (PAHs) with the unidentified infrared emission bands requires additional experimental laboratory data. In order to address this need, thermal infrared emission studies were performed on a subset of PAHs suggested to be of astrophysical importance. It was proposed that infrared emission from interstellar PAHs occurs following absorption of an ultraviolet photon. Since energy transfer to the ground electronic state can be rapid for a species in which intersystem crossing is negligible, the emission spectrum may be viewed as resulting from an equilibrium vibrational temperature (Leger and d'Hendecourt, 1987). This has been the basis for using infrared absorption spectra to calculate the corresponding emission spectra at various temperatures. These calculations were made using room temperature infrared absorption coefficients instead of those at the temperature of interest because of the latter's unavailability. The present studies are designed to address the differences between the calculated and experimental thermal emission spectra and to provide information which will be useful in future ultraviolet induced infrared fluorescence studies. The emission spectra have been obtained for temperatures up to 825K using an emission cell designed to mount against an external port of an FT-IR spectrometer. These spectra provide information concerning relative band intensities and peak positions which is unavailable from previous calculations

  4. Formation of Gas-Phase Formate in Thermal Reactions of Carbon Dioxide with Diatomic Iron Hydride Anions. (United States)

    Jiang, Li-Xue; Zhao, Chongyang; Li, Xiao-Na; Chen, Hui; He, Sheng-Gui


    The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO 2 and formation of a C-H bond. Herein, we report that HCO 2 - and CO can be formed in the thermal reaction of CO 2 with a diatomic metal hydride species, FeH - . The FeH - anions were produced by laser ablation, and the reaction with CO 2 was analyzed by mass spectrometry and quantum-chemical calculations. Gas-phase HCO 2 - was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO 2 hydrogenation in this gas-phase study parallels similar behavior of a condensed-phase iron catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Near-Infrared Spectroscopic Study of Chlorite Minerals


    Min Yang; Meifang Ye; Haihui Han; Guangli Ren; Ling Han; Zhuan Zhang


    The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS) spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, and X-ray fluorescence (XRF) analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 we...

  6. Iron Complexes of Peptide Conjugates: Theoretical and Spectroscopic Study

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Šafařík, Martin; Bouř, Petr


    Roč. 96, č. 4 (2011), s. 506-506 ISSN 1097-0282. [ American Peptide Symposium /22./. 25.06.2011-30.06.2011, San Diego] R&D Projects: GA ČR GA203/07/1517; GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : deferipron * ferric complexes * Raman spectra * DFT study * peptide Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.


    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  8. Impedance and modulus spectroscopic study of nano hydroxyapatite (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.


    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  9. Spectroscopic, structural and drug docking studies of carbocysteine (United States)

    Manivannan, M.; Rajeshwaran, K.; Govindhan, R.; Karthikeyan, B.


    Carbocysteine or carbocisteine having the empirical formula C5H9NO4S,is one of the most therapeutically prescribed expectorant, sold under the brand name viz., Mucodyne (UK and India), Rhinathiol and Mucolite. In pediatric respiratory pathology, it can relieve the symptoms of obstructive pulmonary disease (COPD) and bronchiectasis. On the consideration of its extensive pharmaceutical usage and medicinal value, we have investigated its chemical structure and composition by employing various spectral techniques like 1H, 13C NMR, FT-IR,Raman, UV-Visible spectroscopy and powder X-ray diffraction method. Density Functional Theoretical (DFT) studies on its electronic structure is also carried out. Drug docking studies were carried out to ascertain the nature of molecular interaction with the biological protein system. Furthermore theoretical Raman spectrum of this molecule has been computed and compared with the experimental Raman spectrum. The forbidden energy gap between its frontier molecular orbitals, viz., HOMO-LUMO is calculated and correlated with its observed λmax value. Atomic orbitals which are mainly contributes to the frontier molecular orbitals were identified. Molecular electrostatic potential diagram has been mapped to explain its chemical activity. Based on the results, a suitable mechanism of its protein binding mode and drug action has been discussed.

  10. Divalent thulium triflate. A structural and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Xemard, Mathieu; Jaoul, Arnaud; Cordier, Marie; Nocton, Gregory [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Molton, Florian; Duboc, Carole [Grenoble Univ., Saint Martin d' Heres (France). Dept. de Chimie Moleculaire; Cador, Olivier; Le Guennic, Boris [Univ. de Rennes 1 (France). Inst. des Sciences Chimique de Rennes, UMR 6226 CNRS; Maury, Olivier [Univ. Claude Bernard Lyon 1 (France). Lab. de Chimie; Clavaguera, Carine [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Univ. Paris Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Chimie Physique, CNRS


    The first molecular Tm{sup II} luminescence measurements are reported along with rare magnetic, X and Q bands EPR studies. Access to simple and soluble molecular divalent lanthanide complexes is highly sought for small-molecule activation studies and organic transformations using single-electron transfer processes. However, owing to their low stability and propensity to disproportionate, these complexes are hard to synthetize and their electronic properties are therefore almost unexplored. Herein we present the synthesis of [Tm(μ-OTf){sub 2}(dme){sub 2}]{sub n}, a rare and simple coordination compound of divalent thulium that can be seen as a promising starting material for the synthesis of more elaborated complexes. This reactive complex was structurally characterized by X-ray diffraction analysis and its electronic structure has been compared with that of its halide cousin TmI{sub 2}(dme){sub 3}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Lithium and sodium incorporation in zirconia: a spectroscopic study

    International Nuclear Information System (INIS)

    Bender, Alexandra


    Zircaloy is used as fuel cladding material. Lithium dissolved in the cooling water enhances its corrosion and incorporates into the oxide layer. It could substitute for zirconium atoms forming a solid solution or modify crystallographic structure of zirconia. The aim of this work is to determine the crystallographic structure and the local environment of dopant in Li and Na doped zirconia samples obtained by ionic implantation and coprecipitation route, and then to discuss their interest in term of 'lithium effect study'. Implanted zirconia samples are constituted by metallic aggregates oxidised at their surface. A third 'Na 2 ZrO 3 ' local environment has been detected probably due to Na dissolved in zirconia. An experimental procedure has been developed allowing Li and Na doping by a coprecipitation route. Lithium and sodium hydroxide helps the stabilisation of metastable zirconia. Stabilisation doesn't seem to be due to alkaline substitution for zirconium but it must be connected to the effect of both alkaline hydroxides on the first precipitation steps. Similarities between Li doped zirconia by coprecipitation route and zirconia obtained by oxidation of zirconium in the presence of LiOH should help to understand the so-called 'lithium effect'. Finally sodium seems to be relevant to simulate lithium when samples are elaborated and studied at room temperature. It is not the case for annealed samples. (author) [fr

  12. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study. (United States)

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam


    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

  13. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.


    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  14. Tertiary phosphine complexes of rhenium: a spectroscopic study

    International Nuclear Information System (INIS)

    Fergusson, J.E.; Heveldt, P.F.


    Complexes of the type ReOX 3 L 2 , ReNX 2 L 3 , ReX 3 (NO)L 2 and ReX 2 (NO)L 3 have been studied using, UV visible, IR and H 1 , C 13 NMR spectroscopy. (X is a halogen, Cl, Br, I and L is a tertiary phosphine Et 3 P and Et 2 PhP). Evidence obtained on the blue cis isomer ReOCl 3 L 2 suggests that the halogens are arranged on a face of the octahedral complex. Assignments of ν(Re-X) and ν(Re-P) vibrations have been made. Three complexes of technetium, [TcCl 4 (Ph 3 P) 2 ], [TcCl 3 (Et 2 PhP) 3 ] and [TcCl 3 (NO)(Et 2 PhP) 2 ] have been isolated. (author)

  15. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)


    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  16. In-beam spectroscopic studies of the 44S nucleus (United States)

    Cáceres, L.; Sohler, D.; Grévy, S.; Sorlin, O.; Dombrádi, Zs.; Bastin, B.; Achouri, N. L.; Angélique, J. C.; Azaiez, F.; Baiborodin, D.; Borcea, R.; Bourgeois, C.; Buta, A.; Bürger, A.; Chapman, R.; Dalouzy, J. C.; Dlouhy, Z.; Drouard, A.; Elekes, Z.; Franchoo, S.; Gaudefroy, L.; Iacob, S.; Laurent, B.; Lazar, M.; Liang, X.; Liénard, E.; Mrazek, J.; Nalpas, L.; Negoita, F.; Nowacki, F.; Orr, N. A.; Penionzhkevich, Y.; Podolyák, Zs.; Pougheon, F.; Poves, A.; Roussel-Chomaz, P.; Saint-Laurent, M. G.; Stanoiu, M.; Stefan, I.


    The structure of the 44S nucleus has been studied at GANIL through the one proton knock-out reaction from a 45Cl secondary beam at 42 A·MeV. The γ rays following the de-excitation of 44S were detected in flight using the 70 BaF2 detectors of the Château de Cristal array. An exhaustive γγ-coincidence analysis allowed an unambiguous construction of the level scheme up to an excitation energy of 3301 keV. The existence of the spherical 22+ state is confirmed and three new γ-ray transitions connecting the prolate deformed 21+ level were observed. Comparison of the experimental results to shell model calculations further supports a prolate and spherical shape coexistence with a large mixing of states built on the ground state band in 44S.

  17. Conformational analysis and vibrational spectroscopic studies on dapsone (United States)

    Ildiz, Gulce Ogruc; Akyuz, Sevim


    In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.

  18. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini


    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  19. NMR spectroscopic studies of membrane-bound biological systems

    International Nuclear Information System (INIS)

    Hohlweg, W.


    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  20. Experimental and theoretical spectroscopic studies of dye modification in synthetic Maya Blue pigment (United States)

    Reza, Layra; Manciu, Felicia; Ramirez, Alejandra; Chianelli, Russell


    Maya pigments are hybrid organic/inorganic materials with multiple technology applications that possess unprecedented stability with respect to harsh environment conditions. In this investigation, we address the question of how the organic indigo dye modifies as it binds to the inorganic palygorskite clay to form a pigment similar to Maya Blue after a heating treatment is applied. Both infrared and Raman spectroscopic data demonstrate the disappearance of nitrogen-hydrogen (N-H) bonding, as the indigo molecule incorporates into the inorganic palygorskite material. This effect suggests a transformation of the dye from indigo to dehydroindigo. Furthermore, the Raman and infrared absorption results demonstrate partial elimination of the selection rules for the centrosymmetric indigo, which provides further evidence for this conversion. Theoretical spectroscopic studies are also addressed in this investigation to confirm the transformation of the dye into dehydroindigo.

  1. Ir Spectroscopic Studies on Microsolvation of HCl by Water (United States)

    Mani, Devendra; Schwan, Raffael; Fischer, Theo; Dey, Arghya; Kaufmann, Matin; Redlich, Britta; van der Meer, Lex; Schwaab, Gerhard; Havenith, Martina


    Acid dissociation reactions are at the heart of chemistry. These reactions are well understood at the macroscopic level. However, a microscopic level understanding is still in the early stages of development. Questions such as 'how many H_2O molecules are needed to dissociate one HCl molecule?' have been posed and explored both theoretically and experimentally.1-5 Most of the theoretical calculations predict that four H_2O molecules are sufficient to dissociate one HCl molecule, resulting in the formation of a solvent separated H_3O+(H_2O)3Cl- cluster.1-3 IR spectroscopy in helium nanodroplets has earlier been used to study this dissociation process.3-5 However, these studies were carried out in the region of O-H and H-Cl stretch, which is dominated by the spectral features of undissociated (HCl)m-(H_2O)n clusters. This contributed to the ambiguity in assigning the spectral features arising from the dissociated cluster.4,5 Recent predictions from Bowman's group, suggest the presence of a broad spectral feature (1300-1360 wn) for the H_3O+(H_2O)3Cl- cluster, corresponding to the umbrella motion of H_3O+ moiety.6 This region is expected to be free from the spectral features due to the undissociated clusters. In conjunction with the FELIX laboratory, we have performed experiments on the (HCl)m(H_2O)n (m=1-2, n≥4) clusters, aggregated in helium nanodroplets, in the 900-1700 wn region. Mass selective measurements on these clusters revealed the presence of a weak-broad feature which spans between 1000-1450 wn and depends on both HCl as well as H_2O concentration. Measurements are in progress for the different deuterated species. The details will be presented in the talk. References: 1) C.T. Lee et al., J. Chem. Phys., 104, 7081 (1996). 2) H. Forbert et al., J. Am. Chem. Soc., 133, 4062 (2011). 3) A. Gutberlet et al., Science, 324, 1545 (2009). 4) S. D. Flynn et al., J. Phys. Chem. Lett., 1, 2233 (2010). 5) M. Letzner et al., J. Chem. Phys., 139, 154304 (2013). 6) J. M

  2. Spectroscopic studies on native proteins, glycated and inhibited nonenzymatically

    International Nuclear Information System (INIS)

    Gil, H; Otero, V; Contreras, S


    The nonenzymatic glucation is an irreversible process whose speed depends on the concentration reducer sugar in plasma. The glycated albumins is higher in diabetic people. Up to now, this has been indicated as an important mechanism in the pathology of the the secondary complications associated with diabetes and the normal aging. Recently a lot of interest has been focused on the search of certain compounds (inhibitors) to prevent the glucation and / or the formation of ending products of advanced glucation, AGE. The reaction of glucose with the human albumin and γ globulins and the effects of acid acetylsalicylic and ascorbic acid were studied. The proteins were incubated with glucose in absence and in presence of inhibitors for one month. The solutions were dialysed and then lyophilizated. The absorption spectra were taken for native proteins, glycated and inhibited (2 mg/ml) in phosphate 10 mM buffer, p H 7.3. It is observed that the spectra of the acetylate proteins and native proteins are practically same. This can be interpreted as an inhibitor effect of acid acetylsalicylic on glucation. In all the observed cases the glycated proteins absorb more than the native ones and they present a line toward the visible region. The ascorbic acid absorbs below the native proteins and it doesn't present the same characteristics. The increase and / or the decrease in the absorption picks can be associated with environmental changes affecting the groups involved in the absorption process [es

  3. Spectroscopic study of the eclipsing binary V 367 Cygni

    International Nuclear Information System (INIS)

    Aydin, C.; Yilmaz, N.; Hack, M.


    Seventeen coude spectrograms (dispersion 20 A mm -1 ) of the β Lyrae-type eclipsing binary V 367 Cygni (P = 18.6 d) have been studied. The observations were made at the Haute Provence Observatory during a period of almost two years (May 1973-March 1975). An anomalous behavior for the radial velocities of the spectrograms taken during one cycle (406) was observed; it is suggested that gas eruption under form of prominences may explain it. The spectrum is dominated by shell lines very similar to those present in the spectrum of the supergiant A9 Ia epsilon Aurigae. The underlying stellar spectrum is classified as A5 I on the basis of the intensity of the sole clearly visible stellar line, lambda 4481 Mg II, of the wings of the stellar Balmer lines, and an estimate of the intensity of the stellar K line. The radial velocity curves for the shell lines of Ca II, H I, metallic ions and neutral iron, as well as the phase dependence of the microturbulence, indicate stratification in the shell. (Auth.)

  4. A theoretical and spectroscopic study of conformational structures of piroxicam (United States)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério


    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  5. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J. [Dept of Post Graduate Studies & Research in Physics, The National Degree College, Bangalore (India); Rajaramakrishna, R. [Dept of Post Graduate Studies & Research in Physics, The National Degree College, Bangalore (India); Physics Department, Bangalore University, Bangalore (India)


    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi{sub 2}O{sub 3}-30PbO-60B{sub 2}O{sub 3}-xNd{sub 2}O{sub 3} where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm{sup −1} and 300cm{sup −1} in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy {sup 4}I{sub 9/2}. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  6. Borax methylene blue: a spectroscopic and staining study. (United States)

    Donaldson, P T; Russo, A; Reynolds, C; Lillie, R D


    Borax methylene blue is quite stable at room temperatures of 22-25 C. At 30 C polychroming is slow; during 50 days in a water bath at this temperature the absorption peak moves from 665 to 656 nm. At 35 C, the absorption peak reaches 660 nm in 7 days, 654 nm in 14. At 60 C polychroming is rapid, the absorption peak reaching 640-620 nm in 3 days. When the pH of the borax methylene blue solutions, normally about 9.0, is adjusted to pH 6.5, the absorption peak remains at 665 nm even when incubated at 60 C for extended periods. When used as a blood stain 0.4 ml borax methylene blue (1% methylene blue in 1% borax), 4 ml acetone, 2 ml borax-acid phosphate buffer to bring the solution to pH 6.5, and distilled water to make 40 ml, with 0.2 ml 1% eosin added just before using, an excellent Nocht-Giemsa type stain is achieved after 30 minutes staining. The material plasmodia P. falciparum, P. vivax, and P. berghei stain moderate blue with dark red chromatin and green to black pigment granules. The study confirms Malachowski's 1891 results and explains Gautier's 1896-98 failure to duplicate it.

  7. Spectroscopic studies on the antioxidant activity of ellagic acid (United States)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel


    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  8. HPLC assisted Raman spectroscopic studies on bladder cancer (United States)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.


    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  9. Luminescence and spectroscopic studies of halosulfate phosphors: a review. (United States)

    Gedam, S C; Thakre, P S; Dhoble, S J


    This review discusses the photoluminescence (PL) characteristics of halosulfate phosphors developed by us. Halosulfate phosphors KCaSO4 Cl:X,Y (X = Eu or Ce; Y = Dy or Mn) and Na6 (SO4 )2 FCl (doped with Dy, Ce or Eu) were prepared using a solid-state diffusion method. The mechanism of energy transfer from Eu(2+) →Dy(3+) , Ce(3+) →Dy(3+) and Ce(3+) →Mn(2+) has also been studied. Dy(3+) emission in the host at 475 and 570 nm is observed due to (4) F9/2 →(6) H15/2 and (4) F9/2 →(6) H13/2 transition, whereas the PL emission spectra of Na6 (SO4 )2 FCl:Ce phosphor shows Ce(3+) emission at 322 nm due to 5d→4f transition of the Ce(3+) ion. The main property of KCaSO4 Cl is its very high sensitivity, particularly when doped by Dy, Mn or Pb activators. This review also discusses the PL characteristics of some new phosphors such as LiMgSO4 F, Na6 Pb4 (SO4 )6 Cl2 , Na21 Mg(SO4 )10 Cl3 and Na15 (SO4 )5 F4 Cl. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Posttranslational modification of Birch and Ragweed allergen proteins by common gas phase pollutants, NO2 and O3 (United States)

    Mahmood, M. A.; Pope, F.; Bloss, W.


    The global incidence of hay fever has been rising for decades, however, the underlying reasons behind this rise remain unclear. It is hypothesized that exposure of pollen to common gas phase pollutants, such as nitrogen dioxide (NO2) and ozone (O3), increases the allergenicity of the pollen and thus increases hay fever incidence. Since atmospheric pollutants tend to have greater concentrations within urban areas (in particular NO2) the hypothesis suggests that greater allergenicity should occur in urban areas. Indeed, several studies do suggest higher hay fever incidence within urban areas compared to rural areas. Previous published work suggests a link between increased allergies with changes in the chemical composition of the pollen protein via posttranslational modification of the protein. This study investigates the posttranslational modification of two highly allergenic pollen species (Birch and Ragweed) that are common in Europe. Within the laboratory, we expose pollen grains to atmospherically relevant exposures of gas phase NO2, O3 and other common gas phase oxidants under a range of environmentally relevant conditions. The effects of the environmentally relevant exposures on the biochemistry of the pollen grains were probed using a proteomic approach (liquid chromatography coupled ultra-high resolution spectrometer). Our findings indicate the interaction between gas phase pollutants and pollen cause protein specific modifications; in particular, nitration occurs upon tyrosine residues and nitrosylation on cysteine residues. Possibly, these modifications may affect the immune response of the pollen protein, which may suggest a possible reason for increased allergies in reaction to such biologically altered protein. The laboratory-derived results will be supported with a time series analysis of asthma incidence rates for the London area, which take into account the pollen count, and pollutant concentrations. The implications of the results will be discussed

  11. [Spectroscopic studies on the interaction of nicotine and BSA]. (United States)

    Chen, Yun; Kong, Xiang-rong; Shen, Xinag-can; Liang, Hong


    The interaction of nicotine and bovine serum albumin(BSA) was investigated by fluorescence spectra and UV-vis spectra. The fluorescence spectrum showed that BSA fluorescence quench regularly with the addition of nicotine.The fluorescence quenching mechanisms were also studied in pH 5.0, pH 7.4 and pH 11.0 by Stern-Volmer equation, indicating dynamic quenching(pH 5.0) and static quenching(pH 7.4 and pH 11.0) respectively. Association constants (k) of nicotine and BSA at pH 7.4 and pH 11.0 at the temperatures of 20 and 37 degrees C were given by the Lineweaver-Buck equation, which are: k(20 degrees C) = 140.15 L x mol(-1) and k(37 degrees C) = 131.83 mol x L(-1) (pH 7.4), and k(20 degrees C) = 141.76 mol x L(-1), k(37 degrees C) = 27.79 mol x L(-1) (pH 11.0), suggesting that the association constant is effected by the temperature much more remarkably at pH 7.4 than that at pH 11.0 because of the different states of nicotine at different pHs. The UV-Vis spectra exhibit that the absorbance of BSA(210 nm) shifts to red and decreases gradually with the addition of nicotine, reflecting the transition of secondary structure of BSA, namely, the helix of BSA becomes looser. The UV-Vis second derivative spectra and synchronous spectra (delta wavelength = wavelength(em) - wavelength(ex) = 15 nm and delta wavelength = wavelength(em) - wavelength(ex) = 60 nm) imply the change of the microcircumstance of aromatic amino residues of BSA(Trp, Tyr and Phe) from hydrophobicity to hydrophilicity at high concentration of nicotine.

  12. 2-Ethynylpyridine dimers: IR spectroscopic and computational study (United States)

    Bakarić, Danijela; Spanget-Larsen, Jens


    2-ethynylpyridine (2-EP) presents a multifunctional system capable of participation in hydrogen-bonded complexes utilizing hydrogen bond donating (tbnd Csbnd H, Aryl-H) and hydrogen bond accepting functions (N-atom, Ctbnd C and pyridine π-systems). In this work, IR spectroscopy and theoretical calculations are used to study possible 2-EP dimer structures as well as their distribution in an inert solvent such as tetrachloroethene. Experimentally, the tbnd Csbnd H stretching vibration of the 2-EP monomer absorbs close to 3300 cm-1, whereas a broad band with maximum around 3215 cm-1 emerges as the concentration rises, indicating the formation of hydrogen-bonded complexes involving the tbnd Csbnd H moiety. The Ctbnd C stretching vibration of monomer 2-EP close to 2120 cm-1 is, using derivative spectroscopy, resolved from the signals of the dimer complexes with maximum around 2112 cm-1. Quantum chemical calculations using the B3LYP + D3 model with counterpoise correction predict that the two most stable dimers are of the π-stacked variety, closely followed by dimers with intermolecular tbnd Csbnd H⋯N hydrogen bonding; the predicted red shifts of the tbnd Csbnd H stretching wavenumbers due to hydrogen bonding are in the range 54-120 cm-1. No species with obvious hydrogen bonding involving the Ctbnd C or pyridine π-systems as acceptors are predicted. Dimerization constant at 25 °C is estimated to be K2 = 0.13 ± 0.01 mol-1 dm3.

  13. Moessbauer spectroscopic study on inorganic compounds. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi; Kitazawa, Takafumi; Nanba, Hiroshi; Yoshinaga, Tomohiro; Nakajima, Norio; Sumisawa, Yasuhiro; Takeda, Masuo [Toho Univ., Funabashi, Chiba (Japan). Faculty of Science; Sawahata, Hiroyuki; Ito, Yasuo


    {sup 166}Er and {sup 127}I Moessbauer spectra were observed. {sup 166}Er Moessbauer spectrum of Er metal and 9 compounds were measured by {sup 166}Ho/Y{sub 0.6}Ho{sub 0.4}H{sub 2} source at 12K and the parameters such as e{sup 2}qQ(mm s{sup -1}), Heff(T) and {tau}(ns) were determined. The relaxation time of ErCl{sub 3}{center_dot}6H{sub 2}O was 0.7ns, long, but that of ErCl{sub 3} was 10 ps, short time. {sup 127}I Moessbauer spectrum of PhI(O{sub 2}CR){sub 2} (R=CH{sub 3}, CHF{sub 2}, CH{sub 2}Cl, CHCl{sub 2}, CCl{sub 3}, CH{sub 2}Br, CHBr{sub 2} and CBr{sub 3}) were observed and compared with that of R`{sub 3}Sb(O{sub 2}CR){sub 2} was similar to that of PhI(O{sub 2}CR){sub 2}. The correlation coefficient between e{sup 2}qQ({sup 127}I) and Mulliken population of carboxylic hydrogen atom of R{sub 2}CO{sub 2}H was -0.87. The relation between the hypervalent bond of O-I-O and that of O-Sb-0 was shown by the equation: e{sup 2}qQ({sup 121}Sb)/mm s{sup -1} = -47.2 + 1.32 e{sup 2}qQ({sup 127}I)/mm s{sup -1}. Hypervalent iodine complex such as (PhI(py){sub 2}){sup 2+} salt and E-Sb-I (E=O, I, N and C) were studied, too. (S.Y.)

  14. Raman spectroscopic studies on exfoliated cells of oral and cervix (United States)

    Hole, Arti; Sahu, Aditi; Shaikh, Rubina; Tyagi, Gunjan; Murali Krishna, C.


    Visual inspection followed by biopsy is the standard procedure for cancer diagnosis. Due to invasive nature of the current diagnostic methods, patients are often non-compliant. Hence, it is necessary to explore less invasive and rapid methods for early detection. Exfoliative cytology is a simple, rapid, and less invasive technique. It is thus well accepted by patients and is suitable for routine applications in population screening programs. Raman spectroscopy (RS) has been increasingly explored for disease diagnosis in the recent past. In vivo RS has previously shown promise in management of both oral and cervix cancers. In vivo applications require on-site instrumentation and stringent experimental conditions. Hence, RS of less invasive samples like exfoliated cells has been explored, as this facilitates collection at multiple screening centers followed by analysis at a centralized facility. In the present study, efficacy of Raman spectroscopy in classification of 15 normal and 29 abnormal oral exfoliated cells specimens and 28 normal and 38 abnormal cervix specimens were explored. Spectra were acquired by Raman microprobe (HE 785, Horiba-Jobin-Yvon, France) from several areas to span the pellet. Spectral acquisition parameters were: microscopic objective: 40X, power: 40 mW, acquisition time: 15 s and average: 3. PCA and PC-LDA of pre-processed spectra was carried out on a 4-model system of normal and tumor of both cervix and oral specimens. Leave-one-out-cross-validation findings indicate 73 % correct classification. Findings suggest RS of exfoliated cells may serve as a patient-friendly, non-invasive, rapid and objective method for management of cervix and oral cancers.

  15. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl (United States)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.


    A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}} )Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.

  16. Synthesis, structural, spectroscopic and biological studies of Schiff base complexes (United States)

    Diab, M. A.; El-Sonbati, A. Z.; Shoair, A. F.; Eldesoky, A. M.; El-Far, N. M.


    Schiff base ligand 4-((pyridin-2- yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (PDMP) and its complexes were prepared and characterized on the basis of elemental analysis, IR, mass spectra and thermogravimetric analysis. All results confirm that the complexes have 1:1 (M: PMDP) stoichiometric formula [M(PMDP)Cl2H2O ] (M = Cu(II), Co(II), Ni(II) and Mn(II)), [Cd(PMDP)Cl2] and the ligand behaves as a bi/tridentate forming five-membered chelating ring towards the metal ions, bonding through azomethine nitrogen/exocyclic carbonyl oxygen, azomethine pyridine nitrogen and exocyclic carbonyl oxygen. The shift in the band positions of the groups involved in coordination has been utilized to estimate the metal-nitrogen and/or oxygen bond lengths. The complexes of Co(II), Ni(II) and Cu(II) are paramagnetic and the magnetic as well as spectral data suggest octahedral geometry, whereas the Cd(II) complex is tetrahedral. The XRD studies show that both the ligand and its metal complexes (1 and 3) show polycrystalline with crystal structure. Molecular docking was used to predict the binding between PMDP ligand and the receptors. The corrosion inhibition of mild steel in 2 M HCl solution by PDMP was explored utilizing potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and (EFM) electrochemical frequency modulation method. Potentiodynamic polarization demonstrated that PDMP compound is mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the protective ability. The percentage of inhibition efficiency was found to increase with increasing the inhibitor concentration.

  17. Spectroscopic studies of molybdenum complexes as models for nitrogenase

    International Nuclear Information System (INIS)

    Walker, T.P.


    Because biological nitrogen fixation requires Mo, there is an interest in inorganic Mo complexes which mimic the reactions of nitrogen-fixing enzymes. Two such complexes are the dimer Mo 2 O 4 (cysteine) 2 2- and trans-Mo(N 2 ) 2 (dppe) 2 (dppe = 1,2-bis(diphenylphosphino)ethane). The H 1 and C 13 NMR of solutions of Mo 2 O 4 (cys) 2 2- are described. It is shown that in aqueous solution the cysteine ligands assume at least three distinct configurations. A step-wise dissociation of the cysteine ligand is proposed to explain the data. The Extended X-ray Absorption Fine Structure (EXAFS) of trans-Mo(N 2 ) 2 (dppe) 2 is described and compared to the EXAFS of MoH 4 (dppe) 2 . The spectra are fitted to amplitude and phase parameters developed at Bell Laboratories. On the basis of this analysis, one can determine (1) that the dinitrogen complex contains nitrogen and the hydride complex does not and (2) the correct Mo-N distance. This is significant because the Mo inn both complexes is coordinated by four P atoms which dominate the EXAFS. A similar sort of interference is present in nitrogenase due to S coordination of the Mo in the enzyme. This model experiment indicates that, given adequate signal to noise ratios, the presence or absence of dinitrogen coordination to Mo in the enzyme may be determined by EXAFS using existing data analysis techniques. A new reaction between Mo 2 O 4 (cys) 2 2- and acetylene is described to the extent it is presently understood. A strong EPR signal is observed, suggesting the production of stable Mo(V) monomers. EXAFS studies support this suggestion. The Mo K-edge is described. The edge data suggests Mo(VI) is also produced in the reaction. Ultraviolet spectra suggest that cysteine is released in the course of the reaction

  18. Ethylene epoxidation promoted by methane gas-phase thermic oxidation. The influence of temperature

    International Nuclear Information System (INIS)

    Grigoryan, R.R.; Arsentiev, S.D.; Mantashyan, A.A.


    Ethylene epoxidation promoted by methane gas-phase thermic oxidation has been studied. The studies were carried out in a two-sectional reactor under flow conditions. The experiments were performed in different temperatures in the sections of the reactor. It was shown that when methane is oxidized in the first section of the reactor and ethylene is put into the second section, epoxidation of olefin occurs through the alkyl peroxy radical interaction with double bond of olefin. It was established that the dependences of epoxidation rate on temperatures in both first and second sections pass trough maximum. The substitution of methane with inert gas (argon) in the first section leads to significant decrease of rate of ethylene oxide accumulation in the second section

  19. Some insights into formamide formation through gas-phase reactions in the interstellar medium

    International Nuclear Information System (INIS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio


    We study the viability of different gas-phase ion-molecule reactions that could produce precursors of formamide in the interstellar medium. We analyze different reactions between cations containing a nitrogen atom (NH 3 + , NH 4 + , NH 3 OH + , and NH 2 OH + ) and neutral molecules having one carbonyl group (H 2 CO and HCOOH). First, we report a theoretical estimation of the reaction enthalpies for the proposed processes. Second, for more favorable reactions, from a thermodynamic point of view, we perform a theoretical study of the potential energy surface. In particular, the more exothermic processes correspond to the reactions of ionized and protonated hydroxylamine with formaldehyde. In addition, a neutral-neutral reaction has also been considered. The analysis of the potential energy surfaces corresponding to these reactions shows that these processes present a net activation barrier and that they cannot be considered as a source of formamide in space.

  20. Some Insights into Formamide Formation through Gas-phase Reactions in the Interstellar Medium (United States)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio


    We study the viability of different gas-phase ion-molecule reactions that could produce precursors of formamide in the interstellar medium. We analyze different reactions between cations containing a nitrogen atom (NH_{3}^{+}, NH_{4}^{+}, NH3OH+, and NH2OH+) and neutral molecules having one carbonyl group (H2CO and HCOOH). First, we report a theoretical estimation of the reaction enthalpies for the proposed processes. Second, for more favorable reactions, from a thermodynamic point of view, we perform a theoretical study of the potential energy surface. In particular, the more exothermic processes correspond to the reactions of ionized and protonated hydroxylamine with formaldehyde. In addition, a neutral-neutral reaction has also been considered. The analysis of the potential energy surfaces corresponding to these reactions shows that these processes present a net activation barrier and that they cannot be considered as a source of formamide in space.

  1. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M


    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  2. Theoretical studies of UO2(H2O)n(2+), NpO2(H2O)n(+), and PuO2(H2O)n(2+) complexes (n=4-6) in aqueous solution and gas phase. (United States)

    Cao, Zhiji; Balasubramanian, K


    Extensive ab initio calculations both in gas phase and solution have been carried out to study the equilibrium structure, vibrational frequencies, and bonding characteristics of various actinyl (UO2(2+), NpO2(+), and PuO2(2+)) and their hydrated forms, AnO2(H2O)n(z+) (n=4, 5, and 6). Bulk solvent effects were studied using a continuum method. The geometries were fully optimized at the coupled-cluster singles + doubles (CCSD), density-functional theory (DFT), and Møller-Plesset (MP2) level of theories. In addition vibrational frequencies have been obtained at the CCSD as well as MP2/DFT levels. The results show that both the short-range and long-range solvent effects are important. The combined discrete-continuum model, in which the ionic solute and the solvent molecules in the first and second solvation shells are treated quantum mechanically while the solvent is simulated by a continuum model, can predict accurately the bonding characteristics. Moreover, our values of solvation free energies suggest that five- and six-coordinations are equally preferred for UO2(2+), and five-coordinated species are preferred for NpO2(+) and PuO2(2+). On the basis of combined quantum-chemical and continuum treatments of the hydrated complexes, we are able to determine the optimal cavity radii for the solvation models. The coupled-cluster computations with large basis sets were employed for the vibrational spectra and equilibrium geometries both of which compare quite favorably with experiment. Our most accurate computations reveal that both five- and six-coordination complexes are important for these species.

  3. The structures of tellurium(IV) halides in the gas phase and as solvated molecules. (United States)

    Shlykov, Sergey A; Giricheva, Nina I; Titov, Anton V; Szwak, Małgorzata; Lentz, Dieter; Girichev, Georgiy V


    The structures of molecular tellurium tetrafluoride and tellurium tetrachloride were determined by a combination of gas-phase electron diffraction, mass spectrometry and quantum chemical calculations. The combined GED/MS experiments showed no evidence of decomposition of TeF(4) and TeCl(4). No ions of oligomeric (dimeric, trimeric, etc.) or any other composition were found in the mass spectra. The monomeric molecules possess a pseudo trigonal bipyramidal structure (C(2v) symmetry) with the equatorial Te-X distances being shorter than the axial ones. The fluorine atoms are bent away from the lone pair resulting in X(eq)-Te-X(eq) and X(eq)-Te-X(ax) bond angles smaller than 120 and 90 degrees, respectively. The structure of solvates TeF(4) (THF)(2), TeF(4) (dioxane) TeF(4) (DME)(2), TeF(4)(Et(2)O) TeF(4)(toluene), TeCl(4)(CH(3)CN)(2), TeCl(4)(DME)(2) and TeCl(4)(dioxane) were determined by X-ray diffraction. The structures of tellurium tetrafluoride solvates are strongly influenced by the choice of the solvent molecules. Monomeric TeF(4) units were obtained with THF, DME and dioxane whereas fluoride bridged coordination polymers were formed using diethyl ether or toluene. All tellurium tetrachloride solvates studied contain monomeric TeCl(4) units with coordinated solvent molecules. Coordination numbers range from four in the gas phase to eight in the TeF(4) dimethoxyethane solvate. Geometric parameters of the TeX(4) molecules in the crystal, solvates and gas phase were compared. DFT, MP2, CCSD, CCSD(T) methods were applied for calculation of geometric and vibrational characteristics of free TeX(4) molecules (X = F, Cl). The pseudorotation barriers were estimated and an NBO analysis was performed. It was shown that both, GED and theoretical, quantitative results are in agreement with the qualitative results of the VSEPR model.

  4. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.


    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  5. Seeds of Life in Space (SOLIS). II. Formamide in protostellar shocks: Evidence for gas-phase formation (United States)

    Codella, C.; Ceccarelli, C.; Caselli, P.; Balucani, N.; Barone, V.; Fontani, F.; Lefloch, B.; Podio, L.; Viti, S.; Feng, S.; Bachiller, R.; Bianchi, E.; Dulieu, F.; Jiménez-Serra, I.; Holdship, J.; Neri, R.; Pineda, J. E.; Pon, A.; Sims, I.; Spezzano, S.; Vasyunin, A. I.; Alves, F.; Bizzocchi, L.; Bottinelli, S.; Caux, E.; Chacón-Tanarro, A.; Choudhury, R.; Coutens, A.; Favre, C.; Hily-Blant, P.; Kahane, C.; Jaber Al-Edhari, A.; Laas, J.; López-Sepulcre, A.; Ospina, J.; Oya, Y.; Punanova, A.; Puzzarini, C.; Quenard, D.; Rimola, A.; Sakai, N.; Skouteris, D.; Taquet, V.; Testi, L.; Theulé, P.; Ugliengo, P.; Vastel, C.; Vazart, F.; Wiesenfeld, L.; Yamamoto, S.


    Context. Modern versions of the Miller-Urey experiment claim that formamide (NH2CHO) could be the starting point for the formation of metabolic and genetic macromolecules. Intriguingly, formamide is indeed observed in regions forming solar-type stars and in external galaxies. Aims: How NH2CHO is formed has been a puzzle for decades: our goal is to contribute to the hotly debated question of whether formamide is mostly formed via gas-phase or grain surface chemistry. Methods: We used the NOrthern Extended Millimeter Array (NOEMA) interferometer to image NH2CHO towards the L1157-B1 blue-shifted shock, a well-known interstellar laboratory, to study how the components of dust mantles and cores released into the gas phase triggers the formation of formamide. Results: We report the first spatially resolved image (size 9″, 2300 AU) of formamide emission in a shocked region around a Sun-like protostar: the line profiles are blueshifted and have a FWHM ≃ 5 km s-1. A column density of NNH2CHO = 8 × 1012 cm-1 and an abundance, with respect to H-nuclei, of 4 × 10-9 are derived. We show a spatial segregation of formamide with respect to other organic species. Our observations, coupled with a chemical modelling analysis, indicate that the formamide observed in L1157-B1 is formed by a gas-phase chemical process and not on grain surfaces as previously suggested. Conclusions: The Seeds of Life in Space (SOLIS) interferometric observations of formamide provide direct evidence that this potentially crucial brick of life is efficiently formed in the gas phase around Sun-like protostars. The reduced datacube is only available at the CDS via anonymous ftp to ( or via

  6. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger


    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  7. The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate. (United States)

    Berge, Nicole D; Reinhart, Debra R; Dietz, John D; Townsend, Tim


    Microcosm experiments aimed at defining a rate equation that describes how different environmental conditions (i.e., gas-phase oxygen concentrations, temperature and ammonia concentration) may impact in situ ammonia removal were conducted. Results indicate that ammonia removal can readily occur at various gas-phase oxygen levels (between 0.7% and 100%) and over a range of temperatures (22, 35 and 45 degrees C). Slowest rates occurred with lower gas-phase oxygen concentrations. All rate data, except at 45 degrees C and 5% oxygen, fit well (r2=0.75) to a multiplicative Monod equation with terms describing the impact of oxygen, pH, temperature and ammonia concentration. All ammonia half-saturation values are relatively high when compared to those generally found in wastewater treatment, suggesting that the rate may be affected by the mass transfer of oxygen and/or ammonia. Additionally, as the temperature increases, the ammonia half-saturation value also increases. The multiplicative Monod model developed can be used to aid in designing and operating field-scale studies.

  8. A protocol for detecting and scavenging gas-phase free radicals in mainstream cigarette smoke. (United States)

    Yu, Long-Xi; Dzikovski, Boris G; Freed, Jack H


    Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking (5,6,7,12). Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens(9,10). Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung(3). Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke(4). A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke(14). However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine(8). In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy(1,2,14). We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of

  9. UPS and DFT investigation of the electronic structure of gas-phase trimesic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reisberg, L., E-mail: [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Pärna, R. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); MAX IV Laboratory, Lund University, Fotongatan 2, 225 94 Lund (Sweden); Kikas, A.; Kuusik, I.; Kisand, V. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Hirsimäki, M.; Valden, M. [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, FIN-33101 Tampere (Finland); Nõmmiste, E. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia)


    Highlights: • In the current study outer valence band electronic structure of benzene-1,3,5-tricarboxylic acid was interpreted. • Experimental and calculated trimesic acid (TMA) spectrum were compared to ones of benzene and benzoic acid. • It is shown that similarities between MO energies and shapes for benzene and TMA exists. • Addition of carboxyl groups to the benzene ring clearly correlates with increasing binding energy of HOMO. - Abstract: Benzene-1,3,5-tricarboxylic acid (trimesic acid, TMA) molecules in gas-phase have been investigated by using valence band photoemission. The photoelectron spectrum in the binding energy region from 9 to 22 eV is interpreted by using density functional theory calculations. The electronic structure of TMA is compared with benzene and benzoic acid in order to demonstrate changes in molecular orbital energies induced by addition of carboxyl groups to benzene ring.

  10. Gas phase chemistry and removal of CH{sub 3}I during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Karhu, A. [VTT. Energy, Esbo (Finland)


    The purpose of this literature review was to gather valuable information on the behavior of methyl iodide on the gas phase during a severe accident. The potential of transition metals, especially silver and copper, to remove organic iodides from the gas streams was also studied. Transition metals are one of the most interesting groups in the context of iodine mitigation. For example silver is known to react intensively with iodine compounds. Silver is also relatively inert material and it is thermally stable. Copper is known to react with some radioiodine species. However, it is not reactive toward methyl iodide. In addition, it is oxidized to copper oxide under atmospheric conditions. This may limit the industrial use of copper.(au)

  11. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.


    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  12. Gas-phase conformations of 2-methyl-1,3-dithiolane investigated by microwave spectroscopy (United States)

    Van, Vinh; Stahl, Wolfgang; Schwell, Martin; Nguyen, Ha Vinh Lam


    The conformational analysis of 2-methyl-1,3-dithiolane using quantum chemical calculations at some levels of theory yielded only one stable conformer with envelope geometry. However, other levels of theory indicated two envelope conformers. Analysis of the microwave spectrum recorded using two molecular jet Fourier transform microwave spectrometers covering the frequency range from 2 to 40 GHz confirms that only one conformer exists under jet conditions. The experimental spectrum was reproduced using a rigid-rotor model with centrifugal distortion correction within the measurement accuracy of 1.5 kHz, and molecular parameters were determined with very high accuracy. The gas phase structure of the title molecule is compared with the structures of other related molecules studied under the same experimental conditions.

  13. Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell. (United States)

    Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia


    The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photofragmentation of gas-phase acetic acid and acetamide clusters in the vacuum ultraviolet region (United States)

    Berholts, Marta; Myllynen, Hanna; Kooser, Kuno; Itälä, Eero; Granroth, Sari; Levola, Helena; Laksman, Joakim; Oghbaiee, Shabnam; Oostenrijk, Bart; Nõmmiste, Ergo; Kukk, Edwin


    Photofragmentation of gas-phase acetamide and acetic acid clusters produced by a supersonic expansion source has been studied using time-of-flight mass spectrometry and the partial ion yield (PIY) technique combined with tunable vacuum-ultraviolet synchrotron radiation. Appearance energies of the clusters and their fragments were experimentally determined from the PIY measurements. The effect of clusterization conditions on the formation and fragmentation of acetic acid clusters was investigated. Ab initio quantum mechanical calculations were performed on both samples' dimers to find their neutral and ionized geometries as well as proton transfer energy barriers leading to the optimal geometries. In the case of the acetamide dimer, the reaction resulting in the production of ammoniated acetamide was probed, and the geometry of the obtained ion was calculated.

  15. Gas phase hydrogen/deuterium exchange of arginine and arginine dipeptides complexed with alkali metals. (United States)

    Mertens, Laura A; Marzluff, Elaine M


    The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed. © 2011 American Chemical Society

  16. Comparative analysis of intramolecular parameters of nitrocompounds: crystalline and gas phases (United States)

    Arnautova, Elena A.; Pivina, Tatyana S.; Gladkikh, Olga P.; Vilkov, Lev V.


    The results of a study of intramolecular parameters for chemical classes of nitrocompounds in different states of aggregation are collected and analyzed: electron-diffraction experiments and microwave spectroscopy for the gas phase, and X-ray diffraction (from the Cambridge Bank of X-ray and neutron-diffraction data) for molecules in crystals. Systematic analysis of molecular structural parameters for valence bonds and angles of the nitrogroups in these compounds shows these properties to be conserved. This allows us to use the calculated geometrical molecular parameters of nitrocompounds (obtained theoretically by quantum-chemical schemes) when building models of base (rigid) molecules for constructing elementary cells within different structural classes, with the aim of a subsequent computer search for dense packing in the corresponding molecular crystals.

  17. Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; van Lith, Simone Cornelia; Frandsen, Flemming


    The release to the gas phase of inorganic elements such as alkali metals. Cl, S, and heavy metals in Waste-to-Energy (WtE) boilers is a challenge. Besides the risk of harmful emissions to the environment, inorganic elements released from the grate may cause severe ash deposition and corrosion...... wood, shoes, automotive shredder waste and PVC (poly-vinyl-chloride). The waste fractions were characterized by use of wet chemical analysis, and, based on the chemical composition of the initial fuel sample and the ash residue after the experiments; the release of inorganic elements was quantified....... The lab-scale release results were then compared with results from a related, full-scale partitioning study, in which test runs with the addition of similar, dedicated waste fractions to a base-load waste had been performed in a grate-fired WtE boiler. In general, the elements Al, Ca, Cr, Cu, Fe, Mg, Si...

  18. Reactions of molecular dications in the gas phase

    International Nuclear Information System (INIS)

    Tafadar, Nurun Nabi


    This thesis presents the results from a series of experiments investigating the reactivity of gas phase molecular dications with neutral collision partners, at collision energies between 3 and 13 eV in the laboratory frame using a crossed-beam apparatus. The experiments involve measurement of product ion intensities, which are determined by means of time of flight mass spectrometry. The experimental methodology, together with relevant theory is described in the thesis. The relative intensities of product ions formed are a powerful probe of the reaction mechanism. Where appropriate, the reactions are examined for isotope effects by using the isotopic analogue of the neutral collision partner. Our investigation of the CF 3 2+ /Ar collision system shows neutral loss and electron transfer dominating the product ion yield. The variation of the neutral loss ion yield with collision energy provides a first estimate of the bond energy of the weak CF 2 2+ -F bond. Ab initio calculations indicate the ground state of CF 3 2+ adopts a C 2V equilibrium geometry. We further conclude that at least two electronic states of CF 3 2+ are present in the dication beam. Intramolecular isotope effects in the reactions of CO 2 2+ and CF 3 2+ with HD indicate the operation of an intramolecular isotope effect, favouring the formation of the deuterated products DCF 2 + and DCO + . However, for the CF 3 2+ /HD system our data reveals no isotope effect for the formation of HF + and the DF + within our experimental uncertainty. Statistical effects have been suggested as an alternative to the orientational model previously used to explain these effects. In our investigation of the CF 3 2+ /H 2 /D 2 and CO 2 2+ /H 2 /D 2 collision systems, experiments indicate that no intermolecular effects are in operation and the observed collision energy dependence is symptomatic of the absence of a barrier to reaction. In the CF 3 2+ /H 2 /D 2 system we observe the formation of the XF + product ion; a

  19. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore


    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  20. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology


    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  1. Binding Studies of Andrographolide with Human serum albumin: Molecular Docking, Chromatographic and Spectroscopic studies. (United States)

    Godugu, Deepika; Rupula, Karuna; Beedu, Sashidhar Rao


    Andrographolide, sourced from Andrographis paniculata, is an established therapeutic agent with variety of pharmacological properties in treatment of various diseases. The present study is designed to evaluate the interaction and binding affinity of andrographolide with HSA by docking and spectral studies. The docking study for screening the interaction of andrographolide with HSA protein was carried out using Auto Dock Vina software and the binding score of andrographolide was -8.7 kcal mol-1 and formed one hydrogen bond with Arg 218 residue of HSA in sub-domains IIA region. The formation of HSA-andrographolide complex was characterized by spectroscopic methods - UV absorption, HPLC, CD and FTIR analysis. The UV spectral analysis revealed a decrease in the absorption peak of HSA due to its interaction with andrographolide. A new peak was observed at retention time 7.45 min by HPLC analysis and the Bmax was found to be 7.5 ± 0.4 mg protein with a Kd value of 1.89 mM, indicating interaction of andrographolide with HSA. The CD spectra results suggested, a marginal decrease in the negative ellipticity without any significant shift in peak, indicating the stabilization of the HSA-andrographolide complex. The FTIR analysis further confirmed, a shift of amide I groups from 1646 to 1637 cm-1 and a peak at 1016 cm-1 in andrographolide, was observed in the complex, indicating the interaction. Copyright© Bentham Science Publishers; For any queries, please email at

  2. Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Satoshi [Tohoku Univ., Sendai (Japan); Gogami, Toshiyuki [Tohoku Univ., Sendai (Japan); Tang, Liguang [Hampton Univ., Hampton, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)


    The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.

  3. Gas Phase Thz Spectroscopy of Organosulfide and Organophosphorous Compounds Using a Synchrotron Source (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale


    This study concerns the gas phase rovibrational spectroscopy of organosulfide and organophosphorous which are considered as non toxic model compounds in the analysis of chemical weapon materials, high pathogenic and mutagenic agents, and other environmentally interesting air-borne species. The coupling of the synchrotron radiation with multipass cells and the FTIR spectrometer allowed to obtain very conclusive results in term of sensitivity and resolution and improved the previous results obtained with classical sources. For DMSO, using an optical path of 150 m the spectra have been recorded at the ultimate resolution of 0.001 Cm-1 allowing to fully resolve the rotational structure of the lowest vibrational modes observed in the THz region. In the 290 - 420 Cm-1 region, the rovibrational spectrum of the "perpendicular" and "parallel" vibrational bands associated with, respectively, the asymmetric ν23 and symmetric ν11 bending modes of DMSO have been recorded with a resolution of 1.5× 10-3 Cm-1. The gas phase vibrational spectra of organophosphorous compounds were measured by FTIR spectroscopy using the vapor pressure of the compounds. Except for TBP, the room temperature vapor pressure was sufficient to detect all active vibrational modes from THz to NIR domain. Contrary to DMSO, the rotational patterns of alkyl phosphates and alkyl phosphonates could not be resolved; only a vibrational analysis may be performed. Nevertheless, the spectral fingerprints observed in the THz region allowed a clear discrimination between the molecules and between the different molecular conformations. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy and D. A. Sadovskií, Chem. Phys. Lett., 2010, 492: 30-34 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, J. Phys. Chem. B, 2010, 114: 16936-16947.

  4. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation (United States)

    Kourmatzis, A.; Masri, A. R.


    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  5. Gas phase emitter effect of thulium within ceramic metal halide lamps in dependence on frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Depta, M.; Bergner, A.; Hoebing, T.; Mentel, J.; Awakowicz, P. [Ruhr University Bochum, Electrical Engineering and Plasma Technology, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Prof. Lamps, PO Box 80020, NL-5600JM Eindhoven (Netherlands)


    The gas phase emitter effect within ceramic metal halide (CMH) lamps reduces the effective work function of the electrode material and, therewith, the electrode temperature. An investigation of the gas phase emitter effect of thulium (Tm) within CMH lamps seeded with Tm iodide (TmI3) is carried out. For this purpose, phase resolved images of the arc attachment and measurements of the electrode temperature, Tm atom and ion densities are performed in dependence on operating frequency by pyrometry and optical emission spectroscopy. Additionally, the influence of a sodium iodide (NaI) admixture is studied. The emitter effect is generated by means of a monolayer of Tm atoms on the electrode surface generated by a Tm ion current within the cathodic phase. It overlaps onto the anodic phase at higher frequencies of some hundreds of hertz. The reason is the finite life time of the monolayer, which is determined by the adsorption energy of Tm on the tungsten surface. Due to the low electric field strength in front of the anode and the mass inertia, the emitter ions and atoms remain in front of the anode. They retard the decay of the monolayer and with it the increase of the work function. Moreover, a comparison of a lamp seeded with TmI3 and sodium iodide (NaI) with a lamp seeded only with TmI3 illustrates a slight reduction of the electrode tip temperature caused by a higher Tm saturation vapour pressure and a higher Tm amount within the lamp filling. The influence of Na appears to be quite low. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Conformational preferences of γ-aminobutyric acid in the gas phase and in water (United States)

    Song, Il Keun; Kang, Young Kee


    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.

  7. Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications. (United States)

    Liu, Ling; Zhang, Xiuhui; Li, Zesheng; Zhang, Yunhong; Ge, Maofa


    Oxocarboxylic acids are one of the most important organic species found in secondary organic aerosols and can be detected in diverse environments. But the hydration of oxocarboxylic acids in the atmosphere has still not been fully understood. Neglecting the hydration of oxocarboxylic acids in atmospheric models may be one of the most important reasons for the significant discrepancies between field measurements and abundance predictions of atmospheric models for oxocarboxylic acids. In the present paper, glyoxylic acid, as the most abundant oxocarboxylic acids in the atmosphere, has been selected as an example to study whether the hydration process can occur in the atmosphere and what the kinetic process of hydration is. The gas-phase hydration of glyoxylic acid to form the corresponding geminal diol and those catalyzed by atmospheric common substances (water, sulfuric acid and ammonia) have been investigated at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd) level of theory. The contour map of electron density difference of transition states have been further analyzed. It is indicated that these atmospheric common substances can all catalyze on the hydration to some extent and sulfuric acid is the most effective reducing the Gibbs free energy of activation to 9.48 kcal/mol. The effective rate constants combining the overall rate constants and concentrations of the corresponding catalysts have shown that water and sulfuric acid are both important catalysts and the catalysis of sulfuric acid is the most effective for the gas-phase hydration of glyoxylic acid. This catalyzed processes are potentially effective in coastal regions and polluted regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption. (United States)

    Do, D D; Do, H D; Nicholson, D


    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  9. UV and IR Spectroscopy of Cryogenically Cooled, Lanthanide-Containing Ions in the Gas Phase. (United States)

    Inokuchi, Yoshiya; Kaneko, Masashi; Honda, Takumi; Nakashima, Satoru; Ebata, Takayuki; Rizzo, Thomas R


    We measure UV and IR spectra in the gas phase for EuOH + , EuCl + , and TbO + ions, which are produced by an electrospray ionization source and cooled to ∼10 K in a cold, 22-pole ion trap. The UV photodissociation (UVPD) spectra of these ions show a number of sharp, well-resolved bands in the 30000-38000 cm -1 region, although a definite assignment of the spectra is difficult because of a high degree of congestion. We also measure an IR spectrum of the EuOH + ion in the 3500-3800 cm -1 region by IR-UV double-resonance spectroscopy, which reveals an OH stretching band at 3732 cm -1 . We perform density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of these ions in order to examine the nature of the transitions. The DFT results indicate that the states of highest-spin multiplicity (octet for EuOH + and EuCl + and septet for TbO + ) are substantially more stable than other states of lower-spin multiplicity. The TD-DFT calculations suggest that UV absorption of the EuOH + and EuCl + ions arises from Eu(4f) → Eu(5d,6p) transitions, whereas electronic transitions of the TbO + ion are mainly due to the electron promotion of O(2p) → Tb(4f,6s). The UVPD results of the lanthanide-containing ions in this study suggest the possibility of using lanthanide ions as "conformation reporters" for gas-phase spectroscopy for large molecules.

  10. Protein and Peptide Gas-phase Structure Investigation Using Collision Cross Section Measurements and Hydrogen Deuterium Exchange (United States)

    Khakinejad, Mahdiar

    Protein and peptide gas-phase structure analysis provides the opportunity to study these species outside of their explicit environment where the interaction network with surrounding molecules makes the analysis difficult [1]. Although gas-phase structure analysis offers a unique opportunity to study the intrinsic behavior of these biomolecules [2-4], proteins and peptides exhibit very low vapor pressures [2]. Peptide and protein ions can be rendered in the gas-phase using electrospray ionization (ESI) [5]. There is a growing body of literature that shows proteins and peptides can maintain solution structures during the process of ESI and these structures can persist for a few hundred milliseconds [6-9]. Techniques for monitoring gas-phase protein and peptide ion structures are categorized as physical probes and chemical probes. Collision cross section (CCS) measurement, being a physical probe, is a powerful method to investigate gas-phase structure size [3, 7, 10-15]; however, CCS values alone do not establish a one to one relation with structure(i.e., the CCS value is an orientationally averaged value [15-18]. Here we propose the utility of gas-phase hydrogen deuterium exchange (HDX) as a second criterion of structure elucidation. The proposed approach incudes extensive MD simulations to sample biomolecular ion conformation space with the production of numerous, random in-silico structures. Subsequently a CCS can be calculated for these structures and theoretical CCS values are compared with experimental values to produce a pool of candidate structures. Utilizing a chemical reaction model based on the gas-phase HDX mechanism, the HDX kinetics behavior of these candidate structures are predicted and compared to experimental results to nominate the best in-silico structures which match (chemically and physically) with experimental observations. For the predictive approach to succeed, an extensive technique and method development is essential. To combine CCS

  11. Synthesis, molecular structure, spectroscopic properties and stability of (Z)-N-methyl-C-2,4,6-trimethylphenylnitrone (United States)

    Lasri, Jamal; Ismail, Ali I.; Haukka, Matti; Soliman, Saied M.


    New N-methyl-C-2,4,6-trimethylphenylnitrone 1 has been synthesized starting from N-methylhydroxylamine and mesitaldehyde. The product was fully characterized using different spectroscopic techniques; FTIR, NMR, UV-Vis, high resolution mass spectrometry and X-ray diffraction. The relative stability and percent of population of its two possible isomers (E and Z) were calculated using the B3LYP/6-311++G(d,p) method in gas phase and in solution. In agreement with the X-ray results, it was found that Z-isomer is the most stable one in both gas phase and solution. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO), and chemical shift values were also calculated using the same level of theory. The TD-DFT results of the studied nitrone predicted a π-π∗ transition band at 285.1 nm (fosc = 0.3543) in the gas phase. The rest of the spectral bands undergo either hyperchromic or hypsochromic shifts in the presence of solvent. Polarizability and HOMO-LUMO gap values were used to predict the nonlinear optical properties (NLO) of the studied compound. NBO analysis has been used to determine the most accurate Lewis structure of the studied molecule.

  12. Mononuclear metavanadate catalyses gas phase oxidation of methanol to formaldehyde employing dioxygen as the terminal oxidant. (United States)

    Waters, Tom; Khairallah, George N; Wimala, Samantha A S Y; Ang, Yien C; O'Hair, Richard A J; Wedd, Anthony G


    Multistage mass spectrometry experiments reveal a sequence of gas phase reactions for the oxidation of methanol to formaldehyde with a mononuclear oxo vanadate anion as the catalyst and dioxygen as the terminal oxidant.

  13. Defect formation in fluoropolymer films at their condensation from a gas phase (United States)

    Luchnikov, P. A.


    The questions of radiation defects, factors of influence of electronic high-frequency discharge plasma components on the molecular structure and properties of the fluoropolymer vacuum films synthesized on a substrate from a gas phase are considered. It is established that at sedimentation of fluoropolymer coverings from a gas phase in high-frequency discharge plasma in films there are radiation defects in molecular and supramolecular structure because of the influence of active plasma components which significantly influence their main properties.

  14. Mg co-ordination with potential carcinogenic molecule acrylamide: Spectroscopic, computational and cytotoxicity studies (United States)

    Singh, Ranjana; Mishra, Vijay K.; Singh, Hemant K.; Sharma, Gunjan; Koch, Biplob; Singh, Bachcha; Singh, Ranjan K.


    Acrylamide (acr) is a potential toxic molecule produced in thermally processed food stuff. Acr-Mg complex has been synthesized chemically and characterized by spectroscopic techniques. The binding sites of acr with Mg were identified by experimental and computational methods. Both experimental and theoretical results suggest that Mg coordinated with the oxygen atom of Cdbnd O group of acr. In-vitro cytotoxicity studies revealed significant decrease in the toxic level of acr-Mg complex as compared to pure acr. The decrease in toxicity on complexation with Mg may be a useful step for future research to reduce the toxicity of acr.

  15. Preparation and spectroscopic studies of PbS/nanoMCM-41 nanocomposite

    Directory of Open Access Journals (Sweden)

    A. Pourahmad


    Full Text Available The present work describes the preparation and characterization of nanosized PbS particles inside the mesopore channels of nanoMCM-41 silicate molecular sieves. The encapsulation of the lead sulfide was carried out at room temperature by ion-exchange method. Diffuse reflectance ultraviolet–visible spectroscopic studies showed a significant shift in the absorption band for the entrapped metal sulfide as compared to corresponding bulk sulfide. Thus, confirming the quantum confinement of the incorporated nanoparticles in nanoMCM-41.

  16. The interaction of new piroxicam analogues with lipid bilayers--a calorimetric and fluorescence spectroscopic study. (United States)

    Maniewska, Jadwiga; Szczęśniak-Sięga, Berenika; Poła, Andrzej; Sroda-Pomianek, Kamila; Malinka, Wiesław; Michalak, Krystyna


    The purpose of the present paper was to assess the ability of new piroxicam analogues to interact with the lipid bilayers. The results of calorimetric and fluorescence spectroscopic experiments of two new synthesized analogues of piroxicam, named PR17 and PR18 on the phase behavior of phospholipid bilayers and fluorescence quenching of fluorescent probes (Laurdan and Prodan), which molecular location within membranes is known with certainty, are shown in present work. The presented results revealed that, depending on the details of chemical structure, the studied compounds penetrated the lipid bilayers.

  17. Thermal Physical, and Infrared Spectroscopic Studies on Glasses Prepared by Microwave Route

    International Nuclear Information System (INIS)

    Jagadeesha, N.; Gowda, V. C. Veeranna; Chakradhar, R. P. S.; Reddy, C. Narayana


    This paper describes thermal, physical and spectroscopic properties of glasses prepared by a novel micro wave method. These studies exhibited a strong compositional dependent trend and existence of characteristic boro-vanadate groups in these glasses. The scheme of modification of borate and vanadate groups is controlled by Sanderson's electronegativity principle. Analysis of density and glass transition temperatures suggests the presence of characteristic four coordinated borate and diboro - vanadate groups in these glasses. The presence of [BO 4/2 ] - and [B 2 V 2 O 9 ] 2- ) groups are confirmed by Infrared Spectroscopy of investigated glasses.

  18. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy. (United States)

    Olsztyńska-Janus, Sylwia; Szymborska-Małek, Katarzyna; Gąsior-Głogowska, Marlena; Walski, Tomasz; Komorowska, Małgorzata; Witkiewicz, Wojciech; Pezowicz, Celina; Kobielarz, Magdalena; Szotek, Sylwia


    Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.

  19. Ionization of Gas-Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography. (United States)

    Cha, Eunju; Jeong, Eun Sook; Han, Sang Beom; Cha, Sangwon; Son, Junghyun; Kim, Sunghwan; Oh, Han Bin; Lee, Jaeick


    Herein, gas-phase polycyclic aromatic hydrocarbons (PAHs) as nonpolar compounds were ionized to protonated molecular ions [M + H] + without radical cations and simultaneously analyzed using gas chromatography (GC)/electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). The ionization profile, dissociation, and sensitivity were first investigated to understand the significant behavior of gas-phase PAHs under ESI. The formation of protonated molecular ions of PAHs was distinguished according to the analyte phase and ESI spray solvents. The protonated PAHs exhibited characteristic dissociations, such as H-loss, H 2 -loss, and acetylene-loss, via competition of internal energy. In addition, GC/ESI-MS/MS resulted in relatively lower concentration levels (better sensitivity) for the limits-of-detection (LODs) of PAHs than liquid chromatography (LC)/ESI-MS/MS, and it seems to result from the characteristic ionization mechanism of the gas-phase analyte under ESI. Furthermore, the LODs of gas-phase PAHs depended on molecular weight and proton affinity (PA). Consequently, we demonstrated the relationship among the analyte phases, sensitivities, and structural characteristics (molecular weight and PA) under ESI. The gas-phase PAHs provided enhanced protonation efficiency and sensitivity using GC/ESI-MS/MS, as their molecular weight and PA increased. Based on these results, we offered important information regarding the behavior of gas-phase analytes under ESI. Therefore, the present GC/ESI-MS/MS method has potential as an alternative method for simultaneous analysis of PAHs.

  20. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect. (United States)

    Padmaja, G; Kistaiah, P


    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.

  1. Spectroscopic studies on chemical- and photo-responsive molecular machines and their bio-applications (United States)

    Lau, Yuen Agnes


    The four chapters presented in this dissertation describe how various spectroscopic techniques are used: 1) to study the operation of molecular machines in solution, 2) to track the operation of molecular machines inside a single cell, and 3) to investigate the photo-decomposition pathway of a biological chromophore. Recent advances in nanotechnology have enriched the development of nano-scale molecular assemblies to be used as delivery platforms for biologically relevant molecules. Among all the molecular assemblies, molecular machines that are incorporated onto various domains of mesoporous silica nanoparticles (MSN) hold considerable potential as a reliable delivery system. Because the ease of functionalization enables chemical or photo-responsive molecular moieties to be covalently attached to the silica framework, these molecular assemblies, with defined mechanized properties, can perform specific functions under external stimuli (pH, redox, or light). While the primary function of these molecular machines is to deliver stored cargo molecules, the means of activation and the motif in which they operate are different. In the first and second chapters of this dissertation, two types of molecular machines, nanovalves and nanoimpellers, and their operations are studied. The ability to continuously monitor and image progression of molecular-based biological events in real-time can enhance our understanding of intracellular processes upon drug, protein and nucleic acid delivery. Using the photo-activated nanoimpeller described in the second chapter, the third chapter explores how it can be used to transport a nuclear staining agent, PI, inside a single cell. Nanoimpellers are made by functionalizing azobenzene molecules to the internal pore surface of MSN. The continuous cis/trans isomerizations are set in motion upon laser illumination at optimal wavelength(s), which facilitate cargo molecules to be expelled from the pores to the surrounding medium. By refining a


    International Nuclear Information System (INIS)

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.


    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R V and A V for O-type stars in Wd2. We find average values (R V ) = 3.77 ± 0.09 and (A V ) = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  3. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea. (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K


    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Generating parahydrogen-induced polarization using immobilized iridium complexes in the gas-phase hydrogenation of carbon-carbon double and triple bonds

    NARCIS (Netherlands)

    Skovpin, I.V.; Zhivonitko, V.V.; Kaptein, R.; Koptyug, I.V.


    Immobilized iridium complexes synthesized using [Ir(COD)Cl]2 by anchoring on hydrous and anhydrous silica gels were studied in terms of generating parahydrogen-induced polarization (PHIP) in the gas-phase hydrogenation of propylene and propyne. Distinguishing differences in the hydrogenations of

  5. Kinetics of the reaction of F atoms with O2 and UV spectrum of FO2 radicals in the gas phase at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Sehested, J.; Nielsen, O.J.


    The ultraviolet absorption spectrum of FO2 radicals and the kinetics of the reaction of F atoms with O2 have been studied in the gas phase at 295 K using pulse radiolysis combined with kinetic UV spectroscopy. At 230 nm, sigma(FO2) = (5.08 +/- 0.70) X 10(-18) cm2 molecule-1. The kinetics...

  6. Photodetachment of free hexahalogenometallate doubly charged anions in the gas phase: [ML6]2-, (M=Re, Os, Ir, Pt; L=Cl and Br)

    International Nuclear Information System (INIS)

    Wang, X.; Wang, L.


    We report the first observation and photodetachment photoelectron spectroscopic study of a series of hexahalogenometallates dianions MCl 6 2- (M=Re, Os, Ir, and Pt) and MBr 6 2- (M=Re, Ir, and Pt) in the gas phase. All of these species were found to be stable as free gaseous doubly charged anions. Photoelectron spectra of all the dianions were obtained at several detachment photon energies. The photon-energy-dependent spectra clearly revealed the dianion nature of these species and allowed the repulsive Coulomb barriers to be estimated. The binding energies of the second excess electron in MCl 6 2- (M=Re, Os, Ir, Pt) were determined to be 0.46 (5), 0.46 (5), 0.82 (5), and 1.58 (5) eV, respectively, and those in MBr 6 2- (M=Re, Ir, Pt) to be 0.76 (6), 0.96 (6), and 1.52 (6) eV, respectively. A wealth of electronic structure information about these metal complexes were obtained and low-lying and highly-excited electronic states of the corresponding singly charged anions were observed. Detachment from metal d orbitals or ligand orbitals were observed and could be clearly distinguished; detachments from the metal d-orbitals all occur at low binding energies whereas those from the ligand-dominated orbitals all take place at rather high binding energies. We also found a remarkable correlation between electron affinities measured in vacuo and the redox potentials obtained in the solution phase of these species. copyright 1999 American Institute of Physics

  7. Use of nearly neat 16O18O in spectroscopic studies of oxyhemerythrin and oxyhemoglobin

    International Nuclear Information System (INIS)

    Appelman, E.H.


    Klotz and Kurtz mention the use of nearly neat 16 O 18 O in a resonance Raman spectroscopic study of the bonding of O 2 in oxyhemerythyrin, citing unpublished work in a dissertation in their work on hemerythrin. A prior study of the O 2 bonding in oxyhemoglobin was carried out with the same 1 andO 18 O sample, and led to a similar conclusion, i.e., that the O 2 was bonded in such a way that the two oxygen atoms were not equivalent. To the best of the authors knowledge, this work constituted the first preparation of neat 16 O 18 O and its first use in spectroscopy. The work represents a collaboration between the group at Northwestern and a group at Argonne National Laboratory, where the 16 O 18 O was prepared by a rather laborious procedure that entailed the intermediate synthesis of 18 O-enriched hypofluorous acid. A more convenient synthesis of nearly neat 16 O 18 O that makes use of the recently isolated fluoroxysulfate ion, SO 4 F - was subsequently developed, and it is anticipated that this uniquely labeled oxygen molecule will now find application in a variety of spectroscopic measurements

  8. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)


    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  9. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D.; Treu-Filho, O.; Bannach, G.


    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L) 3 , in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand

  10. Gas-phase spectra of MgO molecules: a possible connection from gas-phase molecules to planet formation (United States)

    Kloska, Katherine A.; Fortenberry, Ryan C.


    A more fine-tuned method for probing planet-forming regions, such as protoplanetary discs, could be rovibrational molecular spectroscopy observation of particular premineral molecules instead of more common but ultimately less related volatile organic compounds. Planets are created when grains aggregate, but how molecules form grains is an ongoing topic of discussion in astrophysics and planetary science. Using the spectroscopic data of molecules specifically involved in mineral formation could help to map regions where planet formation is believed to be occurring in order to examine the interplay between gas and dust. Four atoms are frequently associated with planetary formation: Fe, Si, Mg and O. Magnesium, in particular, has been shown to be in higher relative abundance in planet-hosting stars. Magnesium oxide crystals comprise the mineral periclase making it the chemically simplest magnesium-bearing mineral and a natural choice for analysis. The monomer, dimer and trimer forms of (MgO)n with n = 1-3 are analysed in this work using high-level quantum chemical computations known to produce accurate results. Strong vibrational transitions at 12.5, 15.0 and 16.5 μm are indicative of magnesium oxide monomer, dimer and trimer making these wavelengths of particular interest for the observation of protoplanetary discs and even potentially planet-forming regions around stars. If such transitions are observed in emission from the accretion discs or absorptions from stellar spectra, the beginning stages of mineral and, subsequently, rocky body formation could be indicated.

  11. Theoretical studies on CH+ ion molecule using configuration interaction method and its spectroscopic properties

    International Nuclear Information System (INIS)

    Machado, F.B.C.


    The use of the configuration (CI) method for the calculation of very accurate potential energy curves and dipole moment functions, and then their use in the comprehension of spectroscopic properties of diatomic molecules is presented. The spectroscopic properties of CH + and CD + such as: vibrational levels, spectroscopic constants, averaged dipole moments for all vibrational levels, radiative transition probabilities for emission and absorption, and radiative lifetimes are verificated. (M.J.C.) [pt

  12. Spectroscopic study of honey from Apis mellifera from different regions in Mexico (United States)

    Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, JL; Macías-López, E.; Bujdud-Pérez, JM; Medina-Ramírez, I.


    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  13. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies (United States)

    Abo Dena, Ahmed S.; Abdel Gaber, Sara A.


    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV.

  14. UV laser induced proton-transfer of protein molecule in the gas phase produced by droplet-beam laser ablation (United States)

    Kohno, Jun-ya; Kondow, Tamotsu


    Droplet-beam laser-ablation mass-spectrometry was applied for a study of the UV-laser induced proton-transfer reaction of protonated lysozyme hydrated clusters in the gas phase. Protonated lysozyme hydrated clusters were produced by irradiation of an IR laser onto a droplet-beam of an aqueous solution of lysozyme and were subsequently irradiated by a UV laser. It is found that H + and H 3O + are produced through photodissociation of protonated lysozyme hydrated clusters. The mechanism of the proton-transfer reaction is discussed.

  15. Role of isospin in nuclear-matter liquid-gas phase transition

    International Nuclear Information System (INIS)

    Ducoin, C.


    Nuclear matter presents a phase transition of the liquid-gas type. This well-known feature is due to the nuclear interaction profile (mean-range attractive, short-range repulsive). Symmetric-nuclear-matter thermodynamics is thus analogous to that of a Van der Waals fluid. The study shows up to be more complex in the case of asymmetric matter, composed of neutrons and protons in an arbitrary proportion. Isospin, which distinguishes both constituents, gives a measure of this proportion. Studying asymmetric matter, isospin is an additional degree of freedom, which means one more dimension to consider in the space of observables. The nuclear liquid-gas transition is associated with the multi-fragmentation phenomenon observed in heavy-ion collisions, and to compact-star physics: the involved systems are neutron rich, so they are affected by the isospin degree of freedom. The present work is a theoretical study of isospin effects which appear in the asymmetric nuclear matter liquid-gas phase transition. A mean-field approach is used, with a Skyrme nuclear effective interaction. We demonstrate the presence of a first-order phase transition for asymmetric matter, and study the isospin distillation phenomenon associated with this transition. The case of phase separation at thermodynamic equilibrium is compared to spinodal decomposition. Finite size effects are addressed, as well as the influence of the electron gas which is present in the astrophysical context. (author)

  16. Swiss bare mice: a suitable model for transcutaneous in vivo Raman spectroscopic studies of breast cancer. (United States)

    Bhattacharjee, T; Kumar, Piyush; Maru, G; Ingle, A; Krishna, C Murali


    Breast cancer is the most common cancer affecting females worldwide. As early detection results in better prognosis, screening tools for breast cancer are being explored. Raman spectroscopy, a rapid, objective, and noninvasive tool, has shown promising results in the diagnosis of several cancers including breast cancer. For development as a screening tool, a study of spectral signatures associated with breast cancer progression is imperative. However, such studies are not possible in human subjects. Hence, there is a need for a suitable animal model, which is conducive to transcutaneous in vivo Raman spectroscopic measurements of breast with minimal interference from skin and hair and has contribution from functional mammary epithelium of breast. In this study, rodent models like C57, Swiss albino, Swiss bare, agouti mice, and Sprague-Dawley rats were evaluated. Among these models, transcutaneous breast spectra of hairless Swiss bare mice have the best signal-to-noise ratio and were closest to reported ex vivo as well as intraoperative in vivo human breast spectra. Principal component-linear discriminant analysis of several anatomical sites confirms minimal skin interference and suggests contribution from functional mammary epithelium of breast. Moreover, transcutaneous spectra from normal breast and breast tumors of Swiss bare mice could be classified with 99% efficiency, which is better than the previous reports. Thus, Swiss bare mice model may be better suited for transcutaneous in vivo Raman spectroscopic studies of breast physiology and pathology, especially breast cancer. Prospectively, in addition to cancer progression, breast-to-bone metastasis can also be studied, since these anatomical sites can be uniquely classified.

  17. Complexation of enalapril maleate with {beta}-cyclodextrin: NMR spectroscopic study in solution

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Mashhood; Maheshwari, Arti; Asmat, Fahmeena [Aligarh Muslim University, Aligarh (India). Dept. of Chemistry]. E-mail:; Koketsu, Mamoru [Gifu University, Gifu (Japan). Div. of Instrumental Analysis


    A detailed NMR ({sup 1}H , COSY, ROESY) spectroscopic study of complexation of enalapril maleate with {beta}-cyclodextrin was carried out. The {sup 1}H NMR spectrum of enalapril maleate confirmed the existence of cis-trans equilibrium in solution, possibly due to hindered rotation along the amide bond. The cis-trans ratio remained almost the same in the presence of {beta}-cyclodextrin but in one case it was found significantly different which suggests a catalytic role of {beta}-cyclodextrin in the isomerization. {sup 1}H NMR titration studies confirmed the formation of an enalapril-{beta}-cyclodextrin inclusion complex as evidenced by chemical shift variations in the proton resonances of both the host and the guest. The stoichiometry of the complex was determined to be 2:1 (guest: host). The mode of penetration of the guest into the {beta}-cyclodextrin cavity as well as the structure of the complex were established using ROESY spectroscopy. (author)

  18. Raman Spectroscopic Methods for Classification of Normal and Malignant Hypopharyngeal Tissues: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Parul Pujary


    Full Text Available Laryngeal cancer is more common in males. The present study is aimed at exploration of potential of conventional Raman spectroscopy in classifying normal from a malignant laryngopharyngeal tissue. We have recorded Raman spectra of twenty tissues (aryepiglottic fold using an in-house built Raman setup. The spectral features of mean malignant spectrum suggests abundance proteins whereas spectral features of mean normal spectrum indicate redundancy of lipids. PCA was employed as discriminating algorithm. Both, unsupervised and supervised modes of analysis as well as match/mismatch “limit test” methodology yielded clear classification among tissue types. The findings of this study demonstrate the efficacy of conventional Raman spectroscopy in classification of normal and malignant laryngopharyngeal tissues. A rigorous evaluation of the models with development of suitable fibreoptic probe may enable real-time Raman spectroscopic diagnosis of laryngopharyngeal cancers in future.

  19. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters. (United States)

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S


    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4

  20. Spectroscopic, structural, thermal and antimicrobial studies of 4,6-bis

    African Journals Online (AJOL)

    The isolated complexes were characterized by elemental analysis, magnetic properties, conductance measurements, mass, IR, UV-Vis and 1H NMR spectroscopic methods and thermal analyses. The thermogravimetric and infrared spectroscopic data confirmed the presence of water in the composition of the complexes ...

  1. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production. (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A


    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  2. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study (United States)

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.


    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  3. Some insights into formamide formation through gas-phase reactions in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: [Computational Chemistry Group, Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain)


    We study the viability of different gas-phase ion-molecule reactions that could produce precursors of formamide in the interstellar medium. We analyze different reactions between cations containing a nitrogen atom (NH{sub 3}{sup +}, NH{sub 4}{sup +}, NH{sub 3}OH{sup +}, and NH{sub 2}OH{sup +}) and neutral molecules having one carbonyl group (H{sub 2}CO and HCOOH). First, we report a theoretical estimation of the reaction enthalpies for the proposed processes. Second, for more favorable reactions, from a thermodynamic point of view, we perform a theoretical study of the potential energy surface. In particular, the more exothermic processes correspond to the reactions of ionized and protonated hydroxylamine with formaldehyde. In addition, a neutral-neutral reaction has also been considered. The analysis of the potential energy surfaces corresponding to these reactions shows that these processes present a net activation barrier and that they cannot be considered as a source of formamide in space.

  4. Resonant x-ray emission from gas-phase TiCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hague, C.F.; Tronc, M. [Universite Pierre et Marie Curie, Paris (France); De Groot, F. [Univ. of Groningen (Netherlands)] [and others


    Resonant x-ray emission spectroscopy (RXES) has proved to be a powerful tool for studying the electronic structure of condensed matter. Over the past few years it has been used mainly for studying the valence bands of solids and condensed molecules. Very recently the advent of high brightness photon beams provided by third generation synchrotron radiation source undulators, associated with efficient x-ray emission spectrometers has made it possible to perform experiments on free diatomic molecular systems. RXE spectra of free molecules are of prime importance to gain insight into their electronic structure and bonding as they reflect the symmetry of orbitals engaged in the two-electron, two-step process with the l = 0, {+-}2 parity-conserving selection rule, and are free from solid state effects which can introduce difficulties in the interpretation. They provide information (more so than XAS) on the core excited states, and, when performed at fixed incident photon energy as a function of the emitted photon energy, on the electronic excitation (charge transfer, multiplet states). Moreover the anisotropy of the angular distribution of resonant x-ray emission affects the relative intensity of the emission peaks and provides information concerning the symmetries of final states. This is a preliminary report on what are the first RXE spectra of a 3d transition metal complex in the gas phase. The experiment concerns the Ti 3d {yields}2p emission spectrum of TiCl{sub 4} over the 450 to 470 eV region.

  5. Activated carbons obtained from sewage sludge by chemical activation: gas-phase environmental applications. (United States)

    Boualem, T; Debab, A; Martínez de Yuso, A; Izquierdo, M T


    The objective of this study was to evaluate the adsorption capacity for toluene and SO2 of low cost activated carbons prepared from sewage sludge by chemical activation at different impregnation ratios. Samples were characterized by proximate and ultimate analyses, thermogravimetry, infrared spectroscopy and N2 adsorption. Because of the low carbon content of the raw material, the development of porosity in the activated carbons was mainly of a mesoporous nature, with surface areas lower than 300 m(2)/g. The study of gas-phase applications for activated carbons from sewage sludge was carried out using both an organic and an inorganic compound in order to screen for possible applications. Toluene adsorption capacity at saturation was around 280 mg/g, which is a good level of performance given the high ash content of the activated carbons. However, dynamic experiments at low toluene concentration presented diffusion problems resulting from low porosity development. SO2 adsorption capacity is associated with average micropore size, which can be controlled by the impregnation ratio used to prepare the activated carbons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Phosphorus-31 nuclear magnetic resonance spectroscopic study of the canine pancreas: applications to acute alcoholic pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Janes, N.; Clemens, J.A.; Glickson, J.D.; Cameron, J.L.


    The first nuclear magnetic resonance spectroscopic study of the canine pancreas is described. Both in-vivo, ex-vivo protocols and NMR observables are discussed. The stability of the ex-vivo preparation based on the NMR observables is established for at least four hours. The spectra obtained from the in-vivo and ex-vivo preparations exhibited similar metabolite ratios, further validating the model. Metabolite levels were unchanged by a 50% increase in perfusion rate. Only trace amounts of phosphocreatine were observed either in the intact gland or in extracts. Acute alcoholic pancreatitis was mimicked by free fatty acid infusion. Injury resulted in hyperamylasemia, edema (weight gain), increased hematocrit and perfusion pressure, and depressed levels of high energy phosphates.

  7. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Harde, G. B. [Department of Physics, Shri R. R. Lahoti Science College, Morshi, Maharashtra, India-444905 (India); Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602 (India); Muley, G. G., E-mail: [Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602 (India)


    Borate glasses of the system xNd{sub 2}O{sub 3}-(1-x) La{sub 2}O{sub 3}-SrCO{sub 3}-10H{sub 3}BO{sub 3} (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition {sup 4}I{sub 9/2} → {sup 4}G{sub 5/2} + {sup 2}G{sub 7/2} has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  8. Spectroscopic ellipsometry studies of as-prepared and annealed CdS:O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khalilova, Khuraman; Hasanov, Ilham; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, 1143 Baku (Azerbaijan); Shim, YongGu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Asaba, Ryo; Wakita, Kazuki [Department of Electronics and Computer Engineering, Chiba Institute of Technology, Chiba 275-0016 (Japan)


    Cadmium sulfide thin films on soda lime substrates were obtained by rf-magnetron sputtering in argon-oxygen atmosphere. As-prepared and vacuum annealed films were then studied by spectroscopic ellipsometry at room temperature over photon energy range from 0.5 to 6 eV. The obtained ellipsometric data were treated using optical dispersion models based on Gaussian type oscillators. Dielectric function of oxygen-free films, as well as those obtained under 3% of O/Ar partial pressure was reliably restored. At the same time, dielectric function obtained for 5% CdS:O can be regarded only as an average over several materials since our XPS examination disclosed presence of several compounds in thin films deposited at O/Ar ratios higher than 3%. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Spectroscopic study; Estudio espectroscopico del PAA con iones de Eu{sup 3+} como material luminescente

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.; Rodriguez, R. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, Mexico D.F. (Mexico); Arroyo, R. [Departamento de Quimica, Universidad Autonoma Metropolitana Iztapalapa, A.P. 55-534, 09340 Mexico D.F. (Mexico)


    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu{sup 3+}). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of {sup 1} H, {sup 13} C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at {lambda} = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  10. Study of gamma detection capabilities of the REWARD mobile spectroscopic system (United States)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.


    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  11. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga) (United States)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang


    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  12. Spectroscopic studies of the physical origin of environmental aging effects on doped graphene

    International Nuclear Information System (INIS)

    Chang, J.-K.; Hsu, C.-C.; Liu, S.-Y.; Wu, C.-I.; Gharib, M.; Yeh, N.-C.


    The environmental aging effect of doped graphene is investigated as a function of the organic doping species, humidity, and the number of graphene layers adjacent to the dopant by studies of the Raman spectroscopy, x-ray and ultraviolet photoelectron spectroscopy, scanning electron microscopy, infrared spectroscopy, and electrical transport measurements. It is found that higher humidity and structural defects induce faster degradation in doped graphene. Detailed analysis of the spectroscopic data suggest that the physical origin of the aging effect is associated with the continuing reaction of H 2 O molecules with the hygroscopic organic dopants, which leads to formation of excess chemical bonds, reduction in the doped graphene carrier density, and proliferation of damages from the graphene grain boundaries. These environmental aging effects are further shown to be significantly mitigated by added graphene layers.

  13. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele


    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  14. Application of spectroscopic techniques to the study of illuminated manuscripts: A survey

    Energy Technology Data Exchange (ETDEWEB)

    Pessanha, S.; Manso, M.; Carvalho, M.L., E-mail:


    This work focused on the application of the most relevant spectroscopic techniques used for the characterization of illuminated manuscripts. The historical value of these unique and invaluable artworks, together with the increased awareness concerning the conservation of cultural heritage, prompted the application of analytical techniques to the study of these illuminations. This is essential for the understanding of the artist's working methods, which aids conservation-restoration. The characterization of the pigments may also help assign a probable date to the manuscript. For these purposes, the spectroscopic techniques used so far include those that provide information on the elemental content: X-ray fluorescence, total reflection X-ray fluorescence and scanning electron microscopy coupled with energy-dispersive spectroscopy and laser-induced breakdown spectroscopy. Complementary techniques, such as X-ray diffraction, Fourier transform infrared and Raman spectroscopy, reveal information regarding the compounds present in the samples. The techniques, suitability, technological evolution and development of high-performance detectors, as well as the possibility of microanalysis and the higher sensitivity of the equipment, will also be discussed. Furthermore, issues such as the necessity of sampling, the portability of the equipment and the overall advantages and disadvantages of different techniques will be analyzed. - Highlights: Black-Right-Pointing-Pointer The techniques used for studying illuminated manuscripts are described and compared. Black-Right-Pointing-Pointer For in situ, non-destructive analysis the most suitable technique is EDXRF. Black-Right-Pointing-Pointer For quantitative analysis TXRF is more appropriate. Black-Right-Pointing-Pointer Raman spectroscopy is mostly used for pigments identification. Black-Right-Pointing-Pointer FTIR was used for the characterization of binders and parchment.

  15. Application of spectroscopic techniques to the study of illuminated manuscripts: A survey

    International Nuclear Information System (INIS)

    Pessanha, S.; Manso, M.; Carvalho, M.L.


    This work focused on the application of the most relevant spectroscopic techniques used for the characterization of illuminated manuscripts. The historical value of these unique and invaluable artworks, together with the increased awareness concerning the conservation of cultural heritage, prompted the application of analytical techniques to the study of these illuminations. This is essential for the understanding of the artist's working methods, which aids conservation–restoration. The characterization of the pigments may also help assign a probable date to the manuscript. For these purposes, the spectroscopic techniques used so far include those that provide information on the elemental content: X-ray fluorescence, total reflection X-ray fluorescence and scanning electron microscopy coupled with energy-dispersive spectroscopy and laser-induced breakdown spectroscopy. Complementary techniques, such as X-ray diffraction, Fourier transform infrared and Raman spectroscopy, reveal information regarding the compounds present in the samples. The techniques, suitability, technological evolution and development of high-performance detectors, as well as the possibility of microanalysis and the higher sensitivity of the equipment, will also be discussed. Furthermore, issues such as the necessity of sampling, the portability of the equipment and the overall advantages and disadvantages of different techniques will be analyzed. - Highlights: ► The techniques used for studying illuminated manuscripts are described and compared. ► For in situ, non-destructive analysis the most suitable technique is EDXRF. ► For quantitative analysis TXRF is more appropriate. ► Raman spectroscopy is mostly used for pigments identification. ► FTIR was used for the characterization of binders and parchment.

  16. FORTRAN program for calculating liquid-phase and gas-phase thermal diffusion column coefficients

    International Nuclear Information System (INIS)

    Rutherford, W.M.


    A computer program (COLCO) was developed for calculating thermal diffusion column coefficients from theory. The program, which is written in FORTRAN IV, can be used for both liquid-phase and gas-phase thermal diffusion columns. Column coefficients for the gas phase can be based on gas properties calculated from kinetic theory using tables of omega integrals or on tables of compiled physical properties as functions of temperature. Column coefficients for the liquid phase can be based on compiled physical property tables. Program listings, test data, sample output, and users manual are supplied for appendices

  17. Product analysis of the gas-phase reaction of β-caryophyllene with ozone (United States)

    Calogirou, A.; Kotzias, D.; Kettrup, A.

    The semivolatile ketoaldehydes 3,3-dimethyl-y-methylene-2-(3-oxobutyl)-cyclobutanebutanal 1 and 3,3-dimethyl-γ-oxo-2-(3-oxobutyl)-cyclobutanebutanal 2 and formaldehyde have been identified as the main products of the reaction of ß-caryophyllene with ozone in the gas phase. In minor amounts 9-methylene-,t,12,12-trimethyl-5-oxabicyclo[]dodecane 3 was also formed. Nature and yields of these carbonyl products are discussed in terms of oxidation mechanisms involving the gas-phase reaction with ozone and OH radicals.

  18. The electron spectrum of UF6 recorded in the gas phase (United States)

    Mârtensson, N.; Malmquist, P.-Å.; Svensson, S.; Johansson, B.


    Gas phase core and valence electron spectra from UF6, excited by AlKα monochromatized x rays, in the binding energy range 0-1000 eV are presented. It is shown that the AlKα excited valence electron spectrum can be used to reassign the highest occupied molecular orbital (HOMO) in UF6. Many-body effects on the core levels are discussed and core level lifetimes are determined. The shift between solid phase and gas phase electron binding energies for core lines is used to discuss the U5 f population in UF6.

  19. Gas Phase Rovibrational Spectroscopy of Dmso, Part II: Towards the Terahertz Observation of 4-FOLD Clusters (United States)

    Cuisset, Arnaud; Martin-Drumel, Marie-Aline; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.


    Benefiting of the exceptional properties of the AILES synchrotron beamline, the gas phase Far-IR spectrum of DMSO has been recorded and resolved. The rovibrational analysis allowed to discover a new rotational behaviour for a polyatomic molecule: the gyroscopic destabilization. In order to explain this phenomenon, we looked for four-fold energy clusters in the high resolution ground state THz spectrum of DMSO recorded with a sub-THz spectrometer based on a frequency multiplication chain. Pure rotational lines in the 5 lowest vibrationnally excited levels have been recorded below 700 GHz. With near 1000 rotational transitions assigned, high quantum numbers have been reached allowing to discover sequence of four-fold clusters in the out of plane bending mode of DMSO and to study the vibrational dependence of an unusual rotational dynamics. J. B. Brubach et al., AIP Conf. Proc., 1214, (81), 2010. A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii,Chem. Phys. Lett., 492,(30),2010 A. Cuisset, O. Pirali, D. Sadovskii,Phys. Rev. Lett., 109,(094101), 2012. G. Mouret, M. Guinet, A. Cuisset, L. Croizet, S. Eliet, R. Bocquet, F. Hindle, IEEE Sensors Journal, 13, 1, 2013.

  20. Gas-phase laser synthesis of aggregation-free, size-controlled hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Bapat, Parimal V.; Kraft, Rebecca; Camata, Renato P.


    Nanophase hydroxyapatite (HA) is finding applications in many areas of biomedical research, including bone tissue engineering, drug delivery, and intracellular imaging. Details in chemical composition, crystal phase makeup, size, and shape of HA nanoparticles play important roles in achieving the favorable biological responses required in these applications. Most of the nanophase HA synthesis techniques involve solution-based methods that exhibit substantial aggregation of particles upon precipitation. Typically these methods also have limited control over the particle size and crystal phase composition. In this study, we describe the gas-phase synthesis of aggregation-free, size-controlled HA nanoparticles with mean size in the 20–70 nm range using laser ablation followed by aerosol electrical mobility classification. Nanoparticle deposits with adjustable number concentration were obtained on solid substrates. Particles were characterized by transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Samples are well represented by log-normal size distributions with geometric standard deviation σ g ≈ 1.2. The most suitable conditions for HA nanoparticle formation at a laser fluence of 5 J/cm 2 were found to be a temperature of 800 °C and a partial pressure of water of 160 mbar.