WorldWideScience

Sample records for gas water heater

  1. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-02-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  2. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Davis Energy Group, Davis, CA (United States); Weitzel, Elizabeth [Davis Energy Group, Davis, CA (United States); Backman, Christine [Davis Energy Group, Davis, CA (United States)

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  3. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix...) Pt. 305, App. D4 Appendix D4 to Part 305—Water Heaters-Instantaneous-Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual Operating Costs (Dollars/Year) Natural Gas ($/year) Low High...

  4. Economics of residential gas furnaces and water heaters in United States new construction market

    OpenAIRE

    Lekov, Alex B.

    2009-01-01

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment....

  5. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  6. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  7. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual Operating Costs (Dollars/Year) Natural Gas ($/year) Low High Propane ($/year) Low High Less than 21...

  8. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    M. Hoeschele, E. Weitzel, C. Backman

    2017-06-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements.

  9. Economics of residential gas furnaces and water heaters in United States new construction market

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  10. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-19

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  11. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2010-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  12. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  13. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  14. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Therkelsen, Peter L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-13

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements, researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state

  15. Water heater control module

    Science.gov (United States)

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  16. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  17. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, D.W.

    1995-12-01

    The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

  18. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    OpenAIRE

    Czerski, Grzegorz; Strugała, Andrzej

    2014-01-01

    This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics) software was used for calcu...

  19. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.2 ENERGY STAR Program Requirements for Water Heaters that are effective April 16, 2015....

  20. 46 CFR 182.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  1. 46 CFR 119.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  2. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  3. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  4. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  5. Cost effectiveness analysis for the substitution of the electrical shower to gas water heaters; Estudo de viabilidade para substituicao do chuveiro eletrico por aquecedores a gas

    Energy Technology Data Exchange (ETDEWEB)

    Bermann, Celio [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Inst. de Eletrotecnica e Energia]. E-mail: cbermann@iee.usp.br; Monteiro, Jorge Venancio de Freitas [Companhia de Gas de Sao Paulo (COMGAS), Sao Paulo, SP (Brazil)]. E-mail: venanciocomgas@uol.com.br

    2000-07-01

    The hydropower natural resources for generation of electrical energy at the south part of Brazil has been extinguished at the last years and as a consequence large investments should be made in order to attend the electrical energy demand at this part of country. These paper purposes a comparison between the use gas water heater and the traditional electrical shower largely applied at the Brazilian residences. It will be focused not only the consumer point of view but also the construction enterprise position as well as the advantages for the overall country due to this substitution. (author)

  6. Measure Guideline: Transitioning to a Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

  7. Strategy Guideline. Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  8. Strategy Guideline: Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation, Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation, Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  9. Water hammers in direct contact heater systems

    International Nuclear Information System (INIS)

    Uffer, R.

    1983-01-01

    This paper discusses the causes and mitigation or prevention of water hammers occurring in direct contact heaters and their attached lines. These water hammers are generally caused by rapid pressure reductions in the heaters or by water lines not flowing full. Proper design and operating measures can prevent or mitigate water hammer occurrence. Water hammers often do not originate at the areas where damage is noted

  10. ENERGY STAR Certified Commercial Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Water Heaters that are effective as...

  11. Demonstration of Tankless Water Heaters in Army Family Housing

    Science.gov (United States)

    1992-11-01

    electric tankless water heaters were laboratory tested, and five units of each type...collected. The tankless electric water heater provided a safe, sustained hot water supply, but the flow rate was lower than desirable. The average...energy cost for the tankless unit was about 26 percent lower than for the conventional electric water heater . However, the tankless electric water

  12. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  13. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  14. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  15. Measure Guideline. Transitioning to a Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K. [IBACOS, Inc., Pittsburgh, PA (United States); Rapport, A. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  16. Energy efficiency improvement and fuel savings in water heaters using baffles

    International Nuclear Information System (INIS)

    Moeini Sedeh, Mahmoud; Khodadadi, J.M.

    2013-01-01

    Highlights: ► Thermal efficiency improved by simple/novel design of baffles inside water reservoir. ► Noticeable steady-state natural gas savings of about 5%. ► Extensive 3-D numerical investigations followed by experimental verifications. ► Baffle designs prototyped in identical water heaters for ANSI/US DOE test protocols. ► Numerical/experimental results verified thermal efficiency improvement and fuel savings. -- Abstract: Thermal efficiency improvement of a water heater was investigated numerically and experimentally in response to presence of a baffle, particularly designed for modifying the flow field within the water reservoir and enhancing heat transfer extracted into the water tank. A residential natural gas-fired water heater was selected for modifying its water tank through introducing a baffle for lowering natural gas consumption by 5% as a target. Based on the geometric features of the selected water heater, three-dimensional models of the water heater subsections were developed. Upon detailed studies of flow and heat transfer in each subsection, various sub-models were integrated to a complete model of the water heater. Thermal performance of the selected water heater was investigated numerically using computational fluid dynamics analysis. Prior to baffle design process and in order to verify the developed model of the water heater, time-dependent numerically-predicted temperatures were compared to the experimentally-measured temperatures under the same conditions at six (6) different locations inside the water tank and good agreement was observed. Upon verifying the numerical model, the fluid flow and heat transfer patterns were characterized for the selected water heater. The overall design of the baffle and its location and orientation were finalized based on the numerical results and a set of parametric studies. Finally, two baffle designs were proposed, with the second design being an optimized version of the first design. The

  17. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Science.gov (United States)

    2013-01-11

    ... marketing, or product installation and operation instructions indicate that the boiler's intended uses.../A 0.30 + 27/Vm(%/hr) Gas-fired storage water heaters.... 155,000 Btu/hr....... 80% Q/800 + 110(Vr) 1/2(Btu/hr) Oil-fired storage water heaters.... 155,000 Btu/hr....... 78% Q/800 + 110(Vr) 1/2(Btu/hr...

  18. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  19. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  20. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  1. Still too hot: examination of water temperature and water heater characteristics 24 years after manufacturers adopt voluntary temperature setting.

    Science.gov (United States)

    Shields, Wendy C; McDonald, Eileen; Frattaroli, Shannon; Perry, Elise C; Zhu, Jeffrey; Gielen, Andrea C

    2013-01-01

    Although water heater manufacturers adopted a voluntary standard in the 1980s to preset thermostats on new water heaters to 120°F, tap water scald burns cause an estimated 1500 hospital admissions and 100 deaths per year in the United States. This study reports on water temperatures in 976 urban homes and identifies water heater and household characteristics associated with having safe temperatures. The temperature of the hot water, type and size of water heater, date of manufacture, and the setting of the temperature gauge were recorded. Demographic data, including number of people living in the home and home ownership, were also recorded. Hot water temperature was unsafe in 41% of homes. Homeowners were more likely to have safer hot water temperature (heaters, the water temperature was >130°F, although the gauge was set at less than 75% of its maximum setting. In a multivariate logistic regression, electric water heaters were more likely to have safe hot water temperatures than gas water heaters (odds ratio R=4.99; P heaters with more gallons per person in the household were more likely to be at or below the recommended 120°F. Our results suggest that hot water temperatures remain dangerously high for a substantial proportion of urban homes despite the adoption of voluntary standards to preset temperature settings by manufacturers. This research highlights the need for improved prevention strategies, such as installing thermostatic mixing valves, to ensure a safer temperature.

  2. Improving Heat Pump Water Heater Effeciency by Avoiding Electric Resistance Heater Use

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parkison, April E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutaro, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Heat pump water heaters (HPWHs) are a promising technology that can decrease the domestic hot water energy consumption over an electric resistance storage water heater by up to 50%. Heat pump water heaters are really two water heaters in one; they can heat water by using a heat pump or by using electric resistance elements. During large water draw events the HPWHs will use the resistance elements that decrease the overall efficiency of the units. ORNL proposed and tested an advanced control algorithm that anticipates the large water draw events and appropriately sets-up the temperature of the tank water using only the heat pump. With sufficient energy stored in the tank at the elevated temperature, the large water draw is provided for and electric resistance use is avoided. Simulations using a validated heat pump water heater model, and measured water draw data from 25 homes, show average yearly energy savings of 9% for the advanced control algorithm. If the advanced control algorithm perfectly predicts the large water draw events then the savings increase to 19%. This discrepancy could be due to a lack of predictability of water draw patterns in some homes, or the water draw forecasting algorithm could be improved.

  3. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  4. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  5. ANALISA PEMANFAATAN EXCESS COKE OVEN GAS SEBAGAI BAHAN BAKAR GAS HEATER DI IRON MAKING

    Directory of Open Access Journals (Sweden)

    Edi Suderajat

    2016-02-01

    Full Text Available Analisa pemanfaatan excess Coke Oven Gas Sebagai Bakar Bakar Gas Heater dilakukan untuk Memanfaatkan excess COG dari coke oven plant yang berjumlah 11.722 NCMH untuk dipakai sebagai bahan bakar di gas heater dan juga untuk meningkatkan ketersediaan gas bakar akibat makin menurunnya pasokan dan semakin mahalnya gas alam. Dari hasil perhitungan Coke oven gas (COG memiliki nilai kalor yang relatif tinggi, yaitu sekitar 4,373.56 kCal/Nm3 atau kira-kira setengah nilai kalor gas alam yang mencapai 8600 kCal/Nm3. Apabila digunakan sebagai bahan bakar di gas heater akan berdampak Heat Duty kecil, Namun hal ini bisa diantisipasi dengan menambah flow dari COG yang akan masuk ke gas heater, apabila COG digunakan sebagai bahan bakar maka dapat menggantikan hampir separuh dari kebutuhan gas alam untuk volume yang sama

  6. Solar water heaters in China: A new day dawning

    International Nuclear Information System (INIS)

    Han Jingyi; Mol, Arthur P.J.; Lu, Yonglong

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively affluent province, as a case study area to assess the performance of solar water heater utilization in China. The study will focus on institutional setting, economic and technological performance, energy performance, and environmental and social impact. Results show that China has greatly increased solar water heater utilization, which has brought China great economic, environmental and social benefits. However, China is confronted with malfeasant market competition, technical flaws in solar water heater products and social conflict concerning solar water heater installation. For further development of the solar water heater, China should clarify the compulsory installation policy and include solar water heaters into the current 'Home Appliances Going to the Countryside' project; most of the widely used vacuum tube products should be replaced by flat plate products, and the technology improvement should focus on anti-freezing and water saving; the resources of solar water heater market should be consolidated and most of the OEM manufacturers should evolve to ODM and OBM enterprises.

  7. High Efficiency R-744 Commercial Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  8. design and construction of a water heater controller

    African Journals Online (AJOL)

    DESIGN AND CONSTRUCTION OF A WATER HEATER CONTROLLER. ... In this design, a real time emulator driven by software controls a water heater using a micro-controller. Keywords. Micro-controller, geyser, keypad, interface, design, construction. African Journal of Science and Technology Vol.5(1) 2004: 1-5.

  9. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters... residential water heaters, direct heating equipment, and pool heaters. This rulemaking is intended to fulfill... water heaters, possible clarifications and improvement of the direct heating equipment test procedures...

  10. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  11. New Home Buyer Solar Water Heater Trade-Off Study

    International Nuclear Information System (INIS)

    Symmetrics Marketing Corporation

    1999-01-01

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry

  12. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  13. An Automatic Safety Control for Immersion Water Heater | Enokela ...

    African Journals Online (AJOL)

    The heating of liquids, especially water, is carried out in the homes and industries for various reasons. The domestic water heater has become a near- ubiquitous appliance in the Nigerian homes. An important source of concern with this appliance is the frequent possibility of outbreak of fire due to negligence on the part of ...

  14. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  15. Guidebook for the Development of a Nationally Appropriate Mitigation Action for Solar Water Heaters

    DEFF Research Database (Denmark)

    Haselip, James Arthur; Lütken, Søren E.; Sharma, Sudhir

    This guidebook provides an introduction to designing government-led interventions to scale up investment in solar water heater (SWH) markets, showing how these interventions can be packaged as Nationally Appropriate Mitigation Actions (NAMAS). Reflecting the changing balance in global greenhouse...... gas emissions, NAMAs embody the principle of common but differentiated responsibilities. In addition to developed countries’ commitments to make quantitative reductions of greenhouse gas emissions, developing countries are invited to contribute with voluntary actions that are ‘nationally appropriate...

  16. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  17. Solar water heaters in China: A new day dawning

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively

  18. Marketers across the U. S. find propane water heaters a viable load-builder

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    Rather than the usual annual update reporting on specific models and upgrades from water heater manufacturers, the authors concentrate on water heater marketing in the propane industry. Some of the marketing strategies they present are the result of exclusive interviews and some are recaps of water heater marketing plans mentioned in the AFRED study, but marketers across the country are unanimous in their appreciation of the lowly water heater.

  19. Evaluation of the Demand Response Performance of Electric Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  20. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  1. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  2. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy... ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' including residential water... energy consumption, and because off mode is not applicable to water heaters, no amendment is required...

  3. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... procedures for residential water heaters include a full- year accounting of energy use, both electricity and... water heaters already account for standby mode and off mode energy consumption. III. Discussion In the...

  4. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    Energy Technology Data Exchange (ETDEWEB)

    Butler, William P. [Emerson Electric Co., St. Louis, MO (United States); Buescher, Tom [Emerson Electric Co., St. Louis, MO (United States)

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  5. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  6. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  7. Should Fermi Have Secured his Water Heater Against Earthquakes?

    Science.gov (United States)

    Brooks, E. M.; Diggory, M.; Gomez, E.; Salaree, A.; Schmid, M.; Saloor, N.; Stein, S. A.

    2015-12-01

    A common student response to quantitative questions in science with no obvious answer is "I have no idea." Often these questions can be addressed by Fermi estimation, in which an apparently difficult-to-estimate quantity for which one has little intuitive sense can be sensibly estimated by combining order of magnitude estimates of easier-to-estimate quantities. Although this approach is most commonly used for numerical estimates, it can also be applied to issues combining both science and policy. Either application involves dividing an issue into tractable components and addressing them separately. To learn this method, our natural hazard policy seminar considered a statement by the Illinois Emergency Management Agency that homeowners should secure water heaters to prevent them from being damaged by earthquakes. We divided this question into subtopics, researched each, and discussed them weekly to reach a synthesis. We used a simple model to estimate the net benefit, the difference between the expected value of damage and the cost of securing a water heater. This benefit is positive, indicating that securing is worthwhile, only if the probability of damage during the heater's life is relatively large, approximately 1 - 10%. To assess whether the actual probability is likely to be this high, we assume that major water heater damage is likely only for shaking with MMI intensity VIII ("heavy furniture overturned") or greater. Intensity data for the past 200 years of Illinois earthquakes show that this level was reached only in the very southernmost part of the state for the 1811-1812 New Madrid earthquakes. As expected, the highest known shaking generally decreases northward toward Chicago. This history is consistent with the fact that we find no known cases of earthquake-toppled water heaters in Illinois. We compared the rate of return on securing a water heater in Chicago to buying a lottery ticket when the jackpot is large, and found that the latter would be a

  8. Heat Pump Water Heaters: Controlled Field Research of Impact on Space Conditioning and Demand Response Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Graham B.; Widder, Sarah H.; Eklund, Ken; Petersen, Joseph M.; Sullivan, Greg

    2015-10-05

    A new generation of heat pump water heaters (HPWH) has been introduced into the U.S. market that promises to provide significant energy savings for water heating. Many electric utilities are promoting their widespread adoption as a key technology for meeting energy conservation goals and reducing greenhouse gas emissions. There is, however, considerable uncertainty regarding the space conditioning impact of an HPWH installed in a conditioned space. There is also uncertainty regarding the potential for deployment of HPWHs in demand response (DR) programs to help manage and balance peak utility loads in a similar manner as conventional electric resistance water heaters (ERWH). To help answer these uncertainties, controlled experiments have been undertaken over 30 months in a matched pair of unoccupied Lab Homes located on the campus of the Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  9. Control and Coordination of Frequency Responsive Residential Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Pratt, Richard M.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  10. Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers

    International Nuclear Information System (INIS)

    Ibrahim, Oussama; Fardoun, Farouk; Younes, Rafic; Louahlia-Gualous, Hasna

    2014-01-01

    This paper presents a dynamic simulation model to predict the performance of an ASHPWH (air source heat pump water heater). The developed model is used to assess its performance in the Lebanese context. It is shown that for the four Lebanese climatic zones, the expected monthly values of the average COP (coefficient of performance) varies from 2.9 to 5, leading to high efficiencies compared with conventional electric water heaters. The energy savings and GHG (greenhouse gas) emissions reduction are investigated for each zone. Furthermore, it is recommended to use the ASHPWH during the period of highest daily ambient temperatures (noon or afternoon), assuming that the electricity tariff and hot water loads are constant. In addition, an optimal management model for the ASHPWH is developed and applied for a typical winter day of Beirut. Moreover, the developed dynamic model of ASHPWH is used to compare the performance of three similar systems that differ only with the condenser geometry, where results show that using mini-condenser geometries increase the COP (coefficient of performance) and consequently, more energy is saved as well as more GHG emissions are reduced. In addition, the condenser “surface compactness” is increased giving rise to an efficient compact heat exchanger. - Highlights: • Numerical modeling and experimental validation for ASHPWH (air source heat pump water heater). • Optimization of the ASHPWH-condenser length. • Comparison of the ASHPWH with conventional electric water heater according to energy efficiency and green gas house emissions. • Development of an energetic-economic optimal management model for ASHPWH. • Energetic and environmental assessment of ASHPWH with mini-tubes condensers

  11. Application of a Linear Input/Output Model to Tankless Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Butcher T.; Schoenbauer, B.

    2011-12-31

    In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.

  12. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  13. Development of Exhaust Gas Driven Absorption Chiller-Heater

    Science.gov (United States)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  14. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  15. An overview of the development of solar water heater industry in China

    International Nuclear Information System (INIS)

    Runqing, Hu; Peijun, Sun; Zhongying, Wang

    2012-01-01

    This article introduce the development of China solar water heater industry .Gives an overview of stages, market, manufacturing, application and testing about China solar water heater industry. Show the market data from 1998 to 2009. Analyze the experiences and features about the industry. The article also introduces the policy for solar hot water industry in China. These policies have accelerated the development of industry in which the main two incentive policies have the greatest influence on solar water heater industry. First one is the policy of mandatory installation of solar water heater implemented since 2007 by some local governments at provincial and municipal levels. Second is the subsidy policy for solar water heaters in the household appliances going to the countryside scheme implemented since 2009. At last the article gives the reason why China solar water heater industry have so rapid growth. From technology research, industrialization, prices and policy environment gives analysis. - Highlights: ► We compared International and China market about solar thermal products. ► The reason for rapid development of China solar water heater is explained. ► The experience of China solar water heater industry would give reference to other develop country. ► “Meet the demands of customer” is the main driver for the solar water heater industry development. ► The policy framework about China solar thermal industry was introduced. The industry achieved commercial operation without subsidy.

  16. Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2003-01-01

    In the present study, a natural circulation two phase closed thermosyphon flat plate solar water heater has been investigated theoretically under the actual field conditions of Cairo, Egypt. Also, the heater design parameters are optimized by means of the author's simulation program that was verified experimentally in a previous paper. These parameters include the ratio of storage tank volume to collector area, storage tank dimensions ratios and height between the heater storage tank and collector. The computational results indicate that the storage tank volume to collector area ratio and the storage tank dimensions ratios have significant effects on the heater performance, while the height between the heater tank and collector has little effect

  17. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  18. Subsidy programs on diffusion of solar water heaters: Taiwan's experience

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Lee, Tsong-Sheng; Chung, Kung-Ming

    2011-01-01

    Financial incentives are essentially one of the key factors influencing diffusion of solar water heaters in many countries. Two subsidy programs were initiated by the government of Taiwan in 1986 (1986-1991) and 2000 (2000-present), respectively. Those long-term national programs are considered to be the driving force on local market expansion. In 2008, the regional subsidy programs for solar water heaters were announced by Kaohsiung city and Kiemen county, which resulted in the growth in sales. A revised subsidy was also initiated by the government of Taiwan in 2009. The subsidy is 50% more. However, the tremendous enlargement of market size with a high-level ratio of subsidy over total installation cost might result in a negative impact on a sustainable SWH industry and long-term development of the local market, which is associated with system design and post-installation service. This paper aims to address the relative efficiency and pitfalls of those national and regional programs. - Research Highlights: → The direct subsidy has been the driving force on market expansion in Taiwan. → Higher subsidy would certainly increase the total number of systems installed. → A high-level subsidy results in a negative impact on users or a sustainable industry.

  19. MATHEMATICAL AND INFORMATION SUPPORT FOR CALCULATION AND DESIGN OF TUBE GAS HEATERS LOCATED IN STRUCTURES

    Directory of Open Access Journals (Sweden)

    CHORNOMORETS H. Y.

    2016-02-01

    Full Text Available Raising of problem. For the design and construction of tube gas heaters in building structures to need solve the problems of analysis and synthesis of such heating system. The mathematical model of this system is consists of: mathematical model of the tube gas heater, mathematical model of heat distribution in the building structure and corresponding boundary conditions. To solve the tasks of analysis and synthesis must be appropriate mathematical and information support. Purpose. The purpose of this paper is to describe the developed mathematical and information support that solve the problems of analysis and synthesis of heating systems with gas tube heaters, located in building constructions.Conclusion. Mathematical support includes the development of algorithms and software for the numerical solution of problems analysis and synthesis heating system. Information support includes all the necessary parameters characterizing the thermal properties of materials which used in the heating system, and the parameters characterizing the heat exchange between the coolant and components of the heating system. It was developed algorithms for solving problems of analysis and synthesis heating system with tube gas heater located in structures to use evolutionary search algorithm and software. It was made experimental study and was obtained results allow to calculate the heat transfer from the gas-air mixture to the boundary surface of the building structure. This results and computation will provide full information support for solving problems of analysis and synthesis of the heating system. Was developed mathematical and software support, which allows to solve the problems of analysis and synthesis heating systems with gas tube heaters, located in building structures. Tube gas heaters located in the building structures allows with small capital expenditures to provide space heating. Is necessary to solve the problems of analysis (calculation and

  20. Experimental Study on the Performance of Water Source Trans-Critical CO2 Heat Pump Water Heater

    OpenAIRE

    Xiufang Liu; Changhai Liu; Ze Zhang; Liang Chen; Yu Hou

    2017-01-01

    The effect of the discharge pressure on the performance of the trans-critical CO2 heat pump with a low gas-cooler outlet temperature is experimentally investigated on a test rig of water source heat-pump water heater. The optimal discharge pressure of the trans-critical CO2 heat pump is investigated under different external operation conditions. When the tap-water temperature is low, the characteristic of the S-shape isotherm at the supercritical region has little effect on the occurrence of ...

  1. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  2. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... procedure for residential water heaters fully addresses standby mode and off mode energy consumption, this... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2009-BT-TP-0013] RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating...

  3. Experience with feed water heaters performance and renovation at Tarapur Atomic Power Station -1 and 2

    International Nuclear Information System (INIS)

    Ramu, A.; Gupta, V.K.; Sharma, B.L.; Bhattacharjee, S.; Ramamurty, U.

    2006-01-01

    Tarapur Atomic Power Station is a twin unit Boiling Water Reactors (BWRs) built in 1960's and each unit is operating presently at 160 MWe. TAPS unit was designed to generate 210 MWe out of which 70 % was from reactor primary steam and the remaining from Secondary Steam Generators. The thermal cycle is Regenerative Rankine cycle with feed water heating, like any other thermal power plant, TAPS also has a series of feed water heaters. These feed water heaters utilize wet steam extracted from different stages of turbine for heating the condensate. Feed water heaters increase thermal efficiency of cycle. These heaters were in operation since 1969 and subjected to various degradation mechanisms. This includes corrosion and erosion-corrosion (EC) of the heaters shell and fretting failures of tubes. Thorough review was made to improve the feed water heaters performance keeping the remnant life of the plant in view. One solution was to replace the tube bundles and the second option was to replace the heaters with modified design eliminating the problems faced so far. TAPS has developed the specification incorporating various changes required to overcome the corrosion and EC problems in close consultation with Nuclear Power Corporation of India Ltd.-HQ. The development of these feed water heaters was taken up indigenously and out of four heaters, three were replaced with improved design in both the units. The performance of new heaters has improved the cycle performance also, as on date. This paper gives the details of various degradation mechanisms and failures seen during the initial period of operation and the corrective measures taken to overcome these difficulties. In addition to this, design changes made in the feed water heaters are also discussed. (author)

  4. Greenhouse gas emissions from domestic hot water: heat pumps compared to most commonly used systems

    OpenAIRE

    Hong, Bongghi; Howarth, Robert

    2017-01-01

    We estimate the emissions of the two most important greenhouse gasses (GHG), carbon dioxide (CO2) and methane (CH4), from the use of modern high-efficiency heat pump water heaters compared to the most commonly used domestic hot water systems: natural gas storage tanks, tankless natural gas demand heaters, electric resistance storage tanks, and tankless electric resistance heaters. We considered both natural gas-powered electric plants and coal-powered plants as the source of the electricity f...

  5. 16 CFR Appendix J1 to Part 305 - Pool Heaters-Gas

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pool Heaters-Gas J1 Appendix J1 to Part 305... Part 305—Pool Heaters—Gas Range Information Manufacturer's rated heating capacity Range of Thermal Efficiencies (percent) Natural Gas Low High Propane Low High All capacities 79.0 95.0 79.0 95.0 [72 FR 49983...

  6. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Science.gov (United States)

    2010-01-01

    ... Heaters 1. Definitions 1.1Cut-in means the time when or water temperature at which a water heater control....3Design Power Rating means the nominal power rating that a water heater manufacturer assigns to a... the inlet and outlet temperature sensors, noted as TIN and TOUT in the figures, shall be Type “L” hard...

  7. Processes of energy exchange between blasted electric arc and surrounding gas in arc heater channel

    Czech Academy of Sciences Publication Activity Database

    Heinz, J.; Šenk, J.; Hrabovský, Milan

    2002-01-01

    Roč. 52, supplement D (2002), s. 583 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : electric arc, energy exchance, heater Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  8. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  9. Numerical and experimental investigation of thermosyphon solar water heater

    International Nuclear Information System (INIS)

    Zelzouli, Khaled; Guizani, Amenallah; Kerkeni, Chakib

    2014-01-01

    Highlights: • We studied a thermosyphon solar water heater composed of high-performance components. • A differential equations solution technique is investigated. • The influences of the collector and storage losses on the system performance were examined. • The storage losses have more influence on the long-term performance. - Abstract: A glassed flat plate collector with selective black chrome coated absorber and a low wall conductance horizontal storage are combined in order to set up a high performance thermosyphon system. Each component is tested separately before testing the complete system in spring days. During the test period, effect of different inlet water temperatures on the collector performance is studied and results have shown that the collector can reach a high efficiency and high outlet water temperature even for elevated inlet water temperatures. Subsequently, long term system performance is estimated by using a developed numerical model. The proposed model, accurate and gave a good agreement with experimental results, allowed to describe the heat transfer in the storage. It has shown also that the long-term performances are strongly influenced by losses from the storage than losses from the collector

  10. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  11. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  12. Commercial Absorption Heat Pump Water Heater: Beta Prototype Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ally, Moonis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-14

    The Beta version of the Commercial Absorption Heat Pump (CAHP) water heater was evaluated in the environmental chambers at Oak Ridge National Laboratory. Ambient air conditions ranged from 17 to 75 oF and inlet water temperatures ranged from 100 to 120oF in order to capture trends in performance. The unit was operated under full fire (100%) and partial fire (55%). The unit was found to perform at 90% of the project goal at the design conditions of 47oF ambient and 100oF water temperatures. The trends across the full range of environmental conditions were as expected for ambient air temperatures above 32oF. Below this temperature and for the full fire condition, frost accumulated on the evaporator coil. In future work a defrost strategy will be enabled, the unit will be thoroughly cleaned of an oil contamination and the rectifier will be reconfigured in order to meet the design goals and have a field test unit ready in early 2017.

  13. Management of aging of water heaters in nuclear power plants

    International Nuclear Information System (INIS)

    Martin-Serrano Ledesma, C.; Toro del toro, J.; Real Rubio, I.; Garcia Montejano, A.

    2014-01-01

    The scope of this work includes the study of all feedwater heaters (from 1 to 6) in their two trains (A and B). In this study the main degradation phenomena that affect them, the operating parameters that can warn of a possible malfunction of the heater and possible strategies inspection, repair and replacement are analyzed. As a result of this study, a higher priority is obtained at a lower state of degradation of the heaters, possibly with a strategy inspection, repair or replacement, for each recharge, until the end of life of the plant. This will be a live program, which must be fed back to the studies of the parameters of operation of the heater during operation and results of the inspection of each recharge. May verify the effectiveness of aging management program using different indicators. (Author)

  14. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM)

    OpenAIRE

    Miqdam T. Chaichan; Hussein A. Kazem

    2015-01-01

    This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temp...

  15. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  16. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2018-03-31

    This project developed an alternative design for heat exchangers for application to heating supercritical carbon dioxide (S-CO2) or air for power conversion. We have identified an annular coiled tube bundle configuration–where hot sodium enters tubes from multiple vertical inlet manifold pipes, flows in a spiral pattern radially inward and downward, and then exits into an equal number of vertical outlet manifold pipes–as a potentially attractive option. The S-CO2 gas or air flows radially outward through the tube bundle. Coiled tube gas heaters (CTGHs) are expected to have excellent thermal shock, long-term thermal creep, in-service inspection, and reparability characteristics, compared to alternative options. CTGHs have significant commonality with modern nuclear steam generators. Extensive experience exists with the design, manufacture, operation, in-service inspection and maintenance of nuclear steam generators. The U.S. Nuclear Regulatory Commission also has extensive experience with regulatory guidance documented in NUREG 0800. CTGHs leverage this experience and manufacturing capability. The most important difference between steam generators and gas-Brayton cycles such as the S-CO2 cycle is that the heat exchangers must operate with counter flow with high effectiveness to minimize the pinch-point temperature difference between the hot liquid coolant and the heated gas. S-CO2-cycle gas heaters also operate at sufficiently elevated temperatures that time dependent creep is important and allowable stresses are relatively low. Designing heat exchangers to operate in this regime requires configurations that minimize stresses and stress concentrations. The cylindrical tubes and cylindrical manifold pipes used in CTGHs are particularly effective geometries. The first major goal of this research project was to develop and experimentally validate a detailed, 3-D multi-phase (gas-solid-liquid) heat transport model for

  17. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  18. Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle

    Science.gov (United States)

    Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.; Verbael, David J.

    1995-01-01

    An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.

  19. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  20. A case study of electric utility demand reduction with commerical solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, M.; Hoffner, J.E.; Panico, D. (City of Austin Electric Utility Dept., Austin, TX (US))

    1991-05-01

    The City of Austin, is studying the impact of solar water heaters on summer peak electric demand. One passive and two active solar water heating systems were installed on city owned commercial buildings which had electric water heaters in 1985 and have been monitored for two years. This paper reports on a method that has been developed to determine the peak demand reduction attributable to the solar systems. Results show that solar water heating systems are capable of large demand reductions as long as there is a large hot water demand to displace. The average noncoincident demand reduction (during the water heater's peak output) ranged from 0.8 to 5.8 kilowatts per system, however, the coincident demand reduction during the utility peak demand period was 0.3 to 0.8 kilowatts per system. Thus, a critical factor when assessing the benefit to the electric utility is the time of hot water demand.

  1. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Science.gov (United States)

    2010-01-01

    ... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water...

  2. Study on the selection method of feed water heater safety valves in nuclear power plants

    International Nuclear Information System (INIS)

    Shi Jianzhong; Huang Chao; Hu Youqing

    2014-01-01

    The selection of the high pressure feedwater heater's safety valve usually follows the principle recommended by HEI standards in thermal power plant. However, the nuclear power plant's heaters generally need to accept a lots of drain from a moisture separator reheater (MSR). When the drain regulating valve was failure in fully open position, a large number of high pressure steam will directly goes into the heater. It make high-pressure heater have a risk of overpressure. Therefore, the safety valve selection of the heaters for nuclear power plants not only need to follow the HEI standards, but also need to check his capacity in certain special conditions. The paper established a calculation method to determine the static running point of the heaters based on characteristic equations of the feed water heater, drain regulating valve and steam extraction pipings, and energy balance principle. The method can be used to calculate the equilibrium pressure of various special running conditions, so further determine whether the capacity of the safety valve meets the requirements of safety and emissions. The method proposed in this paper not only can be used for nuclear power plants, can also be used for thermal power plants. (authors)

  3. Experimental Study on the Performance of Water Source Trans-Critical CO2 Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Xiufang Liu

    2017-06-01

    Full Text Available The effect of the discharge pressure on the performance of the trans-critical CO2 heat pump with a low gas-cooler outlet temperature is experimentally investigated on a test rig of water source heat-pump water heater. The optimal discharge pressure of the trans-critical CO2 heat pump is investigated under different external operation conditions. When the tap-water temperature is low, the characteristic of the S-shape isotherm at the supercritical region has little effect on the occurrence of the optimal discharge pressure; while the mass flow rate of CO2, the suction pressure and the gas-cooler outlet temperature play a significant role in determining the emergence of the optimal discharge pressure. At the optimal discharge pressure, the COP reaches the peak; however, the corresponding heating capacity is still lower than its maximum, which is reached as the discharge pressure is slightly above the optimal discharge pressure. Reducing the tap-water flowrate or increasing the water-source temperature can increase the optimal discharge pressure. The COP is positively dependent on both the tap-water flowrate and the water-source temperature. In addition, the tap-water flowrate has a negligible influence on the maximum heating capacity while increasing the water-source temperature can greatly enhance the heating capacity.

  4. Understanding the Ecological Adoption of Solar Water Heaters Among Customers of Island Economies

    Directory of Open Access Journals (Sweden)

    Pudaruth Sharmila

    2017-04-01

    Full Text Available This paper explores the major factors impacting upon the ecological adoption of solar water heaters in Mauritius. The paper applies data reduction technique by using exploratory factor analysis on a sample of 228 respondents and condenses a set of 32 attributes into a list of 8 comprehensible factors impacting upon the sustained adoption of solar water heater in Mauritius. Multiple regression analysis was also conducted to investigate upon the most predictive factor influencing the adoption of solar water heaters in Mauritius. The empirical estimates of the regression analysis have also depicted that the most determining factor pertaining to the ‘government incentives for solar water heaters’ impacts upon the adoption of solar water heaters. These results can be related to sustainable adoption of green energy whereby targeted incentive mechanisms can be formulated with the aim to accelerate and cascade solar energy adoption in emerging economies. A novel conceptual model was also proposed in this paper, whereby, ecological stakeholders in the sustainable arena could use the model as a reference to pave the way to encourage adoption of solar water heating energy. This research represents a different way of understanding ecological customers by developing an expanding on an original scale development for the survey on the ecological adoption of solar water heaters.

  5. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  6. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Directory of Open Access Journals (Sweden)

    Gaaliche Nessreen

    2017-01-01

    Full Text Available Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH and its efficiency, was developed. Modeling through a numerical

  7. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Science.gov (United States)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach

  8. Low-power-Consumption metal oxide NO2 gas sensor based on micro-heater and screen printing technology.

    Science.gov (United States)

    Moon, S E; Lee, H K; Choi, N J; Lee, J; Yang, W S; Kim, J; Jong, J J; Yoo, D J

    2012-07-01

    An NO2 micro gas sensor was fabricated based on a micro-heater using tin oxide nano-powders for effective gas detection and monitoring system with low power consumption and high sensitivity. The processes of the fabrication were acceptable to the conventional CMOS processes for mass-production. Semiconducting SnO2 nano-powders were synthesized via the co-precipitation method; and to increase the sensitivity of the NO2 gas rare metal dopants were added. In the structure of the micro-heater, the resistances of two semi-circular Pt heaters were connected to the spreader for thermal uniformity. The resistance of each heater becomes an electrically equal Wheatstone-bridge, which was divided in half by the heat spreading structure. Based on the aforementioned design, a low-power-consumption micro-heater was fabricated using the CMOS-compatible MEMS processes. A bridge-type micro-heater based on the Si substrate was fabricated via surface micro-machining. The NO2 sensing properties of a screen-printed tin oxide thick film device were measured The micro gas sensors showed substantial sensitivity down to 0.5 ppm NO2 at a low power consumption (34.2 mW).

  9. Examination and life assessment of field-tested heat-pump water heaters

    Science.gov (United States)

    Bernardi, W. P.; Blevins, R. P.; Sloane, B. D.

    1982-12-01

    An electric heat pump water heater (HPWH) was developed for domestic use. This device is interchangeable with conventional electric or oil fired water heaters but significantly reduces energy consumption by using air conditioning technology, the HPWH removes heat from the surrounding air and rejects the heat to its integral water tank. Design, development, and an 85 unit field of the HPWH are demonstrated. The results of destructive examination of 20 units which had operated for 2 years are presented. Life expectancy and the need for redesign are evaluated.

  10. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  11. Estimation of cobalt release from feed water heater tubes of BWRs

    International Nuclear Information System (INIS)

    Uchida, S.; Kitamura, M.; Ozawa, Y.

    1983-01-01

    To evaluate the release source of cobalt from heater tubes of the feed water line, release rate measurements were carried out by detecting 60 Co released from irradiated stainless steel in contact with neutral water at an oxygen concentration of 20 ppb. The dependences of cobalt release rate on temperature, flow velocity and exposure time were studied after 670 hours of release experiments, and an empirical equation (which is presented) was obtained in the temperature range from 150 to 240 deg C. A decrease in the cobalt release rate above 250 deg C was considered due to the formation of a protective oxide layer. From these data, the amount of cobalt released from individual feed water heaters was evaluated. It was demonstrated that low cobalt containing stainless steel was economically applied only in the higher temperature region of the heater (20% of the total surface) to reduce cobalt feed rate into the reactor (to approx. 1/2). (author)

  12. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  13. Savings on natural gas consumption by doubling thermal efficiencies of balanced-flue space heaters

    Energy Technology Data Exchange (ETDEWEB)

    Juanico, Luis E. [Conicet, and Centro Atomico Bariloche e Instituto Balseiro, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina); Gonzalez, Alejandro D. [Grupo de Estudios Ambientales, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (Inibioma-Conicet), 8400 Bariloche, Rio Negro (Argentina)

    2008-07-01

    Natural gas is a relatively clean fossil fuel for space heating. However, when it is not used efficiently high consumption can become an environmental problem. In Argentina, individual balanced-flue space heaters are the most extensively used in temperate and cold regions. This furnace is a simple device with a burner set into a metal chamber, separated from the indoor ambient by an enclosing cabinet, and both inlet and outgas chimneys are connected to the outdoor ambient. In previous studies, we measured the performance of these commercial devices, and found very low thermal efficiency (in the range of 39-63% depending on the chimney configuration). The extensive use of these devices is possible due to the availability of unlimited amount of subsidised natural gas to households and businesses. In the present work, we developed a prototype with simple and low cost modifications made on commercial models, and measured the improvements on the thermal efficiency. Findings showed better infrared radiation, enhanced indoor air convection, and passive chimney flow regulation leading to thermal efficiency in the range of 75-85%. These values represent an improvement of 100% when compared to marketed models, and hence, the specific cost of the heater per unit of useful heating power delivered was actually reduced. Considering the large market presence of these furnaces in both residential and business sectors in Argentina, the potential benefits related to gas consumption and environmental emissions are very significant. (author)

  14. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  15. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  16. Assessment of global environmental impacts by utilizing methodology of LCA on solar water heater for dwellings; LCA shuho ni yoru taiyonetsu onsuiki no kankyo fuka hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kamoshida, J. [Shibaura Institute of Technology, Tokyo (Japan); Asai, S. [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    CO2 emission was quantified through the life cycle of a solar water heater to assess its environment impact. Although LCA (life cycle assessment) originally sums up I/O of all materials and energy through the whole life cycle of a product to examine environment impact, this assessment was carried out for only CO2. Calculation of CO2 emission assumed a natural circulating solar water heater of 200 l in effective hot water capacity, 2.78m{sup 2} in effective collecting area, and 0.5 in average annual collecting efficiency of total solar radiation, and an auxiliary city gas heat source for compensating insufficient heat quantity. The total CO2 emission in the life cycle of a solar water heater was obtained from an industrial association table assuming the life cycles of 10 and 20 years. CO2 emission was estimated to be 5407.1kg-CO2 and 10665.2kg-CO2 for 10 and 20 years, respectively. CO2 emission due to city gas was largest in the total CO2 emission in the life cycle. As a result, for reduction of CO2 emission due to a solar water heater, improvement of equipment efficiency was most important. 6 refs., 5 figs., 3 tabs.

  17. Feed-water heaters alternative design comparison; Comparacion de disenos alternativos de calentadores

    Energy Technology Data Exchange (ETDEWEB)

    Torres Toledano, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    A procedure is presented for the alternative design comparison of feed water heaters, based in the failure records of damaged tubes during operation. The procedure is used for cases in which non-continuous or random inspections are made to the feed-water heaters. [Espanol] Se presenta un procedimiento para comparar disenos alternativos de calentadores, basandose en los registros de fallas de los tubos rotos acumuladas durante su operacion. El procedimiento se emplea para casos en los que se realizan inspecciones a los calentadores no continuas, ya sea periodicas o al azar.

  18. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, daily...... consumption influence on the solar water heater efficiency, and on the input temperature of the collector are studied and the delivered daily useful energy has been obtained. The results show that by withdrawing from storage tank, the system as well as its collector efficiency will increase. Considering...

  19. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  20. Development of High Temperature (3400F) and High Pressure (27,000 PSI) Gas Venting Process for Nitrogen Batch Heater

    Science.gov (United States)

    2018-01-01

    University of Maryland, College Park 10905 New Hampshire Ave Department of Mechanical Engineering Silver Spring, MD...17 11. Unknown Gas Temperature Region in Heater Vessel ...................................................... 18 12. Thermocouple Rig CAD Model...sensed the gas temperature. The CAD Model of the Thermocouple Rig is shown in Fig. 12. 20Statement A: Approved for public release; distribution is

  1. Efficiency and losses analysis of low-pressure feed water heater in steam propulsion system during ship maneuvering period

    OpenAIRE

    Mrzljak, Vedran; Poljak, Igor; Medica-Viola, Vedran

    2016-01-01

    Dominant propulsion systems of today’s LNG carriers are steam propulsion systems. Although a number of alternatives are developed, only steam propulsion systems in LNG carriers can fulfill a double function: the function of propulsion and on the other side the combustion of large amounts of BOG (Boil Off Gas) in one or more steam generators. In this paper was provided an analysis of the low-pressure feed water heater, as one of the important components of LNG carrier steam propulsion system. ...

  2. Effect of gas and kerosene space heaters on indoor air quality: a study in homes of Santiago, Chile.

    Science.gov (United States)

    Ruiz, Pablo A; Toro, Claudia; Cáceres, Jorge; López, Gianni; Oyola, Pedro; Koutrakis, Petros

    2010-01-01

    The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 microg x m(-3)), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 microg m(-3)).

  3. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    International Nuclear Information System (INIS)

    Bulmer, B.M.

    1980-02-01

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperature variation of rock conductivity as well as the extent of induced boiling

  4. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  5. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  6. Performance improvements in commercial heat pump water heaters using carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, C. D.; Elbel, S.; Petersen, M.; Hrnjak, P. S.

    2011-09-15

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82ºC (180ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  7. Water loss from the skin of term and preterm infants nursed under a radiant heater.

    Science.gov (United States)

    Kjartansson, S; Arsan, S; Hammarlund, K; Sjörs, G; Sedin, G

    1995-02-01

    The rate of evaporation from the skin (g/m2/h) was measured in 12 full-term and 16 preterm infants (gestational age 25-34 wk) both during incubator care and when nursed under a radiant heater. The method for evaporation rate measurement is noninvasive and based on determination of the water vapor pressure gradient close to the skin surface. Measurements were first made with the infant nursed in an incubator with a controlled environment with respect to humidity, temperature, and air velocity. The measurements in the term infants were performed at an ambient relative humidity (RH) of 50%, and in the preterm infants first at 50% and subsequently at 30-40%. Evaporation rate was then measured with the infant nursed under a radiant heater. In term infants, mean evaporation rate was 3.3 g/m2/h during incubator care (RH 50%) and 4.4 g/m2/h during care under the radiant heater. In preterm infants, the corresponding values were 15.5 g/m2/h in the incubator at RH 50%, 16.7 g/m2/h at RH 30-40%, and 17.9 g/m2/h under the radiant heater. It is concluded that the evaporative water loss from the skin depends on the ambient water vapor pressure, irrespective of whether the infant is nursed in an incubator or under a radiant heater. The higher rate of evaporation during care under a radiant heater is due to the lower ambient water vapor pressure and not to any direct effect of the nonionizing radiation on the skin.

  8. Effect of a gas-gas-heater on H2SO4 aerosol formation: implications for mist formation in amine based carbon capture

    NARCIS (Netherlands)

    Mertens, J.; Bruns, R.; Schallert, B.; Faniel, N.; Khakharia, P.M.; Albrecht, W.; Goetheer, E.L.V.; Blondeau, J.; Schaber, K.

    2015-01-01

    This study is to our knowledge the first to describe the effect of a Gas-Gas Heater (GGH) of a coal fired power plant's has on (i) the H2SO4 concentration and (ii) the particle/aerosol number concentration and particle size distribution present in the flue gas. In the absence of a GGH, homogenous

  9. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  10. West Village Community. Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. When complete, the project will provide housing for students, faculty, and staff with a vision to minimize the community’s impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  11. West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  12. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Savings and Net Present Value Analysis 1. General 2. Shipments a. Water Heaters b. Direct Heating.... Consumer Net Present Value a. Increased Total Installed Costs and Operating Cost Savings b. Discount Rates... That Are Small Businesses 3. National Net Present Value of Consumer Costs and Benefits and National...

  13. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  14. A figure of merit for selective absorbers in flat plate solar water heaters

    CSIR Research Space (South Africa)

    Roberts, DE

    2013-12-01

    Full Text Available We derive from first principles an analytical expression for a figure of merit (FM) for a selective solar absorber in a single glazed flat plate water heater. We first show that the efficiency of a collector with an absorber with absorptance α...

  15. Acceptability of the integral solar water heater by householders in the low income urban community

    CSIR Research Space (South Africa)

    Basson, FA

    1984-01-01

    Full Text Available A research and demonstration project on the use and performance of low cost integral solar water heaters in urban low-income dwellings was carried out in 1982/83. The project involved technical and socio-economic components. This report summarises...

  16. NORTH PORTAL-WATER HEATER CALCULATION-SHOP BUILDING No. 5006

    International Nuclear Information System (INIS)

    R. Blackstone

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot and the selection of a water heater of appropriate size, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2)

  17. Radiative heat transfer analysis in pure water heater used for semiconductor processing

    International Nuclear Information System (INIS)

    Liu, L.H.; Kudo, K.; Mochida, A.; Ogawa, T.; Kadotani, K.

    2004-01-01

    A simplified one-dimensional model is presented to analyze the non-gray radiative transfer in pure water heater used in the rinsing processes within semiconductor production lines, and the ray-tracing method is extended to simulate the radiative heat transfer. To examine the accuracy of the simplified model, the distribution of radiation absorption is determined by the ray-tracing method based the simplified model and compared with the data obtained by three-dimensional non-gray model in combination with Monte Carlo method in reference, and the effects of the water thickness on the radiation absorption are analyzed. The results show that the simplified model has a good accuracy in solving the radiation absorption in the pure water heater. The radiation absorption increases with the water thickness, but when the water thickness is greater than 50 mm, the radiation absorption increases very slowly with the water thickness

  18. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    Science.gov (United States)

    Morrison, L.; Swisher, J.

    1980-12-01

    The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.

  19. DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER

    Directory of Open Access Journals (Sweden)

    O. A. Lasode

    2011-06-01

    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  20. Thermodynamic analysis of feed water pre-heaters in multiple effect distillation systems

    International Nuclear Information System (INIS)

    Kouhikamali, R.

    2013-01-01

    The purpose of this article is to investigate the influence of using feed water pre-heaters in multiple effect distillation systems with thermal vapor compression (MED-TVC). By using these heat exchangers, temperature difference between feed water and steam in each effect would be constant. In this way, the required energy for preheating the feed water will decrease and the feed water evaporates as soon as it enters the effect. In this article, it is shown preheating the feed water has a great influence on decreasing the energy consumption of MED-TVC distillation systems. The influence of different configurations of feed water preheating on energy consumption of MED-TVC process is investigated as well. Results show that the energy consumption will be minimum if the pre-heaters increase the feed water temperature in such a way that their temperature difference is equal to that of effects. - Highlights: ► A modified process design of MED-TVC packages has been presented in this article. ► Preheating the feed water results in a remarkable decrease in energy consumption. ► Using feed pre-heaters for warmer effects have more effect on increasing in GOR.

  1. Mountain Plains Learning Experience Guide: Appliance Repair. Course: Heater-Type Appliances.

    Science.gov (United States)

    Ziller, T.

    One of two individualized courses included in an appliance repair curriculum (see CE 027 767), this course covers minor and major heater-type appliances. The course is comprised of six units: (1) Irons, (2) Roasters, (3) Space Heaters, (4) Water Heaters, (5) Electric Ranges, and (6) Gas Ranges. Each unit begins with a Unit Learning Experience…

  2. Building America Case Study: Indoor Heat Pump Water Heaters During Summer in a Hot-Dry Climate, Redding, California

    Energy Technology Data Exchange (ETDEWEB)

    M. Hoeschele, M. Seitzler

    2017-06-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners.

  3. Convective heater

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  4. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan

    2006-01-01

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  5. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tarhan, Sefa; Yardim, M. Hakan [Department of Farm Machinery, Faculty of Agriculture, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey); Sari, Ahmet [Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey)

    2006-09-15

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  6. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  7. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters.

    Science.gov (United States)

    Wang, Hong; Masters, Sheldon; Falkinham, Joseph O; Edwards, Marc A; Pruden, Amy

    2015-07-21

    Illustrative distribution system operation and management practices shaped the occurrence and persistence of Legionella spp., nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa, and two amoebae host (Acanthamoeba spp., Vermamoeba vermiformis) gene markers in the effluent of standardized simulated household water heaters (SWHs). The interplay between disinfectant type (chlorine or chloramine), water age (2.3-5.7 days) and materials (polyvinyl chloride (PVC), cement or iron) in upstream simulated distribution systems (SDSs) profoundly influenced levels of pathogen gene markers in corresponding SWH bulk waters. For example, Legionella spp. were 3-4 log higher in SWHs receiving water from chloraminated vs chlorinated SDSs, because of disinfectant decay from nitrification. By contrast, SWHs fed with chlorinated PVC SDS water not only harbored the lowest levels of all pathogen markers, but effluent from the chlorinated SWHs were even lower than influent levels in several instances (e.g., 2 log less Legionella spp. and NTM for PVC and 3-5 log less P. aeruginosa for cement). However, pathogen gene marker influent levels correlated positively to effluent levels in the SWHs (P < 0.05). Likewise, microbial community structures were similar between SWHs and the corresponding SDS feed waters. This study highlights the importance and challenges of distribution system management/operation to help control opportunistic pathogens.

  8. Performance comparison of air-source heat pump water heater with different expansion devices

    International Nuclear Information System (INIS)

    Peng, Jing-Wei; Li, Hui; Zhang, Chun-Lu

    2016-01-01

    Highlights: • An air-source heat pump water heater model was developed and validated. • System performance with EEV, capillary tube or short tube orifice were compared. • Short tube orifice is more suitable for heat pump water heater than capillary tube. - Abstract: Air source heat pump water heater (ASHPWH) is designed to work under wide operating conditions. Therefore, both the system and components require higher reliability and stability than ordinary heat pump air-conditioning systems. In this paper, a quasi-steady-state system model of ASHPWH using electronic expansion valve (EEV), capillary tube or short tube orifice as expansion device is developed and validated by a prototype using R134a and scroll compressor, by which the system performance is evaluated and compared at varying water temperature and different ambient temperature. Flow characteristics of those three expansion devices in ASHPWH are comparatively analyzed. Results show that the EEV throttling system performs best. Compared with capillary tube, flow characteristics of short tube orifice are closer to that of EEV and therefore more suitable for ASHPWH. Reliability concern of liquid carryover to the compressor in the system using short tube orifice is investigated as well. Higher superheat or less system refrigerant charge could help mitigate the risk.

  9. Impact of water heater temperature setting and water use frequency on the building plumbing microbiome.

    Science.gov (United States)

    Ji, Pan; Rhoads, William J; Edwards, Marc A; Pruden, Amy

    2017-06-01

    Hot water plumbing is an important conduit of microbes into the indoor environment and can increase risk of opportunistic pathogens (for example, Legionella pneumophila). We examined the combined effects of water heater temperature (39, 42, 48, 51 and 58 °C), pipe orientation (upward/downward), and water use frequency (21, 3 and 1 flush per week) on the microbial composition at the tap using a pilot-scale pipe rig. 16S rRNA gene amplicon sequencing indicated that bulk water and corresponding biofilm typically had distinct taxonomic compositions (R 2 Adonis =0.246, P Adonis =0.001), yet similar predicted functions based on PICRUSt analysis (R 2 Adonis =0.087, P Adonis =0.001). Although a prior study had identified 51 °C under low water use frequency to enrich Legionella at the tap, here we reveal that 51 °C is also a threshold above which there are marked effects of the combined influences of temperature, pipe orientation, and use frequency on taxonomic and functional composition. A positive association was noted between relative abundances of Legionella and mitochondrial DNA of Vermamoeba, a genus of amoebae that can enhance virulence and facilitate replication of some pathogens. This study takes a step towards intentional control of the plumbing microbiome and highlights the importance of microbial ecology in governing pathogen proliferation.

  10. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    , which decreases efficiency of the heat exchange process. A baffle in the tube can prevent the flow instability and secure the flow circulation in the tube. The results of the investigation provide a helpful guidance for further investigation of the mechanism of heat transfer processes and a reference......Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus...... on the convective heat transfer in the tube. The buoyancy induced flow circulation in different parts of the tube was analyzed. It is shown that fluid flow becomes stochastic and turbulent if fluid temperature is high enough. The flow instability leads to mixing of the warm uprising flow and the cold downward flow...

  11. Thermally driven bubble evolution at a heater wire in water characterized by high-speed transmission electron microscopy.

    Science.gov (United States)

    Vance, J R; Dillon, S J

    2017-05-02

    This work investigates the early stage evolution of thermally nucleated microbubbles in water using in situ high-speed, 400 fps, transmission electron microscopy. A Pt wire Joule heater induced bubble nucleation and growth from air-saturated water at different levels of power. For all powers below Pt breakdown, the dissolved gas initiates bubble nucleation at the concave surface defects adjacent to the area of highest temperature. A combination of interfacial forces and stress relaxation drive rapid migration of the bubbles away from the nucleation site. Thermocapillary forces ultimately dominate and drive their return to the region of highest temperature. The dynamic response highlights the importance of this length and time domain, which has until now received limited direct study.

  12. THERMODYNAMICAL ANALYSIS OF HIGH-PRESSURE FEED WATER HEATER IN STEAM PROPULSION SYSTEM DURING EXPLOITATION

    OpenAIRE

    Mrzljak, Vedran; Poljak, Igor; Medica-Viola, Vedran

    2017-01-01

    Nowadays diesel engines prevail as ship propulsion. However, steam propulsion is still primary drive for LNG carriers. In the presented paper high-pressure feed water heater was analyzed, as one of the essential components in LNG carrier steam propulsion system. Measurements of all operating parameters (fluid streams) at the analyzed heat exchanger inlets and outlets were performed. Change of the operating parameters was measured at different steam system loads, not at full load as usual. Thr...

  13. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  14. Solar Water Heater Systems for Building Trades Class.

    Science.gov (United States)

    Ryan, Milton; And Others

    This teaching unit serves as a guide for the installation of active solar water heating systems. It contains a project designed for use with secondary level students of a building trades class. Students typically would meet 2 to 3 hours per day and would be able to complete the activity within a 1-week time period. Objectives of this unit include:…

  15. Thermal analysis of building roof assisted with water heater and ...

    Indian Academy of Sciences (India)

    D Prakash

    2018-03-14

    Mar 14, 2018 ... Thermal analysis; building roof; solar water heating system; roof insulation; numerical simulation. 1. Introduction. Nowadays, residential buildings are consuming a signifi- cant percentage of energy for lighting, cooling of buildings and for home appliances. Also, the ever-growing popula- tion increases the ...

  16. Physical treatment of water from heater circuit by magnetic fields

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Culcer, Ioan; Stefanescu, Mariana; Iliescu, Gheorghe; Titescu, Gheorghe

    2001-01-01

    Magnetic scale control technologies can be used as a replacement for most water-softening equipment. Specifically, chemical softening, ion exchange and reverse osmosis, when used for control of hardness, could be replaced by magnetic water treatment technologies which use a magnetic field to alter the reaction between scale-forming ions in hard water. Hard water contains high levels of calcium, and other divalent cations. When subjected to heating, the divalent ions forms insoluble compounds with anions such as carbonate. These insoluble compounds have a much lower heat transfer capability than the metal. Because they are insulators, additional fuel consumption would be required to transfer on equivalent amount of energy. The general principle for the magnetic technology is a result of physical interaction between a magnetic field and a moving electric charge, in this case in the form of ions. When ions pass through the magnetic field, a force is exerted on each ion. The forces on ions of opposite charges are in opposite directions. The redirection of the particles tends to increase the frequency with which ions of opposite charge collide and combine to form a mineral precipitate, or insoluble compound. Since this reaction takes place in a low temperature region of a heat exchange system, the scale formed is non-adherent. The magnetic field can be realized with permanent magnets or electromagnets. There are two electromagnetic devices: invasive and non-invasive. Invasive devices have parts or the whole operating equipment within the flow field. This device requires the removal of a pipe section for insertion. Non-invasive devices are completely external to pipe, and thus can be installed while the pipe is in operation. We have under study a non-invasive electromagnetic device. In the paper it is largely presented. (authors)

  17. Physical treatment of water from heater circuit by magnetic fields

    International Nuclear Information System (INIS)

    Culcer, Mihai; Curuia, Marian; Stefanescu, Ioan; Iliescu, Mariana; Titescu, Gheorghe; Vitan, Eugen

    2002-01-01

    Magnetic scale control technologies can be used as a replacement for most water-softening equipment. Specifically, chemical softening, ion exchange and reverse osmosis, when used for control of hardness, could be replaced by magnetic water treatment technologies which use a magnetic field to alter the reaction between scale-forming ions in hard water. Hard water contains high levels of calcium, and other divalent cations. When subjected to heating, the divalent ions forms insoluble compounds with anions such as carbonate. These insoluble compounds have a much lower heat transfer capability than metal. Because they are insulators, additional fuel consumption would be required to transfer on equivalent amount of energy. The general principle for the magnetic technology is a result of physical interaction between a magnetic field and a moving electric charge, in this case in the form of ions. When ions pass through the magnetic field, a force is exerted on each ion. The forces on ions of opposite charges are in opposite directions. The redirection of the particles tends to increase the frequency with which ions of opposite charge collide and combine to form a mineral precipitate, or insoluble compound. Since this reaction takes place in a low temperature region of a heat exchange system, the scale formed is non-adherent. The magnetic field can be realized with permanent magnets or electromagnets. There are two electromagnetic devices: invasive and non-invasive. Invasive devices have parts or the whole operating equipment within the flow field. This device requires the removal of a pipe section for insertion. Non-invasive devices are completely external to pipe, and thus can be installed while the pipe is in operation. We have under study a non-invasive electromagnetic device. In the paper it is largely presented. (authors)

  18. Study Design And Realization Of Solar Water Heater

    International Nuclear Information System (INIS)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-01

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m 2 of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m 2 a year in the north and 2263 KWh/m 2 a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  19. Water heater temperature set point and water use patterns influence Legionella pneumophila and associated microorganisms at the tap.

    Science.gov (United States)

    Rhoads, William J; Ji, Pan; Pruden, Amy; Edwards, Marc A

    2015-12-01

    Lowering water heater temperature set points and using less drinking water are common approaches to conserving water and energy; yet, there are discrepancies in past literature regarding the effects of water heater temperature and water use patterns on the occurrence of opportunistic pathogens, in particular Legionella pneumophila. Our objective was to conduct a controlled, replicated pilot-scale investigation to address this knowledge gap using continuously recirculating water heaters to examine five water heater set points (39-58 °C) under three water use conditions. We hypothesized that L. pneumophila levels at the tap depend on the collective influence of water heater temperature, flow frequency, and the resident plumbing ecology. We confirmed temperature setting to be a critical factor in suppressing L. pneumophila growth both in continuously recirculating hot water lines and at distal taps. For example, at 51 °C, planktonic L. pneumophila in recirculating lines was reduced by a factor of 28.7 compared to 39 °C and was prevented from re-colonizing biofilm. However, L. pneumophila still persisted up to 58 °C, with evidence that it was growing under the conditions of this study. Further, exposure to 51 °C water in a low-use tap appeared to optimally select for L. pneumophila (e.g., 125 times greater numbers than in high-use taps). We subsequently explored relationships among L. pneumophila and other ecologically relevant microbes, noting that elevated temperature did not have a general disinfecting effect in terms of total bacterial numbers. We documented the relationship between L. pneumophila and Legionella spp., and noted several instances of correlations with Vermamoeba vermiformis, and generally found that there is a dynamic relationship with this amoeba host over the range of temperatures and water use frequencies examined. Our study provides a new window of understanding into the microbial ecology of potable hot water systems and helps to resolve

  20. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  1. Experimental investigation of a Hybrid Solar Drier and Water Heater System

    International Nuclear Information System (INIS)

    Mohajer, Alireza; Nematollahi, Omid; Joybari, Mahmood Mastani; Hashemi, Seyed Ahmad; Assari, Mohammad Reza

    2013-01-01

    Highlights: • A Hybrid Solar Drier and Water Heater System experimentally investigated. • Using collected data, GIS maps were plotted for solar energy of Khuzestan Province. • System is presented which facilitates a dual-purpose solar collector. • The system includes a 100 l water storage tank, a solar dryer with 5 trays. • Experiments were carried out to dry vegetables (parsley, dill and coriander). - Abstract: Drying process is of great importance in food industries. One of the best methods of food drying is using solar dryers. For initial estimation of solar energy, calculations were made for statistical information measured by Renewable Energy Organization of Iran. Using collected data, GIS maps were plotted for solar energy of Khuzestan Province, Iran. In this study, a new hybrid system is presented which facilitates a dual-purpose solar collector to simultaneously support a dryer system and provide consumptive hot water. The system includes a 100 l water storage tank, a solar dryer with 5 trays, and a dual-purpose collector. Experiments were carried out to dry a mixture of vegetables (parsley, dill and coriander) at constant air and water flow rates. Besides, an electrical heater has been used as an auxiliary source for heating. The results indicated that the system optimally dried the vegetables and simultaneously provided the consumptive hot water

  2. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    Energy Technology Data Exchange (ETDEWEB)

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could

  3. Scheduling of Domestic Water Heater Power Demand for Maximizing PV Self-Consumption Using Model Predictive Control

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Kosek, Anna Magdalena; Martinenas, Sergejus

    2013-01-01

    This paper presents a model predictive control (MPC) strategy for maximizing photo-voltaic (PV) selfconsumption in a household context exploiting the flexible demand of an electric water heater. The predictive controller uses a water heater model and forecast of the hot Water consumption in order...... to predict the future temperature of the water and it manages its state (on and off) according to the forecasted PV production, which are computed starting from forecast of the solar irradiance. Simulations for the proof of concept and for validating the proposed control strategy are proposed. Results...

  4. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  5. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Atlanta, GA (United States); Francisco, A. [Southface Energy Inst., Atlanta, GA (United States); Roberts, S. G. [Southface Energy Inst., Atlanta, GA (United States)

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas.

  6. Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters

    Science.gov (United States)

    Morrison, L.; Swisher, J.

    The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.

  7. Feedwater heater

    International Nuclear Information System (INIS)

    Murata, Shigeto; Minato, Akihiko; Yokomizo, Osamu; Masuhara, Yasuhiro.

    1991-01-01

    The present invention concerns a feedwater heater for a BWR type reactor. A cylinder is fit into the lower portion of a drain inlet pipe, to which drain water inflows from a turbine, and a disk is disposed to the lower end of the cylinder vertically to the axis of the cylinder, to constitute a drain water dispersing mechanism. Drain water inflown from the drain inlet pipe is fallen in the cylinder and collides against the disk. The collided drain water is splashed horizontally by its kinetic energy to reach the heat transfer pipe and conducts heat exchange. In this case, the drain water is converted into fine droplets by the collision against the disk and scattered in a wide range in the heater. As a result, sensible heat in the drain water can be transferred to feedwater effectively. Then, even the heat energy of the drain water can be utilized effectively for heat exchange, to improve the heat exchange efficiency. (I.N.)

  8. Evaluation method for two-phase flow and heat transfer in a feed-water heater

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Minato, Akihiko

    1993-01-01

    A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)

  9. The study of production performance of water heater manufacturing by using simulation method

    Science.gov (United States)

    Iqbal, M.; Bamatraf, OAA; Tadjuddin, M.

    2018-02-01

    In industrial companies, as demand increases, decision-making to increase production becomes difficult due to the complexity of the model systems. Companies are trying to find the optimum methods to tackle such problems so that resources are utilized and production is increased. One line system of a manufacturing company in Malaysia was considered in this research. The Company produces several types of water heater and each type went into many processes, which was divided into twenty six sections. Each section has several operations. The main type of the product was 10G water heater which is produced most compare to other types, hence it was taken under consideration to be studied in this research. It was difficult to find the critical section that could improve the productions of the company. This research paper employed Delmia Quest software, Distribution Analyser software and Design of Experiment (DOE software) to simulate one model system taken from the company to be studied and to find the critical section that will improve the production system. As a result, assembly of inner and outer tank section were found to be the bottleneck section. Adding one section to the bottleneck increases the production rate by four products a day. The buffer size is determined by the experiment was six items.

  10. Condensation heat transfer of a feed-water heater and improvement of its performance

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi

    1995-01-01

    In this study, a condensation heat transfer model, coupled with a three-dimensional two-phase flow analysis, was developed. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for the steam velocity effect. The model was verified by condensation heat transfer experiments. In the experiments, 112 horizontal, staggered tubes with an outer diameter of 16mm and length of 0.55m were used. The calculated over-all heat transfer coefficients agreed with the data within ±5% under the inlet quality conditions of 13-100%. Based on a three-dimensional two-phase flow analysis, an improved feed-water heater with support plates, which have flow holes between the upper and lower tube bundles, was designed. The total heat exchange capacity of the improved feed-water heater increased about 6%. (author)

  11. THERMODYNAMICAL ANALYSIS OF HIGH-PRESSURE FEED WATER HEATER IN STEAM PROPULSION SYSTEM DURING EXPLOITATION

    Directory of Open Access Journals (Sweden)

    Igor Poljak

    2017-01-01

    Full Text Available Nowadays diesel engines prevail as ship propulsion. However, steam propulsion is still primary drive for LNG carriers. In the presented paper high-pressure feed water heater was analyzed, as one of the essential components in LNG carrier steam propulsion system. Measurements of all operating parameters (fluid streams at the analyzed heat exchanger inlets and outlets were performed. Change of the operating parameters was measured at different steam system loads, not at full load as usual. Through these measurements was enabled the insight into the behaviour of the heat exchanger operating parameters during the whole exploitation. The numerical analysis was performed, based on the measured data. The changes in energy and exergy efficiency of the heat exchanger were analyzed. Energetic and exergetic power inputs and outputs were also calculated, which enabled an insight into the change of energetic and exergetic power losses of the heat exchanger at different steam system loads. Change in energetic and exergetic power losses and operating parameters, which have the strongest influence on the high-pressure feed water heater losses, were described. Analyzed heat exchanger was compared with similar heat exchangers in the base loaded conventional steam power plants. From the conducted analysis, it is concluded that the adjustment and control modes of these high-pressure heat exchangers are equal, regardless of whether they were mounted in the base loaded conventional steam power plants or marine steam systems, while their operating parameters and behaviour patterns differ greatly.

  12. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters.

    Science.gov (United States)

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc; Williams, Krista; Pruden, Amy; Iii, Joseph O Falkinham; Edwards, Marc

    2015-06-09

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0-15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32-37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0-1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  13. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters

    Directory of Open Access Journals (Sweden)

    Krista Williams

    2015-06-01

    Full Text Available Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs. Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs. The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89. Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points and over a limited TOC range (0–1000 µg/L, no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  14. Thermoelectric generator using water gas heater energy for battery charging

    OpenAIRE

    Vieira, J.A.B.; Mota, Alexandre Manuel

    2009-01-01

    “Copyright © [2009] IEEE. Reprinted from 18th IEEE International Conference on Control Applications, 2009. ISBN:978-1-4244-4601-8.This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to . By choosing to view ...

  15. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  16. Mutagenic/carcinogenic agents in indoor pollutants; the dinitropyrenes generated by kerosene heaters and fuel gas and liquefied petroleum gas burners.

    Science.gov (United States)

    Tokiwa, H; Nakagawa, R; Horikawa, K

    1985-07-01

    Incomplete combustion of kerosene heater, and fuel gas and liquefied petroleum gas-burner emissions produces indoor pollutants that may be carcinogenic. The incomplete-combustion products from each type of appliance were therefore collected by adsorption on about 3 g of XAD-2 resin, and were extracted with benzene-methanol as a solvent for determination and identification of mutagens in the Salmonella-microsome test system. Benzene-methanol extracts of the particulates generated by a heater and two burners showed extreme mutagenicity for strains TA97 and TA98 without S9 mix. Based on the results of analysis, a combination of high performance liquid chromatography (h.p.l.c.) and gas chromatography (GC), about 40-80% of the direct-acting mutagenicity in each crude extract showed the same h.p.l.c. and GC retention times as dinitropyrenes (1,3-, 1,6- and 1,8-isomers), and 1-nitropyrene. Moreover, other nitroarenes, 2-nitrofluorene, 1,5- and 1,8-dinitronaphthalene, and 4,4'-dinitrobiphenyl, were detectable in almost all samples, but their contribution to the mutagenicity of each extract was very low. Kerosene heaters were found to generate small amounts (0.2 ng/h) of dinitropyrenes, which are potential mutagens/carcinogens, only after 1 h of operation.

  17. Heat transfer in hybrid fibre reinforced concrete-steel composite column exposed to a gas-fired radiant heater

    Science.gov (United States)

    Štefan, R.; Procházka, J.; Novák, J.; Fládr, J.; Wald, F.; Kohoutková, A.; Scheinherrová, L.; Čáchová, M.

    2017-09-01

    In the paper, a gas-fired radiant heater system for testing of structural elements and materials at elevated temperatures is described. The applicability of the system is illustrated on an example of the heat transfer experiment on a hybrid fibre reinforced concrete-steel composite column specimen. The results obtained during the test are closely analysed by common data visualization techniques. The experiment is simulated by a mathematical model of heat transfer, assuming the material data of the concrete determined by in-house measurements. The measured and calculated data are compared and discussed.

  18. Preliminary results of heat retention in an integrated collector-storage solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Malawi Polytechnic, Blantyre 3 (Malawi). Dept. of Physics and Biochemical Sciences

    2004-07-01

    Integrated collector-storage solar water (ICSSW) heaters are generally more cost effective than systems with separate collector and storage units. However, ICS solar water heaters lose a substantial proportion of the captured heat during periods of low insolation or noncollection. In this study, an ICS solar water heater with two horizontal cylindrical tanks (made of galvanized steel, with a capacity of 61.8 litres each) was designed, constructed and tested. The two tanks were parallel to each other, and horizontally and vertically spaced out, with the lower tank fitted directly below a glass cover, and half of the upper tank insulated. In addition, a truncated stationary parabolic concentrator was fitted below the tanks, with its focal line along the axis of the upper tank. The system was installed outdoor (facing north) on top of a horizontal flat concrete roof at the Malawi Polytechnic (15 48' S, 35 02' E) in Malawi. It was tested with the two tanks aligned east-west, and in parallel (P) and series (S) connections. For the series-tank interconnection, the two tanks were connected with: a) one insulated hose pipe (12.7 mm diameter) from the top part of the lower tank to the bottom part of the upper tank (S1-tank interconnection) and b) two insulated hose pipes of which one pipe linked the bottom part of the lower tank to the bottom part of the upper tank while the other pipe linked the top part of the lower tank to the top part of the upper tank (S2-tank interconnection). The solar collection process was monitored from 06:00 to 17:00 hrs local time, and hot water was stored from 17:00 to 06:00 hrs the next day, without any draw-off for a sequence of 4 days. Meteorological measurements were taken during the day (06:00 to 17:00 hrs). Results show that the S2-tank interconnection yielded the most satisfactory results. In this connection configuration, the system stored 28.7 to 39.7 % of the collected thermal energy for use the next morning, comparable with

  19. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains the final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.

  20. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  1. In-situ tuff water migration/heater experiment: experimental plan

    International Nuclear Information System (INIS)

    Johnstone, J.K.

    1980-08-01

    Tuffs on the Nevada Test Site (NTS) are currently under investigation as a potential isolation medium for heat-producing nuclear wastes. The National Academy of Sciences has concurred in our identification of the potentially large water content (less than or equal to 40 vol %) of tuffs as one of the important issues affecting their suitability for a repository. This Experimental Plan describes an in-situ experiment intended as an initial assessment of water generation/migration in response to a thermal input. The experiment will be conducted in the Grouse Canyon Welded Tuff in Tunnel U12g (G-Tunnel) located in the north-central region of the NTS. While the Grouse Canyon Welded Tuff is not a potential repository medium, it has physical, thermal, and mechanical properties very similar to those tuffs currently under consideration and is accessible at depth (400 m below the surface) in an existing facility. Other goals of the experiment are to support computer-code and instrumentation development, and to measure in-situ thermal properties. The experimental array consists of a central electrical heater, 1.2 m long x 10.2 cm diameter, surrounded by three holes for measuring water-migration behavior, two holes for measuring temperature profiles, one hole for measuring thermally induced stress in the rock, and one hole perpendicular to the heater to measure displacement with a laser. This Experimental Plan describes the experimental objectives, the technical issues, the site, the experimental array, thermal and thermomechanical modeling results, the instrumentation, the data-acquisition system, posttest characterization, and the organizational details

  2. Local market of solar water heaters in Taiwan. Review and perspectives

    International Nuclear Information System (INIS)

    Chang, K.C.; Lee, T.S.; Chung, K.M.; Lin, W.M.

    2009-01-01

    For promotion of solar water heaters in Taiwan, incentive programs were first initiated from 1986 to 1991 and re-initiated from 2000 to the present. The subsidies create an economic incentive for the end users and have been rather instrumental at the initial stage of each program but lost their significance thereafter. To analyze the behavior of the major actors in the local market, two questionnaires were developed. One was addressed to sales and distribution agents while the other one consisted of person-to-person interviews with household owners. The market-driven mechanism is a multi-parametric phenomenon. Other than the capital cost and energy price (cost to benefit), architectural type of buildings (or degree of urbanization) and household composition play the major roles in market diffusion. (author)

  3. Persistent contamination of heater-cooler units for extracorporeal circulation cured by chlorhexidine-alcohol in water tanks.

    Science.gov (United States)

    Romano-Bertrand, S; Evrevin, M; Dupont, C; Frapier, J-M; Sinquet, J-C; Bousquet, E; Albat, B; Jumas-Bilak, E

    2018-01-11

    Recently, surgical site infections due to non-tuberculous mycobacteria (NTM) have been linked to heater-cooler unit contamination. The European Centre for Disease Prevention and Control and manufacturers now recommend the use of hydrogen peroxide in filtered water to fill heater-cooler unit tanks. After implementation of these measures in our hospital, heater-cooler units became heavily contaminated by opportunistic waterborne pathogens such as Pseudomonas aeruginosa and Stenotrophomonas maltophilia. No NTM were detected but fast-growing resistant bacteria could impair their detection. The efficiency of hydrogen peroxide and chlorhexidine-alcohol was compared in situ. Chlorhexidine-alcohol treatment stopped waterborne pathogen contamination and NTM were not cultured whereas their detection efficiency was probably improved. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Experimental validation of dynamic simulation of the flat plate collector in a closed thermosyphon solar water heater

    DEFF Research Database (Denmark)

    Taherian, H.; Kolaei, Alireza Rezania; Sadeghi, S.

    2011-01-01

    This work studies the dynamic simulation of thermosyphon solar water heater collector considering the weather conditions of a city in north of Iran. The simulation was done for clear and partly cloudy days. The useful energy, the efficiency diagrams, the inlet and the outlet of collector, center...

  5. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM)

    International Nuclear Information System (INIS)

    Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • We study the effect of phase change materials integration on the thermal performances of an ICSSWH. • Two kinds and tree radiuses of the PCM layer are studied and the most appropriate design is presented. • The use of phase change materials in ICSSWH is determined to reduce the night thermal losses. • Myristic acid is the most appropriate PCM for this application regarding the daily and night operation. - Abstract: In this paper, we propose a numerical study of an integrated collector storage solar water heater (ICSSWH). Two numerical models in three-dimensional modeling are developed. The first one which describes a sensible heat storage unit (SHSU), allowing validating the numerical model. Based on the good agreement between numerical results and experimental data from literature, and as this type of solar water heater presents the disadvantage of its high night losses, we propose to integrate a phase change material (PCM) directly in the collector and to study its effect on the ICSSWH thermal performance. Indeed, a second 3D CFD model is developed and series of numerical simulations are conducted for two kind (myristic acid and RT42-graphite) and three radiuses (R = 0.2 m, R = 0.25 m and R = 0.3 m) of this PCM layer. Numerical results show that during the day-time, the latent heat storage unit (LHSU) performs better than the sensible one when myristic acid is used as PCM. Regarding the night operating of this solar system, it is found that the LHSU is more effective for both PCMs as it allows lower thermal losses and better heat preservation

  6. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost

  7. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vishaldeep [ORNL; Shen, Bo [ORNL; Keinath, Chris [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City; Geoghegan, Patrick J [ORNL

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in colder climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.

  8. Second-law analysis of a two-phase self-pumping solar water heater

    International Nuclear Information System (INIS)

    Walker, H.A.; Davidson, J.H.

    1992-01-01

    In this paper entropy generated by operation of a two-phase self-pumping solar water heater under Solar Rating and Certification Corporation rating conditions is computed numerically in a methodology based on an exergy cascade. An order of magnitude analysis shows that entropy generation is dominated by heat transfer across temperature differences. Conversion of radiant solar energy incident on the collector to thermal energy within the collector accounts for 87.1 percent of total entropy generation. Thermal losses are responsible for 9.9 percent of total entropy generation, and heat transfer across the condenser accounts for 2.4 percent of the total entropy generation. Mixing in the tempering valve is responsible for 0.7 percent of the total entropy generation. Approximately one half of the entropy generated by thermal losses is attributable to the self-pumping process. The procedure to determine total entropy generation can be used in a parametric study to evaluate the performance of two-phase hot water heating systems relative to other solar water heating options

  9. Self-construction of a solar water heater; Calentador solar de agua de auto-construccion

    Energy Technology Data Exchange (ETDEWEB)

    Lentz Herrera, Alvaro E.; Rincon Mejia, Eduardo A. [Universidad Autonoma de la Ciudad de Mexico, Mexico, D.F. (Mexico)

    2009-07-01

    In this work a flat receiver of self construction is shown with relatively low cost and easy manufacture, but with a thermal efficiency superior to 40% for applications at temperatures less than 60 degrees Celsius, that allows satisfying international standards in this respect. The heater has been matter of study in open courses distributed in the Universidad Autonoma de la Ciudad de Mexico (UACM) oriented to that the participants construct their own system, in addition to its installation and tests. The obtained results have been excellent. The massive use of efficient solar receivers of self-construction can truly help to the decreasing of the gas discharges of greenhouse effect. [Spanish] En este trabajo se presenta un captador plano de auto construccion con relativamente bajo costo y facil manufactura, pero con un rendimiento termico superior a 40% para aplicaciones a temperatura menos de 60 grados centigrados que le permite satisfacer estandares internacionales a este respecto. El calentador ha sido materia de estudio en cursos abiertos impartidos en la Universidad Autonoma de la Ciudad de Mexico (UACM) orientados a que los participantes construyan su propio sistema, ademas de su instalacion y pruebas. Los resultados obtenidos han sido excelentes. El uso masivo de captadores solares eficientes de autoconstruccion puede en verdad coadyuvar a la disminucion de las emisiones de gases de efecto invernadero.

  10. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  11. Dimensioning of a solar water heater made from PET bottles; Dimensionamento de um aquecedor solar de agua feito com garrafas PET

    Energy Technology Data Exchange (ETDEWEB)

    Bertoleti, Pedro Henrique Fonseca; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis

    2008-07-01

    This document show the solar water heater made of PET bottles, a simple-construction solar water heater that try to give us two important solutions, water heating using solar energy and reutilization of the PET bottles left in the nature. Also, it will be showed how to do the dimensioning of it. Based on the showed dimensioning a application / software is developed and after that simulations are made using the application to provide how is the economy if it's used this kind of solar water heater and their environmental contribution by reutilization of the PET bottles abandoned in the nature. For example, in a common home the economy is about 45% of the electricity bill considering that the warmed water is used just to take a shower. So, the conclusion is: the solar water heater made by PET bottles is a very relevant equipment to the use of the solar energy, to useful applications and environmental contribution. (author)

  12. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  13. A parametric study on a humidification–dehumidification (HDH) desalination unit powered by solar air and water heaters

    International Nuclear Information System (INIS)

    Yıldırım, Cihan; Solmuş, İsmail

    2014-01-01

    Highlights: • A time dependent humidification–dehumidification desalination process is investigated. • Fourth-order Runge–Kutta method is used to simulate the problem. • Daily and annual performance are examined. • Various operational parameters are investigated. - Abstract: The performance of a solar powered humidification–dehumidification desalination system is theoretically investigated for various operating and design parameters of the system under climatological conditions of Antalya, Turkey. The primary components of the system are a flat plate solar water heater, a flat plate double pass solar air heater, a humidifier, a dehumidifier and a storage tank. The mathematical model of the system is developed and governing conservation equations are numerically solved by using the Fourth order Runge–Kutta method. Daily and annual yields are calculated for different configurations of the system such as only water heating, only air heating and water–air heating

  14. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Upper Marlboro, MD (United States); Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  15. Development of Low-Cost Solar Water Heater Using Recycled Solid Waste for Domestic Hot Water Supply

    Directory of Open Access Journals (Sweden)

    Talib Din Abdul

    2018-01-01

    Full Text Available This research is focused on the development of a low-cost solar water heater (SWH system by utilizing solid waste material as part of system elements. Available technologies of the solar water heater systems, heat collectors and its components were reviewed and the best system combinations for low cost design were chosen. The passive-thermosiphon system have been chosen due to its simplicity and independency on external power as well as conventional pump. For the heat collector, flat plate type was identified as the most suitable collector for low cost design and suits with Malaysia climate. Detail study on the flat plate collector components found that the heat absorber is the main component that can significantly reduce the solar collector price if it is replaced with recycled solid waste material. Review on common solid wastes concluded that crushed glass is a non-metal material that has potential to either enhance or become the main heat absorber in solar collector. A collector prototype were then designed and fabricated based on crashed glass heat collector media. Thermal performance test were conducted for three configurations where configuration A (black painted aluminum absorber used as benchmark, configuration B (crushed glass added partially that use glass for improvement, and lastly configuration C (black colored crushed glass that use colored glass as main absorber. Result for configuration B have shown a negative effect where the maximum collector efficiency is 26.8% lower than configuration A. Nevertheless, configuration C which use black crushed glass as main heat absorber shown a comparable maximum efficiency which is at 82.5% of the maximum efficiency for configuration A and furthermore have shown quite impressive increment of efficiency at the end of the experiment. Hence, black colored crushed glass is said to have quite a good potential as the heat absorber material and therefore turn out to be a new contender to other non

  16. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.

    Science.gov (United States)

    Ghosh, Abhijit; Johnson, Jacob E; Nuss, Johnathan G; Stark, Brittany A; Hawkins, Aaron R; Tolley, Luke T; Iverson, Brian D; Tolley, H Dennis; Lee, Milton L

    2017-09-29

    Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375°C and routine operation up to 300°C. The compression clamp was constructed of a low expansion alloy, Kovar™, to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9m long microcolumn with rectangular cross section of 158μm×80μm, which approximately matches a 100μm i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed GC (TPGC) and thermal

  17. Building America Case Study: Indoor Heat Pump Water Heaters During Summer in a Hot-Dry Climate, Redding, California

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-15

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water heating savings by 5-9%. Given the project schedule for 2014 completion, no heating season impacts were able to be monitored. May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water heating savings by 5-9%. Given the project schedule for 2014 completion, no heating season impacts were able to be monitored.

  18. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization

    International Nuclear Information System (INIS)

    Gheith, R.; Hachem, H.; Aloui, F.; Ben Nasrallah, S.

    2015-01-01

    Highlights: • A Stirling engine was investigated to optimize its operation and its performance. • The porous medium present the highest amount of heat exchanged in a Stirling engine. • The heater characteristics are determinant points to enhance the thermal exchange in Stirling engine. • All operation parameters influence the heater performances. • Thermal and exergy heater efficiencies are sensible to temperature and pressure. - Abstract: The aim of this work is to optimize γ Stirling engine performances with a special care given to the heater. This latter consists of 20 tubes in order to increase the exchange area between the working gas and the hot source. Different parameters were chosen to evaluate numerically and experimentally the heater. The selected four independent parameters are: heating temperature (300–500 °C), initial filling pressure (3–8 bar), cooling water flow rate (0.2–3 l/min) and frequency (2–7 Hz). The amount of energy exchanged in the heater is significantly influenced by the frequency and heating temperature but it is slightly enhanced with the increase in the cooling water flow rate. The thermal and the exergy efficiencies of the heater are very sensible to the temperature and pressure variations.

  19. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  20. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  1. Designing a Methodology for Optimisation of Heater Treater

    OpenAIRE

    Chadha, Deepankar; Chaudhary, Pulkit

    2016-01-01

    Emulsions refer to mixture of two or more immiscible liquids. For an emulsion to form the components should be immiscible with each other. Various equipments are available in the oil and gas industry. Heater treaters are predominantly used in the oil industry. Heater treater, as the name implies, heat the feed to break the emulsion. There are two types of heater treaters i.e. horizontal heater treaters and vertical heater treaters. Vertical heater treaters are used when the flow is coming fro...

  2. Heater assembly

    International Nuclear Information System (INIS)

    Lee, K.; Ueng, Tzoushin.

    1991-01-01

    An electrical resistance heater, installed in the H1 borehole, is used to thermally perturb the rock mass through a controlled heating and cooling cycle. Heater power levels are controlled by a Variac power transformer and are measured by wattmeters. Temperatures are measured by thermocouples on the borehole wall and on the heater assembly. Power and temperature values are recorded by the DAS described in Chapter 12. The heater assembly consists of a 3.55-m (11.6-ft) long by 20.3-cm (8-in.) O.D., Type 304 stainless steel pipe, containing a tubular hairpin heating element. The element has a heated length of 3 m (9.84 ft). The power rating of the element is 10 kW; however, we plan to operate the unit at a maximum power of only 3 kW. The heater is positioned with its midpoint directly below the axis of the P2 borehole, as shown in the borehole configuration diagram. This heater midpoint position corresponds to a distance of approximately 8.5 m (27.9 ft) from the H1 borehole collar. A schematic of the heater assembly in the borehole is shown. The distance from the borehole collar to the closest point on the assembly (the front end) is 6.5 m (21.3 ft). A high-temperature inflatable packer, used to seal the borehole for moisture collection, is positioned 50 cm (19.7 in.) ahead of the heater front end. The heater is supported and centralized within the borehole by two skids, fabricated from 25-mm (1-in.) O.D. stainless steel pipe. Thermocouples are installed at a number of locations in the H1 borehole. Four thermocouples that are attached to the heater skin monitor temperatures on the outer surface of the can, while three thermocouples that are held in place by rock sections monitor borehole wall temperatures beneath the heater. Temperatures are also monitored at the heater terminal and on the packer hardware

  3. Gas in your water well

    International Nuclear Information System (INIS)

    2011-03-01

    In Alberta, the presence of carbon dioxide, methane or hydrogen sulphide in water wells is common. The aim of this paper is to provide information to private owners of water wells. It is stated in this document that spurting taps or a gurgling noise indicate that there is gas in your water well; you can determine which gas it is by collecting a sample and having it analyzed. In order to address the risks associated with the presence of gas in the water well, the well pit or well pump should be properly vented to avoid any oxygen deficiency in the atmosphere. It is also possible to get rid of the gas by lowering the pump intake. It is also mentioned that the development of coalbed methane in Alberta should not contaminate private wells since regulations aimed at avoiding this have been implemented. This paper provided useful information to help private owners manage the presence of gas in their water wells.

  4. COMBINED UNCOVERED SHEET-AND-TUBE PVT-COLLECTOR SYSTEM WITH BUILT-IN STORAGE WATER HEATER

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2012-02-01

    Full Text Available This work describes the design and investigation of a simple combined uncovered sheet-and-tube photo-voltaic-thermal (PVT collector system. The PVT-collector system consists of a support, standard PV module (1.22x0.305m, area=0.37m2, fill factor=0.75, sheet-and-tube water collector and storage tank-heater. The collector was fixed under PV module. Inclination angle of the PVT-collector to the horizontal plane was 45 degree. The storage tank-heater played double role i.e. for storage of hot water and for water heating. The PVT-collector system could work in the fixed and tracking modes of operation. During investigations of PVT-collector in natural conditions, solar irradiance, voltage and current of PV module, ambient temperature and water temperature in storage tank were measured. Average thermal and electrical powers of the PVT-collector system at the tracking mode of operation observed were 39W and 21W, with efficiencies of 15% and 8% respectively at the input power of 260W. The maximum temperature of the water obtained was 42oC. The system was observed efficient for low-temperature applications. The PVT-collector system may be used as a prototype for design of PVT-collector system for domestic application, teaching aid and for demonstration purposes.

  5. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  6. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  7. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  8. The potential and reality of the solar water heater programme in South African townships: Lessons from the City of Tshwane

    International Nuclear Information System (INIS)

    Curry, Claire; Cherni, Judith A.; Mapako, Maxwell

    2017-01-01

    The South African solar water heater (SWH) programme is part of national policy to improve the country's electricity security, an innovative strategy to provide indigent households with free solar water heaters. The study assesses the effects of the government programme for poor townships on reduction of household electricity consumption, decline in energy poverty, and reduction in CO2 emissions; and estimates the impact of SWH on reducing electricity demand nationwide. It reports results from fieldwork carried out in the City of Tshwane to measure both quantitatively and qualitatively the success of the project's deployment in townships. Although households register average savings of 27% on their monthly electricity bills and off-peak electricity demand has reduced significantly in the area, a variety of problems prevented the project from attaining the desired level of impact. Difficulties encountered include technical faults with the heaters combined with nonavailability of maintenance; a rise in water consumption; lack of community engagement leading to apathy; and dearth of owner training leading to underuse. The gap between inflated estimates and real savings is discussed. Expanding the programme could generate jobs but significant challenges remain. - Highlights: • The government's aim of saving electricity and reducing utility bills partly achieved. • Savings of electricity are estimated at about 25% less than the potential saving. • Wrong assumption that peak time is only 1 h produced savings 5 times larger. • ESKOM & government overlooked providing Information on the SWH to the householders. • No maintenance led to abandonment by many or water leaking increasing utility bills.

  9. Heater head for stirling engine

    Science.gov (United States)

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  10. Commercial Integrated Heat Pump with Thermal Storage --Demonstrate Greater than 50% Average Annual Energy Savings, Compared with Baseline Heat Pump and Water Heater (Go/No-Go) FY16 4th Quarter Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    For this study, we authored a new air source integrated heat pump (AS-IHP) model in EnergyPlus, and conducted building energy simulations to demonstrate greater than 50% average energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, based on the EnergyPlus quick-service restaurant template building. We also assessed water heating energy saving potentials using ASIHP versus gas heating, and pointed out climate zones where AS-IHPs are promising.

  11. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    Science.gov (United States)

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  12. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  13. On a Green Municipal Initiative in Cape Town (South Africa): Lessons from the Solar Water Heater Advanced Program

    International Nuclear Information System (INIS)

    Dubresson, Alain

    2013-01-01

    During the 2000's, the metropolitan municipality of Cape Town elaborated an ambitious energy transition strategy, backed up by the Energy and Climate Action Plan approved in 2010. One element of this plan is a mass solar water heater roll-out programme for households. Analysing the difficulties in the implementation of this programme, this article argues that the main limits to metropolitan action do not result primarily from local and/or multi-level governance issues but from national constraints and stakes which are deeply rooted in the political economy of South Africa. Any attempt to build an autonomous metropolitan energy policy is therefore today illusory in South Africa

  14. PERFORMANCE DETERIORATION OF THERMOSIPHON SOLAR FLAT PLATE WATER HEATER DUE TO SCALING

    Directory of Open Access Journals (Sweden)

    arunachala umesh chandavar

    2011-12-01

    Full Text Available 0 0 1 340 1943 International Islamic University 16 4 2279 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} The performance of Flat plate Solar Water Heater deteriorates within five to twelve years of their installation due to factors related to manufacturing, operating conditions, lack of maintenance etc. Especially, problem due to scaling is significant as it is based on quality of water used. The remaining factors are system dependent and could be overcome by quality production. Software is developed by incorporating Hottel Whillier Bliss (H-W-B equation to ascertain the effect of scaling on system efficiency in case of thermosiphon system. In case of clean thermosiphon system, the instantaneous efficiency calculated at 1000 W/m2 radiation is 72 % and it drops to 46 % for 3.7 mm scale thickness. The mass flow rate is reduced by 90 % for 3.7 mm scale thickness. Whereas, the average temperature drop of water in the tank is not critical due to considerable heat content in water under severe scaled condition.  But practically in case of major scale growth, some of the risers are likely to get blocked completely which leads to negligible temperature rise in the tank. ABSTRAK: Prestasi plat rata pemanas air suria merosot selepas lima hingga dua belas tahun  pemasangannya disebabkan faktor-faktor yang berkaitan dengan pembuatannya, cara kendaliannya, kurangnya penyelenggaraan dan sebagainya.  Terutama sekali, masalah disebabkan scaling (tembunan endapan mineral perlu diambil berat kerana ianya bergantung kepada kualiti air yang digunakan. Faktor-faktor selebihya bersandarkan sistem dan ia

  15. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  16. China's transition to green energy systems: The economics of home solar water heaters and their popularization in Dezhou city

    International Nuclear Information System (INIS)

    Li Wei; Song Guojun; Beresford, Melanie; Ma, Ben

    2011-01-01

    Studying the popularization of solar water heaters (SWHs) is significant for understanding China's transition to green energy systems. Using Dezhou as a case study, this paper presents new angles on analyzing SWH deployment in China by addressing both the economic potential and the institutional dimensions at the local level. Using estimates from the demand-side of hot water for a typical three-person household in Dezhou, the paper evaluates the economic potential of a SWH in saving electricity and reducing carbon dioxide emissions. Then, expanding the analysis beyond economics, we take an institutionalist approach to study the institutional factors that contribute to Dezhou's success in SWH adoptions. By examining the five main actors in Dezhou's energy regime, we find that Dezhou's SWH deployment is driven by an urge to develop businesses and the local economy, and its success results from at least five unique factors, including the development of SWH industrial clusters in Dezhou, big manufacturers' market leadership in SWH innovations, a tight private enterprise-local government relation, geographic location within the SWH industrial belt, and the adaptive attitude of Dezhou's households towards natural resource scarcity. - Highlights: → We study the popularization of solar water heaters in Dezhou, China. → We study the institutional factors that contribute to Dezhou's success. → Five main actors in Dezhou's energy regime are examined. → Dezhou's success results from at least five unique factors. → This leads to important directions for improving China'ss green innovation adoption.

  17. Experimental study on depth of paraffin wax over floating absorber plate in built-in storage solar water heater

    Directory of Open Access Journals (Sweden)

    R Sivakumar

    2015-11-01

    Full Text Available The aim of this article is to study the effect of depth of phase change material over the absorber surface of an integrated collector-storage type flat plate solar water heater. Flat plate solar water heaters are extensively used all over the world to utilize the natural source of solar energy. In order to utilize the solar energy during off-sunshine hours, it is inevitable to store and retain solar thermal energy as long as possible. Here, phase change material is not used for heat storage, but to minimize losses during day and night time only. The depth of phase change material over a fixed depth of water in a solar thermal collector is an important geometric parameter that influences the maximum temperature rise during peak solar irradiation and hence the losses. From the results of the studies for different masses of paraffin wax phase change material layers, the optimum depth corresponding to the maximum heat gain till evening is found to be 2 mm, and the heat retention till the next day morning is found to be 4 mm.

  18. Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant

    Science.gov (United States)

    Chucherd, Panom; Kittisupakorn, Paisan

    2017-08-01

    This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.

  19. A novel micropreconcentrator employing a laminar flow patterned heater for micro gas chromatography

    Science.gov (United States)

    Tian, W.-C.; Wu, T. H.; Lu, C.-J.; Chen, W. R.; Sheen, H. J.

    2012-06-01

    A simple micromachined process based on one photomask is developed for a novel micropreconcentrator (µPCT) used in a micro gas chromatograph (µGC). Unique thick silver heating microstructures with a high surface area for microheater of µPCT are fabricated by combining the microfluidic laminar flow technique and the Tollens’ reaction within a microchannel. Silver deposition using this laminar flow patterning technique provides a higher deposition rate and easier microfabrication compared to conventional micromachined technologies for thick metal microstructures (>200 µm). An amorphous and porous carbon film that functions as an adsorbent is grown on microheaters inside the microchannel. The µPCT can be heated to >300 °C rapidly by applying a constant electrical power of ˜1 W with a heating rate of 10 °C s-1. Four volatile organic compounds, acetone, benzene, toluene and xylene, are collected through the proposed novel µPCTs and separated successfully using a 17 m long gas chromatography column. The peak widths at half height (PWHHs) of the four compounds are relatively narrow (38 000 for benzene and toluene.

  20. Water recovery from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Heijboer, R.; Van Deelen-Bremer, M.H.; de Vos, F.; Zeijseink, A.G.L. [KEMA Nederland B.V. (Netherlands)

    2007-07-01

    In the power generation process a large amount of water is needed, for steam generation, flue gas cleaning etc. On the other hand a large amount of water is emitted to the atmosphere via the stack. For example a 400 MW coal fired power plant with a flue gas desulfurisation plant emits about 1,500,000 m{sup 3} per hour with a water concentration of about 11%. The emitted water has a rather good quality compared to surface water and needs less effort to be treated for use as make-up water. As the available amount of water in the flue gas from the earlier mentioned power plant is about 150 tons per hour, recovering 20% of this amount covers the make-up water needs of this 400 MW power plant. Direct condensation of the flue gas needs large cooling power and the condensed water is acidic and corrosive and needs cleanup treatment before it can be used in the water/steam cycle. KEMA developed a technology based on gas separation membranes which makes it possible to recover water from flue gas. The process is covered by a wide patent. The principle of the membrane is comparable to the material that is used in fabric like SympaTex{reg_sign} and GORE-TEX{reg_sign}. The GORE-TEX material is permeable to water vapor but rejects liquid water. The driving force is the water vapor pressure close to the human skin which is the higher than the water vapor pressure open the outside of the clothing. The selectivity of the GORE-TEX material however is not good enough to be used at the temperature of flue gas. The University of Twente (Netherlands) developed a membrane material based on modified PEEK which is highly selective of water vapor at flue gas temperatures. Based on the fact that flat membranes have an uneconomical surface to volume ratio, the choice has been made to use hollow fibre membranes. 6 figs.

  1. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  2. Experimental study of temperature stratification in an integrated collector-storage solar water heater with two horizontal tanks

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Mgawi, R. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Taulo, J. [Malawi Industrial Research and Technology Development Centre, P.O. Box 357, Blantyre (Malawi)

    2006-08-15

    The effect of tank-interconnection geometry on temperature stratification in an integrated collector-storage solar water (ICSSW) heater with two horizontal cylindrical tanks has been studied. The tanks were parallel to each other, and separated horizontally and vertically, with the lower tank fitted directly below a glass cover, and half of the upper tank insulated. In addition, a truncated parabolic concentrator was fitted below the tanks, with its focal line along the axis of the upper tank. The heater was tested outdoors with the two tanks connected in parallel (P), and S1- and S2-series configurations, with and without hot water draw-off. Water temperature was monitored during solar collection and hot water draw-offs. For the heat charging process, it was found that only the lower tank exhibited temperature stratification in the P- and S1-tank modes of operation. There was satisfactory temperature stratification in both tanks in the S2-tank configuration. For the hot water draining process, the P-tank configuration exhibited some degree of stratification in both tanks. A significant loss of stratification was observed in the lower tank, with the upper tank exhibiting practical stratification, when the system was operated in the S1-tank mode. The S2-tank interconnection maintained a satisfactory degree of temperature stratification in both tanks. So, the S2-tank mode of operation was most effective in promoting practical temperature stratification in both tanks during solar collection and hot water draw-offs. Other results are presented and discussed in this paper. (author)

  3. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  4. Experimental study on the performance of a multi-functional domestic air conditioner with integrated water heater

    International Nuclear Information System (INIS)

    Dong, Jiankai; Li, Hui; Yao, Yang; Jiang, Yiqiang; Zhang, Xinran

    2017-01-01

    Highlights: • A novel MDACWH was presented and experimentally studied. • MDACWH has high performance on making domestic hot water and air conditioning. • The time for heating water reduced to 22.0 min after modification. • Average COP reached 4.32, which was 1.58 times higher than the unmodified unit. - Abstract: The recovery of condenser heat is concerned one of the most effective methods to curb energy consumption in residential dwellings. Aiming at recovering the condenser heat of domestic air conditioner, this paper experimentally studied a multi-functional domestic air conditioner with integrated water heater (MDACWH) which can effectively provide space – cooling and domestic hot water simultaneously. The dynamic operation characteristics, such as hot water supply and energy efficiency were tested to verify the availability of the MDACWH. The results showed that the MDACWH can effectively heat the domestic hot water without losing its cooling capacity. It was also found that with the use of MDACWH, the coefficient of comprehensive energy performance of the MDACWH was about 1.58 times higher than that of the unmodified experimental unit. Furthermore, the water-heating time was shorten remarkably from 128.5 min to 22.0 min. The novel domestic air conditioner, compared with the unmodified initial prototype, can be more practical and provide significant energy savings in space-cooling and hot water supply.

  5. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  6. An Investigation of Aircraft Heaters. 11 - Measured and Predicted Performance of a Slotted-Fin Exhaust Gas and Air Heat Exchanger

    Science.gov (United States)

    1943-04-01

    the heater. “.This result was br~ught abGut b~tli”by docreasin~~the not .cr~ss-secti~nnl arom of fl~w nnd by forcinp tho gas ta flow through the...exhaust gaa is-cooled. The laet term in . equation (11) is negative for the case of a fluld being cooled and ig les ~ negative at high fluld rates, for...transferi T! le use of:~he team , tral cord, ‘hcwevoz, forced the exhaust gee to flow. alorig the slotted fins and, together with the inprease in

  7. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  8. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkanshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Resources Co. Ltd., Shizuoka (Japan)

    1996-10-27

    For the purpose of satisfying demands for qualitative improvement on tapwater temperature and pressure, an indirect-type solar water heater using solar cells, in which a closed type hot water storage tank connected directly to the water supply is integrated with a solar collector, was examined for its characteristics and performance. The heat collecting medium is a water solution of polypropylene glycol, which circulates through the solar collector pump, cistern, solar collector, and heat exchanger (hot water storage tank). The results of the test are summarized below. When comparison is made between the two solar collector pump control methods, the solar cells direct connection method and the differential thermo method utilizing temperature difference between the solar collector and the hot water storage tank, they are alike in collecting heat on clear days, but on cloudy days the latter collects 5% more than the former. In winter, when the heat exchanger heat transfer area is 0.4m{sup 2} large, a further increase in the area improves but a little the heat collecting efficiency. An increase in the medium flow rate and temperature, or in the Reynolds number, enhances the heat collecting efficiency. 13 figs., 6 tabs.

  9. HOME ENERGY SUPPLY-DEMAND ANALYSIS FOR COMBINED SYSTEM OF SOLAR HEAT COLLECTOR AND HEAT PUMP WATER HEATER

    Science.gov (United States)

    Ikegami, Takashi; Kataoka, Kazuto; Iwafune, Yumiko; Ogimoto, Kazuhiko

    In order to evaluate effectiveness of a combined system of solar heat collecctor (SHC) and heat pump water heater (HPWH), optimum operation scheduling moldel of domestic electric appliances using the mixed integer linear programming was enhanced. Applying this model with one house data in Tokyo, it was found that the combined system of the SHC and the HPWH has the enough energy-saving and CO2 emission reduction potential under the existing electricity late and the operation method of the HPWH. Furthermore, the calculation results under the future system show that the combined system of the SHC and the HPWH has also the reduction effect of reverse power flow from residential photovoltaic system.

  10. Application of CAE-modeling for the study of the influence of the sensor location on the flow-through water heater operation

    Science.gov (United States)

    Yakunin, A. G.

    2018-01-01

    The article deals with issues related to increasing the efficiency of the system of automatic maintenance of the temperature of liquid media entering the pipes to the place of consumption. For this purpose, a flowing water heater model is proposed, made in the SolidWorks environment, the construction parameters of which can be changed using the appropriate macro and screen form. It is shown that the choice of the location of the temperature sensor has a significant effect on such parameters of the device as the accuracy of maintaining a given temperature regime and the duration of the transient process caused by a change in the temperature of the liquid entering the heater. On a concrete example, it is shown that by changing the distance between the sensor and the heating module, it is possible to achieve minimum temperature fluctuations of the heat-transfer-agent at the heater outlet.

  11. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  12. Regenerative air heater

    Science.gov (United States)

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  13. Detailed Theoretical Characterization of a Transcritical CO2 Direct Expansion Ground Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Parham Eslami-Nejad

    2018-02-01

    Full Text Available A new avenue in modern heat pump technology is related to the use of natural refrigerants such as carbon dioxide (CO2. The use of CO2 in direct expansion ground source heat pumps (DX-GSHP has also gained significant interest as it offers opportunities for cost reduction of the ground loop, albeit some challenges remain in their development, design and use. To address these challenges and to characterize CO2-DX-GSHP performance for water heating applications, a detailed theoretical model and a fully-instrumented test apparatus was developed and built at CanmetENERGY Research Laboratory. The theoretical model was validated against a set of experimental results and adopted to investigate the performance of the system over a wide operating range. Validation results showed that the model predicts the experimental results within the measurement uncertainty. A detailed system performance analysis was also performed using the theoretical model to understand the system behavior and explore the actions required for performance improvement in future installations. The results of the analysis showed that improper design and control of some components, such as the gas cooler and ground heat exchanger can degrade the system performance by up to 25%, and the heat pump heating capacity by 7.5%.

  14. Cylindrical solar heater for low cost housing

    Energy Technology Data Exchange (ETDEWEB)

    Nahar, N.M.; Malhotra, K.S.

    1981-07-01

    A circular cylindrical type solar water heater has been designed, developed and tested. This heater can supply 50 litres of hot water at 50/sup 0/C in winter afternoon when tap water is 15/sup 0/C. The cost of manufacturing is only Rs. 150. It can be fabricated by any village carpenter blacksmith.

  15. Thermodynamic Analysis of a Steam Power Plant with Double Reheat and Feed Water Heaters

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-03-01

    Full Text Available A steam cycle with double reheat and turbine extraction is presented. Six heaters are used, three of them at high pressure and the other three at low pressure with deaerator. The first and second law analysis for the cycle and optimization of the thermal and exergy efficiencies are investigated. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. The exergy and irreversibility analyses of each component of the cycle are determined. Effects of turbine inlet pressure, boiler exit steam temperature, and condenser pressure on the first and second laws' efficiencies are investigated. Also the best turbine extraction pressure on the first law efficiency is obtained. The results show that the biggest exergy loss occurs in the boiler followed by the turbine. The results also show that the overall thermal efficiency and the second law efficiency decrease as the condenser pressure increases for any fixed outlet boiler temperature, however, they increase as the boiler temperature increases for any condenser pressure. Furthermore, the best values of extraction pressure from high, intermediate, and low pressure turbine which give the maximum first law efficiencies are obtained based on the required heat load corresponding to each exit boiler temperature.

  16. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  17. Microbial induced corrosion (MIC) on DHP copper by Desulfovibrio desulfuricans and Bacillus megaterium strains in media simulating heater waters

    International Nuclear Information System (INIS)

    Zumelzu, E.; Cabezas, C.; Schoebitz, R.; Ugarte, R.; Rodriguez, E.D.; Rios, J.

    2003-01-01

    The complexity and diversity of microbial populations in water heating systems of steam generators make it necessary to study the magnitude of the metabolic activity of bacteria and biofilm development that may lead to degradation of metal components through microbial induced corrosion (MIC). Electrolytes simulating the conditions found in heater water networks were used to induce biofilm formation on DHP copper coupons by Desulfovibrio desulfuricans DSMZ and Bacillus megaterium C10, a commercial strain and an isolate from these waters, respectively. In order to enhance their action, industrial waters enriched with the minimum nutrient content such as sodium lactate and sodium sulphite for the DSMZ strain and glucose, proteose peptone and starch for the C10 strain were employed. Biofilm formation was studied under controlled temperature, time, shaking, pH and concentrations of the media used in this study. Then, the samples were electrochemically tested in an artificial solution of sea water as control medium, based on the hypothesis that the action of an aggressive biofilm/electrolyte medium generates damaged and non-damaged areas on the metal surface, and assuming that the sea water trial can detect the latter. Hence, a higher anodic current was associated with a lower degradation of the metal surface by the action of one of the media under study. All these trials were performed along with bacterial count, scanning electron microscopy (SEM) and atomic absorption spectroscopy (AAS). Furthermore, it was possible to identify under which conditions MIC on DHP copper occurred and complex mechanisms from retention of cations to diffusion processes at the biofilm/tested media interface level were proposed. Surface corrosion by MIC took place on DHP copper; therefore, greater control on the treatment of industrial waters is highly desirable. (author)

  18. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkahshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    Optimal operation control was discussed on a forced-circulation solar water heater using solar cells not only as the power supply of a heat collecting pump, but also for controlling operation of the heat collecting pump. With this system, when the amount of power generated by solar cells reaches a sufficient level for operating the heat collecting pump, the heat collecting pump starts operation, wherein the heat collecting medium circulates in the system. The discussion was given by using simulation based on experimental expressions such as the relation expression between insolation and heat collecting medium flow rate as derived from the result of the system`s heat collecting performance test. As a result, the following conclusions were obtained: optimal insolation for activating the discussed system is from 50 to 100 W/m {sup 2}, and the heat collected within this range is within -1.5% of the collected heat amount at an optimum value; optimal activating insolation for the case of 1000 to 2000 W/m {sup 2} with low daily cumulative insolation is from 0 to 50 W/m {sup 2}, whereas the optimal activating insolation amount increases as the daily cumulative insolation amount increases; and the optimal activating insolation amount increases as water to be supplied requires higher temperature. 1 ref., 17 figs., 2 tabs.

  19. Determination of inorganic compounds in drinking water on the basis of house water heater scale, part 1: Determination of heavy metals and uranium

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2004-01-01

    Full Text Available The analysis of scale originated from drinking water on the house water heater, showed that scale is basically calcium carbonate that crystallizes hexagonally in the form of calcite. Scale taken as a sample from different spots in Belgrade – upper town of Zemun (sample 1 and Pančevo (sample 2 showed different configuration although it came from the same waterworks. That indicates either that the water flowing through waterworks pipes in different parts of the city is not the same or the waterworks net is not the same (age, maintaining, etc. All the elements which are dominant in drinking water (Ca, Mg, K, and Na, and which could be found in water by natural processes, are by their content far below the values regulated by law. The analysis also showed the presence of many metals: Ti, Pb, Zn, Cu Li, Sr, Cd, and Cr in the first sample, which are not found in the scale taken near Pančevo. The results obtained by calculating the mass concentration in drinking water on the basis of scale content, showed that both waters belonged to the category of low mineral waters. Contents of inorganic substances in these waters (117.85 mg/dm3 for sample 1 or 80.83 mg/dm3 for sample 2 are twice lower than the values predicted by the legislation. Gammaspectrometric analysis indicates the presence of radioactive elements – uranium and strontium which can influence human health.

  20. Factor 4 working group: preparing future is urgent. Energy saving certificates. The tax credit boosts the solar water heater and heat pump sales. Climatic change and energy: the Californian example

    International Nuclear Information System (INIS)

    Laverne, R.; Rabany, B.; Leclercq, M.; Lorec, Ph.; Schweitzer, J.Ph.

    2007-01-01

    This issue of 'Energies et Matieres Premieres' newsletter comprises 4 articles dealing with: the concluding report of the 'Factor 4' working group which expresses 28 recommendations in the form of energy policy proposals necessary to be implemented as soon as possible in order for France to start a society and economy transition and to reach the 2050 goal of dividing the present day greenhouse gas emissions by a factor 4; the energy saving certificates implemented with the July 13, 2005 law of energy policy choices, which targets the diffuse energy saving sources in the residential and tertiary sectors; the success of the tax credit for the use of solar thermal water heaters, wood-fuel space heating appliances and air/water and geothermal heat pumps, in particular in the residential sector; the problem of the links between climatic change and energy and the lessons learnt from the example of the 'new sustainable economy' of California (USA). (J.S.)

  1. Process and device for replacing heater in PWR pressurizer

    International Nuclear Information System (INIS)

    Gente, D.; Giron, M.

    1990-01-01

    To assure the tight fixation of replacing heater on a pressurizer penetration sleeve, a gas metal-arc welding single pass is executed. A tubular shaft is fixed over end of heater projecting from penetration sleeve. Over shaft is fixed tubular support for the torch which can rotate about axis of support axis heater. Welding torch and welding wire feeder roll are rotated in synchronisation by appropriate motors. Weld is made in single pass round periphery of heater and penetration sleeve [fr

  2. The sun as hot water source. Answers to questions on the solar water heater; Le soleil source d'eau chaude. Les reponses a vos questions sur le chauffe-eau solaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This guide answers to the main questions concerning a water heating system for domestic use. It aims to help the people who want to buy a solar water heater, to better estimate the advantages and the limits, in providing information on the operating and the use. (A.L.B.)

  3. A procedure for analysing energy savings in multiple small solar water heaters installed in low-income housing in Brazil

    International Nuclear Information System (INIS)

    Giglio, Thalita; Lamberts, Roberto; Barbosa, Miriam; Urbano, Mariana

    2014-01-01

    Due to government subsidies, Brazil has witnessed an increase in the installation and use of small solar water heating systems in low-income housing projects. Although the initiative has reduced the load curve during peak times due to the reduced use of electric showerheads, measurement and verification (M and V) are needed to validate the savings. M and V procedures should take into account the social and economic variability of low-income housing developments. To improve M and V in low-income housing projects, this paper presents a methodology for identifying homogeneous subgroups based on their energy-saving potential. This research strategy involved a cluster analysis designed to improve the understanding of what energy savers and other influencing factors exist. A case study in Londrina Brazil was undertaken with 200 low-income families. Five clusters, created based on savings potential, were defined. The results showed that only two clusters demonstrated good electricity savings, representing 47% of families. However, two clusters, or 37%, did not provide satisfactory savings, and the other 16% did not provide any consumption history due to previous use of illegal city electricity connection practices. Therefore, studies confirm the need for a detailed measurement of the representative subgroups to assess the influence of human behaviour on potential SWHS-induced savings. - Highlights: • M and V is necessary to improve solar collector-area-based subsidy programmes. • M and V in large-scale sample should contemplate the social and economic variability. • Samples with homogeneous subgroups contribute to a consistent energy-saving M and V. • Solar Water Heaters in some cases may not offer energy saving in a low-income context. • SWH performance decreases with low educational level and difficulty of operation

  4. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    Science.gov (United States)

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  5. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    Science.gov (United States)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  6. Comparison of two temperature control techniques in a forced water heater solar system

    Science.gov (United States)

    Hernández, E.; E Guzmán, R.; Santos, A.; Cordoba, E.

    2017-12-01

    a study on the performance of a forced solar heating system in which a comparative analysis of two control strategies, including the classic on-off control and PID control is presented. From the experimental results it was found that the two control strategies show a similar behaviour in the solar heating system forced an approximate settling time of 60 min and over-elongation 2°C for the two control strategies. Furthermore, the maximum temperature in the storage tank was 46°C and the maximum efficiency of flat plate collector was 76.7% given that this efficiency is the ratio of the energy of the radiation on the collector and the energy used to heat water. The efficiency obtained is a fact well accepted because the business efficiencies of flat plate collectors are approximately 70%.

  7. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  8. Replacement of the level control of draining tanks MSRS and powered water heaters with the OVATION system in Asco NPP

    International Nuclear Information System (INIS)

    Serrano Jimenez, J.

    2012-01-01

    The current MSR drains and heaters tanks level control is local control individual, pneumatic and without action from Control room. The system has level switches for the generation of alarms, isolations and shots of bombs. Single control room operators have level alarms, final race of valves of control and indication of temperature and pressure of some tanks.

  9. Gas Property Demonstrations Using Plastic Water Bottles

    Science.gov (United States)

    Campbell, Dean J.; Bannon, Stephen J.; Gunter, Molly M.

    2011-01-01

    Plastic water bottles are convenient containers for demonstrations of gas properties illustrating Boyle's law, Charles's law, and Avogadro's law. The contents of iron-based disposable hand warmer packets can be used to remove oxygen gas from the air within an unfilled plastic water bottle.

  10. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  11. Gas-Water Flow Behavior in Water-Bearing Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2017-01-01

    Full Text Available Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.

  12. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  13. Packaged die heater

    Science.gov (United States)

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  14. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  15. Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube

    Directory of Open Access Journals (Sweden)

    Amit K. Bhakta

    2018-01-01

    Full Text Available This paper reports the overall thermal performance of a cylindrical parabolic concentrating solar water heater (CPCSWH with inserting nail type twisted tape (NTT in the copper absorber tube for the nail twist pitch ratios, 4.787, 6.914 and 9.042, respectively. The experiments are conducted for a constant volumetric water flow rate and during the time period 9:00 a.m. to 15:00 p.m. The useful heat gain, hourly solar energy collected and hourly solar energy stored in this solar water heater were found to be higher for the nail twist pitch ratio 4.787. The above said parameters were found to be at a peak at noon and observed to follow the path of variation of solar intensity. At the start of the experiment, the value of charging efficiency was observed to be maximum, whereas the maximum values of instantaneous efficiency and overall thermal efficiency were observed at noon. The key finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.

  16. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  17. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  18. Hydrothermal field test with french candidate clay embedding steel heater in the Stripa mine

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Lajudie, A.; Lechelle, J.; Bouchet, A.

    1992-12-01

    Field experiments with French kaolinite/smectite clay heated up to 170 degrees C in boreholes in granite were conducted for 8 months and 4 years. The clay heated for 8 months has a considerably higher water content and it had undergone much less changes in mineralogy and physical properties than the clay exposed to heating for 4 years. The drying of the latter clay was probably caused by hydrogen gas from corrosion of the heater. The clay next to the heater turned into clay-stone despite conversion of the kaolinite component to smectite. (42 refs)

  19. Analysis of proposed eco-design requirements for boilers and water heaters. Paper within the framwork of the ''Material Efficiency and Resource Conservation'' (MaRess) Project - Task 14

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Klaus; Franke, Moritz [Wuppertal Institute for Climate, Environment and Energy, Wuppertal (Germany)

    2009-12-15

    In 2005, the European Union released the EuP Directive focusing on ecodesign requirements for energy-using products (2005/32/EC: EU Parliament and Council of the EU 2005). This directive, also called Ecodesign Directive, is a framework directive establishing a structure in which so-called implementing measures define specific requirements for placing products on the market and/or putting them into service within the internal European market. These requirements can be environmental performance standards (e.g. minimum energy efficiency or emission standards) and labelling or information requirements. Some existing European directives are already declared as being implementing measures of the Ecodesign Directive. Additionally, new implementing measures have been and will further be developed. Product-specific preparatory studies on behalf of the European Commission provide the basis for this. The preparatory studies for boilers (Lot 1) and water heaters (Lot 2) have been conducted from February 2006 to October 2007 by Van Holsteijn en Kemna (VHK). Based on the preparatory studies, the EU Commission has released several working documents (WD) on possible ecodesign requirements for boilers and water heaters at the beginning of 2008. Following these documents, boilers and water heaters comprise gas-fired, oil-fired and electric central heating (CH) (combi-) boilers / dedicated water heaters in combination with capturing solar thermal energy or ambient heat1. The requirements contain basically energy labelling measures, minimum efficiency performance standards and limits on NOx emissions. An ''Ecoboiler Model'' resp. an ''Eco Hot Water Model'' has been elaborated within the preparatory studies. These models are a crucial part of the requirements and allow for calculation of the efficiencies of boilers and water heaters. Since the models have a high degree of complexity, the Federal Environment Agency (UBA) has asked Wuppertal

  20. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  1. Assessment of radioisotope heaters for remote terrestrial applications

    International Nuclear Information System (INIS)

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications

  2. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    OpenAIRE

    Spannhake, Jan; Schulz, Olaf; Helwig, Andreas; Krenkow, Angelika; M?ller, Gerhard; Doll, Theodor

    2006-01-01

    Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semicon...

  3. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  4. Near-surface heater experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, L.D.; Cuderman, J.F.; Krumhansl, J.L.; Lappin, A.

    1978-12-31

    Full-scale near-surface heater experiments are presently being conducted by Sandia Laboratories in the Conasauga Formation at Oak Ridge, Tennessee, and in the Eleana Formation on the Nevada Test Site, Nevada. The purposes of these experiments are: (1) to determine if argillaceous media can withstand thermal loads characteristic of high level waste; (2) to provide data for improvement of themomechanical modeling of argillaceous rocks; (3) to identify instrumentation development needed for further in situ testing; and (4) to identify unexpected general types of behavior, if any. The basic instrumentation of these tests consists of a heater in a central hole, surrounded by arrays of holes containing various instrumentation. Temperatures, thermal profiles, vertical displacements, volatile pressurization, and changes in in situ stresses are measured in each experiment as a function of time, and compared with pretest modeling results. Results to date, though in general agreement with modeling results assuming conductive heat transfer within the rock, indicate that the presence of even small amounts of water can drastically affect heat transfer within the heater hole itself, and that small amounts of upward convection of water may be occurring in the higher temperature areas of the Conasauga experiments.

  5. Combustion heater for oil shale

    Science.gov (United States)

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  6. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  7. Explosives tester with heater

    Science.gov (United States)

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  8. Development of a freeze-tolerant solar water heater using crosslinked polyethylene as a material of construction. Final report, June 18, 1976--October 1, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.M.

    1978-01-01

    The feasibility of building a freeze-tolerant absorber for a solar water heater out of carbon-black-reinforced crosslinked polyethylene has been explored. Ten-foot tube specimens made from various crosslinked polyethylene formulations were filled with water at various pressures, and then placed into a deep freeze, then thawed and frozen again for 100 freeze-thaw cycles, or until the tube specimen failed. Tube diameters were measured before and after each freezing to determine how much distention the freezing caused, and how much permanent distention was caused by the strains of repeated freezings. Five tube specimens containing water at as high as 80 psi survived 100 freeze-thaw cycles. Also, a flat plate collector was fabricated using as absorber surface a single 400 ft tube of carbon-black-reinforced crosslinked polyethylene in the form of a flat spiral coil and this collector was tested for performance at the Los Alamos Scientific Laboratory. The performance test indicates that the absorbancy of such a flat spiral coil to solar radiation is similar to typical black surfaces used on solar absorbers. Thus, it does seem very feasible that domestic water can be directly heated in a solar collector having an absorber made from crosslinked polyethylene, and that this collector can safely withstand at least 100 freeze-thaw cycles.

  9. Experimental evaluation on the use of capillary tube and thermostatic expansion valve with heat recovery hot spot water heater in air source refrigeration system

    Science.gov (United States)

    Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Saputra, Eko

    2017-01-01

    The present experimental evaluation has been carried out to investigate the use of capillary tube (CT) and thermostatic expansion valve (TEV) with heat recovery hot spot water heater (HRHSWH) in air source compression refrigeration system. CT and TEV are the two basic types of refrigerant expansion devices that most frequently used in compression refrigeration system, but the identified about HRHSWH in extant literature are limited. The HRHSWH is modified from residential refrigeration system. The heat exchanger coil as HRHSWH was bonded with the compressor discharge pipe line as counter-flow heat exchanger, then insulated and placed them into transparent acrylic box. Water from storage tank with 50L capacity is pumped using circulation pump to the HRHSWH and heating the water in storage tank. The system performance of those two expansion devices in compression refrigeration system are evaluated and compared between with or without modified using HRHSWH. Results show that refrigeration system using TEV performs better performance than CT using HRHSWH compared to standard refrigeration system (without HRHSWH). The use of TEV device in HRHSWH causes a slight decrease in compressor power 0.0198 kW (4%), where the COP increases around 20% higher than the CT device. The finding indicates that the use of HRHSWH generates free hot water for TEV and CT with temperature around 54.06°C and 55.78°C, respectively. In general, HRHSWH give better perfomance than standar refrigeration system.

  10. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  11. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  12. Conversion of tritium gas to tritiated water

    International Nuclear Information System (INIS)

    Papagiannakopoulos, P.J.; Easterly, C.E.

    1979-05-01

    The mechanisms of conversion of tritium gas to tritiated water (HTO) have been examined for several tritium gaseous mixtures. The physical and chemical processes involved in the self-radiolysis of such mixtures have been analyzed and the kinetics involved in the formation of HTO has been presented. It has been determined that the formation of the H and/or OH free radicals, as intermediate species, are of significance in the formation of HTO. Therefore, the problem of reducing the rate of formation of tritiated water in a mixture of gaseous tritium with atmospheric components is one of finding an effective scavenger for the H and/or OH free radicals

  13. New Design Heaters Using Tubes Finned by Deforming Cutting Method

    Science.gov (United States)

    Zubkov, N. N.; Nikitenko, S. M.; Nikitenko, M. S.

    2017-10-01

    The article describes the results of research aimed at selecting and assigning technological processing parameters for obtaining outer fins of heat-exchange tubes by the deformational cutting method, for use in a new design of industrial water-air heaters. The thermohydraulic results of comparative engineering tests of new and standard design air-heaters are presented.

  14. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

    Science.gov (United States)

    Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

    2018-04-01

    Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

  15. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

    Science.gov (United States)

    Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

    2017-10-01

    Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

  16. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water

  17. Note: Improved heater design for high-temperature hollow cathodes.

    Science.gov (United States)

    McDonald, M S; Gallimore, A D; Goebel, D M

    2017-02-01

    We present an improved heater design for thermionic cathodes using a rhenium filament encased in a boron nitride ceramic sleeve. This heater is relatively simple to fabricate, yet has been successfully used to reliably and repeatably light a lanthanum hexaboride (LaB6) hollow cathode based on a previously published design without noticeable filament degradation over hundreds of hours of operation. The high decomposition temperature of boron nitride (2800 C for inert environments) and melting point for rhenium (3180 C) make this heater especially attractive for use with LaB6, which may require operating temperatures upwards of 1700 C. While boron nitride decomposes in air above 1000 C, the heater was used only at vacuum with an inert gas discharge, and no degradation was observed. Limitations of current state of the art cathode heaters are also discussed and compared with the rhenium-boron nitride combination.

  18. Engineering analyses and design calculations of NASA, Langley Research Center hydrogen-air-vitiated heater with oxygen replenishment

    Science.gov (United States)

    1973-01-01

    The technical basis is presented for the design of the hydrogen-air-vitiated heater. The heater liner is subjected to a maximum thermal environment at a specified condition, where the combustion gas temperature, pressure and flow rate are 5000 F, 750 psia, and 11.0 lb/sec, respectively, and results in a heat flux of the order of 275 BTU/sec-sq ft. Cooling and stress analyses indicate that water is the logical choice for cooling of the combustor liner. A mixing analysis was undertaken to establish a good combination of combustor length and injector configuration. The analysis, using a conservative analytical approach, indicates a combustor length of the order of 5 ft combined with discrete fuel and oxidizer injection at an approximate 2-1/2 inch radial combustor position, and results in uniform combustion products at the heater exit for all specified envelope conditions.

  19. Optimal Pretreatment System of Flowback Water from Shale Gas Production

    OpenAIRE

    Carrero-Parreño, Alba; Onishi, Viviani C.; Salcedo Díaz, Raquel; Ruiz-Femenia, Rubén; Fraga, Eric S.; Caballero, José A.; Reyes-Labarta, Juan A.

    2017-01-01

    Shale gas has emerged as a potential resource to transform the global energy market. Nevertheless, gas extraction from tight shale formations is only possible after horizontal drilling and hydraulic fracturing, which generally demand large amounts of water. Part of the ejected fracturing fluid returns to the surface as flowback water, containing a variety of pollutants. For this reason, water reuse and water recycling technologies have received further interest for enhancing overall shale gas...

  20. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Fish, F.F.

    1991-01-01

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NO x formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m 2 ), high heat-transfer rates (up to 310 kW/m 2 ), high density of energy conversion (up to 8 MW/m 3 ), as well as ultra-low emissions (NO x and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  1. Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tetouan (Morocco)

    International Nuclear Information System (INIS)

    Dagdougui, Hanane; Ouammi, Ahmed; Robba, Michela; Sacile, Roberto

    2011-01-01

    The development of sustainable energy services like the supply of heating water may face a trade-off with a comfortable quality of life, especially in the winter season where suitable strategies to deliver an effective service are required. This paper investigates the heat transfer process as well as the thermal behavior of a flat plate collector evaluating different cover configurations. This investigation is performed according to a two-folded approach. Firstly, a complete model is formulated and implemented taking into account various modes of heat transfer in the collector. The goal is to investigate the impact of the number and types of covers on the top heat loss and the related thermal performance in order to support decision makers about the most cost-effective design. The proposed model can also be used to investigate the effect of the different parameters which may affect the performance of the collector. Secondly, a two objective constrained optimization model has been formulated and implemented to evaluate the optimality of different design approaches. The goal is to support decision makers in the definition of the optimal water flow and of the optimal collector flat area in order to give a good compromise between the collector efficiency and the output water temperature. The overall methodology has been tested on environmental data (temperature and irradiation) which are characteristic of Tetouan (Morocco). (author)

  2. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  3. Gas-Chromatographic Determination Of Water In Freon PCA

    Science.gov (United States)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  4. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol

  5. Solar Ray Tracing Analysis to Determine Energy Availability in a CPC Designed for Use as a Residential Water Heater

    Directory of Open Access Journals (Sweden)

    Miguel Terrón-Hernández

    2018-01-01

    Full Text Available Compound parabolic concentrators are relevant systems used in solar thermal technology. With adequate tailoring, they can be used as an efficient and low-cost alternative in residential water heating applications. This work presents a simulation study using a ray tracing analysis. With this technique, we simulate the interaction between solar rays and solar concentrator to quantify the amount of energy that impinges on the receiver at a particular time. Energy availability is evaluated in a comparison of two configurations throughout the year: static setup at 21° and multi-position setup; tilted with respect to the horizontal, depending on three seasonal positions: 0° for summer, 16° for spring/autumn, and 32° for winter, with the aim to evaluate the amount of available energy in each season. The fact that a tracking system can be dispensed with also represents an economical option for the proposed application. The results showed that at 21°, the proposed solar Compound Parabolic Concentrator (CPC works satisfactorily; however, by carrying out the selected angular adjustments, the overall energy availability increased by 22%, resulting in a more efficient option. The most effective design was also built and analyzed outdoors. The obtained thermal efficiency was of ~43%. The optical design and its evaluation developed herein proved to be a valuable tool for prototype design and performance evaluation.

  6. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    NARCIS (Netherlands)

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before

  7. Printed heater on LTCC substrate

    OpenAIRE

    Karhu, A. (Anssi)

    2016-01-01

    Abstract In this bachelor thesis different kinds of printed heaters are discussed, with main attention put on low temperature co-fired ceramics (LTCC) based ones. Other types of printed heaters structures include thick-film, thin-film and micro heaters. LTCC is found to have very good electrical and mechanical properties, high reliability and stability, and furthermore the possibility of making three dimensioal (3D) microst...

  8. Substrate heater for the growth of epitaxial silicon films

    Science.gov (United States)

    Deming, Matthew; Varhue, Walter; Adams, Edward; Lavoie, Mark

    1999-03-01

    The single wafer processing of epitaxial Si films requires that special attention be paid to the design of the substrate heater assembly. This document describes the evolution and testing of an in situ heater used to deposit epitaxial Si films at temperatures as high as 700 °C. One problem encountered was the production of excessive levels of ultraviolet radiation which contributed to the desorption of water vapor from the vacuum chamber walls during the in situ cleaning process. A second problem involved the formation of a molybdenum containing film that poisoned epitaxial growth. A final proven in situ heater design is presented which avoids these problems.

  9. Water Availability for Shale Gas Development in Sichuan Basin, China.

    Science.gov (United States)

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  10. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  11. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  12. Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification

    International Nuclear Information System (INIS)

    Wang, Fenghao; Wang, Zhihua; Zheng, Yuxin; Lin, Zhang; Hao, Pengfei; Huan, Chao; Wang, Tian

    2015-01-01

    Highlights: • Experiments are carried out to investigate a novel frost-free ASHPWH system. • Dynamic characteristics of the system are studied at different ambient conditions. • Test results confirm the expected potential to control the frost-free process. • The COP increased 17.9% and 3.4% respectively in comparison with RCD at −3 °C and 3 °C. - Abstract: Air-source heat pump (ASHP) often operates with substantial frost formation on the outdoor heat exchanger at low ambient temperature in winter, it insulates the finned surface and also reduces heat transfer rate, leading to performance degradation or even shutdown of ASHP systems. Although several defrosting methods have been reported, the frosting and defrosting processes reduced energy efficiency and resulted in, in some cases, heat pump breakdown. To solve this problem, a novel frost-free air-source heat pump water heater (ASHPWH) system has been developed, which coupled with an extra heat exchanger coated by a solid desiccant (EHECSD) with an energy storage device (ESD). Based on the previous studies, a further analysis and comprehensive research on the novel frost-free ASHPWH system is presented in this paper. The dynamic characteristics of the novel system are investigated experimentally in different ambient conditions. An experimental setup and experimental procedures are described in detail. Thereafter, the dehumidification efficiency and regeneration efficiency of EHECSD, suction and discharge pressures of the compressor, the temperature of PCM are evaluated during the heating and regeneration modes respectively. Results indicate that the system can keep the evaporator frost-free for 32, 34, 36 min during heating mode at the ambient temperatures of −3 °C, 0 °C and 3 °C and 85% RH. Compared with the reverse-cycle defrosting (RCD), COP of the frost-free ASHPWH are 17.9% and 3.4% higher at the ambient temperature of −3 °C and 3 °C respectively. With this innovative technology, it has

  13. Dynamic graphene filters for selective gas-water-oil separation.

    Science.gov (United States)

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-23

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  14. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    International Nuclear Information System (INIS)

    Baek, Seung Man; Zhong, Yiming; Nam, Jin Hyun; Chung, Jae Dong; Hong, Hiki

    2013-01-01

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings

  15. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  16. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  17. Criteria for design and application of city-gates heaters; Criterio para aplicacao e dimensionamento de aquecedores para pontos de entrega de gas

    Energy Technology Data Exchange (ETDEWEB)

    Henrique, Reis dos Reis Rodrigues; Machado, Leandro Bastos; Passos, Ney Goncalves; Correia, Luiz de Carvalho Dias [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Gas delivery pressures foreseen in supplying contracts with LDS's (local distribution companies) require the adoption of pressure regulating systems in city-gates, which are installations where gas custody is transferred from the shipper to the LDC's. Generally, pressure drop is such that causes a large decrease in temperature gas. This temperature drop, depending on how large it is, may be not allowable, for it would imply in materials weakening and also in hydrocarbons hydrates formation. For this reason, many city-gates design contemplate a heating system, upstream the pressure regulation system, in order to warrant an acceptable temperature range of the delivering gas. The fact that heating systems represent roughly 30% of material costs of city-gates has motivated an accurate study of current practices of design and application of those systems. This paper presents these study results, as a criteria proposal that will allow city-gates reduction costs, both CAPEX and OPEX, at a very propitious time, considering that Brazilian gas industry is going to have a great expansion in the next years. (author)

  18. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Yusof, M.Z.

    2014-01-01

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  19. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction.

    Science.gov (United States)

    Jackson, Robert B; Vengosh, Avner; Darrah, Thomas H; Warner, Nathaniel R; Down, Adrian; Poreda, Robert J; Osborn, Stephen G; Zhao, Kaiguang; Karr, Jonathan D

    2013-07-09

    Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes drinking water contaminated with stray gases.

  20. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  1. Shale gas development impacts on surface water quality in Pennsylvania.

    Science.gov (United States)

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  2. America: AGA [American Gas Association] initiative aims to boost gas demand

    International Nuclear Information System (INIS)

    Fraser, K.M.

    1992-01-01

    This article focuses on the aim of the American Gas Association to increase natural gas demand in the key areas of gas electric generation, natural gas vehicles, gas cooling, and conversion of oil burning facilities, electric water heaters and household appliances such as space heating, stoves, washers and lighting. The need to improve the reliability of natural gas supplies is discussed. It is anticipated that natural gas will not replace coal as the main energy source for power generation, but that it will help utilities to meet environmental regulations. (UK)

  3. 49 CFR 393.77 - Heaters.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Heaters. 393.77 Section 393.77 Transportation... SAFE OPERATION Miscellaneous Parts and Accessories § 393.77 Heaters. On every motor vehicle, every heater shall comply with the following requirements: (a) Prohibited types of heaters. The installation or...

  4. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    Formation of hydrates in gas transmission lines due to high pressures and low temperatures is a serious problem in the oil and gas industry with potential hazards and/or economic losses. Kinetic hydrate inhibitors are water soluble polymeric compounds that prevent or delay hydrate formation. This...

  5. Shale gas development impacts on surface water quality in Pennsylvania

    OpenAIRE

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale...

  6. Dynamic graphene filters for selective gas-water-oil separation

    OpenAIRE

    Jihye Bong; Taekyung Lim; Keumyoung Seo; Cho-Ah Kwon; Ju Hyun Park; Sang Kyu Kwak; Sanghyun Ju

    2015-01-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability o...

  7. Effect of Preventive Maintenance on Performance of Air Heater in a Power Plant

    International Nuclear Information System (INIS)

    Jang, Jin Hyung; Hong, Eun Kee; Hwang, Kwang Won; Yun, Rin

    2010-01-01

    Air heater used in power plant helps increase the thermal efficiency of the boiler by recovering the heat from the boiler flue gas and thus preventing the loss of useful heat. This study investigates the effect of preventive maintenance on the performance of the air heater in a power plant. Performance indexes for the air heater are calculated to observe the changes in the performance and operation status of the air heater before and after preventive maintenance. The major performance indexes considered are temperature efficiency of the flue gas side, air leakage rate, heat recovery rate, heat transmission rate, and heat capacity ratio. The performance of the air heater is evaluated before and after preventive maintenance; our results show that all the above mentioned performance indexes are improved after the maintenance

  8. Energy discharge heater power supply

    International Nuclear Information System (INIS)

    Jaskierny, W.

    1992-11-01

    The heater power supply is intended to supply capacitively stored,energy to embedded heater strips in cryo magnets. The amount of energy can be controlled by setting different charge different capacitor values. Two chassis' can be operated in series or interlocks are provided. The charge voltage, number of capacitors pulse can be monitored. There and dual channel has two discharge supplies in one chassis. This report reviews the characteristics of this power supply further

  9. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  10. Phase change material storage heater

    Science.gov (United States)

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  11. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  12. Water management practices used by Fayetteville shale gas producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A. (Environmental Science Division)

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  13. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  14. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  15. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Building America Partnership for Improved Residential Construction (BA-PIRC)

    2017-07-01

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from a standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.

  16. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    OpenAIRE

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before emission to the atmosphere. Commercial dehydration processes such as the use of a condenser or a desiccant system have several disadvantages and membrane technology is an attractive, energy efficient a...

  17. Evaluation of the Improved Flameless Ration Heater

    Science.gov (United States)

    2001-12-01

    heater " puffed up" when it was activated. (Heat may build up inside of the Tempra if it has no where to go, causing this heater to "puff up.") The seams...that the heater expanded (" puffed up") when it was activated. The seams of this heater have 31 sometimes been observed to separate when the heater...0 Did not use MRE heater (Please mark all that apply.) 0 Heated the entree (Chili Mac, etc) 0 Heated the starch ( Rice , etc) 0 Other (Please

  18. Note: Coaxial-heater hollow cathode

    Science.gov (United States)

    Kurt, Huseyin; Kokal, Ugur; Turan, Nazli; Celik, Murat

    2017-06-01

    The design and tests of a LaB6 hollow cathode with a novel heater are presented. In the new design, the heater wire is completely encapsulated around the cathode tube and a coaxial return electrode, thereby eliminating hot spots on the heater wire due to the free hanging regions. Since the new heater confines the Joule heating to the region of interest, where the LaB6 emitter is placed, the heater terminals are further secured from overheating. The cathode with the presented heater design has been successfully tested and is able to deliver currents in the 0.5-15 A range.

  19. Note: Coaxial-heater hollow cathode.

    Science.gov (United States)

    Kurt, Huseyin; Kokal, Ugur; Turan, Nazli; Celik, Murat

    2017-06-01

    The design and tests of a LaB 6 hollow cathode with a novel heater are presented. In the new design, the heater wire is completely encapsulated around the cathode tube and a coaxial return electrode, thereby eliminating hot spots on the heater wire due to the free hanging regions. Since the new heater confines the Joule heating to the region of interest, where the LaB 6 emitter is placed, the heater terminals are further secured from overheating. The cathode with the presented heater design has been successfully tested and is able to deliver currents in the 0.5-15 A range.

  20. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  1. Gas exchange under water : acclimation of terrestrial plants to submergence

    OpenAIRE

    Mommer, Liesje

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little attention. This thesis, therefore, aims to investigate in depth the effects of acclimation to submergence on underwater gas exchange capacity of terrestrial plants. It elucidates the beneficial effects ...

  2. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    Science.gov (United States)

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  3. MHD air heater development technology. Report for the period April 1978-June 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    This research program is divided into three tasks. Task 1 (design studies): the objectives of this task are to: (1) evaluate full-scale, direct- and indirect-fired regenerative air heater systems for use in MHD power plants; (2) support testing of refractory materials, hot gas valves, and design concepts; (3) support design of a 5 MW test heater. Task 2 (design support tests): the objectives of this task are to: (1) support design of a 5 MW test heater; (2) identify and evaluate life of promising refractory materials for use in MHD heaters; (3) determine operating conditions and bed geometry (hole size, web thickness) which permit operation without clogging of heater passages due to accumulations of seed/slag or slag alone, (4) test valves for use in hot gas streams which are laden with seed/slag or slag alone. Task 3 (vertical slice test bed): the objective of this task is to provide a preliminary design of a test heater which is a vertical slice of a full-scale heater. It will be sized for a thermal input of 5 MW. Testing with hot gas streams containing seed/slag or slag alone will be accommodated in order to simulate both direct- and indirect-firing. Progress on each of these tasks is described. (WHK)

  4. Performance evaluation on water-producing gas wells based on gas & water relative permeability curves: A case study of tight sandstone gas reservoirs in the Sulige gas field, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Yuegang Li

    2016-01-01

    Full Text Available An outstanding issue in the oil and gas industry is how to evaluate quantitatively the influences of water production on production performance of gas wells. Based on gas–water flow theories, therefore, a new method was proposed in this paper to evaluate quantitatively the production performance of water-producing gas wells by using gas & water relative permeability curves after a comparative study was conducted thoroughly. In this way, quantitative evaluation was performed on production capacity, gas production, ultimate cumulative gas production and recovery factor of water-producing gas wells. Then, a case study was carried out of the tight sandstone gas reservoirs with strong heterogeneity in the Sulige gas field, Ordos Basin. This method was verified in terms of practicability and reliability through a large amount of calculation based on the actual production performance data of various gas wells with different volumes of water produced. Finally, empirical formula and charts were established for water-producing gas wells in this field to quantitatively evaluate their production capacity, gas production, ultimate cumulative gas production and recovery factor in the conditions of different water–gas ratios. These formula and charts provide technical support for the field application and dissemination of the method. Study results show that water production is serious in the west of this field with water–gas ratio varying in a large range. If the average water–gas ratio is 1.0 (or 2.0 m3/104 m3, production capacity, cumulative gas production and recovery factor of gas wells will be respectively 24.4% (or 40.2%, 24.4% (or 40.2% and 17.4% (or 33.2%.

  5. Understanding the Residential Wood Heater Rules

    Science.gov (United States)

    Information on the components of the current wood heater new source performance standards (NSPS) and proposed updates to the NSPS including which types of heaters are covered under the rules and the benefits.

  6. Quench Heater Studies for the LHC Magnets

    CERN Document Server

    Rodríguez-Mateos, F

    2001-01-01

    About 2000 LHC (CERN's Large Hadron Collider) superconducting magnets will be protected with quench heaters against development of excessive voltage and overheating after a resistive transition. The quench heater strips are powered by capacitor bank discharge power supplies. The strips are made of stainless steel partially plated with copper to reduce their resistance and to allow for the connection of quench heaters in series. The strips are embedded in between two polyimide foils. The initial power density and the current decay time determine the quench heater effectiveness. Since only one type of heater power supply will be available, the copper plating cycle is adapted for the various magnet types to keep the resistance of the heater circuit constant. Different quench heater designs have been tested on various prototype magnets to optimise the copper-plating cycle and the electric insulation of the heater strip. This paper summarises the experimental results and computations that allowed to finalise the h...

  7. Proceedings of a workshop on the utilization of coal fuels in process heaters

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Almost 5% of the nation's energy consumption takes place in tubular process heaters. Currently, these units are gas- and, to a lesser extent, oil-fired. Process heaters provide energy for refining petroleum and the manufacture of numerous chemicals and petrochemicals. Since the current state-of-the-art, using waste heat recovery and forced draft burners, can achieve thermal efficiencies of about 90%, it is unlikely that current process heat and fuel requirements will be dramatically reduced by process modifications and/or conservation measures. Hence, if this sizeable, inexorable drain on our fluid petroleum reserves is to be halted, it seems reasonable to consider the utilization of coal and/or coal-based fuels to fire process heaters. In order to assess the feasibility and potential for a coal-based process heater industry, Brookhaven National Laboratory (BNL) organized a workshop to define and explore the various problems that must be solved in order to burn coal in process heaters. A primary aim of the workshop was to consider the design methodology for process heaters when firing coal and compare it to those for gas and oil firing. The overall conclusions were: that retrofitting present process heaters to coal fuel was impractical; that it would be difficult to fit larger heaters designed to burn coal into present refineries; that there would be difficulties with process heaters burning coal; and that a better approach would be one large utility coal heater with a circulating heat transfer medium. Seven papers have been entered individually into EDB and ERA. (LTN)

  8. Construction of a solar water heater sustainable in the amazon: using the methodology PBL for interaction between engineering courses and high schools

    Directory of Open Access Journals (Sweden)

    Patricia Mota Milhomem

    2015-12-01

    Full Text Available Across the country is being widely spread the use of energy  renewable, one of the clearest examples of this is to obtain energy by the sun's rays, as well as the latest advances in wind turbine deployment in the South and Northeast. Thus, in order to encourage high school students to engage in the study of science and research development intertwined with energy efficiency. The Laboratório de Engenhocas (hereafter, translated: Gadget Lab extension program of the Federal University of Pará (UFPA/CAMTUC, approved projects CNPq (National Council for Scientific and Technological Development in order to insert into in state high schools of the municipality the methodology PBL (Project Based Learning in order teach the students to learn, be proactive and spark interest in the field of applied sciences. Thus, students sought to develop activities that contribute to minimize the problems of society, thus, was the built and implemented a Low Cost Solar Heater in a single family residence Tucuruí where it was possible to analyze its feasibility and efficiency.

  9. Build Your Own Solar Air Heater.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  10. 14 CFR 27.833 - Heaters.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. [Amdt. 27-23, 53 FR 34210, Sept. 2, 1988] Fire...

  11. 14 CFR 29.833 - Heaters.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection ...

  12. 21 CFR 884.5390 - Perineal heater.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Perineal heater. 884.5390 Section 884.5390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Perineal heater. (a) Identification. A perineal heater is a device designed to apply heat directly by...

  13. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  14. Gas hydrate inhibition by perturbation of liquid water structure.

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-17

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  15. Concentration and second-gas effects in the water analogue.

    Science.gov (United States)

    Mapleson, W W; Korman, B

    1998-12-01

    The water analogue provides a visual model of the process of anaesthetic exchange. In the standard version, a single pipe connects the mouth container to the lung container and the conductance of this mouth-lung pipe is proportional to alveolar ventilation. This implies that inspired and expired ventilations are equal. In fact, with high inspired concentrations of nitrous oxide, early rapid uptake of gas by solution leads to a substantial difference between inspired and expired ventilation which in turn leads to concentration and second-gas effects. It is shown that by representing inspired and expired ventilations separately, and keeping one of them constant while varying the other to compensate for rapid uptake, concentration and second-gas effects are reproduced in the water analogue. Other means of reproducing the effects are reported but we believe that the first method is the most realistic and the most appropriate for teaching.

  16. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  17. determination of thiobencarb in water samples by gas

    African Journals Online (AJOL)

    Preferred Customer

    ... liquid-liquid microextraction via flotation assistance (HLLME-FA) coupled with gas chromatography-flame ionization detection (GC-FID) was applied for the extraction and determination of thiobencarb in water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent ...

  18. Determination of thiobencarb in water samples by gas ...

    African Journals Online (AJOL)

    ... liquid-liquid microextraction via flotation assistance (HLLME-FA) coupled with gas chromatography-flame ionization detection (GC-FID) was applied for the extraction and determination of thiobencarb in water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent ...

  19. Organic Pollutants in Shale Gas Flowback and Produced Waters

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A.E.; Rijnaarts, Huub H.M.; Wezel, van Annemarie P.

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses

  20. Gas exchange under water : acclimation of terrestrial plants to submergence

    NARCIS (Netherlands)

    Mommer, Liesje

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little

  1. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  2. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  3. FFTF reactor immersion heaters. Revision 1

    International Nuclear Information System (INIS)

    Romrell, D.M.

    1994-01-01

    This specification establishes requirements for design, testing, and quality assurance for electric heaters that will be used to maintain primary Sodium temperature in the Fast Test Facility (FFTF) reactor vessel. The Test Specification (WHC-SD-FF-SDS-003) has been revised to Rev. 1. This change modifies the fabrication of approximately 25 feet of the subject heater using ceramic insulators over the heater lead wire rather than compressed magnesium oxide. Also, 304 or 316 stainless steel can be used for the heater sheath. This change should simplify fabrication and improve the heater operational reliability

  4. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  5. Design of a New Type of Compact Chemical Heater for Isothermal Nucleic Acid Amplification.

    Science.gov (United States)

    Shah, Kamal G; Guelig, Dylan; Diesburg, Steven; Buser, Joshua; Burton, Robert; LaBarre, Paul; Richards-Kortum, Rebecca; Weigl, Bernhard

    2015-01-01

    Previous chemical heater designs for isothermal nucleic acid amplification have been based on solid-liquid phase transition, but using this approach, developers have identified design challenges en route to developing a low-cost, disposable device. Here, we demonstrate the feasibility of a new heater configuration suitable for isothermal amplification in which one reactant of an exothermic reaction is a liquid-gas phase-change material, thereby eliminating the need for a separate phase-change compartment. This design offers potentially enhanced performance and energy density compared to other chemical and electric heaters.

  6. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  7. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  8. [Development of an Independent Heater for Ventilator Tube].

    Science.gov (United States)

    Liu, Ruhan; Wang, Guoyou

    2016-01-01

    Nowadays, normal humidifier is used to heat and humidify the gas before sending to ventilator tube. A new type of ventilator which offers both breathing tube with heater and humidifier is incorporate. In the light of this, patients already bought ventilator still confront this problem. Therefore, this paper mainly introduces a new manufactural method which is controlling the temperature and humidity of gas sent by breathing machine online by a temperature controller which consist of Silica gel hotline and microcomputer. As a matter of fact, the controller is adaptable in various types of breathing tube and can accurately control the humidity and temperature of gas sent into bodies.

  9. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  10. Partitioning Gas Tracer Technology for Measuring Water in Landfills

    Science.gov (United States)

    Briening, M. L.; Jakubowitch, A.; Imhoff, P. T.; Chiu, P. C.; Tittlebaum, M. E.

    2002-12-01

    Unstable landfills can result in significant environmental contamination and can become a risk to public health. To reduce this risk, water may be added to landfills to ensure that enough moisture exists for biodegradation of organic wastes. In this case risks associated with future breaks in the landfill cap are significantly reduced because organic material is degraded more rapidly. To modify moisture conditions and enhance biodegradation, leachate is typically collected from the bottom of the landfill and then recirculated near the top. It is difficult, though, to know how much leachate to add and where to add it to achieve uniform moisture conditions. This situation is exacerbated by the heterogeneous nature of landfill materials, which is known to cause short circuiting of infiltrating water, a process that has been virtually impossible to measure or model. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. In this research we are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. In this methodology two gas tracers are injected into a landfill. One tracer is non-reactive with landfill materials, while the second partitions into and out of free water trapped within the pore space of the solid waste. Chromatographic separation of the tracers occurs

  11. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    Science.gov (United States)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  12. Gas transfer through the air-water interface in LES of Langmuir circulation in shallow water

    Science.gov (United States)

    Akan, Cigdem; Tejada-Martínez, Andrés E.

    2008-11-01

    Over the past century the study of gas exchange rates between the atmosphere and the ocean has received increased attention because of concern about the fate of slightly soluble, greenhouse gases such as CO2 released into the atmosphere. Of recent interest is the oceanic uptake of CO2 along US shallow water coastal regions (e.g. see http://www.nacarbon.org). We present surface gas transfer results from large-eddy simulation (LES) of wind-driven shallow water flow with and without wave effects. Wave effects, parameterized by the well-known Craik-Leibovich vortex force, lead to the generation of Langmuir circulation (LC), serving as a mechanism for surface renewal of low concentration fluid. Our computations are motivated by the infrared imagery of Marmorino et al. (2004) suggesting that LC can affect gas transfer across the surface through straining and stretching of the gas concentration boundary layer. Preliminary LES shows that shallow water LC can increase the surface gas transfer rate by about 30 percent. Here we will focus on the accuracy of surface renewal models in predicting gas transfer velocity, a measure of gas transfer efficiency, in the presence of LC. Gas transfer velocity predicted by the surface renewal models will be compared to the prediction obtained directly from the LES.

  13. Kinetics of gas hydrate formation in a water-oil-gas system

    Energy Technology Data Exchange (ETDEWEB)

    Talatori, S.; Barth, T. [Bergen Univ., Bergen (Norway). Dept. of Chemistry; Fotland, P. [StatoilHydro Research and Development Centre, Sandsli (Norway)

    2008-07-01

    Gas hydrates are crystalline compounds consisting of polyhedral water cavities which enclathrate small gas molecules. They are formed at certain pressure-temperature conditions where gas and water are present. Gas hydrate formation is of significant importance for flow assurance in oil pipelines at high pressures and/or low temperatures. It is therefore necessary to understand the kinetics of gas hydrate formation for the kinetic inhibition of the hydrates. This paper presented a kinetic model for the growth of gas hydrates and tested it against experimental hydrate kinetic data. The model was based on the Kolmogorov Johnson Mehl Avrami (KJMA) formula employed for a polynuclear mechanism and was found to fit the experimental data. A method was developed in which the mass of formed hydrates was calculated at different stirring rates from the experimental pressure and temperature recorded during the hydrate formation. The gas compositions predicted by the method were verified by comparison with the real compositions as obtained by analysis using a Hewlett Packard HP 6890 Series GC Plus. The paper described the experimental materials, procedures, and methods. It was concluded that linearization of the model specified the type of the nucleation and growth for all the kinetic data at each stirring rate. The effect of stirring rate on the kinetics of hydrate formation for the three stirring rates in the system showed acceleration of the hydrate formation when increasing the stirring rate from 300 to 600 rpm. More hydrates nucleated as stirring rates increased. It was recommended that in order to reach more definite conclusions, it would be necessary to repeat the measurements as well as conduct testing of other oils. 11 refs., 11 figs.

  14. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    International Nuclear Information System (INIS)

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G.

    2011-01-01

    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  15. Silicon photonic heater-modulator

    Science.gov (United States)

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  16. Remedial measures to tame the frost heaves at gas distribution stations in west-east gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Daoming; Gong, Jing [Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum (China); Wang, Xiaoping; Li, Kai; Jiang, Yongtao [West-East Gas Pipeline Company (China)

    2010-07-01

    In China, a pipeline running 3900 kilometers from Xinjiang to the Yangtze River Delta area and with a capacity of 12 billion cubic meters of gas annually was put into operation in 2004. Due to subfreezing gas temperatures, the distribution stations have since then suffered from frost heaves. One method to address this issue could be to install gas-fueled heaters, however, that would imply important additional costs as well as problems in acquiring land. The aim of this paper is to present and compare different methods to deal with the frost heaves issue. Soil replacement with a water mitigation technique was found to be the best option based on geotechnical survey, calculations and data; this technique was successfully applied to several distribution stations with different water tables. A frost heaves mitigation method was developed herein and proved to be more cost effective than gas-fueled heaters.

  17. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  18. Scenarios to decarbonize residential water heating in California

    OpenAIRE

    Raghavan, SV; Wei, M; Kammen, DM

    2017-01-01

    © 2017 Elsevier Ltd This paper presents the first detailed long-term stock turnover model to investigate scenarios to decarbonize the residential water heating sector in California, which is currently dominated by natural gas. We model a mix of water heating (WH) technologies including conventional and on-demand (tank-less) natural gas heating, electric resistance, existing electric heat pumps, advanced heat pumps with low global warming refrigerants and solar thermal water heaters. Technical...

  19. Ab initio study of gas phase and water-assisted tautomerization of ...

    Indian Academy of Sciences (India)

    WINTEC

    Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide. 623. Figure 4. Keto to enol conversion of (a) maleimide and (b) formamide in gas phase. (c) maleimide and (d) forma- mide with water.

  20. Heat pumps and solar water heaters in the City of the Sun. Financing and cost effectiveness; Warmtepompen en zonneboilers in de Stad van de Zon. Financiering en rentabiliteit

    Energy Technology Data Exchange (ETDEWEB)

    Scheepers, M.J.J.; De Raad, A. [ECN-Beleidsstudies, Petten (Netherlands)

    2000-07-01

    The results of a study on the financing and cost effectiveness of the use of heat pumps and solar boilers in low-energy dwellings are presented. The investigation was carried out under the condition that costs for the occupants are not higher than the cost for the use of a gas-fired condensing boiler.

  1. Indirect heating of natural gas using vapor chambers; Aquecimento indireto de gas natural com uso de camaras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Fernando H.; Mantellil, Marcia H.B.; Borges, Thomaz P.F. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Landa, Henrique G. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Operation safety and reliability are major guidelines in the design of city-gate units. Conventional natural gas heaters operate by a indirect mechanism, where liquid water is used to transfer heat by natural convection between the combustion chamber and the natural gas coil. In this work, the concept of vapor chamber is evaluated as an indirect gas heater. In a vapor chamber, liquid water is in contact with the heat source, and vaporizes. The vapor condenses in contact with the heat sink. A reduced scale model was built and tested in order to compare these two heating concepts where the combustion chamber was replaced by electrical cartridge heaters. This engineering model can operate either as a conventional heater or as a vapor chamber. The comparison between the concepts was done by inducing a controlled power to the cartridges and by measuring the resulting temperature distributions. In the novel design, the heat exchanger efficiency increases, and the thermal inertia decreases, compared to the conventional system. The new sealed concept of the chamber prevents water evaporation losses. (author)

  2. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Amount of water in an ideal gas. 1065... in an ideal gas. This section describes how to determine the amount of water in an ideal gas, which... of water in an ideal gas, x H20, as follows: ER30AP10.034 Where: x H20 = amount of water in an ideal...

  3. Biogas Digester with Simple Solar Heater

    Directory of Open Access Journals (Sweden)

    Kh S Karimov

    2012-10-01

    Full Text Available ABSTRACT: In this research work, the design, fabrication and investigation of a biogas digester with simple solar heater are presented. For the solar heater, a built-in reverse absorber type heater was used. The maximum temperature (50°C inside the methane tank was taken as a main parameter for the design of the digester. Then, the energy balance equation for the case of a static mass of fluid being heated was used to model the process. The parameters of thermal insulation of the methane tank were also included in the calculations. The biogas digester consisted of a methane tank with built-in solar reverse absorber heater to harness the radiant solar energy for heating the slurry comprising of different organic wastes (dung, sewage, food wastes etc.. The methane tank was initially filled to 70% of its volume with organic wastes from the GIK institute’s sewage. The remaining volume was filled with sewage and cow dung from other sources. During a three month period (October-December, 2009 and another two month period (February-March, 2010, the digester was investigated. The effects of solar radiation on the absorber, the slurry’s temperature, and the ambient temperature were all measured during these investigations. It was found that using sewage only and sewage with cow dung in the slurry resulted in retention times of four and two weeks, respectively. The corresponding biogas produced was 0.4 m3 and 8.0 m3, respectively. Finally, this paper also elaborates on the upgradation of biogas through the removal of carbon dioxide, hydrogen sulphide and water vapour, and also the process of conversion of biogas energy into electric powerABSTRAK: Kajian ini membentangkan rekabentuk, fabrikasi dan penyelidikan tentang pencerna biogas dengan pemanas solar ringkas. Sebagai pemanas solar, ia dilengkapkan dengan penyerap pemanas beralik. Suhu maksimum(50oC di dalam tangki metana telah diambil sebagai parameter utama rekabentuk pencerna. Dengan menggunakan

  4. Building America Case Study: Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4, LaFayette, Georgia (CZ4), and Savannah, Georgia (CZ2)

    Energy Technology Data Exchange (ETDEWEB)

    V. Kochkin, M. Sweet

    2017-02-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  5. Experimental investigation of the performance of an elbow-bend type heat exchanger with a water tube bank used as a heater or cooler in alpha-type Stirling machines

    Energy Technology Data Exchange (ETDEWEB)

    El-Ehwany, A.A.; Hennes, G.M. [Mech. Power Dept., Faculty of Eng., Ain Shams University, Cairo (Egypt); Eid, E.I. [Mech. Dept., Faculty of Ind. Education, Suez Canal University, Suez 43515 (Egypt); El-Kenany, E. [The Specialized Studies Academy, Workers University, Tech. Dept., Mansura (Egypt)

    2011-02-15

    In this work the effect of the elbow-bend geometry and the effect of the tube arrangement on the performance of air-to-water heat exchanger is studied experimentally. In elbow-bend heat exchanger, the direction of the working fluid is bended at 90 degrees to its inlet direction. The heating or cooling fluid flows inside straight tubes while the working fluid flows past the tubes along an elbow pass. Three different types of the geometry of the elbow with three different tube bank arrangements were studied. The results were plotted and analyzed to clarify the effects of the elbow-bend geometry, the tube bank arrangements and the dead volume in the heat exchanger on the heat transfer and pressure drop. Two empirical correlations were deduced for each design, one to predict the relation between Nusselt and Reynolds numbers, while the other relation is between the friction factor and Reynolds number. This work was done to select the more suitable design to be used as a heater or a cooler in Stirling machines. (author)

  6. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

    International Nuclear Information System (INIS)

    Jenner, Steffen; Lamadrid, Alberto J.

    2013-01-01

    The aim of this paper is to examine the major environmental impacts of shale gas, conventional gas and coal on air, water, and land in the United States. These factors decisively affect the quality of life (public health and safety) as well as local and global environmental protection. Comparing various lifecycle assessments, this paper will suggest that a shift from coal to shale gas would benefit public health, the safety of workers, local environmental protection, water consumption, and the land surface. Most likely, shale gas also comes with a smaller GHG footprint than coal. However, shale gas extraction can affect water safety. This paper also discusses related aspects that exemplify how shale gas can be more beneficial in the short and long term. First, there are technical solutions readily available to fix the most crucial problems of shale gas extraction, such as methane leakages and other geo-hazards. Second, shale gas is best equipped to smoothen the transition to an age of renewable energy. Finally, this paper will recommend hybrid policy regulations. - Highlights: ► We examine the impacts of (un)conventional gas and coal on air, water, and land. ► A shift from coal to shale gas would benefit public health. ► Shale gas extraction can affect water safety. ► We discuss technical solutions to fix the most crucial problems of shale gas extraction. ► We recommend hybrid regulations.

  7. Polaronic exciton behavior in gas-phase water

    Science.gov (United States)

    Udal'tsov, Alexander V.

    2018-03-01

    Features of the absorption spectrum of gas-phase water in the energy range 7-10 eV have been considered applying polaronic exciton theory. The interaction of the incident photon generating polaronic exciton in water is described taking into account angular momentum of the electron so that polaronic exciton radii have been estimated in dependence on spin-orbit coupling under proton sharing. The suggested approach admits an estimate of kinetic and rotation energies of the polaronic exciton. As a result sixteen steps of half Compton wavelength, λC/2 = h/(2mec) changing polaronic exciton radius were found consistent with local maxima and shoulders in the spectrum. Thus, the absorption of gas-phase water in the energy range 8.5-10 eV has been interpreted in terms of polaronic exciton rotation mainly coupled with the proton sharing. The incident photon interaction with water is also considered in terms of Compton interaction, when the rotation energy plays a role like the energy loss of the incident photon under Compton scattering. The found symmetry and the other evidence allowed to conclude about polaronic exciton migration under the interaction angle 90°.

  8. Parallel heater system for subsurface formations

    Science.gov (United States)

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  9. Monitoring and modelling of thermo-hydro-mechanical processes - main results of a heater experiment at the Mont Terri underground rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ingeborg, G.; Alheid, H.J. [BGR - Federal Institute for Geosciences and Natural Resources, Hannover (Germany); Jockwerz, N. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) - Final Repository Research Division, Braunschweig (Germany); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Garcia-Siner, J.L. [AITEMIN -Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid, (Spain); Alonso, E. [CIMNE - Centre Internacional de Metodos Numerics en Ingenyeria, UPC, Barcelona (Spain); Weber, H.P. [NAGRA - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Plotze, M. [ETHZ - Swiss Federal Institute of Technology Zurich, IGT, Zurich, (Switzerland); Klubertanz, G. [COLENCO Power Engineering Ltd., Baden (Switzerland)

    2005-07-01

    The long-term safety of permanent underground repositories relies on a combination of engineered and geological barriers, so that the interactions between the barriers in response to conditions expected in a high-level waste repository need to be identified and fully understood. Co-financed by the European Community, a heater experiment was realized on a pilot plant scale at the underground laboratory in Mont Terri, Switzerland. The experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled thermo-hydro-mechanical processes. Heat-producing waste was simulated by a heater element of 10 cm diameter, held at a constant surface temperature of 100 C. The heater element (length 2 m) operated in a vertical borehole of 7 m depth at 4 to 6 m depth. It was embedded in a geotechnical barrier of pre-compacted bentonite blocks (outer diameter 30 cm) that were irrigated for 35 months before the heating phase (duration 18 months) began. The host rock is a highly consolidated stiff Jurassic clay stone (Opalinus Clay). After the heating phase, the vicinity of the heater element was explored by seismic, hydraulic, and geotechnical tests to investigate if the heating had induced changes in the Opalinus Clay. Additionally, rock mechanic specimens were tested in the laboratory. Finally, the experiment was dismantled to provide laboratory specimens of post - heating buffer and host rock material. The bentonite blocks were thoroughly wetted at the time of the dismantling. The volume increase amounted to 5 to 9% and was thus below the bentonite potential. Geo-electrical measurements showed no decrease of the water content in the vicinity of the heater during the heating phase. Decreasing energy input to the heater element over time suggests hence, that the bentonite dried leading to a decrease of its thermal conductivity. Gas release during the heating period occurred

  10. Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver

    Science.gov (United States)

    Creel, T. R., Jr.

    1972-01-01

    An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.

  11. Vibrations in water-gas heat exchangers. Design and tests

    International Nuclear Information System (INIS)

    Alexandre, M.; Allard, G.; Vangedhen, A.

    1981-01-01

    It is shown on an example how to make a complete list of the possible vibrations and how to use the data of tests and technical literature to predict damaging vibrations. The water-heavy gas tubular heat-exchanger in case is briefly described. The sources of mechanical excitations are a compressor and earthquake loadings. The various eigenmodes are described and it is shown that no resonance is possible with the compressor and that the effect of the earthquake is negligible. The excitation of the tubes by the gas flow is examined by means of Connors stability criterion; and there is no resonance with the Benard-von Karman vortices. The magnification of this latter excitation by acoustical waves is not to be feared. Satisfactory tests have been carried successively on tubes, on the casing, on the casing plus part of the tubes, on a complete prototype in workshop and in operation on site [fr

  12. Comparative analysis between horizontal and vertical heater treaters: identification and analysis of efficiency variables for oil treatment; Analise comparativa entre tratadores termicos horizontais e verticais: levantamento de variaveis criticas a eficiencia do processamento primario do oleo cru

    Energy Technology Data Exchange (ETDEWEB)

    Venancio, Fabricio de Queiroz; Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    The Brazilian onshore oil and gas production scenario has undergone changes with the maturity of fields and the prioritization of investments towards offshore projects. Added to the issue of lack of investment issue, the increasing production of formation water, which has already exceeded the production of the oil itself. With that comes the need to study the efficiency of process stages. It is common to find oil treatment plants (ETOS) limiting production operations due to lack of capacity to deal with increasing volumes of produced water. The critical moment of an ETO in onshore operations is the 'breaking' of emulsion (water in oil) usually performed by heater treaters. This article offers a comparative analysis between horizontal (TTH) and vertical (TTV) heater treaters, indicating the main variables and demonstrating opportunities for internalization of traditional and innovative technologies in horizontal systems that result in energy efficiency, optimization of the specification of oil (for marketing) and reduced operating costs. (author)

  13. Gas and water flow in the Callovo-Oxfordian argillite

    International Nuclear Information System (INIS)

    Harrington, J.F.; Noy, D.J.; Talandier, J.

    2010-01-01

    Document available in extended abstract form only. Understanding the impact and fate of this gas phase is of significant importance within performance assessment and for the accurate long-term prediction of repository evolution. This paper describes the initial results from an ongoing experimental study to measure the two-phase flow behaviour of the Callovo-Oxfordian argillite from the Bure underground research laboratory (URL) in France, using the custom-designed BGS permeameter. The primary objectives of the study are to measure: (i) the hydraulic conductivity and intrinsic permeability; (ii) the capillary displacement pressure; (iii) the effective gas permeability and relative permeability to gas for a range of conditions; and (iv) the post-test gas saturation. During testing, the specimen, a cylinder of 54 mm thickness, cut perpendicular to bedding, is subject to an isotropic confining stress, with fluids injected through the base of the specimen. A novel feature of the apparatus is the use of porous annular guard-ring filters around the inflow and outflow filters. The pressures in these two 'guard-rings' can be independently monitored to provide data on the distribution of pressure and anisotropy of the sample. Initial measurements, performed on a specimen orientation perpendicular to the bedding plane, have been divided into three components: re-saturation and consolidation; hydraulic properties; gas behaviour. During the initial period of equilibration, re-saturation of the sample were noted. Net volume change due to re-saturation closely agreed with pre-test geotechnical measurements of water saturation, suggesting the bulk of the gas phase was resident in non-dilatant pores and that the specimen was fully saturated at the onset of testing. A two step consolidation test was then performed with confining pressure raised to 11 MPa for 5 days and then to 12.5 MPa for a further 8 days. Values for drained bulk modulus based on the total volume of fluid

  14. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION; A

    International Nuclear Information System (INIS)

    Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

    2001-01-01

    Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H(sub 2) removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H(sub 2)-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H(sub 2) to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO(sub 2)-rich gases, a Cu-CeO(sub 2) catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H(sub 2) permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window

  15. SINGLE HEATER TEST FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied

  16. SINGLE HEATER TEST FINAL REPORT

    International Nuclear Information System (INIS)

    J.B. Cho

    1999-01-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M and O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  17. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    Science.gov (United States)

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  18. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, J.

    1998-10-01

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  19. Modelling the radiolysis of RSG-GAS primary cooling water

    Science.gov (United States)

    Butarbutar, S. L.; Kusumastuti, R.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Water chemistry control for light water coolant reactor required a reliable understanding of radiolysis effect in mitigating corrosion and degradation of reactor structure material. It is known that oxidator products can promote the corrosion, cracking and hydrogen pickup both in the core and in the associated piping components of the reactor. The objective of this work is to provide the radiolysis model of RSG GAS cooling water and further more to predict the oxidator concentration which can lead to corrosion of reactor material. Direct observations or measurements of the chemistry in and around the high-flux core region of a nuclear reactor are difficult due to the extreme conditions of high temperature, pressure, and mixed radiation fields. For this reason, chemical models and computer simulations of the radiolysis of water under these conditions are an important route of investigation. FACSIMILE were used to calculate the concentration of O2 formed at relatively long-time by the pure water γ and neutron irradiation (pH=7) at temperature between 25 and 50 °C. This simulation method is based on a complex chemical reaction kinetic. In this present work, 300 MeV-proton were used to mimic γ-rays radiolysis and 2 MeV fast neutrons. Concentration of O2 were calculated at 10-6 - 106 s time scale.

  20. Buffer mass test - Heater design and operation

    International Nuclear Information System (INIS)

    Nilsson, J.; Ramqvist, G.; Pusch, R.

    1984-06-01

    The nuclear waste is assumed to be contained in cylindrical metal canisters which will be inserted in deposition holes. Heat is generated as a result of the continuing decay of the radioactive waste and in the Buffer Mass Test (BMT) the heat flux expected from such canisters was simulated by the use of six electric heaters. the heaters were constructed partly of aluminium and partly of stainless steel. They are 1520 mm in length and 380 mm in diameter, and give a maximum power output of 3000 W. The heater power can be monitored by panel meters coupled to a computer-based data acquisition system. Both the heater and the control system were manufactured with a high degree of redundancy in case of component failure. This report describes the design, construction, testing, installation and necessary tools for heater installation and dismantling operation. (author)

  1. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  2. Universal model for water costs of gas exchange by animals and plants

    OpenAIRE

    Woods, H. Arthur; Smith, Jennifer N.

    2010-01-01

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface t...

  3. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    Science.gov (United States)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  4. 75 FR 81602 - Tennessee Gas Pipeline Company; Notice of Intent To Prepare an Environmental Assessment for the...

    Science.gov (United States)

    2010-12-28

    ... construction of the new Southwick Compressor Station 260A at 248 Feeding Hills Road in the Town of Southwick... electrical line. Ancillary equipment will also include an emergency generator, hot water boiler and space heater, all fueled by natural gas. In order to connect the Compressor Station to the Northampton Lateral...

  5. Examination and evaluation of the use of screen heaters for the measurement of the high temperature pyrolysis kinetics of polyethene and polypropene.

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Westerhout, R.W.J.; Balk, R.H.P.; Balk, R.H.P.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line

  6. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  7. Effects of heated seat and foot heater on thermal comfort and heater energy consumption in vehicle.

    Science.gov (United States)

    Oi, Hajime; Yanagi, Kotaro; Tabata, Koji; Tochihara, Yutaka

    2011-08-01

    Subjective experiments involving 12 different conditions were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal sensation and thermal comfort. The experimental conditions involved various combinations of the operative temperature in the test room (10 or 20°C), a heated seat (on/off) and a foot heater (room operative temperature +10 or +20°C). The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. The room operative temperature at which the occupants felt a 'neutral' overall thermal sensation was decreased by about 3°C by using the heated seat or foot heater and by about 6°C when both devices were used. Moreover, the effects of these devices on vehicle heater energy consumption were investigated using simulations. As a result, it was revealed that heated seats and foot heaters can reduce the total heater energy consumption of vehicles. Statement of Relevance: Subjective experiments were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal comfort. The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. These devices can reduce the total heater energy consumption in vehicles.

  8. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    Science.gov (United States)

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  9. Temperature measurements from a horizontal heater test in G-Tunnel

    International Nuclear Information System (INIS)

    Lin, Wunan; Ramirez, A.L.; Watwood, D.

    1991-10-01

    A horizontal heater test was conducted in G-Tunnel, Nevada Test Site, to study the hydrothermal response of the rock mass due to a thermal loading. The results of the temperature measurements are reported here. The measured temperatures agree well with a scoping calculation that was performed using a model which investigates the transport of water, vapor, air, and heat in fractured porous media. Our results indicate that the temperature field might be affected by the initial moisture content of the rock, the fractures in the rock, the distance from the free surface of the alcove wall, and the temperature distribution on the heater surface. Higher initial moisture content, higher fracture density, and cooling from the alcove wall tend to decrease the measured temperature. The temperature on top of the horizontal heater can was about 30 degrees C greater than at the bottom throughout most of the heating phase, causing the rock temperatures above the heater to be greater than those below. Along a radius from the center of the heater, the heating created a dry zone, followed by a boiling zone and condensation zone. Gravity drainage of the condensed water in the condensation zone had a strong effect on the boiling process in the test region. The temperatures below and to the side of the heater indicated a region receiving liquid drainage from an overlying region of condensation. We verified that a thermocouple in a thin-wall tubing measures the same temperature as one grouted in a borehole

  10. Globally significant greenhouse-gas emissions from African inland waters

    Science.gov (United States)

    Borges, Alberto V.; Bouillon, Steven

    2017-04-01

    The relevance of inland waters to global biogeochemical cycles is increasingly recognized, and of particular importance is their contribution of greenhouse gases to the atmosphere. The latter remain largely unreported in African inland waters. Here we report dissolved CO2, CH4 and N2O from 12 rivers in Sub-Saharan Africa acquired during >30 field expeditions and additional seasonally resolved sampling at >30 sites between 2006 and 2014. Fluxes were calculated from reported gas transfer velocity values, and upscaled using available spatial datasets, with an estimated uncertainty of about ±19%. CO2 equivalent emissions ( 0.4±0.1 PgC yr-1) match 2/3 of the overall net carbon sink previously reported for Africa. Including emissions from wetlands of the Congo, the putative total emission ( 0.9±0.1 PgC yr-1) is about half of the global oceanic or land carbon sinks. In-situ respiration supported <14% of riverine CO2 emissions, which must therefore largely be driven by mineralization in wetlands or uplands. Riverine CO2 and CH4 emissions were directly correlated to wetland coverage and aboveground vegetation biomass, implying that future changes in wetland and upland vegetation cover will strongly impact GHG emissions from African inland waters.

  11. Design of high-pressure direct contact heater for promising power supply units: Experimental substantiation

    Science.gov (United States)

    Somova, E. V.; Shvarts, A. L.; Turkin, A. V.

    2016-11-01

    The results of experimental studies of superheated steam condensation on feed water jets in a highpressure, direct-contact heat exchanger are presented. Direct contact feed water heater (DCFWH) can be used in a dual-flow diagram of a steam-power unit with ultrasupercritical steam parameters (35 MPa, 700/720°C). The direct contact feed water heater is included in the flow diagram of the II circuit in a promising power unit; it provides feed water heating to 340°C in all maintenance and emergency operation modes of the unit. The reliability of the high-pressure direct contact heater operation in this flow diagram is of major importance in relation to the danger of lead solidification in the tube space of the steam generator. Technical requirements to the design of the high-pressure direct contact heater for increasing the heat exchange efficiency are formulated based on the results of earlier studies with steam-water mixture as the heating medium. The results of studies of superheated steam condensation on jets presented in this study testify that feed water is additionally heated to the required temperature at the output of the installation. The influence of initial feed water parameters (outflow velocity and temperature) on the jet heating length is elucidated. The numerical approximation of the experimental data for determination of the jet heating length in the nominal and partial power unit loads is obtained. The results of the calculations are used to simplify the design of the water-supplying element for the direct contact feed water heater. The proposed design of direct contact feed water heater is characterized by simplicity and low metal intensity, which provides the installation reliability at the considered pressure level due to the minimum number of structural elements.

  12. Gas chromatographic measurement in water-steam circuits

    International Nuclear Information System (INIS)

    Zschetke, J.; Nieder, R.

    1984-01-01

    A gas chromatographic technique for measurements in water-steam circuits, which has been well known for many years, has been improved by design modifications. A new type of equipment developed for special measuring tasks on nuclear engineering plant also has a general application. To date measurements have been carried out on the ''Otto Hahn'' nuclear powered ship, on the KNK and AVR experimental nuclear power plants at Karlsruhe and Juelich respectively and on experimental boiler circuits. The measurements at the power plants were carried out under different operating conditions. In addition measurements during the alkali operating mode and during combined cycle operation were carried out on the AVR reactor. It has been possible to draw new conclusion from the many measurements undertaken. (orig.) [de

  13. Condition assessment of closed feedwater heaters

    International Nuclear Information System (INIS)

    Bell, R.J.

    1995-01-01

    Feedwater heaters are often forgotten in condition assessments plans. While they have no moving parts, these components have a significant impact on plant performance equivalent availability. Condition assessment of feedwater heaters includes not only an analysis of the tubing, which because of its thin wall nature is the primary objective of analysis, but other failure causes, such as tube joint leaks, an adverse condition which can and often does occur. For these reasons a comprehensive condition assessment program should be employed. This paper will identify the three level approach suggested by EPRI and many of the testing methods used to assess feedwater heater condition

  14. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  15. Pulsed electrical discharge in gas bubbles in water

    Science.gov (United States)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  16. 14 CFR 23.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  17. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters. 65.149... System or a Process § 65.149 Boilers and process heaters. (a) Boiler and process heater equipment and operating requirements. (1) Owners or operators using boilers and process heaters to meet the 98 weight...

  18. 49 CFR 179.12 - Interior heater systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved... each compartment. (b) Each interior heater system shall be hydrostatically tested at not less than 13...

  19. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  20. Zoned electrical heater arranged in spaced relationship from particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-11-15

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  1. Analysis of radial energy loss in an arc heater channel

    Czech Academy of Sciences Publication Activity Database

    Gregor, J.; Jakubová, I.; Šenk, J.; Mašláni, Alan

    2009-01-01

    Roč. 13, č. 2 (2009), s. 179-188 ISSN 1093-3611. [European High Temperature Plasma Processes (HTPP)/10th./. Patras (Patras University), 07.07.2008-11.07.2008] Institutional research plan: CEZ:AV0Z20430508 Keywords : arc heater * argon * radiation * experiment * mathematical model Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009 http://www.begellhouse.com/journals/57d172397126f956,4e2a92412d8c6bb5,161d9fdc35c6e905.html

  2. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    Science.gov (United States)

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin; Kim, Yongman; Cihan, Abdullah; Zhang, Yingqi; Finsterle, Stefan

    2017-11-01

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (Pc) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick) pieces of shales, and yielded effective diffusion coefficients from 9 × 10-9 to 3 × 10-8 m2 s-1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large Pc (˜1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.

  3. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  4. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  5. Study of new structures adapted to gas-graphite and gas-heavy water reactors

    International Nuclear Information System (INIS)

    Martin, R.; Roche, R.

    1964-01-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [fr

  6. Subcooled boiling-induced vibration of a heater rod located between two metallic walls

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Kenji, E-mail: kenji_takano@mhi.co.jp; Hashimoto, Yusuke; Kunugi, Tomoaki; Yokomine, Takehiko; Kawara, Zensaku

    2016-11-15

    Highlights: • A heating structure in water vibrates itself due to subcooled boiling (SBIV). • Experiments with a heater rod located between two metallic walls were conducted. • Large bubbles growing in 1 mm-gap distance with each wall influenced on the SBIV. • Frequency of large bubble generation corresponded to acceleration of the heater rod. • Acceleration of the heater rod in the direction towards each wall was encouraged. - Abstract: The phenomenon that a heating structure vibrates itself due to the behavior of vapor bubbles generated under subcooled boiling has been known as “Subcooled Boiling-induced Vibration (SBIV)”. As one of such a heating structure, fuel assemblies for Boiling Water Reactors (BWR) are utilized in subcooled boiling of water, and those for Pressurized Water Reactors (PWR) may face unexpected subcooled boiling conditions in case of sudden drop of the system pressure or loss of water flow, though they are utilized in single phase of water under normal operating conditions. As studies on SBIV, some researchers have conducted demonstrative experiments with a partial array of fuel rods simulating the actual BWR fuel assembly in a flow test loop, which showed no significant influences of the SBIV to degrade the integrity of the fuel rods. In addition, in order to investigate the fundamental phenomenon of the SBIV, pool boiling experiments of the SBIV on a single heater rod were performed in other studies with a simplified apparatus of a water tank in laboratory size under atmospheric pressure. In the experiments, behavior of bubbles generated under various degree of subcooling were observed, and the acceleration of the SBIV of the heater rod was measured. The present study, as a series of the above experiments for the fundamental phenomenon of the SBIV, the two thin walls made of stainless steel were installed in parallel to interleave the heater rod with the gap distance of 1 mm or 3 mm to each of the two walls, which was expected

  7. A prototype construction of bearing heater system

    International Nuclear Information System (INIS)

    Firman Silitonga

    2007-01-01

    A bearing heater system has been successfully constructed using transformer-like method of 1000 VA power, 220 V primary voltage, and 50 Hz electrical frequency. The bearing heater consists of primary coil 230 turns, U type and bar-type iron core with 36 cm 2 , 9 cm 2 ,and 3 cm 2 cross-section, and electrical isolation. The bearing heater is used to enlarge the diameter of the bearing so that it can be easily fixed on an electric motor shaft during replacement because the heating is conducted by treated the bearing as a secondary coil of a transformer. This bearing heater can be used for bearing with 3 and 6 cm of inner diameter and 12 cm of maximum outside diameter. (author)

  8. Feedwater heaters functional analysis at Embalse NGS

    International Nuclear Information System (INIS)

    Lolis, R.R.

    1992-01-01

    This study is concerned with the analysis or feedwater heaters, to detect actual failure or a bad trend beyond acceptable operating limits. When these situations are identified, preventive or corrective maintenance must be done. 2 tabs., 14 figs

  9. The air, carbon, water synergies and trade-offs in China's natural gas industry

    Science.gov (United States)

    Qin, Y.; Mauzerall, D. L.; Höglund-Isaksson, L.; Wagner, F.; Byers, E.

    2017-12-01

    Both energy production and consumption can simultaneously affect regional air quality, local water stress, and the global climate. Identifying air, carbon and water impacts of various energy sources and end-uses is important in determining the relative merits of various energy policies. Here, we examine the air-carbon-water interdependencies of China's six major natural gas source choices (domestic conventional natural gas, domestic coal-based synthetic natural gas (SNG), domestic shale gas, imported liquefied natural gas, imported Russian pipeline gas, and imported Central Asian pipeline gas) and three end-use coal-to-gas deployment strategies (with substitution strategies that focus in turn on air quality, carbon, and water) in 2020. On the supply side, we find that gas sources other than SNG offer national air-carbon-water co-benefits. However, we find striking air-carbon/water trade-offs for SNG at the national scale. Moreover, the use of SNG significantly increases water demand and carbon emissions in regions already suffering from the most severe water stress and the highest per capita carbon footprint. On the end-use side, gas substitution for coal can result in enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs. Our study finds that, except for SNG, end-use choices generally have a much larger influence on air quality, carbon emissions and water use than do gas source choices. Simultaneous consideration of air, carbon, and water impacts is necessary in designing both beneficial energy development and deployment policies.

  10. Note: Improved wire-wound heater.

    Science.gov (United States)

    Steinmann, Ricardo G; Vitoux, Hugo

    2015-01-01

    The authors have measured, at cryogenic temperature, the upper limit of the heat transfer in different configurations of a wire-wound heater. We found that the heat transferred has an upper limit of about 15 W/cm(2) and is dependent on the diameter of the wire. In this paper, we present three ways of increasing the heat transferred by this type of heater and its application in different continuous flow cryostats.

  11. Diesel particulate filter with zoned resistive heater

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  12. Conasauga near-surface heater experiment. Final report

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385 0 C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste

  13. Conasauga near-surface heater experiment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385/sup 0/C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste.

  14. Water management technologies used by Marcellus Shale Gas Producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  15. Impact of Shale Gas Development on Water Resource in Fuling, China

    Science.gov (United States)

    Yang, Hong; Huang, Xianjin; Yang, Qinyuan; Tu, Jianjun

    2015-04-01

    As a low-carbon energy, shale gas rapidly developed in U.S. in last years due to the innovation of the technique of hydraulic fracture, or fracking. Shale gas boom produces more gas with low price and reduced the reliance on fuel import. To follow the American shale gas success, China made an ambitious plan of shale gas extraction, 6.5 billion m3 by 2015. To extract shale gas, huge amount water is needed to inject into each gas well. This will intensify the competition of water use between industry, agricultural and domestic sectors. It may finally exacerbate the water scarcity in China. After the extraction, some water was returned to the ground. Without adequate treatment, the flowback water can introduce heavy metal, acids, pesticides, and other toxic material into water and land. This may inevitably worsen the water and land contamination. This study analysed the potential water consumption and wastewater generation in shale gas development in Fuling, Southwest China. The survey found the average water consumption is 30,000 cubic meter for one well, higher than shale well in U.S. Some 2%-20% water flowed back to the ground. The water quality monitoring showed the Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) were the main factors above those specified by China's water regulation. Shale gas is a lower-carbon energy, but it is important to recognize the water consuming and environmental pollution during the fracking. Strict monitoring and good coordination during the shale gas exploitation is urgently needed for the balance of economic development, energy demand and environmental protection.

  16. A rhetorical investigation of energy-related environmental issues and a proposed modeling of variables influencing the employment of domestic solar water heaters with a focus on mobilizing information

    Science.gov (United States)

    Garner, Lilla Gayle

    how the variables and information identified in the rhetorical investigation might be actualized in the construction of messages related to a particular consumer energy behavior, the proposed modeling of variables is used as a framework for a heuristic experimental study. This experimental study is designed to test the influence of one particular variable found at the beliefs level---action strategies and skills, or mobilizing information---on consumers' attitudes and intentions to behave toward a specific energy-related topic, the employment of domestic solar water heaters.

  17. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  18. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  19. Fire damp gas in a heavy water reactor

    International Nuclear Information System (INIS)

    Nikolic, V.D.

    1963-01-01

    This document describes the process of fire damp gas creation in the reactor core and dependence of the gas percentage on the temperature, i.e. reactor power. It contains a detailed plan for measuring the the percent of fire damp gas at the RA reactor: before start-up, after longer shut-down periods, immediately after safety shutdown, periodically during operation campaign

  20. Simulation bidimensional of water and gas alternative injection; Simulacao bidimensional de injecao alternada de agua e gas

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Ana Paula Silva C. de

    1999-07-01

    This dissertation presents a study of the unidimensional of water and gas alternate injection (WAG) using the stream line theory. It is considered incompressible fluid., unit mobility ratio, negligible capillary and gravitational effects, homogeneous and isotropic reservoir, isothermal flow two phases, oil and water, and three components, oil, water and gas. In the stream line theory, the following injection schemes are considered: staggered line five-spot, direct line and seven-spot. It is also considered that there is no flow among the streams. In the WAG calculations it is used the fractional flow theory and the method of characteristics, which consists of shock waves and rarefactions. The composition of these waves is said compatible if it satisfies the entropy condition. The solution goes through a certain path from the left to the right side constrained by the initial and boundary conditions. The gas injection is at a high pressure to ensure miscible displacement. It is considered first injection of a water bank and then, injection of a gas bank. We concluded that the gas injection at a high pressure recoveries all residual oil and the water saturation remains is greater than initial saturation. (author)

  1. Joint optimization of field development and water-alternating-gas recovery strategies

    NARCIS (Netherlands)

    Feng, T.; Leeuwenburgh, O.; Hewson, C.; Hanea, R.G.

    2017-01-01

    Alternating injection of water and gas (WAG) has been widely applied as an oil recovery strategy since the late 1950s. The expected benefits are improved macroscopic sweep, with the water and gas sweeping lower and upper zones of the reservoir respectively, and improved microscopic sweep due to

  2. Hydrate Formation/Dissociation in (Natural Gas + Water + Diesel Oil Emulsion Systems

    Directory of Open Access Journals (Sweden)

    Chang-Yu Sun

    2013-02-01

    Full Text Available Hydrate formation/dissociation of natural gas in (diesel oil + water emulsion systems containing 3 wt% anti-agglomerant were performed for five water cuts: 5, 10, 15, 20, and 25 vol%. The natural gas solubilities in the emulsion systems were also examined. The experimental results showed that the solubility of natural gas in emulsion systems increases almost linearly with the increase of pressure, and decreases with the increase of water cut. There exists an initial slow hydrate formation stage for systems with lower water cut, while rapid hydrate formation takes place and the process of the gas-liquid dissolution equilibrium at higher water cut does not appear in the pressure curve. The gas consumption amount due to hydrate formation at high water cut is significantly higher than that at low water cut. Fractional distillation for natural gas components also exists during the hydrate formation process. The experiments on hydrate dissociation showed that the dissociation rate and the amount of dissociated gas increase with the increase of water cut. The variations of temperature in the process of natural gas hydrate formation and dissociation in emulsion systems were also examined.

  3. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  4. Water formation on bare grains : When the chemistry on dust impacts interstellar gas

    NARCIS (Netherlands)

    Cazaux, S.; Cobut, V.; Marseille, M.; Spaans, M.; Caselli, P.

    2010-01-01

    Context. Water and O(2) are important gas phase ingredients for cooling dense gas when forming stars. On dust grains, H(2)O is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core observations. The formation of water can occur on dust grain

  5. MHD air heater development technology. Report for the period October 1978-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-01

    During the period covered by this report, work was done on all three tasks and is summarized as follows: Under Task 1 (design studies) the influence of heater system layout, duct dimensions, and heater sequencing on flow distribution was studied further. One result was that localizing the bulk of the pressure drop in the heaters tends to minimize heater-to-heater flow differences. The task of integrating the temperature and pressure solvers was pursued further. An analysis of current flow back up the air duct from the combustor was done. Results showed that the voltage gradient and power loss back up the air duct depend on the ratio of electrical conductivities of air and duct wall insulation. Under Task 2 (design support tests) Heat 201 was completed and much of the construction on the valve test rig was completed. Heat 201 was run with a Corhart X-317 (fusion cast magnesia-35% alumina, hereafter referred to as Corhart X-317 as this trade name designates not only composition, but microstructure, impurity level and manufacturer's process) matrix in the rig. Matrix Test 7 (Heat 201) ran for over four hundred hours but was terminated early because of a restriction in the bed. This was caused by failure of the insulating lining in the hot gas duct between the burner and the matrix. This liner of magnesia-chrome bricks (RFG) had been used in earlier tests. Reactions with seed/slag occurred and the resulting high viscosity slag partially plugged the bed. Under Task 3 (preliminary design of 5 MW heater) a topical report describing the design of the 5 MW test heater system was prepared. At the end of this reporting period it was being reviewed.

  6. The Value of Water in Extraction of Natural Gas from the Marcellus Shale

    Science.gov (United States)

    Rimsaite, R.; Abdalla, C.; Collins, A.

    2013-12-01

    Hydraulic fracturing of shale has increased the demand for the essential input of water in natural gas production. Increased utilization of water by the shale gas industry, and the development of water transport and storage related infrastructure suggest that the value of water is increasing where hydraulic fracturing is occurring. Few studies on the value of water in industrial uses exist and, to our knowledge, no studies of water's value in extracting natural gas from shale have been published. Our research aims to fill this knowledge gap by exploring several key dimensions of the value of water used in shale gas development. Our primary focus was to document the costs associated with water acquisition for shale gas extraction in West Virginia and Pennsylvania, two states located in the gas-rich Marcellus shale formation with active drilling and extraction underway. This research involved a) gathering data on the sources of and costs associated with water acquisition for shale gas extraction b) comparing unit costs with prices and costs paid by the gas industry users of water; c) determining factors that potentially impact total and per unit costs of water acquisition for the shale gas industry; and d) identifying lessons learned for water managers and policy-makers. The population of interest was all private and public entities selling water to the shale gas industry in Pennsylvania and West Virginia. Primary data were collected from phone interviews with water sellers and secondary data were gathered from state regulatory agencies. Contact information was obtained for 40 water sellers in the two states. Considering both states, the average response rate was 49%. Relatively small amounts of water, approximately 11% in West Virginia and 29% in Pennsylvania, were purchased from public water suppliers by the shale gas industry. The price of water reveals information about the value of water. The average price charged to gas companies was 6.00/1000 gallons and 7

  7. Flared natural gas-based onsite atmospheric water harvesting (AWH) for oilfield operations

    Science.gov (United States)

    Wikramanayake, Enakshi D.; Bahadur, Vaibhav

    2016-03-01

    Natural gas worth tens of billions of dollars is flared annually, which leads to resource waste and environmental issues. This work introduces and analyzes a novel concept for flared gas utilization, wherein the gas that would have been flared is instead used to condense atmospheric moisture. Natural gas, which is currently being flared, can alternatively power refrigeration systems to generate the cooling capacity for large scale atmospheric water harvesting (AWH). This approach solves two pressing issues faced by the oil-gas industry, namely gas flaring, and sourcing water for oilfield operations like hydraulic fracturing, drilling and water flooding. Multiple technical pathways to harvest atmospheric moisture by using the energy of natural gas are analyzed. A modeling framework is developed to quantify the dependence of water harvest rates on flared gas volumes and ambient weather. Flaring patterns in the Eagle Ford Shale in Texas and the Bakken Shale in North Dakota are analyzed to quantify the benefits of AWH. Overall, the gas currently flared annually in Texas and North Dakota can harvest enough water to meet 11% and 65% of the water consumption in the Eagle Ford and the Bakken, respectively. Daily harvests of upto 30 000 and 18 000 gallons water can be achieved using the gas currently flared per well in Texas and North Dakota, respectively. In fifty Bakken sites, the water required for fracturing or drilling a new well can be met via onsite flared gas-based AWH in only 3 weeks, and 3 days, respectively. The benefits of this concept are quantified for the Eagle Ford and Bakken Shales. Assessments of the global potential of this concept are presented using data from countries with high flaring activity. It is seen that this waste-to-value conversion concept offers significant economic benefits while addressing critical environmental issues pertaining to oil-gas production.

  8. Spraying of metallic powders by hybrid gas/water torch and the effects of inert gas shrouding

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Matějíček, Jiří; Ctibor, Pavel; Hrabovský, Milan

    2012-01-01

    Roč. 21, 3-4 (2012), s. 695-705 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA MPO FR-TI2/561 Institutional research plan: CEZ:AV0Z20430508 Keywords : copper * tungsten * hybrid water-gas torch * plasma facing materials * plasma spraying * gas shroud Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.481, year: 2012 http://www.springerlink.com/content/j07t3222hnv87882/fulltext.pdf

  9. Connecting ring and process to fix heaters in a pressure vessel by means of these rings

    International Nuclear Information System (INIS)

    Bailleul, G.; Caloine, P.; Coville, P.

    1984-01-01

    The invention can applies to the installation of heaters for nuclear reactor pressurizer or to the installation of any kind of reheaters by means of electric resistances when these reheaters have to work under important pressures. The connecting ring is made of a single metallic piece, two coaxial tubes joined each other by a skirt nearly radial; the skirt joins an end of the outer cylindrical tube and an intermediate zone of the inner cylindrical tube. The invention concerns also a heater provided with such a connecting ring, substituted for a part of its metallic envelope, and a process of fastening of these heaters on a pressure vessel. The description given in the frame of a pressurizer applies to the case of a gas reheater or to a reheater for liquid under pressure such as liquid sodium in a tank [fr

  10. First phase of small diameter heater experiments in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    As part of the Nevada Nuclear Waste Storage Investigations (NNWSI) project, we have undertaken small diameter heater experiments in the G-Tunnel Underground Facility on the Nevada Test Site (NTS). These experiments are to evaluate the thermal and hydrothermal behavior which might be encountered if heat producing nuclear waste were disposed of in welded and nonwelded tuffs. The two Phase I experiments discussed have focused on vertical borehole emplacements. In each experiment, temperatures were measured along the surface of the 10.2-cm-dia heater and the 12.7-cm-dia boreholes. For each experiment, measurements were compared with computer model representations. Maximum temperatures reached were: 196 0 C for the welded tuff after 21 days of operations at 800W and 173 0 C for the nonwelded tuff after 35 days of operations at 500W. Computed results indicate that the same heat transfer model (includes conduction and radiation only) can describe the behavior of both tuffs using empirical techniques to describe pore water vaporization. Hydrothermal measurements revealed heat-indiced water migration. Results indicated that small amounts of liquid water migrated into the welded tuff borehole early in the heating period. Once the rock-wall temperatures exceeded 94 0 C, in both tuffs, there was mass transport of water vapor as evidence indicated condensation cooler regions. Borehole pressures remained essentially ambient during the thermal periods

  11. Near-surface physics during convection affecting air-water gas transfer

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  12. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    OpenAIRE

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of t...

  13. Spectroscopic determination of gas-water interactions in clathrate hydrates

    International Nuclear Information System (INIS)

    Richardson, H.H. Jr.

    1985-01-01

    The technique of forming clathrate hydrates by first forming the amorphous deposits of gas-water mixture and, secondly, annealing this deposit was used to form the clathrate hydrates of ethylene oxide, hydrogen sulfide and sulfur dioxide. Once the clathrate hydrate formed as a thin film on the CsI substrate, the infrared spectrum of these hydrates could be obtained. The clathrate hydrates could be irradiated with 1.7 MeV electrons to promote high proton concentrations in the clathrate hydrate lattice at low temperatures (approx.30K) where the Bjerrum defects in the lattice are not mobile. The ring breathing model of ethylene oxide in the clathrate hydrate can be assigned. It was possible to incorporate D 2 O into the hydrogen bonded lattice of the ethylene oxide clathrate hydrate by growing the clathrate hydrate epitaxially on a thin film of clathrate hydrate at 100 K. The half-life of the D 2 O molecules in the ethylene oxide clathrate hydrate was only 9 minutes at 120 K. The activation energy determined from the hopping rate constant in ethylene oxide clathrate hydrate was 4.5 +/- 1.8 Kcal/mole. Irradiation of the ethylene oxide clathrate hydrate with 1.7 MeV electrons transformed some of the ethylene oxide molecules in the cages to (a) CH 2 = CH 2 , (b) CH 2 = C = O, (c) CH 3 -CH 2 -OH, (d) CO 2 , and (e) CO. A steady state concentration of coupled HOD was maintained in irradiated samples of ethylene oxide clathrate hydrates at a temperature around 80 K. The enclathrated H 2 S molecule in the small cages had a different infrared spectrum (broad band complex centered at 2600 cm -1 ) from the H 2 S molecules which had been enclathrated in the large cages (broad band complex centered at 2550 cm -1 )

  14. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  15. A Self-Contained Experimental Diver Heater

    Science.gov (United States)

    1977-09-01

    flapper valves (Figure 24). In the presence of hydrogen, the flappers open, which allows the gas to escape through the relief valve. With water present...the flappers close to prevent hot electrolyte from being expelled to the environment. A hydrogen-permeable membrane was explored for ventilating the

  16. Bonded Invar Clip Removal Using Foil Heaters

    Science.gov (United States)

    Pontius, James T.; Tuttle, James G.

    2009-01-01

    A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials.

  17. Substrate heater for thin film deposition

    Science.gov (United States)

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  18. On factors influencing air-water gas exchange in emergent wetlands

    Science.gov (United States)

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  19. In situ water and gas injection experiments performed in the Hades Underground Research Facility

    International Nuclear Information System (INIS)

    Volckaert, G.; Ortiz, L.; Put, M.

    1995-01-01

    The movement of water and gas through plastic clay is an important subject in the research at SCK-CEN on the possible disposal of high level radioactive waste in the Boom clay layer at Mol. Since the construction of the Hades underground research facility in 1983, SCK-CEN has developed and installed numerous piezometers for the geohydrologic characterization and for in situ radionuclide migration experiments. In situ gas and water injection experiments have been performed at two different locations in the underground laboratory. The first location is a multi filter piezometer installed vertically at the bottom of the shaft in 1986. The second location is a three dimensional configuration of four horizontal multi piezometers installed from the gallery. This piezometer configuration was designed for the MEGAS (Modelling and Experiments on GAS migration through argillaceous rocks) project and installed in 1992. It contains 29 filters at distances between 10 m and 15 m from the gallery in the clay. Gas injection experiments show that gas breakthrough occurs at a gas overpressure of about 0.6 MPa. The breakthrough occurs by the creation of gas pathways along the direction of lowest resistance i.e. the zone of low effective stress resulting from the drilling of the borehole. The water injections performed in a filter -- not used for gas injection -- show that the flow of water is also influenced by the mechanical stress conditions. Low effective stress leads to higher hydraulic conductivity. However, water overpressures up to 1.3 MPa did not cause hydrofracturing. Water injections performed in a filter previously used for gas injections, show that the occluded gas hinders the water flow and reduces the hydraulic conductivity by a factor two

  20. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  1. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation.

    Science.gov (United States)

    Fontenot, Brian E; Hunt, Laura R; Hildenbrand, Zacariah L; Carlton, Doug D; Oka, Hyppolite; Walton, Jayme L; Hopkins, Dan; Osorio, Alexandra; Bjorndal, Bryan; Hu, Qinhong H; Schug, Kevin A

    2013-09-03

    Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.

  2. Testing of Snorre Field Foam Assisted Water Alternating Gas (FAWAG Performance in New Foam Screening Model

    Directory of Open Access Journals (Sweden)

    Spirov Pavel

    2015-11-01

    Full Text Available Eclipse Functional Foam Model was used in order to provide a guideline for the history matching process (Gas-Oil Ratio (GOR, oil and gas production rates to the Foam Assisted Water Alternating Gas method in the Snorre field, Norway, where the surfactant solution was injected in two slugs to control gas mobility and prevent gas breakthrough. The simulation showed that the first short slug was not efficient while significant GOR decrease and incremental oil production was obtained after the second longer slug in some periods. This study shows that the Eclipse foam model is applicable to the planning of water and gas injections, the testing of various surfactant properties, and the evaluation of the efficiency of the method at the field scale.

  3. 14 CFR 25.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  4. 14 CFR 29.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  5. Heater size effect on subcooled pool boiling of FC-72

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Rishi; Kim, Jungho [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

    2009-07-01

    Extensive research has been conducted on pool boiling using heaters larger than the capillary length. For large heaters and/or high gravity conditions, boiling is dominated by buoyancy, and the heat transfer is heater size independent. Much less is known about boiling on small heaters and at low gravity levels. The ratio of heater size L{sub h} to capillary length L{sub c} is an important parameter in the determination of heater size dependence on heat transfer. As the ratio L{sub h}/L{sub c} decreases due to a decrease in either heater size or gravity, surface tension forces become dominant. It is proposed that transition from buoyancy to surface tension dominated boiling occurs when the heater size and bubble departure diameter are of the same order. Previous work in variable gravity with flat surfaces has shown that the heat transfer was heater size independent only when the ratio L{sub h}/L{sub c} was considerably larger than 1. An array of 96 platinum resistance heater elements in a 10 x 10 configuration with individual elements 0.7 x 0.7 mm{sup 2} in size was used to vary heater size and measure the heat transfer. The threshold value of L{sub h}/L{sub c} above which pool boiling is heater size independent was found to be about 2.8. (author)

  6. 21 CFR 868.5270 - Breathing system heater.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing system heater. 868.5270 Section 868.5270...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a) Identification. A breathing system heater is a device that is intended to warm breathing gases before they enter...

  7. Heater size effect on subcooled pool boiling of FC-72

    International Nuclear Information System (INIS)

    Raj, Rishi; Kim, Jungho

    2009-01-01

    Extensive research has been conducted on pool boiling using heaters larger than the capillary length. For large heaters and/or high gravity conditions, boiling is dominated by buoyancy, and the heat transfer is heater size independent. Much less is known about boiling on small heaters and at low gravity levels. The ratio of heater size L h to capillary length L c is an important parameter in the determination of heater size dependence on heat transfer. As the ratio L h /L c decreases due to a decrease in either heater size or gravity, surface tension forces become dominant. It is proposed that transition from buoyancy to surface tension dominated boiling occurs when the heater size and bubble departure diameter are of the same order. Previous work in variable gravity with flat surfaces has shown that the heat transfer was heater size independent only when the ratio L h /L c was considerably larger than 1. An array of 96 platinum resistance heater elements in a 10 x 10 configuration with individual elements 0.7 x 0.7 mm 2 in size was used to vary heater size and measure the heat transfer. The threshold value of L h /L c above which pool boiling is heater size independent was found to be about 2.8. (author)

  8. 46 CFR 111.70-5 - Heater circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a motor, master switch, or other equipment has an electric heater inside the enclosure that is energized...

  9. 7 CFR 58.215 - Pre-heaters.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pre-heaters. 58.215 Section 58.215 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....215 Pre-heaters. The pre-heaters shall be of stainless steel or other equally corrosion resistant...

  10. Infrared heater arrays for warming grazingland field plots

    Science.gov (United States)

    In order to study the likely effects of global warming on rangeland and other ecosystems in the future, we developed arrays of infrared heaters that can produce uniform warming across 3-m-diameter field plots. The efficiency of the heaters was higher than that of the heaters used in most previous in...

  11. Investigation of water/gas coning in natural fractured hydrocarbon reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Shadizadeh, S.R. [University of Petroleum Industry (Iran, Islamic Republic of); Ghorbani, D. [National Iranian Oil Co. (Iran, Islamic Republic of)

    2001-06-01

    A study was conducted in which actual field data from two different naturally fractured reservoir in south western Iran was used to study the mechanism of coning. Coning is generally associated with production from oil reservoirs with overlying gas or underlying water or from a gas reservoir with underlying water. Water/gas coning is a major concern in terms of productivity, increased water disposal and environmental effects. Coning can be avoided if the well is produced below its critical rate which is the maximum water-free or gas-free production rates. The study showed that water/gas coning is caused by an imbalance between the gravitational and viscous forces around the completion interval, leading to lower revenues and increased operating costs. In this study, allowable critical flow rate was calculated using conservative models such as the open tank model and Birk's model with zero angle of vertical fracture. It was concluded that coning is also affected by other pressure drawdown related to some other mechanism resulting in premature water and gas production. 14 refs., 8 figs.

  12. The Heater Cooler as a Source of Infection from Nontuberculous Mycobacteria.

    Science.gov (United States)

    Stammers, Alfred H; Riley, Jeffrey B

    2016-06-01

    Nosocomial infections acquired during the course of cardiac surgery and hospitalization can have devastating patient consequences. The source of these infections is often difficult to determine which complicates eradication efforts. Recently it has become apparent that the heater-cooler devices used in conjunction with cardiopulmonary bypass may become contaminated with bacteria that are normally found in hospital water sources. The culprit organisms are nontuberculous mycobacteria which coat the intrinsic surfaces found within the circuits of the heater-coolers. Aerosolization of the bacteria occurs during normal heater-cooler operation which can disperse the organisms throughout the operating room. The bacteria are slow-growing and may not present for months, or years, following exposure which makes epidemiological determination a challenge. The ensuing report summarizes a recent outbreak in these infections that have been reported both in Europe and the United States, along with efforts to reduce the risk for patient infection.

  13. Scrubbing theory of a volatile fission product vapor-containing gas jet in a water pool

    International Nuclear Information System (INIS)

    Epstein, M.

    1990-01-01

    When a mixture of fission product vapor and inert gas enters a scrubbing pool of liquid (water) that is at a temperature well below the dew point of the vapor component, a large fraction of the vapor mass condenses just outside the injector exit in the gas as aerosol (or fog) rather than on the water surfaces presented to the incoming gas stream. The fog particles formed by this vapor phase nucleation event are typically very small, of the order of 0.1- to 1.0μm diam, and are not easily removed from the gas bubbles that form above the injector and rise through the water pool. These gas bubbles, however, usually obscure the presence of a gas jet at the injector. Wassel et al. studied aerosol scrubbing in the gas injection zone of a scrubbing pool. These analyses, however, ignored liquid entrainment into the gaseous stream. In so doing, they have neglected the enormous interfacial area available for particle impaction, shown here to be crucial for high-velocity gas jets. The present investigation considers the potential of such a submerged gas jet as an atomizing condensate aerosol scrubber

  14. Simulation of Water Level Fluctuations in a Hydraulic System Using a Coupled Liquid-Gas Model

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-08-01

    Full Text Available A model for simulating vertical water level fluctuations with coupled liquid and gas phases is presented. The Preissmann implicit scheme is used to linearize the governing equations for one-dimensional transient flow for both liquid and gas phases, and the linear system is solved using the chasing method. Some classical cases for single liquid and gas phase transients in pipelines and networks are studied to verify that the proposed methods are accurate and reliable. The implicit scheme is extended using a dynamic mesh to simulate the water level fluctuations in a U-tube and an open surge tank without consideration of the gas phase. Methods of coupling liquid and gas phases are presented and used for studying the transient process and interaction between the phases, for gas phase limited in a chamber and gas phase transported in a pipeline. In particular, two other simplified models, one neglecting the effect of the gas phase on the liquid phase and the other one coupling the liquid and gas phases asynchronously, are proposed. The numerical results indicate that the asynchronous model performs better, and are finally applied to a hydropower station with surge tanks and air shafts to simulate the water level fluctuations and air speed.

  15. Fired heater for coal liquefaction process

    Science.gov (United States)

    Ying, David H. S.

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  16. Gas-Liquid Precipitation of water dissolved heavy metal ions using hydrogen sulfide gas

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.

    2004-01-01

    Precipitation of solids promoted by gas-liquid reactions is applied in many industrial processes such as the production of ammonium phosphate, ammonium sulphate, barium carbonate, calcium carbonate, calcium fluoride, ypsum (calcium sulphate), goethite, sodium bicarbonate, strontium carbonate and

  17. Universal model for water costs of gas exchange by animals and plants.

    Science.gov (United States)

    Woods, H Arthur; Smith, Jennifer N

    2010-05-04

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface temperature of the respiratory system near the outside of the organism, the gas consumed (oxygen or carbon dioxide), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model predictions were largely confirmed by data on 202 species in five taxa--insects, birds, bird eggs, mammals, and plants--spanning nine orders of magnitude in rate of gas exchange. Discrepancies between model predictions and data seemed to arise from biologically interesting violations of model assumptions, which emphasizes how poorly we understand gas exchange in some taxa. The universal model provides a unified conceptual framework for analyzing exchange-associated water losses across taxa with radically different metabolic and exchange systems.

  18. A run-around heat exchanger system to improve the energy efficiency of a home appliance using hot water

    International Nuclear Information System (INIS)

    Park, Jae Sung; Jacobi, Anthony M.

    2009-01-01

    A significant portion of the energy consumed by many home appliances using hot water is used to heat cold supply water. Such home appliances generally are supplied water at a temperature lower than the ambient temperature, and the supply water is normally heated to its maximum operating temperature, often using natural gas or an electrical heater. In some cases, it is possible to pre-heat the supply water and save energy that would normally be consumed by the natural gas or electrical heater. In order to save the energy consumed by an appliance using water heater, a run-around heat exchanger system is used to transfer heat from the ambient to the water before an electrical heater is energized. A simple model to predict the performance of this system is developed and validated, and the model is used to explore design and operating issues relevant to the run-around heat exchanger system. Despite the additional power consumption by the fan and pump of the run-around heat exchanger system, the experimental data and analysis show that for some systems the overall energy efficiency of the appliance can be improved, saving about 6% of the energy used by the baseline machine.

  19. A meta-analysis of leaf gas exchange and water status responses to drought

    OpenAIRE

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2016-01-01

    Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosy...

  20. Plant Water Use Efficiency over Geological Time ? Evolution of Leaf Stomata Configurations Affecting Plant Gas Exchange

    OpenAIRE

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductan...

  1. Flux of gases across the air-water interface studied by reversed-flow gas chromatography.

    Science.gov (United States)

    Rashid, K A; Gavril, D; Katsanos, N A; Karaiskakis, G

    2001-11-16

    In the present work the reversed-flow gas chromatographic technique was applied for the study of flux of gases across the air-water interface. The model system was vinyl chloride-water, which is of great significance in food and environmental chemistry. Using suitable mathematical analysis, equations were derived by means of which the following physicochemical quantities were calculated: diffusion coefficient of vinyl chloride (VC) into water, partition coefficient of VC between the water (at the interface and the bulk) and the carrier gas nitrogen, overall mass transfer coefficients of VC in the gas (nitrogen) and the liquid (water), gas and liquid film transfer coefficients of VC, gas and liquid phase resistances for the transfer of VC into the water, and finally the thickness of the stagnant film in the liquid phase, according to the two-film theory of Whitman. From the variation of the above parameters with temperature, as well as the volume and the free surface area of the water, useful conclusions concerning the mechanism for the transfer of VC into water were extracted. These are discussed in comparison with the same parameters calculated from empirical equations or determined experimentally by other techniques.

  2. Argon used as dry suit insulation gas for cold-water diving

    OpenAIRE

    Vrijdag, Xavier CE; van Ooij, Pieter-Jan AM; van Hulst, Robert A

    2013-01-01

    Background Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is ap...

  3. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  4. Thermosensitive gas flow sensor

    International Nuclear Information System (INIS)

    Berlicki, T.; Osadnik, S.; Prociow, E.

    1997-01-01

    Results of investigations on thermal gas flow sensor have been presented. The sensor consists of three thin film resistors Si+Ta. The circuit was designed in the form of two bridges; one of them serves for measurement of the heater temperature, the second one for the measurement of temperature difference of peripheral resistors. The measurement of output voltage versus the rate of nitrogen flow at various power levels dissipated at the heater and various temperatures have been made. The measurements were carried out in three versions; (a) at constant temperature of the heater, (b) at constant power dissipated in the heater, controlled by the power of the heater, (c) at constant temperature of the heater controlled by the power dissipated in the peripheral resistors of the sensor. Due to measurement range it is advantageous to stabilize the temperature of the heater, especially by means of the power supplied to the peripheral resistors. In this case the wider measurement range can be obtained. (author)

  5. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  6. Treatment of waste using a hybrid gas- water stabilized torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana; Beeckman, E.; Verstraeten, J.

    2005-01-01

    Roč. 5, č. 1 (2005), s. 7-12. ISBN 4-9900642-4-8 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * waste treatment Subject RIV: BL - Plasma and Gas Discharge Physics

  7. Generation and delivery device for ozone gas and ozone dissolved in water

    Science.gov (United States)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2006-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The system may be configured to operate passively with no moving parts or in a self-pressurizing manner with the inclusion of a pressure controlling device or valve in the gas outlet of the anode reservoir. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  8. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)

    2014-08-15

    failure mode of feedwater heater such as high drain level, low shell-side pressure, tube-side plugging and water box plate defect based on fuzzy logic approach and simulation model.

  9. A new dissolved gas sampling method from primary water of the Paks Nuclear Power Plant, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L., E-mail: papp.laszlo@atomki.mta.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Isotoptech Co. Ltd., Debrecen (Hungary); Palcsu, L. [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Veres, M. [Isotoptech Co. Ltd., Debrecen (Hungary); Pintér, T. [Paks Nuclear Power Plant, Paks (Hungary)

    2016-04-15

    Highlights: • We constructed and applied a lightweight portable dissolved gas sampling device. • A membrane contactor has been used to sample the dissolved gases from the water. • Gas compound and gamma spectrometric measurements were done from the samples. - Abstract: This article describes a novel sampling method for dissolved gases from radioactive waters. The major aim was to build a portable, lightweight sampling device in which the gas sample container is not in contact with the water itself. Therefore, a membrane contactor was used to take representative dissolved gas samples from the water of spent fuel pools. Quadrupole mass spectrometric and gamma spectrometric measurements were made from the samples to determine the gas composition and to detect any radioactive gas of fission origin. The paper describes (i) the construction of the sampler in general, (ii) the operation of the sampling unit and (iii) the measurement results of the first samples and the interpretation of the data. Both small and large fluctuations were able to be detected when the freshly spent fuel rods were put into the spent fuel pool or when the head valves of the toques of the fuel rods were replaced. In the investigated period (2013–2014), the main gas composition did not show large fluctuations, it was close to the composition of dissolved air. However, the activity concentration of {sup 85}Kr varied in a broad range (0.001–100 kBq/l).

  10. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  11. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  12. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  13. Measurements of radon concentrations in waters and soil gas of Zonguldak, Turkey.

    Science.gov (United States)

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül; Kaynak, Gökay

    2014-12-01

    The radon concentrations in soil-gas and water samples (in the form of springs, catchment, tap, thermal) used as drinking water or thermal were measured using a professional radon monitor AlphaGUARD PQ 2000PRO. The measured radon concentrations in water samples ranged from 0.32 to 88.22 Bq l(-1). Most of radon levels in potable water samples are below the maximum contaminant level of 11 Bq l(-1) recommended by the US Environmental Protection Agency. The calculated annual effective doses due to radon intake through water consumption varied from 0.07 to 18.53 µSv y(-1). The radon concentrations in soil gas varied from 295.67 to 70 852.92 Bq m(-3). The radon level in soil gas was found to be higher in the area close to the formation boundary thrust and faults. No correlation was observed between radon concentrations in groundwater and soil gas. Also, no significant correlation was observed between soil-gas radon and temperature, pressure and humidity. The emanation of radon from groundwater and soil gas is controlled by the geological formation and by the tectonic structure of the area. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...... factors that determine the level of fission gas release during a power bump. Release begins when gas bubbles on grain boundaries start o interlink. This occurred at r/r0 ~ 0.75. Release tunnels were fully developed at r/r0 ~ 0.55 with the result that gas release was 60–70% at this position....

  15. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

    Science.gov (United States)

    Groenewald, Berlizé; Bazelet, Corinna S; Potter, C Paige; Terblanche, John S

    2013-10-15

    The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exchange and water loss parameters among the major gas exchange patterns (continuous, cyclic, discontinuous gas exchange) at a range of temperatures. Mean , and per unit did not differ among the gas exchange patterns at all temperatures (P>0.09). There was no significant association between temperature and gas exchange pattern type (P=0.63). Percentage of RWL (relative to total water loss) was typically low (9.79±1.84%) and did not differ significantly among gas exchange patterns at 15°C (P=0.26). The method of estimation had a large impact on the percentage of RWL, and of the three techniques investigated (traditional, regression and hyperoxic switch), the traditional method generally performed best. In many respects, A. fusca has typical gas exchange for what might be expected from other insects studied to date (e.g. , , RWL and cuticular water loss). However, we found for A. fusca that expressed as a function of metabolic rate was significantly higher than the expected consensus relationship for insects, suggesting it is under considerable pressure to save water. Despite this, we found no consistent evidence supporting the conclusion that transitions in pattern type yield reductions in RWL in this mesic cockroach.

  16. A micro solar heater for portable energy generation

    Science.gov (United States)

    Zimmerman, Raúl; Morrison, Graham; The, Owen; Rosengarten, Gary

    2007-12-01

    This study presents a new concept that combines microtechnology with solar thermal energy to provide a free portable energy source. A water-methanol mixture flows through an array of parallel microchannels which are fabricated into a silicon matrix using conventional micro-fabrication techniques. A vacuum layer is interposed between the channels and the external surface to thermally insulate the channels from the ambient temperature. A selective coating is deposited on one of the vacuum walls to absorb the short wavelength incoming radiation and reduce the long wavelength radiation, hence reducing the heat losses. A geometry and material optimization is still being developed in order to obtain the highest possible efficiency for the micro-heater, while keeping a low pressure drop in the micro-channels. The methanol outlet temperature is predicted to be higher than 250°C. This temperature is required for hydrogen production in a methanol reforming micro-reactor. Therefore, it is envisaged that the micro-solar heater will supply the thermal energy needed for hydrogen generation, that can later be used as fuel for microfuel cells. Both technologies can be integrated in a portable device.

  17. Infrared gas heating applied to industrial processes; Le chauffage infrarouge au gaz applique aux procedes industriels

    Energy Technology Data Exchange (ETDEWEB)

    Goodhue, C. [Gaz Metropolitain, Montreal, PQ (Canada)

    1996-03-01

    The theory of radiative heat transfer and the concepts of emissive power and coupled emitters and receptors were presented. Different types of radiative infrared gas heaters available for industrial applications were also reviewed. These include perforated ceramic plate heaters, fibrous panels, combined radiative and convective ceramic heaters, radiative tubes and catalytic panels. The respective advantages of these different heaters were discussed. Application domains of infrared radiative gas heaters include drying in the pulp and paper and textile industries, various drying and baking needs in the agro-food industry, and other applications in the plastic and paint industries. 3 figs.

  18. Monitoring air pollutants due to gas flaring using rain water | Rim ...

    African Journals Online (AJOL)

    The mean levels of conductivity, TDS, and SO42- were within statutory safe limits, while that of pH, CO32- and NO3- were above the safe limits specified by the Federal Ministry of Environment guidelines and standards for drinking water quality. Keywords: rainwater, gas flare, pollutants, monitoring, water quality

  19. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    DEFF Research Database (Denmark)

    Folas, Georgios; Froyna, E.W.; Lovland, J.

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...

  20. Determination of petroleum fractions as contaminants in the waters by gas chromatography

    International Nuclear Information System (INIS)

    Kubinec, R.; Mracnova, R.; Kuran, P.; Ostrovsky, I.; Sojak, L.

    1995-01-01

    The method of micro-extraction of petroleum fractions from water and analysis using gas chromatography was developed. This method can be used for the analysis of gaseous oil and mineral oil in the water wit the detection limit 12 ppb and 18 ppb, respectively

  1. Notes on the path and wake of a gas bubble rising in pure water

    NARCIS (Netherlands)

    de Vries, A.W.G.; Biesheuvel, A.; van Wijngaarden, L.; van Wijngaarden, L.

    2002-01-01

    This paper is concerned with the structure of the wake behind gas bubbles rising at high Reynolds numbers in highly purified water. It describes a schlieren optics technique to visualise the wake. The technique does not contaminate the water, and so does not affect the zero-stress condition at the

  2. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  3. Ab initio study of gas phase and water-assisted tautomerization of ...

    Indian Academy of Sciences (India)

    WINTEC

    Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2⋅83 kcal/mol from 10⋅41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule. Keywords. Ab Initio calculations; maleimide; formamide; ...

  4. [The hygienic evaluation of an aerosol-gas mixture as a preservative of potable water].

    Science.gov (United States)

    Prokopov, V A; Gakal, R K; Mironets, N V; Byshovets, T F; Martyshchenko, N V; Teteneva, I A; Nadvornaia, Zh N

    1993-01-01

    Complex hygienic assessment of the aerosol-gas method for the drinking water conservation demonstrated no significant effects on white rats in toxicological and genetical experiments. The method was recommended for long-term conservation of the drinking water in steel tanks.

  5. Effect of heater material and coolant additives on CHF for a downward facing curved surface

    International Nuclear Information System (INIS)

    Park, Hae Min; Jeong, Yong Hoon; Heo, Sun

    2014-01-01

    Highlights: • Critical heat flux experiment for a downward facing curved surface was conducted. • We investigate the effect of heater material and coolant additives. • Critical heat flux is affected by the steel oxidation. - Abstract: The critical heat flux (CHF) in the vicinity of an inclination angle of 90° for the reactor vessel lower head external wall was measured on a downward facing curved surface. Two test sections having radii of curvature 0.15 m and 0.5 m were used. The objective was to investigate the effect of heater material and the combined effect of the heater material and additives on flow boiling CHF to assess the CHF enhancement under accident conditions. The heater material SA508 (low alloy steel) and the additive solutions of boric acid and tri-sodium phosphate (TSP, Na 3 PO 4 ·12H 2 O) were used. An enhancement of CHF with the SA508 heater was confirmed in comparison with stainless steel reference heaters, which have negligible steel oxidation. As a result of the combined effect tests, the CHF with a TSP solution was reduced and the CHFs with a boric acid and a mixed solution (boric acid and TSP) were enhanced in comparison with the deionized water reference case. The CHF results are discussed in terms of steel oxidation according to the pH of the working fluid. Steel oxidation is also affected by local flow conditions as shown in the R = 0.5 m tests in which the boric acid and mixed solution had negligible effects on CHF enhancement. Under a relatively high concentration of boric acid (2.5 wt%), additive deposition as well as steel oxidation were observed and resulted in CHF enhancement

  6. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  7. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale

    Science.gov (United States)

    Orem, William H.; Tatu, Calin A.; Varonka, Matthew S.; Lerch, Harry E.; Bates, Anne L.; Engle, Mark A.; Crosby, Lynn M.; McIntosh, Jennifer

    2014-01-01

    Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from formation water from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of μg/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

  8. Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel

    Science.gov (United States)

    Zhu, Xun; Sui, P. C.; Djilali, Ned

    The dynamic behavior of liquid water emerging from the gas diffusion layer (GDL) into the gas flow channel of a polymer electrolyte membrane fuel cell (PEMFC) is modeled by considering a 1000 μm long air flow microchannel with a 250 μm × 250 μm square cross section and having a pore on the GDL surface through which water emerges with prescribed flow rates. The transient three-dimensional two-phase flow is solved using Computational fluid dynamics in conjunction with a volume of fluid method. Simulations of the processes of water droplet emergence, growth, deformation and detachment are performed to explicitly track the evolution of the liquid-gas interface, and to characterize the dynamics of a water droplet subjected to air flow in the bulk of the gas channel in terms of departure diameter, flow resistance coefficient, water saturation, and water coverage ratio. Parametric simulations including the effects of air flow velocity, water injection velocity, and dimensions of the pore are performed with a particular focus on the effect of the hydrophobicity of the GDL surface while the static contact angles of the other channel walls are set to 45°. The wettability of the microchannel surface is shown to have a major impact on the dynamics of the water droplet, with a droplet splitting more readily and convecting rapidly on a hydrophobic surface, while for a hydrophilic surface there is a tendency for spreading and film flow formation. The hydrophilic side walls of the microchannel appear to provide some benefit by lifting the attached water from the GDL surface, thus freeing the GDL-flow channel interface for improved mass transfer of the reactant. Higher air inlet velocities are shown to reduce water coverage of the GDL surface. Lower water injection velocities as well as smaller pore sizes result in earlier departure of water droplets and lower water volume fraction in the microchannel.

  9. Enhancing water security in a rapidly developing shale gas region

    Directory of Open Access Journals (Sweden)

    Shannon Holding

    2017-06-01

    New hydrological insights for the region: Initiatives and tools enhancing water security in the region include strategic partnerships and stakeholder collaborations, policy and regulation development, and data collection and distribution efforts. The contributions and limitations of each of these are discussed. A vulnerability mapping framework is presented which addresses data gaps and provides a tool for decision-making surrounding risk to water quality from various hazards. An example vulnerability assessment was conducted for wastewater transport along pipeline and trucking corridors.

  10. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface ground water: background, base cases, shallow reservoirs, short-term gas and water transport

    Science.gov (United States)

    Researchers examined gas and water transport between a deep tight shale gas reservoir and a shallow overlying aquifer in the two years following hydraulic fracturing, assuming a pre-existing connecting pathway.

  11. Tube Plugging Criteria for the High-pressure Heaters of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Hyungnam; Cho, Nam-Cheoul; Lee, Kuk-hee

    2015-01-01

    In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of a nuclear power plant. This method relies on the similar plugging criteria used in the steam generator tubes. Power generation field urges nuclear power plants to reduce operating and maintaining costs to remain competitive. To reduce the cost by means of preventing the lowering thermal efficiency, the inspection of balance-of-plant heat exchanger, which was treated as not important work, becomes important. The tubing materials and tube thickness of heat exchangers in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. But tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. The feed water heater is a kind of heat exchanger which raises the temperature of water supplied from the condenser. The heat source of high-pressure heaters is the extraction steam from the high-pressure turbine and moisture separator re-heater. If the tube wall of the heater is broken, the feed water flowing inside the tube intrudes to shell side. This forces the turbine to be stop in order to protect it. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. A method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of Ulchin NPP No. 3 and 4. This method relies on the similar plugging

  12. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    Science.gov (United States)

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  13. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required

  14. Hydrogen gas evolution from water in zeolite and silica gel cavities with γ-ray irradiation

    International Nuclear Information System (INIS)

    Maeda, Y.; Kawamura, K.; Hayama, Y.; Okai, T.

    2002-01-01

    Hydrogen gas evolution from water in zeolite cavities caused by gamma irradiation was examined. Metal oxides prepared in the cavities of Y-type zeolites and silica gels were also used for this examination. The G-values for hydrogen gas evolution of water in the cavity were higher than those of pure water. The mechanism of water decomposition by the effect of gamma irradiation was studied and clarified to an extent. It is supposed that hydrogen gas evolution is increased if the H radicals can mutually combine. The interfering reactions for hydrogen gas evolution would the existence of electrons and OH radicals, and the recombination reactions. The size of a spur in which the reaction of gamma-rays with the metal oxides takes place is assumed to be about 3 nm. ZSM-5 zeolites, Y-type zeolites, and silica gels were used, the size of the cavities was 3, 5 and 7 nm. The wet zeolites, silica gels and those containing the metal oxides were irradiated with 37.4-78.8 KGy of 60 Co under nitrogen. The evolving hydrogen gas was determined by gas chromatography. From among the samples examined, silica gel A exhibited the highest yield. Although the reasons for these results are not clear, it s evident that the surface of the zeolites and silica gels plays an important role with respect to the radicals produced by the action of gamma radiation

  15. In-plume gas scavenging: Insights into gas adsorption, ash-surface chemistry and the role of water

    Science.gov (United States)

    Casas, Ana S.; Wadsworth, Fabian; Ayris, Paul M.; Cimarelli, Corrado; Dingwell, Donald B.

    2017-04-01

    In-plume gas scavenging-processes are well known to occur in large volcanic eruptions, where, over the range of plume conditions (temperature and gas composition) and physicochemical ash-surface properties, volcanic gases (mainly SO2, HCl, and HF) can be sequestrated by the occurrence (alone or combined) of three processes: (1) salt deposition, (2) adsorption, or (3) acidic liquid condensation on the ash-surface. Several studies have sought to constrain the diffusion-driven mechanisms through which scavenging occurs, the optimal temperatures for efficient scavenging, and the likely reaction products formed. Here we bolster these datasets with new high-resolution experimental work. Our current project additionally seeks to identify the role of water vapour in gas scavenging processes using a time- and temperature- series of experiments with well-characterized ash samples, for which, particle size distribution, surface area, and bulk chemistry were constrained. These samples will be exposed to various hydrous and anhydrous gas atmospheres with proportions of some plume-relevant gas mixtures (SO2, SO2-H2O) at high temperatures (200 to 800 °C) for various time series (1 to 60 min.) in the Advanced Ash-Gas Reactor (AGAR) available at the LMU chemistry laboratory. Post-experimental samples are analyzed by standard leachate techniques. We show that a diffusion-controlled sequestration mechanism will be strongly temperature dependent proportional to the diffusivity of the mobile species. In complex mixtures of gases, which could result in the diffusion of more than a single species, it remains to be tested whether simple diffusion models can yield average sequestration volumes. This will be tested explicitly using simple diffusion time scaling laws. Future work should target the additional combined effects of HCl, SO2 and H2O in more realistic complex volcanic atmospheres.

  16. A super flexible and custom-shaped graphene heater.

    Science.gov (United States)

    Zhang, Tian-Yu; Zhao, Hai-Ming; Wang, Dan-Yang; Wang, Qian; Pang, Yu; Deng, Ning-Qin; Cao, Hui-Wen; Yang, Yi; Ren, Tian-Ling

    2017-10-05

    In this paper, we fabricate a graphene film heater through laser reduction on graphene oxide, which is a two-step process. The electrothermal performance of the graphene heater can be adjusted by the laser energy density. While the applied voltage is 18 V, the graphene heater reaches a steady-state temperature of 247.3 °C within 20 s. After the graphene heater is folded in half 100 times, its output temperature remains to be precisely controlled by the input power and the temperature distribution is uniform. In addition, the flexibility of the graphene heater is superior to a heater based on a commercial indium tin oxide film. It's worth noting that the graphene heater can be fabricated with desired shapes directly and easily, which is rare among the reported film heaters. In consideration of the high performance of the graphene film heater, we demonstrate its three application scenarios: portable warmers applied in medical infusion apparatus, flexible custom-shaped heaters for special requirements and displays.

  17. Heater Validation for the NEXT-C Hollow Cathodes

    Science.gov (United States)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  18. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  19. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale

    Science.gov (United States)

    Orem, William H.; Tatu, Calin A.; Varonka, Matthew S.; Lerch, Harry E.; Bates, Anne L.; Engle, Mark A.; Crosby, Lynn M.; McIntosh, Jennifer

    2014-01-01

    Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of μg/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

  20. Gas exchange and antioxidant activity in seedlings of C opaifera langsdorffii Desf. under different water conditions

    OpenAIRE

    ROSA, DEREK B.C.J.; SCALON, SILVANA P.Q.; CREMON, THAIS; CECCON, FELIPE; DRESCH, DAIANE M.

    2017-01-01

    ABSTRACT The aim of this study was to evaluate gas exchange, efficiency of the photosynthetic apparatus, and antioxidant activity in Copaifera langsdorffii Desf. The seedlings were cultivated under different conditions of water availability, in order to improve the utilization efficiency of available water resources. The seedlings were cultivated in four different water retention capacities (WRC- 25%, 50%, 75%, and 100%), and evaluated at four different time (T- 30, 60, 90, and 120 days). Dur...