WorldWideScience

Sample records for gas si engine

  1. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  2. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    Science.gov (United States)

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  3. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-11-01

    Full Text Available Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE. This paper investigates the effects of using argon (Ar gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied.

  4. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  5. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    International Nuclear Information System (INIS)

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-01-01

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation

  6. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  7. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... on filters and a sorbent was used for collection of vapour phase aromatic compounds. The filters and sorbent were analysed for polycyclic aromatic hydrocarbons (PAH) formed during combustion. The measurements showed that there was no significant increase in particulate PAH emissions due to the tar compounds...

  8. Development and Test of a new Concept for Biomass Producer Gas Engines

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Foged, Esben Vendelbo; Strand, Rune

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kWe gen-set there would be a financial benefit of approximately...... 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood....... The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating...

  9. Evaluation of the Predictive Capabilities of a Phenomenological Combustion Model for Natural Gas SI Engine

    Directory of Open Access Journals (Sweden)

    Toman Rastislav

    2017-12-01

    Full Text Available The current study evaluates the predictive capabilities of a new phenomenological combustion model, available as a part of the GT-Suite software package. It is comprised of two main sub-models: 0D model of in-cylinder flow and turbulence, and turbulent SI combustion model. The 0D in-cylinder flow model (EngCylFlow uses a combined K-k-ε kinetic energy cascade approach to predict the evolution of the in-cylinder charge motion and turbulence, where K and k are the mean and turbulent kinetic energies, and ε is the turbulent dissipation rate. The subsequent turbulent combustion model (EngCylCombSITurb gives the in-cylinder burn rate; based on the calculation of flame speeds and flame kernel development. This phenomenological approach reduces significantly the overall computational effort compared to the 3D-CFD, thus allowing the computation of full engine operating map and the vehicle driving cycles. Model was calibrated using a full map measurement from a turbocharged natural gas SI engine, with swirl intake ports. Sensitivity studies on different calibration methods, and laminar flame speed sub-models were conducted. Validation process for both the calibration and sensitivity studies was concerning the in-cylinder pressure traces and burn rates for several engine operation points achieving good overall results.

  10. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr; Bari, Saiful [Sustainable Energy Centre, School of Advanced Manufacturing and Mechanical Engineering, Univ. of South Australia, Mawson Lakes SA 5095 (Australia)

    2009-12-15

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air. (author)

  11. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Bari, Saiful

    2009-01-01

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air.

  12. Investigating the influences of liquid LPG injection on spark ignition (SI engine

    Directory of Open Access Journals (Sweden)

    Tukiman Mohd Mustaqim

    2017-01-01

    Full Text Available Liquefied petroleum gas (LPG is one of the alternative fuels that becoming popular to be use in spark ignition engine (SI. This paper briefly presents the influence of energy content to the engine output of 1.6L SI engine of Proton Gen 2. The engine was coupled to a chassis dynamometer and few related apparatus were employed in determine the engine behavior. All data collected were illustrated in graph for further analysis. The engine shows comparable engine output, however, the engine requires some tuning in order to fully utilize the energy content of LPG.

  13. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  14. Development and test of a new concept for biomass producer gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Vendelbo Foged, E.; Strand, R.; Birk Henriksen, U.

    2010-02-15

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kW{sub e} gen-set there would be a financial benefit of approximately 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood. The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating on this specific biomass producer gas. The results showed an increase in the electrical efficiency from 30% to 34% when the compression ratio was increased. (author)

  15. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  16. Turbulent spark-jet ignition in SI gas fuelled engine

    Directory of Open Access Journals (Sweden)

    Pielecha Ireneusz

    2017-01-01

    Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

  17. SI units in engineering and technology

    CERN Document Server

    Qasim, S H

    2016-01-01

    SI Units in Engineering and Technology focuses on the use of the International System of Units-Systeme International d'Unités (SI). The publication first elaborates on the SI, derivation of important engineering units, and derived SI units in science and engineering. Discussions focus on applied mechanics in mechanical engineering, electrical and magnetic units, stress and pressure, work and energy, power and force, and magnitude of SI units. The text then examines SI units conversion tables and engineering data in SI units. Tables include details on the sectional properties of metals in SI units, physical properties of important molded plastics, important physical constants expressed in SI units, and temperature, area, volume, and mass conversion. Tables that show the mathematical constants, standard values expressed in SI units, and Tex count conversion are also presented. The publication is a dependable source of data for researchers interested in the use of the International System of Units-Systeme Inter...

  18. Gas leak tightness of SiC/SiC composites at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hayasaka, Daisuke, E-mail: hayasaka@oasis.muroran-it.ac.jp [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Park, Joon-Soo. [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE-SiC/SiC has extremely densified microstructure compared with other SiC/SiC composite like CVI. • Excellent helium and hydrogen gas-leak tightness of SiC/SiC composites by DEMO-NITE method from prototype industrialization production line was presented. • The excellence against stainless steel and Zircaloy at elevated temperature, together with generic excellent properties of SiC will be inevitable for innovative blanket and divertors for DEMO- and power- fusion reactors. - Abstract: SiC/SiC composite materials are attractive candidates for high heat flux components and blanket of fusion reactor, mainly due to their high temperature properties, radiation damage tolerance and low induced radioactivity. One of the challenges for SiC/SiC application in fusion reactors is to satisfy sufficient gas leak tightness of hydrogen and helium isotopes. Although many efforts have been carried-out, SiC/SiC composites by conventional processes have not been successful to satisfy the requirements, except SiC/SiC composites by NITE-methods. Toward the early realization of SiC/SiC components into fusion reactor systems process development of NITE-process has been continued. Followed to the brief introduction of recently developed DEMO-NITE process, baseline properties and hydrogen and helium gas leak tightness is presented. SiC/SiC claddings with 10 mm in diameter and 1 mm in wall thickness are tested by gas leak tightness system developed. The leak tightness measurements are done room temperature to 400 °C. Excellent gas leak tightness equivalent or superior to Zircaloy claddings for light water fission reactors is confirmed. The excellent gas leak tightness suggests nearly perfect suppression of large gas leak path in DEMO-NITE SiC/SiC.

  19. NOx emission control in SI engine by adding argon inert gas to intake mixture

    International Nuclear Information System (INIS)

    Moneib, Hany A.; Abdelaal, Mohsen; Selim, Mohamed Y.E.; Abdallah, Osama A.

    2009-01-01

    The Argon inert gas is used to dilute the intake air of a spark ignition engine to decrease nitrogen oxides and improve the performance of the engine. A research engine Ricardo E6 with variable compression was used in the present work. A special test rig has been designed and built to admit the gas to the intake air of the engine for up to 15% of the intake air. The system could admit the inert gas, oxygen and nitrogen gases at preset amounts. The variables studied included the engine speed, Argon to inlet air ratio, and air to fuel ratio. The results presented here included the combustion pressure, temperature, burned mass fraction, heat release rate, brake power, thermal efficiency, volumetric efficiency, exhaust temperature, brake specific fuel consumption and emissions of CO, CO 2 , NO and O 2 . It was found that the addition of Argon gas to the intake air of the gasoline engine causes the nitrogen oxide to reduce effectively and also it caused the brake power and thermal efficiency of the engine to increase. Mathematical program has been used to obtain the mixture properties and the heat release when the Argon gas is used.

  20. Survey of modern power plants driven by diesel and gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, S. [Turku Polytechnic, Turku (Finland)

    1997-12-31

    This report surveys the latest technology of power plants driven by reciprocating internal combustion (IC) engines, from information collected from publications made mainly during the 1990`s. Diesel and gas engines are considered competitive prime movers in power production due mainly to their high full- and part-load brake thermal efficiency, ability to burn different fuels, short construction time and fast start-ups. The market for engine power plants has grown rapidly, with estimated total orders for reciprocating engines of 1 MW output and more reaching the 5000 unit level, (10 GW), between June 1995 and May 1996. Industrialized countries much prefer combined heat and power (CHP) production. Intense interest has been shown in recent years in alternative gas fuels; natural gas appears to be the most promising, but liquid petroleum gas, gas from sewage disposal plants, landfill gas and other biogases, as well as wood gas have also been recognized as other alternatives. Liquid alternatives such as fuels and pyrolysis oil have also been mentioned, in addition to information on coal burning engines. The percentage of gas engines used has increased and different ones are being developed, based on either the traditional spark ignition (SI), dual-fuel technology or the more recent high pressure gas injection system. In cold climates, energy production is largely based on CHP plants. Waste heat is utilized for local, regional or district heating or for industrial uses like drying, heating, cooling etc. Even radiative and convective heat from gen-set surfaces are employed, and boilers are used with exhaust outlet temperatures of below dew point. Combined cycle schemes, including turbo compound systems and steam turbines, are also incorporated into engine power plants in order to increase output and efficiency. Two-stroke, low-speed diesel engine plants show the highest electric efficiencies, with combined cycle plants reaching up to 54 %, while gas engine plants achieved

  1. Survey of modern power plants driven by diesel and gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, S [Turku Polytechnic, Turku (Finland)

    1998-12-31

    This report surveys the latest technology of power plants driven by reciprocating internal combustion (IC) engines, from information collected from publications made mainly during the 1990`s. Diesel and gas engines are considered competitive prime movers in power production due mainly to their high full- and part-load brake thermal efficiency, ability to burn different fuels, short construction time and fast start-ups. The market for engine power plants has grown rapidly, with estimated total orders for reciprocating engines of 1 MW output and more reaching the 5000 unit level, (10 GW), between June 1995 and May 1996. Industrialized countries much prefer combined heat and power (CHP) production. Intense interest has been shown in recent years in alternative gas fuels; natural gas appears to be the most promising, but liquid petroleum gas, gas from sewage disposal plants, landfill gas and other biogases, as well as wood gas have also been recognized as other alternatives. Liquid alternatives such as fuels and pyrolysis oil have also been mentioned, in addition to information on coal burning engines. The percentage of gas engines used has increased and different ones are being developed, based on either the traditional spark ignition (SI), dual-fuel technology or the more recent high pressure gas injection system. In cold climates, energy production is largely based on CHP plants. Waste heat is utilized for local, regional or district heating or for industrial uses like drying, heating, cooling etc. Even radiative and convective heat from gen-set surfaces are employed, and boilers are used with exhaust outlet temperatures of below dew point. Combined cycle schemes, including turbo compound systems and steam turbines, are also incorporated into engine power plants in order to increase output and efficiency. Two-stroke, low-speed diesel engine plants show the highest electric efficiencies, with combined cycle plants reaching up to 54 %, while gas engine plants achieved

  2. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  3. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  4. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  5. Mean Value Modelling of a Turbocharged SI Engine

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    An important paradigm for the modelling of naturallly aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines...... but not the cycle-by-cycle behavior. In principle such models are also physically based,are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple...... physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has...

  6. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  7. Flex Fuel Optimized SI and HCCI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guoming [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Schock, Harold [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Yang, Xiaojian [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Huisjen, Andrew [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Stuecken, Tom [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Moran, Kevin [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Zhen, Ren [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Zhang, Shupeng [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Opra, John [Chrysler Corporation, Auburn Hill, MI (United States); Reese, Ron [Chrysler Corporation, Auburn Hill, MI (United States)

    2013-12-20

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for

  8. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  9. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Fu, Jianqin; Deng, Banglin; Liu, Jingping; Wang, Linjun; Xu, Zhengxin; Yang, Jing; Shu, Gequn

    2014-01-01

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  10. Electric Engines to Gas

    International Nuclear Information System (INIS)

    Novoa, M.G.

    1996-01-01

    Environmental pollution and specially air pollution, it is produced in a wide range by exhaust gases of internal combustion engines, those which are used to generate energy. Direct use of fossil combustibles as petroleum derivatives and coal produces large quantities of harmful elements to ecology equilibrium. Whit the objective of reducing this pollutant load has been development thermoelectric plants whit turbine to gas or to steam, those which are moved by internal combustion engines. Gas engines can burn most of available gases, as both solid waste and wastewater treatment plants biogas, propane gas, oil-liquefied gas or natural gas. These gases are an alternative and clean energy source, and its efficiency in internal combustion engines is highest compared whit other combustibles as gasoline-motor or diesel

  11. Imaging with SiPMs in noble-gas detectors

    International Nuclear Information System (INIS)

    Yahlali, N; González, K; Fernandes, L M P; Garcia, A N C; Soriano, A

    2013-01-01

    Silicon photomultipliers (SiPMs) are photosensors widely used for imaging in a variety of high energy and nuclear physics experiments. In noble-gas detectors for double-beta decay and dark matter experiments, SiPMs are attractive photosensors for imaging. However they are insensitive to the VUV scintillation emitted by the noble gases (xenon and argon). This difficulty is overcome in the NEXT experiment by coating the SiPMs with tetraphenyl butadiene (TPB) to convert the VUV light into visible light. TPB requires stringent storage and operational conditions to prevent its degradation by environmental agents. The development of UV sensitive SiPMs is thus of utmost interest for experiments using electroluminescence of noble-gas detectors. It is in particular an important issue for a robust and background free ββ0ν experiment with xenon gas aimed by NEXT. The photon detection efficiency (PDE) of UV-enhanced SiPMs provided by Hamamatsu was determined for light in the range 250–500 nm. The PDE of standard SiPMs of the same model (S10362-33-50C), coated and non-coated with TPB, was also determined for comparison. In the UV range 250–350 nm, the PDE of the standard SiPM is shown to decrease strongly, down to about 3%. The UV-enhanced SiPM without window is shown to have the maximum PDE of 44% at 325 nm and 30% at 250 nm. The PDE of the UV-enhanced SiPM with silicon resin window has a similar trend in the UV range, although it is about 30% lower. The TPB-coated SiPM has shown to have about 6 times higher PDE than the non-coated SiPM in the range 250–315 nm. This is however below the performance of the UV-enhanced prototypes in the same wavelength range. Imaging in noble-gas detectors using UV-enhanced SiPMs is discussed.

  12. Hydrogen Addition for Improved Lean Burn Capability on Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Tobias [Lund Inst. of Technology (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    Lean burn spark ignition (SI) engines powered by natural gas is an attractive alternative to the Diesel engine, especially in urban traffic, where reduction of tailpipe emissions are of great importance. A major benefit is the large reduction in soot (PM). Lean burn spark ignition (SI) engines yield high fuel conversion efficiency and also relatively low NO{sub x} emissions at full load. In order to improve the engine operating characteristics at lower loads, the {lambda}-value is normally reduced to some degree, with increased NO{sub x} emissions and reduced efficiency as a result. This is a drawback for the lean burn engines, especially in urban applications such as in city buses and distribution trucks for urban use. So, it is desirable to find ways to extend the lean limit at low loads. One way to improve these part load properties is to add hydrogen to the natural gas in order to improve the combustion characteristics of the fuel. It is possible to extend the lean limit of a natural gas engine by addition of hydrogen to the primary fuel. This report presents measurements made on a single cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0 to 20 %-vol) added to natural gas. Three operating conditions were investigated for each combustion chamber and each hydrogen content level; idle, wide open throttle (WOT) and a high load condition (simulated turbo charging). For all three operating conditions, the air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, the ignition timing was swept in order to find maximum brake torque (MBT) timing. In some cases were the ignition timing limited by knock. Heat release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean

  13. Fabrication and gas sensing properties of vertically aligned Si nanowires

    Science.gov (United States)

    Mirzaei, Ali; Kang, Sung Yong; Choi, Sun-Woo; Kwon, Yong Jung; Choi, Myung Sik; Bang, Jae Hoon; Kim, Sang Sub; Kim, Hyoun Woo

    2018-01-01

    In this study, a peculiar configuration for a gas sensor consisting of vertically aligned silicon nanowires (VA-Si NWs) synthesized by metal-assisted chemical etching (MACE) is reported. Si NWs were prepared via a facile MACE method and subsequent thermal annealing. Etching was performed by generation of silver nanoparticles (Ag NPs) and subsequent etching in HF/H2O2 aqueous solution; the growth conditions were optimized by changing the process parameters. Highly vertically oriented arrays of Si NWs with a straight-line morphology were obtained, and a top-top electrode configuration was applied. The VA-Si NW gas sensor showed good sensing performance, and the VA-Si NWs exhibited a remarkable response (Rg/Ra = 11.5 ∼ 17.1) to H2 gas (10-50 ppm) at 100 °C which was the optimal working temperature. The formation mechanism and gas sensing mechanism of VA-Si NWs are described. The obtained results can suggest new approaches to making inexpensive, versatile, and portable sensors based on Si NWs having a novel top-top electrode structure that are fully compatible with well-developed Si technologies.

  14. Direct injection of gaseous LPG in a two-stroke SI engine for improved performance

    International Nuclear Information System (INIS)

    Pradeep, V.; Bakshi, Shamit; Ramesh, A.

    2015-01-01

    Improvements in a two-stroke, spark-ignition (2S–SI) engine can be realized by curtailing short-circuiting losses effectively through direct injection of the fuel. Liquefied petroleum gas (LPG) is an alternative transportation fuel that is used in several countries. However, limited information is available on LPG fuelled direct injected engines. Hence, there is a need to study these systems as applied to 2S–SI engines in order to bring out their potential benefits. A manifold injected 2S–SI engine is modified for direct injection of LPG, in gaseous form, from the cylinder head. This engine is evaluated for performance, emission and combustion. Evaluation at various throttle positions and constant speed showed that this system can significantly improve the thermal efficiency and lower the hydrocarbon (HC) emissions. Up to 93% reduction in HC emissions and improved combustion rates are observed compared to the conventional manifold injection system with LPG. CO emissions are higher and peak NO emissions are lower with this system due to the presence of richer in–cylinder trapped mixtures and charge stratification. This system can operate with similar injection timings at different throttle positions which make electronic control simpler. It can work with low injection pressures in the range of 4–5 bars. All these advantages are attractive for commercial viability of this engine. - Highlights: • Energy saving, low pressure, direct gaseous LPG injection in engine. • Significant reduction in HC emissions at all operating conditions. • No significant changes in injection timings for different throttle positions.

  15. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    Science.gov (United States)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  16. Continuous Identification of a Four-Stroke SI Engine

    DEFF Research Database (Denmark)

    Melgaard, Henrik; Hendricks, Elbert; Madsen, Henrik

    1990-01-01

    Compact engine models often consist of a set of nonlinear differential equations which predict the time development of the mean value of the engine state variables (and perhaps some internal variables): such models are sometimes called mean value engine models. Currently a great deal of attention...... and Maximum Likelihood estimation). These techniques have been applied to a four cylinder SI engine. The results include an identification of the most important parameters and time constants of the engine. These are of interest for the construction of engine simulation models, for control studies...... is focused on constructing such continuous time models and on finding their parameters. This paper shows, that it is possible to identify an engine model from a linearized version of a mean value model for a CFI four-cycle spark ignition (SI) engine. Such an approach is useful because it preserves a physical...

  17. Prediction of the combustion process and emission formation of a bi-fuel s.i. engine

    International Nuclear Information System (INIS)

    D'Errico, Gianluca

    2008-01-01

    A thermodynamic model is developed and validated for the prediction of the combustion process and pollutant formation in s.i. engines, fuelled by gasoline and compressed natural gas. Attention is focused on the main physical and chemical phenomena to allow a reliable evaluation of the burning rate and of the specie concentrations, including intermediates such as CO, O, H, and OH. A new correlation for laminar flame speed of methane-air mixtures is derived by interpolating more than 1000 different conditions at high pressure and temperature, computed by a detailed chemical approach. Successively an extended dissertation about the fundamental mechanisms which govern the pollutant formation in the turbulent premixed combustion which characterizes the s.i. engines is given. The conclusion of such analysis is the definition of a new reduced chemical scheme, based on the application of partial-equilibrium and steady-state assumptions for the radicals and the solution of a transport equation for each specie which is kinetically controlled. Finally the proposed schemes and formulations were embedded into the developed quasi-D model and into a CFD code, to simulate a s.i. engine fuelled by gasoline and CNG, allowing a deeper understanding of the reliability of the simplifications made in the quasi-dimensional model and a comprehensive investigation of several physical and chemical properties, whose experimental measurement is not usually available. Computed results were compared with the available experimental data of in-cylinder pressure histories and engine emissions for two different engine configurations

  18. Measure of the volumetric efficiency and evaporator device performance for a liquefied petroleum gas spark ignition engine

    International Nuclear Information System (INIS)

    Masi, Massimo; Gobbato, Paolo

    2012-01-01

    Highlights: ► Measure of the effect of LPG fuel on volumetric efficiency of a SI petrol ICE. ► Steady-state and transient performance of a LPG evaporator device on a SI ICE. ► Volume displaced by LPG causes slight performance loss in SI petrol engines. ► LPG reveals peak efficiency and high-efficiency range wider than petrol in SI ICE’s. ► One-stage pressure reducer for LPG performs satisfactorily during SI ICE transients. - Abstract: The use of Liquefied Petroleum Gas (LPG) as fuel for spark ignition engines originally designed to be gasoline fuelled is common practice in many countries. Despite this, some questions remain still open. The present paper deals with the two main problems related to LPG port-fuel SI engines: the volumetric efficiency drop and the LPG evaporator device performance. A passengers car SI engine equipped with a “third generation” kit for the dual-fuel operation was tested using a dynamometer test rig. A single-stage pressure reducer was selected as LPG evaporator, to take advantage of an additional pre-heating of the liquid LPG that allows higher power output than a two-stage device of the same size. Engine performance, volumetric efficiency and change of LPG thermodynamic states in the evaporator were measured both in steady-state and transient operation of the engine. Steady-state measurements show the advantage of LPG in terms of engine efficiency, and quantify the drop in steady-state brake torque due to the volume swept by gaseous fuel in the fresh charge admission process. On the other hand, transient measurements show that a single-stage evaporator device is capable to match overall simplicity and satisfactory performance during strong changes in engine load.

  19. Limits of mixture dilution in gas engines

    NARCIS (Netherlands)

    Doosje, E.

    2010-01-01

    Natural gas engines find application in transport as well as for stationary power generation. These engines have a lower efficiency compared to the most widely used power plant, the diesel engine, however engines running on natural gas also have some distinct advantages. Gas engines that are

  20. Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel

    International Nuclear Information System (INIS)

    Yueksel, F.; Ceviz, M.A.

    2003-01-01

    This paper investigates the effects of adding constant quantity hydrogen to gasoline-air mixture on SI engine thermal balance and performance. A four stroke, four-cylinder SI engine was used for conducting this study. Thermal balance tests were conducted for engine thermal efficiency, heat loss through the exhaust gases, heat loss to the cooling water and unaccounted losses (i.e. heat lost by lubricating oil, radiation), while performance tests were in respect to the brake power, specific fuel consumption and air ratio. Hydrogen supplementations were used with three different and fixed mass flow rates; 0.129, 0.168 and 0.208 kg h -1 at near three-fourth throttle opening position and variable engine speed ranging from 1000 to 4500 rpm. The results showed that supplementation of hydrogen to gasoline decreases the heat loss to cooling water and unaccounted losses, and the heat loss through the exhaust gas is nearly the same with pure gasoline experiments. Additionally, specific fuel consumption decreases, while the engine thermal efficiency and the air ratio increase. Engine performance parameters such as thermal efficiency and specific fuel consumption improved the level of the ratio of hydrogen mass flow rate to that of gasoline up to 5%

  1. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  2. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... operates with varying excess of air due to variation in gas composition and thus stoichiometry, and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. The interaction between the gas engine and the gasification system has been...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  3. Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature

    Directory of Open Access Journals (Sweden)

    G. Behzadi pour

    Full Text Available In this study, fabrication of highly sensitive PdNPs/SiO2/Si hydrogen gas sensor using experimental and theoretical methods has been investigated. Using chemical method the PdNPs are synthesized and characterized by X-ray diffraction (XRD. The average size of PdNPs is 11 nm. The thickness of the oxide film was 20 nm and the surface of oxide film analyzed using Atomic-force microscopy (AFM. The C-V curve for the PdNPs/SiO2/Si hydrogen gas sensor in 1% hydrogen concentration and at the room temperature has been reported. The response time and recovery time for 1% hydrogen concentration at room temperature were 1.2 s and 10 s respectively. The response (R% for PdNPs/SiO2/Si MOS capacitor hydrogen sensor was 96%. The PdNPs/SiO2/Si MOS capacitor hydrogen sensor showed very fast response and recovery times compared to SWCNTs/PdNPs, graphene/PdNPs, nanorod/PdNPs and nanowire/PdNPs hydrogen gas sensors. Keywords: Sensitive, Oxide film, Capacitive, Resistance

  4. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  5. Dissolution of Si in Molten Al with Gas Injection

    Science.gov (United States)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which

  6. Development of natural gas rotary engines

    Science.gov (United States)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  7. Stirling Engine with Unidirectional Gas Flow

    OpenAIRE

    Blumbergs, Ilmars

    2014-01-01

    In this study, a Stirling engine with unidirectional gas flow configuration of beta type Stirling engine is described and studied from kinematic and thermodynamics points of view. Some aspects of the Stirling engine with unidirectional gas flow engine are compared to classic beta type Stirling engines. The aim of research has been to develop a new type of Stirling engine, using SolidWorks 3D design software and Flow Simulation software. In the development process, special attention has been d...

  8. Gas Turbine Engine Behavioral Modeling

    OpenAIRE

    Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris

    2014-01-01

    This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...

  9. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  10. Gas engine supplied with fermentation gas

    Energy Technology Data Exchange (ETDEWEB)

    Cupial, K

    1978-01-01

    A CH/sub 4/-rich fermentation gas from the waste-treatment plant at Czestochowa is used as fuel to drive the generating set composed of an electric generator and a piston diesel engine adapted to operation with the fermentation gas. The adaption involved the use of a classical car ignition installation instead of the injection pumps and injector. The gas contains approximately CH/sub 4/ 60, CO/sub 2/ 32, N 5, and H 3 volume%.

  11. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  12. Thermal detection mechanism of SiC based hydrogen resistive gas sensors

    Science.gov (United States)

    Fawcett, Timothy J.; Wolan, John T.; Lloyd Spetz, Anita; Reyes, Meralys; Saddow, Stephen E.

    2006-10-01

    Silicon carbide (SiC) resistive hydrogen gas sensors have been fabricated and tested. Planar NiCr contacts were deposited on a thin 3C-SiC epitaxial film grown on thin Si wafers bonded to polycrystalline SiC substrates. At 673K, up to a 51.75±0.04% change in sensor output current and a change in the device temperature of up to 163.1±0.4K were demonstrated in response to 100% H2 in N2. Changes in device temperature are shown to be driven by the transfer of heat from the device to the gas, giving rise to a thermal detection mechanism.

  13. Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas)

    International Nuclear Information System (INIS)

    Masi, Massimo

    2012-01-01

    The use of LPG (liquefied petroleum gas) as alternative fuel to petrol is common practise in spark ignition engines. While the main driving force to the use of LPG still remains the low cost for the end user, its favourable pollutant emissions, in particular carbon dioxide, will in the middle term probably increase interest in LPG as an IC engine fuel. In addition, there are both theoretical and technical reasons to consider LPG as an attractive fuel also in terms of engine performance. Despite the continuously increasing stock production of dual-fuel (petrol–LPG) passenger car models, doubts still exist about both real engine performance in LPG operation and the reliability of the dual-fuel feeding system. This paper deals with the theoretical advantages of using LPG as fuel for SI engines. Brake performance tests of a passenger car engine fed with petrol and LPG are analysed and compared. The stock engine has been equipped with a “third-generation” standard kit for dual-fuel operation. The performance reductions in LPG operation are discussed in both steady state and transient condition. The results of some modifications to the set-up of both the petrol and LPG metering devices, designed for a better justification of the measured performance, are also presented. -- Highlights: ► Experimental research on the actual performances of an SI engine fed with petrol and gaseous LPG. ► Theoretical advantages and drawbacks of fuelling SI ICE’s with LPG. ► Brake performance analysis shows a noticeable gap between LPG and petrol operation. ► Local measurements confirm that the thermodynamic operation of the evaporator-pressure reducer device is crucial for the engine performance. ► The performance of the up-to-date kit for petrol–LPG dual-fuel operation is greatly affected by the settings of the mechanical components of the LPG evaporator device.

  14. Modelling and Simulation of Gas Engines Using Aspen HYSYS

    Directory of Open Access Journals (Sweden)

    M. C. Ekwonu

    2013-12-01

    Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.

  15. Method of making an aero-derivative gas turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2018-02-06

    A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. A can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.

  16. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    Science.gov (United States)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  17. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  18. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    Science.gov (United States)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  19. CO Emissions from Gas Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, T. K.; Henriksen, Ulrik Birk

    2004-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where...

  20. Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines

    Science.gov (United States)

    Kolmakova, D.; Popov, G.

    2018-01-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  1. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf

    2016-06-07

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  2. Control apparatus for hot gas engine

    Science.gov (United States)

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  3. Mean Value Engine Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Müller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models what are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas...... Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experimental engine...

  4. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  5. Evaluation of SI engine exhaust gas emissions upstream and downstream of the catalytic converter

    International Nuclear Information System (INIS)

    Silva, C.M.; Costa, M.; Farias, T.L.; Santos, H.

    2006-01-01

    The conversion efficiency of a catalytic converter, mounted on a vehicle equipped with a 2.8 l spark ignition engine, was evaluated under steady state operating conditions. The inlet and outlet chemical species concentration, temperature and air fuel ratio (A/F) were measured as a function of the brake mean effective pressure (BMEP) and engine speed (rpm). Oil temperature, coolant temperature, brake power and spark advance were also monitored. In parallel, a mathematical model for the catalytic converter has been developed. The main inputs of the model are the temperature, flow rate, chemical species mass flow and local A/F ratio as measured at the catalyst inlet section. The main conclusions are: (i) the exhaust gas and substrate wall temperatures at the catalyst outlet increase with BMEP and rpm; (ii) the HC conversion efficiency increases with the value of BMEP up to a maximum beyond which it decreases; (iii) the CO conversion efficiencies typically increase with BMEP; (iv) the NO x conversion efficiency remains nearly constant regardless of BMEP and rpm; (v) except for idle, the NO x conversion efficiency is typically the highest, followed in turn by the CO and HC conversion efficiencies; (vi) conversion efficiencies are lower for idle conditions, which can be a problem under traffic conditions where idle is a common situation; (vii) regardless of rpm and load, for the same flow rate the conversion efficiency is about the same; (viii) the model predictions slightly over estimate the exhaust gas temperature data at the catalyst outlet section with the observed differences decreasing with BMEP and engine speed; (ix) in general, the model predictions of the conversion efficiencies are satisfactory

  6. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  7. Study of gas (CNG) SI engine with pre-chamber. Improvement of the indicated thermal efficiency on lean mixture with EGR and supercharging; Fukushitsushiki hibana tenka asshuku tennen gas (CNG) engine ni kansuru kenkyu. Kakyu to EGR ni yoru kihakuiki no netsukoritsu kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yonetani, H.; Fukutani, I. [Polytechnic University, Kanagawa (Japan)

    1998-10-15

    As lean burn of compressed natural gas (CNG) is applied to conventional gasoline engines, a combustion period largely increases, resulting in large combustion fluctuation and low thermal efficiency. Heterogeneous spacial air/fuel ratios also have an effect on combustion in lean burn area. By preparing a pre-chamber for a combustion chamber of high- compression ratio CNG pre-mixing SI engines to utilize premixture turbulence, rapid flame propagation is obtained in lean burn area, resulting high combustion performance. Furthermore, study was made on improvement of combustion performance in lean burn area under various compression ratios, intake pressures, pre-chamber shapes and EGR ratios. As a result, lean burn operation at high intake pressure by supercharging showed possible improvement of a thermal efficiency and expansion of inflammable limits. Higher thermal efficiency in lean burn area was also obtained by using higher compression ratios considering heat loss. Although EGR was effective in controlling NOx formed in lean burn area, strict control of both air excess rate and EGR rate was required to prevent lower thermal efficiency. 2 refs., 8 figs., 1 tab.

  8. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  9. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  10. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  11. Assessment of total efficiency in adiabatic engines

    Science.gov (United States)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  12. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  13. Highly selective SiO2 etching over Si3N4 using a cyclic process with BCl3 and fluorocarbon gas chemistries

    Science.gov (United States)

    Matsui, Miyako; Kuwahara, Kenichi

    2018-06-01

    A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.

  14. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  15. Potentials of NO{sub X} emission reduction methods in SI hydrogen engines: Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Safari, H.; Jazayeri, S.A. [Department of Mechanical Engineering, K.N. Toosi University of Technology, No.15, Pardis Street, Vanak Square, Tehran (Iran); Ebrahimi, R. [Department of Aerospace Engineering, K.N. Toosi University of Technology, 4th Tehranpars Square, East Vafadar Street, Tehran (Iran)

    2009-01-15

    The ever increasing cost of hydrocarbon fuels and more stringent emission standards may resolve challenges in producing hydrogen and using it as an alternative fuel in industries. Internal combustion engines are well-established technology and hydrogen fuel in such engines is considered as an attractive choice in exploiting clean, efficient and renewable hydrogen energy. This work presents an improved thermo-kinetics model for simulation of hydrogen combustion in SI engines. The turbulent propagating flame is modeled using turbulent burning velocity model. During combustion the charge is divided into three zones containing unburned charge, flame and burned gas. The adiabatic flame is assumed to be in thermodynamic equilibrium while the detailed chemical kinetics scheme is considered for burned and unburned zones. The results were first validated against published experiments. Good agreements were obtained between simulation and experiment for varying equivalence ratio, ignition timing and compression ratio. Detailed analysis of engine NO{sub X} emission was performed afterward. The lean-burn and EGR strategies' potentials were examined by the current model. The effects of different amounts of cooled dry EGR and hot wet EGR on the NO{sub X} emission, engine power output and indicated thermal efficiency were investigated and compared theoretically. (author)

  16. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  17. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  18. Natural gas in a D. I. diesel engine. A comparison of two different ways. [Direct injection diesel enginer

    Energy Technology Data Exchange (ETDEWEB)

    Jun-ming, Qu; Sorenson, S.C.; Kofoed, E.

    1987-01-01

    A D.I. diesel engine was modified for natural gas operation with pilot injection and with spark ignition so that a comparative analysis of these two different ways of using natural gas could be made. The results of the experiments indicate that for a diesel engine, it is possible that the operating characteristics of a straight natural gas engine are comparable with those of a diesel/gas engine at the same compression ratio and speed. For a dual fuel engine with pilot injection the best diesel/gas ratio by energy content is approximately 20/80 at full load operation. For straight natural gas engine with spark ignition, quality governed natural gas operation has good efficiency but poor NOx emissions. This problem could be improved through throttle controlled operation. These two different ways of using natural gas are best suited to stationary engines.

  19. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  20. GAS TURBINE ENGINES CONSUMING BIOGAS

    Directory of Open Access Journals (Sweden)

    Е. Ясиніцький

    2011-04-01

    Full Text Available A problem of implementation of biofuel for power plants of big capacity was considered in thisarticle. Up to date in the world practice a wide implementation of biogas plants of low and medialcapacity are integrated. It is explained by the big amount of enterprises in which relatively smallvolumes of organic sediment excrete in the process of its activity. An emphasis of article is on thatenterprises, which have big volumes of sediments for utilizing of which module system of medialcapacity biogas plants are non-effective. The possibility of using biogas and biomethane as a fuelfor gas turbine engine is described. The basic problems of this technology and ways of its solutionsare indicated. Approximate profitability of biogas due to example of compressor station locatednearby poultry factory was determined also. Such factors as process characteristics of engine withcapacity of 5 MW, approximate commercial price for natural gas and equipment costs due toofficial sources of “Zorg Ukraine” company was taken into consideration. The necessity forproviding researches on influence of biogas on the process characteristics of gas turbine engine andits reliability, constructing modern domestic purification system for biogas was shown.

  1. Particulate emission characteristics of a port-fuel-injected SI engine

    International Nuclear Information System (INIS)

    Gupta, S.; Poola, R.; Lee, K. O.; Sekar, R.

    2000-01-01

    Particulate emissions from spark-ignited (SI) engines have come under close scrutiny as they tend to be smaller than 50 nm, are composed mainly of volatile organic compounds, and are emitted in significant numbers. To assess the impact of such emissions, measurements were performed in the exhaust of a current-technology port-fuel-injected SI engine, which was operated at various steady-state conditions. To gain further insights into the particulate formation mechanisms, measurements were also performed upstream of the catalytic converter. At all engine speeds, a general trend was observed in the number densities and mass concentrations: a moderate increase at low loads followed by a decrease at mid-range loads, which was followed by a steep increase at high loads. Within reasonable bounds, one could attribute such a trend to three different mechanisms. An unidentified mechanism at low loads results in particulate emissions monotonically increasing with load. At medium loads, wherein the engine operates close to stoichiometric conditions, high exhaust temperatures lead to particulate oxidation. At high loads, combustion occurs mostly under fuel-rich conditions, and the contribution from combustion soot becomes significant. Estimates of the number of particles emitted per kilometer by a vehicle carrying the current test engine were found to be lower than those from a comparable diesel vehicle by three orders of magnitude. Similar estimates for mass emissions (grams of particulates emitted per kilometer) were found to be two orders of magnitude lower than the future regulated emission value of 0.006 (g/km) for light-duty diesel vehicles. Moreover, considering the fact that these particles have typical lifetimes of 15 min, the health hazard from particulate emissions from SI engines appears to be low

  2. Aircraft propulsion and gas turbine engines

    National Research Council Canada - National Science Library

    El-Sayed, Ahmed F

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii xxxi xxxiii xxxv Part I Aero Engines and Gas Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C...

  3. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    Isogai, H.; Toyoda, E.; Senda, T.; Izunome, K.; Kashima, K.; Toyoda, N.; Yamada, I.

    2007-01-01

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF 6 -GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  4. SiGe-based re-engineering of electronic warfare subsystems

    CERN Document Server

    Lambrechts, Wynand

    2017-01-01

    This book equips readers with a thorough understanding of the applicability of new-generation silicon-germanium (SiGe) electronic subsystems for the military purposes of electronic warfare and defensive countermeasures. The theoretical and technical background is extensively explained and all aspects of the integration of SiGe as an enabling technology for maritime, land, and airborne (including space) electronic warfare are addressed, including research, design, development, and implementation. The coverage is supported by mathematical derivations, informative illustrations, practical examples, and case studies. While SiGe technology provides speed, performance, and price advantages in many markets, sharing of information on its use in electronic warfare systems has to date been limited, especially in developing nations. This book will therefore be warmly welcomed as an engineering guideline that focuses especially on the speed and reliability of current-generation SiGe circuits and highlights emerging innov...

  5. Controlling LPG temperature for SI engine applications

    International Nuclear Information System (INIS)

    Ceviz, Mehmet Akif; Kaleli, Alirıza; Güner, Erdoğan

    2015-01-01

    In this study, the effects of the LPG temperature on the engine performance and the exhaust emission characteristics have been investigated experimentally on an SI engine. In conventional injection systems, the LPG temperature increases excessively during the phase change in pressure regulator, and reduces the engine volumetric efficiency. According to the test results, engine performance and NO emission characteristics can be improved by controlling the LPG temperature before injecting to the engine intake manifold. A new control system taking into account the results of the study has been developed and tested. In order to control the LPG temperature, the coolant flow rate in pressure regulator circuit was arranged by using a control valve activated by a PID controller unit. Results of the study showed that the engine brake power loss can be increased by about 1.85% and NO emissions can be decreased by about 2% as compared to the operation with the original LPG injection system. - Highlights: • Effects of the LPG temperature have been examined. • Engine performance characteristics and exhaust emissions have been studied. • Results reveal that the LPG temperature should be kept in a range. • A prototype LPG temperature control system has been successfully developed

  6. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  7. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  8. The application of cast SiC/Al to rotary engine components

    Science.gov (United States)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  9. Gas-source molecular beam epitaxy of Si(111) on Si(110) substrates by insertion of 3C-SiC(111) interlayer for hybrid orientation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bantaculo, Rolando, E-mail: rolandobantaculo@yahoo.com; Saitoh, Eiji; Miyamoto, Yu; Handa, Hiroyuki; Suemitsu, Maki

    2011-11-01

    A method to realize a novel hybrid orientations of Si surfaces, Si(111) on Si(110), has been developed by use of a Si(111)/3C-SiC(111)/Si(110) trilayer structure. This technology allows us to use the Si(111) portion for the n-type and the Si(110) portion for the p-type channels, providing a solution to the current drive imbalance between the two channels confronted in Si(100)-based complementary metal oxide semiconductor (CMOS) technology. The central idea is to use a rotated heteroepitaxy of 3C-SiC(111) on Si(110) substrate, which occurs when a 3C-SiC film is grown under certain growth conditions. Monomethylsilane (SiH{sub 3}-CH{sub 3}) gas-source molecular beam epitaxy (GSMBE) is used for this 3C-SiC interlayer formation while disilane (Si{sub 2}H{sub 6}) is used for the top Si(111) layer formation. Though the film quality of the Si epilayer leaves a lot of room for betterment, the present results may suffice to prove its potential as a new technology to be used in the next generation CMOS devices.

  10. Engine with pulse-suppressed dedicated exhaust gas recirculation

    Science.gov (United States)

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  11. A Room-temperature Hydrogen Gas Sensor Using Palladium-decorated Single-Walled Carbon Nanotube/Si Heterojunction

    Directory of Open Access Journals (Sweden)

    Yong Gang DU

    2016-05-01

    Full Text Available We report a room-temperature (RT hydrogen gas (H2 sensor based on palladium-decorated single-walled carbon nanotube/Si (Pd-SWNTs/Si heterojunction. The current-voltage (I-V curves of the Pd-SWNTs/Si heterojunction in different concentrations of H2 were measured. The experimental results reveal that the Pd-SWNTs/Si heterojunction exhibits high H2 response. After exposure to 0.02 %, 0.05 %, and 0.1 % H2 for 10 min, the resistance of the heterojunction increases dramatically. The response is 122 %, 269 % and 457 %, respectively. A simple interfacial theory is used to understand the gas sensitivity results. This approach is a step toward future CNTs-based gas sensors for practical application.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12925

  12. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  13. Mathematical modeling of the complete thermodynamic cycle of a new Atkinson cycle gas engine

    International Nuclear Information System (INIS)

    Shojaeefard, Mohammad Hassan; Keshavarz, Mojtaba

    2015-01-01

    The Atkinson cycle provides the potential to increase the efficiency of SI engines using overexpansion concept. This also will suggest decrease in CO_2 generation by internal combustion engine. In this study a mathematical modeling of complete thermodynamic cycle of a new two-stroke Atkinson cycle SI engine will be presented. The mathematical modeling is carried out using two-zone combustion analysis in order to make the model predict exhaust emission so that its values could be compared with the values of conventional SI engine. The model also is validated against experimental tests in that increase in efficiency is achieved compared to conventional SI engines. - Highlights: • The complete cycle model for the rotary Atkinson engine was developed. • Comparing the results with experimental data shows good model validity. • The model needs further improvement for the scavenging phase. • There is 5% increment in thermal efficiency with new engine compared to conventional SI engines.

  14. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  15. METHODS FOR ORGANIZATION OF WORKING PROCESS FOR GAS-DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2017-01-01

    Full Text Available Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the means to reduce air pollution caused by toxic substances and meet growing environmental standards and regulations. In this regard, an analysis of methods for organization of working process for a gas-diesel engine has been conducted in the paper. The paper describes parameters that influence on the nature of gas diesel process, it contains graphics of specific total heat consumption according to ignition portion of diesel fuel and dependence of gas-diesel indices on advance angle for igni-tion portion injection of the diesel fuel. A modern fuel system of gas-diesel engine ГД-243 has been demonstrated in the pa- per. The gas-diesel engine has better environmental characteristics than engines running on diesel fuel or gasoline. According to the European Natural & bio Gas Vehicle Association a significant reduction in emissions is reached at a 50%-substitution level of diesel fuel by gas fuel (methane and in such a case there is a tendency towards even significant emission decrease. In order to ensure widespread application of gaseous fuel as fuel for gas-diesel process it is necessary to develop a new wor- king process, to improve fuel equipment, to enhance injection strategy and fuel supply control. A method for organization of working process for multi-fuel engine has been proposed on the basis of the performed analysis. An application has been submitted for a patent.

  16. Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine

    International Nuclear Information System (INIS)

    McMillian, Michael H.; Lawson, Seth A.

    2006-01-01

    In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict H 2 and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hph) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20% H 2 yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. (author)

  17. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  18. Session 4: On-board exhaust gas reforming for improved performance of natural gas HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Amieiro, A.; Golunski, S.; James, D. [Johnson Matthey Technology Centre, Sonning Common, Reading (United Kingdom); Miroslaw, Wyszynski; Athanasios, Megaritis; Peucheret, S. [Birmingham Univ., School of Engineering, Future Power Systems Research Group (United Kingdom); Hongming, Xu [Jaguar Cars Ltd, W/2/021 Engineering Centre, Whitley, Coventry (United Kingdom)

    2004-07-01

    Although natural gas (NG) is a non-renewable energy source, it is still a very attractive alternative fuel for transportation - it is inexpensive, abundant, and easier to refine than petroleum. Unfortunately the minimum spark energy required for NG ignition is higher than for liquid fuels, and engine performance is reduced since the higher volume of NG limits the air breathing capacity of the cylinders. On the other hand, the flammability range of NG is wider than for other hydrocarbons, so the engine can operate under leaner conditions. Environmentally, the use of NG is particularly attractive since it has a low flame temperature (resulting in reduced NO{sub x} emissions) and a low carbon content compared to diesel or gasoline (resulting in less CO, CO{sub 2} and particulate). In addition, NG is easily made sulphur-free, and has a high octane rating (RON = 110-130) which makes it suitable for high compression engine applications. Exhaust gas recirculation (EGR) into an engine is known to reduce both flame temperature and speed, and therefore produce lower NO{sub x} emissions. In general, a given volume of exhaust gas has a greater effect on flame speed and NO{sub x} emissions than the same quantity of excess air, although there is a limit to the amount of exhaust gas recirculation that can be used without inhibiting combustion. However, hydrogen addition to exhaust gas recirculation has been proved to reduce emissions while increasing flame speed, so improving both the emissions and the thermal efficiency of the engine. On-board reforming of some of the fuel, by reaction with exhaust gas during EGR, is a novel way of adding hydrogen to an engine. We have carried out reforming tests on mixtures of natural gas and exhaust gas at relatively low temperatures (400-600 C), to mimic the low availability of external heat within the integrated system. The reforming catalyst is a nickel-free formulation, containing precious metals promoted by metal oxides. The roles of

  19. (FeCo)3Si-SiOx core-shell nanoparticles fabricated in the gas phase

    International Nuclear Information System (INIS)

    Bai Jianmin; Xu Yunhao; Thomas, John; Wang Jianping

    2007-01-01

    A method of fabricating core-shell nanoparticles by using an integrated nanoparticle deposition technique in the gas phase is reported. The principle of the method is based on nanoparticle growth from the vapour phase, during which elements showing lower surface energies prefer to form the shells and elements showing higher surface energies prefer to stay in the cores. This method was applied successfully to the Fe-Co-Si ternary system to fabricate core-shell-type nanoparticles. The nanoparticles were exposed in air after collection to achieve oxidation. The analysis results based on transmission electron microscopy (TEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and a superconducting quantum interference device (SQUID) showed that the core parts are magnetic materials of body-centred cubic (bcc) structured (FeCo) 3 Si of 15 nm in diameter, and the shell parts are amorphous SiO x of 2 nm in thickness. These core-shell-type nanoparticles show a magnetic anisotropy constant of about 7 x 10 5 erg cm -3 and a saturation magnetization of around 1160 emu cm -3 , which is much higher than that of iron oxide. After annealing at 300 deg. C in air (FeCo) 3 Si-SiO x core-shell-type nanoparticles showed a little bit of a drop in magnetic moment, while pure FeCo nanopariticles totally lost their magnetic moment. This means that the shells of SiO x are dense enough to prevent the magnetic cores from oxidation

  20. Optimization of large bore gas engine

    International Nuclear Information System (INIS)

    Laiminger, S.

    1999-01-01

    This doctoral thesis is concerned with the experimental part of combustion optimization of a large bore gas engine. Nevertheless there was a very close co-operation with the simultaneous numeric simulation. The terms of reference were a systematic investigation of the optimization potential of the current combustion mode with the objective target to get a higher brake efficiency and lower NO x emissions. In a second part a new combustion mode for fuels containing H 2 , for fuels with very low heating value and for special fuels should be developed. The optimization contained all relevant components of the engine to achieve a stable and well suited combustion with short duration even with very lean mixture. After the optimization the engine was running stable with substantial lower NO x emissions. It was world-wide the first time when a gas medium-sized engine could reach a total electrical efficiency of more than 40 percent. Finally a combustion mode for gaseous fuels containing H 2 was developed. The engine is running now with direct ignition and with prechamber ignition. Both modes reach approximately the same efficiency and thermodynamic stability. (author)

  1. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  2. Mean Value SI Engine Model for Control Studies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Sorenson, Spencer C

    1990-01-01

    This paper presents a mathematically simple nonlinear three state (three differential equation) dynamic model of an SI engine which has the same steady state accuracy as a typical dynamometer measurement of the engine over its entire speed/load operating range (± 2.0%). The model's accuracy...... for large, fast transients is of the same order in the same operating region. Because the model is mathematically compact, it has few adjustable parameters and is thus simple to fit to a given engine either on the basis of measurements or given the steady state results of a larger cycle simulation package....... The model can easily be run on a Personal Computer (PC) using a ordinary differential equation (ODE) integrating routine or package. This makes the model is useful for control system design and evaluation....

  3. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  4. Gas-Generator Augmented Expander Cycle Rocket Engine

    Science.gov (United States)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  5. CO and PAH emissions from engines operating on producer gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2005-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. The standing regulations concerning CO emissions from gas engine based power plants in most EU countries are so ...

  6. Experimental investigation on SI engine using gasoline and a hybrid iso-butanol/gasoline fuel

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2015-01-01

    Highlights: • iso-Butanol–gasoline blends (iB) using up to 10 vol.% butanol were examined in SIE. • iB extensively decrease the greenhouse effect of SI engine. • iB without engine tuning led to a drop in engine performance at all speeds. • iB provide higher performance and lower CO and CO 2 emissions than n-butanol blends. • iB grant lower CO and UHC than gasoline at <2900 r/min, but overturn at >2900 r/min. - Abstract: Experimental investigation on pollutant emissions and performance of SI engine fueled with gasoline and iso-butanol–gasoline blends is carried out. Engine was operated at speed range of 2600–3400 r/min for each blend (3, 7 and 10 vol.% iso-butanol) and neat gasoline. Results declare that the CO and UHC emissions of neat gasoline are higher than those of the blended fuels for speeds less than or equal to 2900 r/min; however, for speeds higher than 2900 r/min, we have an opposite impact where the blended fuels produce higher level of CO and UHC emissions than the gasoline fuel. The CO 2 emission at using iso-butanol–gasoline blends is always lower than the neat gasoline at all speeds by up to 43%. The engine performance results demonstrate that using iso-butanol–gasoline blends in SI engine without any engine tuning lead to a drop in engine performance within all speed range. Without modifying the engine system, overall fuel combustion of iso-butanol–gasoline blends was quasi-complete. However, when engine system is optimized for blended fuels, iso-butanol has significant oxygen content and that can lead to a leaner combustion, which improves the completeness of combustion and therefore high performance and less emissions would be obtained. Finally, the performance and emissions of iso-butanol–gasoline blends are compared with those of n-butanol–gasoline blends at similar blended rates and engine working conditions. Such comparison is directed to evaluate the combustion dissimilarity of the two butanol isomers and also to

  7. Gas fired engines for power plants - innovations and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, I. [Technology Division, Waertsilae (Finland)

    2001-07-01

    Waertsilae has recently introduced a range of completely new gas engines with their performance on record levels. High efficiency and low emission together with fuel and operation flexibility have been achieved. The progress is based on innovative engine design and advanced programmable control systems for fuel injection, combustion and the engine as a whole. The gas engine concept is particularly interesting for decentralised power production with fuel and/or power cycling. The Waertsilae 18V50DF dual fuel engine with a unit size of 17 MW will be a challenger also for bigger plants. (orig.)

  8. Experience in education and training of gas engineers in Russia

    International Nuclear Information System (INIS)

    Basniev, K.; Vladimirov, A.

    1997-01-01

    Experience gained in training and retraining of engineers for gas industry is considered in the report. The report contains the material on modern state of higher technical education in Russia in view of the reforms taking place in this country. The report deals with questions concerning the experience gained in a specialized training of gas engineers at higher educational establishments of Russia including training of specialists for foreign countries. Conditions under which retraining of engineers involved in gas industry takes place are presented in the report. The report is based mainly on the experience gained by the Russian leading higher educational establishment of oil and gas profile, that is the State Gubkin Oil and Gas Academy. (au)

  9. REVIEW ARTICLE: MODELLING AND ANALYSIS OF A GASOLINE ENGINE EXHAUST GAS SYSTEMS

    OpenAIRE

    Barhm Mohamad

    2018-01-01

    The engine exhaust gas behaviour is strongly influencing the engine performance. This paper presents the modelling and analysis of four stroke - gasoline engine exhaust gas systems. An automotive example is considered whereby the pulsating exhausts gas flow through an exhaust pipe and silencer are considered over a wide range of speeds. Analytical procedures are outlined enabling the general analysis and modelling of vehicle engine exhaust gas systems also in this paper present...

  10. Operation experiences of landfill gas engines; Motorer foer deponigas - Tillgaenglighet och drifterfarenheter

    Energy Technology Data Exchange (ETDEWEB)

    Dejfors, Charlotte; Grimberger, Goeran [AaF-Energikonsult Stockholm AB (Sweden)

    2000-06-01

    The gas that is obtained from landfilled waste is produced by bacteria that digest organic material in an anaerobic environment. Landfill gas consists mainly of methane, carbon dioxide and water vapour. It may be used either as auxiliary fuel in boilers close to the landfill or to generate electricity by means of a gas engine. Several plants where landfill gas is used in gas engines have had serious problems, a. o. with burned exhaust valves. These problems may occur already after a short period of operation, which influences the profitability. The purposes of the project reported were to collect operational experience in Sweden with engines using landfill gas as fuel, to identify which problems there are and which actions or improvements have been implemented in order to correct for these problems. Today, there are 9 facilities where landfill gas is used to fuel a total of 13 gas engines. In addition, there is an engine in Goeteborg which has scarcely been in operation after its installation because there is not enough gas. Contact has been taken with all these facilities. Many have pointed out that the gas engines are sensitive in the vicinity of maximum load, where the control system requires an even gas flow and a stable composition of the gas. A counter-measure in the facilities is to avoid running the engine at full load. All engines are equipped with a lean-NO{sub x} system in order to minimise NO{sub x} emissions. Many have remarked that the lean-NO{sub x} system shuts the engine off when emissions exceed the allowed limits. There is a consensus that spark plugs and ignition cables have created operational problems. These have been changed more frequently than originally expected. Another problem, which has caused operational problems and a need for maintenance, is deposits mainly in the combustion chamber, in valves and cylinder heads. Deposits and high exhaust gas temperature have led to burnt exhaust gas valves and cylinder heads on half of the engines

  11. PIXE analysis of exhaust gas from diesel engine

    International Nuclear Information System (INIS)

    Miyake, Hirosi; Michijima, Masami; Onishi, Masayuki; Fujitani, Tatsuya.

    1986-01-01

    The variation of elemental concentrations in exhaust gas of a Diesel engine with the outputs was studied. Particulates in high temperature gas were collected on silica fiber filters and analyzed by PIXE method. Concentrations of S and V were nearly proportional to particulate masses and fuel consumption rates per discharging rates of exhaust gas respectively. While, concentrations of Fe and Mn were markedly increased together with engine outputs, and Mn/Fe ratios were nearly equal to those of the material of piston rings and the cylinder liner. Concentrations of the elements contained in lubricant, such as Ca and Mo, were also conspicuously increased with the outputs. It was shown that PIXE analysis is a useful tool for engine diagonostics owing to its high sensitive multi-elemental availability without chemical treatments. (author)

  12. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  13. Strain-engineered band parameters of graphene-like SiC monolayer

    International Nuclear Information System (INIS)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-01-01

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices

  14. Mean Value Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Muller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR......). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, ver fast manifold pressure, manifold temperature, port and EGR mass flow sensores. Reasonable agreement has been obtained on an experimental engine, mounted on a dynamometer....

  15. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  16. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  17. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  18. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  19. Generator gas as a fuel to power a diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2014-01-01

    Full Text Available The results of gasification process of dried sewage sludge and use of generator gas as a fuel for dual fuel turbocharged compression ignition engine are presented. The results of gasifying showed that during gasification of sewage sludge is possible to obtain generator gas of a calorific value in the range of 2.15  2.59 MJ/m3. It turned out that the generator gas can be effectively used as a fuel to the compression ignition engine. Because of gas composition, it was possible to run engine with partload conditions. In dual fuel operation the high value of indicated efficiency was achieved equal to 35%, so better than the efficiency of 30% attainable when being fed with 100% liquid fuel. The dual fuel engine version developed within the project can be recommended to be used in practice in a dried sewage sludge gasification plant as a dual fuel engine driving the electric generator loaded with the active electric power limited to 40 kW (which accounts for approx. 50% of its rated power, because it is at this power that the optimal conditions of operation of an engine dual fuel powered by liquid fuel and generator gas are achieved. An additional advantage is the utilization of waste generated in the wastewater treatment plant.

  20. CO and PAH Emissions from Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, Torben Kvist; Henriksen, Ulrik Birk

    2003-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. The standing regulations concerning CO emissions from producer gas engine based power plants in most EU countrie...

  1. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  2. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  3. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  4. High temperature piezoresistive {beta}-SiC-on-SOI pressure sensor for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. von; Ziermann, R.; Reichert, W.; Obermeier, E. [Tech. Univ. Berlin (Germany). Microsensor and Actuator Technol. Center; Eickhoff, M.; Kroetz, G. [Daimler Benz AG, Munich (Germany); Thoma, U.; Boltshauser, T.; Cavalloni, C. [Kistler Instrumente AG, Winterthur (Switzerland); Nendza, J.P. [TRW Deutschland GmbH, Barsinghausen (Germany)

    1998-08-01

    For measuring the cylinder pressure in combustion engines of automobiles a high temperature pressure sensor has been developed. The sensor is made of a membrane based piezoresistive {beta}-SiC-on-SOI (SiCOI) sensor chip and a specially designed housing. The SiCOI sensor was characterized under static pressures of up to 200 bar in the temperature range between room temperature and 300 C. The sensitivity of the sensor at room temperature is approximately 0.19 mV/bar and decreases to about 0.12 mV/bar at 300 C. For monitoring the dynamic cylinder pressure the sensor was placed into the combustion chamber of a gasoline engine. The measurements were performed at 1500 rpm under different loads, and for comparison a quartz pressure transducer from Kistler AG was used as a reference. The maximum pressure at partial load operation amounts to about 15 bar. The difference between the calibrated SiCOI sensor and the reference sensor is significantly less than 1 bar during the whole operation. (orig.) 8 refs.

  5. Experimental evaluation of the effect of compression ratio on performance and emission of SI engine fuelled with gasoline and n-butanol blend at different loads

    Directory of Open Access Journals (Sweden)

    Rinu Thomas

    2016-09-01

    Full Text Available Never ending demand for efficient and less polluting engines have always inspired newer technologies. Extensive study has been done on variable compression ratio, a promising in-cylinder technology, in the recent past. The present work is an experimental investigation to examine the variation of different parameters such as brake thermal efficiency, exhaust gas temperature and emissions with respect to change in compression ratio in a single-cylinder carbureted SI engine at different loads with two different fuels. Experiments were conducted at three different compression ratios (CR = 7:1, 8.5:1 and 10:1. The fuels used in this study are pure gasoline and 20% n-butanol blend (B20 in gasoline. The results showed that brake thermal efficiency increases with CR at all loads. Further, the experimental results showed the scope of improving the part-load efficiency of SI engine by adopting the concept of variable compression ratio (VCR technology, especially when fuels with better anti-knock characteristics are used. The uncertainty analysis of the experiments based on the specifications of the equipment used is also tabulated.

  6. Nonintrusive performance measurement of a gas turbine engine in real time

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko

    2017-08-29

    Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculated from the gas density and the volumetric flow rate.

  7. 45th IGE (Institute of Gas Engineers) Autumn Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Riley, T; De Winton, C

    1980-01-01

    Topics discussed at the 45th Institute of Gas Engineers Autumn Meeting (London, 1979) are outlined, including safety standards and recommendations for gas transmission and distribution systems, gas characteristics and utilization, heat transfer research, gas receiver stresses, the potential of hydrogen as an energy fuel, gas appliances and controls, pipe failure, refactories in gasifiers, synthetic natural gas, coal conversion techniques, and technological innovations.

  8. Design and experimental investigations on six-stroke SI engine using acetylene with water injection.

    Science.gov (United States)

    Gupta, Keshav; Suthar, Kishanlal; Jain, Sheetal Kumar; Agarwal, Ghanshyam Das; Nayyar, Ashish

    2018-06-02

    In the present study, a four-stroke cycle gasoline engine is redesigned and converted into a six-stroke cycle engine and experimental study has been conducted using gasoline and acetylene as fuel with water injection at the end of the recompression stroke. Acetylene has been used as an alternative fuel along with gasoline and performance of the six-stroke spark ignition (SI) engine with these two fuels has been studied separately and compared. Brake power and thermal efficiency are found to be 5.18 and 1.55% higher with acetylene as compared to gasoline in the six-stroke engine. However, thermal efficiency is found to be 45% higher with acetylene in the six-stroke engine as compared to four-stroke SI engine. The CO and HC emissions were found to be reduced by 13.33 and 0.67% respectively with acetylene as compared to gasoline due to better combustion of acetylene. The NO x emission was reduced by 5.65% with acetylene due to lower peak temperature by water injection. The experimental results showed better engine performance and emissions with acetylene as fuel in the six-stroke engine.

  9. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  10. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  11. Reduction of exhaust gas emission for marine diesel engine. Hakuyo engine no taisaku (hakuyo engine no mondaiten to tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Y. (Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan))

    1992-05-05

    Since bunker fuel became extremely expensive through the first and second oil crisis, the share of steam turbines having lower thermal efficiency than diesel engines became less, and at present, almost all ships and vessels are equipped with Diesel engines. Also fuel consumption of a diesel engine has successfully been reduced by 24% in about 10 years, but the discharge of air pollutant in the exhaust gas has shown a trend of increase. Air pollutant in exhaust gas of marine engines which has not drawn attention so far has also begun attracting notice, and as marine traffic increases, some control of it will be made sooner or later. Hence economical and effective counter measures against exhaust gas are necessary. In this article, as measures for reducing NO {sub x}, discussions are made on water-emulsion fuel, humidification of air supply, multi-nozzle atomization, injection time delaying and SCR (selective catalitic reduction). Also measures for reducing SO {sub x} is commented upon and the continuation of superiority of Diesel engines in the future is predicted. 5 figs.

  12. Influence of Gas Atmosphere Dew Point on the Galvannealing of CMnSi TRIP Steel

    Science.gov (United States)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-11-01

    The Fe-Zn reaction occurring during the galvannealing of a Si-bearing transformation-induced plasticity (TRIP) steel was investigated by field-emission electron probe microanalysis and field-emission transmission electron microscopy. The galvannealing was simulated after hot dipping in a Zn bath containing 0.13 mass pct Al at 733 K (460 °C). The galvannealing temperature was in the range of 813 K to 843 K (540 °C to 570 °C). The kinetics and mechanism of the galvannealing reaction were strongly influenced by the gas atmosphere dew point (DP). After the galvannealing of a panel annealed in a N2+10 pct H2 gas atmosphere with low DPs [213 K and 243 K (-60 °C and -30 °C)], the coating layer consisted of δ (FeZn10) and η (Zn) phase crystals. The Mn-Si compound oxides formed during intercritical annealing were present mostly at the steel/coating interface after the galvannealing. Galvannealing of a panel annealed in higher DP [263 K and 273 K, and 278 K (-10 °C, 0 °C, and +5 °C)] gas atmospheres resulted in a coating layer consisting of δ and Г (Fe3Zn10) phase crystals, and a thin layer of Г 1 (Fe11Zn40) phase crystals at the steel/coating interface. The Mn-Si oxides were distributed homogeneously throughout the galvannealed (GA) coating layer. When the surface oxide layer thickness on panels annealed in a high DP gas atmosphere was reduced, the Fe content at the GA coating surface increased. Annealing in a higher DP gas atmosphere improved the coating quality of the GA panels because a thinner layer of oxides was formed. A high DP atmosphere can therefore significantly contribute to the suppression of Zn-alloy coating defects on CMnSi TRIP steel processed in hot dip galvanizing lines.

  13. Low-Load Limit in a Diesel-Ignited Gas Engine

    Directory of Open Access Journals (Sweden)

    Richard Hutter

    2017-09-01

    Full Text Available The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

  14. Multi-angle gas and Si detector particle telescope

    International Nuclear Information System (INIS)

    McDonald, R.J.; Sobotka, L.G.; Wozniak, G.J.

    1984-01-01

    A simple gas ΔE and multiple Si E detector telescope (called a WEDGE detector) has been constructed, which is particularly suitable for angular distribution studies of light ion emission from fragments following heavy ion reactions. This inexpensive detector was designed to have a low detection threshold, large dynamic range and constant ΔE path length. The detector has been used in studies of complex fragment emission (typically 2 < Z < 10) following compound nucleus and deep-inelastic heavy ion reactions

  15. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  16. Concept for a LNG Gas Handling System for a Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Michael Rachow

    2017-09-01

    Full Text Available Nowadays, ships are using LNG as main engine fuel because based on the facts that LNG has no sulphur content, and its combustion process, LNG produces low NOx content compared to heavy fuel oil and marine diesel oil. LNG is not only produces low gas emission, but may have economic advantages. In the engine laboratory of maritime studies department in Warnemunde, Germany, there is a diesel engine type MAN 6L23/30 A, where the mode operation of these engine would be changed to dual fuel engine mode operation. Therefore, in this thesis, the use dual fuel engine will be compared where it will utilize natural gas and marine diesel oil and select the required components for fuel gas supply system. By conducting the process calculation, engine MAN 6L23/30 A requires the capacity natural gas of 12.908  for 5 days at full load. A concept for LNG supply system would be arranged from storage tank until engine manifold. Germanischer Lloyd and Project Guide of dual fuel engine will be used as a guidelines to develop an optimal design and arrangement which comply with the regulation.

  17. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.B. [Centre for Energy, Indian Institute of Technology, Guwahati 781039 (India); Sahoo, N.; Saha, U.K. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039 (India)

    2009-08-15

    Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as 'dual-fuel engines'. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that 'dual-fuel concept' is a promising technique for controlling both NO{sub x} and soot emissions even on existing diesel engine. But, HC, CO emissions and 'bsfc' are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition

  18. Monolayer Cu2Si as a potential gas sensor for NOx and COx (x = 1, 2): A first-principles study

    Science.gov (United States)

    Zhu, Hao-Hao; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong

    2018-02-01

    Although the metal-decoration can enhance the sensing properties of two-dimensional (2D) materials, the cyclic utilization of materials is hindered by the clustering tendency of metal atoms. Furthermore, there exists a risk of explosion of combustible gases with the electrical measure. Based on first-principles calculations, we investigate the adsorption of various gas molecules (O2, NO, NO2, NH3, N2, CO, CH4 and CO2) on the 2D Cu-Si extended system (Cu2Si). The NOx molecules are chemisorbed on the Cu2Si monolayer, while other gas molecules (except CH4 and N2) are held by an interaction intermediating between the physisorbed and chemisorbed states. The strong hybridizations between N 2p and Si 3p (Cu 4p) orbitals lead to the large adsorption energies. Interestingly, the adsorption of NOx (1 μB) and CO2 (2 μB) can induce magnetic moments on the intrinsically nonmagnetic Cu2Si monolayer. The magnetic moment of NO-Cu2Si mainly arises from the molecule, while the magnetic moments for the NO2 and CO2 adsorption almost origin from the monolayer. In addition, an antiferromagnetic coupling is found in CO-Cu2Si. The changes in magnetization upon the gas adsorption may be detected sensitively and safely, suggesting the Cu2Si monolayer is potential for gas sensing.

  19. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    Science.gov (United States)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  20. The Role of SiO2 Gas in the Operation of Anti-Corrosion Coating Produced by PVD

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2015-09-01

    Full Text Available This study examined theSiO2 gas present in the coatings used in corrosion industry.These layers have been created by physical vapor deposition (PVD, with an appropriate performance. Sublimation of SiO2is used to protect PVD aluminum flakes from water corrosionand to generate highly porous SiO2 flakes with holes in the nanometer range. SiOx/Al/SiOx sandwiches were made as well as Ag loaded porous SiO2 as antimicrobial filler.

  1. Development of an engine control system using city gas and biogas fuel mixture

    International Nuclear Information System (INIS)

    Yamasaki, Yudai; Kanno, Masanobu; Suzuki, Yoshitaka; Kaneko, Shigehiko

    2013-01-01

    Highlights: ► The gas engine control system was developed using both city gas and biogas flexibly. ► The developed control system corporates with an original controller. ► The target value of O 2 emission is decided by Wobbe index of mixture fuel and load. ► The controller achieved stable operation for fuel mix ratio and load changing. -- Abstract: In this paper, a gas engine system capable of stable operation at any mix ratio of city gas 13A and biogas was developed. The gas engine system consists of a spark-ignition gas engine, an additional electric throttle valve for fuel and our own control algorithm. The engine is a 3-cylinder 1.6-l engine that was originally used for co-generation, and the fuel throttle valve was added to respond to different fuel compositions. The control algorithm was also designed to adjust the fuel and air ratio to attain a higher generation efficiency and lower NOx emission with different mix ratios of city gas 13A, biogas and load. Before developing the controller, the effect of the mix ratio on generation efficiency and NOx emission was investigated under various load conditions. The following summarizes the experimental results: a control algorithm using the Wobbe index for mixed fuels was formulated; this index determines the target fuel-to-air ratio. Next, operation tests were performed under varying fuel mix ratios and loads by applying the control algorithm to the gas engine. The target engine rotational speed and exhaust O 2 concentration was realized in 5 s when the biogas fraction varied from 20% to 40% and from 70% to 40%. When the load was also varied from 9.4 kW to 0.5 kW and from 0.5 kW to 9.4 kW at a constant rate, the rotational speed and exhaust O 2 concentration achieved the target values in 20 s. Under both transient operation conditions, the engine system met the NOx emission requirement, and the results indicate that the simple hardware modification to a conventional gas engine and our original control

  2. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  3. Development of a natural gas stratified charge rotary engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Verdonck, W.

    1985-01-01

    A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneous natural gas rotary engine.

  4. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  5. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.

    1998-01-01

    In the present study, a power-plant analysis is conducted to evaluate the thermodynamic merit of various CANDU combined cycles in which continuously operating gas-turbine engines are employed as a source of class IV power restoration. It is proposed to utilize gas turbines in future CANDU power plants, for sites (such as Indonesia) where natural gas or other combustible fuels are abundant. The primary objective is to eliminate the standby diesel-generators (which serve as a backup supply of class III power) since they are nonproductive and expensive. In the proposed concept, the gas turbines would: (1) normally operate on a continuous basis and (2) serve as a reliable backup supply of class IV power (the Gentilly-2 nuclear power plant uses standby gas turbines for this purpose). The backup class IV power enables the plant to operate in poison-prevent mode until normal class IV power is restored. This feature is particularly beneficial to countries with relatively small and less stable grids. Thermodynamically, the advantage of the proposed concept is twofold. Firstly, the operation of the gas-turbine engines would directly increase the net (electrical) power output and the overall thermal efficiency of a CANDU power plant. Secondly, the hot exhaust gases from the gas turbines could be employed to heat water in the CANDU Balance Of Plant (BOP) and therefore improve the thermodynamic performance of the BOP. This may be accomplished via several different combined-cycle configurations, with no impact on the current CANDU Nuclear Steam Supply System (NSSS) full-power operating conditions when each gas turbine is at maximum power. For instance, the hot exhaust gases may be employed for feedwater preheating and steam reheating and/or superheating; heat exchange could be accomplished in a heat recovery steam generator, as in conventional gas-turbine combined-cycle plants. The commercially available GateCycle power plant analysis program was applied to conduct a

  6. Effect of input power and gas pressure on the roughening and selective etching of SiO2/Si surfaces in reactive plasmas

    International Nuclear Information System (INIS)

    Zhong, X. X.; Huang, X. Z.; Tam, E.; Ostrikov, K.; Colpo, P.; Rossi, F.

    2010-01-01

    We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as 'laboratory on a chip' and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO 2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO 2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

  7. Analysis of Modifications on a Spark Ignition Engine for Operation with Natural Gas

    Directory of Open Access Journals (Sweden)

    Ramasamy D.

    2016-01-01

    Full Text Available Transportation is one of the key contributors to petroleum usage and emissions to the atmosphere. According to researchers, there are many ways to use transport by using renewable energy sources. Of these solutions, the immediate solution which requires less modification to current engine technology is by using gaseous fuels. Natural gas is the fuel of choice for minor modification to current engines. As it can be derived from anaerobic digestion process, the potential as a renewable energy source is tremendous, especially for an agricultural country such a Malaysia. The aim in the future will be operating an engine with natural gas only with pipelines straight to houses for easy filling. The fuel is light and can be easily carried in vehicles when in compressed form. As such, Compressed Natural Gas (CNG is currently used in bi-fuel engines, but is mostly not optimized in term of their performance. The focus of the paper is to optimize a model of natural gas engine by one dimensional flow modeling for operation with natural gas. The model is analyzed for performance and emission characteristics produced by a gasoline engine and later compared with natural gas. The average performance drop is about 15% from its gasoline counterpart. The 4% benchmark indicates that the modification to ignition timing and compression ratio does improve engine performance using natural gas as fuel.

  8. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  9. Implantation damage in heavy gas implanted 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Nicolaï, J., E-mail: julien.nicolai@univ-poitiers.fr [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Declémy, A. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Gilabert, E. [Centre d’Etude Nucléaire de Bordeaux-Gradignan, 33175 Gradignan Cedex (France); Beaufort, M.-F.; Barbot, J.-F. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France)

    2016-05-01

    Single crystals of SiC were implanted with heavy inert gases (Xe, Ar) at elevated temperatures (300–800 °C) and for a large range of fluence (1 × 10{sup 12}–1 × 10{sup 15} ions cm{sup −2}). Thermodesorption measurements suggest that gas is trapped by implantation-induced vacancy-type defects impeding any gas diffusion. The damage accumulation versus dose was studied through the tensile elastic strain determined by using X-ray diffraction. Results show that at low dose the strain is predictable via a thermally activated direct impact model. The low thermal activation energy at saturation suggests a dynamic recovery process dominated by the migration of interstitial-type defects as its relaxation during post thermal annealing. As compared with light-gas implantation the heavy-gas to defect ratio is low enhancing the formation of strongly perturbed zones rather than the formation of bubble precursors.

  10. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  11. Concept for high-performance direct ignition gas engines; Konzept fuer direkt gezuendete Gross-Gasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Jochen [Jenbacher Gasmotorensparte von GE, Jenbach (Austria). Bereich Thermodynamik; Leitner, Alexander; Tinschmann, Georg [Jenbacher Gasmotorensparte von GE, Jenbach (Austria). Bereich Konstruktion; Trapp, Christian [Jenbacher Gasmotorensparte von GE, Jenbach (Austria). Performance Engineering

    2013-05-01

    The characteristics of future gas engines for decentralised energy supply are high mean effective pressure, high efficiency and ultra-high air-to-fuel ratios leading to an electrical efficiency near 46% in the 1 to 2 MW segment at 1500 rpm. This article from GE's Jenbacher gas engines is a foresight on future development challenges in the large gas engine sector and presents possible technology blocks for further development of the Jenbacher Type 4 gas engine to increase power and efficiency.

  12. Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator

    National Research Council Canada - National Science Library

    Welch, Gerard

    1999-01-01

    The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine...

  13. Microstrucural characterization of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez, M.; Marin, P. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Madrid (Spain)

    2011-06-15

    Research highlights: > Two FeSi-base alloys as precursors for small dimension soft magnets. > Small particles rapidly solidified by gas atomisation. > Increase effective magnetic anisotropy constant by alloying segregation. > Magnetic hardenning due to volume decrease. - Abstract: Powder particles of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} soft magnetic alloys have been prepared by gas atomization. The gas atomized powder was microstructurally characterized and the dependence of coercivity with the composition and powder particle size investigated. As-atomized powder particles of both compositions were constituted by a bcc {alpha}-Fe (Si) solid solution. The Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles presented a grain microstructure with dendrite structure, which dendrite arms were enriched in Nb. The coercivity increased as the particle size decreased, with a minimum coercivity, of 5 Oe, measured in the Fe{sub 97}Si{sub 3} alloy in the range of 50-100 {mu}m powder particle size. The coercive fields were quite higher in the Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} than in the Fe{sub 97}Si{sub 3} powder, due to the Nb addition, which produced a phase segregation that leads to a noticeable magnetic hardening.

  14. Biogas and sewage gas in Stirling engines and micro gas turbines. Results of a field study; Bio- und Klaergas in Stirlingmotoren und Mikrogasturbinen. Ergebnisse einer Feldstudie

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Bernd; Wyndorps, Agnes [Hochschule Reutlingen (Germany); Bekker, Marina; Oechsner, Hans [Hohenheim Univ., Landesanstalt fuer Agrartechnik und Bioenergie, Stuttgart (Germany); Kelm, Tobias [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany)

    2010-07-01

    In decentral heat and power generation from biogas, sewage gas, landfill gas and methane in systems with a capacity below 100 kWe, Stirling engines and micro gas turbines may have advantages over gas engines, gasoline engines, and diesel engines. This was proved in a research project in which the operation of a Stirling engine with sewage gas and a micro gas turbine with biogas were investigated. (orig.)

  15. Leakage analysis of fuel gas pipe in large LNG carrier engine room

    Directory of Open Access Journals (Sweden)

    CEN Zhuolun

    2017-10-01

    Full Text Available [Objectives] The electric propulsion dual-fuel engine is becoming dominant in newly built Liquefied Natural Gas(LNGcarriers. To avoid the potential risks that accompany the use of flammable and explosive boil-off gas,the performance of precise safety and reliability assessments is indispensable. [Methods] This research concerns the engine rooms of large LNG carriers which are propelled electrically by a dual-fuel engine. Possible fuel gas(natural gasleak cases in different areas of the engine room are simulated and analyzed. Five representative leak cases defined by leak form,leak location and leak rate are entered into a Computational Fluid Dynamics(CFDsimulation,in which the Reynolds stress model of Fluent software is adopted as the turbulence model. The results of the leaked gas distribution and ventilation velocity field are analyzed in combination to obtain the diffusion tendency and concentration distribution of leaked gas in different areas.[Results] Based on an analysis of the results,an optimized arrangement of flammable gas detectors is provided for the engine room, and the adoption of an explosion-proof exhaust fan is proven to be unnecessary.[Conclusions] These analysis methods can provide a reference for similar gas leakage scenarios occurring in confined ventilated spaces. In addition, the simulation results can be used to quantitatively assess potential fire or explosion damage in order to guide the design of structural reinforcements.

  16. Behavior of ceramics at 1200 C in a simulated gas turbine environment

    Science.gov (United States)

    Sanders, W. A.; Probst, H. B.

    1974-01-01

    This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.

  17. CONSTRAINTS ON THE PRESENCE OF SiO GAS IN THE DEBRIS DISK OF HD 172555

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. L. [United States Naval Research Laboratory, Washington, DC 20375 (United States); Nilsson, R. [Astrophysics Department, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Chen, C. H.; Moerchen, M.; Banzatti, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21212 (United States); Lisse, C. M. [Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, 20723 (United States); Käufl, H.-U., E-mail: thomaswilson1b@gmail.com [European Southern Observatory, K-Schwarzschild-str. 2, Garching, D-85748 (Germany)

    2016-08-01

    We have carried out two sets of observations to quantify the properties of SiO gas in the unusual HD 172555 debris disk: (1) a search for the J = 8–7 rotational transition from the vibrational ground state, carried out with the Atacama Pathfinder EXperiment (APEX) submillimeter telescope and heterodyne receiver at 863 μ m and (2) a search at 8.3 μ m for the P(17) ro-vibrational transition of gas phase SiO, carried out with the Very Large Telescope (VLT)/VISIR with a resolution, λ /Δ λ , of 30,000. The APEX measurement resulted in a 3.3 σ detection of an interstellar feature, but only an upper limit to emission at the radial velocity and line width expected from HD 172555. The VLT/VISIR result was also an upper limit. These were used to provide limits for the abundance of gas phase SiO for a range of temperatures. The upper limit from our APEX detection, assuming an 8000 K primary star photospheric excitation, falls more than an order of magnitude below the self-shielding stability threshold derived by Johnson et al. (2012). Our results thus favor a solid-state origin for the 8.3 μ m feature seen in the Spitzer IRS spectrum of the circumstellar excess emission and the production of circumstellar O i and Si i by SiO UV photolysis. The implications of these estimates are explored in the framework of models of the HD 172555 circumstellar disk.

  18. The Problem of Ensuring Reliability of Gas Turbine Engines

    Science.gov (United States)

    Nozhnitsky, Yu A.

    2018-01-01

    Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.

  19. Pressure-time characteristics in diesel engine fueled with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Helwan Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    2001-04-01

    Combustion pressure data are measured and presented for a dual fuel engine running on dual fuel of diesel and compressed natural gas, and compared to the diesel engine case. The maximum pressure rise rate during combustion is presented as a measure of combustion noise. Experimental investigation on diesel and dual fuel engines revealed the noise generated from combustion in both cases. A Ricardo E6 diesel version engine is converted to run on dual fuel of diesel and compressed natural gas and is used throughout the work. The engine is fully computerized and the cylinder pressure data, crank angle data are stored in a PC for off-line analysis. The effect of engine speeds, loads, pilot injection angle, and pilot fuel quantity on combustion noise is examined for both diesel and dual engine. Maximum pressure rise rate and some samples of ensemble averaged pressure-crank angle data are presented in the present work. The combustion noise, generally, is found to increase for the dual fuel engine case as compared to the diesel engine case. (Author)

  20. Variable speed gas engine-driven air compressor system

    Science.gov (United States)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  1. Final report on 9 kW Stirling Engine for biogas and natural gas

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2001-01-01

    The need for a simple and robust engine for natural gas and low quality gas has resulted in the design of a single cylinder, hermetic Stirling engine, which has an electric power output of 9 kW. Two engines have been built. One engine is intended for natural gas as fuel and the other is intended...... eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism in order to avoid oil penetrating into the cylinder volumes. Working gas is Helium at 8 MPa mean pressure. The engine produce up to 11 kW of shaft power...... corresponding to approximately 10 kW of electric power. The design target was an efficiency of 26 % based on lower heat content of the gas to electricity, but only 24% were obtained. The decrease of efficiency is caused by inhomogeneous capacity flows in the air preheater and insufficient insulation...

  2. Exhaust gas concentration of CNG fuelled direct injection engine at MBT timing

    International Nuclear Information System (INIS)

    Hassan, M.K.; Aris, I.; Mahmod, S.; Sidek, R.

    2009-01-01

    Full text: This paper presents an experimental result of exhaust gas concentration of high compression engine fuelled with compressed natural gas (CNG) at maximum brake torque (MBT). The engine uses central direct injection (DI) technique to inject the CNG into the cylinder. The engine geometry bases on gasoline engine with 14:1 compression ratio and called CNGDI engine. The injectors are positioned within a certain degrees of spark plug location. The objective of the experiment is to study the influence and significant of MBT timing in CNGDI engine towards exhaust gases. The experimental tests were carried out using computer-controlled eddy-current dynamometer, which measures the CNGDI engine performance. At MBT region, exhaust gas concentration as such CO, HC, NO x , O 2 and CO 2 , were recorded and analyzed during the test using the Horiba analyzer. A closed loop wide band lambda sensor has been mounted at the exhaust manifold to indicate the oxygen level during the exercise. (author)

  3. Performance study of four stroke S.I. engine using upgraded biogas fuel

    Directory of Open Access Journals (Sweden)

    Jai Prakash

    2016-09-01

    Full Text Available In resent year, increased environmental awareness and energy shortages have encouraged researchers to investigate the possibility of using alternate fuels. The purpose of finding the alternate sources is to minimize the consumption of conventional fossil fuels and in turn to reduce the degradation of environmental quality to a great extent. The use of bio-based fuels like biogas produced from biomass and bio-wastes is a valuable energy source which is sustainable that can be manufactured from locally available waste streams thereby solving the local waste problem. Local wastes (organic wastes contain enough energy to contribute significantly to energy supply especially the rural regions of developing countries. Biogas is a clean and environment friendly fuel produced from anaerobic digestion of agro, animal or human wastes. The biogas has about 60 % methane and 40 % carbon dioxide with small traces of H2S. The use of H2S leads to formation of SO2 which combines with the water vapor to form acids and hence corrode the metals. Thus, raw biogas as such cannot be used for powering vehicular I.C engine. In the present work, an attempt has been made to upgrade the quality of raw biogas by removing CO2 and H2S, thus enriching its methane content up to the natural gas level and to study the performance of four stroke S.I engine aspirating upgraded biogas as primary fuel and its emission characteristics.

  4. Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [United Arab Emirates Univ., Dept. of Mechanical Engineering, Al-Ain (United Arab Emirates)

    2003-03-01

    Combustion pressure rise rate and thermal efficiency data are measured and presented for a dual fuel engine running on a dual fuel of Diesel and compressed natural gas and utilizing exhaust gas recirculation (EGR). The maximum pressure rise rate during combustion is presented as a measure of combustion noise. The experimental investigation on the dual fuel engine revealed the noise generated from combustion and the thermal efficiency at different EGR ratios. A Ricardo E6 Diesel version engine is converted to run on a dual fuel of Diesel and compressed natural gas and having an exhaust gas recycling system is used throughout the work. The engine is fully computerized, and the cylinder pressure data and crank angle data are stored in a PC for offline analysis. The effects of EGR ratio, engine speeds, loads, temperature of recycled exhaust gases, intake charge pressure and engine compression ratio on combustion noise and thermal efficiency are examined for the dual fuel engine. The combustion noise and thermal efficiency of the dual fuel engine are found to be affected when EGR is used in the dual fuel engine. (Author)

  5. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    Science.gov (United States)

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  6. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    Science.gov (United States)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  7. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  8. Gas action effect of free piston Stirling engine

    International Nuclear Information System (INIS)

    Mou, Jian; Li, Wei; Li, Jinze; Hong, Guotong

    2016-01-01

    Highlights: • The gas action effect is analyzed by the method of rotation vector decomposition. • Gas force can be decomposed into motivation force and spring or inertia force. • The optimal phase angles of displacements to pressure wave have been found. - Abstract: Gas action effect of free piston Stirling engine (FPSE) is very important to solve the key problem of start-up and find the way to increase its efficiency. The gas force is a key force to free FPSE. In this paper, the gas action effect has been analyzed by the method of rotation vector decomposition. It is found that the gas forces of piston and displacer can be decomposed into two forces, one component acts as motivation force resisting the damping force to output power, the other acts as spring force or inertia force according to the phase angle of pressure wave to displacements of the displacer and piston. Only when the motivation components of both piston and displacer resist their damping forces, will the FPSE be start-up and work stably. And only when the spring force is approximately equal to inertia force of piston, will the piston need the smallest gas spring force and nearly all the gas force be put for the alternator, meanwhile the engine outputs the maximum work. In the perfect condition, the optimal phase angle of the reciprocating movements of the displacer and piston ahead of the pressure wave are 180° and 90° respectively. The analyses above are verified by a series of experiments on a FPSE designed by our laboratory.

  9. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  10. Aircraft Gas Turbine Engine Health Monitoring System by Real Flight Data

    Directory of Open Access Journals (Sweden)

    Mustagime Tülin Yildirim

    2018-01-01

    Full Text Available Modern condition monitoring-based methods are used to reduce maintenance costs, increase aircraft safety, and reduce fuel consumption. In the literature, parameters such as engine fan speeds, vibration, oil pressure, oil temperature, exhaust gas temperature (EGT, and fuel flow are used to determine performance deterioration in gas turbine engines. In this study, a new model was developed to get information about the gas turbine engine’s condition. For this model, multiple regression analysis was carried out to determine the effect of the flight parameters on the EGT parameter and the artificial neural network (ANN method was used in the identification of EGT parameter. At the end of the study, a network that predicts the EGT parameter with the smallest margin of error has been developed. An interface for instant monitoring of the status of the aircraft engine has been designed in MATLAB Simulink. Any performance degradation that may occur in the aircraft’s gas turbine engine can be easily detected graphically or by the engine performance deterioration value. Also, it has been indicated that it could be a new indicator that informs the pilots in the event of a fault in the sensor of the EGT parameter that they monitor while flying.

  11. Optical methods to study the gas exchange processes in large diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S.; Hattar, C. [Wartsila Diesel International Oy, Vaasa (Finland); Hernberg, R.; Vattulainen, J. [Tampere Univ. of Technology, Tampere (Finland). Plasma Technology Lab.

    1996-12-01

    To be able to study the gas exchange processes in realistic conditions for a single cylinder of a large production-line-type diesel engine, a fast optical absorption spectroscopic method was developed. With this method line-of-sight UV-absorption of SO{sub 2} contained in the exhaust gas was measured as a function of time in the exhaust port area in a continuously fired medium speed diesel engine type Waertsilae 6L20. SO{sub 2} formed during the combustion from the fuel contained sulphur was used as a tracer to study the gas exchange as a function of time in the exhaust channel. In this case of a 4-stroke diesel engine by assuming a known concentration of SO{sub 2} in the exhaust gas after exhaust valve opening and before inlet and exhaust valve overlap period, the measured optical absorption was used to determine the gas density and further the instantaneous exhaust gas temperature during the exhaust cycle. (author)

  12. Modeling defect and fission gas properties in U-Si fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri University of Science and Technology; Grimes, Robin W. [Imperial College, London (United Kingdom)

    2017-04-27

    Uranium silicides, in particular U3Si2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.

  13. Modeling defect and fission gas properties in U-Si fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark J. [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore M. [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri Univ. of Science and Technology, Rolla, MO (United States); Grimes, Robin W. [Imperial College, London (United Kingdom)

    2017-04-14

    Uranium silicides, in particular U3Si2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.

  14. The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine

    International Nuclear Information System (INIS)

    Hung, Nguyen Ba; Lim, Ocktaeck; Iida, Norimasa

    2015-01-01

    Highlights: • A free piston engine is modeled and simulated by three mathematical models. • The models include dynamic model, linear alternator model and thermodynamic model. • The SI-HCCI transition is successful if the key parameters are adjusted suitably. • Spring stiffness has a strong influence on reducing peak temperature in HCCI mode. • Adjusting spark timing helps the SI-HCCI transition to be more convenient. - Abstract: An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much. Beside the successful SI-HCCI transition, the increase of intake pressure from P in = 1.1 bar to P in = 1.6 bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (P in = 1.6 bar), the engine knocking problem is occurred. Adjusting spring stiffness from k = 2.9 N/mm to k = 14.7 N/mm is also considered one of useful solutions for

  15. Distinguishing feature of metal oxide films' structural engineering for gas sensor applications

    International Nuclear Information System (INIS)

    Korotcenkov, G; Golovanov, V; Brinzari, V; Cornet, A; Morante, J; Ivanov, M

    2005-01-01

    The different methods of structural engineering, used for improvement of solid state gas sensors parameters are reviewed in this paper. The wide possibilities of structural engineering in optimization of gas sensing properties were demonstrated on the example of thin tin dioxide films deposited by spray pyrolysis

  16. Methods for Organization of Working Process for Gas-Diesel Engine

    OpenAIRE

    Вершина, Г. А.; Быстренков, О. С.

    2017-01-01

    Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the me...

  17. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  18. Light-emitting Si films formed by neutral cluster deposition in a thin O2 gas

    International Nuclear Information System (INIS)

    Honda, Y.; Takei, M.; Ohno, H.; Shida, S.; Goda, K.

    2005-01-01

    We have fabricated the light-emitting Si-rich and oxygen-rich amorphous SiO 2 (a-SiO 2 ) films using the neutral cluster deposition (NCD) method without and with oxygen gas admitted, respectively, and demonstrate for the first time that these films show a photoluminescent feature. The Si thin films were observed by atomic force microscopy and high-resolution transmission electron microscopy, and analyzed by means of X-ray photoelectron spectroscopy, photoluminescence (PL) and FTIR-attenuated total reflection measurements. All of the PL spectra show mountainous distribution with a peak around 620 nm. It is found that the increase in the oxygen termination in the a-SiO 2 films evidently makes the PL intensity increase. It is demonstrated that NCD technique is one of the hopeful methods to fabricate light-emitting Si thin films

  19. Ignition timing advance in the bi-fuel engine

    Directory of Open Access Journals (Sweden)

    Marek FLEKIEWICZ

    2009-01-01

    Full Text Available The influence of ignition timing on CNG combustion process has been presented in this paper. A 1.6 liter SI engine has been tested in the special program. For selected engine operating conditions, following data were acquired: in cylinder pressure, crank angle, fuel mass consumption and exhaust gases temperatures. For the timing advance correction varying between 0 to 15 deg crank angle, the internal temperature of combustion chamber, as well as the charge combustion ratio and ratio of heat release has been estimated. With the help of the mathematical model, emissions of NO, CO and CO2 were additionally estimated. Obtained results made it possible to compare the influence of ignition timing advance on natural gas combustion in the SI engine. The engine torque and in-cylinder pressure were used for determination of the optimum engine timing advance.

  20. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  1. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Science.gov (United States)

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  2. Comparing the engineering program feeders from SiF and convention models

    Science.gov (United States)

    Roongruangsri, Warawaran; Moonpa, Niwat; Vuthijumnonk, Janyawat; Sangsuwan, Kampanart

    2018-01-01

    This research aims to compare the relationship between two types of engineering program feeder models within the technical education systems of Rajamangala University of Technology Lanna (RMUTL), Chiangmai, Thailand. To illustrate, the paper refers to two typologies of feeder models, which are the convention and the school in factory (SiF) models. The new SiF model is developed through a collaborative educational process between the sectors of industry, government and academia, using work-integrated learning. The research methodology were use to compared features of the the SiF model with conventional models in terms of learning outcome, funding budget for the study, the advantages and disadvantages from the point of view of students, professors, the university, government and industrial partners. The results of this research indicate that the developed SiF feeder model is the most pertinent ones as it meet the requirements of the university, the government and the industry. The SiF feeder model showed the ability to yield positive learning outcomes with low expenditures per student for both the family and the university. In parallel, the sharing of knowledge between university and industry became increasingly important in the process, which resulted in the improvement of industrial skills for professors and an increase in industrial based research for the university. The SiF feeder model meets its demand of public policy in supporting a skilled workforce for the industry, which could be an effective tool for the triple helix educational model of Thailand.

  3. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Simona Silvia; Tornatore, Cinzia; Machitto, Luca; Valentino, Gerardo; Corcione, Felice Esposito [Istituto Motori-CNR, Naples (Italy)

    2012-07-01

    Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Fuel injections both in closed valve and open valve conditions were considered. Comparisons between the parameters related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more advanced spark timing without knocking occurrence. The duration of injection for Butanol blends was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects including the emission of ultrafine carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions. (orig.)

  4. Environmental optimisation of natural gas fired engines. Measurement on four different engines. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T.

    2010-10-15

    The emissions of NO{sub x}, CO and UHC as well as the composition of the hydrocarbon emissions were measured for four different stationary lean burn natural gas fired engines installed at different combined heat and power (CHP) units in Denmark. The units have been chosen to be representative for the natural gas engine based on power production in Denmark. The NO{sub x} emissions were varied from around 200 to 500 mg/m3(n) by varying the ignition timing and the excess of air. For each of the examined engines measurements were conducted at different combinations of ignition timing and excess of air. The measurements showed the NO{sub x} emissions were relatively more sensitive to engine setting than UHC, CO and formaldehyde emissions. By reducing the NO{sub x} emissions to 40 % of the initial value (from 500 to 200 mg/m3(n)) the UHC emission were increased by 10 % to 50 % of the initial value. The electrical efficiency was reduced by 0,5 to 1,0 % point. (Author)

  5. Performance and heat release analysis of a pilot-ignited natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.R.; Biruduganti, M.; Mo, Y.; Bell, S.R.; Midkiff, K.C. [Alabama Univ., Dept. of Mechanical Engineering, Tuscaloosa, AL (United States)

    2002-09-01

    The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NO{sub x} emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load. (Author)

  6. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2018-01-01

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety of LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.

  7. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  8. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  9. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    Science.gov (United States)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  10. The Integration of Gasification Systems with Gas Engine by Developing Wet Tar Scrubbers and Gas Filter to Produce Electrical Energy from Biomass

    Directory of Open Access Journals (Sweden)

    Siregar Kiman

    2018-01-01

    Full Text Available The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactorwere 900 mm and 1 000 mm respectively. The method used here werethe design the Detailed Engineering Design, assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 h with performance engine of 84 % and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kW h electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2 eq per MJ. Electrical production cost for Biomass Power Generation is about IDR 1 500 per kW h which is cheaper than solar power generation which is about of IDR 3 300 per kW h.

  11. The Capacitance and Temperature Effects of the SiC- and Si-Based MEMS Pressure Sensor

    International Nuclear Information System (INIS)

    Marsi, N; Majlis, B Y; Hamzah, A A; Mohd, F

    2013-01-01

    This project develops the pressure sensor for monitoring the extreme conditions inside the gas turbine engine. The capacitive-based instead of piezoresistive-based pressure sensor is employed to avoid temperature drift. The deflecting (top) plate and the fixed (bottom) plate generate the capacitance, which is proportional to the applied input pressure and temperature. Two thin film materials of four different sizes are employed for the top plate, namely cubic silicon carbide (3C-SiC) and silicon (Si). Their performances in term of the sensitivity and linearity of the capacitance versus pressure are simulated at the temperature of 27°C, 500°C, 700°C and 1000°C. The results show that both materials display linear characteristics for temperature up to 500°C, although SiC-based sensor shows higher sensitivity. However, when the temperatures are increased to 700°C and 1000°C, the Si- based pressure sensor starts to malfunction at 50 MPa. However, the SiC-based pressure sensor continues to demonstrate high sensitivity and linearity at such high temperature and pressure. This paper validates the need of employing silicon carbide instead of silicon for sensing of extreme environments.

  12. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  13. Interface engineered carbon nanotubes with SiO{sub 2} for flexible infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gao, Min, E-mail: mingao@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Pan, Taisong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wei, Xianhua [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Chen, Chonglin [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Lin, Yuan, E-mail: linyuan@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China)

    2017-08-15

    Highlights: • Interface engineered carbon nanotubes with SiO{sub 2} is used to construct a kind of flexible infrared detector. • The interface between the MWCNTs and SiO{sub 2} could enhance the IR response speed. • Detector based on the integrated interface of MWCNTs and SiO{sub 2} has successfully detected the movements of the human fingers. - Abstract: Nitrogen-doped/non-doped carbon nanotubes (CNTs) were integrated on SiO{sub 2}/Si and PMMA substrates for understanding the infrared sensing mechanisms. The nanotube structures on SiO{sub 2} substrates exhibit a much shorter response time (about 40 ms) than those directly on PMMA substrates (about 1200 ms), indicating the interface effects between CNTs and the substrates. The infrared responses for both structures show a linear relationship with the light power density even at the radiation power as low as 0.1 mW/mm{sup 2}. Moreover, a new concept flexible IR detector was designed and fabricated by transferring the CNTs/SiO{sub 2} structure onto the PMMA substrate, which exhibits both short response time (50 ms) and good flexibility. The successful detection of human finger movements indicates the practical applications of the CNT-based detectors for the detection of weak thermal or far infrared radiation.

  14. Assessment of Methane Emissions – Impact of Using Natural Gas Engines in Unconventional Resource Development

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew [West Virginia Univ., Morgantown, WV (United States); Johnson, Derek [West Virginia Univ., Morgantown, WV (United States); Heltzel, Robert [West Virginia Univ., Morgantown, WV (United States); Oliver, Dakota [West Virginia Univ., Morgantown, WV (United States)

    2018-04-08

    Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findings from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.

  15. Advanced Natural Gas Reciprocating Engines(s)

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James [Dresser, Inc., Addison, TX (United States)

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  16. SF{sub 6} decomposition and layer formation due to excimer laser photoablation of SiO{sub 2} surface at gas-solid system

    Energy Technology Data Exchange (ETDEWEB)

    Sajad, Batool [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Parvin, Parviz [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Bassam, Mohamad Amin [Excimer Laser Lab, Emam Hussain University, PO Box 16575-4347, Tehrann (Iran, Islamic Republic of)

    2004-12-21

    In this work, the effect of an excimer laser has been studied for presenting a method for SF{sub 6} decomposition and simultaneous formation of a SiF{sub 2} layer on amorphous SiO{sub 2}. Though the excimer laser did not establish a gas phase photodissociation, we have shown that UV photoablation leads strongly to molecular decomposition in the SF{sub 6}-SiO{sub 2} system. Moreover, the dependence of the decomposition process on the exposure parameters such as the wavelength and intensity as well as the gas pressure and the focal point distance from the gas-solid interface has been investigated.

  17. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION; F

    International Nuclear Information System (INIS)

    Paul K.T. Liu

    2001-01-01

    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction

  18. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  19. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2011-01-01

    The paper theoretically investigates the performance of a distributed generation plant made up of gasifier, Internal Combustion Engine (ICE) and Organic Rankine Cycle (ORC) machine as a bottoming unit. The system can be used for maximization of electricity production from biomass in the case where there is no heat demand for cogeneration plant. To analyze the performance of the gasifier a model based on the thermodynamic equilibrium approach is used. Performance of the gas engine is estimated on the basis of the analysis of its theoretical thermodynamic cycle. Three different setups of the plant are being examined. In the first one the ORC module is driven only by the heat recovered from engine exhaust gas and cooling water. Waste heat from a gasifier is used for gasification air preheating. In the second configuration a thermal oil circuit is applied. The oil transfers heat from engine and raw gas cooler into the ORC. In the third configuration it is proposed to apply a double cascade arrangement of the ORC unit with a two-stage low temperature evaporation of working fluid. This novel approach allows utilization of the total waste heat from the low temperature engine cooling circuit. Two gas engines of different characteristics are taken into account. The results obtained were compared in terms of electric energy generation efficiency of the system. The lowest obtained value of the efficiency was 23.6% while the highest one was 28.3%. These are very favorable values in comparison with other existing small and medium scale biomass-fuelled power generation plants. - Highlights: →The study presents performance analysis of a biomass-fuelled local power plant. →Downdraft wood gasifier, gas engine and ORC module are modelled theoretically. →Method for estimation of the producer gas fired engine performance is proposed. →Two gas engines of different characteristics are taken into account. →Different arrangements of the bottoming ORC cycle ere examined.

  20. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  1. Air-fuel ratio control of a lean burn Si engine using fuzzy self tuning method

    International Nuclear Information System (INIS)

    Akhlaghi, M.; Bakhtiari Nejad, F.; Azadi, S.

    2000-01-01

    Reducing the exhaust emission of an spark ignition engine by means of engine modifications requires consideration of the effects of these modifications on the variations of crankshaft torque and the engine roughness respectively. Only if the roughness does not exceed a certain level the vehicle do not begin to surge. This paper presents a method for controlling the air-fuel ratio for a lean burn engine. Fuzzy rules and reasoning are utilized on-line to determine the control parameters. The main advantages of this method are simple structure and robust performance in a wide range of operating conditions. A non-linear model of an Si engine with the engine torque irregularity simulation is used in this study

  2. Electrical detection of spin transport in Si two-dimensional electron gas systems

    Science.gov (United States)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  3. A numerical investigation on the influence of EGR in a supercharged SI engine fueled with gasoline and alternative fuels

    International Nuclear Information System (INIS)

    Mardi K, Mohsen; Khalilarya, Shahram; Nemati, Arash

    2014-01-01

    Highlights: • CFD modeling the combustion of different alternative fuels in SI engine. • 10% of EGR is the most desirable amount from the viewpoint of emissions and power. • EGR affects on methane fuel more than others. • Supercharging has the most noticeable effect on gasoline fuel and the least on hydrogen fuel. - Abstract: Alternative fuels are mostly extracted from renewable resources, and their emission levels can be lower than those of traditional fossil-based fuels. A computational fluid dynamics (CFD) method is utilized to investigate the effects of exhaust gas recirculation (EGR) and initial charge pressure on the emissions and performance of a SI engine. The engine is fueled separately by gasoline and some of potential alternative fuels including hydrogen, propane, methane, ethanol and methanol. The results of simulation are compared to the experimental data. In all validation cases, experimental and numerical results were observed to have good agreement with each other. The calculations are carried out for EGR ratios between 0% and 20% and four cases of initial pressure have been mentioned: P in = 1, 1.2, 1.4, 1.6 bar. The effect of EGR on NO x emission of methane is more than other fuels and its effect on IMEP of hydrogen is less than other fuels. From the viewpoints of emission and power, 10% of EGR seems to be the most desirable amount. The most noticeable effect of supercharging is on gasoline unlike hydrogen, which seems to be affected the least. The comparison of results shows that hydrogen due to its high heating value and burning without producing any carbon-based compounds such as HC, CO and CO 2 is an ideal alternative fuel compared to the other fuels

  4. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  5. Effect of hydroxy (HHO gas addition on gasoline engine performance and emiss

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL-Kassaby

    2016-03-01

    Full Text Available The objective of this work was to construct a simple innovative HHO generation system and evaluate the effect of hydroxyl gas HHO addition, as an engine performance improver, into gasoline fuel on engine performance and emissions. HHO cell was designed, fabricated and optimized for maximum HHO gas productivity per input power. The optimized parameters were the number of neutral plates, distance between them and type and quantity of two catalysts of Potassium Hydroxide (KOH and sodium hydroxide (NaOH. The performance of a Skoda Felicia 1.3 GLXi gasoline engine was evaluated with and without the optimized HHO cell. In addition, the CO, HC and NOx emissions were measured using TECNO TEST exhaust gas analyzer TE488. The results showed that the HHO gas maximum productivity of the cell was 18 L/h when using 2 neutrals plates with 1 mm distance and 6 g/L of KOH. The results also showed 10% increment in the gasoline engine thermal efficiency, 34% reduction in fuel consumption, 18% reduction in CO, 14% reduction in HC and 15% reduction in NOx.

  6. Chemical vapor deposition of NiSi using Ni(PF3)4 and Si3H8

    International Nuclear Information System (INIS)

    Ishikawa, M.; Muramoto, I.; Machida, H.; Imai, S.; Ogura, A.; Ohshita, Y.

    2007-01-01

    NiSi x films were deposited using chemical vapor deposition (CVD) with a Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system. The step coverage quality of deposited NiSi x was investigated using a horizontal type of hot-wall low pressure CVD reactor, which maintained a constant temperature throughout the deposition area. The step coverage quality improved as a function of the position of the gas flow direction, where PF 3 gas from decomposition of Ni(PF 3 ) 4 increased. By injecting PF 3 gas into the Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system, the step coverage quality markedly improved. This improvement in step coverage quality naturally occurred when PF 3 gas was present, indicating a strong relationship. The Si/Ni deposit ratio at 250 deg. C is larger than at 180 deg. C. It caused a decreasing relative deposition rate of Ni to Si. PF 3 molecules appear to be adsorbed on the surface of the deposited film and interfere with faster deposition of active Ni deposition species

  7. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  8. Stoichiometric and lean burn heavy-duty gas engines: a dilemma between emissions and fuel consumption?

    NARCIS (Netherlands)

    Steen, M. van der; Rijke, J. de; Seppen, J.J.

    1996-01-01

    This paper compares stoichiometric with lean burn technology for heavy-duty gas engines (natural gas and LPG) and demonstrates that there is a future for both engine concepts on the multilateral global market. Emission limits in Europe as expected in the near future will facilitate both engine

  9. Study of two-dimensional hole gas at Si/SiGe/Si inverted interface

    International Nuclear Information System (INIS)

    Sadeghazdeh, M.A.; Mironov, O.A.; Parry, C.P.; Philips, P.J.; Parker, E.H.C.; Wahll, T.E.; Emeleus, C.J.

    1998-01-01

    We have studied the transport of two-dimensional hole gas (2DHG) at the inverted interface of a strained Si 0.8 Ge 0.2 quantum well. By application of bias voltage to a Schottky gate on top of this inverted heterostructure the 2DHG density n s can be controlled, in the range of (1.5-5.2)x10 11 cm -2 . At temperature T = 033 K, the Hall mobility is 4650 cm 2 V -1 s -1 at the maximum carrier density. For lower sheet densities (n s 11 cm -2 ) the system undergoes a transition from a weak to strongly localised phase of significantly reduced mobility. From low temperature Shubnikov-de Haas oscillation measurements we have extracted the hole effective masses m* = (0.25 → 0.28)m o and the ratio of transport to quantum lifetimes α = (0.92 → 0.85) for the corresponding carrier density change of n s = (5.2 → 2.5)x10 11 cm -2 . These results can be explained in terms of the abnormal movement of the hole wave function towards the interface with decreasing n s , short range interface roughness scattering. (author)

  10. Energy Management of a Hybrid-Power Gas Engine-Driven Heat Pump

    Directory of Open Access Journals (Sweden)

    Qingkun Meng

    2015-10-01

    Full Text Available The hybrid-power gas engine-driven heat pump (HPGHP combines hybrid power technology with a gas engine heat pump. The engine in the power system is capable of operating constantly with high thermal efficiency and low emissions during different operating modes. In this paper, the mathematical models of various components is established, including the engine thermal efficiency map and the motor efficiency map. The comprehensive charging/discharging efficiency model and energy management optimization strategy model which is proposed to maximize the efficiency of instantaneous HPGHP system are established. Then, different charging/discharging torque limits are obtained. Finally, a novel gas engine economical zone control strategy which combined with the SOC of battery in real time is put forward. The main operating parameters of HPGHP system under energy management are simulated by Matlab/Simulink and validated by experimental data, such as engine and motor operating torque, fuel consumption rate and comprehensive efficiency, etc. The results show that during 3600 s’ run-time, the SOC value of battery packs varies between 0.58 and 0.705, the fuel consumption rate reaches minimum values of approximately 291.3 g/(kW h when the compressor speed is nearly 1550 rpm in mode D, the engine thermal efficiency and comprehensive efficiency reach maximum values of approximately 0.2727 and 0.2648 when the compressor speed is 1575 rpm and 1475 rpm, respectively, in mode D. In general, the motor efficiency can be maintained above 0.85 in either mode.

  11. Mixer Assembly for a Gas Turbine Engine

    Science.gov (United States)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Smith, Lance L. (Inventor); Hautman, Donald J. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  12. Dynamic pressure as a measure of gas turbine engine (GTE) performance

    International Nuclear Information System (INIS)

    Rinaldi, G; Stiharu, I; Packirisamy, M; Nerguizian, V; Landry, R Jr; Raskin, J-P

    2010-01-01

    Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without

  13. Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine

    Science.gov (United States)

    Patil, N. N.; Chavan, C. B.; More, A. S.; Baskar, P.

    2017-11-01

    Considering the current scenario of petroleum fuels, it has been observed that, they will last for few years from now. On the other hand, the ever increasing cost of a gasoline fuels and their related adverse effects on environment caught the attention of researchers to find a supplementary source. For commercial fuels, supplementary source is not about replacing the entire fuel, instead enhancing efficiency by simply making use of it in lesser amount. From the recent research that has been carried out, focus on the use of Hydrogen rich gas as a supplementary source of fuel has increased. But the problem related to the storage of hydrogen gas confines the application of pure hydrogen in petrol engine. Using oxy-hydrogen gas (HHO) generator the difficulties of storing the hydrogen have overcome up to a certain limit. The present study highlights on performance evaluation of conventional petrol engine by using HHO gas as a supplementary fuel. HHO gas was generated from the electrolysis of water. KOH solution of 3 Molar concentration was used which act as a catalyst and accelerates the rate of generation of HHO gas. Quantity of gas to be supplied to the engine was controlled by varying amount of current. It was observed that, engine performance was improved on the introduction of HHO gas.

  14. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  15. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  16. Aircraft gas turbine engine vibration diagnostics

    OpenAIRE

    Stanislav Fábry; Marek Češkovič

    2017-01-01

    In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections...

  17. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  18. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  19. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  20. Effect of sweep gas chemistry on vaporization of Li4SiO4

    International Nuclear Information System (INIS)

    Yamawaki, M.; Yamaguchi, K.

    1995-01-01

    Gas/solid equilibria in the system Li 4 SiO 4 -D 2 -D 2 O were studied by means of Knudsen effusion mass spectrometry. A Knudsen effusion mass spectrometer was modified to enable studies of reactions of hydrogen and/or water vapor with ceramic breeder materials. A gas inlet system was constructed to allow the introduction of gases into a platinum Knudsen cell, from which the equilibrated gaseous reaction products effuse. From the experimental results, it has been deduced that the equilibrium constants of vaporization reactions differ correspondingly to the nonstoichiometry of lithium orthosilicate. ((orig.))

  1. THE INFLUENCE OF SELECTED GASEOUS FUELS ON THE COMBUSTION PROCESS IN THE SI ENGINE

    OpenAIRE

    FLEKIEWICZ, Marek; KUBICA, Grzegorz

    2017-01-01

    Summary. This paper presents the results of SI engine tests, carried out for different gaseous fuels. The analysis carried out made it possible to define the correlation between fuel composition and engine operating parameters. The tests covered various gaseous mixtures: methane with hydrogen from 5% to 50% by volume and LPG with DME from 5% to 26% by mass. The first group, considered as low-carbon-content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in thos...

  2. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    OpenAIRE

    A. SONTHALIA; C. RAMESHKUMAR; U. SHARMA; A. PUNGANUR; S. ABBAS

    2015-01-01

    Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported fro...

  3. Performance Study of Dual Fuel Engine Using Producer Gas as Secondary Fuel

    Directory of Open Access Journals (Sweden)

    Deepika Shaw

    2016-06-01

    Full Text Available In the present paper, development of producer gas fuelled 4 stroke diesel engine has been investigated. Producer gas from biomass has been examined and successfully operated with 4 stroke diesel engine. The effects of higher and lower loads were investigated on the dual fuel mode. The experimental investigations revealed that at lower loads dual fuel operation with producer gas shows lower efficiency due to lower combustion rate cause by low calorific value of the producer gas. Beyond 40% load the brake thermal efficiency of dual fuel operation improved due to faster combustion rate of producer gas and higher level of premixing. It can be observed that at lower load and 20% opening of producer gas the gaseous fuel substitution found to be 56% whereas at 100% opening of producer gas it reaches 78% substitution. The CO2 emission increased at high producer gas opening and high load because at 100% producer gas maximum atoms of carbons were there and at high load condition the diesel use increased. At 80% load and producer gas varying from 20% to 100. Power output was almost comparable to diesel power with marginal higher efficiency. Producer gas is one such technology which is environmentally benign and holds large promise for future.

  4. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  5. Diesel and gas engines: evolution following new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Deverat, Ph. [Bergerat Monnoyeur (France). Direction Industrie

    1997-12-31

    Engine emissions of CO, NMHC and ashes are easily lowered through a low-cost exhaust gas processing, while NOx processing in fumes is rather complex and environmentally hazardous; thus, engine manufacturers have emphasized their researches for NOx decrease on the engine design: lower combustion temperature in diesel engines through water cooling or air/air exchanger, lean mixture with excess air (open chamber or pre-chamber) in spark ignition gas engines. Examples of modifications in Caterpillar engines are given. Exhaust gas processing for CO, NMHC, NOx (3 way catalytic purifier, selective catalytic reduction) and ashes is also discussed

  6. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  7. Lean-rich axial stage combustion in a can-annular gas turbine engine

    Science.gov (United States)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.

  8. Effect of hydroxy (HHO) gas addition on gasoline engine performance and emiss

    OpenAIRE

    Mohamed M. EL-Kassaby; Yehia A. Eldrainy; Mohamed E. Khidr; Kareem I. Khidr

    2016-01-01

    The objective of this work was to construct a simple innovative HHO generation system and evaluate the effect of hydroxyl gas HHO addition, as an engine performance improver, into gasoline fuel on engine performance and emissions. HHO cell was designed, fabricated and optimized for maximum HHO gas productivity per input power. The optimized parameters were the number of neutral plates, distance between them and type and quantity of two catalysts of Potassium Hydroxide (KOH) and sodium hydroxi...

  9. Exploitation of low-temperature energy sources from cogeneration gas engines

    International Nuclear Information System (INIS)

    Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D.

    2016-01-01

    This paper describes an original and innovative technical solution for exploiting low-temperature energy sources from cogeneration gas reciprocating engines installed within district heating systems. This solution is suitable for those systems in which the heat is generated by the use of reciprocating engines powered by gaseous fuel for combined heat and power production. This new technical solution utilizes low-temperature energy sources from a reciprocating gas engine which is used for a combined production of heat and power. During the operation of the cogeneration system low-temperature heat is released, which can be raised to as much as 85 °C with the use of a high-temperature heat-pump, thus enabling a high-temperature regime for heating commercial buildings, district heating or in industrial processes. In order to demonstrate the efficiency of utilizing low-temperature heat sources in the cogeneration system, an economic calculation is included which proves the effectiveness and rationality of integrating high-temperature heat-pumps into new or existing systems for combined heat and power production with reciprocating gas engines. - Highlights: • The use of low-temperature waste heat from the CHP is described. • Total energy efficiency of the CHP can be increased to more than 103.3%. • Low-temperature heat is exploited with high-temperature heat pump. • High-temperature heat pump allows temperature rise to up to 85 °C. • Exploitation of low-temperature waste heat increases the economics of the CHP.

  10. Natural gas engine concept with EZEV potential; Erdgasmotorkonzept mit EZEV-Potential

    Energy Technology Data Exchange (ETDEWEB)

    Maier, F.; Mueller, P.; Heck, E.; Langen, P. [BMW AG (Germany)

    1997-09-01

    The first natural gas vehicles form BMW are designed for arbitrary gasoline or natural gas operation. It is possible only to a limited extent to take advantage of the benefits of natural gas as a fuel as long as this is the case. An analysis was made to determine possible improvements in terms of fuel economy, emissions, full load and maximum exhaust gas temperatures through selective optimisation for exclusive natural gas operation. The results of this analysis have been used in the design of natural gas engines for mid-sized vehicles. Vehicle examinations in FTP75 confirm the existing potential for satisfying EZEV standards discussed in California even with vehicles of the upper midsize category by using optimised natural gas engines. (orig.) [Deutsch] Die ersten Automobile mit Erdgasantrieb von BMW sind fuer den wahlweisen Benzin- oder Erdgasbetrieb ausgelegt. Deshalb koennen die Vorteile des Kraftstoffs Erdgas nur zum Teil genutzt werden. Es wurde untersucht, welche Verbesserungen durch gezielte Optimierung fuer den ausschliesslichen Erdgasbetrieb bei Kraftstoffverbrauch, Emissionen, Vollast und maximalen Abgastemperaturen moeglich sind. Die Ergebnisse wurden bei der Auslegung von Erdgasmotoren fuer Mittelklassefahrzeuge verwendet. Untersuchungen im FTP-75 bestaetigen, dass mit optimierten Erdgasmotoren das Potential besteht, selbst mit Automobilen der oberen Mittelklasse die in Kalifornien diskutierten EZEV-Standards zu erfuellen. (orig.)

  11. Technique development for modulus, microcracking, hermeticity, and coating evaluation capability characterization of SiC/SiC tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ang, Caen K. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Driven by the need to enlarge the safety margins of nuclear fission reactors in accident scenarios, research and development of accident-tolerant fuel has become an important topic in the nuclear engineering and materials community. A continuous-fiber SiC/SiC composite is under consideration as a replacement for traditional zirconium alloy cladding owing to its high-temperature stability, chemical inertness, and exceptional irradiation resistance. An important task is the development of characterization techniques for SiC/SiC cladding, since traditional work using rectangular bars or disks cannot directly provide useful information on the properties of SiC/SiC composite tubes for fuel cladding applications. At Oak Ridge National Laboratory, experimental capabilities are under development to characterize the modulus, microcracking, and hermeticity of as-fabricated, as-irradiated SiC/SiC composite tubes. Resonant ultrasound spectroscopy has been validated as a promising technique to evaluate the elastic properties of SiC/SiC composite tubes and microcracking within the material. A similar technique, impulse excitation, is efficient in determining the basic mechanical properties of SiC bars prepared by chemical vapor deposition; it also has potential for application in studying the mechanical properties of SiC/SiC composite tubes. Complete evaluation of the quality of the developed coatings, a major mitigation strategy against gas permeation and hydrothermal corrosion, requires the deployment of various experimental techniques, such as scratch indentation, tensile pulling-off tests, and scanning electron microscopy. In addition, a comprehensive permeation test station is being established to assess the hermeticity of SiC/SiC composite tubes and to determine the H/D/He permeability of SiC/SiC composites. This report summarizes the current status of the development of these experimental capabilities.

  12. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  13. Gas engine driven freon-free heat supply system complying with multiple fuels (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Sumio; Maekawa, Koich; Sugawara, Koich; Hayashida, Masaru; Fujishima, Ichiro; Fukuyama, Yuji; Morikawa, Tomoyuki; Yamato, Tadao; Obata, Norio [Advanced Technology Lab., Kubota Corp., Amagasaki, Hyogo (Japan)

    1999-07-01

    This paper describes recent results at Kubota to develop a gas engine driven freon-free heat supply system. Utilizing a gas mixture which consists of CO and H{sub 2} supplied from a broad area energy utilization network, the system produces four heat sources (263 K, 280 K, 318 K, and 353 K) for air-conditioning, hot water supply, and refrigeration in a single system. It also conforms to fuel systems that utilize methane and hydrogen. This multi-functional heat supply system is composed of an efficient gas engine (methanol gas engine) and a freon-free heat pump (heat-assisted Stirling heat pump). The heat-assisted Stirling heat pump is mainly driven by engine shaft power and is partially assisted by thermal power provided by engine exhaust heat. By proportioning the two energy sources to match the characteristics of the driving engine, the heat pump is supplied with the maximum share of the original energy fueling the engine. Developing the system will establish freon-free thermal utilization system technology that satisfies both wide heat demands and various fuel systems. (orig.)

  14. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines

    International Nuclear Information System (INIS)

    Amirante, R.; Distaso, E.; Di Iorio, S.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M.; Reitz, R.D.

    2017-01-01

    Highlights: • The influence of natural gas composition is investigated. • Real-time methane/propane fuel mixtures were realized. • IMEP, HRR and MBF were used to evaluate the effects on engine performance. • Gaseous, greenhouse and Particulate emissions were studied. • The propane content strongly influenced performance and emissions. - Abstract: In vehicles fueled with compressed natural gas, a variation in the fuel composition can have non-negligible effects on their performance, as well as on their emissions. The present work aimed to provide more insight on this crucial aspect by performing experiments on a single-cylinder port-fuel injected spark-ignition engine. In particular, methane/propane mixtures were realized to isolate the effects of a variation of the main constituents in natural gas on engine performance and associated pollutant emissions. The propane volume fraction was varied from 10 to 40%. Using an experimental procedure designed and validated to obtain precise real-time mixture fractions to inject directly into the intake manifold. Indicative Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed with the aim to identify possible correlations existing between fuel composition and soot emissions. Emissions samples were taken from the exhaust flow, just downstream of the valves. Opacity was measured downstream the Three-Way Catalyst. Three different engine speeds were investigated, namely 2000, 3000 and 4000 rpm. Stoichiometric and full load conditions were considered in all tests. The results were compared with pure methane and propane, as well as with natural gas. The results indicated that both performance and emissions were strongly influenced by the variation of the propane content. Increasing the propane fraction favored more complete combustion and increased NO

  15. Experimental study of gas engine driven air to water heat pump in cooling mode

    International Nuclear Information System (INIS)

    Elgendy, E.; Schmidt, J.

    2010-01-01

    Nowadays a sustainable development for more efficient use of energy and protection of the environment is of increasing importance. Gas engine heat pumps represent one of the most practicable solutions which offer high energy efficiency and environmentally friendly for heating and cooling applications. In this paper, the performance characteristics of gas engine driven heat pump used in water cooling were investigated experimentally without engine heat recovery. The effects of several important factors (evaporator water inlet temperature, evaporator water volume flow rate, ambient air temperature, and engine speed) on the performance of gas engine driven heat pump were studied in a wide range of operating conditions. The results showed that primary energy ratio of the system increased by 22.5% as evaporator water inlet temperature increased from 13 o C to 24 o C. On the other hand, varying of engine speed from 1300 rpm to 1750 rpm led to decrease in system primary energy ratio by 13%. Maximum primary energy ratio has been estimated with a value of two over a wide range of operating conditions.

  16. Analysis of energy efficiency of methane and hydrogen-methane blends in a PFI/DI SI research engine

    International Nuclear Information System (INIS)

    Catapano, F.; Di Iorio, S.; Sementa, P.; Vaglieco, B.M.

    2016-01-01

    In the last years, even more attention was paid to the alternative fuels that allow both reducing the fossil fuel consumption and the pollutant emissions. Gaseous fuels like methane and hydrogen are the most interesting in terms of engine application. This paper reports a comparison between methane and different methane/hydrogen mixtures in a single-cylinder Port Fuel/Direct Injection spark ignition (PFI/DI SI) engine operating under steady state conditions. It is representative of the gasoline engine for automotive application. Engine performance and exhaust emissions were evaluated. Moreover, 2D-digital cycle resolved imaging was performed with high spatial and temporal resolution in the combustion chamber. In particular, it allows characterizing the combustion by means of the flame propagation in terms of mean radius and velocity. Moreover, the interaction of turbulence with the local flame was evaluated. For both the engine configurations, it was observed that the addition of hydrogen results in a more efficient combustion, even though the engine configuration plays an important role. In PFI mode, the lower density of hydrogen causes a lower energy input. In DI mode, instead, the larger hydrogen diffusivity counteracts the charge stratification especially for larger hydrogen content. - Highlights: • The effect of hydrogen on methane combustion was investigated in an optical PFI/DI SI engine. • The effect of hydrogen addition for PFI and DI configurations was evaluated on the same engine. • The flame front propagation was characterized by means of 2-D digital imaging.

  17. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu

    2016-10-01

    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  18. Strained Si engineering for nanoscale MOSFETs

    International Nuclear Information System (INIS)

    Park, Jea-Gun; Lee, Gon-Sub; Kim, Tae-Hyun; Hong, Seuck-Hoon; Kim, Seong-Je; Song, Jin-Hwan; Shim, Tae-Hun

    2006-01-01

    We have revealed a strain relaxation mechanism for strained Si grown on a relaxed SiGe-on-insulator structure fabricated by the bonding, dislocation sink, or condensation method. Strain relaxation for both the bonding and dislocation sink methods was achieved by grading the Ge concentration; in contrast, the relaxation for the condensation method was achieved through Ge atom condensation during oxidation. In addition, we estimated the surface roughness and threading-dislocation pit density for relaxed SiGe layer fabricated by the bonding, dislocation sink, or condensation method. The surface roughness and threading-dislocation pit density for the bonding, dislocation sink, and condensation methods were 2.45, 0.46, and 0.40 nm and 5.0 x 10 3 , 9 x 10 3 , and 0, respectively. In terms of quality and cost-effectiveness, the condensation method was superior to the bonding and dislocation sink methods for forming strained Si on a relaxed SiGe-on-insulator structure

  19. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  20. An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Deng, Banglin; Feng, Renhua; Yang, Jing; Zhou, Feng; Zhao, Xiaohuan

    2014-01-01

    Highlights: • The calculation method for SAT engine was developed and introduced. • SAT can effectively promote the low-speed performances of IC engine. • At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. • The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engine’s exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy

  1. Preliminary calculations of stress change of fuel pin using SiC/SiC composites for GFR with changing of thermal conductivity degradation by irradiation

    International Nuclear Information System (INIS)

    Lee, J. K.; Naganuma, M.

    2006-01-01

    Gas cooled Fast Reactor (GFR) is being researched as a candidate concept of Generation IV international Forum. As a main feature of GFR, it should be maintained high temperature and pressure of coolant gas for heat transfer efficiency. Such a demanding environment requires high-temperature-resistant structural materials distinguished from traditional steel material. Consequently, ceramics are promising candidate material of core components. Especially, Silicon Carbide fiber reinforced Silicon Carbide composites (SiC/SiC) have encouraging characteristics such as refractoriness, low activation and toughness. Application of new material to core components must be explained by the viewpoint of engineering validity. Therefore, present study surveyed that current report for mechanical strength and thermal conductivity of SiC/SiC composites. According to the reports, neutron irradiation environment degraded mechanical properties of SiC/SiC composites. To confirm applicability to core components, model of fuel pin using SiC/SiC composites was assumed with feasible mechanical properties. Furthermore, it was calculated and estimated that the stress caused by temperature variation of inner and outer side of assumed model of cladding tube. Stress was calculated by changing of input date such as thickness of cladding tube, temperature variation, thermal conductivity and linear power. In the range of this study, the most important factor was identified as degradation of thermal conductivity by irradiation. It caused a significant stress and limited a geometrical design of fuel pin. It was discussed that the differences of heat transfer between isotropic and anisotropic materials like a metal and composites. These results should be helpful not only to determine a design factor of core component but also to indicate an improvement direction of SiC/SiC composites. Through these work, reliability and safety of GFR will be increased

  2. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Rosseel, E.

    2000-01-01

    It is well known that adding hydrogen to natural gas extends the lean limit of combustion and that in this way extremely low emission levels can be obtained: even the equivalent zero emission vehicle (EZEV) requirements can be reached. The emissions reduction is especially important at light engine loads. In this paper results are presented for a GM V8 engine. Natural gas, pure hydrogen and different blends of these two fuels have been tested. The fuel supply system used provides natural gas/hydrogen mixtures in variable proportion, regulated independently of the engine operating condition. The influence of the fuel composition on the engine operating characteristics and exhaust emissions has been examined, mainly but not exclusively for 10 and 20% hydrogen addition. At least 10% hydrogen addition is necessary for a significant improvement in efficiency. Due to the conflicting requirements for low hydrocarbons and low NO{sub x} determining the optimum hythane composition is not straight-forward. For hythane mixtures with a high hydrogen fraction, it is found that a hydrogen content of 80% or less guarantees safe engine operation (no backfire nor knock), whatever the air excess factor. It is shown that to obtain maximum engine efficiency for the whole load range while taking low exhaust emissions into account, the mixture composition should be varied with respect to engine load.

  3. LES of Gas Exchange in IC Engines

    Directory of Open Access Journals (Sweden)

    Mittal V.

    2013-10-01

    Full Text Available As engine technologies become increasingly complex and engines are driven to new operating points, understanding transient phenomena is important to ensure reliable engine operation. Unlike Reynolds Averaged Navier-Stokes (RANS studies that only provide cycle-averaged information, Large Eddy Simulation (LES studies are capable of simulating cycle-to-cycle dynamics. In this work, a finite difference based structured methodology for LES of IC engines is presented. This structured approach allows for an efficient mesh generation process and provides potential for higher order numerical accuracy. An efficient parallel scalable block decomposition is done to overcome the challenges associated with the low ratio of fluid elements to overall mesh elements. The motion of the valves and piston is handled using a dynamic cell blanking approach and the Arbitrary Lagrangian Eulerian (ALE method, respectively. Modified three-dimensional Navier-Stokes Characteristic Boundary Conditions (NSCBC are used in the simulation to prescribe conditions in the manifolds. The accuracy of the simulation framework is validated using various canonical configurations. Flow bench simulations of an axisymmetric configuration and an actual engine geometry are done with the LES methodology. Simulations of the gas exchange in an engine under motored conditions are also performed. Overall, good agreement is obtained with experiments for all the cases. Therefore, this framework can be used for LES of engine simulations. In the future, reactive LES simulations will be performed using this framework.

  4. Full hoop casing for midframe of industrial gas turbine engine

    Science.gov (United States)

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  5. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  6. Performance and emissions of a modified small engine operated on producer gas

    International Nuclear Information System (INIS)

    Homdoung, N.; Tippayawong, N.; Dussadee, N.

    2015-01-01

    Highlights: • A small agricultural diesel engine was converted into a spark ignited engine. • The modified engine operated solely on producer gas at various loads and speeds. • It run successfully at high compression ratio, without knocking. • Improvement in efficiency and specific energy consumption at higher CR was evident. - Abstract: Existing agricultural biomass may be upgraded converted to a gaseous fuel via a downdraft gasifier for spark ignition engines. In this work, a 0.6 L, naturally aspirated single cylinder compression ignition engine was converted into a spark ignition engine and coupled to a 5 kW dynamometer. The conventional swirl combustion chamber was replaced by a cavity chamber. The effect of variable compression ratios between 9.7 and 17:1, and engine speeds between 1000 and 2000 rpm and loads between 20% and 100% of engine performance were investigated in terms of engine torque, power output, thermal efficiency, specific fuel consumption and emissions. It was found that the modified engine was able to operate well with producer gas at higher compression ratios than with gasoline. The brake thermal efficiency was lower than the original diesel engine at 11.3%. Maximum brake power was observed to be 3.17 kW, and the best BSFC of 0.74 kg/kWh was achieved. Maximum brake thermal efficiency of 23.9% was obtained. The smoke density of the engine was lower than the diesel engine, however, CO emission was higher with similar HC emission

  7. Various aspects of research of the SI engine with an additional expansion process

    Directory of Open Access Journals (Sweden)

    Noga Marcin

    2017-01-01

    Full Text Available The paper presents an analysis of the results of the both experimental results and theoretical works on the SI engine with additional expansion of exhaust gases, also known as five-stroke engine. The engine like this was constructed at Cracow University of Technology as a retrofitted in-line four cylinder engine in which outer cylinders (1st and 4th work as fired cylinders and inner cylinders (2nd and 3rd work as volume for the additional expansion. The aim of development of such an engine is to gain higher energy recovery ratio of the combusted fuel through the second expansion of exhaust in a separate cylinder. The operating parameters of the engine in various versions were analyzed: as naturally aspirated, supercharged using a turbocharger with a waste-gate valve and a turbocharger with variable nozzle turbine. Selected results of the indicating measurements of the engine with special emphasis on the indicated thermal efficiency were presented. The results pointed out the directions of further optimization of the engine. These results are all the more important, because according to the author’s knowledge, the research on the real object of this type are carried out in only one science center in the world besides Cracow University of Technology.

  8. High-Temperature Corrosion of AlCrSiN Film in Ar-1%SO2 Gas

    Directory of Open Access Journals (Sweden)

    Poonam Yadav

    2017-03-01

    Full Text Available AlCrSiN film with a composition of 29.1Al-17.1Cr-2.1Si-51.7N in at. % was deposited on a steel substrate by cathodic arc ion plating at a thickness of 1.8 μm. It consisted of nanocrystalline hcp-AlN and fcc-CrN, where a small amount of Si was dissolved. Corrosion tests were carried out at 800 °C for 5–200 h in Ar-1%SO2 gas. The major corrosion reaction was oxidation owing to the high oxygen affinity of Al and Cr in the film. The formed oxide scale consisted primarily of (Al,Cr2O3, within which Fe, Si, and S were dissolved. Even after corrosion for 200 h, the thickness of the scale was about 0.7–1.2 μm, indicating that the film had good corrosion resistance in the SO2-containing atmosphere.

  9. Nonvolatile field effect transistors based on protons and Si/SiO2Si structures

    International Nuclear Information System (INIS)

    Warren, W.L.; Vanheusden, K.; Fleetwood, D.M.; Schwank, J.R.; Winokur, P.S.; Knoll, M.G.; Devine, R.A.B.

    1997-01-01

    Recently, the authors have demonstrated that annealing Si/SiO 2 /Si structures in a hydrogen containing ambient introduces mobile H + ions into the buried SiO 2 layer. Changes in the H + spatial distribution within the SiO 2 layer were electrically monitored by current-voltage (I-V) measurements. The ability to directly probe reversible protonic motion in Si/SiO 2 /Si structures makes this an exemplar system to explore the physics and chemistry of hydrogen in the technologically relevant Si/SiO 2 structure. In this work, they illustrate that this effect can be used as the basis for a programmable nonvolatile field effect transistor (NVFET) memory that may compete with other Si-based memory devices. The power of this novel device is its simplicity; it is based upon standard Si/SiO 2 /Si technology and forming gas annealing, a common treatment used in integrated circuit processing. They also briefly discuss the effects of radiation on its retention properties

  10. Thermal balance of a LPG fuelled, four stroke SI engine with water addition

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Soeylemez, M.S.

    2006-01-01

    The effect of water injection on a spark ignition engine thermal balance and performance has been experimentally investigated. A four stroke, four cylinder conventional engine was used with LPG (liquid petroleum gas) as fuel. Different water to fuel ratios by mass were used with variable engine speed ranging from 1000 to 4500 rpm. The results showed that as the water injection level to the engine increased, the percentage of useful work increased, while the losses other than unaccounted losses decreased. Additionally, the specific fuel consumption decreases, while the engine thermal efficiency increases. The average increase in the brake thermal efficiency for a 0.5 water to fuel mass ratio is approximately 2.7% over the use of LPG alone for the engine speed range studied

  11. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    Science.gov (United States)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  12. Temperature dependence of the coercive field of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda, Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda, Gregorio del Amo, 8, 28040 Madrid (Spain); Hernando, A.; Aragon, A.; Marin, P. [Instituto de Magnetismo Aplicado, IMA, P.O. Box 155, 28230 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer An anomalous thermal dependence of the coercive field of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles under 25 {mu}m powder particle, increasing Hc as temperature increases. Black-Right-Pointing-Pointer It is proposed that Cu rich regions at inter-grain boundaries could act as exchange decoupling regions contributing to the thermal increase of coercivity. Black-Right-Pointing-Pointer This anomalous thermal dependence points out that tailoring microstructure and size, by controlling the cooling rate of more adequate multiphase systems, could be a promising procedure to develop soft or hard magnets, avoiding Rare Earths metals that is nowadays an important target for the engineering of magnetic materials. - Abstract: In this work, the dependence of the coercive field of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} gas atomized powder with the temperature for different particle sizes has been studied, observing an anomalous behavior in the under 25 powder particle size fraction. This unusual behavior is related with the microstructure of the powder, and is attributed to the presence of a multiphase magnetic system, with non-magnetic regions decoupling the ferromagnetic domains.

  13. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  14. Modeling and dynamic control simulation of unitary gas engine heat pump

    International Nuclear Information System (INIS)

    Zhao Yang; Haibo Zhao; Zheng Fang

    2007-01-01

    Based on the dynamic model of the gas engine heat pump (GEHP) system, an intelligent control simulation is presented to research the dynamic characteristics of the system in the heating operation. The GEHP system simulation model consists of eight models for its components including a natural gas engine, a compressor, a condenser, an expansion valve, an evaporator, a cylinder jacket heat exchanger, an exhaust gas heat exchanger and an auxiliary heater. The intelligent control model is composed of the prediction controller model and the combined controller model. The Runge-Kutta Fehlberg fourth-fifth order algorithms are used to solve the differential equations. The results show that the model is very effective in analyzing the effects of the control system, and the steady state accuracy of the intelligent control scheme is higher than that of the fuzzy controller

  15. Revised emission factors for gas engines including start/stop emissions

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Boll Illerup, J.; Birr-Petersen, K.

    2008-06-15

    Liberalisation of the electricity market has led to Danish gas engine plants increasingly converting to the spot and regulating power markets. In order to offer regulating power, plants need to be able to start and stop the engines at the plants quickly. The liberalisation causes a considerable change of operation practice of the engines e.g. less full load operation hours /year. The project provides an inventory determining the scale of the emissions during the start and stop sequence as well as proposals for engine modifications aimed at reducing start/stop emissions. This report includes calculation of emission factors as well as an inventory of total emissions and reduction potentials. (au)

  16. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    Science.gov (United States)

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  17. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  18. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. II. Development of SiC valve lifter by injection molding method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Valve lifter, namely tappet, is supported by lifter hole which is located upper side of camshaft in cylinder block, transforms rotatic movement of camshaft into linear movement and helps to open and shut the engine valve as an engine parts. The face of valve lifter, which is continuously contacting with camshaft, brings about abnormal wears, such as unfair wear and early wear, because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently, this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears, therefore, the valve lifter cast in metal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance. As a result, the optimum process conditions like injection condition, mixture ratio and debonding process could be established. After sintering, fine-sinered dual microstructure in which prior {alpha}-SiC, carbon and silicon was obtained. Based on the new SiC({beta}-SiC) produced by reaction among the {alpha}-SiC, carbon and silicon was obtained. Based on the study, it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100{approx}1200 bending strength (300{approx}350 Pa), fracture toughness (1.5{approx}1.7 MPacentre dotm{sup 1/2}). Through engine dynamo testing, SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such early fracture, unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resistance, reliability, and lightability.

  19. Object-oriented approach for gas turbine engine simulation

    Science.gov (United States)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  20. Nitrogen versus helium: effects of the choice of the atomizing gas on the structures of Fe50Ni30Si10B10 and Fe32Ni36Ta7Si8B17 powders

    International Nuclear Information System (INIS)

    Zambon, A.

    2004-01-01

    Gas atomization can produce, besides a possible significant degree of undercooling, high cooling rates, whose extent depends on the size of the droplets, on their velocity with respect to the surrounding medium, on the thermo-physical properties of both the alloy and the gas, and of course on the operating conditions such as melt overheating and gas-to-metal flow ratio. In this respect it is well-known that the atomizing gas can play a significant role in determining both the powder size distribution and the kind and mix of phases which result from the solidification and cooling processes. The microstructures and solidification morphologies of powders obtained from nitrogen and helium sonic gas atomization of two iron-nickel base glass forming alloys, Fe 50 Ni 30 Si 10 B 10 and Fe 32 Ni 36 Ta 7 Si 8 B 17 , were investigated by means of light microscopy, X-ray diffraction (XRD) and differential thermal analysis (DTA). The Fe 32 Ni 36 Ta 7 Si 8 B 17 alloy exhibits a higher proneness to the development of amorphous phase than the Fe 50 Ni 30 Si 10 B 10 alloy, while the effect of the higher speed attainable by the stream of helium with respect to that of nitrogen, affords not only to obtain a larger amount of particles in the finer size ranges, but also to affect the relative amounts of phases within the different size fractions

  1. Aeroderivative Gas Turbo engine in CHP Plant. Compatibility Problems

    Directory of Open Access Journals (Sweden)

    Sorinel-Gicu TALIF

    2010-12-01

    Full Text Available The paper presents the possibilities to develop Combined Cycle Units based onaeroderivative Gas Turbo engines and on existing Steam Turbines. The specific compatibilityproblems of these components and the thermodynamic performances of the analyzed Combined CycleUnits are also presented.

  2. Current status and recent research achievements in SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Y., E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Henager, C.H. [Pacific Northwest National Laboratory, Richland, WA (United States); Nozawa, T. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Iveković, A.; Novak, S. [Jožef Stefan Institute, Ljubljana (Slovenia); Gonzalez de Vicente, S.M. [EFDA Close Support Unit, Garching (Germany)

    2014-12-15

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  3. Current status and recent research achievements in SiC/SiC composites

    International Nuclear Information System (INIS)

    Katoh, Y.; Snead, L.L.; Henager, C.H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S.M.

    2014-01-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications

  4. Current status and recent research achievements in SiC/SiC composites

    Science.gov (United States)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  5. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  6. Producer gas fuelling of a 20kW output engine by gasification of solid biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hollingdale, A C; Breag, G R; Pearce, D

    1988-11-01

    Motive power requirements in the range up to 100 kW shaft power are common in developing country processing operations. Producer gas-fuelled systems based upon a relatively cheap and simple manually operated gasifier or reactor using readily available biomass feedstock can offer in some cases an attractive alternative to fossil-fuelled power units. This bulletin outlines research and development work by the Industrial Development Department of the Overseas Development Natural Resources Institute for 20 kW shaft power output from producer gas derived from solid biomass. Biomass materials such as wood or shells can be carbonized to form charcoal or left in the natural uncarbonized state. In this work both carbonized and uncarbonized biomass fuel has been used to provide producer gas to fuel a Ford 2274E engine, an industrial version of a standard vehicle spark-ignition engine. Cross-draught and down-draught reactor designs were evaluated during trials with this engine. Also different gas cleaning and cooling arrangements were tested. Particular emphasis was placed on practical aspects of reactor/engine operation. This work follows earlier work with a 4 kW shaft power output system using charcoal-derived producer gas. (author).

  7. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  8. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  9. Simulation of fuel demand for wood-gas in combustion engine

    Directory of Open Access Journals (Sweden)

    Botwinska Katarzyna

    2017-01-01

    Full Text Available In the era of the oil crisis and proceeding contamination of the natural environment, it is attempted to substitute fossil raw materials with alternative carriers. For many years, road transport has been considered as one of the main sources of the substances deteriorating air quality. Applicable European directives oblige the member states to implement biofuels and biocomponents into the general fuel market, however, such process is proceeding gradually and relatively slowly. So far, alternative fuels have been used on a large scale to substitute diesel fuel or petrol. Derivatives of vegetable raw materials, such as vegetable oils or their esters and ethanol extracted from biomass, are used to that end. It has been noticed that there is no alternative to LPG which, due to financial reasons, is more and more popular as fuel in passenger cars. In relation to solutions adopted in the past, it has been decided to analyse the option of powering a modern passenger car with wood gas - syngas. Such fuel has been practically used since the 1920's. To that end, a computer simulation created in SciLab environment was carried out. Passenger car Fiat Seicento, fitted with Fire 1.1 8V petrol engine with power of 40kW, whose parameters were used to prepare the model, was selected as the model vehicle. The simulation allows the determination of engine demand on the given fuel. Apart from the wood gas included in the title, petrol, methane and LPG were used. Additionally, the created model enables the determination of the engine power at the time of the indicated fuels supply. The results obtained in the simulation revealed considerable decrease in the engine power when the wood gas was supplied and the increased consumption of this fuel. On the basis of the analysis of the professional literature describing numerous inconveniences connected with the use of this fuel as well as the obtained results, it has been established that using the wood gas as alternative

  10. Simulation of fuel demand for wood-gas in combustion engine

    Science.gov (United States)

    Botwinska, Katarzyna; Mruk, Remigiusz; Tucki, Karol; Wata, Mateusz

    2017-10-01

    In the era of the oil crisis and proceeding contamination of the natural environment, it is attempted to substitute fossil raw materials with alternative carriers. For many years, road transport has been considered as one of the main sources of the substances deteriorating air quality. Applicable European directives oblige the member states to implement biofuels and biocomponents into the general fuel market, however, such process is proceeding gradually and relatively slowly. So far, alternative fuels have been used on a large scale to substitute diesel fuel or petrol. Derivatives of vegetable raw materials, such as vegetable oils or their esters and ethanol extracted from biomass, are used to that end. It has been noticed that there is no alternative to LPG which, due to financial reasons, is more and more popular as fuel in passenger cars. In relation to solutions adopted in the past, it has been decided to analyse the option of powering a modern passenger car with wood gas - syngas. Such fuel has been practically used since the 1920's. To that end, a computer simulation created in SciLab environment was carried out. Passenger car Fiat Seicento, fitted with Fire 1.1 8V petrol engine with power of 40kW, whose parameters were used to prepare the model, was selected as the model vehicle. The simulation allows the determination of engine demand on the given fuel. Apart from the wood gas included in the title, petrol, methane and LPG were used. Additionally, the created model enables the determination of the engine power at the time of the indicated fuels supply. The results obtained in the simulation revealed considerable decrease in the engine power when the wood gas was supplied and the increased consumption of this fuel. On the basis of the analysis of the professional literature describing numerous inconveniences connected with the use of this fuel as well as the obtained results, it has been established that using the wood gas as alternative fuel is currently

  11. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  12. Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available Gas engine driven heat pumps (GEHPs represent one of practical solutions to effectively utilize fossil fuel energy and reduce environmental pollution. In this paper, the performance characteristics of the GEHP were investigated experimentally with engine heat recovery. A GEHP test facility was set up for this purpose. The effects of several important factors including engine speed, ambient temperature, condenser water flow rate, and condenser water inlet temperature on the system performance were studied over a wide range of operating conditions. The results showed that the engine waste heat accounted for about 40–50% of the total heat capacity over the studied operating conditions. It also showed that engine speed and ambient temperature had significant effects on the GEHP performance. The coefficient of performance (COP and the primary energy ratio (PER decreased by 14% and 12%, respectively, as engine speed increased from 1400 rpm to 2000 rpm. On the other hand, the COP and PER of the system increased by 22% and 16%, respectively, with the ambient temperature increasing from 3 to 12°C. Furthermore, it was demonstrated that the condenser water flow rate and condenser water inlet temperature had little influence on the COP of the heat pump and the PER of the GEHP system.

  13. Modernization of gas-turbine engines with high-frequency induction motors

    Science.gov (United States)

    Abramovich, B. N.; Sychev, Yu A.; Kuznetsov, P. A.

    2018-03-01

    Main tendencies of growth of electric energy consumption in general and mining industries were analyzed in the paper. A key role of electric drive in this process was designated. A review about advantages and disadvantages of unregulated gearboxes with mechanical units that are commonly used in domestically produced gas-turbine engines was made. This review allows one to propose different gas-turbine engines modernization schemes with the help of PWM-driven high-frequency induction motors. Induction motors with the double rotor winding were examined. A simulation of high-frequency induction motors with double rotor windings in Matlab-Simulink software was carried out based on equivalent circuit parameters. Obtained characteristics of new motors were compared with serially produced analogues. After the simulation, results were implemented in the real prototype.

  14. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  15. Wireless Power Transfer System for Rotary Parts Telemetry of Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    Xiaoming He

    2018-04-01

    Full Text Available A novel wireless power transfer approach for the rotary parts telemetry of a gas turbine engine is proposed. The advantages of a wireless power transfer (WPT system in the power supply for the rotary parts telemetry of a gas turbine engine are introduced. By simplifying the circuit of the inductively-coupled WPT system and developing its equivalent circuit model, the mathematical expressions of transfer efficiency and transfer power of the system are derived. A mutual inductance model between receiving and transmitting coils of the WPT system is presented and studied. According to this model, the mutual inductance between the receiving and the transmitting coils can be calculated at different axial distances. Then, the transfer efficiency and transfer power can be calculated as well. Based on the test data, the relationship of the different distances between the two coils, the transfer efficiency, and transfer power is derived. The proper positions where the receiving and transmitting coils are installed in a gas turbine engine are determined under conditions of satisfying the transfer efficiency and transfer power that the telemetry system required.

  16. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  17. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    Directory of Open Access Journals (Sweden)

    A. SONTHALIA

    2015-04-01

    Full Text Available Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported from Middle East Asian countries and on the other hand combustion of fossil fuel has negative impact on air quality in urban areas. Use of CNG as a fuel in internal combustion engines can reduce the intensiveness of these pervasive problems. The performance of CNG can further be improved by addition of small percentages of hydrogen to it to overcome the drawbacks like lower energy density of the fuel, drop in engine power and engine out exhaust emissions. When hydrogen is added to CNG it is called as Hythane or Hydrogen enriched Compressed Natural Gas (HCNG. This can be considered as a first step towards promotion of hydrogen in automobiles. In this study, the effects of mixing hydrogen with CNG on a small air cooled four stroke SI engine’s performance, emissions and heat release rate was analyzed. A comparison of performance and emission by running engine separately on gasoline, hydrogen, CNG and HCNG was done. The results show a significant decrease in HC, CO and NOx emissions and marginal increase in specific energy consumption when fuelled with HCNG.

  18. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    Science.gov (United States)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  19. Catalytic reduction of methane/unburned hydrocarbons in smoke from lean-burn gas engines

    International Nuclear Information System (INIS)

    Wit, Jan de.

    1999-01-01

    The aim of this project has been: To describe the flue gas conditions of typical stationary gas engines for cogeneration; To evaluate the predominant causes of deactivation of oxidation catalysts under realistic operation conditions; To develop improved long-term stable oxidation catalysts; To evaluate alternative catalyst-based methane reduction technologies. Most gas engines for stationary purposes are efficient lean-burn gas engines. Both the high efficiency and the very lean operation lead to low exhaust temperatures. However, there is now a tendency to design engines with un-cooled exhaust manifolds. This leads to higher shaft efficiency and increases the exhaust temperature. Exhaust gas composition and temperatures during continuous operation and start/stops are given in this report. Analyses have been made of catalyst samples to find predominant causes for oxidation catalyst deactivation. The analyses have shown that the presence of sulphur dioxide in the flue gas causes sulphur poisoning on the active catalyst surface. This effect is dependent on both the catalyst formulation and the catalyst support material composition. Neither sintering, nor other poisoning components than sulphur have been on the examined catalyst samples. The sulphur dioxide in the exhaust is a result of the sulphur in the odorisation additive used in the natural gas (approx. 10 mg/n 3 m THT) and of the sulphur present in combusted lubrication oil. These sources leads to a level of approx. 0.3 - 0.6 ppm (vol) SO 2 in the exhaust gas. Based on a large number of laboratory tests, a new oxidation catalyst formulation has been developed and successfully tested over 5000 hours of operation at a commercial cogeneration plant. This long-term testing has been additionally supplemented by short-term testings at test sites to see performance under other operation conditions. It has been shown that a rise in flue gas temperature (from e.g. 450 deg. C) will significantly reduce the necessary

  20. Micro generation of electricity with gasification gas in a engine generator in dual mode; Microgeracao de eletricidade com gas de gaseificacao num motor gerador dual

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Jose da; Souza, Samuel Nelson Melegari de; Souza, Abel Alves de; Ricieri, Reinaldo P. [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PE (Brazil)], E-mail: marcelo_js07@hotmail.com

    2010-07-01

    Among the alternatives to the increase of world energy demand the use of biomass as energy source is one of the most promising as it contributes to reducing emissions of carbon dioxide in the atmosphere. Gasification is a process technology of biomass energy in a gaseous biofuel. The fuel gas got a low calorific value that can be used in diesel engine in dual mode for power generation in isolated communities. This study aimed to evaluate the reduction in the consumption of oil diesel an engine generator, using gas from gasification of wood. The engine generator brand used, it was a BRANCO, with direct injection power of 10 hp and mated to an electric generator 5,5 kW. The fuel gas was produced in a gasifier type co-current. The engine generator was put on load system from 0.5 kW to 3.5 kW through electric bank of heaters. For the oil diesel savings, the gas was injected mixed with intake air, as the oil diesel was normally injected by the injector of the engine (motor dual). The consumption od diesel was measured diesel by means of a precision scale. It was concluded that the engine converted to dual mode when using the gas for the gasification of wood showed a decrease in diesel consumption by up to 57%. (author)

  1. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    Science.gov (United States)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  2. Exhaust gas turbo-charger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.

    1982-01-07

    The invention is concerned with a exhaust gas turbocharger for internal combustion engines. A turbine driving a compressor, is feeded with the exhaust gas. Intended is the over-temperature protection of the exhaust gas turbocharger. For this reason a ring shaped sheet with a well polished nickel surface, serves as thermal shield. A sealing avoids soiling of the turbine shaft. Due to the heat shielding effect no tinder, oxide or dirt deposition is possible. The heat reflection factor is constant.

  3. Cycle-by-cycle exhaust temperature monitoring for detection of misfiring and combustion instability in reciprocating natural gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.P. [Nexum Research Corp., Kingston, ON (Canada); Bardon, M.F. [Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    The effectiveness of a cycle-by-cycle exhaust temperature monitoring system on engines operating at or near their fully rate load capacity was examined. Tests were conducted on stationary industrial natural gas engines. The study evaluated the monitoring system's ability to detect isolated single misfires, as well as combustion instability during misfire-free operations when the air/fuel ratio of the engine was adjusted to progressively lower settings. The combustion instability level of the engines was quantified by determining the relative variability of the groups of consecutive cycles. The coefficient of variation of indicated mean effective pressure (COV of IMEP) was used to examine cyclic variability. A combustion instability index was used to quantify cyclic variability with cycle-by-cycle exhaust temperature monitoring. Two engines were tested, notably a Cummins QSK 19G turbocharged natural gas engine; and a Waukesha VHP L5790G industrial natural gas engine. The tests demonstrated that cycle-by-cycle exhaust temperature monitoring system was capable of detecting misfiring and combustion instabilities in natural gas engines. 6 refs., 9 figs.

  4. Turbofan gas turbine engine with variable fan outlet guide vanes

    Science.gov (United States)

    Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  5. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Science.gov (United States)

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  6. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    International Nuclear Information System (INIS)

    Patond, S B; Chaple, S A; Shrirao, P N; Shaikh, P I

    2013-01-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al 2 O 3 ·2SiO 2 (mullite) (Al 2 O 3 = 60%, SiO 2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  7. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  8. Tracking and Control of Gas Turbine Engine Component Damage/Life

    Science.gov (United States)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  9. Emission reductions through precombustion chamber design in a natural gas, lean burn engine

    International Nuclear Information System (INIS)

    Crane, M.E.; King, S.R.

    1992-01-01

    A study was conducted to evaluate the effects of various precombustion chamber design, operating and control parameters on the exhaust emissions of a natural gas engine. Analysis of the results showed that engine-out total hydrocarbons and oxides of nitrogen (NO x ) can be reduced, relative to conventional methods, through prechamber design. More specifically, a novel staged prechamber yielded significant reductions in NO x and total hydrocarbon emissions by promoting stable prechamber and main chamber ignition under fuel-lean conditions. Precise fuel control was also critical when balancing low emissions and engine efficiency (i.e., fuel economy). The purpose of this paper is to identify and explain positive and deleterious effects of natural gas prechamber design on exhaust emissions

  10. Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres

    Science.gov (United States)

    Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu

    2018-02-01

    For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.

  11. Environmental optimisation of natural gas fired engines. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T. et al.

    2010-10-15

    The overall aim of the project has been to assess to which extent it is possible to reduce the emissions by adjusting the different engines examined and to determine the cost of the damage caused by emissions from natural gas combustion. However, only health and climate effects are included. The emissions of NO{sub x}, CO and UHC as well as the composition of the hydrocarbon emissions were measured for four different stationary lean-burn natural-gas fired engines installed at different combined heat and power (CHP) units in Denmark. The units were chosen to be representative of the natural gas fired engine-based power production in Denmark. The measurements showed that NO{sub x} emissions were relatively more sensitive to engine setting than UHC, CO and formaldehyde emissions. By reducing the NO{sub x} emissions to 40 % of the initial value (from 500 to 200 mg/m3(n) at 5 % O{sub 2}) the UHC emission was increased by 10 % to 50 % of the initial value. The electrical efficiency was reduced by 0.5 to 1.0 percentage point. Externalities in relation to power production are defined as the costs, which are not directly included in the price of the produced power. Health effects related to air pollution from power plants fall under this definition and usually dominate the results on external costs. For determination of these effects the exposure of the population, the impact of the exposure and the societal costs accompanying the impacts have been evaluated. As expected, it was found that when the engines are adjusted in order to reduce NO{sub x} emissions, the emission of UHC increases and vice versa. It was found that at high NO{sub x} emission levels (500 mg/m3{sub n} at 5 % O{sub 2}) the external costs related to the NO{sub x} emissions are 15 to 25 times the costs related to UHC emissions. At low NO{sub x} emission levels (200 mg/m3{sub n} at 5 % O{sub 2}) the costs related to NO{sub x} are 5 to 8 times the costs related to UHC emissions. Apparently, the harmfulness

  12. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  13. C and Si delta doping in Ge by CH_3SiH_3 using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Mai, Andreas; Tillack, Bernd

    2016-01-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH_3SiH_3 is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H_2 or N_2 carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N_2 as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH_3SiH_3 is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H_2 as carrier gas, lower incorporated C is observed in comparison to Si. CH_3SiH_3 injected with H_2 carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N_2 at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH_3SiH_3 exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH_3SiH_3 adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  14. Diesel and gas engines: evolution facing new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Daverat, Ph. [Bergetat Monnoyeur (France)

    1997-12-31

    This paper analyzes the influence of new pollution regulations on the new design of diesel and gas engines with the example of Caterpillar`s experience, one of the leaders of diesel and gas engines manufacturers worldwide. The technical problems to solve are introduced first (reduction of NO{sub x}, SO{sub 2}, CO, unburned compounds and dusts), and then the evolution of engines and of exhaust gas treatment systems are described (fuel injection systems, combustion and ignition control, sensors, catalytic conversion and filtering systems). (J.S.)

  15. A Stirling engine analysis method based upon moving gas nodes

    Science.gov (United States)

    Martini, W. R.

    1986-01-01

    A Lagrangian nodal analysis method for Stirling engines (SEs) is described, validated, and applied to a conventional SE and an isothermalized SE (with fins in the hot and cold spaces). The analysis employs a constant-mass gas node (which moves with respect to the solid nodes during each time step) instead of the fixed gas nodes of Eulerian analysis. The isothermalized SE is found to have efficiency only slightly greater than that of a conventional SE.

  16. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  17. EEE (environmental engineering economics) attributes for oil and gas industry

    International Nuclear Information System (INIS)

    Isreb, M.

    2006-01-01

    This paper outlined the basic attributes of environmental engineering economics (EEE) with reference to the oil and gas industry in Australia. The paper was designed as a reference guide for policy-makers, educators, and environmental engineers. Methods of calculating the Pareto Optimum status were discussed, and environmental values and principles were identified. Air quality indicators were outlined. The paper considered multidisciplinary approaches to EEE and sustainable development, as well as the application of statistics and qualitative methods in addressing contemporary issues. The ethical aspects of environmental policies were discussed. Issues related to environmental toxicity and public health were also examined. Various taxation approaches and financial incentives were reviewed. Environmental laws related to the oil and gas industry were outlined. Environmental assessment procedures were presented. It was concluded that environmental regulations within the industry will help to ensure appropriate pollution reductions. 7 refs

  18. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.

    Science.gov (United States)

    Solovev, Alexander A; Mei, Yongfeng; Bermúdez Ureña, Esteban; Huang, Gaoshan; Schmidt, Oliver G

    2009-07-01

    Strain-engineered microtubes with an inner catalytic surface serve as self-propelled microjet engines with speeds of up to approximately 2 mm s(-1) (approximately 50 body lengths per second). The motion of the microjets is caused by gas bubbles ejecting from one opening of the tube, and the velocity can be well approximated by the product of the bubble radius and the bubble ejection frequency. Trajectories of various different geometries are well visualized by long microbubble tails. If a magnetic layer is integrated into the wall of the microjet engine, we can control and localize the trajectories by applying external rotating magnetic fields. Fluid (i.e., fuel) pumping through the microtubes is revealed and directly clarifies the working principle of the catalytic microjet engines.

  19. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  20. Aircraft gas turbine engine vibration diagnostics

    Directory of Open Access Journals (Sweden)

    Stanislav Fábry

    2017-11-01

    Full Text Available In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections, if needed. Vibration sensors distribution, signal recording and processing are introduced in a paper. Recorded and re-calculated vibration parameters are used in role of health indicators.

  1. Molecular-beam epitaxial growth of insulating AlN on surface-controlled 6H-SiC substrate by HCl gas etching

    International Nuclear Information System (INIS)

    Onojima, Norio; Suda, Jun; Matsunami, Hiroyuki

    2002-01-01

    Insulating AlN layers were grown on surface-controlled 6H-SiC subtrates by molecular-beam epitaxy (MBE) using elemental Al and rf plasma-excited nitrogen (N*). HCl gas etching was introduced as an effective pretreatment method of substrate for MBE growth of AlN. 6H-SiC substrates pretreated by HCl gas etching had no surface polishing scratches and an atomically flat surface. In addition, evident ( 3 √x 3 √)R30 deg. surface reconstruction was observed even before thermal cleaning. AlN layers grown on this substrate had no defects related to surface polishing scratches and excellent insulating characteristics

  2. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  3. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  4. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  5. Thermodynamic model of a diesel engine to work with gas produced from biomass gasification

    International Nuclear Information System (INIS)

    Lesme Jaén, René; Silva Jardines, Fernando; Rodríguez Ortíz, Leandro Alexei; García Faure, Luis Gerónimo; Peralta Campos, Leonel Grave de; Oliva Ruiz, Luis; Iglesias Vaillant, Yunier

    2017-01-01

    The poor gas, obtained from the gasification of the biomass with air, has a high content of volatile substances, high stability to the ignition and can be used in internal combustion engines. In the present work the results of a thermodynamic model for a Diesel engine AshokLeyland, installed in 'El Brujo' sawmill of the Gran Piedra Baconao Forestry Company of Santiago de Cuba. From the composition and the combustion equation of the poor gas, the thermodynamic cycle calculation and the energy balance of the engine for different loads. Cycle parameters, fuel air ratio, CO2 emissions, engine power and performance were determined. As the main result of the work, the engine had an effective efficiency of 22.3%, consumed 3605.5 grams of fuel / KWh and emits 2055 grams of CO2 / kWh. (author)

  6. Development of the institutional framework of interaction with engineering UFD Russian oil and gas complex

    Directory of Open Access Journals (Sweden)

    S. Y. Yurpalov

    2005-03-01

    Full Text Available The trends developing in the Russian market of equipment for the oil and gas industry. The main reasons for the decline in production in the oil and gas engineering. The estimation of the negative trends of decrease in volumes of exploration works, the institutional environment of economic activity. The directions of cooperation of engineering enterprises of the Urals Federal District, serving the energy industry, with consumers. A set of measures to strengthen cooperation with Innovative Energy Engineering at the various levels of state regulation.

  7. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  8. Study on the sweep gas effect on the surface of Li{sub 4}SiO{sub 4} by means of work function measurement

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ. (Japan)

    1998-03-01

    In the establishment of fuel cycle of tritium, it is important to make research on how the sweep gas composition affects the surface properties of breeder materials and the release of tritium from the surface of them. In this study, the change of contact potential difference (CPD) between Li{sub 4}SiO{sub 4} and Pt was measured in various gas compositions with a high temperature Kelvin probe. The work function change of Li{sub 4}SiO{sub 4} was obtained from the measured CPD and the work function change of Pt which was estimated from blank tests. From the results, the effect of oxygen deficient layer near the surface of Li{sub 4}SiO{sub 4} was observed, and the effect of OH{sup -} at the surface of Li{sub 4}SiO{sub 4} was considered. (author)

  9. Thermodynamic analysis of an HCCI engine based system running on natural gas

    International Nuclear Information System (INIS)

    Djermouni, Mohamed; Ouadha, Ahmed

    2014-01-01

    Highlights: • A thermodynamic analysis of an HCCI based system has been carried out. • A thermodynamic model has been developed taking into account the gas composition resulting from the combustion process. • The specific heat of the working fluid is temperature dependent. - Abstract: This paper attempts to carry out a thermodynamic analysis of a system composed of a turbocharged HCCI engine, a mixer, a regenerator and a catalytic converter within the meaning of the first and the second law of thermodynamics. For this purpose, a thermodynamic model has been developed taking into account the gas composition resulting from the combustion process and the specific heat temperature dependency of the working fluid. The analysis aims in particular to examine the influence of the compressor pressure ratio, ambient temperature, equivalence ratio, engine speed and the compressor isentropic efficiency on the performance of the HCCI engine. Results show that thermal and exergetic efficiencies increase with increasing the compressor pressure ratio. However, the increase of the ambient temperature involves a decrease of the engine efficiencies. Furthermore, the variation of the equivalence ratio improves considerably both thermal and exergetic efficiencies. As expected, the increase of the engine speed enhances the engine performances. Finally, an exergy losses mapping of the system show that the maximum exergy losses occurs in the HCCI engine

  10. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    Science.gov (United States)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  11. Synthesis and characterization of laminated Si/SiC composites

    Science.gov (United States)

    Naga, Salma M.; Kenawy, Sayed H.; Awaad, Mohamed; Abd El-Wahab, Hamada S.; Greil, Peter; Abadir, Magdi F.

    2012-01-01

    Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results. PMID:25685404

  12. Synthesis and characterization of laminated Si/SiC composites

    Directory of Open Access Journals (Sweden)

    Salma M. Naga

    2013-01-01

    Full Text Available Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results.

  13. Two generators to produce SI-traceable reference gas mixtures for reactive compounds at atmospheric levels

    Science.gov (United States)

    Pascale, C.; Guillevic, M.; Ackermann, A.; Leuenberger, D.; Niederhauser, B.

    2017-12-01

    To answer the needs of air quality and climate monitoring networks, two new gas generators were developed and manufactured at METAS in order to dynamically generate SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations. The technical features of the transportable generators allow for the realization of such gas standards for reactive compounds (e.g. NO2, volatile organic compounds) in the nmol · mol-1 range (ReGaS2), and fluorinated gases in the pmol ṡ mol-1 range (ReGaS3). The generation method is based on permeation and dynamic dilution. The transportable generators have multiple individual permeation chambers allowing for the generation of mixtures containing up to five different compounds. This mixture is then diluted using mass flow controllers, thus making the production process adaptable to generate the required amount of substance fraction. All parts of ReGaS2 in contact with the gas mixture are coated to reduce adsorption/desorption processes. Each input parameter required to calculate the generated amount of substance fraction is calibrated with SI-primary standards. The stability and reproducibility of the generated amount of substance fractions were tested with NO2 for ReGaS2 and HFC-125 for ReGaS3. They demonstrate stability over 1-4 d better than 0.4% and 0.8%, respectively, and reproducibility better than 0.7% and 1%, respectively. Finally, the relative expanded uncertainty of the generated amount of substance fraction is smaller than 3% with the major contributions coming from the uncertainty of the permeation rate and/or of the purity of the matrix gas. These relative expanded uncertainties meet then the needs of the data quality objectives fixed by the World Meteorological Organization.

  14. Engine performances and exhaust gas characteristics of methanol-fueled two-cycle engines. Kogata ni cycle ter dot methanol kikan no seino ni oyobosu shoinshi no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, N.; Kajitani, S. (Ibaraki Univ., Ibaraki (Japan). Faculty of Engineerineering); Hayashi, S.; Kubota, Y. (Muroran Inst. of Technology, Muroran (Japan))

    1990-10-25

    Regarding crank case compressed two cycle engine, feasibility of methanol-fueled engine was investigated by studying effective factors on properties of power, combustion, and exhaust gas. For the experiment, air-cooling single cylinder engine was used of which specification was shown by table. As for the experiment, quantities of in-taken air, fuel consumption, torque, and composition of exhaust gas were measured under various conditions. As the consideration of experimental results, those were obtained that less exhaust gas with high performance operation of tow-cycle engie was achieved, too, by using diluted mixture gas of methanol, and that problems were found to be studied for the realization of high compression ratio. 12 refs., 13 figs., 1 tab.

  15. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  16. Experimental investigation and combustion analysis of a direct injection dual-fuel diesel-natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, A.P.; De Risi, A.; Laforgia, D.; Naccarato, F. [Department of Engineering for Innovation, University of Salento, CREA, via per Arnesano, 73100 Lecce (Italy)

    2008-02-15

    A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG-air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load and speed. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the combustion development and, as a consequence, on the engine performance, in terms of specific emission levels and fuel consumption. (author)

  17. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  18. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  19. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    Science.gov (United States)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  20. Effects of annealing gas and drain doping concentration on electrical properties of Ge-source/Si-channel heterojunction tunneling FETs

    Science.gov (United States)

    Bae, Tae-Eon; Wakabayashi, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Improvement in the performance of Ge-source/Si-channel heterojunction tunneling FETs (TFETs) with high on-current/off-current (I on/I off) ratio and steep subthreshold swing (SS) is demonstrated. In this paper, we experimentally examine the effects of gas ambient [N2 and forming gas (4% H2/N2)] and a doping concentration in the drain regions on the electrical characteristics of Ge/Si heterojunction TFETs. The minimum SS (SSmin) of 70.9 mV/dec and the large I on/I off ratio of 1.4 × 107 are realized by postmetallization annealing in forming gas. Also, the steep SSmin and averaged SS (SSavr) values of 64.2 and 78.4 mV/dec, respectively, are obtained in low drain doping concentration. This improvement is attributable to the reduction in interface state density (D it) in the channel region and to the low leakage current in the drain region.

  1. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    Science.gov (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  2. A Physics-Based Starting Model for Gas Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...

  3. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  4. Sewage sludge based producer gas of rich H{sub 2} content as a fuel for an IC engine

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, Stanislaw; Cupial, Karol [Czestochowa Univ. of Technology (Poland)

    2010-07-01

    The manuscript presents investigation on hydrogen rich gas combustion in an internal combustion (IC) engine. The gas is obtained from gasification process of sewage sludge which is by-product of waste water treatment in a municipal sewage treatment plant. Recently introduced EU regulations of environmental protection do not allow to use such sludge as a soil fertilizer or substance for landfilling the ground due to its biological toxicity. On another hand, this sludge contains organic content of approximately 45-55% and from this point of view the sludge looks as an attractive material for fuel production through its gasification. This technology, primarily applied for wood gasification, has been also successfully implemented for gasification of sludge. It was found that the producer gas obtained in this way is rich of hydrogen content even up to 25%. This is because of high water content in the sludge that provides favorable conditions for steam reforming resulting in increase of hydrogen in the products of gasification. The high hydrogen content in the producer gas can lead to improper combustion particularly when the combustion takes place in the internal combustion engine. That improper combustion might appear as combustion knock and it is the main problem for the engine in which hydrogen is used as a fuel [1]. Onset of the knock during combustion contributes to rapid increase in heat transfer to the piston crown causing the piston to be quickly overheated that leads to surface erosion and damages. Additionally, engine body vibration coming from the knock significantly shortens engine durability. Conclusions from this investigation provide good premises for combusting the sludge producer gas in the IC engine without any improper combustion anomalies, thus considers this gas as worthy fuel for a stationary engine driven a power generator. The presentation shows results of producer gas combustion in both the spark-ignited and the compression ignition engine with

  5. Study of compressor systems for a gas-generator engine

    Science.gov (United States)

    Sather, Bernard I; Tauschek, Max J

    1950-01-01

    Various methods of providing compressor-capacity and pressure-ratio control in the gas-generator type of compound engine over a range of altitudes from sea level to 50,000 feet are presented. The analytical results indicate that the best method of control is that in which the first stage of compression is carried out in a variable-speed supercharger driven by a hydraulic slip coupling. The constant-speed second stage could be either a mixed-flow rotary compressor or a piston-type compressor. A variable-area turbine nozzle is shown to be unnecessary for cruising operation of the engine.

  6. Sustainable application of reciprocating gas engines operating on coal mine methane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Teo, T. [Caterpillar China Investment Co., Beijing (China); Tnay, C.H. [Westrac Inc., Beijing (China)

    2008-07-01

    According to the World Coal Institute, coal provides 25 per cent of worldwide primary energy needs and generates 40 per cent of the world's electricity. China produces the largest amount of hard coal. The anthropogenic release of methane (CH{sub 4}) into the environment is a byproduct of the coal mining process. The global warming potential of this methane continues to draw attention around the world. In particular, China's government has recognized the need for environmental responsibility in the pursuit of greater power production. The Kyoto Protocol requires developed countries to reduce their greenhouse gas emissions and targets must be met within a five-year time frame between 2008 and 2012. Sequestering coal mine methane (CMM) as an alternative fuel for reciprocating gas engine generator sets is a mature and proven technology for greenhouse gas mitigation. Prior to commissioning CMM-fueled power systems, the methane gas composition must be evaluated. An integrated systems approach can then be used to develop a CMM-fueled power project. This paper discussed the sustainable application of reciprocating gas engines operating on coal mine methane. It discussed the Kyoto Protocol, clean development mechanism, and CMM as compared to other fuel sources. It was concluded that there is considerable opportunity for growth in the Asia-Pacific region for electric power applications using CMM. 4 refs., 12 figs.

  7. Mechanical, thermo dynamical and environmental comparison of engines using natural gas and gasoline

    International Nuclear Information System (INIS)

    Agudelo S, John R; Bedoya C, Ivan D; Moreno S, Ricardo

    2005-01-01

    This paper shows experimental results of a Toyota Hilux 2400-swept volume, compression ratio 9:1 engine, operating with La Guajira natural gas and petrol. Also shows a thermodynamic study of those fuels in a normalized, variable compression ratio ASTM-CFR monocylinder engine. When using natural gas, Hilux engine increases its fuel consumption around 20% for the same power. Volumetric efficiency increases 10% and co emissions de- crease around 40%. When comparing thermodynamic parameters in CFR engine operating at a compression ratio of 9:1, it was found a 12,5% decrease in indicated power and 17% in maximum combustion pressure, which is proportional to temperature diminish of around 20%. Convective heat transfer coefficient decreases around 28% respect to petrol. First laminar combustion phase is duplicated when using the same spark advance as petrol; nevertheless this is maintained almost constant when spark is advancing 15 degrades over petrol spark advance

  8. Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

    Science.gov (United States)

    Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.

    2018-01-01

    Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.

  9. Study of Si/Si, Si/SiO2, and metal-oxide-semiconductor (MOS) using positrons

    International Nuclear Information System (INIS)

    Leung, To Chi.

    1991-01-01

    A variable-energy positron beam is used to study Si/Si, Si/SiO 2 , and metal-oxide-semiconductor (MOS) structures. The capability of depth resolution and the remarkable sensitivity to defects have made the positron annihilation technique a unique tool in detecting open-volume defects in the newly innovated low temperature (300C) molecular-beam-epitaxy (MBE) Si/Si. These two features of the positron beam have further shown its potential role in the study of the Si/SiO 2 . Distinct annihilation characteristics has been observed at the interface and has been studied as a function of the sample growth conditions, annealing (in vacuum), and hydrogen exposure. The MOS structure provides an effective way to study the electrical properties of the Si/SiO 2 interface as a function of applied bias voltage. The annihilation characteristics show a large change as the device condition is changed from accumulation to inversion. The effect of forming gas (FG) anneal is studied using positron annihilation and the result is compared with capacitance-voltage (C-V) measurements. The reduction in the number of interface states is found correlated with the changes in the positron spectra. The present study shows the importance of the positron annihilation technique as a non-contact, non-destructive, and depth-sensitive characterization tool to study the Si-related systems, in particular, the Si/SiO 2 interface which is of crucial importance in semiconductor technology, and fundamental understanding of the defects responsible for degradation of the electrical properties

  10. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  11. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  12. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Erol [Program of Energy Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey); Cihangir Ozcanli, S.; Ozerdem, Baris [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2007-08-15

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NO{sub x}, CO, CO{sub 2}, HC, and O{sub 2} versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NO{sub x} emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. Finally, both first and second law efficiencies have improved with hydrogen fuelled engine compared to gasoline engine. It has been proved that hydrogen is a very good candidate as an engine fuel. The obtained data are also very useful for operational changes needed to optimize the hydrogen fueled SI engine design. (author)

  13. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  14. Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine

    International Nuclear Information System (INIS)

    Hernández, J.J.; Lapuerta, M.; Barba, J.

    2015-01-01

    The injected diesel fuel used in a diesel engine was partially replaced with biomass-derived gas through the intake port, and the effect on performance and pollutant emissions was studied. The experimental work was carried out in a supercharged, common-rail injection, single-cylinder diesel engine by replacing diesel fuel up to 20% (by energy), keeping constant the engine power. Three engine loads (60, 90, 105 Nm), three different EGR (exhaust gas recirculation) ratios (0, 7.5, 15%) and two intake temperatures (45, 60 °C) were tested. Finally, some of the tested conditions were selected to replace diesel injection fuel with biodiesel injection. Although the brake thermal efficiency was decreased and hydrocarbons and carbon monoxide emissions increased with increasing fuel replacement, particulate emissions decreased significantly and NO x emissions decreased slightly at all loads and EGR ratios. Thermodynamic diagnostic results showed higher premixed ratio and lower combustion duration for increasing diesel fuel replacement. High EGR ratios improved both engine performance and emissions, especially when intake temperature was increased, which suggest removing EGR cooling when diesel fuel is replaced. Finally, when biodiesel was used instead of diesel fuel, the gas replacement improved the efficiency and reduced the hydrocarbon, carbon monoxide and particulate emissions. - Highlights: • Replacing injected fuel with gas permits an efficient valorization of waste biomass. • Inlet gas was inefficiently burned after the end of liquid fuel injection. • Engine parameters were combined to simultaneously reduce particle and NO x emissions. • Hot EGR (exhaust gas recirculation) and biodiesel injection are proposed to improve efficiency and emissions

  15. The Relation between Gas Flow and Combustibility using Actual Engine (Basic Experiment of Gas Flow and Combustibility under Low Load Condition)

    OpenAIRE

    田坂, 英紀; 泉, 立哉; 木村, 正寿

    2003-01-01

    Abstract ###Consideration of the global environment problems by exhaust gas is becoming important in recent years. ###Especially about internal combustion engine, social demand has been increasing about low pollution, high ###efficiency and so on. Controlling gas flow in cylinder becomes the key getting good combustion state in ###various driving states. ###The purpose of the research is analysis about the relation between gas flow and combustibility in the cylinder. ###So we measured gas flo...

  16. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  17. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    Science.gov (United States)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  18. Practices and prospect of petroleum engineering technologies in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-12-01

    Full Text Available Located in the Sichuan Basin, the Yuanba Gasfield is the deepest marine sour gas field among those developed in China so far. Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth, high content of hydrogen sulfide, medium–low porosity and permeability, and small reservoir thickness. Economic evaluation on it shows that horizontal well drilling is the only way to develop this gas reservoir efficiently and to reduce the total development investment. At present, the petroleum engineering technology for this type of ultra-deep sour gas reservoir is less applied in the world, so an ultra-deep horizontal well is subject to a series of petroleum engineering technology difficulties, such as safe and fast well drilling and completion, mud logging, well logging, downhole operation, safety and environmental protection. Based on the successful development experience of the Puguang Gasfield, therefore, Sinopec Southwest Petroleum Engineering Co., Ltd. took the advantage of integrated engineering geology method to carry out specific technical research and perform practice diligently for 7 years. As a result, 18 key items of technologies for ultra-deep sour gas reservoirs were developed, including horizontal-well drilling speed increasing technology, horizontal-well mud logging and well logging technology, downhole operation technology, and safety and environmental protection technology. These technologies were applied in 40 wells during the first and second phases of productivity construction of the Yuanba Gasfield. All the 40 wells have been built into commercial gas wells, and the productivity construction goal of 3.4 billion m3 purified gas has also been achieved. These petroleum engineering technologies for ultra-deep sour gas fields play a reference role in exploring and developing similar gas reservoirs at home and abroad.

  19. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Directory of Open Access Journals (Sweden)

    Wei-Ting eLai

    2016-02-01

    Full Text Available We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5−90 nm, the SiO2 thickness (3−4 nm, and as well the SiGe-shell thickness (2−15 nm has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5 in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge MOS nanoelectronic and nanophotonic applications.

  20. Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation

    International Nuclear Information System (INIS)

    Iodice, Paolo; Senatore, Adolfo; Langella, Giuseppe; Amoresano, Amedeo

    2016-01-01

    Highlights: • This study assesses the effect of ethanol–gasoline blends on cold emissions. • A last generation motorcycle was operated on the chassis dynamometer. • A new calculation procedure was applied to model the cold transient behaviour. • The 20% v/v ethanol blend shows the highest reduction of CO and HC cold emissions. - Abstract: Urban areas in developed countries are characterized by an increasing decline in air quality state mainly due to the exhaust emissions from vehicles. Besides, due to catalyst improvements and electronic mixture control of last generation engines, nowadays CO and HC cold start extra-emissions are heavily higher than emissions exhausted in hot conditions, with a clear consequence on air quality of the urban contexts. Ethanol combined with gasoline can be widely used as an alternative fuel due to the benefit of its high octane number and its self-sustaining characteristics. Ethanol, in fact, is well known as potential alcohol alternative fuel for SI engines, since it can be blended with gasoline to increase oxygen content, then decreasing CO and HC emissions and the depletion of fossil fuels. Literature data about cold emissive behaviour of SI engines powered with ethanol/gasoline blended fuels are rather limited. For this reason, the aim of this study is to experimentally investigate the effect of ethanol/gasoline blends on CO and HC cold start emissions of four-stroke SI engines: a last generation motorcycle was operated on the chassis dynamometer for exhaust emission measurements without change to the engine design, while the ethanol was mixed with unleaded gasoline in different percentages (10, 20 and 30 vol.%). Results of the experimental tests and the application of a new calculation procedure, designed and optimised to model the cold transient behaviour of SI engines using different ethanol–gasoline blends, indicate that CO and HC cold start emissions decrease compared to the use of commercial gasoline, with the 20

  1. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  2. Impact of Dissociation and Sensible Heat Release on Pulse Detonation and Gas Turbine Engine Performance

    Science.gov (United States)

    Povinelli, Louis A.

    2001-01-01

    A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.

  3. Power generation using coir-pith and wood derived producer gas in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673 601, Kerala State (India)

    2006-10-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the potential of coir-pith and wood chips as the feedstock for gasifier is analyzed. The performance of the gasifier-engine system is analyzed by running the engine for various producer gas-air flow ratios and at different load conditions. The system is experimentally optimized with respect to maximum diesel savings and lower emissions in the dual fuel mode operation while using coir-pith and wood chips separately. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine while using wood chips in the dual mode operation is higher than that of coir-pith. The CO emission is higher in the case of dual fuel mode of operation as compared to that of diesel mode. In the dual fuel mode of operation, the higher diesel savings is achieved while using wood chips as compared to that of coir-pith. The comparison of the performance and emission characteristics of the dual fuel engine with diesel engine is also described. (author)

  4. Experimental investigation of engine emissions with marine gas oil-oxygenate blends

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Md. Nurun, E-mail: nurun.nabi@ntnu.no [Rajshahi University of Engineering and Technology (Bangladesh); Norwegian University of Science and Technology (NTNU) (Norway); Hustad, Johan Einar, E-mail: johan.e.hustad@ntnu.no [Norwegian University of Science and Technology (NTNU) (Norway)

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.

  5. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  6. Removal of C and SiC from Si and FeSi during ladle refining and solidification

    Energy Technology Data Exchange (ETDEWEB)

    Klevan, Ole Svein

    1997-12-31

    The utilization of solar energy by means of solar cells requires the Si to be very pure. The purity of Si is important for other applications as well. This thesis mainly studies the total removal of carbon from silicon and ferrosilicon. The decarburization includes removal of SiC particles by stirring and during casting in addition to reduction of dissolved carbon by gas purging. It was found that for three commercial qualities of FeSi75, Refined, Gransil, and Standard lumpy, the refined quality is lowest in carbon, followed by Gransil and Standard. A decarburization model was developed that shows the carbon removal by oxidation of dissolved carbon to be a slow process at atmospheric pressure. Gas stirring experiments have shown that silicon carbide particles are removed by transfer to the ladle wall. The casting method of ferrosilicon has a strong influence on the final total carbon content in the commercial alloy. Shipped refined FeSi contains about 100 ppm total carbon, while the molten alloy contains roughly 200 ppm. The total carbon out of the FeSi-furnace is about 1000 ppm. It is suggested that low values of carbon could be obtained on an industrial scale by injection of silica combined with the use of vacuum. Also, the casting system could be designed to give low carbon in part of the product. 122 refs., 50 figs., 24 tabs.

  7. Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

    OpenAIRE

    Liubov Magerramova; Eugene Kratt; Pavel Presniakov

    2017-01-01

    A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and...

  8. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  9. The application of H2 in S.I. engines. Paper no. IGEC-1-065

    International Nuclear Information System (INIS)

    Li, H.; Neill, W.S.; Karim, G.A.

    2005-01-01

    Hydrogen has long been recognized as a fuel having some unique and highly desirable combustion properties, such as a wide flammable mixture range, low ignition energy, very fast flame propagation rates and clean combustion products especially without greenhouse gases. These features made H 2 an excellent fuel for both traditional and emerging innovative power devices such as spark ignition engines and fuel cells. The application of H 2 makes it possible for these devices to potentially meet the ever increasingly stringent environmental controls of exhaust emissions, including the possible elimination of green house gas emissions. This paper contributes to the experimental examination of H 2 applications in spark ignition engines. The detailed engine performance including the onset of knock, lean operational limits and exhaust emissions is to be presented. Comparison with the corresponding performances of other common gases fuels such as natural gas is made. The optimization of spark timing for efficiency and for the avoidance of knock while maintaining high thermal efficiency is also to be discussed. (author)

  10. Thermochemical instability effects in SiC-based fibers and SiC{sub f}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H.; Jones, R.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1997-08-01

    Thermochemical instability in irradiated SiC-based fibers with an amorphous silicon oxycarbide phase leads to shrinkage and mass loss. SiC{sub f}/SiC composites made with these fibers also exhibit mass loss as well as severe mechanical property degradation when irradiated at 800{degrees}C, a temperature much below the generally accepted 1100{degrees}C threshold for thermomechanical degradation alone. The mass loss is due to an internal oxidation mechanism within these fibers which likely degrades the carbon interphase as well as the fibers in SiC{sub f}/SiC composites even in so-called {open_quotes}inert{close_quotes} gas environments. Furthermore, the mechanism must be accelerated by the irradiation environment.

  11. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  12. Study of performance and emission characteristics of a partially coated LHR SI engine blended with n-butanol and gasoline

    Directory of Open Access Journals (Sweden)

    Nitesh Mittal

    2013-09-01

    Full Text Available To meet the present requirements of the automotive industry, there is continuous search to improve the performance, exhaust emission, and life of the IC engines. The meet the first two challenges, researchers are working both on newer engine technologies and fuels. Some of the published work indicates that coating on the combustion surface of the engine with ceramic material results in improved performance and reduced emission levels when fueled with alternate fuel blended fuels, and this serves as a base for this work. Normal-Butanol has molecular structure that is adaptable to gasoline, and it is considered as one of the alternative fuels for SI engines. Blending butanol with gasoline changes the properties of the fuel and alters the engine performance and emission characteristics. This is because heat which is released at a rate as a result of combustion of the compressed air–fuel mixture in the combustion chamber gets changed with respect to change fuel properties, air fuel ratio, and engine speed. An experimental investigation is carried out on a partially insulated single cylinder SI engine to study the performance and emission characteristics when fueled with two different blends of butanol and gasoline. The cylinder head surface and valves are coated with a ceramic material consisting of Zirconium dioxide (ZrO2 with 8% by weight of Yttrium Oxide (Y2O3 to a thickness of 0.3 mm by plasma spray method. Two different fuel blends containing 10% and 15% by volume of butanol in Gasoline are tested on an engine dynamometer using the uncoated and ceramic coated engines. The results strongly indicate that combination of ceramic coated engine and butanol gasoline blended fuel has potential to improve the engine performance.

  13. AlSi17Cu5Mg alloy as future material for castings of pistons for internal combustion engines

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-07-01

    Full Text Available The paper presents chosen properties and microstructure of AlSi17Cu5Mg alloy as future material for casting pistons in automotive industry. Tests were conducted to elaborate technology of preparation, assessment of crystallisation parameters and shaping the primary structure of the silumin with the aim to improve the working parameters and the functioning efficiency in cylinder-piston system. Refinement of Si crystals, achieved due to overheating above the temperature Tliq. causes that the alloy reaches satisfactory properties in working chamber of the engine are optimised. Such condition of material characteristics causes that hypereutectic silumins, for chosen applications in transport, may serve as an alternative to Al - Si alloys of hypoeutectic and near - eutectic type.

  14. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    Science.gov (United States)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  15. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    International Nuclear Information System (INIS)

    Guo, X.; Wehrmeyer, J.A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-var-epsilon model, RNG k-var-epsilon model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained. copyright 1997 American Institute of Physics

  16. A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Miyazawa, Tomohisa; Ito, Shin-ichi; Kunimori, Kimio; Koyama, Shuntarou; Tomishige, Keiichi

    2004-01-01

    The gasification of cedar wood in the presence of Rh/CeO 2 /SiO 2 has been conducted in the laboratory scale fluidized bed reactor using air as a gasifying agent at low temperatures (823-973 K) in order to produce high-quality fuel gas for gas turbine for power generation. The performance of the Rh/CeO 2 /SiO 2 catalyst has been compared with conventional catalysts such as commercial steam reforming catalyst G-91, dolomite and noncatalyst systems by measurements of the cold gas efficiency, tar concentration, carbon conversion to gas and gas composition. The tar concentration was completely negligible in the Rh/CeO 2 /SiO 2 -catalyzed product gas whereas it was about 30, 113, and 139 g/m 3 in G-91, dolomite and noncatalyzed product gas, respectively. Since the carbon conversion to useful gas such as CO, H 2 , and CH 4 are much higher on Rh/CeO 2 /SiO 2 catalyst than others at 873 K, the cold gas efficiency is much higher (71%) in this case than others. The hydrogen content in the product gas is much higher (>24 vol%) than the specified level (>10 vol%) for efficient combustion in the gas turbine engine. The char and coke formation is also very low on Rh/CeO 2 /SiO 2 catalyst than on the conventional catalysts. Although the catalyst surface area was slightly decreased after using the same catalyst in at least 20 experiments, the deactivation problem was not severe

  17. Hierarchy of simulation models for a turbofan gas engine

    Science.gov (United States)

    Longenbaker, W. E.; Leake, R. J.

    1977-01-01

    Steady-state and transient performance of an F-100-like turbofan gas engine are modeled by a computer program, DYNGEN, developed by NASA. The model employs block data maps and includes about 25 states. Low-order nonlinear analytical and linear techniques are described in terms of their application to the model. Experimental comparisons illustrating the accuracy of each model are presented.

  18. Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach

    Directory of Open Access Journals (Sweden)

    Yiqiu Lv

    2013-01-01

    Full Text Available Different approaches for gas path performance estimation of dynamic systems are commonly used, the most common being the variants of the Kalman filter. The extended Kalman filter (EKF method is a popular approach for nonlinear systems which combines the traditional Kalman filtering and linearization techniques to effectively deal with weakly nonlinear and non-Gaussian problems. Its mathematical formulation is based on the assumption that the probability density function (PDF of the state vector can be approximated to be Gaussian. Recent investigations have focused on the particle filter (PF based on Monte Carlo sampling algorithms for tackling strong nonlinear and non-Gaussian models. Considering the aircraft engine is a complicated machine, operating under a harsh environment, and polluted by complex noises, the PF might be an available way to monitor gas path health for aircraft engines. Up to this point in time a number of Kalman filtering approaches have been used for aircraft turbofan engine gas path health estimation, but the particle filters have not been used for this purpose and a systematic comparison has not been published. This paper presents gas path health monitoring based on the PF and the constrained extend Kalman particle filter (cEKPF, and then compares the estimation accuracy and computational effort of these filters to the EKF for aircraft engine performance estimation under rapid faults and general deterioration. Finally, the effects of the constraint mechanism and particle number on the cEKPF are discussed. We show in this paper that the cEKPF outperforms the EKF, PF and EKPF, and conclude that the cEKPF is the best choice for turbofan engine health monitoring.

  19. Organic positive ions in aircraft gas-turbine engine exhaust

    Science.gov (United States)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  20. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2015-01-15

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  1. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  2. Gas turbine engine with three co-axial turbine rotors in the same gas-stream

    Energy Technology Data Exchange (ETDEWEB)

    Kronogaard, S.O.

    1978-06-01

    A gas turbine engine with three coaxial rotors in the same gas passage designed for automative purposes is described. The first turbine rotor is rather small and does not supply all the power for compression at full load. It could be made from ceramic materials. The second rotor is mounted on a tubular axle and used for propulsion through a planetary gear. The third rotor is also mounted on a separate tubular axle and is used for driving auxillary machines pumps, i.e., generator, heat exchanger, etc.. It also delivers, through a thin shaft inside the second axle, extra power to the compressor, at full load. This turbine also rotates the vehicle stands still, if the second turbine is locked. The second and third turbines are rotating in opposite directions. Shaft bearings are air-stream supported. The turbine housing is made from light metal with internal surfaces in contact with gas or air and are covered with a layer of ceramics.

  3. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  4. Comparison of interfaces for (Ba,Sr)TiO3 films deposited on Si and SiO2/Si substrates

    International Nuclear Information System (INIS)

    Suvorova, N.A.; Lopez, C.M.; Irene, E.A.; Suvorova, A.A.; Saunders, M.

    2004-01-01

    (Ba,Sr)TiO 3 (BST) thin films were deposited by ion sputtering on both bare and oxidized Si. Spectroscopic ellipsometry results have shown that a SiO 2 underlayer of nearly the same thickness (2.6 nm in average) is found at the Si interface for BST sputter depositions onto nominally bare Si, 1 nm SiO 2 on Si or 3.5 nm SiO 2 on Si. This result was confirmed by high-resolution electron microscopy analysis of the films, and it is believed to be due to simultaneous subcutaneous oxidation of Si and reaction of the BST layer with SiO 2 . Using the conductance method, capacitance-voltage measurements show a decrease in the interface trap density D it of an order of magnitude for oxidized Si substrates with a thicker SiO 2 underlayer. Further reduction of D it was achieved for the capacitors grown on oxidized Si and annealed in forming gas after metallization

  5. Comparison of interfaces for (Ba,Sr)TiO3 films deposited on Si and SiO2/Si substrates

    Science.gov (United States)

    Suvorova, N. A.; Lopez, C. M.; Irene, E. A.; Suvorova, A. A.; Saunders, M.

    2004-03-01

    (Ba,Sr)TiO3(BST) thin films were deposited by ion sputtering on both bare and oxidized Si. Spectroscopic ellipsometry results have shown that a SiO2 underlayer of nearly the same thickness (2.6 nm in average) is found at the Si interface for BST sputter depositions onto nominally bare Si, 1 nm SiO2 on Si or 3.5 nm SiO2 on Si. This result was confirmed by high-resolution electron microscopy analysis of the films, and it is believed to be due to simultaneous subcutaneous oxidation of Si and reaction of the BST layer with SiO2. Using the conductance method, capacitance-voltage measurements show a decrease in the interface trap density Dit of an order of magnitude for oxidized Si substrates with a thicker SiO2 underlayer. Further reduction of Dit was achieved for the capacitors grown on oxidized Si and annealed in forming gas after metallization.

  6. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  7. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  8. The combustion system of the MAN 20V35/44G gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Markus; Auer, Matthias; Stiesch, Gunnnar [MAN Diesel and Turbo SE, Augsburg (Germany)

    2013-05-15

    The new gas engine 20V35/44G by MAN Diesel and Turbo SE has a power output of 10.6 MW. The high effective efficiency level of 48.4 % as well as numerous technical innovations allow an environmentally-friendly, economical and reliable engine operation. Key to achieve this is the combustion system, which has been optimised during advanced engineering by means of modern simulation tools and extensive single-cylinder tests. (orig.)

  9. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    Science.gov (United States)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  10. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  11. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  12. The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines

    Science.gov (United States)

    Schweitzer, P H; Deluca, Frank, Jr

    1942-01-01

    A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

  13. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  14. Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Hall, Carrie M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-10-17

    The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.

  15. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  16. C and Si delta doping in Ge by CH{sub 3}SiH{sub 3} using reduced pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yuji, E-mail: yamamoto@ihp-microelectronics.com [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Ueno, Naofumi; Sakuraba, Masao [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577 (Japan); Murota, Junichi [Micro System Integration Center, Tohoku University, 519-1176, Aramaki aza Aoba, Aoba-ku, Sendai 980-0845 (Japan); Mai, Andreas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Tillack, Bernd [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Technische Universität Berlin, HFT4, Einsteinufer 25, 10587 Berlin (Germany)

    2016-03-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH{sub 3}SiH{sub 3} is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H{sub 2} or N{sub 2} carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N{sub 2} as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH{sub 3}SiH{sub 3} is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H{sub 2} as carrier gas, lower incorporated C is observed in comparison to Si. CH{sub 3}SiH{sub 3} injected with H{sub 2} carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N{sub 2} at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH{sub 3}SiH{sub 3} exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH{sub 3}SiH{sub 3} adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  17. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  18. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    Science.gov (United States)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  19. Performance and exhaust emissions in a natural-gas fueled dual-fuel engine; Tennen gas dual fuel kikan no seino oyobi haiki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M.; Ishiyama, T.; Shibata, H. [Kyoto Univ., Kyoto (Japan). Inst. of Atomic Energy; Ikegami, M. [Fukui Institute of Technology, Fukui (Japan). Faculty of Engineering

    2000-07-25

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, tests were made for some operational parameters and their combination on the engine performances and the exhaust emissions. The results show that the gas oil quantity should be increased and gas oil injection timing should be advanced to suppress unburned hydrocarbon emission at middle and low output range, while the quantity should be reduced and the timing should be retarded to avoid onset of knock at high loads. The unburned hydrocarbon emission and the thermal efficiency are improved at the same load avoiding too lean natural gas premixture by restriction of intake charge air. However the improvement is limited because the ignition and initial combustion of pilot diesel fuel is deteriorated when the cylinder pressure is excessively lowered by throttling. The increase in pilot gas oil amount is effective for low-load operation and the adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation. (author)

  20. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  1. Neutron tolerance of advanced SiC-fiber/CVI-SiC composites

    International Nuclear Information System (INIS)

    Katoh, Y.; Kohyama, A.; Snead, L.L.; Hinoki, T.; Hasegawa, A.

    2003-01-01

    Fusion blankets employing a silicon carbide (SiC) fiber-reinforced SiC matrix composite (SiC/SiC composite) as the structural material provide attractive features represented by high cycle efficiency and extremely low induced radioactivity. Recent advancement in processing and utilization techniques and application studies in ceramic gas turbine and advanced transportation systems, SiC/SiC composites are steadily getting matured as industrial materials. Reference SiC/SiC composites for fusion structural applications have been produced by a forced-flow chemical vapor infiltration (FCVI) method using conventional and advanced near-stoichiometric SiC fibers and extensively evaluated primarily in Japan-US collaborative JUPITER program. In this work, effect of neutron irradiation at elevated temperatures on mechanical property of these composites is characterized. Unlike in conventional SiC/SiC composites, practically no property degradation was identified in advanced composites with a thin carbon interphase by a neutron fluence level of approximately 8dpa at 800C. (author)

  2. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  3. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory

    2013-11-01

    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  4. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    Science.gov (United States)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  5. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  6. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  7. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    Directory of Open Access Journals (Sweden)

    Brian Ford

    2017-04-01

    Full Text Available The following study focuses on the photoluminescence (PL enhancement of chemically synthesized silicon oxycarbide (SiCxOy thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD, and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2 ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield.

  8. Theoretical Prediction of an Antimony-Silicon Monolayer (penta-Sb2Si): Band Gap Engineering by Strain Effect

    Science.gov (United States)

    Morshedi, Hosein; Naseri, Mosayeb; Hantehzadeh, Mohammad Reza; Elahi, Seyed Mohammad

    2018-04-01

    In this paper, using a first principles calculation, a two-dimensional structure of silicon-antimony named penta-Sb2Si is predicted. The structural, kinetic, and thermal stabilities of the predicted monolayer are confirmed by the cohesive energy calculation, phonon dispersion analysis, and first principles molecular dynamic simulation, respectively. The electronic properties investigation shows that the pentagonal Sb2Si monolayer is a semiconductor with an indirect band gap of about 1.53 eV (2.1 eV) from GGA-PBE (PBE0 hybrid functional) calculations which can be effectively engineered by employing external biaxial compressive and tensile strain. Furthermore, the optical characteristics calculation indicates that the predicted monolayer has considerable optical absorption and reflectivity in the ultraviolet region. The results suggest that a Sb2Si monolayer has very good potential applications in new nano-optoelectronic devices.

  9. Thermodynamic analysis of a gas turbine cycle equipped with a non-ideal adiabatic model for a double acting Stirling engine

    International Nuclear Information System (INIS)

    Korlu, Mahmood; Pirkandi, Jamasb; Maroufi, Arman

    2017-01-01

    Highlights: • A gas turbine cycle equipped with a double acting Stirling engine is proposed. • The hybrid cycle effects, efficiency and power outputs are investigated. • The energy dissipation, the net enthalpy loss and wall heat leakage are considered. • The hybrid cycle improves the efficiency from 23.6 to 38.8%. - Abstract: The aim of this study is to investigate the thermodynamic performance of a gas turbine cycle equipped with a double acting Stirling engine. A portion of gas turbine exhaust gases are allocated to providing the heat required for the Stirling engine. Employing this hybrid cycle improves gas turbine performance and power generation. The double acting Stirling engine is used in this study and the non-ideal adiabatic model is used to numerical solution. The regenerator’s net enthalpy loss, the regenerator’s wall heat leakage, the energy dissipation caused by pressure drops in heat exchangers and regenerator are the losses that were taken into account for the Stirling engine. The hybrid cycle, gas turbine governing equations and Stirling engine analyses are carried out using the Matlab software. The pressure ratio of the compressor, the inlet temperature of turbine, the porosity, length and diameter of the regenerator were chosen as essential parameters in this article. Also the hybrid cycle effects, efficiency and power outputs are investigated. The results show that the hybrid gas turbine and Stirling engine improves the efficiency from 23.6 to 38.8%.

  10. Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.

    2000-07-01

    There is renewed interest in the development of natural gas vehicles in response to the challenge to reduce urban air pollution and consumption of petroleum. The natural gas/diesel dual fuel engine is one way to apply natural gas to the conventional diesel engine. Dual fuel engines operating on natural gas and diesel emit less nitrogen oxides, and less carbon soot to the air compared to conventional diesel engines. The problem is that at light loads, fuel efficiency is reduced and emissions of hydrocarbons and carbon monoxide are increased. This thesis focused on control methods for emissions of hydrocarbons and carbon monoxide in the dual fuel engine at light loads. This was done by developing a reverse flow catalytic converter to complement dual fuel engine exhaust characteristics. Experimental measurements and numerical simulations of reverse flow catalytic converters were conducted. Reverse flow creates a high reactor temperature even when the engine is run at low exhaust temperature levels at light loads. The increase in reactor temperature from reverse flow could be 2 or 3 times higher than the adiabatic temperature increase, which is based on the reactor inlet temperature and concentration. This temperature makes it possible for greater than 90 per cent of the hydrocarbon and carbon monoxide to be converted with a palladium based catalyst. Reverse flow appears to be better than conventional unidirectional flow to deal with natural gas/diesel dual fuel engine pollution at light loads. Reverse flow could also maintain reactor temperature at over 800 K and hydrocarbon conversion at about 80 per cent during testing. The newly presented model simulates reactor performance with reasonable accuracy. Both carbon monoxide and methane oxidation over the palladium catalyst in excess oxygen and water were described using first order kinetics.

  11. Technology for emission control in internal combustion engines; Kakushu nainen kikan ni okeru hai gas joka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M. [Kyoto University, Kyoto (Japan)

    1998-09-01

    Described herein are emission control technology and exhaust gas cleaning measures for internal combustion engines. Gas turbines burn relatively high-quality fuels, such as natural gas, kerosene, diesel oil and gas oil, where the major concerns are to reduce NOx and dust emissions. The NOx abatement techniques fall into two general categories; wet processes which inject water or steam, and dry processes which depend on improved combustion. Power generation and cogeneration which burn natural gas adopt lean, premixed combustion and two-stage combustion as the major approaches. Low-speed, large-size diesel engines, which realize very high thermal efficiency, discharge high concentrations of NOx. Delayed fuel injection timing is the most easy NOx abatement technique to meet the related regulations, but is accompanied by decreased fuel economy. Use of water-emulsified fuel, water layer injection and multi-port injection can reduce NOx emissions without decreasing fuel economy, depending on optimization methods adopted. Automobile gasoline engines are required to further clean exhaust gases by catalystic systems. 9 refs., 10 figs., 6 tabs.

  12. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  13. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel; Roberts, William L.

    2017-01-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason

  14. Experimental investigation on the influences of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance

    International Nuclear Information System (INIS)

    Fu, Jianqin; Zhu, Guohui; Zhou, Feng; Liu, Jingping; Xia, Yan; Wang, Shuqian

    2016-01-01

    Highlights: • In-cylinder residual gas fraction almost increases linearly with exhaust gas recirculation rate. • Heat transfer loss and exhaust gas energy loss decrease with exhaust gas recirculation rate. • Engine indicated thermal efficiency can be increased by 4.29% at 1600 r/min and 2.94 bar. • The effective range of exhaust gas recirculation rate can be extended by intake tumble. - Abstract: To improve the economy and emission performance of gasoline engine under part load, the approach of exhaust gas recirculation coupling with intake tumble was investigated by bench testing. Based on a naturally aspirated gasoline engine, the sweeping test of exhaust gas recirculation rate was conducted in two intake modes (with/without intake tumble), and the parameters related to engine heat-work conversion process and emission performance were measured. Through comparing and analyzing the measured data, the effects of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance were revealed. The results show that pumping loss decreases gradually while in-cylinder residual gas fraction increases linearly with the exhaust gas recirculation rate increasing; the high-pressure cycle efficiency ascends with exhaust gas recirculation rate increasing due to the decrease of heat transfer loss and exhaust gas energy loss. Thus, the improvement of indicated thermal efficiency is the superposition of double benefits of low-pressure cycle and high-pressure cycle. At 1600 r/min and 2.94 bar, the indicated thermal efficiency can be increased by 4.29%. With the increase of exhaust gas recirculation rate, nitrogen oxide emissions almost fall linearly, but hydrocarbon and carbonic oxide emissions have no obvious change in the effective range of exhaust gas recirculation rate. The biggest advantage of intake tumble is that it can extend the effective range of exhaust gas recirculation rate. As a result, the potential of energy

  15. Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-05-01

    Full Text Available A large-scale production of necklace-like SiC/SiO2 heterojunctions was obtained by a molten salt-mediated chemical vapor reaction technique without a metallic catalyst or flowing gas. The effect of the firing temperature on the evolution of the phase composition, microstructure, and morphology of the SiC/SiO2 heterojunctions was studied. The necklace-like SiC/SiO2 nanochains, several centimeters in length, were composed of SiC/SiO2 core-shell chains and amorphous SiO2 beans. The morphologies of the as-prepared products could be tuned by adjusting the firing temperature. In fact, the diameter of the SiO2 beans decreased, whereas the diameter of the SiC fibers and the thickness of the SiO2 shell increased as the temperature increased. The growth mechanism of the necklace-like structure was controlled by the vapor-solid growth procedure and the modulation procedure via a molten salt-mediated chemical vapor reaction process.

  16. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree; Ivarsson, Anders; Schramm, Jesper

    2013-01-01

    . This causes the NO emissions to peak around 35% rather than 10% excess air, as is typical in HC fueled SI-engines. However the magnitude of NO emissions are comparable to that of measurements conducted with gasoline due to lower flame temperatures. Nitrogen dioxide levels are higher when comparing...... with gasoline, but has a relatively low share of the total NOx emissions (3-4%). Nitrous oxide is a product of NH2 reacting with NO 2 and NH reacting with NO. The magnitude is largely affected by ignition timing due to the temperature development during expansion and the amount of excess air, as increased...

  17. CHARACTERIZATION OF PHASES IN SECONDARY AlZn10Si8Mg CAST ALLOY

    OpenAIRE

    Eva Tillová; Emília Ďuriníková; Mária Chalupová

    2011-01-01

    Using recycled aluminium cast alloys is profitable in many aspects. Requiring only 5 % of the energy to produce secondary metal as compared to primary metal and generates only 5 % of the green house gas emissions, the recycling of aluminium is therefore beneficial of both environmental and economical point of view. Secondary AlZn10Si8Mg (UNIFONT® - 90) cast alloy are used for engine and vehicle constructions, hydraulic unit and mouldmaking without heat treatment. Properties include good casta...

  18. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  19. Simultaneous high-speed gas property measurements at the exhaust gas recirculation cooler exit and at the turbocharger inlet of a multicylinder diesel engine using diode-laser-absorption spectroscopy.

    Science.gov (United States)

    Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P

    2015-02-10

    A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well

  20. Distribution of Si II in the Galactic center

    Science.gov (United States)

    Graf, P.; Herter, T.; Gull, G. E.; Houck, J. R.

    1988-01-01

    A map of the Galactic center region in the forbidden Si II 34.8-micron line is presented. The line emission arises from within the photodissociation region (PDR) associated with the neutral gas ring surrounding an ionized gas core confined within 2 pc of the Galactic center. Si II is a useful probe of the inner regions of the ring since it is always optically thin. The Si II data, when analyzed in conjunction with O I, C II, and molecular measurements, outlines the transition region between the PDR and the surrounding molecular cloud. The Si II emission is found to extend beyond that of the O II into the neutral gas ring. Although the interpretation is not unique, the data are consistent with a constant gas-phase abundance of silicon within the inner part of the PDR while the gaseous silicon is depleted by molecule formation in the transition region.

  1. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China

    International Nuclear Information System (INIS)

    Qiao, Qinyu; Zhao, Fuquan; Liu, Zongwei; Jiang, Shuhua; Hao, Han

    2017-01-01

    Highlights: •Cradle-to-gate greenhouse gas emissions of internal combustion engine and battery electric vehicles are compared. •Greenhouse gas emissions of battery electric vehicles are 50% higher than internal combustion engine vehicles. •Traction battery production causes about 20% greenhouse gas emissions increase. •10% variations of curb weight, electricity and Li-ion battery production affect the results by 7%, 4% and 2%. •Manufacturing technique improvement, vehicle recycling and energy structure optimization are major mitigation opportunities. -- Abstract: Electric drive vehicles are equipped with totally different propulsion systems compared with conventional vehicles, for which the energy consumption and cradle-to-gate greenhouse gas emissions associated with vehicle production could substantially change. In this study, the life cycle energy consumption and greenhouse gas emissions of vehicle production are compared between battery electric and internal combustion engine vehicles in China’s context. The results reveal that the energy consumption and greenhouse gas emissions of a battery electric vehicle production range from 92.4 to 94.3 GJ and 15.0 to 15.2 t CO 2 eq, which are about 50% higher than those of an internal combustion engine vehicle, 63.5 GJ and 10.0 t CO 2 eq. This substantial change can be mainly attributed to the production of traction batteries, the essential components for battery electric vehicles. Moreover, the larger weight and different weight distribution of materials used in battery electric vehicles also contribute to the larger environmental impact. This situation can be improved through the development of new traction battery production techniques, vehicle recycling and a low-carbon energy structure.

  2. New High-Performance SiC Fiber Developed for Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.; Yun, Hee Mann

    2002-01-01

    creates a more environmentally durable fiber surface not only because a more oxidation-resistant BN is formed, but also because this layer provides a physical barrier between contacting fibers with oxidation-prone SiC surface layers (refs. 3 and 4). This year, Glenn demonstrated that the in situ BN treatment can be applied simply to Sylramic fibers located within continuous multifiber tows, within woven fabric pieces, or even assembled into complex product shapes (preforms). SiC/SiC ceramic composite panels have been fabricated from Sylramic-iBN fabric and then tested at Glenn within the Ultra-Efficient Engine Technology Program. The test conditions were selected to simulate those experienced by hot-section components in advanced gas turbine engines. The results from testing at Glenn demonstrate all the benefits expected for the Sylramic-iBN fibers. That is, the composites displayed the best thermostructural performance in comparison to composites reinforced by Sylramic fibers and by all other currently available high-performance SiC fiber types (refs. 3 and 5). For these reasons, the Ultra-Efficient Engine Technology Program has selected the Sylramic-iBN fiber for ongoing efforts aimed at SiC/SiC engine component development.

  3. System-Level Value of a Gas Engine Power Plant in Electricity and Reserve Production

    Directory of Open Access Journals (Sweden)

    Antti Alahäivälä

    2017-07-01

    Full Text Available Power systems require a certain amount of flexibility to meet varying demand and to be able to cope with unexpected events, and this requirement is expected to increase with the emergence of variable power generation. In this paper, we focus on gas engine power plant technology and the beneficial influence its flexible operation can have on a power system. The study introduces the concept of a combined-cycle gas engine power plant (CCGE, which comprises a combination of several gas-fired combustion engines and a steam turbine. The operation of CCGE is then comprehensively analyzed in electricity and reserve production in the South African power system and compared with combined-cycle gas turbine (CCGT technology. Even though CCGE is a form of technology that has already been commercialized, it is rarely considered as a source of flexibility in the academic research. That is the notion providing the motivation for this study. Our core contribution is to show that the flexibility of CCGE can be valuable in power systems. The methodology is based on the unit-level model of the studied system and the solving of a day-ahead unit commitment problem for each day of the simulated 11-year period. The simulation studies reveal how a CCGE is able to offer system flexibility to follow hourly load variations and capacity to provide reserve power effectively.

  4. Investigation of ecological parameters of four-stroke SI engine, with pneumatic fuel injection system

    Science.gov (United States)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.

  5. Prehistory and state of catalytic exhaust gas detoxification of vehicle engines

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, F

    1985-01-01

    The application of catalyst techniques to exhaust gas detoxification of car engines has a prehistory of about 60 years. There were important attempts at further development in the 1940's and 1950's in connection with efforts to comply with the legal measures in California caused by the smog problem in Los Angeles. The technical difficulties had been overcome by the mid-1970's, so that catalytic converters could be introduced into mass production of cars in the USA. Their function was first mainly limited to oxidation of noxious substances in the exhaust gas. Catalysts were first used to reduce nitrogen oxide emission in 1977. The 3 way catalyst now used in mass production in the USA permits the simultaneous reduction of all three important types of noxious substances emitted from petrol engines. In order to ensure the most favourable composition of the exhaust gas for this purpose, the 3 way catalyst is combined with electronic control of the formation of the mixture. The catalytic converter for cars represents by far the most economically important industrial application of catalyst techniques today. There is not other alternative for achieving the low emission of noxious substances which can be reached by this technique. (HW).

  6. Prediction of major pollutants emission in direct injection dual-fuel diesel and natural-gas engines

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Kashani, B.O.

    2000-01-01

    The dual-fuel diesel engine is a conventional diesel engine in which much of the energy released, hence power, comes from the combustion of gaseous fuel such as natural gas. The exhaust emission characteristics of the dual-fuel diesel engine needs further refinements, particularly in terms of reduction of Unburnt Hydrocarbons and Carbon Monoxide (CO) emission, because the concentration of these pollutants are higher than that of the baseline diesel engine. Furthermore, the combustion process in a typical dual-fuel diesel engine tends to be complex, showing combination of the problems encountered both in diesel and spark ignition engines. In this work, a computer code has been modified for simulation of dual-fuel diesel engine combustion process. This model simulates dual-fuel diesel engine combustion by using a Multi-Zone Combustion Model for diesel pilot jet combustion and a conventional spark ignition combustion model for modelling of combustion of premixed gas/air charge. Also, in this model, there are four submodels for prediction of major emission pollutants such as: Unburnt Hydrocarbons, No, Co and soot which are emitted from dual-fuel diesel engine. For prediction of formation and oxidation rates of pollutants, relevant s conventional kinetically-controlled mechanisms and mass balances are used. the model has been verified by experimental data obtained from a heavy-duty truck and bus diesel engines. The comparison shows that, there exist good agreements between the experimental and predicted results from the dual-fuel diesel engine

  7. Engineering helimagnetism in MnSi thin films

    Directory of Open Access Journals (Sweden)

    S. L. Zhang

    2016-01-01

    Full Text Available Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  8. Engineering helimagnetism in MnSi thin films

    Science.gov (United States)

    Zhang, S. L.; Chalasani, R.; Baker, A. A.; Steinke, N.-J.; Figueroa, A. I.; Kohn, A.; van der Laan, G.; Hesjedal, T.

    2016-01-01

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ˜18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  9. Engineering helimagnetism in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. L.; Hesjedal, T., E-mail: Thorsten.Hesjedal@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Chalasani, R.; Kohn, A. [Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv (Israel); Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Steinke, N.-J. [ISIS, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom)

    2016-01-15

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  10. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Kattan

    2018-05-01

    Full Text Available Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free laser-synthesized nanoparticles (NPs are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au and silicon (Si NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives in innovative scaffold platforms intended for tissue engineering tasks.

  11. The effect of reformer gas mixture on the performance and emissions of an HSDI diesel engine

    OpenAIRE

    Christodoulou, Fanos; Megaritis, Athanasios

    2014-01-01

    This article has been made available through the Brunel Open Access Publishing Fund. Exhaust gas assisted fuel reforming is an attractive on-board hydrogen production method, which can open new frontiers in diesel engines. Apart from hydrogen, and depending on the reactions promoted, the reformate typically contains a significant amount of carbon monoxide, which is produced as a by-product. Moreover, admission of reformed gas into the engine, through the inlet pipe, leads to an increase of...

  12. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    Science.gov (United States)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  13. Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine

    Directory of Open Access Journals (Sweden)

    Ziolkowski Andrzej

    2017-01-01

    Full Text Available Increasing the combustion engine drive systems efficiency is currently being achieved by structural changes in internal combustion engines and its equipment, which are geared towards limiting mechanical, thermal and outlet losses. For this reason, downsizing. In addition to these changes, all manner of exhaust gas energy recovery systems are being investigated and implemented, including turbocompound, turbogenerators and thermoelectric generators. The article presents the author’s idea of a thermoelectric generator system of automotive applications ATEG (Automotive Thermoelectric Generator and the study of the recovery of exhaust gas energy stream. The ATEG consists of a heat exchanger, thermoelectric modules and a cooling system. In this solution, 24 commercial thermoelectric modules based on Bi2Te3 (bismuth telluride were used. Measurements were made at two engine test sites on which SI and CI engines were installed. The exhaust gas parameters (temperature and mass flow rate, fuel consumption and operating parameters of the ATEG – the intensity and the voltage generated by the thermoelectric modules and the temperature on the walls of the heat exchanger – were all measured in the experiments. Based on the obtained results, the exhaust gas energy flow and the power of the ATEG were determined as well as its effect on the diesel engine drive system efficiency.

  14. Optimization of combustion chamber geometry for natural gas engines with diesel micro-pilot-induced ignition

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Tie; Ge, Linlin; Ogawa, Hideyuki

    2016-01-01

    Highlights: • Combustion chamber geometry is optimized to reduce the HC/CO emissions. • CFD model is calibrated against the spray visualization and engine bench test data. • Design space is explored by the multi-objective NSGA-II with Kriging meta-model. • HC and CO emissions are respectively reduced by 56.47% and 33.55%. - Abstract: Smokeless, low nitrogen oxides (NOx), and high thermal efficiency have been achieved through the lean-burn concept for natural gas engine with diesel micro-pilot-induced ignition (MPII). However, the combustion chamber is usually not specialized for natural gas combustion, and increases in the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are still a challenge for this type of engines. This paper describes optimization of the combustion chamber geometry to reduce the HC and CO emissions and improve the combustion efficiency in the MPII natural gas engine. The 3-D computational fluid dynamics (CFD) simulation model coupled with a chemical reaction mechanism is described. The temporal development of the short-pulsed diesel spray in a high pressure constant-volume vessel is measured and used to calibrate the spray model in the CFD simulation. The simulation models are validated by the experimental data of the in-cylinder pressure trace, apparent heat release rate (AHRR) and exhaust gas emissions from a single-cylinder MPII natural gas engine. To generate the various combustion chamber geometries, the bowl outline is parameterized by the two cubic Bezier curves while keeping the compression ratio constant. The available design space is explored by the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) with Kriging-based meta-model. With the optimization, the HC and CO emissions are reduced by 56.47% and 33.55%, respectively, while the NOx emissions, the maximum rate of pressure rise and the gross indicated thermal efficiency that are employed as the constraints are slightly improved. Finally, the

  15. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  16. Improved C/SiC Ceramic Composites Made Using PIP

    Science.gov (United States)

    Easler, Timothy

    2007-01-01

    Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber

  17. A predictive model for knock onset in spark-ignition engines with cooled EGR

    International Nuclear Information System (INIS)

    Chen, Longhua; Li, Tie; Yin, Tao; Zheng, Bin

    2014-01-01

    Highlights: • Ratio of specific heats should be used as variable in development of knock model. • Increases in EGR or excess air ratio lead to increases in the ratio of specific heats. • The widely-used Douaud–Eyzat correlation fails to predict the knock onset when increasing EGR. • The newly developed model including p, T, EGR and λ as variables predicts the knock onset accurately. • Effect of temperature at intake valve closure on the predicted knock onset is relatively small. - Abstract: A predictive knock model is crucial for one dimensional (1-D) engine cycle simulation that has been proven to be a powerful tool in both optimization of the conceptual design and reduction of calibration efforts in development of spark-ignition (SI) engines. With application of advanced technologies such as exhaust gas recirculation (EGR) in modern SI engines, update of knock model is needed to give an acceptable prediction of knock onset. In this study, bench tests of a turbocharged gasoline SI engine with cooled EGR system operated under knocking conditions were conducted, the cylinder pressure traces were analyzed by the band-pass filtering technique, and the crank angle of knock onset was determined by the signal energy ratio (SER) and image processing method. A knock model considering multi-variable effects including pressure, temperature, EGR ratio and excess air ratio (λ) is formulated and calibrated with the experimental data using the multi-island genetic algorithm (GA). The calculation method of the end gas temperature, the impacts of the ratio of specific heats as well as the temperature at the intake valve closure on the end gas temperature are discussed. The performance of the new model is compared with the widely-used phenomenological knock models such as Douaud–Eyzat model and Hoepke model. While the widely-used knock models fail to give acceptable predictions when increasing EGR with fuel enrichment operations, the new model predicts the knock

  18. Effect of turbocharging system on the performance of a natural gas engine

    International Nuclear Information System (INIS)

    Kesgin, Ugur

    2005-01-01

    The effect of the turbocharging system on the performance of the gas engine family, which is used in combined power plants, is investigated. These investigations show a clear improvement potential for the future of the engine series optimised here. To do this, a computational model in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust system are used is verified. Using this engine model, the effects of the parameters of the exhaust and turbocharging system on the engine performance are obtained. In particular, the following parameters are chosen: diameter of the exhaust manifold, diameter of the pipe at the turbine exit, efficiency of the turbocharger, location of the turbocharger, back pressure at the turbine exit and pressure losses (resistances) before the compressor. This paper presents the results of these investigations

  19. Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mello, J. P.; Bezaire, D.; Sriramulu, S.; Weber, R.

    2003-08-01

    Subcontractor report details work done by TIAX and Westport to test and perform cost analysis for catalytic glow plugs and shields for direct-injection natural gas engines for the Next Generation Natural Gas Vehicle Program.

  20. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    Science.gov (United States)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  1. Effects of dual-ion irradiation on the swelling of SiC/SiC composites

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kohyama, Akira; Ozawa, Kazumi; Kondo, Sosuke

    2005-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibers is a candidate structural material of fusion gas-cooled blanket system. From the viewpoint of material designs, it is important to investigate the swelling by irradiation, which results from the accumulation of displacement damages. In the fusion environment, (n, α) nuclear reactions are considered to produce helium gas in SiC. For the microstructural evolution, a dual-ion irradiation method is able to simulate the effects of helium. In the present research, 1.7 MeV tandem and 1 MeV single-end accelerators were used for Si self-ion irradiation and helium implantation, respectively. The average helium over displacement per atom (dpa) ratio in SiC was adjusted to 60 appm/dpa. The irradiation temperature ranged from room temperature to 1400degC. The irradiation-induced swelling was measured by the step height method. Helium that was implanted simultaneously with displacement damages in dual-ion irradiated SiC increased the swelling that was larger than that by single-ion irradiated SiC below 800degC. Since this increase was not observed above 1000degC, the interaction of helium and displacement damages was considered to change above 800degC. In this paper, the microstructural behavior and dimensional stability of SiC materials under the fusion relevant environment are discussed. (author)

  2. Flue gas emissions from gas-fired cogeneration units <25 MWe

    International Nuclear Information System (INIS)

    Nielsen, M.; Wit, J. de

    1997-01-01

    A total of 900 MW e gas driven combined heat and power (CHP) has now been established in Denmark based on gas engines and gas turbine units less than 25 MW e each. Of the 900 MW e approx. 750 MW e are based on gas engines. Biogas is used as fuel for some 32 MW e of these. Emission limits for NO x and CO are 650 mg/nm 3 (ref. 5% O 2 and electrical efficiency 30% LCV). There is at present no limit for unburned hydrocarbons (UHC) for gas engines or gas turbines. The average emission of unburned hydrocarbons for the Danish gas engine driven CHP units is equal to approx. 3,5% of the fuel used. It is the target of this report to provide the basis for evaluating the planned UHC limit and possible adjustments of the present limit for NO x emission. The average NO x emission from gas turbines slightly exceeds the NO x emission from gas engines. This is due to a number of older gas turbines. Modern gas turbines can achieve significantly lower NO x emission compared to engines. The NO x emission from biogas driven engines is significantly higher than that of natural gas driven units. This is mainly due to NO x -unfavourable engine settings and the use of older units, as there are no legislation concerning NO x emission for the majority of these biogas driven units. The emission of CO and UHC is lower from gas turbines than from gas engines. The NO x emission can be reduced by SCR Catalyst systems. In Denmark 3 gas engine installations use this commercially available technology. Oxidation catalyst for UHC reduction at modern gas engine installations has proven relatively unsuccesful in Denmark until now. Only limited reductions are achieved and many catalysts are toxificated in less than 100 hours of operation. However, long-term field testing of promising UHC reducing catalysts is now being made. UHC reduction by incineration is at the prototype stage. No such plant has yet been set up in Denmark. (Abstract Truncated)

  3. IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES

    Directory of Open Access Journals (Sweden)

    Wojnar Sławomir

    2014-06-01

    Full Text Available The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR. The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.

  4. The possibility of controlled auto-ignition (CAI) in gasoline engine and gas to liquid (GTL) as a fuel of diesel engine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, D. [Korea Inst. of Machinery and Materials, Daejou (Korea)

    2005-07-01

    A significant challenge grows from the ever-increasing demands for the optimization of performance, emissions, fuel economy and drivability. The most powerful technologies in the near future to improve these factors are believed Controlled Auto-Ignition (CAI) in gasoline engine and Gas to Liquid (GTL) as a fuel of Diesel engine. In recent years there has been an increasing trend to use more complex valvetrain designs from traditional camshaft driven mechanical systems to camless electromagnetic or electrohydraulic solutions. Comparing to fixed valve actuation systems, variable valve actuation (VVA) should be powerful to optimize the engine cycle. The matching of valve events to the engine performance and to emission requirements at a given engine or vehicle operating condition can be further optimized to the Controlled Auto-Ignition (CAI) in gasoline engine, which has benefits in NOx emission, fuel consumption, combustion stability and intake throttle load. In case of Diesel engine, the increasing demands for NOx and soot emission reduction have introduced aftertreatment technologies recently, but been in need of basic solution for the future, such as a super clean fuel like Gas to Liquid (GTL), which has benefits in comparability to diesel fuel, independency from crude oil and reduction of CO, THC and soot emissions. Korea looks to the future with these kinds of technologies, and tries to find the possibility for reaching the future targets in the internal combustion engine. (orig.)

  5. Numerical investigation on the effects of natural gas and hydrogen blends on engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, Biagio; Unich, Andrea [Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM), Seconda Universita degli Studi di Napoli via Roma 29, 81031 Aversa (CE) (Italy)

    2009-05-15

    The use of hydrogen blended with natural gas is a viable alternative to pure fossil fuels because of the expected reduction of the total pollutant emissions and increase of efficiency. These blends offer a valid opportunity for tackling sustainable transportation, in view of the future stringent emission limits for road vehicles. The aim of the present paper is the investigation of the performance of internal combustion engines fuelled by such blends. A numerical investigation on the characteristics of natural gas-hydrogen blends as well as their effect on engine performance is carried out. The activity is focused on the influence of such blends on flame propagation speed. Combustion pattern modelling allows the comparison of engine brake efficiency and power output using different fuels. Results showed that there is an increase in engine efficiency only if Maximum Brake Torque (MBT) spark advance is used for each fuel. Moreover, an economic analysis has been carried out to determine the over cost of hydrogen in such blends, showing percent increments by using these fuels about between 10 and 34%. (author)

  6. Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study

    International Nuclear Information System (INIS)

    Sjerić, Momir; Taritaš, Ivan; Tomić, Rudolf; Blažić, Mislav; Kozarac, Darko; Lulić, Zoran

    2016-01-01

    Highlights: • A cylinder model was calibrated according to experimental results. • A full cycle simulation model of turbocharged spark-ignition engine was made. • Engine performance with high pressure exhaust gas recirculation was studied. • Cooled exhaust gas recirculation lowers exhaust temperature and knock occurrence. • Leaner mixtures enable fuel consumption improvement of up to 11.2%. - Abstract: The numerical analysis of performance of a four cylinder highly boosted spark-ignition engine at full load is described in this paper, with the research focused on introducing high pressure exhaust gas recirculation for control of engine limiting factors such as knock, turbine inlet temperature and cyclic variability. For this analysis the cycle-simulation model which includes modeling of the entire engine flow path, early flame kernel growth, mixture stratification, turbulent combustion, in-cylinder turbulence, knock and cyclic variability was applied. The cylinder sub-models such as ignition, turbulence and combustion were validated by using the experimental results of a naturally aspirated multi cylinder spark-ignition engine. The high load operation, which served as a benchmark value, was obtained by a standard procedure used in calibration of engines, i.e. operation with fuel enrichment and without exhaust gas recirculation. By introducing exhaust gas recirculation and by optimizing other engine operating parameters, the influence of exhaust gas recirculation on engine performance is obtained. The optimum operating parameters, such as spark advance, intake pressure, air to fuel ratio, were found to meet the imposed requirements in terms of fuel consumption, knock occurrence, exhaust gas temperature and variation of indicated mean effective pressure. By comparing the results of the base point with the results that used exhaust gas recirculation the improvement in fuel consumption of 8.7%, 11.2% and 1.5% at engine speeds of 2000 rpm, 3500 rpm and 5000

  7. Multiscale Engineered Si/SiO x Nanocomposite Electrodes for Lithium-Ion Batteries Using Layer-by-Layer Spray Deposition.

    Science.gov (United States)

    Huang, Chun; Kim, Ayoung; Chung, Dong Jae; Park, Eunjun; Young, Neil P; Jurkschat, Kerstin; Kim, Hansu; Grant, Patrick S

    2018-05-09

    Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiO x nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiO x helps to accommodate the volume changes of the Si. Here, we demonstrate a new electrode architecture for further advancing the performance of Si/SiO x nanocomposite anodes using a scalable layer-by-layer atomization spray deposition technique. We show that particulate C interlayers between the current collector and the Si/SiO x layer and between the separator and the Si/SiO x layer improved electrical contact and reduced irreversible pulverization of the Si/SiO x significantly. Overall, the multiscale approach based on microstructuring at the electrode level combined with nanoengineering at the material level improved the capacity, rate capability, and cycling stability compared to that of an anode comprising a random mixture of the same materials.

  8. Effect of hydrogen on passivation quality of SiNx/Si-rich SiNx stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2015-01-01

    We investigate the role of hydrogen content and fixed charges of catalytic chemical vapor deposited (Cat-CVD) SiN x /Si-rich SiN x stacked layers on the quality of crystalline silicon (c-Si) surface passivation. Calculated density of fixed charges is on the order of 10 12 cm −2 , which is high enough for effective field effect passivation. Hydrogen content in the films is also found to contribute significantly to improvement in passivation quality of the stacked layers. Furthermore, Si-rich SiN x films deposited with H 2 dilution show better passivation quality of SiN x /Si-rich SiN x stacked layers than those prepared without H 2 dilution. Effective minority carrier lifetime (τ eff ) in c-Si passivated by SiN x /Si-rich SiN x stacked layers is as high as 5.1 ms when H 2 is added during Si-rich SiN x deposition, which is much higher than the case of using Si-rich SiN x films prepared without H 2 dilution showing τ eff of 3.3 ms. - Highlights: • Passivation mechanism of Si-rich SiN x /SiN x stacked layers is investigated. • H atoms play important role in passivation quality of the stacked layer. • Addition of H 2 gas during Si-rich SiN x film deposition greatly enhances effective minority carrier lifetime (τ eff ). • For a Si-rich SiN x film with refractive index of 2.92, τ eff improves from 3.3 to 5.1 ms by H 2 addition

  9. General concept of a gas engine for a hybrid vehicle, operating on methanol dissociation products

    International Nuclear Information System (INIS)

    Tartakovsky, L.; Aleinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Schindler, Y.; Zvirin, Y.

    1998-01-01

    The paper presents a general concept of a hybrid propulsion system, based on an SI internal combustion engine fueled by methanol dissociation products (MDP). The proposed hybrid propulsion scheme is a series hybrid, which allows the engine to be operated in an on-off mode at constant optimal regime. The engine is fed by gaseous products of methanol dissociation (mainly hydrogen and carbon monoxide) emerging from an on-board catalytic reformer. The general scheme and base operation features of the propulsion system are described. The benefits that may be achieved by combining the well-known idea of on-board methanol dissociation with the hybrid vehicle concept are discussed. The proposed scheme is compared with those of systems operating on gasoline, liquid methanol, hydrogen and also with the multi-regime (not hybrid) engine fed by MDP

  10. Effects of SiNx on two-dimensional electron gas and current collapse of AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Fan, Ren; Zhi-Biao, Hao; Lei, Wang; Lai, Wang; Hong-Tao, Li; Yi, Luo

    2010-01-01

    SiN x is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiN x films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Interfacial engineering of solution-processed Ni nanochain-SiO{sub x} (x < 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States)

    2016-04-07

    Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO{sub x} cermet system compared to conventional Ni-Al{sub 2}O{sub 3} system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO{sub x} cermets at 900 °C in N{sub 2} forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO{sub x} interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N{sub 2} (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO{sub x} interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO{sub x} saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any

  12. Thin film platinum–palladium thermocouples for gas turbine engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Tougas, Ian M.; Gregory, Otto J., E-mail: gregory@egr.uri.edu

    2013-07-31

    Thin film platinum:palladium thermocouples were fabricated on alumina and mullite surfaces using radio frequency sputtering and characterized after high temperature exposure to oxidizing environments. The thermoelectric output, hysteresis, and drift of these sensors were measured at temperatures up to 1100 °C. Auger electron spectroscopy was used to follow the extent of oxidation in each thermocouple leg and interdiffusion at the metallurgical junction. Minimal oxidation of the platinum and palladium thermoelements was observed after high temperature exposure, but considerable dewetting and faceting of the films were observed in scanning electron microscopy. An Arrhenius temperature dependence on the drift rate was observed and later attributed to microstructural changes during thermal cycling. The thin film thermocouples, however, did exhibit excellent stability at 1000 °C with drift rates comparable to commercial type-K wire thermocouples. Based on these results, platinum:palladium thin film thermocouples have considerable potential for use in the hot sections of gas turbine engines. - Highlights: • Stable thin film platinum:palladium thermocouples for gas turbine engines • Little oxidation but significant microstructural changes from thermal cycling • Minimal hysteresis during repeated thermal cycling • Drift comparable to commercial wire thermocouples.

  13. Real time NO emissions measurement during cold start in LPG SI engine

    International Nuclear Information System (INIS)

    Li, Gong; Liu, Zhimin; Li, Zhilong; Qiu, Dongping; Li, Liguang

    2007-01-01

    To identify combustion occurrence is very important. Traditionally, cylinder pressure has been used as a criterion of combustion occurrence, but it can be unreliable when identifying lean mixture combustion (there is little difference in the cylinder pressure trace between the firing cycle and motoring cycles at the lean combustion limit). This is particularly important for fuels like LPG, which have a good capacity for lean combustion. In this study, a fast response NO detector, CambustionfNOx400, based on the chemiluminescence method, was used to measure real time NO emissions in order to evaluate the technique as a criterion for establishing combustion occurrence. At the same time, this paper presents an investigation of the characteristics of real time NO emissions of the first firing cycle during cold start in a LPG SI engine to determine the optimal excess air factor of the first firing cycle, and the cylinder pressure and crank shaft speed of the engine were measured and recorded. Test results show that the excess air ratio directly influences the cylinder pressure, engine speed and NO emissions of the first firing cycle. As the excess air coefficient is reduced from the lean misfiring limit, NO emissions increase quickly, then reduce quickly and then reduce slowly. NO emissions generally increase with peak cylinder pressure, even at constant excess air coefficient. Real time NO emissions can be used to identify cylinder combustion and misfire occurrence during engine cranking, even at the dilute combustion limit, and real time NO emission can be used to understand the combustion and misfire occurrence. (author)

  14. Gas reactor and associated nuclear experience in the UK relevant to high temperature reactor engineering

    International Nuclear Information System (INIS)

    Beech, D.J.; May, R.

    2000-01-01

    In the UK, the NNC played a leading role in the design and build of all of the UK's commercial magnox reactors and advanced gas-cooled reactors (AGRs). It was also involved in the DRAGON project and was responsible for producing designs for large scale HTRs and other gas reactor designs employing helium and carbon dioxide coolants. This paper addresses the gas reactor experience and its relevance to the current HTR designs under development which use helium as the coolant, through the consideration of a representative sample of the issues addressed in the UK by the NNC in support of the AGR and other reactor programmes. Modern HTR designs provide unique engineering challenges. The success of the AGR design, reflected in the extended lifetimes agreed upon by the licensing authorities at many stations, indicates that these challenges can be successfully overcome. The UK experience is unique and provides substantial support to future gas reactor and high temperature engineering studies. (authors)

  15. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.

    Science.gov (United States)

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity

  16. THE INFLUENCE OF SELECTED GASEOUS FUELS ON THE COMBUSTION PROCESS IN THE SI ENGINE

    Directory of Open Access Journals (Sweden)

    Marek FLEKIEWICZ

    2017-09-01

    Full Text Available This paper presents the results of SI engine tests, carried out for different gaseous fuels. The analysis carried out made it possible to define the correlation between fuel composition and engine operating parameters. The tests covered various gaseous mixtures: methane with hydrogen from 5% to 50% by volume and LPG with DME from 5% to 26% by mass. The first group, considered as low-carbon-content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in those mixtures realizes the function of the combustion process activator. Thus, hydrogen addition improves energy conversion by about 3%. The second group of fuels is constituted by LPG and DME mixtures. DME mixes perfectly with LPG, and differently than other hydrocarbon fuels, consisting of oxygen as well, which makes the stoichiometric mixture less oxygen demanding. In the case of this fuel an improvement in engine volumetric and overall engine efficiency has been noticed compared with LPG. For the 11% DME share in the mixture an improvement of 2% in the efficiency has been noticed. During the tests, standard CNG–LPG feeding systems have been used, which underlines the utility value of the research. The stand-test results have been followed by combustion process simulation including exhaust forming and charge exchange.

  17. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  18. Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods

    International Nuclear Information System (INIS)

    Lin, Yufei; Chen, Maoyin; Zhou, Donghua

    2013-01-01

    In the past decades, engineering systems become more and more complex, and generally work at different operational modes. Since incipient fault can lead to dangerous accidents, it is crucial to develop strategies for online operational safety assessment. However, the existing online assessment methods for multi-mode engineering systems commonly assume that samples are independent, which do not hold for practical cases. This paper proposes a probabilistic framework of online operational safety assessment of multi-mode engineering systems with sample dependency. To begin with, a Gaussian mixture model (GMM) is used to characterize multiple operating modes. Then, based on the definition of safety index (SI), the SI for one single mode is calculated. At last, the Bayesian method is presented to calculate the posterior probabilities belonging to each operating mode with sample dependency. The proposed assessment strategy is applied in two examples: one is the aircraft gas turbine, another is an industrial dryer. Both examples illustrate the efficiency of the proposed method

  19. 800 C Silicon Carbide (SiC) Pressure Sensors for Engine Ground Testing

    Science.gov (United States)

    Okojie, Robert S.

    2016-01-01

    MEMS-based 4H-SiC piezoresistive pressure sensors have been demonstrated at 800 C, leading to the discovery of strain sensitivity recovery with increasing temperatures above 400 C, eventually achieving up to, or near, 100 recovery of the room temperature values at 800 C. This result will allow the insertion of highly sensitive pressure sensors closer to jet, rocket, and hypersonic engine combustion chambers to improve the quantification accuracy of combustor dynamics, performance, and increase safety margin. Also, by operating at higher temperature and locating closer to the combustion chamber, reduction of the length (weight) of pressure tubes that are currently used will be achieved. This will result in reduced costlb to access space.

  20. Experimental study of the effects of natural gas injection timing on the combustion performance and emissions of a turbocharged common rail dual-fuel engine

    International Nuclear Information System (INIS)

    Yang, Bo; Wei, Xing; Xi, Chengxun; Liu, Yifu; Zeng, Ke; Lai, Ming-Chia

    2014-01-01

    Highlights: • Natural gas injection timing has obvious effects on combustion of dual-fuel engine. • Combustion performance is improved with optimized natural gas injection timing. • BSHC and BSCO decreased with retarded natural gas injection timing at low load. • BSNO x increased at part load while reduced at high load with delay N.G. injection. • PM is very low and insensitive to the variation of natural gas injection timing. - Abstract: Natural gas combustion with pilot ignition has been considered to be one of the most promising ways to utilize natural gas in existing diesel engine without serious engine modification and it has been widely researched all over the world. In this study, three experiments of different loads (BMEP 0.240 MPa, 0.480 MPa and 0.767 MPa) were performed on a 2.8 L four-cylinder, natural gas manifold injection dual-fuel engine to investigate the effects of natural gas injection timing on engine combustion performance and emissions. The pilot injection parameters (pilot injection timing and pressure) and natural gas injection pressure remain constant at a speed of 1600 rpm in the experiment. The cylinder pressure, HRR, CoV imep , flame development duration, CA50 and brake thermal efficiency were analyzed. The results indicated that under low and part engine loads, the flame development duration and CA50 can be reduced by properly retarding natural gas injection timing, while the CoV imep increased with retarded natural gas injection timing. As a result, the brake thermal efficiency is increased and the combustion stability slightly deteriorates. Meanwhile, under low and part engine loads, PM emissions in the dual-fuel engine is much lower than that in conventional diesel engines, furthermore, at high load, the PM emissions are near zero. CO and HC emissions are reduced with retarded natural gas injection timing under low and part loads, however, NO x emissions are slightly increased. Under high load, the flame development duration

  1. Low-btu gas in the US Midcontinent: A challenge for geologists and engineers

    Science.gov (United States)

    Newell, K. David; Bhattacharya, Saibal; Sears, M. Scott

    2009-01-01

    Several low-btu gas plays can be defined by mapping gas quality by geological horizon in the Midcontinent. Some of the more inviting plays include Permian strata west of the Central Kansas uplift and on the eastern flank of Hugoton field and Mississippi chat and other pays that subcrop beneath (and directly overlie) the basal Pennsylvanian angular unconformity at the southern end of the Central Kansas uplift. Successful development of these plays will require the cooperation of reservoir geologists and process engineers so that the gas can be economically upgraded and sold at a nominal pipeline quality of 950 btu/scf or greater. Nitrogen is the major noncombustible contaminant in these gas fields, and various processes can be utilized to separate it from the hydrocarbon gases. Helium, which is usually found in percentages corresponding to nitrogen, is a possible ancillary sales product in this region. Its separation from the nitrogen, of course, requires additional processing. The engineering solution for low-btu gas depends on the rates, volumes, and chemistry of the gas needing upgrading. Cryogenic methods of nitrogen removal are classically used for larger feed volumes, but smaller feed volumes characteristic of isolated, low-pressure gas fields can now be handled by available small-scale PSA technologies. Operations of these PSA plants are now downscaled for upgrading stripper well gas production. Any nitrogen separation process should be sized, within reason, to match the anticipated flow rate. If the reservoir rock surprises to the upside, the modularity of the upgrading units is critical, for they can be stacked to meet higher volumes. If a reservoir disappoints (and some will), modularity allows the asset to be moved to another site without breaking the bank.

  2. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  3. Enriching 28Si beyond 99.9998 % for semiconductor quantum computing

    Science.gov (United States)

    Dwyer, K. J.; Pomeroy, J. M.; Simons, D. S.; Steffens, K. L.; Lau, J. W.

    2014-08-01

    Using a laboratory-scale apparatus, we enrich 28Si and produce material with 40 times less residual 29Si than previously reported. Starting from natural abundance silane gas, we offer an alternative to industrial gas centrifuges for providing materials critical for long spin coherence times in quantum information devices. Using a mass spectrometry approach, silicon ions are produced from commercial silane gas and the isotopes are separated in a magnetic sector analyzer before deposition onto a Si(1 0 0) substrate. Isotope fractions for 29Si and 30Si of <1 × 10-6 are found in the deposited films using secondary ion mass spectrometry. Additional assessments of the deposited films are also presented as we work to develop substrates and source material to support the growing silicon quantum computing community. Finally, we demonstrate modulation of the 29Si concentration in a deposited film as a precursor to dual enrichment of heterostructures and compound materials such as 28Si74Ge.

  4. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    Science.gov (United States)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  5. Prediction of knock limited operating conditions of a natural gas engine

    International Nuclear Information System (INIS)

    Soylu, Seref

    2005-01-01

    Computer models of engine processes are valuable tools for predicting and analyzing engine performance and allow exploration of many engine design alternatives in an inexpensive fashion. In the present work, a zero-dimensional, two zone thermodynamic model was used to determine the knock limited operating conditions of a natural gas engine. Experimentally based burning rate models were used for flame initiation and propagation calculations. A knock model was incorporated with the zero-dimensional model. Comparison of the measured and calculated cylinder pressure data indicated that the model is able to match the measured cylinder pressure data with less than 8% error in magnitudes if the computations are started at the experimental spark timing. The knock predictions agreed with the measurements also. With the established knock model, it is possible not only to investigate whether knock is observed with changing operating and design parameters, but also to evaluate their effects on the maximum possible knock intensity

  6. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  7. Environmental optimisation of natural gas fired engines - calculation of health externalities

    Energy Technology Data Exchange (ETDEWEB)

    Frohn, L.M.; Becker, T.; Christensen, Jesper; Hertel, O.; Silver, J.D.; Villadsen, H. (Aarhus Univ., National Environmental Research Institute, Dept. of Atmospheric Environment, Roskilde (Denmark)); Soees Hansen, M. (Aarhus Univ., National Environmental Research Institute, Dept. of Policy Analysis, Roskilde (Denmark)); Skou Andersen, M. (European Environment Agency, Copenhagen (Denmark))

    2010-07-01

    The measured emissions of WP1 of the project has been applied as input for model calculations with the EVA model system. The DEHM model which calculates the regional scale delta-concentrations has been further developed to handle the low signal to noise ratio of the delta-concentrations related to the small sources that the gas fired engines constitute. All combinations of engine settings and locations have been run as scenarios with the EVA system, however the results have been grouped into themes to investigate changes related to location as well as changes related to engine settings. New exposure-response relations have been implemented in the system related to the chemical components nitrogen dioxide, formaldehyde, ethene and propene. The choice of high-exposure location in the calculations has unfortunately turned out to be less optimal. The location at Store Valby has previously been applied in studies with the EVA system as a high-exposure site, however in previous applications, the emission sources have been large power plants with stack heights of around 150 meters. The height of the stack of the gas fired engines is only around 30 meters, and the consequence is that the emitted components reach the surface closer to the stack, thereby giving high exposure in an area located further to the southwest, where the population density is not as high as in central Copenhagen. In general the marginal health costs (in Euro pr kg) of carbon monoxide and formaldehyde emissions are very small. The emissions of formaldehyde are also small and the resulting costs for this component is therefore very small. The emission of carbon monoxide is much larger, however the small marginal cost makes the contribution to the total costs small, also for this component. The marginal health costs of nitrogen oxides and ethene emissions show little variation with engine scenario. However the general picture is that as the NO{sub x} emissions increase (either by increasing ignition

  8. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  9. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  10. Dynamic behaviors of laser ablated Si particles

    International Nuclear Information System (INIS)

    Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.

    1995-01-01

    The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)

  11. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  12. The High Level Mathematical Models in Calculating Aircraft Gas Turbine Engine Parameters

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The article describes high-level mathematical models developed to solve special problems arising at later stages of design with regard to calculation of the aircraft gas turbine engine (GTE under real operating conditions. The use of blade row mathematics models, as well as mathematical models of a higher level, including 2D and 3D description of the working process in the engine units and components, makes it possible to determine parameters and characteristics of the aircraft engine under conditions significantly different from the calculated ones.The paper considers application of mathematical modelling methods (MMM for solving a wide range of practical problems, such as forcing the engine by injection of water into the flowing part, estimate of the thermal instability effect on the GTE characteristics, simulation of engine start-up and windmill starting condition, etc. It shows that the MMM use, when optimizing the laws of the compressor stator control, as well as supplying cooling air to the hot turbine components in the motor system, can significantly improve the integral traction and economic characteristics of the engine in terms of its gas-dynamic stability, reliability and resource.It ought to bear in mind that blade row mathematical models of the engine are designed to solve purely "motor" problems and do not replace the existing models of various complexity levels used in calculation and design of compressors and turbines, because in “quality” a description of the working processes in these units is inevitably inferior to such specialized models.It is shown that the choice of the mathematical modelling level of an aircraft engine for solving a particular problem arising in its designing and computational study is to a large extent a compromise problem. Despite the significantly higher "resolution" and information ability the motor mathematical models containing 2D and 3D approaches to the calculation of flow in blade machine

  13. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    Science.gov (United States)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  14. Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine

    International Nuclear Information System (INIS)

    Dhamodaran, Gopinath; Esakkimuthu, Ganapathy Sundaram; Pochareddy, Yashwanth Kutti; Sivasubramanian, Harish

    2017-01-01

    Global concern over rising greenhouse gas emission levels and the availability of fossil fuels has led to the development of biofuels, and the use of gasoline formulations with oxygenated compounds has become common practice for improving fuel quality. This empirical study evaluated the effects of oxygenated gasoline fuel blends on air quality. Tests were conducted on a four-stroke, four-cylinder multi-point fuel injection (MPFI) spark ignition (SI) engine using an eddy current dynamometer to investigate the combustion and emissions behaviour of n-butanol blends. Blends comprising n-butanol (N10, N20, and N30) and unleaded gasoline were tested over a rotational speed range of 1400 rpm–2800 rpm under a constant load of 20 Nm. The results obtained indicate that use of n-butanol blends produced lower hydrocarbon (HC) and carbon monoxide (CO) levels than unleaded gasoline but nitrogen oxide (NO_x) emissions were found to be higher. When ignition timing was retarded, NOx emissions for all n-butanol blends decreased. The peak in-cylinder pressures and heat release rates for the blends were also found to be higher than for unleaded gasoline (UG). COV_I_M_E_P of gasoline was higher than that of n-butanol/gasoline blends. - Highlights: • Using oxygenated compound gasoline formulations is common for improving fuel quality. • Blends of n-butanol with unleaded gasoline were tested between 1400 rpm and 2800 rpm. • Blends increased brake thermal efficiency and produced lower HC and CO but higher NOx. • Lower NOx was observed when ignition timing was retarded. • Peak in-cylinder pressures and heat release rates for blends were higher.

  15. Optimal operation of a micro-combined cooling, heating and power system driven by a gas engine

    International Nuclear Information System (INIS)

    Kong, X.Q.; Wang, R.Z.; Li, Y.; Huang, X.H.

    2009-01-01

    The objective of this paper is to investigate the problem of energy management and optimal operation of cogeneration system for micro-combined cooling, heating and power production (CCHP). The energy system mainly consists of a gas engine, an adsorption chiller, a gas boiler, a heat exchanger and an electric chiller. On the basis of an earlier experimental research of the micro-CCHP system, a non-linear-programming cost-minimization optimization model is presented to determine the optimum operational strategies for the system. It is shown that energy management and optimal operation of the micro-CCHP system is dependent upon load conditions to be satisfied and energy cost. In view of energy cost, it would not be optimal to operate the gas engine when the electric-to-gas cost ratio (EGCR) is very low. With higher EGCR, the optimum operational strategy of the micro-CCHP system is independent of energy cost

  16. Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.

    2008-01-01

    The development of a zero-dimensional, multi-zone combustion model is presented for predicting the performance and nitric oxide (NO) emissions of a spark ignition (SI) engine. The model is validated against experimental data from a multi-cylinder, four-stroke, turbocharged and aftercooled, SI gas engine running with syngas fuel. This alternative fuel, the combustible part of which consists mainly of CO and H 2 with the rest containing non-combustible gases, has been recently identified as a promising substitute of fossil fuels in view of environmentally friendly engine operation. The basic concept of the model is the division of the burned gas into several distinct zones, unlike the simpler two-zone models, for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. The multi-zone formulation provides the chemical species concentrations gradient existing in the burned zones, as well as the relative contribution of each burned zone to the total in-cylinder NO formation. The burning rate required as input to the model is expressed as a Wiebe function, fitted to experimentally derived burn rates. All model's constants are calibrated at one operating point and then kept unchanged. Zone-resolved combustion related information is obtained, assisting in the understanding of the complex phenomena occurring during combustion in SI engines. Combustion characteristics of the lean-burn gas engine tested are provided for the complete load range, aiding the interpretation of its performance and knocking tendency. Computed NO emissions from the multi-zone model for various values of the engine load (i.e. air-fuel ratios) are presented and found to be in good agreement with the respective experimental ones, providing confidence for the predictive capability of the model. The superiority of the multi-zone model over its two

  17. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  18. HPLC analysis of aldehydes in automobile exhaust gas: Comparison of exhaust odor and irritation in different types of gasoline and diesel engines

    International Nuclear Information System (INIS)

    Roy, Murari Mohon

    2008-01-01

    This study investigated high performance liquid chromatography (HPLC) to identify and measure aldehydes from automobile exhaust gas. Four aldehydes: formaldehyde (HCHO), acetaldehyde (CH 3 CHO), acrolein (H 2 C=CHCHO) and propionaldehyde (CH 3 CH 2 CHO) and one ketone, acetone (CH 3 ) 2 CO are separated. The other higher aldehydes in exhaust gas are very small and cannot be separated. A new method of gas sampling, hereafter called bag sampling in HPLC is introduced instead of the trapping gas sampling method. The superiority of the bag sampling method is its transient gas checking capability. In the second part of this study, HPLC results are applied to compare exhaust odor and irritation of exhaust gases in different types of gasoline and diesel engines. Exhaust odor, irritation and aldehydes are found worst in direct injection (DI) diesel engines and best in some good multi-point injection (MPI) gasoline and direct injection gasoline (DIG) engines. Indirect injection (IDI) diesel engines showed odor, irritation and aldehydes in between the levels of MPI gasoline, DIG and DI diesel engines

  19. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  20. Circumferential tensile test method for mechanical property evaluation of SiC/SiC tube

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ju-Hyeon, E-mail: 15096018@mmm.muroran-it.ac.jp [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Park, Joon-soo [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Nakazato, Naofumi [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE SiC/SiC cooling channel system to be a candidate of divertor system in future. • Hoop strength is one of the important factors for a tube. • This research studies the relationship between deformation and strain of SiC/SiC tube. - Abstract: SiC fiber reinforced/SiC matrix (SiC/SiC) composite is expected to be a candidate material for the first-wall, components in the blanket and divertor of fusion reactors in future. In such components, SiC/SiC composites need to be formed to be various shapes. SiC/SiC tubes has been expected to be employed for blanket and divertor after DEMO reactor, but there is not established mechanical investigation technique. Recent progress of SiC/SiC processing techniques is likely to realize strong, having gas tightness SiC/SiC tubes which will contribute for the development of fusion reactors. This research studies the relationship between deformation and strain of SiC/SiC tube using a circumferential tensile test method to establish a mechanical property investigation method of SiC/SiC tubes.

  1. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  2. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    Science.gov (United States)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  3. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    Science.gov (United States)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  4. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  5. Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming

    Energy Technology Data Exchange (ETDEWEB)

    Peucheret, S.; Wyszynski, M.L.; Lehrle, R.S. [Future Power Systems Group, Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Golunski, S. [Johnson Matthey, Technology Centre, Blount' s Court, Sonning Common, Reading RG4 9NH (United Kingdom); Xu, H. [Jaguar Land Rover Research, Jaguar Land Rover W/2/021, Abbey Road, Coventry CV3 4LF (United Kingdom)

    2005-12-01

    The potential of the homogeneous charge compression ignition (HCCI) combustion process to deliver drastically reduced emissions of NO{sub x} and improved fuel economy from internal combustion engines is well known. The process is, however, difficult to initiate and control, especially when methane or natural gas are used as fuel. To aid the HCCI combustion of natural gas, hydrogen addition has been successfully used in this study. This hydrogen can be obtained from on-line reforming of natural gas. Methane reforming is achieved here by reaction with engine exhaust gas and air in a small scale monolith catalytic reactor. The benchmark quantity of H{sub 2} required to enhance the feasibility and engine load range of HCCI combustion is 10%. For low temperature engine exhaust gas, typical for HCCI engine operating conditions, experiments show that additional air is needed to produce this quantity. Experimental results from an open-loop fuel exhaust gas reforming system are compared with two different models of basic thermodynamic equilibria calculations. At the low reactor inlet temperatures needed for the HCCI application (approx. 400 deg C) the simplified three-reaction thermodynamic equilibrium model is in broad agreement with experimental results, while for medium (550-650 deg C) inlet temperature reforming with extra air added, the high hydrogen yields predicted from the multi-component equilibrium model are difficult to achieve in a practical reformer. (author)

  6. Performance of CO2 enrich CNG in direct injection engine

    Science.gov (United States)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  7. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  8. Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Ahsan Shazaib

    2017-01-01

    Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.

  9. The Effect of Fuel Dose Division on The Emission of Toxic Components in The Car Diesel Engine Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2016-09-01

    Full Text Available The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and

  10. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  11. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    Science.gov (United States)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  12. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  13. Performance of a diesel engine transformed to spark ignition using natural gas; Desempenho de um motor diesel convertido para utilizacao de gas natural como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Ricardo H.R. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LEDAV/COPPE/UFRJ), RJ (Brazil). Lab. de Ensaios Dinamicos e Analise de Vibracao; Belchior, Carlos R.P. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LMT/COPPE/UFRJ), RJ (Brazil). Lab. de Maquinas Termicas; Sodre, Jose Ricardo [Pontificia Universidade Catolica de Minas Gerais (PUC/Minas), MG (Brazil)

    2012-07-01

    A zero-dimensional thermodynamic model for a diesel engine converted for dedicated use of natural gas was developed in this work. The computational model covers from the time of closing the inlet valve to the time of opening the exhaust valve and it was divided into three stages (compression, combustion and expansion). A model based on the first law of thermodynamics for closed cycle has been developed to study the performance of the engine. The combustion process was modeled using the equation of Wiebe. It was taken into consideration the convective heat transfer through the walls of the cylinder and the heat transfer coefficient was calculated by the Eichelberg correlation. It was also considered that the thermodynamic properties vary with temperature. To represent the gas mixture behavior inside the cylinder two approaches (Ideal Gas Equation and Van Der Waals's Real Gas Equation) were used and results compared. The computational model was validated with experimental tests. (author)

  14. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  15. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    Science.gov (United States)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  16. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  17. An assessment of gas impact on geological repository. Methodology and material property of gas migration analysis in engineered barrier system

    International Nuclear Information System (INIS)

    Yamamoto, Mikihiko; Mihara, Morihiro; Ooi, Takao

    2004-01-01

    Gas production in a geological repository has potential hazard, as overpressurisation and enhanced release of radionuclides. Amongst data needed for assessment of gas impact, gas migration properties of engineered barriers, focused on clayey and cementitious material, was evaluated in this report. Gas injection experiments of saturated bentonite sand mixture, mortar and cement paste were carried out. In the experiments, gas entry phenomenon and gas outflow rate were observed for these materials. Based on the experimental results, two-phase flow parameters were evaluated quantitatively. A conventional continuum two-phase flow model, which is only practically used multidimensional multi-phase flow model, was applied to fit the experimental results. The simulation results have been in good agreement with the gas entry time and the outflow flux of gas and water observed in the experiments. It was confirmed that application of the continuum two-phase flow model to gas migration in cementitious materials provides sufficient degree of accuracy for assessment of repository performance. But, for sand bentonite mixture, further extension of basic two-phase flow model is needed especially for effect of stress field. Furthermore, gas migration property of other barrier materials, including rocks, but long-term gas injection test, clarification of influence of chemicals environment and large-scale gas injection test is needed for multi-barrier assessment tool development and their verification. (author)

  18. Efficiency and Cost Comparison of Si IGBT and SiC JFET Isolated DC/DC Converters

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Török, Lajos; Munk-Nielsen, Stig

    2013-01-01

    Silicon carbide (SiC) and other wide band gap devices are in these years undergoing a rapid development. The need for higher efficiency and smaller dimensions are forcing engineers to take these new devices in to considerations when choosing semiconductors for their converters. In this article a Si...

  19. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wrocaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Drzik, Milan [International Laser Center, Ilkovicova 3, 841-04 Bratislava 4 (Slovakia)

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grown with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.

  20. Urban traffic pollution reduction for sedan cars using petrol engines by hydro-oxide gas inclusion.

    Science.gov (United States)

    Al-Rousan, Ammar A; Alkheder, Sharaf; Musmar, Sa'ed A

    2015-12-01

    Petrol cars, in particular nonhybrid cars, contribute significantly to the pollution problem as compared with other types of cars. The originality of this article falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/hr). Results indicated that through using hydro-oxy gas, a noticeable reduction in pollution was recorded. Oxygen (O2) percentage has increased by about 2.5%, and nitric oxide (NO) level has been reduced by about 500 ppm. Carbon monoxide (CO) has decreased by about 2.2%, and also CO2 has decreased by 2.1%. It's worth mentioning that for hybrid system in cars at speeds between 10 and 50 km/hr, the emission percentage change is zero. However, hybrid cars are less abundant than petrol cars. The originality of this paper falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/h).

  1. Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model

    International Nuclear Information System (INIS)

    Zhang, R.R.; Lu, X.S.; Li, S.Z.; Lin, W.S.; Gu, A.Z.

    2005-01-01

    In this study, the heating performance of a gas engine driven air to water heat pump was analyzed using a steady state model. The thermodynamic model of a natural gas engine is identified by the experimental data and the compressor model is created by several empirical equations. The heat exchanger models are developed by the theory of heat balance. The system model is validated by comparing the experimental and simulation data, which shows good agreement. To understand the heating characteristic in detail, the performance of the system is analyzed in a wide range of operating conditions, and especially the effect of engine waste heat on the heating performance is discussed. The results show that engine waste heat can provide about 1/3 of the total heating capacity in this gas engine driven air to water heat pump. The performance of the engine, heat pump and integral system are analyzed under variations of engine speed and ambient temperature. It shows that engine speed has remarkable effects on both the engine and heat pump, but ambient temperature has little influence on the engine's performance. The system and component performances in variable speed operating conditions is also discussed at the end of the paper

  2. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  3. Effects of silica composition on gas permeability of ENR/PVC ...

    African Journals Online (AJOL)

    At higher SiO2 loadings, the mechanical strength of the membrane decreased due to the agglomeration of SiO2 particles. Gas permeation test was done on ENR/PVC/SiO2 membranes using NO2 gas and CO2 gas. The permeability of both gasses increased with the amount of SiO2 added to the membrane, which attributed ...

  4. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0gas containing organic molecules that have carbon atoms.

  5. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  6. The analysis of mechanical integrity in gas turbine engines subjected to combustion instabilities

    NARCIS (Netherlands)

    Altunlu, A.C.

    2013-01-01

    Stringent regulations have been introduced towards reducing pollutant emissions and preserving our environment. Lowering NOx emissions is one of the main targets of industrial gas turbine engines for power generation. The combustion zone temperature is one of the critical parameters, which is

  7. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  8. Structural and electronic properties of Si/SiO2 MOS structures with aligned 3C-SiC nanocrystals in the oxide

    International Nuclear Information System (INIS)

    Pongracz, A.; Battistig, G.; Duecso, Cs.; Josepovits, K.V.; Deak, P.

    2007-01-01

    Our group previously proved that a simple reactive annealing in CO containing gas produces 3C-SiC nanocrystals, which are epitaxially and void-free aligned in the Si substrate. By a further thermal oxidation step, these nanocrystals can be lifted from the Si and incorporated into the SiO 2 matrix, thereby creating a promising structure for charge storage. In this work the structural and electrical properties of such systems with nanocrystalline SiC will be presented. Prototype MOS structures with 3C-SiC nanocrystals were produced for current-voltage and capacitance-voltage measurements. The results indicate that the high-temperature annealing did not damage the MOS structure, despite the fact that the CO annealing changed the electrical properties of the system. There was a positive charge accumulation and a reversible carrier injection observed in the structure. We assume that the positive charges originated from oxygen vacancies and the charge injection is related to the presence of SiC nanocrystals

  9. Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mechanical Engineering Department, College of Engineering, UAE University, Jimmi, Al-Ain, P.O. Box 17555, Abu Dhabi (United Arab Emirates); Radwan, M.S.; Saleh, H.E. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, Helwan University, Cairo (Egypt)

    2008-06-15

    The use of jojoba methyl ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or liquefied petroleum gas (LPG) at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or LPG as the main fuel and jojoba methyl ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic variability data of 100 engine cycles in terms of maximum pressure and its pressure rise rate average and standard deviation. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion. (author)

  10. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  11. Diluted Operation of a Heavy-Duty Natural Gas Engine - Aiming at Improved Effciency, Emission and Maximum Load

    OpenAIRE

    Kaiadi, Mehrzad

    2011-01-01

    Most heavy-duty engines are diesel operated. Severe emission regulations, high fuel prices, high technology costs (e.g. catalysts, fuel injection systems) and unsustainably in supplying fuel are enough reasons to convenience engine developers to explore alternative technologies or fuels. Using natural gas/biogas can be a very good alternative due to the attractive fuel properties regarding emission reduction and engine operation. Heavy-duty diesel engines can be easily converted for natur...

  12. Socio economic analysis of environmental optimisation of natural gas fired engines

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Sisse Liv; Moeller, F.

    2011-02-15

    This report analyses budget and welfare costs associated with changing settings in a gas engine. The purpose is to analyse what it will cost the plant owner and society if one would change the engine settings in order to obtain lower NO{sub x} emissions. The plant owner will loose while society will gain wealth when aiming for lower NO{sub x} emissions. The loss for the plant owner is primary caused by taxes while the gain for society is caused by less health expenses. The report also analyses if placement have any effect for society; however, since the population density does not differ very much across Denmark this does not have any mayor effect. (Author)

  13. Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Yaocheng Shi

    2016-03-01

    Full Text Available A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0 and liquid sensing (ncl ~ 1.33 are considered. When using SOI nanowires (with a SiO2 buffer layer, the sensitivity for liquid sensing (S ~ 0.55 is higher than that for gas sensing (S ~ 0.35 due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0. The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm. In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43 while the fabrication tolerance is very small (i.e., ∆w < ±5 nm. The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity.

  14. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.M.; Tomita, E.; Kawahara, N.; Harada, Y.; Sakane, A. [Okayama University, Okayama (Japan). Dept. of Mechanical Engineering

    2009-12-15

    This study investigated the engine performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas and ignited by a pilot amount of diesel fuel. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with exhaust gas recirculation (EGR). The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first without EGR condition up to the maximum possible fuel-air equivalence ratio of 0.65. A maximum indicated mean effective pressure (IMEP) of 1425 kPa and a thermal efficiency of 39% were obtained. However, the nitrogen oxides (NOx) emissions were high. A simulated EGR up to 50% was then performed to obtain lower NOx emissions. The maximum reduction of NOx was 60% or more maintaining the similar levels of IMEP and thermal efficiency. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion.

  15. New engineers for the natural gas and petroleum industry; Nachwuchs fuer die Erdgas-/Erdoelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Reinicke, K.M.; Pusch, G. [TU Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik

    2007-09-13

    Tne natural gas and petroleum industry needs engineers. Universities are faced with the challenge of training them and ensuring their technical, communicative and personal skills. Universities are taking new strategies to do this, joining efforts with other universities and with the oil and natural gas industry. New media are employed, increasingly also for advanced training and for learning by correspondence course in order to provide students with special knowledge and facilitate career changes. The paper describes implemented and projected studies in petroleum and natural gas technology at TU Clausthal university and joint projects with partner universities and industry. (orig.)

  16. Diesel engine exhaust gas recirculation--a review on advanced and novel concepts

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ming E-mail: mzheng@uwindsor.ca; Reader, Graham T.; Hawley, J. Gary

    2004-04-01

    Exhaust gas recirculation (EGR) is effective to reduce nitrogen oxides (NO{sub x}) from Diesel engines because it lowers the flame temperature and the oxygen concentration of the working fluid in the combustion chamber. However, as NO{sub x} reduces, particulate matter (PM) increases, resulting from the lowered oxygen concentration. When EGR further increases, the engine operation reaches zones with higher instabilities, increased carbonaceous emissions and even power losses. In this research, the paths and limits to reduce NO{sub x} emissions from Diesel engines are briefly reviewed, and the inevitable uses of EGR are highlighted. The impact of EGR on Diesel operations is analyzed and a variety of ways to implement EGR are outlined. Thereafter, new concepts regarding EGR stream treatment and EGR hydrogen reforming are proposed.

  17. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    Science.gov (United States)

    2015-05-18

    ROLLS-ROYCE M250 GAS TURBINE ENGINE by Midshipman 1/C Brian R. He United States Naval Academy Annapolis, Maryland...Injection in a Rolls- Royce M250 Gas Turbine Engine 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) He...output, efficiency, operating conditions, and emissions of injecting water at the compressor discharge of a Rolls-Royce M250 . The results

  18. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  19. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  20. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic