WorldWideScience

Sample records for gas separation processes

  1. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  2. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  3. Cooling process in separation devices of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    To prevent entry of impurities into purified gases and to detect leaks of heat exchanger in a separation and recovering device of krypton gas by means of liquefaction and distillation, an intermediate refrigerant having the same or slightly higher boiling point than that of gas to be cooled is used between the gas to be cooled (process gas) and refrigerant (nitrogen), and the pressure of the gas to be cooled is controlled to have a pressure higher than the intermediate refrigerant to cool the gas to be cooled.

  4. Gas stripping and recirculation process in heavy water separation plant

    International Nuclear Information System (INIS)

    Nazzer, D.B.; Thayer, V.R.

    1976-01-01

    Hydrogen sulfide is stripped from hot effluent, in a heavy water separation plant of the dual temperature isotope separation type, by taking liquid effluent from the hot tower before passage through the humidifier, passing the liquid through one or more throttle devices to flash-off the H 2 S gas content, and feeding the gas into an absorption tower containing incoming feed water, for recycling of the gas through the process

  5. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten

    2015-01-01

    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...

  6. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  7. Glovebox atmosphere detritiation process using gas separation membranes

    International Nuclear Information System (INIS)

    Le Digabel, M.; Truan, P.A.; Ducret, D.; Laquerbe, C.; Perriat, P.; Niepce, J.C.; Pelletier, T.

    2003-01-01

    The use of gas separation membranes in atmospheric detritiation systems has been studied. The main advantage of this new process is to reduce the number and/or the size of the equipment in comparison to conventional tritium removal systems. Owing to the constraints linked to tritium handling, the separation performances of several commercial hollow fiber organic membranes have been analyzed, under various operating conditions, with hydrogen/nitrogen or deuterium/nitrogen mixtures. The experiments are performed with small quantities of hydrogen or deuterium (5000 ppm). The experimental results allow to evaluate the separation efficiency of these membranes and to determine the appropriate operating conditions to apply to a membrane detritiation process

  8. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  9. Mars Atmospheric Capture and Gas Separation

    Science.gov (United States)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  10. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  11. Energy Efficient Hybrid Gas Separation with Ionic Liquids

    DEFF Research Database (Denmark)

    Liu, Xinyan; Liang, Xiaodong; Gani, Rafiqul

    2017-01-01

    Shale gas, like natural gas, contains H2, CO2, CH4 and that light hydrocarbon gases needs processing to separate the gases for conversion to higher value products. Currently, distillation based separation is employed, which is energy intensive. Hybrid gas separation processes, combining absorption...... systems is established for process design-analysis. A strategy for hybrid gas separation process synthesis where distillation and IL-based absorption are employed for energy efficient gas processing is developed and its application is highlighted for a model shale gas processing case study....

  12. Mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures

    OpenAIRE

    Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor

    2017-01-01

    The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...

  13. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  14. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  15. Four-port gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  16. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, M

    1970-03-27

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art.

  17. Some interesting developments relating to gas dynamics in the application of the UCOR process for isotope separation

    International Nuclear Information System (INIS)

    Alant, T.G.; Schumann, W.A.

    1980-01-01

    The separating element employed in the UCOR process for uranium enrichment has a very small cut, i.e. is highly asymmetrical with respect to the UF 6 flow in the enriched and depleted streams. For the commercial exploitation of the process, the so-called helikon technique of cascading was developed. The process is dependent on the transmission of parallel streams of diffferent isotopic composition through an axial compressor without significant mixing between them. A light gas (H 2 ), which is present in large molar excess, increases the flow velocity of the process gas (UF 6 ) and hence adds to improved separation performance. The separating element not only separates isotopes but also causes appreciable separation between the process gas and the light carrier gas. The paper consists of a brief description of the helikon cascading technique followed by a comprehensive assessment of the various aspects of gas mixing in an axial compressor. Phenomena of mole mass and pressure transients which occur in the module during run-up of the compressors are also discussed. The operating characteristics of axial compressors and of the separating element produce a driving force which tends to cause mole mass and associated pressure gradients to occur circumferentially in a helikon module under static conditions. The paper includes 5 references and 10 figures

  18. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  19. Centrifugal gas separator

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo.

    1970-01-01

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art. (K.J. Owens)

  20. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  1. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  2. Reliability Omnipotent Analysis For First Stage Separator On The Separation Process Of Gas, Oil And Water

    International Nuclear Information System (INIS)

    Sony Tjahyani, D. T.; Ismu W, Puradwi; Asmara Santa, Sigit

    2001-01-01

    Reliability of industry can be evaluated based on two aspects which are risk and economic aspects. From these points, optimation value can be determined optimation value. Risk of the oil refinery process are fire and explosion, so assessment of this system must be done. One system of the oil refinery process is first stage separator which is used to separate gas, oil and water. Evaluation of reliability for first stage separator system has been done with FAMECA and HAZap method. The analysis results, the probability of fire and explosion of 1.1x10 - 2 3 /hour and 1.2x10 - 1 1 /hour, respectively. The reliability value of the system is high because each undesired event is anticipated with safety system or safety component

  3. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  4. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  5. Experimental study of multi-component separation by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou, M.S.; Liang, X.W.; Chen, W.N.; Yin, Y.T.

    2006-01-01

    Stable isotopes are applied in many areas and most stable isotopes are multi-component, This paper presents experimental results of several stable isotopes separation conducted in Tsinghua University by using ultra-speed gas centrifuges. Xe, WF 6 , TeF 6 , SiHCl 3 , SiF 4 were chosen as the process gases. By adjusting some of the centrifuge's parameters, the suitable centrifuge parameters for different process gas separations were found and the overall unit separation factors γ 0 were obtained by means of single gas centrifuge separation. The experimental results show that with appropriate process gases, stable isotope separation by gas centrifuge was effective. (authors)

  6. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  7. Latest development on the membrane formation for gas separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The first scientific observation related to gas separation was encountered by J.K Mitchell in 1831. However, the most remarkable and influential contribution to membrane gas separation technology was the systematic study by Thomas Graham in 1860. However only in 1979, membrane based gas separation technology was available and recognized as one of the most recent and advanced unit operations for gas separation processes. Membrane is fabricated by various methods and the parameters involved to a certain extent are very complicated. The phase inversion technique that is normally employed to produce membranes are dry/wet, wet, dry and thermal induced phase separation. Other techniques used to produce membrane are also reviewed. This paper reports the latest development in membrane formation for gas separation. The route to produce defect-free and ultrathin-skinned asymmetric membrane is also presented that represents the cutting edge technology in membrane gas separation process

  8. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  9. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  10. Separation parameters of gas centrifuges

    International Nuclear Information System (INIS)

    May, W.G.

    1977-01-01

    Early work on development of the gas centrifuge for separation of uranium isotopes has recently been reviewed. Several configurations were investigated. The preferred configuration eventually turned out to be a countercurrent centrifuge. In this form, an internal circulation is set up, and as a consequence, light isotope concentrates at one end of the centrifuge, heavy isotope at the other. In many ways the effect resembles the separation obtained in packed columns in the chemical and petroleum industries. It is the purpose of this paper to develop this analogy between countercurrent gas centrifuges and packed towers and to illustrate its usefulness in understanding the separation process in the centrifuge. 8 figures

  11. AKUT: a process for the separation of aerosols, krypton, and tritium from burner off-gas in HTR-fuel reprocessing

    International Nuclear Information System (INIS)

    Laser, M.; Barnert-Wiemer, H.; Beaujean, H.; Merz, E.; Vygen, H.

    1975-01-01

    The AKUT process consists of the following process steps: (1) aerosol retention by an electrostatic separator followed by HEPA filters, (2) oxidation of CO with O 2 or reaction of excess O 2 with CO, respectively, (3) compression, (4) scrubbing and/or liquefaction, (5) separation of krypton by distillation, and (6) separation of tritiated water and iodine by adsorption or chemical reaction. Liquefied off-gas with low permanent gas content resulting from graphite burning with oxygen may be distilled at ambient temperature. Off-gas with higher permanent gas content from burning with oxygen enriched air must be processed at lower temperature. The ambient temperature flow sheet is preferable from an economic as well as safety point of view. (U.S.)

  12. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    Science.gov (United States)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  13. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  14. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  15. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  16. Hypercrosslinked Additives for Ageless Gas-Separation Membranes.

    Science.gov (United States)

    Lau, Cher Hon; Mulet, Xavier; Konstas, Kristina; Doherty, Cara M; Sani, Marc-Antoine; Separovic, Frances; Hill, Matthew R; Wood, Colin D

    2016-02-05

    The loss of internal pores, a process known as physical aging, inhibits the long-term use of the most promising gas-separation polymers. Previously we reported that a porous aromatic framework (PAF-1) could form a remarkable nanocomposite with gas-separation polymers to stop aging. However, PAF-1 synthesis is very onerous both from a reagent and reaction-condition perspective, making it difficult to scale-up. We now reveal a highly dispersible and scalable additive based on α,α'-dichloro-p-xylene (p-DCX), that inhibits aging more effectively, and crucially almost doubles gas-transport selectivity. These synergistic effects are related to the intimately mixed nanocomposite that is formed though the high dispersibility of p-DCX in the gas-separation polymer. This reduces particle-size effects and the internal free volume is almost unchanged over time. This study shows this inexpensive and scalable polymer additive delivers exceptional gas-transport performance and selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. New processes for uranium isotope separation

    International Nuclear Information System (INIS)

    Vanstrum, P.R.; Levin, S.A.

    1977-01-01

    An overview of the status and prospects for processes other than gaseous diffusion, gas centrifuge, and separation nozzle for uranium isotope separation is presented. The incentive for the development of these processes is the increasing requirements for enriched uranium as fuel for nuclear power plants and the potential for reducing the high costs of enrichment. The latest nuclear power projections are converted to uranium enrichment requirements. The size and timing of the market for new enrichment processes are then determined by subtracting the existing and planned uranium enrichment capacities. It is estimated that to supply this market would require the construction of a large new enrichment plant of 9,000,000 SWU per year capacity, costing about $3 billion each (in 1976 dollars) about every year till the year 2000. A very comprehensive review of uranium isotope separation processes was made in 1971 by the Uranium Isotope Separation Review Ad Hoc Committee of the USAEC. Many of the processes discussed in that review are of little current interest. However, because of new approaches or remaining uncertainties about potential, there is considerable effort or continuing interest in a number of alternative processes. The status and prospects for attaining the requirements for competitive economics are presented for these processes, which include laser, chemical exchange, aerodynamic other than separation nozzle, and plasma processes. A qualitative summary comparison of these processes is made with the gaseous diffusion, gas centrifuge, and separation nozzle processes. In order to complete the overview of new processes for uranium isotope separation, a generic program schedule of typical steps beyond the basic process determination which are required, such as subsystem, module, pilot plant, and finally plant construction, before large-scale production can be attained is presented. Also the present value savings through the year 2000 is shown for various

  18. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  19. Gas separating

    Science.gov (United States)

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  20. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Kanagawa, A; Fujii, O; Nakamoto, H

    1970-03-09

    Counter currents in the rotary drum of a centrifugal gas separator are produced by providing, at either end of the drum in the vicinity of the circumferential and central positions, respectively, outflow and inflow holes with a communicating passage external to the drum there between whereby gaseous counter currents are caused to flow within the drum and travel through the passage which is provided with gas flow adjustment means. Furthermore, the space defined by the stationary portion of the passage and the rotor drum is additionally provided with a screw pump or throttling device at either its stationary side or drum side or both in order to produce a radially directed gas flow therewithin. A gas mixture is axially admitted into the drum while centrifugal force and a cooling element provided therebelow cause an increase in gas pressure along and a gaseous flow toward the wall member, whereupon the comparatively high pressured circumferentially distributed gas is extracted from the outlet holes, flows through the external gas passage and back into the lower pressured drum core through the inlet holes, thus producing the desired counter currents. The gases thus separated are withdrawn along axially provided discharge pipes. Accordingly, this invention permits heating elements which were formerly used to produce thermal convection currents to be disposed of and allows the length of the rotor drum to be more efficiently utilized to enhance separation efficiency.

  1. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  2. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  3. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  4. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  5. Noble gas separation methods for radioactivity retention in nuclear facilities

    International Nuclear Information System (INIS)

    Lehmer, W.; Schiller, H.

    1976-01-01

    The possibilities of applying process techniques in order to reduce gas-borne activity by means of different gas separation processes are looked at and their effectiveness are critically compared. (HP/LN) [de

  6. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  7. Isotope separation process

    International Nuclear Information System (INIS)

    1976-01-01

    The invention relates to a process for separating a given material into two or more parts, in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in the said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase UF 6 by infrared photon absorption followed by selective reaction of said excited UF 6 with atomic chlorine, bromine, or iodine to form a product which may be separated by means known in the art

  8. Isotope separation process

    International Nuclear Information System (INIS)

    Thomas, W.R.L.

    1979-01-01

    The instant invention relates to an improved process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same element in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than non-excited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  9. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1977-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 15 claims, 1 figure

  10. Separation of krypton from dissolver off-gas of a reprocessing plant using preparative gas chromatography

    International Nuclear Information System (INIS)

    Matoni, M.

    1984-02-01

    Kr-85 can be separated from the pre-purified purge air in the final processing step of the purification phase for dissolver off-gases of a reprocessing plant with the aid of preparative gas chromatography. Activated carbon adsorbers in combination with helium as carrier gas permits maximum gas mixture through-flow. A separation temperature of 30 0 C is considered optimal. An adsorbent volume of 40 dm 3 is necessary for processing the residual gas flow of 2.5 Nm 3 /h; the adsorbent is divided between 2 columns linked in series each of which are 2 m long with an internal diameter of 100 mm. The helium flow required is five times greater than the off-gas flow. The degree of purity for krypton is greater than 90% for a decontamination factor of greater than 1000. (orig./HP) [de

  11. Pilot-scale multistage membrane process for the separation of CO2 from LNG-fired flue gas

    KAUST Repository

    Choi, Seung Hak

    2013-06-01

    In this study, a multistage pilot-scale membrane plant was constructed and operated for the separation of CO2 from Liquefied Natural Gas (LNG)-fired boiler flue gas of 1000 Nm3/day. The target purity and recovery of CO2 were 99 vol.% and 90%, respectively. For this purpose, asymmetric polyethersulfone (PES) hollow fibers membranes has been developed in our previous work and has evaluated the effects of operating pressure and feed concentration of CO2 on separation performance. The operating and permeation data obtained were also analyzed in relation with the numerical simulation data using countercurrent flow model. Based on these results, in this study, four-staged membrane process including dehumidification process has been designed, installed, and operated to demonstrate the feasibility of multistage membrane systems for removing CO2 from flue gases. The operation results using this plant were compared to the numerical simulation results on multistage membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery of CO2 in the permeate stream of final stage were ranged from 95-99 vol.% and 70-95%, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for CO2 recovery from flue gas. © 2013 Elsevier B.V. All rights reserved.

  12. Method of separation of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, M.A.; Potapov, V.F.; Potapova, M.S.

    1980-04-05

    Gas mixtures are separated in a rectification tower by repeated counterflow contact of the heated gas flow and cool condensate as the pressure drops in each stage of separation (StR) and when condensate is added from StR with lower pressure to the StR with higher pressure. In order to reduce energy consumption noncondensing gas in amounts of 5-15 percent by weight of the amount of incoming gases are added. Hydrocarbon or carbon dioxide gas can be used as the latter. Example. To separate natural gas of the Shatlyk deposit of composition, percent by mo1: C1 -- 94.960; C2 -- 4.260; C3 -- 0.200; C4 -- 0.08; C4+B -- 0.51. It is enriched with carbon dioxide gas in an amount of 10 percent by weight. Upon rectification of the enriched hydrocarbon mixture separation is achieved at lower pressures of the gas mixture and less cold. This leads to reduction of energy consumption by 10-12 percent.

  13. Development of high purity CO gas recovery system for BOF gas by modified PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Sakuraya, Toshikazu; Fujii, Tetsuya; Yaji, Motoyasu; Matsuki, Takao; Matsui, Shigeo; Hayashi, Shigeki

    1985-01-01

    COPISA process (where two processes for separating CO-adsorptive gases and desorbing desorption-difficult gas are added to conventional PSA gas separation process) is outlined. In two units of PSA, CO/sub 2/ gas is adsorbed and separated in first PSA unit. The gas excluding CO/sub 2/ is fed to second PSA unit, where CO is adsorbed and separated from N/sub 2/ and H/sub 2/, and then desorbed and recovered under reduced pressure. For optimizing the process, a pilot plant was operated for about 1000 hrs. in a half year. The results confirm possibility of simplifying pre-treatment of coal gas. CO-PSA pressure swing pattern suitable for elimination of Co-adsorptive N/sub 2/ is established. Recovery of CO gas is enhanced. Optimization of gas flow pattern between adsorption towers required for reduction in operating cost is performed. (7 figs, 1 tab, 8 refs)

  14. The gas filled separator as a separation method to detect transuranic elements

    International Nuclear Information System (INIS)

    Ninov, V.

    1992-08-01

    The mass spectrometer NASE (NAchSEparator) built as a post-separator and located behind the velocity filter SHIP at the GSI in Darmstadt, was taken into operation as a gas-filled separator, and its separation properties for fusion products from heavy ion reactions were studied. Chapter 2 describes the principle of separation in a gas-filled magnet. The technical specifications of the separator, the detectors and the setup of detection electronics are outlined in chapter 3. The studies of separation properties are described in chapter 4, and chapter 5 deals with preliminary applications of the gas-filled separator to detect isotopes poor in neutrons, with an atomic number Z = 92, 93. Chapter 6 is concerned with preliminary tests to detect heavy nuclei with an atomic number Z > = 100 by means of light radiation and actinide targets. The experimental results of comparative measurements between the velocity filter SHIP and the gas-filled separator are pointed out in chapter 7, and future application possibilities of gas-filled separators for synthesis of heaviest nuclei through asymmetric reactions are discussed. (orig./BBR) [de

  15. Aerospace gas/liquid separator for terrestrial applications

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1996-01-01

    The space gas/liquid separator, a key component in the heat transport subsystem of a space reactor power system, was developed to remove helium gas from liquid lithium in zero gravity. Helium is generated from lithium irradiation in the reactor core and would reach saturation in lithium after 48 hours of full power operations. The gas/liquid separator is also applicable for large commercial powerplants to deaerate the water before and after the feedwater heaters. Another terrestrial application is for industrial companies to use the gas/liquid separator and wet chemistry to remove all the gases from the air and only discharge clean air to the atmosphere. An additional application that resulted from this gas/liquid separator technology, was separating liquid carbon dioxide from nitrogen. This application is opposite from the space application in that it is removing a liquid from a gas rather than a gas from a liquid

  16. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1976-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. In one embodiment, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by selective dissociation of said excited molecules by the absorption of a single photon of visible or ultraviolet light. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 11 Claims, 2 Drawing Figures

  17. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Martin, J.R.

    1976-01-01

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 16 Claims, 8 Drawing Figures

  18. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-05-13

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  19. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    International Nuclear Information System (INIS)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-01-01

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  20. Use of membrane separation processes for the separation of radionuclides from liquid and gas streams

    International Nuclear Information System (INIS)

    Vladisavljevic, G.T.; Rajkovic, M.B.

    1999-01-01

    Use of membranes for the separation and recovery of radionuclides from contaminated liquid and gas streams has been discussed in this paper. The special attention has been paid to the use of ion-exchange membranes for electrodialysis and Donnan dialysis, as well as the use of facilitated liquid membranes for liquid pertraction. (author)

  1. Preparation of hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Li, Shu-Guang

    1994-01-01

    Today, immersion precipitation is the most often used process for the preparation of gas separation membranes from polymeric materials. In this process a polymer solution in the form of a thin liquid film or hollow fiber is immersed in a nonsolvent bath where the polymer precipitates and forms a

  2. Method for improved gas-solids separation

    Science.gov (United States)

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  3. Pilot plant development for adsorptive krypton separation from dissolver off-gas

    International Nuclear Information System (INIS)

    Ringel, H.; Printz, R.

    1987-01-01

    In view of hot cell application a separation process was investigated for the retention of Kr-85 from gaseous effluents. In the flow sheet only adsorption beds are applied. The most efficient process scheme is adsorption of the noble gas on activated charcoal and thereafter separation of the coadsorbed gas species like N 2 , O 2 , Xe and CO 2 from the krypton by gas chromatography. Adsorption is at normal pressure and low temperatures of up to -160 0 C, whereas desorption is at elevated temperatures and under helium purge. Influences on the process operation like off-gas composition, adsorption temperatures and adsorbent are experimentally investigated, as well as the behavior of trace impurities in the adsorption columns. On the basis of pilot plant operation the main components for a full scale facility are being designed

  4. Adsorptive separation of NOsub(x) from dissolver off-gas

    International Nuclear Information System (INIS)

    Ringel, H.

    1984-06-01

    After precleaning the dissolver off-gas contains, besides the noble gases Xe and Kr, about 0.5 vol.% each of NOsub(x) and H 2 O. For the removal of these NOsub(x) and H 2 O residues to below 1 ppm, an adsorptive gas cleaning process has been developed and tested on a lab-scale. For the process, an acid resistant molecular sieve was selected and its properties investigated with respect to application; e.g. the dependence of the adsorption capacity on temperature, gas composition and face velocity. By the operation of a lab-scale facility with 400 Nl/h continuous off-gas throughput the suitability of the adsorption process has been demonstrated for off-gas cleaning and recycling of the separated NO 2 and H 2 O to the dissolver. (orig.) [de

  5. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    Science.gov (United States)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (M n ) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m 3 ). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[P CO 2 /P N 2 ] ≈ 41 and α[P CO 2 /P CH 4 ] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  6. Development for a process for the adsorptive separation of krypton-85

    International Nuclear Information System (INIS)

    Messler, M.

    1985-03-01

    In the final process step of dissolver waste gas purification in a reprocessing facility, the radioactive noble gas Kr-85 is separated by physical separation processes. The experiments showed that the available mixture of air/Kr/Xe can be appropriately separated by chromatography. In principle, the adsorption column is laded with the waste gas and subsequently regenerated by puring with a carrier gas. A complete separation of the waste gas components can thus be achieved. He suggests itself as a purge gas. Fine-grained activated charcoals are to be preferred as adsorbing agents. Among the adsorptive process alternatives studied, one variant in which the adsorber was split into two halves and loaded at -130 0 C or -160 0 C proved to be particularly suitable. It can be seen that a total of only 0.2 m 3 of activated charcoal would be required for a commerical facility with a waste gas throughput of 100 nm 3 /h. The helium flux required only amounts to 4% of the waste gas flow to be purified. If valuable xenon is also to be recovered then this value increases to 7%. In this case the quantity of activated charcoal necessary would be 0.28 m 3 . A comparison with alternative process principles indicated that the adsorptive concept has advantages with respect to process engineering and regarding high safety standards in nuclear engineering facilities. (orig./HP) [de

  7. Tangential inlet supersonic separators: a novel apparatus for gas purification

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yang, Yan

    2016-01-01

    A novel supersonic separator with a tangential inlet is designed to remove the condensable components from gas mixtures. The dynamic parameters of natural gas in the supersonic separation process are numerically calculated using the Reynolds stress turbulence model with the Peng-Robinson real gas...... be generated by the tangential inlet, and it increases to the maximum of 200 m/s at the nozzle throat due to decrease of the nozzle area of the converging part. The tangential velocity can maintain the value of about 160 m/s at the nozzle exit, and correspondingly generates the centrifugal acceleration of 3...

  8. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  9. A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving

    KAUST Repository

    Haja Mohideen, Mohamed Infas; Pillai, Renjith S.; Adil, Karim; Bhatt, Prashant; Belmabkhout, Youssef; Shkurenko, Aleksander; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-01-01

    Summary The development of highly stable separation agents is recognized as a decisive step toward the successful deployment of energy-efficient and cost-effective separation processes. Here, we report the synthesis and construction of a metal-organic framework (MOF), kag-MOF-1, that has adequate structural and chemical features and affords a stable adsorbent with unique and appropriate adsorption properties for gas processing akin to acid gas removal, dehydration, and benzene-toluene-xylene (BTX) sieving. A combination of X-ray diffraction experiments, adsorption studies, mixed-gas breakthrough adsorption column testing, calorimetric measurements, and molecular simulations corroborated the exceptional separation performance of kag-MOF-1 and its prospective use as a multifunctional adsorbent. The unique adsorption properties of kag-MOF-1, resulting from the contracted pore system with aligned periodic array of exposed functionalities, attest to the prominence of this new generation of ultra-microporous material as a prospective practical adsorbent toward cost-effective and more simplified gas and vapor processing flowcharts for natural gas upgrading and flue gas scrubbing.

  10. A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving

    KAUST Repository

    Haja Mohideen, Mohamed Infas

    2017-10-19

    Summary The development of highly stable separation agents is recognized as a decisive step toward the successful deployment of energy-efficient and cost-effective separation processes. Here, we report the synthesis and construction of a metal-organic framework (MOF), kag-MOF-1, that has adequate structural and chemical features and affords a stable adsorbent with unique and appropriate adsorption properties for gas processing akin to acid gas removal, dehydration, and benzene-toluene-xylene (BTX) sieving. A combination of X-ray diffraction experiments, adsorption studies, mixed-gas breakthrough adsorption column testing, calorimetric measurements, and molecular simulations corroborated the exceptional separation performance of kag-MOF-1 and its prospective use as a multifunctional adsorbent. The unique adsorption properties of kag-MOF-1, resulting from the contracted pore system with aligned periodic array of exposed functionalities, attest to the prominence of this new generation of ultra-microporous material as a prospective practical adsorbent toward cost-effective and more simplified gas and vapor processing flowcharts for natural gas upgrading and flue gas scrubbing.

  11. Gas separation membranes current status

    International Nuclear Information System (INIS)

    Puri, S.P.

    1996-01-01

    Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical and allied industries. Following their successful commercialization in the late Seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications

  12. Adsorbent filled polymeric membranes : applications to pervaporation and gas separation

    NARCIS (Netherlands)

    Duval, Jean-Marc

    1993-01-01

    Nowadays research in membrane technology aims at improving the efficiency of the separation process to make it more competitive in comparison to conventional separation techniques. The improvement of the membrane material is a way to achieve this goal, especially in the case of pervaporation and gas

  13. Gas-Liquid Separator design of SWRPRS in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung; Lee, Tae-ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There is the Sodium-Water Reaction Pressure Relief System (SWRPRS) in PGSFR to prevent the Sodium- Water Reaction (SWR) due to the break of the steam generator tube. The piping to atmosphere includes several components such as gasliquid separator, backpressure rupture disk, and hydrogen igniter. Among these components, gas-liquid separator separates the liquid sodium which is included in gas SWR products not to react sodium and air. In this study, the size of gas-liquid separator, which is based on the hydrogen volume which is exhausted in the sodium dump tank, is determined. To determine the gas-liquid separator for the separation of gas and sodium particle dumped the SDT, Stairmand's model which has high performance among standard cyclone separator models is selected. The body diameter is determined, and other dimensions are determined due to the ratio about the body diameter. Shepherd and Lapple's model is selected as the pressure drop calculation model considering the conservation.

  14. Oil/gas collector/separator for underwater oil leaks

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.

    1992-12-31

    This invention is comprised of an oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  15. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  16. TBP degradation products. Separation and gas-chromatographic determination

    International Nuclear Information System (INIS)

    Kuada, T.A.; Alem, C.M.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A de.

    1991-11-01

    A separation method for di butylphosphate, mono butylphosphate and phosphoric acid as degradation products in organic and aqueous streams of the process containing variable amounts of actinides and fission products is described. The products were separated by extraction and after methylation the final determination was carried out by gas chromatography. TPP was used as internal standard and 5 to 500 mg/L concentration range was determined with 1 to 10% deviation depending on the concentration of organo phosphates. (author)

  17. Gas treatment processes for keeping the environment of nuclear plants free from gas-borne activity

    International Nuclear Information System (INIS)

    Schiller, H.

    1977-01-01

    The separation processes in gas treatment steps for the decontamination of circuit or offgas streams are described and their practicability is evaluated. Examples of the effectiveness of gas separation plants for keeping the environment within and without nuclear plants free from harmful gas-borne activity are presented. (orig.) [de

  18. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  19. Gas storage and separation by electric field swing adsorption

    Science.gov (United States)

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  20. Numerical investigation of gas separation in T-junction

    Science.gov (United States)

    Pao, William; Hashim, Fakhruldin M.; Ming, Low Huei

    2015-05-01

    T-junctions are commonly used in distributing two-phase flow by piping networks especially in oil and gas industries. Understanding the behavior of two-phase flow through a T-junction is very important as it has significant effect on the operation, maintenance and efficiency of the components downstream from the junction. The objective of this paper is to determine the effect of ratio of side arm to main arm diameters, initial inlet gas saturation and gas density variation on passive separation performance in T-junction. Via computational fluid dynamics tool, preliminary investigation found that separation efficiency is proportional to diameter ratio in between 0.5-0.75. Beyond diameter ratio 0.75, there is a flattening of separation efficiency. The change of fraction of gas taken off is inversely proportional to initial inlet gas saturation and the trend is almost inversely linear for diameter ratio 0.5. Beyond that, the relationship between initial inlet gas saturation and separation efficiency exhibits mild non-linearity behavior. For diameter ratios 0.75-1.0, the fraction of gas taken off is almost similar as far as the initial gas saturation is concerned. Gas density affects phase separation efficiency when the initial gas saturation is low. Interestingly, the effects of the inlet flow velocity and gravity distribution is almost negligible relative to the mass split ratio, side to main arm diameter ratio, initial gas saturation and density differential.

  1. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  2. Reduction of emission when applying thermal separation processes in the dismantling of nuclear facilities - oxy-fuel gas and plasma arc cutting

    International Nuclear Information System (INIS)

    Stoiber, H.; Hammer, G.; Schultz, H.

    1995-01-01

    Plasma arc cutting and laser beam cutting was used for the studies with the goal of significantly reducing material emission by changing the operating and equipment parameters. Some separations using the oxy-fuel gas cutting process served the purpose of providing a guide for determining which factors can most effectively reduce emission. The separation experiments were carried out with specimens of R-St 37-2, 10 mm thick, as well as of X 6 CrNi 18 10 steel 5, 10, 15 and 20 mm thick. In all cases, lowering speed and the amount of gas proved at first to be effective measures to check material emission. It was also possible to achieve adherence of molten mass and slag on the flank of the joint with excessive icicling. When the plasma separates the CrNi steel, it is possible to increase emission reduction additionally by using an argon/hydrogen mixture instead of nitrogen as a cutting gas. (orig./DG) [de

  3. Recent progress in molecular simulation of nanoporous graphene membranes for gas separation

    Science.gov (United States)

    Fatemi, S. Mahmood; Baniasadi, Aminreza; Moradi, Mahrokh

    2017-07-01

    If an ideal membrane for gas separation is to be obtained, the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have welldefined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. Graphene is made up of a hexagonal honeycomb lattice of carbon atoms with sp 2 hybridization state forming a one-atom-thick sheet of graphite. Following conversion of the honeycomb lattices into nanopores with a specific geometry and size, a nanoporous graphene membrane that offers high efficiency as a separation membrane because of the ultrafast molecular permeation rate as a result of its one-atom thickness is obtained. Applications of nanoporous graphene membranes for gas separation have been receiving remarkably increasing attention because nanoporous graphene membranes show promising results in this area. This review focuses on the recent advances in nanoporous graphene membranes for applications in gas separation, with a major emphasis on theoretical works. The attractive properties of nanoporous graphene membranes introduce make them appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions.

  4. STUDY OF GAS SEPARATION PROCESS BY DYNAMIC ADSORPTION IN FIXED BED

    Directory of Open Access Journals (Sweden)

    Ioan Solomon

    2010-10-01

    Full Text Available An experimental study of mass transfer at gas separation by dynamic adsorption in fixed bed of impregnated silica gel is presented in this work. By means of a mathematical model based on constants and coefficient easy to evaluate, the distributions of adsorbate concentration in gas and solid phases were determined as a function of time and throughout the height of the fixed bed, under isothermal conditions.With this aim, water vapors from air were adsorbed in a fixed bed of impregnated silica gel. The values of the volumetric mass transfer coefficient, Kv, were determined experimentally at several values of air superficial velocity, an air relative humidity of 69�20at 38 °C. The influence of the gas flow velocity and initial water concentration in adsorbent on the distribution of water concentration in both phases was established as a function of time and throughout the height of the fixed bed. The results obtained allow one to determination of the local adsorption rate.

  5. Use of separating nozzles or ultra-centrifuges for obtaining helium from gas mixtures containing helium

    International Nuclear Information System (INIS)

    Reimann, T.

    1987-01-01

    To obtain helium from gas mixtures containing helium, particularly from natural gas, it is proposed to match the dimensions of the separation devices for a ratio of the molecular weights to be separated of 4:1 of more, which ensures a higher separation factor and therefore a smaller number of separation stages to be connected in series. The process should make reasonably priced separation of helium possible. (orig./HP) [de

  6. Separative power of an optimised concurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, Sergey; Boman, Vladimir [National Research Nuclear University (MEPHI), Moscow (Russian Federation)

    2016-06-15

    The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to δU = 12.7 (V/700 m/s)2(300 K/T)(L/1 m) kg·SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

  7. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  8. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of gas chromatography in hydrogen isotope separation

    International Nuclear Information System (INIS)

    Ye Xiaoqiu; Sang Ge; Peng Lixia; Xue Yan; Cao Wei

    2008-01-01

    The principle of gas chromatographic separation of hydrogen isotopes was briefly introduced. The main technology and their development of separating hydrogen isotopes, including elution chromatography, hydrogen-displacement chromatography, self-displacement chromatography and frontal chromatography were discussed in detail. The prospect of hydrogen isotope separation by gas chromatography was presented. (authors)

  10. Isotope separation process

    International Nuclear Information System (INIS)

    Wexler, Sol; Young, C.E.

    1976-01-01

    Description is given of method for separating a specific isotope from a mixture of isotopes of an actinide element present as MF 6 , wherein M is the actinide element. It comprises: preparing a feed gas mixture of MF 6 in a propellant gas; passing the feed gas mixture under pressure through an expansion nozzle while heating the mixture to about 600 0 C; releasing the heated gas mixture from the nozzle into an exhaust chamber having a reduced pressure, whereby a gas jet of MF 6 molecules, MF 6 molecular clusters and propellant gas molecules is formed, the MF 6 molecules having a translational energy of about 3 eV; converting the MF 6 molecules to MF 6 ions by passing the jet through a cross jet of electron donor atoms so that an electron transfer takes place between the MF 6 - molecules and the electron donor atoms whereby the jet is now quasi-neutral, containing negative MF 6 - ions and positive donor ions; passing the quasi-neutral jet through a radiofrequency mass filter tuned to separate the MF 6 ions containing the specific isotope from the MF 6 - ions of the other isotopes and neutralizing and collecting the MF 6 molecules of the specific isotope [fr

  11. An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation

    International Nuclear Information System (INIS)

    Belaissaoui, Bouchra; Cabot, Gilles; Cabot, Marie-Sophie; Willson, David; Favre, Eric

    2012-01-01

    Post-combustion Carbon Capture and Storage (CCS) is currently intensively investigated as a key issue for the mitigation of greenhouse gases emissions. A very large number of studies is dedicated to coal power plants. In this paper, the possibility to achieve carbon capture on a gas turbine, based on a combination of flue gas recycle and membrane separation is reported. Membrane processes are effectively known to offer attractive performances in terms of energy efficiency, as soon as concentrated and/or pressure mixtures have to be treated. Two different flow schemes have been simulated and compared: flue gas recycle with air combustion and flue gas recycle with an oxygen enriched feed mixture. The energy requirement of the different processes, expressed in GJ (thermal basis) per ton of recovered CO 2 , and the size of the membrane capture process (expressed in m 2 of membrane area) have been systematically estimated for different membrane separation performances. It is shown that an overall energy requirement down to 2.6 GJ per ton can possibly be achieved when optimal operating conditions, based on oxygen enriched air (OEA) combustion together with a highly selective membrane (CO 2 /N 2 selectivity of 200) are combined. Additional possibilities in order to minimise the energy penalty of the process are discussed. -- Highlights: ► A carbon capture process for gas turbine has been investigated for the first time, with membrane separation unit. ► Air combustion systematically induces CO 2 capture specific energy requirement far above alternative capture processes. ► Remarkably, a very low energy requirement can be achieved (down to 2.6 GJ/ton) with Oxygen Enriched Air combustion. ► Target membrane selectivities and optimal oxygen content for combustion have been identified.

  12. Qualification of a novel deepwater gas / liquid separator

    Energy Technology Data Exchange (ETDEWEB)

    Abrand, Stephanie

    2010-07-01

    The implementation of subsea boosting and processing systems is becoming a common development scheme for the development of deep and ultra-deep water fields. Those subsea processing systems shall address the mechanical and functional constraints that are imposed by the deepwater installation and operation along with the obvious reliability requirements. Saipem has developed a deepwater gas separation and liquid boosting system that encompasses a good flexibility in handling a wide range of steady and unsteady multiphase input streams and a relatively simple mechanical arrangement. The system is composed of an array of vertical pipes that contributes in providing the required separation and liquid hold up volumes. The reduced diameter and wall thickness of the vertical pipes, as compared with the equivalent single separation vessel, is particularly suited in deep and ultra-deep water applications and/or high pressure services. Furthermore, the system relies on the gravity separation whose efficiency is ensured by its ability to accommodate large variety of input flowrate and un-steady regimes. In the continuous effort of providing reliable and proven process solutions to the market, Saipem has undertaken a qualification program focused to characterise and demonstrate the system versatility and separation performances, that will involve model testing in multiphase conditions. (Author)

  13. Off-gas processing method in reprocessing plant

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1990-01-01

    Off-gases containing a radioactive Kr gas generated in a nuclear fuel reprocessing plant are at first sent to a Kr gas separator. Then, the radioactive Kr gas extracted there is introduced to a Kr gas fixing device. A pretreatment and a post-treatment are applied by using a non-radioactive clean inert gas except for the Kr gas as a purge gas. If the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device after applying the post-treatment, the off gases are returned to the Kr gas separator. Accordingly, in a case where the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device, it is not necessary to apply the fixing treatment to all of the off gases. In view of the above, increase of the amount of processing gases can be suppressed and the radioactive Kr gas can be fixed efficiently and economically. (I.N.)

  14. Phosphazene membranes for gas separations

    Science.gov (United States)

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  15. A review of recent advances in molecular simulation of graphene-derived membranes for gas separation

    Science.gov (United States)

    Fatemi, Seyyed Mahmood; Abbasi, Zeynab; Rajabzadeh, Halimeh; Hashemizadeh, Seyyed Ali; Deldar, Amir Noori

    2017-07-01

    To obtain an ideal membrane for gas separation the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have well-defined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. These attractive properties of graphene-derived membranes introduce them as appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions. The current effort has focused on two issues, including the review of the most newly progression on drilling holes in single graphene membranes for making ultrathin membranes for gas separation, and studying functionalized nanoporous sheet and graphene-derived membranes, including doped graphene, graphene oxide, fluorographene, and reduced graphene oxide from theoretical perspectives for making functional coatings for nano ultrafiltration for gas separation. We investigated the basic mechanism of separation by membranes derived from graphene and relevant possible applications. Functionalized nanoporous membranes as novel approach are characterized by low energy cost in realizing high throughput molecular-sieving separation.

  16. Separation of silicon carbide-coated fertile and fissile particles by gas classification

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1976-07-01

    The separation of 235 U and 233 U in the reprocessing of HTGR fuels is a key feature of the feed-breed fuel cycle concept. This is attained in the Fort St. Vrain (FSV) reactor by coating the fissile (Th- 235 U) particles and the fertile (Th- 233 U) particles separately with silicon carbide (SiC) layers to contain the fission products and to protect the kernels from burning in the head-end reprocessing steps. Pneumatic (gas) classification based on size and density differences is the reference process for separating the SiC-coated particles into fissile and fertile streams for subsequent handling. Terminal velocities have been calculated for the +- 2 sigma ranges of particle sizes and densities for ''Fissile B''--''Fertile A'' particles used in the FSV reactor. Because of overlapping particle fractions, a continuous pneumatic separator appears infeasible; however, a batch separation process can be envisioned. Changing the gas from air to CO 2 and/or the temperature to 300 0 C results in less than 10 percent change in calculated terminal velocities. Recently reported work in gas classification is discussed in light of the theoretical calculations. The pneumatic separation of fissile and fertile particles needs more study, specifically with regard to (1) measuring the recoveries and separation efficiencies of actual fissile and fertile fractions in the tests of the pneumatic classifiers; and (2) improving the contactor design or flowsheet to avoid apparent flow separation or flooding problems at the feed point when using the feed rates required for the pilot plant

  17. Radioactive gas processing device

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki; Okazaki, Akira; Kumagaya, Koji.

    1982-01-01

    Purpose: To simplify the structure of a gas processing system which has hitherto been much complicated by the recyclic use of molecular sieve regeneration gas, by enabling to release the regeneration gas to outside in a once-through manner. Constitution: The system comprises a cooler for receiving and cooling gases to be processed containing radioactive rare gases, moisture-removing pipelines each connected in parallel to the exit of the cooler and having switching valves and a moisture removing column disposed between the valves and a charcoal absorber in communication with the moisture removing pipelines. Pipelines for flowing regeneration heating gases are separately connected to the moisture removing columns, and molecular sieve is charged in the moisture removing column by the amount depending on the types of the radioactive rare gases. (Aizawa, K.)

  18. Effect of geometric parameters of liquid-gas separator units on phase separation performance

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Songping; Chen, Xueqing; Chen, Ying [Guangdong University of Technology, Seoul (China); Yang, Zhen [Tsinghua University, Beijing (China)

    2015-07-15

    Five liquid-gas separator units were designed and constructed based on a new concept of a validated high-performance condenser. Each separator unit consists of two united T-junctions and an apertured baffle. The separator units have different header diameters or different baffles with different diameters of the liquid-gas separation hole. The phase separation characteristics of the units were investigated at inlet air superficial velocities from 1.0m/s to 33.0m/s and water superficial velocities from 0.0015 m/s to 0..50 m/s. The experimental results showed that the liquid height, liquid flow rate through the separation hole, and liquid separation efficiency increased with increased header diameter and decreased diameter of the separation hole. The geometric structures of the separator units affected the phase separation characteristics by influencing the liquid height in the header and the liquid flow rate through the separation hole.

  19. Numerical optimization for separation power of gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi; Liu Bing

    2012-01-01

    In order to obtain higher separation power of the gas centrifuge, the code was developed to solve the flow-field of the counter-current to acquire the separation power, which was integrated with the iSight software, so a numerical optimization model for separation power was presented, in which the driver conditions and the geometry parameters of the waste baffle were optimized to get the maximum separation power using the sequential quadratic programming arithmetic, and the 12% higher results was acquired, which shows the feasibility of this method. The results also note that the separation power of gas centrifuge is sensitive to the driver conditions and the structure parameters of the waste baffle, so it is necessary to perform the optimization calculation for the certain gas centrifuge model. (authors)

  20. Hydraulic and separation characteristics of an industrial gas centrifuge calculated with neural networks

    Science.gov (United States)

    Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey

    2018-03-01

    Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.

  1. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    Czech Academy of Sciences Publication Activity Database

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Zbyněk; Bálint, B.; Herbel, Z.; Kovács, K. L.; Wessling, M.

    2006-01-01

    Roč. 31, č. 11 (2006), s. 1490-1495 ISSN 0360-3199 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : integrated system * gas separation * polymer membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.612, year: 2006

  2. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  3. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  4. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  5. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1979-01-01

    A method is described for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption after which more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  6. A Sensitive Method Approach for Chromatographic Analysis of Gas Streams in Separation Processes Based on Columns Packed with an Adsorbent Material

    Directory of Open Access Journals (Sweden)

    I. A. A. C. Esteves

    2016-01-01

    Full Text Available A sensitive method was developed and experimentally validated for the in-line analysis and quantification of gaseous feed and product streams of separation processes under research and development based on column chromatography. The analysis uses a specific mass spectrometry method coupled to engineering processes, such as Pressure Swing Adsorption (PSA and Simulated Moving Bed (SMB, which are examples of popular continuous separation technologies that can be used in applications such as natural gas and biogas purifications or carbon dioxide sequestration. These processes employ column adsorption equilibria on adsorbent materials, thus requiring real-time gas stream composition quantification. For this assay, an internal standard is assumed and a single-point calibration is used in a simple mixture-specific algorithm. The accuracy of the method was found to be between 0.01% and 0.25% (-mol for mixtures of CO2, CH4, and N2, tested as case-studies. This makes the method feasible for streams with quality control levels that can be used as a standard monitoring and analyzing procedure.

  7. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    Science.gov (United States)

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning

  8. Method of separating radioactive krypton gas

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1975-01-01

    Object: To effectively and safely separate and recover Kr-85, which requires a long storage period for attenuating radioactivity, from a mixture gas consisting of Kr-85 and Xe by a liquefaction distillation method. Structure: A mixture gas consisting of Kr and Xe is subjected to heat exchange in a cooler with Freon gas from a plurality of distillation towers for its temperature reduction from normal temperature to a lower temperature, and then it is supplied to a distillation tower. The distillation tower is held at a pressure above 15 ata, preferably around 20 ata, and a condenser provided at the top of the distillation tower is furnished with Freon as cooling medium. The rare mixture gas is distilled by liquefaction within a distillation tower, and Kr-85 is obtained from a top duct while obtaining Xe from a bottom duct. Xe after separation by liquefaction is returned to a rare mixture gas supply inlet of a liquefaction distillation means for repeated refinement in the distillation tower. (Kamimura, M.)

  9. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized

    International Nuclear Information System (INIS)

    Gao Ting; Lin Wensheng; Gu Anzhong

    2011-01-01

    Research highlights: → We propose two new light hydrocarbon separation processes utilizing LNG cold energy. → Both processes produce liquefied ethane and LPG with high ethane recovery rate. → CH 4 -riched gas from the high pressure process is compressed to final pressure. → Re-liquefied CH 4 -riched gas from the low pressure one is pumped to final pressure. → Both processes have good performance; the low pressure one is economically better. -- Abstract: Liquefied natural gas (LNG) often consists of some kinds of light hydrocarbons other than methane, such as ethane, propane and butane, which are of high additional value. By efficiently utilization of LNG cryogenic energy, these light hydrocarbons (C 2 + ) can be separated from LNG with low power consumption and LNG is gasified meanwhile. Two novel light hydrocarbon separation processes are proposed in this paper. The first process uses a demethanizer working at higher pressure (about 4.5 MPa). The methane-riched natural gas from the demethanizer can be compressed to pipeline pressure with low power consumption. The other one uses a demethanizer working at lower pressure (about 2.4 MPa). By cascade utilization of LNG cryogenic energy, the methane-riched natural gas from the demethanizer is entirely re-liquefied. Then the liquid product is pressurized to pipeline pressure by pumps instead of compressors, reducing the power consumption greatly. By both of the two processes, liquefied ethane and LPG (liquefied petroleum gas, i.e. C 3 + ) at atmosphere pressure can be obtained directly, and high ethane recovery rate can be gained. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the light hydrocarbon separation plants are studied, and the economics are compared for these two processes. The results show that recovering light hydrocarbons from LNG can gain great profits by both of the two processes, and from the view of economics, the

  10. Gas ultracentrifuge separative parameters modeling using hybrid neural networks

    International Nuclear Information System (INIS)

    Crus, Maria Ursulina de Lima

    2005-01-01

    A hybrid neural network is developed for the calculation of the separative performance of an ultracentrifuge. A feed forward neural network is trained to estimate the internal flow parameters of a gas ultracentrifuge, and then these parameters are applied in the diffusion equation. For this study, a 573 experimental data set is used to establish the relation between the separative performance and the controlled variables. The process control variables considered are: the feed flow rate F, the cut θ and the product pressure Pp. The mechanical arrangements consider the radial waste scoop dimension, the rotating baffle size D s and the axial feed location Z E . The methodology was validated through the comparison of the calculated separative performance with experimental values. This methodology may be applied to other processes, just by adapting the phenomenological procedures. (author)

  11. Synthesis of Zeolite Materials for Noble Gas Separation

    International Nuclear Information System (INIS)

    Achey, R.; Rivera, O.; Wellons, M.; Hunter, D.

    2017-01-01

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  12. Synthesis of Zeolite Materials for Noble Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  13. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  14. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2005-12-22

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

  15. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2005-12-15

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is now working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

  16. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    Science.gov (United States)

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  17. Cryogenic separation of krypton and xenon from dissolver off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Heidendael, M.; Laser, M.; Mastera, S.; Merz, E.

    1976-03-15

    Although the release of fission product noble gas Kr-85 has not posed a health problem to date, a process is being developed for the removal and storage of fission product noble gases from dissolution process stream of fuel reprocessing. The separation process described for noble gas in air being proved in semi-technical scale includes cryogenic distillation and consists of the following steps: (1) removal of 129 +131iodine on silver-coated silica gel; (2) deposition of particulate materials by HEPA-filters; (3) elimination of O2 and NOx by catalytic conversion with H2/ to N2 and H2O; (4) drying of the gas stream with molecular sieve; (5) deposition of xenon in solid form at about 80 K, while the remaining gas components are liquified; (6) enrichment of Kr by low temperature distillation of liquid-gas mixture; (7) withdrawal of the highly enriched Kr-fraction at the bottom of the still to be bottled in pressurized steel cylinders for final disposal; and (8) purification of Kr-85 contaminated Xe for further industrial reuse by batch distillation.

  18. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  19. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  20. Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams

    International Nuclear Information System (INIS)

    Hirsch, P.M.; Higuchi, K.Y.; Abraham, L.

    1982-07-01

    General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO 2 /krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO 2 from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO 2 concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO 2 /krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO 2 was determined for gas mixtures containing 250 ppM to 2.2% CO 2 and 170 to 750 ppM krypton in either N 2 or air. Gas streams rich in CO 2 were diluted with N 2 to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO 2 concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products

  1. Process and device for the adsorptive separation of krypton from a krypton/nitrogen gas mixture

    International Nuclear Information System (INIS)

    Ringel, H.; Messler, M.

    1985-01-01

    The gas mixture flows through an adsorption column, which is filled with a means of adsorbing Krypton and nitrogen. The adsorption column is desorbed after adsorption of the gas components by a gaseous flushing material, which flows through the adsorption column in the same direction as the gas mixture. In order to achieve a high degree of separation, the adsorption material is loaded with nitrogen and Krypton from the gas inlet, where Krypton is only absorbed over part of the length of the whole column by the adsorption material. The part of the length is such that on desorption of the adsorption column with the flushing material at first only nitrogen and later only Krypton is obtained at the outlet of the adsorption column. (Waste gas system of a reprocession plant). (orig./HP) [de

  2. PROJECT OF POLLUTANTS SEPARATOR FROM THE GAS STATION

    Directory of Open Access Journals (Sweden)

    Barbara Kościelnik

    2016-06-01

    Full Text Available Oily wastewater are dangerous for the environment, because they can contaminate ground water or surface, which can lead to contamination of the biosystem or poisoning of humans and animals. The treatment plant of this kind may include petroleum products or substances derived from natural gas, crude oil, asphalt or natural wax. Of course, in the wastewater oily you cannot forget about vegetable oils used in catering. Waste water of this type to be cleaned are subjected to the following processes: flotation, sedimentation, filtration, flowing out, thermal methods, biodegradation, adsorption or chemical and thermal methods to destabilize the emulsion. The aim of this study was to design a separator pollution from the gas station. We present the investment and operating costs. In designing the system chosen individual process units based on the requirements of the quality of wastewater specified in PN - EU 858.

  3. Flue gas carbon capture using hollow fiber membrane diffuser-separator

    Science.gov (United States)

    Ariono, D.; Chandranegara, A. S.; Widodo, S.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, CO2 removal from flue gas using membrane diffuser-separator was investigated. Hollow fiber polypropylene membrane was used as the diffuser while pure water was used as the absorbent. Separation performance of the membrane diffuser-separator as a function of CO2 concentration (6-28%-vol.) and flow rate (gas: 0.8-1.55 L.min-1 and liquid: 0.2-0.7 L.min-1) was investigated and optimized. It was found that CO2 removal was significantly affected by CO2 concentration in the feed gas. On the other hand, CO2 flux was more influenced by flow rates of liquid and gas rather than concentration. The optimized CO2 removal (64%) and flux (1 x 10-4 mol.m-2.s-1) were obtained at the highest gas flow rate (1.55 L.min-1), the lowest liquid flow rate (0.2 L.min-1), and 6.2%-vol. of CO2 concentration. Outlet gas of the membrane diffuser system tends to carry some water vapor, which is affected by gas and liquid flow rate. Meanwhile, in the steady-state operation of the separator, the gas bubbles generated by the membrane diffuser take a long time to be completely degassed from the liquid phase, thus a portion of gas stream was exiting separator through liquid outlet.

  4. On-line optimal control improves gas processing

    International Nuclear Information System (INIS)

    Berkowitz, P.N.; Papadopoulos, M.N.

    1992-01-01

    This paper reports that the authors' companies jointly funded the first phase of a gas processing liquids optimization project that has the specific purposes to: Improve the return of processing natural gas liquids, Develop sets of control algorithms, Make available a low-cost solution suitable for small to medium-sized gas processing plants, Test and demonstrate the feasibility of line control. The ARCO Willard CO 2 gas recovery processing plant was chosen as the initial test site to demonstrate the application of multivariable on-line optimal control. One objective of this project is to support an R ampersand D effort to provide a standardized solution to the various types of gas processing plants in the U.S. Processes involved in these gas plants include cryogenic separations, demethanization, lean oil absorption, fractionation and gas treating. Next, the proposed solutions had to be simple yet comprehensive enough to allow an operator to maintain product specifications while operating over a wide range of gas input flow and composition. This had to be a supervisors system that remained on-line more than 95% of the time, and achieved reduced plant operating variability and improved variable cost control. It took more than a year to study various gas processes and to develop a control approach before a real application was finally exercised. An initial process for C 2 and CO 2 recoveries was chosen

  5. Optimization of the gas chromatographic separations

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1973-01-01

    A review and a critical study on the optimization of the gas chromatographic separations are made. After dealing with the fundamental gas chromatographic equations, some methods of expressing column performances are discussed: performance indices, performance parameters, resolution and effective plate number per unit time. This is completed with a comparative study on performances of various types of columns. Moreover, optimization methods for operating chromatographic conditions are extensively dealt with: as resolution optimization, separation time, and normalization techniques for the time of analysis in order to achieve the maximum resolution at constant time. Finally, some others non operating parameters such as: selectivity of stationary phases, column preparation and optimization methods by means of computers are studied. (Author) 68 refs

  6. Simplified simulation of multicomponent isotope separation by gas centrifuge

    International Nuclear Information System (INIS)

    Guo Zhixiong; Ying Chuntong

    1995-01-01

    The expressions of diffusion equation for multicomponent isotope separation by gas centrifuge are derived by utilizing the simplified diffusion transport vector. A method of radial averaging which was restricted to a binary mixture is extended to multicomponent isotope mixtures by using an iterative scheme. A numerical analysis of tetradic UF 6 or SF 6 gas isotope separation by centrifuge is discussed when a special model of velocity distribution is given. The dependence of mutual separation factor for the components on their molecular weights' difference is obtained. Some aspects of the given model of gas fluid are also discussed

  7. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  8. Process for separation of inert fission gases for waste gas of a reprocessing plant for nuclear fuel

    International Nuclear Information System (INIS)

    Schnez, H.

    1980-01-01

    The inert fission gases Kr and Xe released in the resolver and other waste gases are taken to an acid regeneration plant. Part of the inert fission gases is separated by compression, cooling and filtering and deposited. The other part flows back to the resolver as flushing gas so that a flushing gas circuit is formed, which prevents explosive gas mixtures occurring. (DG) [de

  9. Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method

    International Nuclear Information System (INIS)

    Mehrpooya, Mehdi; Zonouz, Masood Jalali

    2017-01-01

    Highlights: • Exergoeconomic analyses is done on an integrated cryogenic air separation unit. • Liquefied natural gas cold energy is used in the process. • The main multi stream heat exchanger is the worst device based on the results. - Abstract: Exergoeconomic and sensitivity analyses are performed on the integrated cryogenic air separation unit, oxy-combustion Carbon dioxide power cycle and liquefied natural gas regasification process. Exergy destruction, exergy efficiency, cost rate of exergy destruction, cost rate of capital investment and operating and maintenance, exergoeconomic factor and relative cost difference have been calculated for the major components of the process. The exergy efficiency of the process is around 67.1% and after mixers, tees, tank and expansion valves the multi-stream heat exchanger H-3 have the best exergy efficiency among all process components. Total exergy destruction rate of the process is 1.93 × 10"7 kW. Results of exergoeconomic analysis demonstrates that maximum exergy destruction and capital investment operating and maintenance cost rate are related to the multi-stream heat exchanger H-1 and pump P-1 with the values of 335,144 ($/h) and 12,838 ($/h), respectively. In the sensitivity analysis section the effects of the varying economic parameters, such as interest rate and plant life time are investigated on the trend of the capital investment operating and maintenance cost rate of the major components of the process and in another cases the effect of the gas turbine isentropic efficiency on the exergy and exergoeconomic parameters are studied.

  10. Experimental substantiation of combined methods for designing processes for the commercial preparation of gas at gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G R; Karlinskii, E D; Posypkina, T V

    1977-04-01

    An analysis is made of the possibility of using two analytical methods for studying vapor--liquid equilibrium of hydrocarbon mixtures that are used in designing the separation of natural gas and the stabilization of condensate--the Chao and Sider method, which uses computations by equilibrium constants. A combined computational method is proposed for describing a unified process of natural gas separation and condensate stabilization. The method of preparing the original data for the computation of the separation and stabilization processes can be significantly simplified. 10 references, 1 table.

  11. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  12. Metal oxide membranes for gas separation

    Science.gov (United States)

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  13. Method of gas separation

    International Nuclear Information System (INIS)

    Weltner, W.W.

    1980-01-01

    In order to separate a mixture of gases having widely different partial pressures at a given temperature, a chamber is employed. A batch of gas mixture is passed into the chamber. The walls of the chamber are cooled by a refrigerant which passes through coils in heat exchange relationship with the walls. By this means the temperature of the chamber is cooled to a temperature (and held at such temperature until equilibrium is reached) at which all the components of the gas mixture have changed state, at least one being solidified and at least one liquefied. The liquid constituents are removed first. Then the chamber is warmed to facilitate removal of the previously solidified constituents. In an example, the gas mixture comprises nitrogen, argon, krypton and xenon, and the walls of the chamber are cooled by liquid nitrogen, the argon and nitrogen being liquefied and the xenon and krypton being solidified. (author)

  14. Process for isotope separation

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.; Gebauhr, W.

    1980-01-01

    Isotope separation in UF 6 gas takes place on the principle of selective excitation by laser irradiation and separation by chemical conversion with a partner in a reaction. Atomic H, N or O or the CH 3 or CHO radicals are suitable partners in the reaction. The recombination takes place by catalytic acceleration on leaving the reaction area. (DG) [de

  15. Membrane Separation of Gas Mixtures under the Influence of Resonance Radiation.

    Czech Academy of Sciences Publication Activity Database

    Levdansky, Valerij Vladimirovič; Izák, Pavel

    2017-01-01

    Roč. 173, FEB (2017), s. 93-98 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S Institutional support: RVO:67985858 Keywords : membranes * gas mixture * separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 3.359, year: 2016

  16. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Kapantaidakis, G.; Koops, G.H.

    2002-01-01

    In this work, the preparation of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends, for three different compositions (i.e. PES/PI: 80/20, 50/50 and 20/80 wt.%), is reported. The dry/wet spinning process has been applied to prepare

  17. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  18. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  19. Lasers for isotope separation processes and their properties

    International Nuclear Information System (INIS)

    George, E.V.; Krupke, W.F.

    1976-08-01

    The laser system requirements for isotope enrichment are presented in the context of an atomic uranium vapor process. Coherently pumped dye lasers using as the pump laser either the frequency doubled Nd:YAG or copper vapor are seen to be quite promising for meeting the near term requirements of a laser isotope separation (LIS) process. The utility of electrical discharge excitation of the rare gas halogens in an LIS context is discussed

  20. The separation nozzle process for uranium isotope enrichment

    International Nuclear Information System (INIS)

    Becker, E.W.

    1977-01-01

    In the separation nozzle process, uranium isotope separation is brought about by the mass dependence of the centrifugal forces in a curved flow of a UF 6 /H 2 -mixture. Due to the large excess in hydrogen the high ration of UF 6 flow velocity to thermal velocity required for an effective isotope separation is obtained at relatively low expansion ratios and, accordingly, with relatively low gas-dynamic losses. As the optimum Reynolds number of the curved jet is comparatively low and a high absolute pressure is essential for economic reasons, the characteristic dimensions of the nozzle systems are made as small as possible. For commercial application in the near future systems involving mechanical jet deflection were developed. However, promising results were also obtained with separation nozzle systems generating a streamline curvature by the interaction of opposed jets. Most of the development work has been done at the Nuclear Research Center of Karlsruhe. Since 1970 the German company STEAG has been involved in the commercial implementation of the process. Two industrial-scale separative stages were tested successfully. This work constitutes the basis of planning of a separation nozzle demonstration plant to be built in Brazil

  1. An isotope-enrichment unit and a process for isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process and equipment for isotope enrichment using gas-centrifuge cascades are described. The method is described as applied to the separation of uranium isotopes, using natural-abundance uranium hexafluoride as the gaseous-mixture feedstock. (U.K.)

  2. Process for generating substitute natural gas. Verfahren zur Erzeugung von Erdgasersatzgas

    Energy Technology Data Exchange (ETDEWEB)

    Messerschmidt, D

    1984-09-13

    The invention deals with a process for the production of a substitute for natural gas from coal gas or other feed gases containing hydrogen and methane. For a simpler and economically more efficient process it is suggested to separate the feed gas, purified or unpurified, by selection of the molar sieve in a PSA plant so that the sweep gas of the PSA plant can reach the quality of a substitute gas. (orig.).

  3. Development of new microporous silica membranes for gas separation

    International Nuclear Information System (INIS)

    Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Serge de Perthuis; Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Anne Julbe; Jose Sanchez

    2006-01-01

    This paper presents the synthesis and the application of molecular sieving ceramic membranes to purify hydrogen or helium from various gas mixtures. The membranes prepared in this work consist of an ultra-microporous silica-based separative layer produced via a sol-gel process. Ultra microporous silica containing boron is synthesized by the acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate in ethanol. The layer is deposited inside a tubular asymmetric alumina support with a meso-porous y alumina inner layer. The thickness of the silica layers after treatment is about 200 nm, estimated from their cross-section SEM micrographs. Ultra-microporous membranes (with pore sizes less than 0.7 nm) are thus required to get high selectivity. Such membranes enable to carry out gas separation up to 500 deg C under a transmembrane pressure lower than 8 bars. He and H 2 permeance values close to 10 -7 mol.m -2 s -1 Pa -1 are obtained, associated with ideal selectivities α(He/CO 2 ) and α(H 2 /CO 2 ) between 10 and 20 at 300 deg C. (authors)

  4. Comparison of gas membrane separation cascades using conventional separation cell and two-unit separation cells

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    The adoption of two-unit separation cells in radioactive rare gas membrane separation equipment enhances the separation factor, but increases the required membrane area and compressive power. An analytical economic evaluation was undertaken to compare the conventional separation cell with the two-unit separation cells, adopting as parameters the number of cascade stages, the membrane area and the operating power requirements. This paper describes the models used for evaluating the separation performance and the economics of cascade embodying these different concepts of separation cell taken up for study, and the results obtained for the individual concepts are mutually compared. It proved that, in respect of the number required of cascade stages, of operating power requirements and of the annual expenditure, better performance could always be expected of the two-unit separation cells as compared with the conventional separation cell, at least in the range of parameters adopted in this study. As regards the minimum membrane area, the conventional separation cell and the series-type separation cell yielded almost the same values, with the parallel-type separation cell falling somewhat behind. (auth.)

  5. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  6. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  7. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  8. Krypton separation from waste gas of a reprocessing plant by low temperature rectification

    International Nuclear Information System (INIS)

    1987-01-01

    6 lectures at this seminar describe and evaluate the results of the research and development work on low temperature krypton separation from the waste gas of the reprocessing of nuclear fuels. They are used for making decisions for the process to be used in the future on a large scale at the Wackersdorf reprocessing plant. 2 further lectures deal with alternatives to this process, which were also developed: the freon washing and low temperature adsorption of krypton. All the lectures were included separately in the INIS and ENERGY databases. (RB) [de

  9. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  10. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION; A

    International Nuclear Information System (INIS)

    Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

    2001-01-01

    Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H(sub 2) removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H(sub 2)-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H(sub 2) to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO(sub 2)-rich gases, a Cu-CeO(sub 2) catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H(sub 2) permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window

  11. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-01-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation

  12. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The objective of this study was to investigate the influence of dope extrusion rates on morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes. Asymmetric polysulfone hollow fiber membranes for gas separation were prepared from a solution consisting of 26.0 wt. % of polysulfone, 30.4 wt. % of N, N-dimethylacetamide, 30.4 wt. % of tetrahydrofuran and 13.2 wt. % ethanol. The dry/wet phase separation process was applied to a dry/wet spinning process. Fibers were spun at various dope extrusion rates (DER ranging from 1.5 - 3.0 cm3/min and hence at different levels of shear. The results suggest that as the dope extrusion rate is increased, the selectivity will increase until a critical level of shear is reached, beyond which the membrane performance deteriorates. Pressure-normalized-fluxes and selectivities were evaluated by using pure oxygen and nitrogen as test gases.

  13. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  14. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  15. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  16. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  17. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  18. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Nasir, H.; Ahsan, M. [National Univ. of Science and Technology, Islamabad (Pakistan). Dept. of Chemical Engineering

    2014-06-15

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  19. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    International Nuclear Information System (INIS)

    Hussain, A.; Nasir, H.; Ahsan, M.

    2014-01-01

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  20. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha; Koros, William J.

    2011-01-01

    and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air

  1. Treatment of gas from an in situ conversion process

    Science.gov (United States)

    Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  2. Process for separating radioactive gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1976-01-01

    Object: To efficiently and safely separate and recover raw gases such as krypton which requires radioactive attenuation by a long term storage. Structure: A mixture of krypton and xenon is separated by liquefaction from raw gases at a first distillation column, using latent heat of liquid nitrogen. The krypton and xenon mixture separated by liquefaction at the first distillation column is separated into krypton and xenon, by controlling operation pressure of a second distillation column at about 3 - 5 atm., using sensible heat of low temperature nitrogen gas discharged from a top of the first distillation column and a condenser. (Aizawa, K.)

  3. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  4. Gas Separation in the Ranque-Hilsch Vortex tube

    DEFF Research Database (Denmark)

    Linderstrøm-Lang, C. U.

    1964-01-01

    The gas separation taking place in the vortex tube is studied in detail. Both enrichment and depletion of a given component in any one of the two resultant streams may take place; the sign of this separation effect depends on certain parameters, notably the hot to cold flow ratio. A comparison...

  5. New technological developments in gas processing

    International Nuclear Information System (INIS)

    Draper, R.C.

    1996-01-01

    The changes that the natural gas industry has undergone over the last few years was discussed. Low natural gas prices forced companies to react to their high reserves replacements costs. They were forced to downsize and undergo major restructuring because they were losing money due to high operating costs; the future for natural gas prices looked pessimistic. The changes have led to a new kind of business practice, namely 'partnering with third party processor', mid-stream companies known as aggregators, to build and operate facilities as part of a move towards cost effective improvements for gas producers. Besides reducing capital and operating costs, the producer under this arrangements can dedicate his capital to finding new gas which is the basis of growth. Recent technological changes in the gas processing industry were also touched upon. These included enhanced technologies such as increased liquid hydrocarbon recovery, segregation of C3+ and C5+, installation of gas separation membrane systems, small sulphur plants, acid gas injection and selective or mixed solvents. Details of some of these technologies were described. 2 refs., 2 figs

  6. Detection of outliers by neural network on the gas centrifuge experimental data of isotopic separation process

    International Nuclear Information System (INIS)

    Andrade, Monica de Carvalho Vasconcelos

    2004-01-01

    This work presents and discusses the neural network technique aiming at the detection of outliers on a set of gas centrifuge isotope separation experimental data. In order to evaluate the application of this new technique, the result obtained of the detection is compared to the result of the statistical analysis combined with the cluster analysis. This method for the detection of outliers presents a considerable potential in the field of data analysis and it is at the same time easier and faster to use and requests very less knowledge of the physics involved in the process. This work established a procedure for detecting experiments which are suspect to contain gross errors inside a data set where the usual techniques for identification of these errors cannot be applied or its use/demands an excessively long work. (author)

  7. URANIUM SEPARATION PROCESS

    Science.gov (United States)

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  8. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  9. Pump Propels Liquid And Gas Separately

    Science.gov (United States)

    Harvey, Andrew; Demler, Roger

    1993-01-01

    Design for pump that handles mixtures of liquid and gas efficiently. Containing only one rotor, pump is combination of centrifuge, pitot pump, and blower. Applications include turbomachinery in powerplants and superchargers in automobile engines. Efficiencies lower than those achieved in separate components. Nevertheless, design is practical and results in low consumption of power.

  10. Method and apparatus for isotope separation from a gas stream

    International Nuclear Information System (INIS)

    Szoke, A.

    1978-01-01

    A method and apparatus are described for isotope separation and in particular for separating the desired isotope from the gas in which it is contained by irradiating it with a laser. The laser selectively provides kinetic energy to the isotope through inelastic events, monomolecular or bimolecular, in order to cause it to segregate within or fly out of the gas stream in which it is contained

  11. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Bo; Ho, W S Winston; Figueroa, Jose D; Dutta, Prabir K

    2015-06-23

    Separation and sequestration of CO2 emitted from fossil energy fueled electric generating units and industrial facilities will help in reducing anthropogenic CO2, thereby mitigating its adverse climate change effects. Membrane-based gas separation has the potential to meet the technical challenges of CO2 separation if high selectivity and permeance with low costs for large-scale manufacture are realized. Inorganic zeolite membranes in principle can have selectivity and permeance considerably higher than polymers. This paper presents a strategy for zeolite growth within the pores of a polymer support, with crystallization time of an hour. With a thin coating of 200-300 nm polydimethylsiloxane (PDMS) on the zeolite-polymer composite, transport data for CO2/N2 separation indicate separation factors of 35-45, with CO2 permeance between 1600 and 2200 GPU (1 GPU = 3.35 × 10(-10) mol/(m(2) s Pa)) using dry synthetic mixtures of CO2 and N2 at 25 °C. The synthesis process results in membranes that are highly reproducible toward transport measurements and exhibit long-term stability (3 days). Most importantly, these membranes because of the zeolite growth within the polymer support, as contrasted to conventional zeolite growth on top of a support, are mechanically flexible.

  12. Radioactive rare gas separation using a separation cell with two kinds of membrane differing in gas permeability tendency

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Ozaki, Osamu; Sato, Hajime; Kimura, Shoji; Miyauchi, Terukatsu.

    1977-01-01

    A separation cell embodying two kinds of membrane-porous and nonporous, i.e. differing in gas permeability - has a separation factor higher than possible with a conventional separation cell with a single kind of membrane. The performance of such separation cells and of cascades constituted thereof are analyzed theoretically and measured experimentally for different conditions of operation, to determine the applicability of the concept to the separation of rare gases from gaseous waste out of nuclear plants. Theoretical considerations indicate that, in a cascade composed of symmetric separation cells, the separation performance can be improved by recycling part of the effluent from a cell back through the same cell (recycling cascade). It is shown that its performance is better than with the arrangement of diverting another effluent several stages upstream. With the recycling cascade, the symmetric separation recycling rate is determined by the depletion separation and enrichment separation factors relevant to the respective membranes. The separation performance of a 9-stage recycling cascade composed of separation cells with silicone rubber tubular membranes and cellulose acetate tubular membranes is derived for a case of Kr separation from N 2 -Kr mixture. The experimental data coincide well with the analytical results. From both the experimental and the analytical results, it is found that the attainable separation coefficient per stage of the cascade comes to average approximately 0.97. (auth.)

  13. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  14. Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen

    A novel gas separation technique based on gas hydrate formation (solid precipitation) is investigated by means of thermodynamic modeling and experimental investigations. This process has previously been proposed for application in post-combustion carbon dioxide capture from power station flue gases...... formation may be performed at pressures of approximately 20 MPa and temperatures below 280 K. Thermodynamic promoters are needed, to reduce the pressure requirement of the process, thereby making it competitive to existing capture technologies. A literature study is presented focusing mainly...... on thermodynamic gas hydrate promotion by hydrate formers stabilising the classical gas clathrate hydrate structures (sI, sII and sH) at low to moderate pressures. Much literature is available on this subject. Both experimental and theoretical studies presented in the literature have pointed out cyclopentane...

  15. Basic research on nuclear track microfilters for gas separation

    CERN Document Server

    Sudowe, R; Ensinger, W; Vetter, J; Penzhorn, R D; Brandt, R

    1999-01-01

    Basic research on nuclear track microfilters, NTMF, made from the polyimide foil UPILEX, has been carried out to investigate the possible use of NTMF for gas separation in an environment containing large amounts of tritium. NTMF with a pore diameter as low as 0.1 mu m have been etched and metal replicas of the pores have been produced to determine the pore shape. An experimental setup for determining the separation factor of a NTMF for a given gas mixture has been constructed, and first experiments have been carried out.

  16. Ceramic membranes for gas processing in coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Lin, C.X.C.; Ding, L.; Thambimuthu, K.; da Costa, J.C.D. [University of Queensland, Brisbane, Qld. (Australia)

    2010-07-01

    Pre-combustion options via coal gasification, especially integrated gasification combined cycle (IGCC) processes, are attracting the attention of governments, industry and the research community as an attractive alternative to conventional power generation. It is possible to build an IGCC plant with CCS with conventional technologies however; these processes are energy intensive and likely to reduce power plant efficiencies. Novel ceramic membrane technologies, in particular molecular sieving silica (MSS) and pervoskite membranes, offer the opportunity to reduce efficiency losses by separating gases at high temperatures and pressures. MSS membranes can be made preferentially selective for H{sub 2}, enabling both enhanced production, via a water-gas shift membrane reactor, and recovery of H{sub 2} from the syngas stream at high temperatures. They also allow CO{sub 2} to be concentrated at high pressures, reducing the compression loads for transportation and enabling simple integration with CO{sub 2} storage or sequestration operations. Perovskite membranes provide a viable alternative to cryogenic distillation for air separation by delivering the tonnage of oxygen required for coal gasification at a reduced cost. In this review we examine ceramic membrane technologies for high temperature gas separation and discuss the operational, mechanical, design and process considerations necessary for their successful integration into IGCC with CCS systems.

  17. Gas recovery process

    International Nuclear Information System (INIS)

    Schmidt, W.B.; Lewis, W.W.; Edmiston, A.; Klauser, G.

    1980-01-01

    In order to decontaminate a gas stream containing radioactive krypton, a preliminary step of removing oxygen and oxides of nitrogen by catalytic reaction with hydrogen is performed. The gas stream is then passed serially through a drier, a carbon dioxide adsorber and a xenon adsorber to remove sequentially water, CO 2 and xenon therefrom. The gas exiting the xenon adsorber is passed to a krypton recovery plant wherein krypton is concentrated to a first level in a primary distillation column by contact with a reflux liquid in a packed section of the column. The liquid and vapour collecting at the bottom of the column is passed to a separator in which the liquid is separated from the vapour. The liquid is partially evaporated in a vessel to increase concentration thereof and is brought to a concentration of approximately 90 mole % or greater in a second distillation column thereby enabling efficient storage of a radioactive krypton product. (author)

  18. Terminal separation plant for collecting petroleum and by-product gas

    Energy Technology Data Exchange (ETDEWEB)

    Marinin, N S; Shcherbina, V E; Burma, A I

    1966-06-08

    A separation plant at a transportation terminal, for collecting petroleum and by-product gas, consists of 1 or 2 vessels with gas separating device, automatic control devices, demulsifier distributors, a mixer for mixing hot water with the demulsified residue and raw crude oil stream, an apparatus for supplying oil-in-water emulsion under a water cushion, and 2 separating partitions which are located at the end of the vessel. In order to fully use the volume of the vessel, one partition does not touch the bottom, while the other does not touch the top of the tank.

  19. Tuning of Preparational Factors Affecting the Morphological Structure and Gas Separation Property of Asymmetric Polysulfone Membranes

    Science.gov (United States)

    Yuenyao, C.; Ruangdit, S.; Chittrakarn, T.

    2017-09-01

    The aim of this work was to study the effect of preparational factors such as solvent type, evaporation time (ET) and non-solvent additive, on the morphological structure, physical and gas separation properties of the prepared membrane samples by tuning of these parameters. Flat sheet asymmetric polysulfone (PSF) membranes were prepared by the dry/wet phase inversion process combined with the double coagulation bath method. The alteration of the prepared membranes were analyzed through scientific techniques such as Scanning Electron Microscope (SEM) and Dynamic Mechanical Thermal Analysis (DMTA). Furthermore, gas separation performance of membrane samples was measured in term of gas permeation and ideal selectivity of CO2/CH4. Experimental results showed that the change of preparational factors affected to the gas permeation of asymmetric PSF membranes. For example, the selective layer thickness increased with increasing of ET. This lead to increase significantly of ideal selectivity of CO2/CH4. The CO2/CH4 ideal selectivity was also increased with increase of ethanol (non-solvent additive) concentration in casting solution. In summary, the tuning of preparational factors affected to morphological structure, physical and gas separation properties of PSF membranes.

  20. Isotope separation process

    International Nuclear Information System (INIS)

    Cox, D.M.; Maas, E.T.

    1982-01-01

    Processes are disclosed for the separation of isotopes of an element comprising vaporizing uranyl compounds having the formula (UO2a2)n, where a is a monovalent anion and n in an integer from 2 to 4, the compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing said element which is to be separated, and then irradiating the uranyl compound with infrared radiation which is preferentially absorbed by a molecular vibration of uranyl ions of the compound containing a predetermined isotope of that element so that excited molecules of the compound are provided which are enriched in the molecules of the compound containing that predetermined isotope, thus enabling separation of these excited molecules. The processes disclosed include separation of the excited molecules by irradiating under conditions such that the excited molecules dissociate, and also separating the excited molecules by a discrete separation step. The latter includes irradiating the excited molecules by a second infrared laser in order to convert the excited molecules into a separable product, or also by chemically converting the excited molecules, preferably by reaction with a gaseous reactant

  1. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    Science.gov (United States)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  2. Gas separation techniques with liquid Ar for production of 11C ions

    International Nuclear Information System (INIS)

    Hojo, Satoru; Honma, Toshihiro; Kanazawa, Mitsutaka; Muramatsu, Masayuki; Sakamoto, Yukio; Sugiura, Akinori; Suzuki, Naokata; Noda, Koji

    2009-01-01

    Heavy-ion cancer therapy with 12 C-beam has been carried out at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences) since 1994. One of the feasibility study in HIMAC is to use a positron emitter beam such as 11 C-beam for the cancer therapy. A nuclear reaction, 14 N (p,α) 11 C will be applied in the present study; it can be expected to obtain a considerably large number of 11 C-particles by utilizing the commonly used short-lives RI production techniques for PET (Positron Emission Tomography). The amount of 11 C gas is limited in this technique. The 11 CO 2 gas was produced from N 2 gas that is irradiated high-energy proton beam. Therefore, CO 2 gas separation from N 2 gas is very important. The gas-separation techniques with cryogenic system utilizing a liquid Ar were tested by dummy gas (N 2 + 12 CO 2 ). Details of the gas-separation techniques and measurement of CO 2 partial pressure are discussed. (author)

  3. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  4. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    Science.gov (United States)

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  5. Evaluation of enrichment by centrifugal separation: the future of the centrifugal-separation method

    International Nuclear Information System (INIS)

    Kanagawa, A.

    A gas centrifuge plant for uranium enrichment is considered from the point of view of economic competition with other methods. Characteristics of the method are presented including: energy efficiency, the cascade, the separation coefficient, the equilibrium separation process, and capability as centrifugal pump. The structure of an individual gas centrifuge separator is described including the rotating cylinder, mechanisms for gas injection and extraction, mechanisms for counter-streaming of gas, the axle holder mechanism, the gas sealing mechanism, and the driving mechanism. (U.S.)

  6. Oil/gas collector/separator for underwater oil leaks

    International Nuclear Information System (INIS)

    Henning, C.D.

    1993-01-01

    An oil/gas collector/separator for underwater oil leaks is described comprising: a cylindrical tank; a hollow float member for supporting said tank in a substantially upright position; a skirt assembly secured to said hollow float member and extending in a direction away from said float member opposite said tank; means for removing oil from said tank; and means for removing gas from said tank

  7. INS gas-filled recoil isotope separator

    International Nuclear Information System (INIS)

    Miyatake, M.; Nomura, T.; Kawakami, H.

    1986-09-01

    The characteristics and performance of a small sized gas-filled recoil isotope separator recently made at INS are described. The total efficiency and the ΔBρ/Bρ values have been measured using low velocity 16 O, 40 Ar and 68 As ions and found to be 10 and 5 %, respectively. The Z-dependence of the mean charge is discussed. (author)

  8. Opportunities in the United States' gas processing industry

    International Nuclear Information System (INIS)

    Meyer, H.S.; Leppin, D.

    1997-01-01

    To keep up with the increasing amount of natural gas that will be required by the market and with the decreasing quality of the gas at the well-head, the gas processing industry must look to new technologies to stay competitive. The Gas Research Institute (GR); is managing a research, development, design and deployment program that is projected to save the industry US dollar 230 million/year in operating and capital costs from gas processing related activities in NGL extraction and recovery, dehydration, acid gas removal/sulfur recovery, and nitrogen rejection. Three technologies are addressed here. Multivariable Control (MVC) technology for predictive process control and optimization is installed or in design at fourteen facilities treating a combined total of over 30x10 9 normal cubic meter per year (BN m 3 /y) [1.1x10 12 standard cubic feet per year (Tcf/y)]. Simple pay backs are typically under 6 months. A new acid gas removal process based on n-formyl morpholine (NFM) is being field tested that offers 40-50% savings in operating costs and 15-30% savings in capital costs relative to a commercially available physical solvent. The GRI-MemCalc TM Computer Program for Membrane Separations and the GRI-Scavenger CalcBase TM Computer Program for Scavenging Technologies are screening tools that engineers can use to determine the best practice for treating their gas. (au) 19 refs

  9. Rule of thumb for binary isotope separations in a gas centrifuge

    International Nuclear Information System (INIS)

    Berger, M.H.

    1985-12-01

    A very simple hypothetical model of the binary isotope separation process in a countercurrent Gas Centrifuge is proposed. Like the usual Cohen-Onsager separation theory it involves the internal fluid dynamics, but unlike the usual isotopic separation theory it completely obviates the usual flow integrals for Cohen's E. Thereby allowing an immediate estimate of the flow efficiency of a given design, which can and sometimes should be checked later by the usual analyses. To shed some light on our idea, two simple derivations for assumed idealized hydrodynamics are given, but a rigorous proof remains an open question. Then our hypothesis is tested against a battery of about 10 new ''exact'' formulas for E based upon analytical solutions to several variants of Onsager's pancake equation and found to be ''reasonably'' accurate and surprisingly robust. Finally, some limitations of our rule are explored

  10. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes.

    Science.gov (United States)

    Giordano, Lorena; Roizard, Denis; Bounaceur, Roda; Favre, Eric

    2016-12-01

    The article describes data concerning the separation performances of polymeric hollow-fiber membranes. The data were obtained using a model for simulating gas separation, described in the research article entitled "Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process" (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016) [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO 2 separation degree.

  11. Significance of the molecular diffusion for chemical and isotopic separation during the formation and degradation of natural gas reservoirs

    International Nuclear Information System (INIS)

    Hermichen, W.D.; Schuetze, H.

    1987-01-01

    Investigations at natural gas fields as well as modelling experiments have pointed out that changes of the chemical and isotopic composition occur in the course of migration, accumulation and dispersion of natural gas. Dissolution and sorption processes as well as in particular the diffusion process are considered to be the elementary separation processes. The influences on dissolved and freely flowing gases and on stationary gas accumulation are described by differential equations. The simulation of the following phenomena is shown: (1) immigration of gas into the pore space which is hydrodynamically passive, (2) diffusive migration of gas into the environment of the accumulation, and (3) diffusive 'decompression' into the roof and the floor of a gas bed and a gas containing subsoil water stratum, respectively. (author)

  12. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation

    KAUST Repository

    Ghanem, Bader

    2014-03-11

    A highly permeable and highly selective polyimide of intrinsic microporosity is prepared using a 9,10-diisopropyl-triptycene contortion center. The three-dimensionality and shape-persistence of triptycene afford exceptional sieving-based gas separation performance transcending the latest permeability/selectivity trade-offs for industrial gas separations involving oxygen and hydrogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation

    KAUST Repository

    Ghanem, Bader; Swaidan, Raja; Litwiller, Eric; Pinnau, Ingo

    2014-01-01

    A highly permeable and highly selective polyimide of intrinsic microporosity is prepared using a 9,10-diisopropyl-triptycene contortion center. The three-dimensionality and shape-persistence of triptycene afford exceptional sieving-based gas separation performance transcending the latest permeability/selectivity trade-offs for industrial gas separations involving oxygen and hydrogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electro/powder separation process

    International Nuclear Information System (INIS)

    Dunn, J.P.

    1977-01-01

    A report is presented to introduce the ELECTRO/POWDER process to the P/M Industry. The process effectively uses electrostatic forces to convey, sort, meter, and blend fine powders. The major advantages of this separating process consist of the processing of primary particles, low particle energy due to particle velocity control and the pattern of particle movement over the sieve (vertical oscillation of particles above the sieve aperture). The report briefly describes the forces involved in both mechanical and sieving devices, with major emphasis on the operating principles of this process. Sieve separation of particulates is basically the result of two physical separating processes which occur simultaneously or independently; separation (dispersion) of particulates from each other and the size separation by passage through fixed apertures. In order to accomplish this goal, mechanical sieving devices utilize various motions to induce shear forces between the sieve surface and the particulates, and between the particulates themselves. It is noted that the ELECTRO/POWDER process is making steady progress in becoming an industrial tool for sieving and feeding of fine particles. Its potential extends into both the blending and admixing of powders, either by incorporating two opposing feeders, one being charged with the opposite polarity or by modifying the ELECTRO/SIEVE to incorporate more than one input and a solid electrode to replace the sieve electrode

  15. Uranium enrichment in Europe by the gas centrifuge process

    International Nuclear Information System (INIS)

    Severin, D.J.E.

    1975-01-01

    To begin with, this lesson gives an outline of the expected energy demand of the Western World and the concentration of the European companies participating in uranium enrichment by the gas centrifuge method. Next, a) the principles of the gas centrifuge method are outlined, b) its advantages over other industrial processes are stressed, and c) the characteristic data of complete plants are given. The existing German, Dutch, and British pilot plants are mentioned as examples for the perfected state of the process. The Capenhurst (UK) and Almedo (NL) demonstration plants, each with a capacity of 200 t SW/a, will have been extended to 2 x 1.000 t SW/a by 1982. Finally, economic data of the gas centrifuge process are given. The term 'separative work' is explained in an annex. (GG) [de

  16. Substituted polynorbornenes as promising materials for gas separation membranes

    International Nuclear Information System (INIS)

    Finkelshtein, Evgenii Sh; Bermeshev, Maksim V; Gringolts, Mariya L; Starannikova, L E; Yampolskii, Yu P

    2011-01-01

    Published results concerning the synthesis and study of the transport characteristics of polynorbornenes are considered and analyzed. Conclusions are drawn regarding the effect of the backbone rigidity and the nature of side groups on the gas permeability level. The prospects of using addition organosilicon polynorbornenes as gas separating membrane materials are discussed.

  17. Modeling of filling gas centrifuge cascade for nickel isotope separation by feed flow input to different stages

    Directory of Open Access Journals (Sweden)

    Orlov Alexey A.

    2017-01-01

    Full Text Available The article presents results of research filling gas centrifuge cascade by process gas fed into different stages. The modeling of filling cascade was done for nickel isotope separation. Analysis of the research results shows that nickel isotope concentrations of light and heavy fraction flows after filling cascade depend on feed stage number.

  18. Gas turbine with two circuits and intermediate fuel conversion process

    International Nuclear Information System (INIS)

    Bachl, H.

    1978-01-01

    The combination of a fuel conversion process with a thermal process saves coolant and subsequent separation plant, in order to achieve the greatest possible use of the mechanical or electrical energy. The waste heat of a thermal circuit is taken to an endothermal chemical fuel conversion process arranged before a second circuit. The heat remaining after removal of the heat required for the chemical process is taken to a second thermal circuit. The reaction products of the chemical process which condense out during expansion in the second thermal process are selectively separated from the remaining gas mixture in the individual turbine stages. (HGOE) [de

  19. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    Directory of Open Access Journals (Sweden)

    Afrooz Farjoo

    2017-10-01

    Full Text Available Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  20. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen; Didas, Stephanie A.; Jones, Christopher W.

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams

  1. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  2. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  3. Anisotropic membranes for gas separation

    Science.gov (United States)

    Gollan, Arye Z.

    1987-01-01

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

  4. Separation of isotopes by cyclical processes

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Weaver, K.

    1976-01-01

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope

  5. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  6. Separation of carbon dioxide and methane in continuous countercurrent gas centrifuges

    NARCIS (Netherlands)

    Wissen, van R.J.E.; Golombok, M.; Brouwers, J.J.H.

    2005-01-01

    The goal of this study is to determine the order of magnitude of the maximum achievable separation for decontaminating a natural gas well using a gas centrifuge. Previously established analytical approximations are not applicable for natural gas decontamination. Numerical simulations based on the

  7. Assessment of parameters of gas centrifuge and separation cascade basing on integral characteristics of separation plant

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Valentin, E-mail: VDBorisevich@mephi.ru [National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation); Borshchevskiy, Michael, E-mail: Michael_mephi@mail.ru [National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Andronov, Igor, E-mail: andronov@imp.kiae.ru [National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation); Senchenkov, Sergey, E-mail: senchenkov@imp.kiae.ru [National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation)

    2013-12-15

    Highlights: • We developed the calculation method to assess a feed flow rate into a gas centrifuge. • It is based on the knowledge of the integral characteristics of a separation plant. • Our method is verified by comparison with the results of the independent one. • The method also allows to specify other features of the separation cascade work. - Abstract: A calculation technique to assess a feed flow rate into a single GC, a total number of centrifuges in a separation cascade and to determine its likely configurations basing on the known integral characteristics of a centrifugal plant is developed. Evaluation of characteristics of the industrial gas centrifuge TC-12 and separation cascades of the NEF plant performed by two independent calculation techniques demonstrates their satisfactory agreement. This methodology would help to some extent the nuclear inspectors in evaluating and assessing the capability of an enrichment facility, and discovering any use for undeclared purposes.

  8. Venturi scrubber with integrated separating column for aerosol precipitation and gas sorption

    International Nuclear Information System (INIS)

    Mayinger, F.; Lehner, M.

    1992-01-01

    A concept for a novel, compact process combination in the form of a Venturi scrubber with integrated separating column was developed. The design of the system is such as to meet the boundary conditions encountered in practice. Comprehensive tests were carried through with this high-performance Venturi scrubber in a wide range of parameters, using the superfine dusts titanium dioxide and zinc oxide as test aerosols. Separating efficiency was found to be excellent, especially for multi-stage spray injection of the scrubbing fluid. Multi-stage spray injection achieves a more favourable pulse exchange between gas and fluid so that pressure losses are relatively low even though loading may be high. A provisional experimental set-up is used for further optimization of separating efficiency and pressure loss. (orig.) [de

  9. Gas Separation Ability of the Liquid Bubble Film.

    Czech Academy of Sciences Publication Activity Database

    Řezníčková Čermáková, Jiřina; Petričkovič, Roman; Vejražka, Jiří; Setničková, Kateřina; Uchytil, Petr

    2016-01-01

    Roč. 166, JUN 22 (2016), s. 26-33 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : liquid film membrane * bubble * gas separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  10. Flue Gas Cleaning With Alternative Processes and Reaction Media

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Huang, Jun; Riisager, Anders

    2007-01-01

    Alternative methods to the traditional industrial NOX and SOXflue gas cleaning processes working at lower temperatures and/orleading to useful products are desired. In this work we presentour latest results regarding the use of molten ionic media inelectrocatalytic membrane separation, ionic liquid...... reversibleabsorption and supported ionic liquid deNOX catalysis. Furtherdevelopment of the methods will hopefully make them suitable forinstallation in different positions in the flue gas duct ascompared to the industrial methods available today....

  11. A simulation model for transient response of a gas separation module using a hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Miyahara, Naoya [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, Masahiro [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan); Munakata, Kenzo [Akita University, Tegata Gakuen-cho 1-1, Akita-shi, Akita 010-8502 (Japan); Yamamoto, Ichiro [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2011-10-15

    A simulation model has been developed for transient response of a gas separation module using a hollow fiber membrane for the removal of tritium from the atmosphere of the confinement space. The mass transfer process such as sorption and desorption of gases at the surface of the dense layer and the porous support layer, diffusive transfer in the both layers are treated in the model. Sorption isotherm, mass transfer rate and permeance are estimated through step-wise transient response experiments. The present model represents well not only separation factors and recovery ratio at the steady state but also responses to the multi-step wise change in the sweep gas rate.

  12. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian; Koros, William J.; Johnson, J.R.; Karvan, Oguz

    2013-01-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  13. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  14. Process and component for isotope separation

    International Nuclear Information System (INIS)

    Girodin, M.G.H.

    1974-01-01

    The description is given of a component for isotope separation by static centrifugation, the characteristic of which is that the gas, of single chemical composition, in other words without a diluting gas mixture, passes into a sonic collar then into a symmetrical supersonic diffuser where it acquires a uniform and rectilinear velocity above or very much above the speed of sound before going into its curved trajectory [fr

  15. Process for producing synthetic ammonia gas. Verfahren zur Erzeugung von Ammoniak-Synthesegas

    Energy Technology Data Exchange (ETDEWEB)

    Meckel, J F; Messerschmidt, D; Wagener, D

    1984-01-12

    The invention refers to a process for producing synthetic ammonia gas from gases containing hydrocarbons, which is reformed catalytically and autothermally with a synthesis gas containing oxygen and then subjected to conversion to synthesis gas containing carbon dioxide and hydrogen. In order to simplify the plant required for such a process, the invention provides that part of the gas main flow is subjected to a multistage alternating pressure absorption plant (PSA plant) in a bypass of the gas main flow and the separated hydrogen is returned to the remaining gas main flow, in order to set the required H/sub 2/N/sub 2/ ratio and that the fission gas is subject to carbon dioxide washing and methanizing after conversion. This process therefore does not need a pipe splitting furnace and enrichment of the air with oxygen.

  16. Process for the gas extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, D B

    1976-05-20

    The object of the invention is a process for the hydroextraction of coal is treated with water and carbon monoxide at a temperature in the region of 300 - 380/sup 0/C. After treatment is completed, the gases are separated from the treated gas; the treated coal is then extracted with an extraction medium during the gas phase at a temperature of at least 400/sup 0/C, the remainder is separated from the gas phase and the coal extract is obtained from the extraction medium. Hydrogenation is preferably carried out at a temperature in the region of 320 - 370/sup 0/C and at a pressure of 200 - 400 at. The time required for treatment with carbon monoxide and water is 1/4 - 2 hours, and in special cases 3/4 - 1 1/2 hours. The coal material itself is nutty slack, of which more than 95% of the coal particles pass through a 1.5 mm mesh sieve. After the hydrogenation the extraction is carried out at a temperature in the region of 400 - 450/sup 0/C. The patent claims relate to the types of extraction media used.

  17. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    Science.gov (United States)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  18. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  19. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  20. Isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.; Rabinowitz, P.

    1979-01-01

    A method of separating the isotopes of an element is described, which comprises the steps of (i) subjecting molecules of a gaseous compound of the element simultaneously to two infrared radiations of different wavelengths, the first radiation having a wavelength which corresponds to an absorption band of the compound, which in turn corresponds to a mode of molecular motion in which there is participation by atoms of the element, and the second radiation having a power density greater than 10 6 watts per cm 2 , thereby exciting molecules of the compound in an isotopically selective manner, this step being conducted in such manner that the excited molecules either receive a level of energy sufficient to cause them to undergo conversion by unimolecular decomposition or receive a level of energy sufficient to cause them to undergo conversion by reaction with molecules of another gas present for that purpose; and (ii) separating and recovering converted molecules from unconverted molecules. (author)

  1. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  2. Gas separation by pressure swing adsorption

    International Nuclear Information System (INIS)

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  3. Coke oven gas to methanol process integrated with CO_2 recycle for high energy efficiency, economic benefits and low emissions

    International Nuclear Information System (INIS)

    Gong, Min-hui; Yi, Qun; Huang, Yi; Wu, Guo-sheng; Hao, Yan-hong; Feng, Jie; Li, Wen-ying

    2017-01-01

    Highlights: • CO_2 recycle assistance with COG to CH_3OH with dry reforming is proposed. • New process with dry reforming improves H_2 utilization and energy saving. • Process with H_2 separation (CWHS) is more preferable to CH_3OH output. • CWHS shows an excellent performance in energy, economy and CO_2 emission reduction. - Abstract: A process of CO_2 recycle to supply carbon for assisting with coke oven gas to methanol process is proposed to realize clean and efficient coke oven gas utilization. Two CO_2 recycle schemes with respect to coke oven gas, namely with and without H_2 separation before reforming, are developed. It is revealed that the process with H_2 separation is more beneficial to element and energy efficiency improvement, and it also presents a better techno-economic performance in comparison with the conventional coke oven gas to methanol process. The exergy efficiency, direct CO_2 emission, and internal rate of return of the process with H_2 separation are 73.9%, 0.69 t/t-methanol, and 35.1%, respectively. This excellent performance implies that reforming technology selection, H_2 utilization efficiency, and CO_2 recycle ways have important influences on the performance of the coke oven gas to methanol process. The findings of this study represent significant progress for future improvements of the coke oven gas to methanol process, especially CO_2 conversion integrated with coke oven gas utilization in the coking industry.

  4. Gas-separation membranes loaded with porous aromatic frameworks that improve with age.

    Science.gov (United States)

    Lau, Cher Hon; Konstas, Kristina; Thornton, Aaron W; Liu, Amelia C Y; Mudie, Stephen; Kennedy, Danielle F; Howard, Shaun C; Hill, Anita J; Hill, Matthew R

    2015-02-23

    Porosity loss, also known as physical aging, in glassy polymers hampers their long term use in gas separations. Unprecedented interactions of porous aromatic frameworks (PAFs) with these polymers offer the potential to control and exploit physical aging for drastically enhanced separation efficiency. PAF-1 is used in the archetypal polymer of intrinsic microporosity (PIM), PIM-1, to achieve three significant outcomes. 1) hydrogen permeability is drastically enhanced by 375% to 5500 Barrer. 2) Physical aging is controlled causing the selectivity for H2 over N2 to increase from 4.5 to 13 over 400 days of aging. 3) The improvement with age of the membrane is exploited to recover up to 98% of H2 from gas mixtures with N2 . This process is critical for the use of ammonia as a H2 storage medium. The tethering of polymer side chains within PAF-1 pores is responsible for maintaining H2 transport pathways, whilst the larger N2 pathways gradually collapse. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  6. Analysis of hydrogen separation methods in low pressure industrial processes

    International Nuclear Information System (INIS)

    Milidoni, M.; Somoza, J.; Borzone, E.M.; Blanco, M.V.; Cestau, D.; Baruj, A.; Meyer, G.

    2012-01-01

    In this work we present strategies for removing part of the hydrogen contained in a tank of 500 1 at a total pressure of 95 kPa. Hydrogen is mixed with other gases in a relation 95:5. The gas is generated as an end product during the production of radioisotopes. Main impurities are N 2 , humidity and activated gases. Two separation methods are proposed: one of them based on the use of a commercial Pd/Cu membrane, while the other involves the use of materials capable of forming metal hydrides (HFM). Characterization of hydrogen separation properties using a Pd/Cu membrane from pure H 2 and H 2 /Ar mixture were performed in the laboratory. We present simulations of a device containing HFM of the LaNi 5 -xSnx (0.x.0,5), using the properties of reaction with hydrogen measured in our laboratory. The performance of the different options was evaluated. Results were compared using as evaluation criteria the value of the pressure in the tank after 3 h of separation process and the time needed to separate the same amount of hydrogen generated during a batch of the process (author)

  7. Multiple-isotope separation in gas centrifuge

    International Nuclear Information System (INIS)

    Wood, Houston G.; Mason, T.C.; Soubbaramayer

    1996-01-01

    In previous works, the Onsager's pancake equation was used to provide solution to the internal counter-current flow field, which is necessary to calculate solutions to the isotope transport equation. The diffusion coefficient was assumed to be constant which is a good approximation for gases with large molecular weights, and small differences in the molecular weights of the various isotopes. A new optimization strategy was presented for determining the operating parameters of a gas centrifuge to be used for multiple-component isotope separation. Scoop drag, linear wall temperature gradient, the feed rate ant the cut have been chosen as operating parameters for the optimization. The investigation was restricted to a single centrifuge, and the problem of cascading for multiple-isotope separation was not addressed. The model describing the flow and separation phenomena in centrifuge includes a set of equations describing the fluid dynamics of the counter-current flow and the diffusion equations written for each isotope of the mixture. In this paper, an optimization algorithm is described and applied to an example for the re enrichment of spent reactor uranium

  8. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane.

    Science.gov (United States)

    Esfandiarpoor, Somaye; Fazli, Mostafa; Ganji, Masoud Darvish

    2017-11-29

    The separation of gases molecules with similar diameter and shape is an important area of research. For example, the major challenge to set up sweeping carbon dioxide capture and storage (CCS) in power plants is the energy requisite to separate the CO 2 from flue gas. Porous graphene has been proposed as superior material for highly selective membranes for gas separation. Here we design some models of porous graphene with different sizes and shape as well as employ double layers porous graphene for efficient CO 2 /H 2 separation. The selectivity and permeability of gas molecules through various nanopores were investigated by using the reactive molecular dynamics simulation which considers the bond forming/breaking mechanism for all atoms. Furthermore, it uses a geometry-dependent charge calculation scheme that accounts appropriately for polarization effect which can play an important role in interacting systems. It was found that H-modified porous graphene membrane with pore diameter (short side) of about 3.75 Å has excellent selectivity for CO 2 /H 2 separation. The mechanism of gas penetration through the sub-nanometer pore was presented for the first time. The accuracy of MD simulation results validated by valuable DFT method. The present findings show that reactive MD simulation can propose an economical means of separating gases mixture.

  9. Reactor modeling and process analysis for partial oxidation of natural gas

    NARCIS (Netherlands)

    Albrecht, B.A.

    2004-01-01

    This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called

  10. Liquid absorbent solutions for separating nitrogen from natural gas

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  11. Novel design of LNG (liquefied natural gas) reliquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S., E-mail: s.baek@kaist.ac.kr [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Hwang, G.; Lee, C. [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jeong, S., E-mail: skjeong@kaist.ac.kr [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Choi, D. [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ship/Plant System R and D Team, Daewoo Shipbuilding and Marine Engineering Co., Ltd., 1, Ajoo, Koje, Kyungnam 656-714 (Korea, Republic of)

    2011-08-15

    Highlights: {yields} We performed experiments with LN2 to mock up the new LNG reliquefaction process. {yields} Subcooled liquid goes to heat exchanger, heater, and phase separator. {yields} Reliquefaction occurs when vapor enters heat exchanger and verified by experiments. {yields} Reliquefaction ratio increases when subcooling degree or system pressure increases. - Abstract: This paper presents an investigation of novel LNG reliquefaction process where the cold exergy of subcooled LNG is utilized to recondense the vaporized light component of LNG after it is separated from the heavier component in a phase separator. The regeneration of cold exergy is especially effective as well as important in thermodynamic sense when a cryogenic process is involved. To verify the proposed idea, we performed an experimental study by facilitating liquid nitrogen apparatus to mock up the LNG reliquefaction process. Subcooled liquid nitrogen is produced for a commercial transportation container with a house-made atmospheric liquid nitrogen heat exchanger and then, having subooled degree of up to 19 K, it simulates the behavior of subcooled LNG in the lab-scale reliquefaction experiment. Recondensation of the vaporized gas is possible by using the cold exergy of subcooled liquid in a properly fabricated heat exchanger. Effect of heat exchanger performance factor and degree of subcooling on recondensation portion has been discussed in this paper. It is concluded that utilizing pressurized subcooled liquid that is obtained by liquid pump can surely reduce the pumping power of the vaporized natural gas and save the overall energy expenditure in LNG reliquefaction process.

  12. Novel design of LNG (liquefied natural gas) reliquefaction process

    International Nuclear Information System (INIS)

    Baek, S.; Hwang, G.; Lee, C.; Jeong, S.; Choi, D.

    2011-01-01

    Highlights: → We performed experiments with LN2 to mock up the new LNG reliquefaction process. → Subcooled liquid goes to heat exchanger, heater, and phase separator. → Reliquefaction occurs when vapor enters heat exchanger and verified by experiments. → Reliquefaction ratio increases when subcooling degree or system pressure increases. - Abstract: This paper presents an investigation of novel LNG reliquefaction process where the cold exergy of subcooled LNG is utilized to recondense the vaporized light component of LNG after it is separated from the heavier component in a phase separator. The regeneration of cold exergy is especially effective as well as important in thermodynamic sense when a cryogenic process is involved. To verify the proposed idea, we performed an experimental study by facilitating liquid nitrogen apparatus to mock up the LNG reliquefaction process. Subcooled liquid nitrogen is produced for a commercial transportation container with a house-made atmospheric liquid nitrogen heat exchanger and then, having subooled degree of up to 19 K, it simulates the behavior of subcooled LNG in the lab-scale reliquefaction experiment. Recondensation of the vaporized gas is possible by using the cold exergy of subcooled liquid in a properly fabricated heat exchanger. Effect of heat exchanger performance factor and degree of subcooling on recondensation portion has been discussed in this paper. It is concluded that utilizing pressurized subcooled liquid that is obtained by liquid pump can surely reduce the pumping power of the vaporized natural gas and save the overall energy expenditure in LNG reliquefaction process.

  13. Gas processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1991-01-01

    State of electric discharge is detected based on a gas pressure in a sealed container and a discharging current flowing between both of electrodes. When electric arc discharges occur, introduction of gases to be processed is stopped and a voltage applied to both of the electrodes is interrupted. Then, when the gas pressure in the sealed container is lowered to a predetermined value, a power source voltage is applied again to both of the electrodes to recover glow discharges, and the introduction of the gas to be processed is started. With such steps, even if electric arc discharges occur, they are eliminated automatically and, accordingly, normal glow discharges can be recovered, to prevent failures of the device due to electric arc discharges. The glow discharges are recovered automatically without stopping the operation of the gas processing device, and gas injection and solidification processing can be conducted continuously and stably. (T.M.)

  14. Development and modification of glass membranes for aggressive gas separations

    Energy Technology Data Exchange (ETDEWEB)

    Lindbraaten, Arne

    2004-07-01

    Chlorine as a chemical is widespread in industry and found in a great variety of processes ranging from water purification to plastic production. In this thesis, a magnesium production factory was chosen as an example because it involved both chlorine - air separation and hydrogen -hydrogen chloride separation. Previously, various types of membrane materials have been tested out for their applicability in the chosen process. The materials previously tested either lacked sufficient membrane performance or sufficient membrane stability. As an attempt to improve both the membrane performance and stability, glass membranes are used in this thesis. Glass membranes are prepared from a borosilicate glass, via a phase separation followed by an acid leaching route. By choosing the appropriate phase separation temperature and acid to glass ratio, the membrane can be produced with an average pore diameter of 2 nm (or 4 nm). However, the 2 nm average pore size is still too large to separate gases with separation selectivities beyond the selectivities predicted from Knudsen diffusion theory. If the pores are narrowed, the selectivity may be raised while the flux hopefully is maintained. The narrowing of the pores was done by a silane coupling to the surface OH-groups on the glass. The silane coupling agent is of the dimethyl-acyl-chlorosilane type, where the length of the acyl chain varies from 1 carbon up to 18 carbons. Glass fibres are also tested in this work, which are produced without phase separation and their average pore size is smaller than the surface-modified glasses. To be able to compare the performance of the various membranes, performance measurements are performed and these measurements are evaluated by the separation power (product of the selectivity and the permeability of the fastest permeating compound). Because of the harsh chlorine or hydrogen chloride environment, to which the membranes are exposed in this work, the membrane stability is at least as

  15. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  16. The effect of gas release on column separator

    NARCIS (Netherlands)

    Kranenburg, C.

    1974-01-01

    A mathematical model has been considered in which the influence of gas release on transient cavitating flow and column separation in pipel ines is taken into account. A rei iable numerical method has been developed for the computation of the wave propagation and cavitation phenomena following pump

  17. Development of a novel heavy element chemistry apparatus using the RIKEN gas-field recoil separator as a pre-separator

    International Nuclear Information System (INIS)

    Haba, H.; Morita, K.; Enomoto, S.; Morimoto, K.; Kaji, D.; Nagame, Yuichiro

    2004-01-01

    A new system was developed, that supplied the super-heavy element separated physically as the former steps to the chemical analysis devices such as a gas or liquid chromatographs. The gas jet transportation device was newly set up on the edge of existing accelerator research facilities in the Institute of Physical and Chemical Research linac building (GARIS). To conduct the chemical separation experiment of a super-heavy element of 112 in future a radioactive isotope of mercury of light homology elements was manufactured with a gas jet uniting type online multi-tracer manufacturing device. The adsorption chromatograph experiment to the gold was performed using this system. (H. Katsuta)

  18. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  19. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO /SUB x/ , hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140 0 to -160 0 C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140 0 to -160 0 C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton

  20. Method for treating a nuclear process off-gas stream

    Science.gov (United States)

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  1. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  2. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.; Kit Heung, L.; Sessions, H.T. [Savannah River National Laboratory - SRNL, Aiken, SC (United States)

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  3. Simulation Model of Membrane Gas Separator Using Aspen Custom Modeler

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong-keun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Shin, Gahui; Yun, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-12-15

    Membranes are used to separate pure gas from gas mixtures. In this study, three different types of mass transport through a membrane were developed in order to investigate the gas separation capabilities of a membrane. The three different models typically used are a lumped model, a multi-cell model, and a discretization model. Despite the multi-cell model producing similar results to a discretization model, the discretization model was selected for this investigation, due to the cell number dependence of a multi-cell model. The mass transport model was then used to investigate the effects of pressure difference, flow rate, total exposed area, and permeability. The results showed that the pressure difference increased with the stage cut, but the selectivity was a trade-off for the increasing pressure difference. Additionally, even though permeability is an important parameter, the selectivity and stage cut of the membrane converged as permeability increased.

  4. Heavy Water - Industrial Separation Processes

    International Nuclear Information System (INIS)

    Peculea, M.

    1984-01-01

    This monograph devoted to the heavy water production mainly presents the Romanian experience in the field which started in early sixties from the laboratory scale production and reached now the level of large scale industrial production at ROMAG-Drobeta, Romania. The book is structured in eleven chapters entitled: Overview, The main physical properties, Sources, Uses, Separation factor and equilibrium constant, Mathematical modelling of the separation process, Thermodynamical considerations on the isotope separation, Selection criteria for heavy water separation processes, Industrial installations for heavy water production, Prospects, Acknowledgements. 200 Figs., 90 Tabs., 135 Refs

  5. Influence of riser-induced slugs on the downstream separation processes

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2017-01-01

    In Oil & Gas installations the severe slug is an undesired flow regime due to the negative impact on the production rate and facility safety. This study will evaluate the severe riser-induced slugs’ influence to a typical separation process, consisting of a 3-phase gravity separator physically...... linked to a de-oiling hydrocyclone, based on experimental tests performed on a laboratory testing facility. Several scenarios are compared, while three PID controllers’ coefficients are kept constant for all the tests: The separator pressure, water level, and hydrocyclone pressure-drop-ratio (PDR......) controllers. Each respective scenario makes a comparison between uncontrolled, open-, and closed-loop anti-slug control configurations. It is concluded that both open- and closed-loop anti-slug control strategies improve the water level and PDR setpoint tracking equally well, but that the closed-loop strategy...

  6. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  7. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE REACTOR SYSTEM - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    The ELI Eco Logic International Inc. (Eco Logic) process thermally separates organics, then chemically reduces them in a hydrogen atmosphere, converting them to a reformed gas that consists of light hydrocarbons and water. A scrubber treats the reformed gas to remove hydrogen chl...

  8. Process and apparatus for separating and recovering krypton-85 from exhaust gas of nuclear reactor or the like

    International Nuclear Information System (INIS)

    Yusa, H.; Kamiya, K.; Murata, T.; Yamaki, H.; Hisatomi, S.

    1975-01-01

    An apparatus is described for separating and recovering radioactive krypton-85 contained in an exhaust gas of a nuclear reactor or the like, which comprises a plurality of adsorption beds connected in parallel with respect to a passageway for the exhaust gas, each being packed with activated carbon, wherein adsorption and desorption of krypton-85 in each of the beds are alternatively and repeatedly performed by operating valves disposed between each of the beds and means for reducing pressure in the beds to be desorbed in accordance with a predetermined time schedule. The adsorption and concentration efficiencies are markedly increased by combining the above adsorption apparatus and a distillation apparatus

  9. Gas separation performance of tapered cascade with membrane

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    Membrane gas separation cascades are analyzed at steady state. The method of calculating the flow rate and concentration profiles in the cascade are examined, using formulas expressing the various membrane separation cell characteristics. The method adopted is applicable to relatively high concentrations and separation factors. Considerations are further given on the steady state performance of four theoretical forms of cascade: (a) with common value of cut for all stages, (b) with symmetric separation cells, (c) with no mixing at the junction at each stage, and (d) ideal cascade. The analysis showed that, with membrane cells, the ideal cascade would have a pressure ratio varying from stage to stage. The symmetric separation cascade would provide a separation performance lower than the ideal cascade on account of the mixing at the junctions of streams possessing different concentrations, whereas the cut and separation factor of the no-mixing cascade requiring minimum membrane area exhibits zig-zag curves when plotted against stage number. Both these circumstances contribute to the lower separation performance obtained with these two forms as compared with the ideal cascade, and results in larger total membrane area; but these semi-ideal forms retain the advantage of easy practical treatment with their pressure ratio common to all stages. (auth.)

  10. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    1980-01-01

    A method is specified for the operation of a gaseous diffusion cascade wherein electrically driven compressors circulate a process gas through a plurality of serially connected gaseous diffusion stages to establish first and second countercurrently flowing cascade streams of process gas, one of the streams being at a relatively low pressure and enriched in a component of the process gas and the other being at a higher pressure and depleted in the same, and wherein automatic control systems maintain the stage process gas pressures by positioning process gas flow control valve openings at values which are functions of the difference between reference-signal inputs to the systems, and signal inputs proportional to the process gas pressures in the gaseous diffusion stages associated with the systems, the cascade process gas inventory being altered, while the cascade is operating, by simultaneously directing into separate process-gas freezing zones a plurality of substreams derived from one of the first and second streams at different points along the lengths thereof to solidify approximately equal weights of process gas in the zone while reducing the reference-signal inputs to maintain the positions of the control valves substantially unchanged despite the removal of process gas inventory via the substreams. (author)

  11. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks.

    Science.gov (United States)

    Liu, Yi; Pan, Jia Hong; Wang, Nanyi; Steinbach, Frank; Liu, Xinlei; Caro, Jürgen

    2015-03-02

    Separation methods based on 2D interlayer galleries are currently gaining widespread attention. The potential of such galleries as high-performance gas-separation membranes is however still rarely explored. Besides, it is well recognized that gas permeance and separation factor are often inversely correlated in membrane-based gas separation. Therefore, breaking this trade-off becomes highly desirable. Here, the gas-separation performance of a 2D laminated membrane was improved by its partial self-conversion to metal-organic frameworks. A ZIF-8-ZnAl-NO3 layered double hydroxide (LDH) composite membrane was thus successfully prepared in one step by partial conversion of the ZnAl-NO3 LDH membrane, ultimately leading to a remarkably enhanced H2 /CH4 separation factor and H2 permeance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  13. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.

    Science.gov (United States)

    Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2014-01-28

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

  14. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  15. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    NARCIS (Netherlands)

    Duval, J.M.; Duval, J.-M.; Folkers, Albertje; Mulder, M.H.V.; Desgrandchamps, G.; Smolders, C.A.; Smolders, C.A.

    1993-01-01

    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the

  16. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    Science.gov (United States)

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  17. Performance of a Novel Gas Separation Research Column at Sanford Laboratory

    Science.gov (United States)

    Alanson Chiller, Angela; Chiller, Christopher; Mei, Dongming

    2014-03-01

    A world-wide rise in demand for ultrapure materials has necessitated innovation in the production of low impurity and isotopically separated materials that either has not been utilized in these new applications or relies on aging or energy intensive methods. These materials are sought after for large physics investigations, nuclear non-proliferation detection industries, medical imaging and new frontiers in electronic applications. Techniques in separating and purifying nuclear magnetic resonance isotopes of carbon, oxygen, xenon, krypton, and nitrogen are being developed at Sanford Laboratory, Lead, SD. A two-meter laboratory scale selective phase change column designed specifically for real-time sampling of the gas space at specific temperature and pressure is operated at gas/liquid and gas/solid equilibrium temperatures and pressures for selected gases. We report initial results and future applications. Research Funded by SD Governors 2010 Center.

  18. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

  19. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  20. Modelling carbon membranes for gas and isotope separation.

    Science.gov (United States)

    Jiao, Yan; Du, Aijun; Hankel, Marlies; Smith, Sean C

    2013-04-14

    Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

  1. Polyaniline/polybenzimidazole blends: characterisation of its physico-chemical properties and gas separation behaviour

    Czech Academy of Sciences Publication Activity Database

    Giel, Verena; Kredatusová, Jana; Trchová, Miroslava; Brus, Jiří; Žitka, Jan; Peter, Jakub

    2016-01-01

    Roč. 77, April (2016), s. 98-113 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GPP106/12/P643 Institutional support: RVO:61389013 Keywords : gas separation * gas sorption * gas permeation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.531, year: 2016

  2. Efficient separations & processing crosscutting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

  3. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying

    2011-03-11

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying; Dal-Cin, Mauro M D; Pinnau, Ingo; Nicalek, Andrzej; Robertson, Gilles P.; Guiver, Michael D.

    2011-01-01

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation.

    Science.gov (United States)

    Khan, Muntazim Munir; Filiz, Volkan; Bengtson, Gisela; Shishatskiy, Sergey; Rahman, Mushfequr; Abetz, Volker

    2012-09-06

    The present work reports on the gas transport behavior of mixed matrix membranes (MMM) which were prepared from multi-walled carbon nanotubes (MWCNTs) and dispersed within polymers of intrinsic microporosity (PIM-1) matrix. The MWCNTs were chemically functionalized with poly(ethylene glycol) (PEG) for a better dispersion in the polymer matrix. MMM-incorporating functionalized MWCNTs (f-MWCNTs) were fabricated by dip-coating method using microporous polyacrylonitrile membrane as a support and were characterized for gas separation performance. Gas permeation measurements show that MMM incorporated with pristine or functionalized MWCNTs exhibited improved gas separation performance compared to pure PIM-1. The f-MWCNTs MMM show better performance in terms of permeance and selectivity in comparison to pristine MWCNTs. The gas permeances of the derived MMM are increased to approximately 50% without sacrificing the selectivity at 2 wt.% of f-MWCNTs' loading. The PEG groups on the MWCNTs have strong interaction with CO2 which increases the solubility of polar gas and limit the solubility of nonpolar gas, which is advantageous for CO2/N2 selectivity. The addition of f-MWCNTs inside the polymer matrix also improved the long-term gas transport stability of MMM in comparison with PIM-1. The high permeance, selectivity, and long term stability of the fabricated MMM suggest that the reported approach can be utilized in practical gas separation technology.

  6. Ionomers of intrinsic microporosity: in silico development of ionic-functionalized gas-separation membranes.

    Science.gov (United States)

    Hart, Kyle E; Colina, Coray M

    2014-10-14

    This work presents the predictive molecular simulations of a functionalized polymer of intrinsic microporosity (PIM) with an ionic backbone (carboxylate) and extra-framework counterions (Na(+)) for CO2 gas storage and separation applications. The CO2-philic carboxylate-functionalized polymers are predicted to contain similar degrees of free volume to PIM-1, with Brunauer-Emmett-Teller (BET) surface areas from 510 to 890 m(2)/g, depending on concentration of ionic groups from 100% to 17%. As a result of ionic groups enhancing the CO2 enthalpy of adsorption (to 42-50 kJ/mol), the uptake of the proposed polymers at 293 K exceeded 1.7 mmol/g at 10 kPa and 3.3 mmol/g at 100 kPa for the polymers containing 100% and 50% ionic functional groups, respectively. In addition, CO2/CH4 and CO2/N2 mixed-gas separation performance was evaluated under several industrially relevant conditions, where the IonomIMs are shown to increase both the working capacity and selection performance in certain pressure swing applications (e.g., natural gas separations). These simulations reveal that intrinsically microporous ionomers show great potential as the future of energy-efficient gas-separation polymeric materials.

  7. Gas separation properties of new polyoxadiazole and polytriazole membranes

    NARCIS (Netherlands)

    Hensema, E.R.; Hensema, E.R.; Borges-Sena, M.E.R.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    The gas separation properties of new aromatic poly-1,2,4-triazole and poly-1,3,4-oxadiazole membranes have been systematically investigated. Various functional groups were incorporated as pendent groups onto the polymer backbone of poly-1,2,4-triazoles. A wide permeability/selectivity spectrum was

  8. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship

    KAUST Repository

    Adil, Karim; Belmabkhout, Youssef; Pillai, Renjith S.; Cadiau, Amandine; Bhatt, Prashant; Assen, Ayalew Hussen Assen; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-01-01

    The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

  9. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship

    KAUST Repository

    Adil, Karim

    2017-05-30

    The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

  10. Numerical simulation of bellows effect on flow and separation of uranium isotopes in a supercritical gas centrifuge

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Godisov, O.N.

    2000-01-01

    Numerical solving of the Navier-Stokes and convection-diffusion equations by the finite difference technique has been applied to study the influence of bellows on the flow and separation of uranium isotopes in a single supercritical gas centrifuge. Dependence of the separative power of a gas centrifuge on geometric parameters and position of a bellows on a rotor wall as well as the effect of scoop drag and feed flow on isotope separation in a gas centrifuge with a bellows have been obtained in computing experiments. It was demonstrated that increase of the separative power with increase of the gas centrifuge length is less considerable than predicted by the Dirac's law

  11. A new submarine oil-water separation system

    Science.gov (United States)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-12-01

    In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.

  12. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  13. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  14. Industrial separation processes : fundamentals

    NARCIS (Netherlands)

    Haan, de A.B.; Bosch, Hans

    2013-01-01

    Separation processes on an industrial scale comprise well over half of the capital and operating costs. They are basic knowledge in every chemical engineering and process engineering study. This book provides comprehensive and fundamental knowledge of university teaching in this discipline,

  15. Method and equipment of separation of gaseous and vaporous materials, particularly isotopes, with separation nozzles

    International Nuclear Information System (INIS)

    Becker, E.W.; Eisenbeiss, G.; Ehrfeld, W.

    1975-01-01

    The invention improves on the already known separation nozzle method by the two following steps: 1) The partial flows produced within the cascade with various shares of additional gas are introduced into the separating nozzle systems in such a manner that with regard to the additional gas, a molar fraction gradient is created which is in the opposite direction to the gradient created by the separation process. 2) The partial flows produced within the cascade with various compositions of the mixture of substances to be separated are introduced into the separating nozzle systems in such a manner that regarding the substances to be separated, a molar fraction gradient is created which is in the same direction as the molar fraction gradient formed by the separation process. Both measures can be separately applied or in combination with one another; flowsheets of the invented cascade circuits and separating nozzle systems are given. (GG/LH) [de

  16. Membrane gas separation. January 1970-September 1989 (Citations from the NTIS data base). Report for January 1970-September 1989

    International Nuclear Information System (INIS)

    1989-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 100 citations, 18 of which are new entries to the previous edition.)

  17. Membrane gas separation. January 1970-September 1988 (Citations from the NTIS data base). Report for January 1970-September 1988

    International Nuclear Information System (INIS)

    1988-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 150 citations, 27 of which are new entries to the previous edition.)

  18. Storage and separation of gases

    International Nuclear Information System (INIS)

    Biloe, S.; Cagnon, B.; Goetz, V.; Guillot, A.; Mauran, S.; Mazet, N.; Menard, D.; Py, X.

    2005-01-01

    Various processes such as gas separation, gas storage (H 2 or CH 4 ) are known to be inhibited by intrinsic antagonistic material properties (texture, thermal conductivity, permeability). In the following document are gathered the last progress in adsorbent material elaboration and process engineering. (authors)

  19. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  20. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  1. Basic characteristics of hollow-filament polyimide membrane in gas separation and application to tritium monitors

    International Nuclear Information System (INIS)

    Sasaki, Sh.; Suzuki, T.; Kondo, K.; Tega, E.; Shimada, A.; Akahori, S.; Okuno, K.

    2003-01-01

    The separation efficiency of hollow-filament polyimide membranes for 3 H and 41 Ar is preliminarily examined for a potential application to continuous gas monitoring systems for analysis of stack emission from accelerator facilities. The basic gas separation characteristics of the membranes are experimentally investigated, and a preliminary gas monitor design is proposed. The membranes are capable of selectively enriching hydrogen by more than 25 times, with negligible variation with respect to the species of isotope. (author)

  2. Biohydrogen recovery and purification by gas separation method

    Czech Academy of Sciences Publication Activity Database

    Búcsú, D.; Pientka, Zbyněk; Kovács, S.; Bélafi-Bakó, K.

    2006-01-01

    Roč. 200, 1-3 (2006), s. 227-229 ISSN 0011-9164. [Conference Euromembrane. Giardini Naxos - Taormina, 24.09.2006-28.09.2006] R&D Projects: GA ČR GA203/06/1207 Grant - others:Czech-Hungarian Bilateral Research Programme(HU) CZN-16/2005 Institutional research plan: CEZ:AV0Z40500505 Keywords : biohydrogen * gas separation membranes * polymer membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.917, year: 2006

  3. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Even, Julia

    2011-01-01

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  4. The multiple gas-liquid subsea separation system: development and qualification of a novel solution for deep water field production

    Energy Technology Data Exchange (ETDEWEB)

    Abrand, Stephanie; Butin, Nicolas; Shaiek, Sadia; Hallot, Raymond [Saipem S.p.A., Milano (Italy)

    2012-07-01

    Subsea processing is more and more considered as a viable solution for the development of deep and ultra deep water fields. SAIPEM has developed a deep water gas separation and liquid boosting system, based on its proprietary 'Multi pipe' separator concept, providing a good flexibility in handling a wide range of steady and un-steady multiphase input streams using a relatively simple mechanical arrangement. The Multi pipe Concept features an array of vertical pipes for gas/liquid separation by gravity and adequate liquid hold up volumes. The operating principle is the same as standard gravity vessels. Specific inlet pipe arrangements have been worked out to enhance the separation efficiency and internals can be implemented to further optimize the performances. The limited diameter and wall thickness of the vertical pipes make the Multi pipe Concept particularly suited for deep and ultra-deep water applications and/or high pressure conditions where the selection of a single separator vessel could lead to unpractical wall thicknesses. In most cases, standard API or ASME pipes can be utilized for the Multi pipe Separator, thus enabling conventional fabrication methods, and in turn reducing cost and delivery time and opening opportunities for local content. The qualification testing program has seen two subsequent phases. The first qualification phase aimed at the confirmation of the hydrodynamic behavior of the system. In particular, the homogeneous distribution of the multiphase stream into the pipes and the stability of the liquid levels under un-steady inlet conditions were continuously assessed during the tests. This first qualification phase gave confidence in the viability of the Multi pipe and in its good hydrodynamic behavior under the different inlet conditions that can be encountered during field production. It proved that, having the same liquid level in all the separator pipes, whatever the inlet conditions are, the Multi pipe separator can be

  5. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  6. Immobilized fluid membranes for gas separation

    Science.gov (United States)

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  7. Gas separation device based on electrical swing adsorption

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-10-26

    A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

  8. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  9. Separation process of zirconium and hafnium

    International Nuclear Information System (INIS)

    Hure, J.; Saint-James, R.

    1955-01-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO 3 - ions concentration, the role of the cation coming with NO 3 - , as well as the influence of the concentration of zirconium in the solution on the separation coefficient β = α Zr / α Hf . (M.B.) [fr

  10. A simple method for the measurement of radioactivity of samples separated by gas chromatography

    International Nuclear Information System (INIS)

    Farkas, T.

    1981-01-01

    Gas chromatographs with flame ionization detector can be used to determine the radioactivity ( 14 C) of separated peaks. After a suitable change in the detector output the combustion product 14 CO 2 can be trapped by hyamine hydroxyde and measured by liquid scintigraphy. 90% of peak activity can be collected and measured, thus the method can be applied to determine the distribution and specific radioactivity of the components separated by gas chromatography. (author)

  11. A ''master key'' to chemical separation processes

    International Nuclear Information System (INIS)

    Madic, Ch.; Hill, C.

    2002-01-01

    One of the keys to sorting nuclear waste is extracting minor actinides - the most troublesome long-lived elements - from the flow of waste by separating them from lanthanides, which have very similar chemical properties to actinides, for possible transmutation into shorter-lived elements. Thanks to a European initiative coordinated by CEA, this key is now available: its name is Sanex. There now remains to develop tough, straightforward industrial processes to integrate it into a new nuclear waste management approach by 2005. Sanex joins the Diamex process, used for the combined separation of lanthanides and minor actinides from fission products. A third process, Sesame, designed to separate americium, completes the list of available separation processes. (authors)

  12. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    Science.gov (United States)

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  14. Causal and causally separable processes

    Science.gov (United States)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds.

  15. Causal and causally separable processes

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-01-01

    outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds. (paper)

  16. Over all separation factors for stable isotopes by gas centrifuge

    International Nuclear Information System (INIS)

    Chuntong Ying; Nie Yuguang; Zeng Shi; Shang Xiuyong; Wood, Houston G.

    1999-01-01

    The separation factor for the elements with molar wight differences, γ 0 , is an important characteristic parameter for separation of varied isotopes. Besides the dependence on construction parameters of the gas centrifuge it depends on many variables. Some of them are operation conditions, such as feeding flow rate F, pressure at wall p w , temperature T 0 and distribution temperature on the wall and others. Separation factor γ 0 depends on physical properties, such as molar weight M, viscosity μ, product of ρD, where ρ is density of working media and D is its diffusion coefficient. It was taken four examples: UF 6 , WF 6 , OsO 4 and Xe [ru

  17. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  18. Gas separation performance of 6FDA-based polyimides with different chemical structures

    KAUST Repository

    Qiu, Wulin

    2013-10-01

    This work reports the gas separation performance of several 6FDA-based polyimides with different chemical structures, to correlate chemical structure with gas transport properties with a special focus on CO2 and CH 4 transport and plasticization stability of the polyimides membranes relevant to natural gas purification. The consideration of the other gases (He, O2 and N2) provided additional insights regarding effects of backbone structure on detailed penetrant properties. The polyimides studied include 6FDA-DAM, 6FDA-mPDA, 6FDA-DABA, 6FDA-DAM:DABA (3:2), 6FDA-DAM:mPDA (3:2) and 6FDA-mPDA:DABA (3:2). Both pure and binary gas permeation were investigated. The packing density, which is tunable by adjusting monomer type and composition of the various samples, correlated with transport permeability and selectivity. The separation performance of the polyimides for various gas pairs were also plotted for comparison to the upper bound curves, and it was found that this family of materials shows attractive performance. The CO 2 plasticization responses for the un-cross-linked polyimides showed good plasticization resistance to CO2/CH4 mixed gas with 10% CO2; however, only the cross-linked polyimides showed good plasticization resistance under aggressive gas feed conditions (CO 2/CH4 mixed gas with 50% CO2 or pure CO 2). For future work, asymmetric hollow fibers and carbon molecular sieve membranes based on the most attractive members of the family will be considered. © 2013 Elsevier Ltd. All rights reserved.

  19. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor

    KAUST Repository

    Ma, Xiaohua

    2013-10-01

    We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 C, respectively. At 440 C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530 C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040 Barrer with a high selectivity over CH4 of 38. Above 600 C, the strong emergence of ultramicroporosity (<7 Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. © 2013 Elsevier Ltd. All rights reserved.

  20. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  1. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  2. Gas separation of landfill gas and other biogases by pressure swing adsorption. Final report. Gastrennung fuer Deponie- und Faulgase mittels Druckwechseltechnik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pilarczyk, E; Mellech, L

    1986-01-01

    A new PSA-process for recovery of methane with SNG-quality from biogases was developed in the laboratory and successfully tested in field trials at the German landfill Emscherbruch/Gelsenkirchen. A special carbon molecular sieve on which carbon dioxide is adsorbed much faster than methane was proved as the best suited adsorbent for biogas separation. Even part of nitrogen which is mostly contained in landfill gases from leakage air is simultaneously removed from methane together with carbon dioxide by using the carbon molecular sieve. Low quality-SNG with 88-90% by vol. methane could be processed from landfill gas containing up to 15% by vol. nitrogen at an adsorption pressure of 3-9 bar abs. The recovery of methane goes upt to 98%. High quality-SNG can be processed from N/sub 2/-free biogases like sewage gas. The capital and operational cost (not including prepurification) for recovery of low quality-SNG by PSA is estimated to about 0,12 DM/m/sup 3/ SNG. (orig.) With 13 refs., 13 tabs., 16 figs.

  3. Petroleum refining. Separation processes; Le raffinage du petrole. Procedes de separation

    Energy Technology Data Exchange (ETDEWEB)

    Wauquier, J.P. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Bonfils, P. [AB Industries (France); Company, J.P. [Compagnie de Raffinage et de Distribution TOTAL France, 75 - Paris (France); Deschamps, A. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Gourlia, J.P. [Elf Aquitaine (France); Gouzien, L. [Compagnie de Raffinage et de Distribution TOTAL France, 75 - Paris (France); Hombourger, T. [Mobil (France); Jullian, S. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Marty, C. [Compagnie de Raffinage et de Distribution TOTAL France, 75 - Paris (France); Mikitenko, P. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Ptak, C. [Technip, 92 - Rueil-Malmaison (France); Rojey, A.; Streicher, C.; Vidal, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1998-12-01

    After having given into details the conventional separation processes used in petroleum refining, the author describes the development future prospects: improvement of the existing technologies, introduction of new techniques or separation processes still not used today in this industry. This book is particularly devoted to students and to engineers and technical men who work in refineries. (O.M.) 308 refs.

  4. Basic studies of a gas-jet-coupled ion source for on-line isotope separation

    International Nuclear Information System (INIS)

    Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1980-01-01

    A hollow-cathode ion source was used in a gas-jet-coupled configuration to produce ion beams of fission products transported to it from a 252 Cf fission source. Solid aerosols of NaCl and Ag were used effectively as activity carriers in the gas-jet system. Flat-plate skimmers provided an effective coupling of the ion source to the gas jet. Ge(Li) spectrometric measurements of the activity deposited on an ion-beam collector relative to that deposited on a pre-skimmer collector were used to obtain separation efficiencies ranging from 0.1% to > 1% for Sr, Y, Tc, Te, Cs, Ba, Ce, Pr, Nd and Sm. The use of CCl 4 as a support gas resulted in a significant enhancement of the alkaline-earth and rare-earth separation efficiencies

  5. Automation of experiments at Dubna Gas-Filled Recoil Separator

    Science.gov (United States)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  6. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore

    2016-01-01

    is designed for an annular supersonic separator. The supersonic swirling separation flow of natural gas is calculated using the Reynolds Stress model. The results show that the viscous heating and strong swirling flow cause the adverse pressure in the annular channel, which may negatively affect......The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades...

  7. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Three processes are discussed for separating tritium from gaseous and aqueous effluent systems: separation in the gas phase using Pd-25 wt percent Ag alloy diffusion membranes; electrolytic separation in the aqueous phase using ''bipolar'' electrodes; and the countercurrent exchange of tritium-containing hydrogen gas with water on catalytic surfaces combined with separation by direct electrolysis

  8. Stabilized ultrathin liquid membranes for gas separations

    International Nuclear Information System (INIS)

    Deetz, D.W.

    1987-01-01

    Although immobilized liquid membranes have the desirable properties of high selectivity and permeability, their practical application to gas phase separations is hindered because of the instability of the liquid phase and the relative thickness of current membranes. The problem of liquid instability, which is due to both liquid volatilization and flooding, can be reduced, or eliminated, by immobilizing the liquid phase in pores small enough to significantly reduce the molar free energy of the solution via the Kelvin effect. The obstacle of membrane thickness can be overcome by selectively immobilizing the liquid phase into the skin of a porous asymmetric membranes

  9. Glycerol extracting dealcoholization for the biodiesel separation process.

    Science.gov (United States)

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Numerical predictions of the separation of heavy components inside the trace gas concentrator

    International Nuclear Information System (INIS)

    Mo, J.D.

    1995-01-01

    The component with a heavier molecular weight can be separated from the one with a lighter molecular weight in a binary mixture by applying an appropriate pressure gradient. A centrifugal force field effectively generates the required pressure gradient and a favorable flow field along the radial direction in a trace gas concentrator for such an application. This paper presents the numerical predictions of the mass separation inside a trace gas concentrator, which enriches Xenon in air. A Navier-Stokes solver in primitive variables using a pressure based algorithm has been applied to solve for the flow fields. Subsequently, the transport equations with a strong centrifugal field are solved for the mass concentration. This study is the continued effort for the proof-of-concept of centrifugal separation of components with a considerable difference in their molecular weight in a binary mixture. The significant effects of rotational speed, flow field, and the geometrical configuration on the mass separation are presented in this paper

  11. Evaluation of phase separator number in hydrodesulfurization (HDS) unit

    Science.gov (United States)

    Jayanti, A. D.; Indarto, A.

    2016-11-01

    The removal process of acid gases such as H2S in natural gas processing industry is required in order to meet sales gas specification. Hydrodesulfurization (HDS)is one of the processes in the refinery that is dedicated to reduce sulphur.InHDS unit, phase separator plays important role to remove H2S from hydrocarbons, operated at a certain pressure and temperature. Optimization of the number of separator performed on the system is then evaluated to understand the performance and economics. From the evaluation, it shows that all systems were able to meet the specifications of H2S in the desired product. However, one separator system resulted the highest capital and operational costs. The process of H2S removal with two separator systems showed the best performance in terms of both energy efficiency with the lowest capital and operating cost. The two separator system is then recommended as a reference in the HDS unit to process the removal of H2S from natural gas.

  12. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas

    KAUST Repository

    Thompson, Joshua A.

    2014-07-01

    Zeolitic imidazolate framework (ZIF) materials are a promising subclass of metal-organic frameworks (MOF) for gas separations. However, due to the deleterious effects of gate-opening phenomena associated with organic linker rotation near the limiting pore apertures of ZIFs, there have been few demonstrations of improved gas separation properties over pure polymer membranes when utilizing ZIF materials in composite membranes for CO2-based gas separations. Here, we report a study of composite ZIF/polymer membranes, containing mixed-linker ZIF materials with ZIF-8 crystal topologies but composed of different organic linker compositions. Characterization of the mixed-linker ZIFs shows that the mixed linker approach offers control over the porosity and pore size distribution of the materials, as determined from nitrogen physisorption and Horváth-Kawazoe analysis. Single gas permeation measurements on mixed-matrix membranes reveal that inclusion of mixed-linker ZIFs yields membranes with better ideal CO2/CH4 selectivity than membranes containing ZIF-8. This improvement is shown to likely occur from enhancement in the diffusion selectivity of the membranes associated with controlling the pore size distribution of the ZIF filler. Mixed-gas permeation experiments show that membranes with mixed-linker ZIFs display an effective plasticization resistance that is not typical of the pure polymeric matrix. Overall, we demonstrate that mixed-linker ZIFs can improve the gas separation properties in composite membranes and may be applicable to aggressive CO2 concentrations in natural gas feeds. © 2013 Elsevier Inc. All rights reserved.

  13. Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator

    OpenAIRE

    Ganga Reddy C; Umesh Kuppuraj

    2015-01-01

    The removal of harmful particulate matter from power plant flue gas is of critical importance to the environment and its inhabitants. The present work illustrates the use of multi-cyclone separators to remove the particulate matter from the bulk of the gas exhausted to the atmosphere. The method has potential to replace conventional systems like electrostatic precipitator due to inherent low power requirement and low maintenance. A parametric model may be employed to design the sy...

  14. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...

  15. The effect of oil and gas content on the controllability and separation in a de-oiling hydrocyclone

    OpenAIRE

    Belaidi, Hafid

    2003-01-01

    The effect of free gas on cyclonic oil-water separation was examined using a geometry which sought to minimise problems with gas. Tests were carried out using the purpose built oil-water separation facility at Bradford University where pre-choke conditions could be partially simulated. Firstly, tests were carried out with water and gas-water to look at flow behaviour and control parameters, then comparative tests carried out with gas-oil-water. Comparisons were also made with tests data from ...

  16. Swift heavy ion induced modification in polycarbonate membrane for gas separation

    International Nuclear Information System (INIS)

    Rajesh Kumar; Prasad, Rajendra; Vijay, Y.K.; Das, D.

    2003-01-01

    Polymeric membranes are extensively used for commercial gas separation applications. Makrofol-KG (polycarbonate) is a glassy polymer. 40 μm thick sheet of Makrofol-KG was irradiated with 40 Ar (14.9 MeV/n) of fluence 10 3 ions/cm 2 and 20 μm thick sheet with 5.3 MeV α-particles of fluence 10 7 ions/cm 2 . The permeability of these polycarbonate membranes for H 2 and CO 2 was measured and also after etching in 6 N NaOH at 60 degC for different periods. Permeability is found to be increased with etching time. At a definite time, critical etching time, the permeability rapidly increases in PC. Positron annihilation lifetimes for unirradiated and irradiated membranes were measured with fast fast coincidence system to study the correlation of free volume hole concentration with gas separation properties. (author)

  17. Mass transfer apparatus and method for separation of gases

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.

    2018-01-16

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  18. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    Science.gov (United States)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-04-01

    Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  19. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  20. Novel studies of molecular orientation in synthetic polymeric membranes for gas separation

    International Nuclear Information System (INIS)

    Ismail, Ahmad Fauzi

    1998-01-01

    The main objective of this investigation was to produce a super-selective asymmetric membrane for gas separation. To achieve this, molecular orientation induced by rheological conditions during membrane fabrication was investigated and related to the gas separation performance of flat sheet and hollow fiber membranes. Infrared dichroism, a spectroscopic technique, was developed in the first phase of the research to directly measure molecular orientation in flat sheet membranes. The degree of molecular orientation was found to increase with increasing shear during fabrication which enhanced both pressure-normalised flux and selectivity of the coated membranes. The rheology of polymer solutions and the mechanism of molecular orientation have been treated in detail for membrane production. This is a novel approach since previous fundamental work has focused on the phase inversion process. The current study showed that rheological conditions during membrane fabrication have the utmost importance in enhancing membrane selectivity. The effects of molecular orientation at greater shear, as experienced by hollow fiber membranes during extrusion through the spinneret channel, were investigated in the second phase of this research. In order to produce a good quality fiber, a unique tube-in-orifice spinneret and a modified hollow fiber spinning rig were designed and fabricated. Thus the combined effects of reduced water activity in the bore coagulant during hollow fiber spinning and rheologically induced molecular orientation were investigated. The selectivity of the coated high shear hollow fiber membranes was heightened and even surpassed the recognised intrinsic selectivity of the polymer. Pressure-normalised flux also increased with increasing shear rate. In the third phase of this research phase inversion conditions were further optimised to give a superior skin layer and thus provide an even better platform for the advantageous effects of molecular orientation. These

  1. Characterising the vertical separation of shale-gas source rocks and aquifers across England and Wales (UK)

    Science.gov (United States)

    Loveless, Sian E.; Bloomfield, John P.; Ward, Robert S.; Hart, Alwyn J.; Davey, Ian R.; Lewis, Melinda A.

    2018-03-01

    Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for `safe separation' between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale-aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.

  2. Restoring solvent for nuclear separation processes

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    Solvent extraction separation processes are used to recover usable nuclear materials from spent fuels. These processes involve the use of an extractant/diluent (solvent) for separation of the reusable actinides from unwanted fission products. The most widely used processes employ tributyl phosphate as an extractant diluted with a normal-paraffin hydrocarbon. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. In most processes, the solvent is recycled after cleaning. Solvent cleaning generally involves scrubbing with a sodium carbonate solution. Studies at the Savannah River Laboratory have shown that carbonate washing, although removing residual solvent activity, does not remove more solvent-soluble binding ligands (formed by solvent degradation), which hold fission products in the solvent. Treatment of the solvent with a solid adsorbent after carbonate washing removes binding ligands and significantly improves recycled solvent performance. Laboratory work to establish the advantage of adsorbent cleaning and the development of a full-scale adsorption process is described. The application of this process for cleaning the first cycle solvent of a Savannah River Plant production process is discussed

  3. Tail gas treatment of SEWGS technology. Literature review on CO2 and H2S separation

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, E.N.; Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2011-12-15

    This literature review is the result of an investigation of the most important way to remove sulphur for the last decades. We will discuss Claus and Claus tail gas process options to solve the problem. Next to solutions which come from membranes, direct oxidation catalysis, from acid gas removal technology, sorbent technology, and liquid oxidation. Each field will be described and explained to understand in which way it could be suitable to separate CO2 and H2S and reach our goals with regard to CO2 transport and storage conditions. Finally, the target of this work will be to propose some interesting and promising solutions in view of future experiments.

  4. Fabrication of Separator Demonstration Facility process vessel

    International Nuclear Information System (INIS)

    Oberst, E.F.

    1985-01-01

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given

  5. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  6. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  7. Process for isotope separation

    International Nuclear Information System (INIS)

    Emile, B.F.M.

    1983-11-01

    A process is claimed for isotopic separation applied to isotopes of elements that can be placed in at least a physicochemical form in which the isotopic atoms or the molecules containing these atoms can be easily displaced and for which there are selective radiations preferentially absorbed by the isotopes of a certain type or by the molecules containing them, said absorption substantially increasing the probability of ionization of said atoms or molecules relative to the atoms or molecules that did not absorb the radiation. The process consists of placing the isotopic mixture in such a form, subjecting it in a separation zone to selective radiations and to an electrical field that produces migration of positive ions toward the negative electrodes and negative ions toward the positive electrodes, and withdrawing from certain such zones the fractions thus enriched in certain isotopes

  8. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    Energy Technology Data Exchange (ETDEWEB)

    Even, Julia

    2011-12-13

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  9. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  10. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    Hwang, Gab-Jin; Onuki, Kaoru; Shimizu, Saburo

    1998-01-01

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H 2 /N 2 ) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  11. Synthesis and characterization of polybenzoxazinone and its prepolymer using gas separation

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Brožová, Libuše; Pulyalina, A. Y.; Goikhman, M. Y.; Podeshvo, I. V.; Gofman, I. V.; Saprykina, N. N.; Polotskaya, G. A.

    2013-01-01

    Roč. 214, č. 24 (2013), s. 2867-2874 ISSN 1022-1352 R&D Projects: GA ČR GA104/09/1165 Institutional support: RVO:61389013 Keywords : gas separation * polybenzoxazinone * polymer membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.451, year: 2013

  12. Decontamination of radioactive process waste water by foam separation. Vol. 3

    International Nuclear Information System (INIS)

    Shakir, K.; Aziz, M.; Beheir, Sh.G.; Benyamin, K.; Samy, S.; Salama, H.N.

    1996-01-01

    On the basis of new studies and previous work from this laboratory, several foam separation techniques are considered feasible methods to carry out the separation of radioactive nuclides from simulated radioactive process waste water. Anionic or cationic collectors were used depending on the type of charge on the ion or precipitate to be removed. Sodium lauryl sulphate, aerosol-18 potassium oleate, acetyl trimethyl ammonium bromide, dodecyl pyridinium chloride and gelation were examined as the collector. Aluminium hydroxide, iron (III) oxyhydroxide and hydrous manganese dioxide were studied as the adsorbing floc adsorbing colloid flotation and copper ferrocyanide as the co precipitating agent in co precipitate flotation. The effects of varying the collector, the adsorbing colloid floc, co precipitant and metal ion concentrations, the PH, the gas flow rate, the ionic strength, length of the flotation column and multistage separation on the percentage removal, volume reduction and enrichment ratio were investigated. According to experimental results, adsorbing colloid flotation, whenever applicable, is the preferred method for decontamination. Radionuclide removal up to 100% were obtained. 4 figs., 13 tabs

  13. Decontamination of radioactive process waste water by foam separation. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, K; Aziz, M; Beheir, Sh G; Benyamin, K; Samy, S; Salama, H N [Nuclear Chemistry, and Radiation Protection Departments, Hot Laboratories and Nuclear Research Centers, atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    1996-03-01

    On the basis of new studies and previous work from this laboratory, several foam separation techniques are considered feasible methods to carry out the separation of radioactive nuclides from simulated radioactive process waste water. Anionic or cationic collectors were used depending on the type of charge on the ion or precipitate to be removed. Sodium lauryl sulphate, aerosol-18 potassium oleate, acetyl trimethyl ammonium bromide, dodecyl pyridinium chloride and gelation were examined as the collector. Aluminium hydroxide, iron (III) oxyhydroxide and hydrous manganese dioxide were studied as the adsorbing floc adsorbing colloid flotation and copper ferrocyanide as the co precipitating agent in co precipitate flotation. The effects of varying the collector, the adsorbing colloid floc, co precipitant and metal ion concentrations, the PH, the gas flow rate, the ionic strength, length of the flotation column and multistage separation on the percentage removal, volume reduction and enrichment ratio were investigated. According to experimental results, adsorbing colloid flotation, whenever applicable, is the preferred method for decontamination. Radionuclide removal up to 100% were obtained. 4 figs., 13 tabs.

  14. Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Zhenggong; Wang, Dong; Zhang, Shenxiang; Hu, Liang; Jin, Jian

    2016-05-01

    High-performance metal-organic framework (MOF)/polyimide (PI) mixed matrix membranes (MMMs) are fabricated by a facile strategy by designing the MOF/PI matrix interface via poly dopamine coating. The overall separation performance of the designed MMMs surpasses the state-of-the-art 2008 Robeson upper bound for the H2 /CH4 and H2 /N2 gas pairs and approaches the 2008 upper bound for the O2 /N2 gas pair. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin

  16. Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane.

    Science.gov (United States)

    Chen, Danke; Ying, Wen; Guo, Yi; Ying, Yulong; Peng, Xinsheng

    2017-12-20

    Two-dimensional (2D) materials-based membranes show great potential for gas separation. Herein an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), was confined in the 2D channels of MoS 2 -laminated membranes via an infiltration process. Compared with the corresponding bulk [BMIM][BF 4 ], nanoconfined [BMIM][BF 4 ] shows an obvious incremental increase in freezing point and a shift of vibration bands. The resulting MoS 2 -supported ionic liquid membrane (MoS 2 SILM) exhibits excellent CO 2 separation performance with high CO 2 permeance (47.88 GPU) and superb selectivity for CO 2 /N 2 (131.42), CO 2 /CH 4 (43.52), and CO 2 /H 2 (14.95), which is much better than that of neat [BMIM][BF 4 ] and [BMIM][BF 4 ]-based membranes. The outstanding performance of MoS 2 SILMs is attributed to the nanoconfined [BMIM][BF 4 ], which enables fast transport of CO 2 . Long-term operation also reveals the durability and stability of the prepared MoS 2 SILMs. The method of confining ILs in the 2D nanochannels of 2D materials may pave a new way for CO 2 capture and separation.

  17. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    Science.gov (United States)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  18. Gas hydrate formation process for pre-combustion capture of carbon dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Lee, Ju Dong; Linga, Praveen; Englezos, Peter; Kim, Young Seok; Lee, Man Sig; Kim, Yang Do

    2010-01-01

    In this study, gas hydrate from CO 2 /H 2 gas mixtures with the addition of tetrahydrofuran (THF) was formed in a semi-batch stirred vessel at various pressures and temperatures to investigate the CO 2 separation/recovery properties. This mixture is of interest to CO 2 separation and recovery from Integrated Gasification Combine Cycle (IGCC) power plants. During hydrate formation the gas uptake was determined and composition changes in the gas phase were obtained by gas chromatography. The impact of THF on hydrate formation from the CO 2 /H 2 was observed. The addition of THF significantly reduced the equilibrium formation conditions. 1.0 mol% THF was found to be the optimum concentration for CO 2 capture based on kinetic experiments. The present study illustrates the concept and provides thermodynamic and kinetic data for the separation/recovery of CO 2 (pre-combustion capture) from a fuel gas (CO 2 /H 2 ) mixture.

  19. The Efficient Separations and Processing Integrated Program

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Gephart, J.M.

    1994-08-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the US Department of Energy (DOE) complex. The ESPIP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESPIP supports applied R ampersand D leading to demonstration or use of these separations technologies by other organizations within DOE's Office of Environmental Restoration and Waste Management. Examples of current ESPIP-funded separations technologies are described here

  20. Methods of calculating engineering parameters for gas separations

    Science.gov (United States)

    Lawson, D. D.

    1980-01-01

    A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relationships it is then possible to predict the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids. The data are then used to evaluate organic and some inorganic liquids for use in gas separation stages or as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  1. Venturi Wet Gas Flow Modeling Based on Homogeneous and Separated Flow Theory

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2008-10-01

    Full Text Available When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.

  2. Isotope separation process

    International Nuclear Information System (INIS)

    Cabicar, J.; Stamberg, K.; Katzer, J.

    1983-01-01

    A process for separating isotopes by the method of controlled distribution is claimed. A first phase is either a solution of isotopic components and a ligand (from 10 - 6 M to a saturated solution), or a gaseous mixture of isotopic components, or a gaseous mixture of isotopic components and an inert gas. The isotopes are in the starting mixture in molar ratio from 1:10 5 to 1:10 - 5 . The second phase is a solid sorbent such as styrene-divinylbenzene ion exchangers, or bio-sorbents on the basis of mycelium of lower fungi and sorbents on the basis of cellulose, or an extraction agent such as tributyl phosphate and trioctyl amine, if need be, kept by a carrier such as teflon, silica gel and cellulose. The two-phase system exhibits non-linear equilibrium isotherm for sorption and/or desorption or for extraction and/or re-extraction. After bringing both phases into contact the rate of transport of isotopic components from one phase into another is not equal. Retardation of isotopic exchange takes place by complexation of isotopes with ligands such as cabonate, sulphate, citrate, chloride and ethylenediamine tetraacetate ions, or by using sorbents and extraction agents with chelating functional groups such as carboxyl and hyroxyl groups, groups on the basis of phosphorus, nitrogen and sulphur and/or by operating in darkness, or in the light having wave length between 2.5x10 2 and 10 9 nm. The contact time is between 10 - 2 and 10 6 s, temperature between 10 2 and 10 3 K, the number of stirrer revolutions between 10 - 2 and 10 4 revolutions per s, flow rate at column arrangement between 10 - 6 and 10 - 1 m/s and the size of particles of sorbent between 10 - 6 and 10 - 2 m

  3. Fundamental studies of separation processes. Technical progress report

    International Nuclear Information System (INIS)

    Rogers, L.B.

    1975-06-01

    Studies using high-precision gas chromatography and supercritical fluid chromatography have produced new types of information on liquid crystals and on behavior of substances in the region of the critical temperature, respectively. In addition, the first successful studies of the effects of pressure on cation exchange have been made using aqueous solutions of alkali metal nitrates. In contrast, progress on separations of isotopic species using gas chromatography has been disappointing. In that area, the chief accomplishment has been a determination of the levels of accuracy and precision with which isotopic abundances can be measured using our quadrupole mass spectrometer. (U.S.)

  4. Laser isotope separation studies in JAERI

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1986-01-01

    For uranium enrichment, Japan Atomic Energy Research Institute (JAERI) has been studying atomic vapor laser isotope separation since 1976, in addition to such separation methods as gas diffusion, chemical exchange and gas-dynamic techniques. Studies carried out to date in JAERI is briefly summarized in the first part of the report. Then, some major separation techniques which have been studied in JAERI are outlined, and typical results obtained are presented. A large part is devoted to the multiple-photon photoionization technique, which is commonly known as the atomic laser isotope separation method for uranium enrichment. It has such advantages as 1) very high spectral selectivity for the relevant isotope and 2) highly improved photoionizing effect by means of two- and three-step resonance photoionization processes. Here, the atomic laser isotope separation method is discussed in detail with respect to the evaporation process, energy levels, photoionization, selectivity, photoionization schemes, ion recovery, separation in macroscopic amounts, and separation of trace amounts of isotopes. Typical observed and claculated results related to these subjects are shown. In addition, the report briefly describes some other separation processes including laser induced chemical reaction, multiple photo-dissociation, multiple-photo excitation and UV dissociation, laser induced thermal diffusion, and laser centrifugation. (Nogami, K.)

  5. Transient Simulations of Gas-Oil-Water Separation Plants

    Directory of Open Access Journals (Sweden)

    Tor S. Schei

    1991-01-01

    Full Text Available A set of mathematical models for the dynamic simulation of offshore processing plants is developed. Each process unit is modeled separately, and the various models are integrated into a system for the simulation of an entire plant. The purpose of the simulation system is to study the effects of various disturbances and investigate appropriate control strategies. Important variables subject to control are pressure, flow rate, temperature, vessel liquid level and compressor speed. In separators the rate of interfacial mass transfer between the liquid and vapour phases at non-equilibrium is modeled as a first order time lag. The vapour liquid equilibrium ratio is linearized with respect to variations in pressure and temperature for each separator stage. A realistic scenario is chosen in order to demonstrate the capabilities of the simulation system.

  6. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  7. Separation of azeotropic mixtures of alcohols and water with FricDiff

    NARCIS (Netherlands)

    Breure, B.; Peters, E.A.J.F.; Kerkhof, P.J.A.M.

    2008-01-01

    FricDiff is an energy efficient separation process based on a difference in transport velocities of the components of a gas or vapor mixture when they diffuse through a sweep gas ('enhancer'). The separation process takes place inside the pores of a non-selective macro-porous barrier. In this paper

  8. Experimental study on CO2 frosting and clogging in a brazed plate heat exchanger for natural gas liquefaction process

    Science.gov (United States)

    Wu, Jitan; He, Tianbiao; Ju, Yonglin

    2018-04-01

    The plate-fin heat exchanger (PFHE), which has been widely used in natural gas liquefaction (LNG) industry at present, has some disadvantages such as being sensitive to the impurities in the feed gas, such as water, CO2 and H2S. Compared with the PFHE, the brazed plate heat exchanger (BPHE), which has been applied in some boil off gas (BOG) recycling LNG plants of small to middle size, has simpler inherent structure and higher impurity tolerance. In this study the BPHE is suggested to replace the PFHE to simplify or even omit the massive CO2 purification equipment for the LNG process. A set of experimental apparatus is designed and constructed to investigate the influence of the CO2 concentration of the natural gas on solid precipitation inside a typical BPHE meanly by considering the flow resistance throughout the LNG process. The results show that the maximum allowable CO2 concentration of the natural gas liquefied in the BPHE is two orders of magnitude higher than that in the PFHE under the same condition. In addition, the solid-liquid separation for the CO2 impurity is studied and the reasonable separating temperature is obtained. The solid CO2 should be separated below 135 K under the pressure of 3 MPa.

  9. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    Science.gov (United States)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  10. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  11. A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION

    Science.gov (United States)

    Frazer, J.W.

    1961-12-19

    A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)

  12. Flue Gas Desulphurization Processes

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Halhouli, K.A.; Abu-Ashur, B.M.

    1999-01-01

    Flue gas desulphurization process are discussed. These processes can be grouped into non-regenerable systems and regenerable systems. The non-regenerable systems produce a product which is either disposed of as waste or sold as a by-product e.g. lime/limestone process. While in the regenerable systems, e.g. Wellman-Lord process, the SO 2 is regenerated from the sorbent(sodium sulphite), which is returned to absorb more SO 2 . Also a newer technology for flue gas desulphurization is discussed. The Ispra process uses bromine as oxidant, producing HBr, from which bromine is regenerated by electrolysis. The only by-products of this process are sulphuric acid and hydrogen, which are both valuable products, and no waste products are produced. Suggested modifications on the process are made based on experimental investigations to improve the efficiency of the process and to reduce its costs

  13. Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation

    NARCIS (Netherlands)

    Ingole, Pravin G.; Baig, Muhammad Irshad; Choi, Wook; An, Xinghai; Choi, Won Kil; Lee, Hyung Keun

    2017-01-01

    To improve the water vapor/gas separation the hydroxylated TiO2(OH-TiO2) nanopartilces have been synthesized and surface of polysulfone (PSf) hollow fiber membrane (HFM) has been coated as thin film nanocomposite (TFN) membranes. To remove the water vapor from mixture gas, hollow fiber membrane has

  14. New directions in gas processing

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Papers presented at the Insight conference held on January 30, 1996 in Calgary, Alberta, were contained in this volume. The conference was devoted to a discussion of new directions in the gas processing business, the changing business environment, new processing technologies, and means by which current facilities agreements can be adapted to the new commercial reality. High operating costs which have resulted in the downsizing and restructuring of the industry, and partnering with a third party in the gathering and processing operations, with apparently beneficial result both to plant owners, as well to third party processors, received the most attention. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement, which defines the obligations of third parties, was the center of discussion. Regulatory changes and the industry's response to the changes was also on the agenda. Refs., tabs., figs

  15. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  16. Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2003-01-01

    Full Text Available This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, homogeneous and heterogeneous ice nucleation, coagulation, condensation and dissolution, gas retention during particle freezing, gas trapping in growing ice crystals, and reverse processes. Chemical equations are solved iteratively using a second order implicit integration method. Gas-particle interactions and coagulation are treated over various size structures, with fully mass conserving and non-iterative numerical solution schemes. Particle types include quinternary aqueous solutions composed of H2SO4, HNO3, HCl, and HBr with and without insoluble components, insoluble aerosol particles, and spherical or columnar ice crystals deriving from each aerosol type separately. Three case studies are discussed in detail to demonstrate the potential of the model to simulate real atmospheric processes and to highlight current research topics concerning aerosol and cirrus formation near the tropopause. Emphasis is placed on how the formation of cirrus clouds and the scavenging of nitric acid in cirrus depends on small-scale temperature fluctuations and the presence of efficient ice nuclei in the tropopause region, corroborating and partly extending the findings of previous studies.

  17. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Djoa, S. H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-04-15

    This paper describes a process developed for the retainment and separation of volatile (3H, 129 +131I) and gaseous (85Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 deg K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 deg K and low subpressure; deposition of krypton in solid form at 80 deg K after compression to about 6 bar; decontamination of 85krypton-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, e.g., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1/3 of the full capacity and can treat about 1 m3 STP/h helium, corresponding to a quantity of about 10,000 MW(e) HTGR-fuel reprocessing plant.

  18. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    International Nuclear Information System (INIS)

    Bohnenstingl, J.; Djoa, S.H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-01-01

    This paper describes a process developed for the retainment and separation of volatile ( 3 H, 129+131 I) and gaseous ( 85 Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 0 K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 0 K and low subpressure; deposition of krypton in solid form at 80 0 K after compression to about 6 bar; decontamination of 85 Kr-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, i.e., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1 / 3 of the full capacity and can treat about 1 m 3 STP/h helium, corresponding to a quantity of about 10,000 MW/sub e/ HTGR-fuel reprocessing plant

  19. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The present state of laser isotope separation of uranium

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Nemoto, Koshichi.

    1994-01-01

    As the methods of uranium enrichment, gas diffusion method and centrifugal separation method in which power consumption is less and the cost is low have been carried out. On the other hand, as the future technology, the research and development of laser isotope separation technology have been carried out. There are the atomic laser separation process in which the laser beam of visible light is irradiated to atomic state uranium and the molecular laser separation process in which far infrared laser beam is irradiated to uranium hexafluoride molecules. The atomic process is divided into three steps, that is, the processes of uranium evaporation, the reaction of uranium with laser beam and the recovery of enriched uranium. The principle of the laser separation is explained. The state of development of laser equipment and separation equipment is reported. The principle and the present state of development of the molecular separation process which consists of the cooling of UF 6 gas, the generation of high power 16 μm laser pulses and the collection of the reaction product are explained. The present state of both processes in foreign countries is reported. (K.I.)

  1. Magnetically Enhanced Solid-Liquid Separation

    Science.gov (United States)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  2. Experimental screening of porous materials for high pressure gas adsorption and evaluation in gas separations: application to MOFs (MIL-100 and CAU-10).

    Science.gov (United States)

    Wiersum, Andrew D; Giovannangeli, Christophe; Vincent, Dominique; Bloch, Emily; Reinsch, Helge; Stock, Norbert; Lee, Ji Sun; Chang, Jong-San; Llewellyn, Philip L

    2013-02-11

    A high-throughput gas adsorption apparatus is presented for the evaluation of adsorbents of interest in gas storage and separation applications. This instrument is capable of measuring complete adsorption isotherms up to 40 bar on six samples in parallel using as little as 60 mg of material. Multiple adsorption cycles can be carried out and four gases can be used sequentially, giving as many as 24 adsorption isotherms in 24 h. The apparatus has been used to investigate the effect of metal center (MIL-100) and functional groups (CAU-10) on the adsorption of N(2), CO(2), and light hydrocarbons on MOFs. This demonstrates how it can serve to evaluate sample quality and adsorption reversibility, to determine optimum activation conditions and to estimate separation properties. As such it is a useful tool for the screening of novel adsorbents for different applications in gas separation, providing significant time savings in identifying potentially interesting materials.

  3. Simulation, integration, and economic analysis of gas-to-liquid processes

    International Nuclear Information System (INIS)

    Bao, Buping; El-Halwagi, Mahmoud M.; Elbashir, Nimir O.

    2010-01-01

    Gas-to-liquid (GTL) involves the chemical conversion of natural gas into synthetic crude that can be upgraded and separated into different useful hydrocarbon fractions including liquid transportation fuels. Such technology can also be used to convert other abundant natural resources such as coal and biomass to fuels and value added chemicals (referred to as coal-to-liquid (CTL) and biomass-to-liquid (BTL)). A leading GTL technology is the Fischer-Tropsch (FT) process. The objective of this work is to provide a techno-economic analysis of the GTL process and to identify optimization and integration opportunities for cost saving and reduction of energy usage while accounting for the environmental impact. First, a base-case flowsheet is synthesized to include the key processing steps of the plant. Then, a computer-aided process simulation is carried out to determine the key mass and energy flows, performance criteria, and equipment specifications. Next, energy and mass integration studies are performed to address the following items: (a) heating and cooling utilities, (b) combined heat and power (process cogeneration), (c) management of process water, (c) optimization of tail gas allocation, and (d) recovery of catalyst-supporting hydrocarbon solvents. Finally, these integration studies are conducted and the results are documented in terms of conserving energy and mass resources as well as providing economic impact. Finally, an economic analysis is undertaken to determine the plant capacity needed to achieve the break-even point and to estimate the return on investment for the base-case study. (author)

  4. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  5. Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

    NARCIS (Netherlands)

    Czyperek, M.; Zapp, P.; Bouwmeester, Henricus J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.

    2010-01-01

    The objective of the “MEM-BRAIN” project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO2 capture

  6. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  7. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  8. Radionuclide separations and processing for defense water management

    International Nuclear Information System (INIS)

    Fryberger, T.B.

    1993-01-01

    An overview is given of the Department of Energy's Efficient Separations and Processing Integrated Program (ESPIP). This program sponsors research in advanced chemical separations for removal of radionuclides and hazardous components from radioactive defense wastes. Separations processing will reduce the volume of high-level waste that must be disposed of in a deep geological repository and will improve the quality of low-level wastes acceptable for near-surface disposal. DOE defense complex processing needs as well as technologies that are currently under development in the program are discussed

  9. Gas/liquid separator for BWR type reactor

    International Nuclear Information System (INIS)

    Soma, Naoshi; Akimoto, Seiichi; Yokoyama, Iwao.

    1993-01-01

    A two phase gas/liquid flow generated at a heating portion of a nuclear reactor is swirled by inlet vanes. The phase gas/liquid flow uprises as a vortex flow in a vortex cylinder, and a liquid phase of a high density gathers at the outer circumference of the vortex cylinder. The liquid phase gathered at the outer circumference is collected at the inlet of a discharge flow channel which protrude into the vortex cylinder and in a three-step structure, and introduced into a recycling liquid phase passing through the discharge flow channel for liquid phase. There is provided a structure that separated liquid collected at the lowermost state in the inlet of the three-step discharge flow channel inlet descends in the discharge flow channel, then uprises in an uprising flow channel and is introduced into the recycling liquid phase by way of a discharge flow channel exit. The height of the discharge flow channel exit is determined equal to that of a liquid level of the recycling liquid phase during rated operation of the reactor. Accordingly, even in a case where the liquid level in the recycling liquid phase is lowered, the liquid level of the uprising flow channel is kept equal to that during rated operation. (I.N.)

  10. Development and characterization of a metallic substrat for nanostructured membranes in the separation of gas mixtures; Entwicklung und Charakterisierung eines metallischen Substrats fuer nanostrukturierte Gastrennmembranen

    Energy Technology Data Exchange (ETDEWEB)

    Brands, Katharina

    2010-07-01

    In order to minimize the further increase of CO{sub 2}-content in the atmosphere, efforts are made to separate and store CO{sub 2} from exhaust gases of fossil power plants. Beside well-established separation techniques like chemical scrubber, the application of membrane technology is intensively investigated. One focus of this thesis is the development of metal supported substrates for microporous ceramic gas separation membranes, which are expected to have a higher mechanical stability than ceramic supported substrates. Starting with commercial porous steel substrates, interlayers are applied by wet powder spraying. For the interlayers the materials 1.4404-stainless steel and TiO{sub 2} or 1.4845-stainless steel and yttria stabilized zirconia (8YSZ) are chosen. The interlayers have to be defect-free, as minimal defects can deteriorate the membrane performance. By a subsequent mechanical treatment and an adjustment of the viscosity of the 8YSZ-suspension, the surface quality is considerably increased. At the same time the limits of the wet powder spraying process become obvious, as sporadic agglomerates, which are formed during the spraying process, cannot be totally avoided. The metal supported substrates are characterized regarding to the interaction between steel and ceramic, the roughness of the layers compared to polished ceramic substrates, the mechanical properties and the flow through the substrates. Furthermore microporous ceramic gas separation membranes are deposited on wet powder sprayed and dip coated substrates. The selectivity of these membranes is above Knudsen selectivity. The other focus of the thesis is the exposure of substrates and membranes to real flue gas conditions. Beside microporous ceramic membranes polymer membranes are analysed as a reference, which show a higher state of development compared to microporous ceramic membranes. For this purpose a test bed is built up in the EnBW ''Rheinhafendampfkraftwerk RDK 7&apos

  11. Carbon Nano tubes Based Mixed Matrix Membrane for Gas Separation

    International Nuclear Information System (INIS)

    Sanip, S.M.; Ismail, A.F.; Goh, P.S.; Norrdin, M.N.A.; Soga, T.; Tanemura, M.; Yasuhiko, H.

    2011-01-01

    Carbon nano tubes based mixed matrix membrane (MMM) was prepared by the solution casting method in which the functionalized multi walled carbon nano tubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt % on the gas separation properties were looked into. The morphologies of the MMM also indicated that at 0.7 % loading of f- MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity. (author)

  12. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    Science.gov (United States)

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-05-19

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data.

  13. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  14. Separation, storage and disposal of krypton-85

    International Nuclear Information System (INIS)

    1980-01-01

    Technical means available for the retention of 85 Kr and its immobilization, storage and disposal are reviewed. Cryogenic processes for the separation of krypton and xenon from diluting gases are discussed in more detail. Besides the cryogenic processes, a liquid adsorption process for reprocessing off-gases and charcoal adsorption and membrane processes for reactor off-gases are also dealt with. The retained krypton can be stored in pressurized containers with air or water cooling. The containers can be kept in engineered storage facilities for an intermediate period or until the 85 Kr has decayed. Alternatively, the krypton may be encapsulated in a solid. The injection of gases containing krypton into suitable geologic strata may also be possible. Much of the equipment required for the separation and storage of krypton, well known from ordinary technology, often needs some adaptation. Further R and D work is, however, needed to solve some problems which are specific to highly concentrated fission krypton. The subject is reviewed under the following headings: methods available for the separation of krypton from off-gases; separation of krypton from reactor off-gas; separation of krypton from reprocessing off-gas; conditioning methods; engineering storage; transportation; disposal

  15. Fabrication of Functionalized MOFs Incorporated Mixed Matrix Hollow Fiber Membrane for Gas Separation

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2017-01-01

    Full Text Available The metal-organic framework (MOFs of MIL-53 was functionalized by aminosilane grafting and then incorporated into Ultem®1000 polymer matrix to fabricate mixed matrix hollow fiber membrane (MMHFM with high separation performance. SEM, XRD, and TGA were performed to characterize the functionalized MIL-53 and prepared MMHFM. The filler particles were embedded in membrane successfully and dispersed well in the polymer matrix. The incorporation of MOFs endowed MMHFM better thermal stability. Moreover, effects of solvent ratio in spinning dope, spinning condition, and testing temperature on gas separation performance of MMHFM were investigated. By optimizing dope composition, air gap distance, and bore fluid composition, MMHFM containing functionalized MIL-53 achieved excellent gas permeance and CO2/N2 selectivity. The CO2 permeance increased from 12.2 GPU for pure Ultem HFM to 30.9 GPU and the ideal CO2/N2 selectivity was enhanced from 25.4 to 34.7 simultaneously. Additionally, gas permeance increased but the selectivity decreased with the temperature increase, which followed the solution-diffusion based transport mechanism.

  16. Process and device for separating a gaseous mixture from isotope compounds

    International Nuclear Information System (INIS)

    Gajewski, W.

    1980-01-01

    The UF 6 -gas mixture is adiabatically expanded through a nozzle and cooled to below 100 K. The emerging gas mixture beam is then totally taken up by radiation technology by a large number of sequentially ignited pulsed lasers of the same or different frequencies. The selective initiation and chemical or physical separation takes place along a path 2 cm long. (DG) [de

  17. Computational simulation of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos; Ventikos, Yiannis

    2005-08-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the quasitransient process of apheresis. To this end a Lagrangian-Eulerian model has been developed which tracks the blood particles within a delineated two-dimensional flow domain. Within the Eulerian method, the fluid flow conservation equations within the separator are solved. Taking the calculated values of the flow field and using a Lagrangian method, the displacement of the blood particles is calculated. Thus, the local blood density within the separator at a given time step is known. Subsequently, the flow field in the separator is recalculated. This process continues until a quasisteady behavior is reached. The simulations show good agreement with experimental results. They shows a complete separation of plasma and red blood cells, as well as nearly complete separation of red blood cells and platelets. The white blood cells build clusters in the low concentrate cell bed.

  18. Evaluation and Modification of Processes for Bioethanol Separation and Production

    Directory of Open Access Journals (Sweden)

    Johnner P Sitompul

    2012-04-01

    Full Text Available This paper concerns on process evaluation and modification for bioethanol separation and production by applying pinch technology. Further, the paper is also focused on obtaining a most energy-efficient process among several processes. Three basic process configurations of bioethanol separation and production were selected for this study. The three separations and production systems are Othmer process, Barbet process and a separation process that operates under vacuum condition. Basically, each process is combination of Danish Distilleries process with a separation system yielding 95% (v/v bioethanol. The production capacity of the plant is estimated about 4 x 107 litre of bioethanol 95% (v/v per year. The result of the studies shows that the most energy efficient process among the three processes evaluated is the Othmer process, followed by the Barbet process and the process involving vacuum operation. The evaluation also shows that further energy saving can be carried for Barbet and Othmer process configuration when Tmin = 10oC for heat exchange possible.

  19. Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment

    International Nuclear Information System (INIS)

    Cai, Jing; Xu, Chun-Gang; Xia, Zhi-Ming; Chen, Zhao-Yang; Li, Xiao-Sen

    2017-01-01

    Highlights: •Hydrate-based methane separation was achieved in the large scale using SHW-II. •Bubbling method was beneficial to reduce energy consumption. •The optimal conditions were determined. •The morphology and flow characteristic of hydrate formation were filmed. -- Abstract: In this work, the hydrate-based methane (CH 4 ) separation from coal mine methane (CMM) gas mixture was carried out by bubbling with a scale-up equipment (SHW-II). The influences of gas/liquid volume ratios (0.25 and 0.60), gas bubble sizes (diameter: 20, 50 and 100 μm) and gas flow rates (7.50, 16.13 and 21.50 mL/min/L) on gas consumption and CH 4 recovery were systematically investigated at 277.15 K and 1.50 MPa. The hydrate formation morphology was filmed by a camera and the hydrate structure was determined by powder X-ray diffraction (PXRD). Gas bubbles generated when gas mixture flowed into bulk solution through a bubble plate from the bottom of SHW-II. Initially, the gas hydrates formed at the bubble boundary and grew up as the shell around the bubble with the continuously rising of the gas bubble, and finally accumulated in the interface between the gaseous phase and solution. The experimental results showed that the THF/CH 4 /N 2 hydrate in SHW-II presented structure II (sII). The gas/liquid volume ratio, gas bubble size and gas flow rate had influences on gas consumption and CH 4 recovery. The increase of gas/liquid volume ratio resulted in the decrease of gas consumption and CH 4 recovery, while the increase of gas flow rate caused the decrease of gas consumption. Both the maximum gas consumption and CH 4 recovery were achieved at the gas bubble with diameter of 50 μm. The optimal operating condition for large-scale CH 4 separation via clatharate hydrate was comprehensively defined as the gas/liquid volume ratio of 0.25, the gas bubble diameter of 50 μm and the gas flow rate of 16.13 mL/min/L at 277.15 K and 1.50 MPa.

  20. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    International Nuclear Information System (INIS)

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q 2 ) must be separated from an inert gas such as He, Ar and N 2 . Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q 2 from N 2 . Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q 2 pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies

  1. Radioisotope techniques for process optimisation and control in the offshore oil and gas industries

    International Nuclear Information System (INIS)

    Charlton, J.S.

    2002-01-01

    For over fifty years, radioisotope technology has been used by the oil industry to solve problems and to help optimise process operations. The widespread development of offshore oil and gas fields has brought, and continues to bring, new challenges and, in response, new or modified applications of radioisotope technology have been introduced. This paper presents case studies, which illustrate the use of radioisotopes, both in the sub-sea environment and on the offshore production platforms. On the platform, radioisotope techniques applied singly or in combination, have been applied to the performance assessment of oil/gas separation and gas dehydration units. Novel nucleonic instrumentation has been developed for the control of three-phase separators. Sub-sea, radioactive tracers and/or sealed sources have been used to investigate the integrity of submerged structures and to troubleshoot pipeline problems. The continuing expansion in the use of this technology stems from industry increasing awareness of its versatility and from the fact that the benefits it confers can be obtained at a relatively modest cost. Examples of economic benefit described in the paper are associated with production enhancements derived from the ability of radioisotope technology to measure performance and diagnose problems on line, without disrupting process operations in any way. (Author)

  2. Separation of cis- and trans-Asarone from Acorus tatarinowii by Preparative Gas Chromatography

    Directory of Open Access Journals (Sweden)

    H. L. Zuo

    2012-01-01

    Full Text Available A preparative gas chromatography (pGC method was developed for the separation of isomers (cis- and trans-asarone from essential oil of Acorus tatarinowii. The oil was primarily fractionated by silica gel chromatography using different ratios of petroleum ether and ethyl acetate as gradient elution solvents. And then the fraction that contains mixture of the isomers was further separated by pGC. The compounds were separated on a stainless steel column packed with 10% OV-101 (3 m × 6 mm, i.d., and then the effluent was split into two gas flows. One percent of the effluent passed to the flame ionization detector (FID for detection and the remaining 99% was directed to the fraction collector. Two isomers were collected after 90 single injections (5 uL with the yield of 178 mg and 82 mg, respectively. Furthermore, the structures of the obtained compounds were identified as cis- and trans-asarone by 1H- and 13C-NMR spectra, respectively.

  3. Total site integration of light hydrocarbons separation process

    OpenAIRE

    Ulyev, L.; Vasilyev, M.; Maatouk, A.; Duic, Neven; Khusanovc, Alisher

    2016-01-01

    Ukraine is the largest consumer of hydrocarbons per unit of production in Europe (Ukraine policy review, 2006). The most important point is a reduction of energy consumption in chemical and metallurgical industries as a biggest consumer. This paper deals with energy savings potential of light hydrocarbons separation process. Energy consumption of light hydrocarbons separation process processes typical of Eastern European countries were analysed. Process Integration (PI) was used to perform a ...

  4. Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow; SEMIANNUAL

    International Nuclear Information System (INIS)

    Mohan, Ram S.; Shoham, Ovadia

    1999-01-01

    The objective of this five-year project (October, 1997-September, 2002) is to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project will be executed in two phases. Phase I (1997-2000) will focus on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC) Separator. The activities of this phase will include the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000-2002), the developed GLCC separator will be tested under high pressure and real crudes conditions. This is crucial for validating the GLCC design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP

  5. Separation of Gas Mixtures by New Type of Membranes – Dynamic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Setničková, Kateřina; Šíma, Vladimír; Petričkovič, Roman; Řezníčková Čermáková, Jiřina; Uchytil, Petr

    2016-01-01

    Roč. 160, FEB 29 (2016), s. 132-135 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * methane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  6. Working under the PJVA gas processing agreement

    International Nuclear Information System (INIS)

    Collins, S.

    1996-01-01

    The trend in the natural gas industry is towards custom processing. New gas reserves tend to be smaller and in tighter reservoirs than in the past. This has resulted in plants having processing and transportation capacity available to be leased to third parties. Major plant operators and owners are finding themselves in the business of custom processing in a more focused way. Operators recognize that the dilution of operating costs can result in significant benefits to the plant owners as well as the third party processor. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement were discussed. Details of the standard agreement that clearly defines the responsibilities of the third party producer and the processor were explained. In addition to outlining obligations of the parties, it also provides a framework for fee negotiation. It was concluded that third party processing can lower facility operating costs, extend facility life, and keep Canadian gas more competitive in holding its own in North American gas markets

  7. Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation.

    Science.gov (United States)

    Wang, Zhenggong; Ren, Huiting; Zhang, Shenxiang; Zhang, Feng; Jin, Jian

    2018-03-09

    Carbon molecular sieve (CMS)-based membranes have attracted great attention because of their outstanding gas-separation performance. The polymer precursor is a key point for the preparation of high-performance CMS membranes. In this work, a microporous polyimide precursor containing a Tröger's base unit was used for the first time to prepare CMS membranes. By optimizing the pyrolysis procedure and the soaking temperature, three TB-CMS membranes were obtained. Gas-permeation tests revealed that the comprehensive gas-separation performance of the TB-CMS membranes was greatly enhanced relative to that of most state-of-the-art CMS membranes derived from polyimides reported so far. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  9. Optimization of the gas chromatographic separations; Optimacion de las separaciones cromatograficas en fase gaseosa

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L

    1973-07-01

    A review and a critical study on the optimization of the gas chromatographic separations are made. After dealing with the fundamental gas chromatographic equations, some methods of expressing column performances are discussed: performance indices, performance parameters, resolution and effective plate number per unit time. This is completed with a comparative study on performances of various types of columns. Moreover, optimization methods for operating chromatographic conditions are extensively dealt with: as resolution optimization, separation time, and normalization techniques for the time of analysis in order to achieve the maximum resolution at constant time. Finally, some others non operating parameters such as: selectivity of stationary phases, column preparation and optimization methods by means of computers are studied. (Author) 68 refs.

  10. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery

    Institute of Scientific and Technical Information of China (English)

    Ming-Xue Wu; Ying-Wei Yang

    2017-01-01

    Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.

  11. Performance Characterization of Gas-Solid Cyclone for Separation of Particle from Syngas Produced from Food Waste Gasifier Plant

    Directory of Open Access Journals (Sweden)

    Osezua O. Ibhadode

    2017-06-01

    Full Text Available A biofuel from any biodegradable formation process such as a food waste bio-digester plant is a mixture of several gases such as methane (CH4, carbon dioxide (CO2, hydrogen sulfide (H2S, ammonia (NH3 and impurities like water and dust particles. The results are reported of a parametric study of the process of separation of methane, which is the most important gas in the mixture and usable as a biofuel, from particles and H2S. A cyclone, which is a conventional, economic and simple device for gas-solid separation, is considered based on the modification of three Texas A&M cyclone designs (1D2D, 2D2D and 1D3D by the inclusion of an air inlet tube. A parametric sizing is performed of the cyclone for biogas purification, accounting for the separation of hydrogen sulfide (H2S and dust particles from the biofuel. The stochiometric oxidation of H2S to form elemental sulphur is considered a useful cyclone design criterion. The proposed design includes geometric parameters and several criteria for quantifying the performance of cyclone separators such as the Lapple Model for minimum particle diameter collected, collection efficiency and pressure drop. For biogas volumetric flow rates between 0 and 1 m/s and inlet flow velocities of 12 m/s, 15 m/s and 18 m/s for the 1D2D, 2D2D and 1D3D cyclones, respectively, it is observed that the 2D2D configuration is most economic in terms of sizing (total height and diameter of cyclone. The 1D2D configuration experiences the lowest pressure drop. A design algorithm coupled with a user-friendly graphics interface is developed on the MATLAB platform, providing a tool for sizing and designing suitable cyclones.

  12. Separative performance transients in a gas centrifuge

    International Nuclear Information System (INIS)

    Olander, D.R.

    1979-01-01

    A general method has been developed to calculate the behavior of the exit compositions from a gas centrifuge under unsteady conditions. The method utilizes the basic enrichment gradient equations derived by Cohen, which, in this case, contain time derivatives of the partial 235 U inventories. These partial differential equations are converted to ordinary differential equations by a linear approximation to the axial concentration distribution for use in the inventory terms only. With this simplification, analytical solution is possible for the feed concentration transient. The transient driven by a change in the feed flow rate, however, requires numerical solution. For analysis of ideal cascades in the unsteady state, the transient flow and separation characteristics of the centrifuge must be combined with total uranium and 235 U material balances on each stage

  13. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water.

    Science.gov (United States)

    Sun, Jian-Ke; Ji, Min; Chen, Cheng; Wang, Wu-Gen; Wang, Peng; Chen, Rui-Ping; Zhang, Jie

    2013-02-25

    A bipyridinium ligand with a charge separated skeleton has been introduced into a metal-organic framework to yield a porous material with charge-polarized pore space, which exhibits selective adsorption for polar guest molecules and can be further used in gas chromatography for the separation of alcohol-water mixtures.

  14. Numerical simulation of gas-solid two-phase flow in U-beam separator

    International Nuclear Information System (INIS)

    Zhou, X Y; Chen, X P; Dou, H S; Zhang, H Z; Ruan, J M

    2015-01-01

    Numerical simulation is carried out for gas-solid two-phase flow in a U-beam separator. In this study, the U-beam is altered with the inlet fins in order to improve the performance of the separator. The inlet fin angle of the separator are 30°, 35°, 40°, 45°, 50°, 55 ° and 60°. The governing equations are the Reynolds-Averaged Navier-Stokes equation with the standard k-ε model and the discrete phase model (DPM) describing the discrete two - phase flow as well as stochastic tracking model. Results show that the pressure drop deviation with fins is within 3% from those without fins. It is found that there is a maximum separation efficiency at the fin angle of 35°. Fin induces generation of a stagnation region which could collect particles and lead to change of vortical structures. The fin induced flow also causes the turbulent intensity inside the baffle to decrease to facilitate separation

  15. Separation of gaseous air pollutants using membrane contactors

    Science.gov (United States)

    Sverak, T.; Bulejko, P.; Ostrezi, J.; Kristof, O.; Kalivoda, J.; Kejik, P.; Mayerova, K.; Adamcik, M.

    2017-10-01

    This work deals with the separation of CO2 gaseous pollutant from gas mixtures to a water solution using the laboratory contactor. The laboratory set process parameters showed the rate of carbon dioxide transition through the interface in a so promising level the contactor separators can be considered as a very promising pathway to reduce the content of this greenhouse gas from the air.

  16. Fluid Phase Separation (FPS) experiment for flight on the shuttle in a Get Away Special (GAS) canister: Design and fabrication

    Science.gov (United States)

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid that will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The phase separation experiment is totally self-contained, with three levels of containment on all fluids, and provides all necessary electrical power and control. The controller regulates the temperature of the fluid and controls data logging and sampling. An astronaut-activated switch will initiate the experiment and an unmaskable interrupt is provided for shutdown. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS 42 in April 1991. Presented here are the design and the production of a fluid phase separation experiment for rapid implementation at low cost.

  17. Gas processing industrial hygiene needs

    International Nuclear Information System (INIS)

    D'Orsie, S.M.

    1992-01-01

    Handling of gases and natural gas liquids provides many opportunities for workers to be exposed to adverse chemical and physical agents. A brief overview of common hazards found in the processing of gas and natural gas liquids is presented in this paper. Suggestions on how an employer can obtain assistance in evaluating his workplace are also presented.presented

  18. FCC riser quick separation system: a review

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2016-10-01

    Full Text Available Abstract The riser reactor is the key unit in the fluid catalytic cracking (FCC process. As the FCC feedstocks become heavier, the product mixture of oil, gas and catalysts must be separated immediately at the outlet of the riser to avoid excessive coking. The quick separation system is the core equipment in the FCC unit. China University of Petroleum (Beijing has developed many kinds of separation system including the fender-stripping cyclone and circulating-stripping cyclone systems, which can increase the separation efficiency and reduce the pressure drop remarkably. For the inner riser system, a vortex quick separation system has been developed. It contains a vortex quick separator and an isolated shell. In order to reduce the separation time, a new type of separator called the short residence time separator system was developed. It can further reduce the separation time to less than 1 s. In this paper, the corresponding design principles, structure and industrial application of these different kinds of separation systems are reviewed. A system that can simultaneously realize quick oil gas separation, quick oil gas extraction and quick pre-stripping of catalysts at the end of the riser is the trend in the future.

  19. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced

  20. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    Science.gov (United States)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but

  1. Research on the separation properties of empty-column gas chromatography (EC-GC) and conditions for simulated distillation (SIMDIS).

    Science.gov (United States)

    Boczkaj, Grzegorz; Kamiński, Marian

    2013-10-01

    Previous studies have revealed it is possible to separate a high-boiling mixture by gas chromatography in empty fused-silica capillary tubing rather than in columns coated with stationary phase. Chromatographic separation occurs solely on the basis of the different boiling points of the substances separated. The high similarity of such separations to those in classic distillation seems advantageous when gas chromatography is used for simulated distillation. This paper presents results from further research on the separation properties of empty fused silica tubing. The efficiency of this chromatographic system has been examined. The usefulness of such conditions has been studied for simulated distillation, i.e. to determine the boiling-point distribution of complex mixtures, mainly petroleum fractions and products, on the basis of their retention relative to reference substances. The results obtained by use of empty-column gas chromatography (EC-GC) and by use of classical simulated distillation columns have been compared for solutes of different polarity. Studies revealed boiling points determined by EC-GC were more accurate than those obtained by the standard method of simulated distillation.

  2. Thief process for the removal of mercury from flue gas

    Science.gov (United States)

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  3. Experimental study of xenon isotopes production by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou Mingsheng; Liang Xiongwen; Zhang Yonggang; Dong Jinping

    2006-01-01

    The gas centrifuge technology is studied for the separation of Xe isotopes. The nature Xe is chosen as processing gas. A four-state cascade is designed to separate 124 Xe to a concentration of being greater than 65% in three separation runs. 124 Xe can be enriched to a concentration 99% in more separation runs using a cascade of more gas centrifuges. (authors)

  4. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  5. Study of condensate composition during field processing of gas of the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Kuldzhayev, B.A.; Annamukhamedov, M.B.; Makarov, V.V.; Serbnenko, S.R.; Talalayev, Ye.I.

    1983-01-01

    Studies were made of the composition and properties of condensates from field separators of the East Shatlyk field. The expediency is shown of separate collection of the condensates into a separate container and used for local needs as the diesel fuel. The condensates from the UNTS separators are used as chemical raw material to produce the lowest olephins by pyrolysis of gas-oil fraction and normal paraffins from kerosene-gas-oil part to obtain the protein-vitamin concentrates.

  6. Software for the simulation of gases separation instalations with zeolite membranes

    OpenAIRE

    Yoenia M. Martínez Díaz; Dr. Carlos R. González González; MSc. Osmar Leyet Fernández; Dr. Omar J. Ochoa Rodríguez

    2013-01-01

    The simulation of gases separation processes is a very important field of the scientific work; it affects directly the chemical technologies related to petroleum refining, petrochemical, fine chemistry, gaseous fuels (methane, synthetic gas and hydrogen) and biotechnology, among other economic activities. This paper, presents an important tool for the simulation of gas separation processes using zeolite membranes in several configurations. The tool is based on a mathematic...

  7. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  8. Separating oil from water

    Energy Technology Data Exchange (ETDEWEB)

    Webb, C

    1991-04-11

    The technology available to deal with oil spills has assumed many new faces in recent years. Methods of dealing with small-scale pollution in the process industries and vast oil slicks such as that in the Gulf have developed in parallel. The progress being made in finding new means of separating oil from water is reported and the relative merits of bioremediation, hydrocylones, horizontal separators and gas flotation are discussed. (author).

  9. Natural gas retailing: writing the last chapter of natural gas deregulation

    International Nuclear Information System (INIS)

    Bjerkelund, T.

    1995-01-01

    Under the A greement on Natural Gas Markets and Prices of October 1985, the Canadian federal government agreed to deregulate the price of natural gas and to allow a competitive gas market to develop. Several beneficial changes that have occurred as a result of the deregulation were described, including the Industrial Gas Users Association's (IGUA) view on the marketing and sale of natural gas by local gas distributor's (LDC) and the sale within the LDC franchise. IGUA's support for the separation between LDC distribution and LDC sales and marketing activities as the last step in deregulation process, was explained. Several arguments for the opposing view were also discussed. Recommendations were made for effective separation of LDC distribution and LDC sales/marketing activities

  10. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  11. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    Science.gov (United States)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  12. Flow and separation in gas centrifuge with Beams type circulation

    International Nuclear Information System (INIS)

    Ajsen, Eh.M.; Borisevich, V.D.; Levin, E.V.

    1992-01-01

    Structure of the secondary circulation flows in the working chamber of gas centrifuge for uranium isotope separation is studied using the numerical methods. Influence of the circulation thermal component on the centrifuge efficiency is analyzed. The contribution of useful component concentration difference of binary isotope mixture in feeding flows to the centrifuge efficiency is determined. Dependence of concentration optimal difference, whereby the maximum efficiency is achieved, on temperature distribution on the rotor side wall is found

  13. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Les techniques de séparation de gaz par membranes Gas Separation Techniques by Membranes

    Directory of Open Access Journals (Sweden)

    Avrillon R.

    2006-11-01

    high permeability and good mechanical strength. This structure has a thin dense and selective skin (0. 1 to 1 µm thick supported by a thick microporous substructure (50 to 200 µm. Such membranes come either in a flat shape or in the form of hollow fibers with their skin outside. The asymmetric structure is obtained by the so-called phase inversiontechnique, which consists in transforming a homogeneous polymer solution into a two-phase medium made up of a polymer-rich phase and a polymer-poor phase. The continuous rich phase prefigures the pore walls of the substructure. Once the poor phase becomes continuous, it will make up a network of communicating pores. Phase inversion can be caused in several ways: (a solvent departure by evaporation (dry process (b introduction of a nonsolvent (wet process (c dry-wet process (d temperature reduction (thermal process. The dense skin is formed on the side where evaporation takes place or where contact is made with the nonsolvent, or again on the cooled side (with the other side being in contact with the support for a flat membrane and a more or less coagulating liquid with a hollow fiber. A dense skin is formed by the superficial polymer overconcentration resulting from solvent evaporation or from its extraction by the nonsolvent before phase inversion. Figure 6 shows a ternary polymer-solvent-nonsolvent isothermal phase diagram on which arrows indicate how the homogeneous polymer solution (I evolves toward a liquidliquid phase separation (II or toward a gel structure (III. Industrial Development -Industrial permeators have large membrane surface areas in a compact form. These areas can be up to 500 m²/m³ for the flat version and up to 8000 m²/m³ for the hollow-fiber version. This compactness is obtained by the spiral winding of flat membranes or by the grouping of hollow fibers in bundles. Fig. 7 shows both types of permeators. The advantages of gas permeation lie in the small investment required, low energy consumption

  15. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  16. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  17. Parameter study on Japanese proposal of ITER hydrogen isotope separation system

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Enoeda, Mikio; Tanaka, Shigeru; Ohokawa, Yoshinao; Ohara, Atsushi; Nagakura, Masaaki; Naito, Taisei; Nagashima, Kazuhiro.

    1991-01-01

    As part of Japanese design contribution in the ITER activity, conceptual design of an entire ITER tritium system and their safety analysis have been carried out through the three-year period since 1988. The tritium system includes the following subsystems; - Fuelling (gas puffing and pellet injection) subsystem, - Torus vacuum pumping subsystem, - Plasma exhaust gas purification subsystem, - Hydrogen isotope separation subsystem, - NBI gas processing subsystem, - Blanket tritium recovery subsystem, - Tritiated water processing subsystem, - Tritium safety subsystem. Hydrogen isotope separation system is a key subsystem in the ITER tritium system because it is connected to all above subsystems. This report describes an analytical study on the Japanese concept of hydrogen isotope separation system. (author)

  18. Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview

    Directory of Open Access Journals (Sweden)

    Belaissaoui Bouchra

    2014-11-01

    Full Text Available Membrane processes have been initially seldom considered within a post-combustion carbon dioxide capture framework. More traditional processes, particularly gas-liquid absorption in chemical solvents, are often considered as the most appropriate solution for the first generation of technologies. In this paper, a critical state of the art of gas separation membranes for CO2 capture is proposed. In a first step, the key performances (selectivity, permeability of different membrane materials such as polymers, inorganic membranes, hybrid matrices and liquid membranes, including recently reported results, are reviewed. In a second step, the process design characteristics of a single stage membrane unit are studied. Purity and energy constraints are analysed as a function of operating conditions and membrane materials performances. The interest of multistage and hybrid systems, two domains which have not sufficiently investigated up to now, are finally discussed. The importance of technico-economical analyses is highlighted in order to better estimate the optimal role of membranes for CCS applications.

  19. Gas permeation measurement under defined humidity via constant volume/variable pressure method

    KAUST Repository

    Jan Roman, Pauls; Detlev, Fritsch; Thomas, Klassen; Peinemann, Klaus-Viktor

    2012-01-01

    Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water

  20. Process synthesis and intensification of hybrid separations

    DEFF Research Database (Denmark)

    Errico, Massimiliano

    2017-01-01

    Hybrid flowsheets are defined, in the context of process intensification, as alternatives suitable for replacing energy-intensive separation methods through the combination of more than one unit operation. Distillation is one of the first options considered for achieving a required separation...... and commented on. The corresponding distillation-based processes are considered for comparison. Synthesis of the possible hybrid flowsheets appears to be important, especially when multicomponent mixtures are considered. This aspect is discussed for the combination of liquid-liquid extraction and distillation...... as applied to the separation of biobutanol from its fermentation broth. The synthesis of alternative hybrid flowsheets is reported, showing that one configuration can realize a 43% reduction in the total annual cost. Bioalcohol production by fermentation perfectly represents the casewhere distillation alone...

  1. A new focal plane detector for the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Gorshkov, Alexander

    2010-01-01

    Superheavy elements (SHE) exist solely because of enhanced nuclear stability due to shell effects. The production cross sections for the synthesis of SHE decrease continuously, thus, exploration of SHE nuclei is close to the border of present technical limitation. To increase the efficiency and sensitivity in SHE experiments, highly efficient recoil separators with state-of-the-art detection systems are required. In the framework of this thesis, the new focal plane detection system with the dedicated electronics have been developed for the gas-filled recoil separator TASCA at the GSI Helmholtzzentrum for Schwerionenforschung GmbH. The new detection system has been successfully used in recent experiments on synthesis of the E114.

  2. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  3. Thin film composite membranes of glossy polymers for gas separation : preparation and characterization

    NARCIS (Netherlands)

    Ebert, Katrin

    1995-01-01

    The application of polymeric composite membranes can be very interesting in the field of gas separation. The two main parameters which determine the applicability of membranes are the selectivity and the permeability. Good selectivities can be achieved by developing proper materials, high permeation

  4. High mass isotope separation process and arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1978-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically identical but isotopically different molecules by either photon-induced pure rovibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically reactive agent to form a chemical compound containing primarily the atoms of isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically identical but isotopically different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope

  5. Gas storage and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro.

    1988-01-01

    Purpose: To improve the gas solidification processing performance in a gas storing and processing device for solidifying treatment of radioactive gaseous wastes (krypton 85) by ion injection method. Constitution: The device according to the present invention is constituted by disposing a coil connected with a magnetic field power source to the outer circumference of an outer cathode vessel, so that axial magnetic fields are formed to the inside of the outer cathode vessel. With such a device, thermoelectrons released from the thermocathode downwardly collide against gaseous radioactive wastes at high probability while moving spirally by the magnetic fields. The thus formed gas ions are solidified by sputtering in the cathode in the vessel. (Horiuchi, T.)

  6. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  7. Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents.

    Science.gov (United States)

    Sekizkardes, Ali K; Kusuma, Victor A; Dahe, Ganpat; Roth, Elliot A; Hill, Lawrence J; Marti, Anne; Macala, Megan; Venna, Surendar R; Hopkinson, David

    2016-09-27

    This study presents the fabrication of a new mixed matrix membrane using two microporous polymers: a polymer of intrinsic microporosity PIM-1 and a benzimidazole linked polymer, BILP-101, and their CO 2 separation properties from post-combustion flue gas. 17, 30 and 40 wt% loadings of BILP-101 into PIM-1 were tested, resulting in mechanically stable films showing very good interfacial interaction due to the inherent H-bonding capability of the constituent materials. Gas transport studies showed that BILP-101/PIM-1 membranes exhibit high CO 2 permeability (7200 Barrer) and selectivity over N 2 (15). The selected hybrid membrane was further tested for CO 2 separation using actual flue gas from a coal-fired power plant.

  8. Process and device for decontamination of the waste gas of the fuel circuit of a fusion reactor from tritium and/or deuterium in waste gas containing them in chemically bound form

    International Nuclear Information System (INIS)

    Penzhorn, R.D.; Glugla, M.

    1987-01-01

    The invention concerns a process and a device for the decontamination of the wate gases of the fuel circuit of a fusion reactor from tritum and/or deuterium in waste gas containing them in chemically bound form, in which the waste gas is taken over an oxidation catalyst and then over a hot metal bed, tritium and/or deuterium is released from its compounds, separated from the waste gas and is returned to the fuel circuit. The process is intended to prevent losses of tritum and/or deuterium by permeation and the high loading of the hot metal getter materials, as occurs in the previously known corresponding process, and to avoid the formation of nitrogen oxides. This is achieved by: a) The catalytic oxidation reaction being carried out at a temperature of 200 0 C to 300 0 C. b) The gas mixture then being brought into contact with a hot metal bed at 200 0 C to 300 0 C to remove the remaining O 2 and for the selective conversion of the proportion of water into the hydrogen isotope. c) The gas mixture being brought into contact with a diaphragm made of palladium or a palladium-silver alloy at 400 0 C to 450 0 C to decompose the ammonia, all the released hydrogen isotope being passed through the diaphragm, separated from the remaining waste gas flow and removed. (orig.) [de

  9. Uranium isotopic separation by aerodynamic methods. Final report

    International Nuclear Information System (INIS)

    Davidovitz, P.; Anderson, J.B.; Brook, J.W.; Calia, V.S.; Greene, G.T.

    1979-06-01

    Two aerodynamic separation techniques for uranium enrichment were investigated for technical feasibility and economic viability. These techniques are known as the Jet Membrane and Velocity Slip Processes. Both analytical and laboratory studies were conducted to explore the technical feasibility of the subject processes. The Jet Membrane Process Studies demonstrated that the process was feasible and that a condensable gas carrier is available. The Velocity Slip Studies demonstrated the predicted effects and did not identify a suitable condensable gas carrier. Hence the Velocity Slip Process exhibited a larger power consumption than did the Jet Membrane Process. An independent contractor prepared detailed cost estimates of the process. The independent results indicated that, based on the same costing ground rules, the Velocity Slip process would require 16 times the fixed capital costs and 12 times the cost per separative work unit as compared to the Jet Membrane Process. The same cost structure indicated that the cost per separative work unit for the Jet Membrane process would be two to three times that for the Gas Centrifuge process. There are a number of uncertainties associated with these cost estimates, such that, in the extreme, the costs might be the same. Further, more detailed cost analysis would be required to resolve the uncertainties associated with the initial cost estimates. The conduct of new studies was not considered to be appropriate for EPRI because of the changes in enrichment program management and security philosophy discussed in the text

  10. Process and device for separating gaseous and solid noxious substances from residues occurring in thermal processes, particularly in the pyrolysis of waste material. Verfahren und Vorrichtung zur Abscheidung von gasfoermigen und festen Schadstoffen aus Rueckstaenden, die bei thermischen Prozessen, insbesondere der Pyrolyse von Abfallstoffen, anfallen

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-10

    The invention concerns a process for separating gaseous and solid noxious substances from residues which occur in a thermal process, particularly the pyrolysis of waste material in the form of crude gas and solid remnants. The purpose of the invention is to create a process and a device of this kind, where it is possible to remove the part containing the noxious substances separately from the remaining solid residue of the thermal process, particularly the residue from pyrolysis, and to deposit it, and also to make it possible to free the crude gas, particularly pyrolysis gas, from gaseous noxious substances. According to the invention the problem is solved by taking the fine solid part of the solid residue together with the crude gas from the solid residue, which is removed from the thermal process as free falling material, to a reaction vessel, where, by adding additives the sold part or the gaseous noxious substances are bound and removed.

  11. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.

    Science.gov (United States)

    Xie, Shengming; Zhang, Junhui; Fu, Nan; Wang, Bangjin; Hu, Cong; Yuan, Liming

    2016-11-08

    Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of ( S , S )-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701) was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  12. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Shengming Xie

    2016-11-01

    Full Text Available Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of (S,S-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701 was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  13. Efficient Separations and Processing Integrated Program (ESP-IP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. These wastes and environmental problems, located at more than 100 contaminated installations in 36 states and territories, are the result of half a century of nuclear processing activities by DOE and its predecessor organizations. The cost of cleaning up this legacy has been estimated to be of the order of hundreds of billions of dollars, and ESPIP's origin came with the realization that if new separations and processes can produce even a marginal reduction in cost then billions of dollars will be saved. The ultimate mission for ESPIP, as outlined in the ESPIP Strategic Plan, is: to provide Separations Technologies and Processes (STPS) to process and immobilize a wide spectrum of radioactive and hazardous defense wastes; to coordinate STP research and development efforts within DOE; to explore the potential uses of separated radionuclides; to transfer demonstrated separations and processing technologies developed by DOE to the US industrial sector, and to facilitate competitiveness of US technology and industry in the world market. Technology research and development currently under investigation by ESPIP can be divided into four broad areas: cesium and strontium removal; TRU and other HLW separations; sludge technology, and other technologies

  14. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Process for separating U isotopes by infrared excitation

    International Nuclear Information System (INIS)

    Lyon, R.K.; Kaldor, Andrew.

    1976-01-01

    This invention concerns a process for separating a substance into at least two parts in which the isotopic abundances of a given element differ from those of the isotopes of the substance prior to separation. Specifically, the invention concerns a process for the selective excitation of the isotopes of a gaseous phase UF 6 by absorption of infra-red photons, then by selective reaction of UF 6 excited with atomics chlorine, bromine or iodine, forming a product that may be separated by a standard method. The preference criteria of the atomic chlorine, bromine and iodine are related to the thermal dilution problem [fr

  16. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  17. Separation process of zirconium and hafnium; Procede de separation du zirconium et du hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Hure, J; Saint-James, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO{sub 3}{sup -} ions concentration, the role of the cation coming with NO{sub 3}{sup -}, as well as the influence of the concentration of zirconium in the solution on the separation coefficient {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (M.B.) [French] Des differents procedes de separation zirconium-hafnium, l'extraction par solvant en contre-courant est le procede le plus facilement utilisable a l'echelle industrielle. On utilise comme solvant le phosphate de tributyle, dilue avec du white spirit pour faciliter les decantations. Des essais preliminaires ont montre que le milieu nitrique semblait le plus favorable a l'extraction; mais beaucoup d'autres facteurs interviennent dans le processus de separation. Nous avons etudie successivement l'influence de l'acidite, celle de la concentration en ions NO{sub 3}{sup -}, le role du cation accompagnant NO{sub 3}{sup -}, ainsi que l'influence de la concentration en zirconium de la solution sur le coefficient de separation {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (MB)

  18. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Butler, P.A.; Greenlees, P.T.; Bastin, J.E.; Herzberg, R.D.; Humphreys, R.D.; Jones, G.D.; Jones, P.; Julin, R.; Keenan, A.; Kettunen, H.; Leino, M.; Miettinen, L.; Page, T.; Rahkila, P.; Scholey, C.; Uusitalo, J.

    2004-01-01

    The conversion-electron spectrometer SACRED has been redesigned for use in conjunction with the RITU gas-filled recoil separator. The system allows in-beam recoil-decay-tagging (RDT) measurements of internal conversion electrons. The performance of the system using standard sources and in-beam is described

  19. Lasers for the SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1997-01-01

    The main principles of the laser isotope separation process for the production of enriched uranium at lower cost, are reviewed and the corresponding optimal laser characteristics are described. The development of the SILVA laser isotope separation process involved researches in the various domains of pump lasers, dye lasers, laser and optics systems and two test facilities for the feasibility studies which are expected for 1997

  20. Gas storing and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Takano, Yosoko.

    1988-01-01

    Purpose: To increase the gas injection processing performance and obtain stable accumulation layers by increasing the thickness of the accumulation layers of amorphous alloy. Constitution: The gas storing processing device comprises a cylindrical vessel constituting an outer cathode for introducing gases to be processed, an inner cathode in which transition metal material and rare earth metal material as a sputtering target disposed in the vessel are combined by way of insulating material, an anode cover disposed to the upper portion of the vessel and an anode bottom disposed at the bottom thereof. It is adapted such that DC high voltage sources are connected respectively to the outer and the inner cathodes and sputtering voltage can be applied, removed and controlled independently to the transition metal and the rare earth metal of the inner cathode. This enables to control the composition ratio of the accumulation layers of amorphous alloy formed to the surface of the outer cathode, thereby enabling operation related with the gas injection ratio. (Sekiya, K.)

  1. Method of calculation of new cyclone-type separator with swirling baffle and bottom take off of clean gas - part II: experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Chmielniak, T.; Bryczkowski, A. [Inst. for Chemical Processing of Coal, Zabrze (Poland)

    2001-05-01

    The results of tests and experimental verification of the derived model to predict collection efficiency and pressure drop of the Institute for Chemical Processing of Coal (IChPW) design of a cyclone-type separator with a swirling baffle are presented. The experimental work contains the testing of the effect of gas flow rate and rotational speed of the rotor on separation efficiency and pressure drop. The effect of sealing flow on dedusting efficiency was also tested. The separator with a swirling baffle is characterized by high efficiency and low pressure drop. Higher dedusting efficiency and lower pressure drop can be obtained by extension of the baffle height. The calculational method shows good agreement with the experiments.

  2. Development of the krypton absorption in liquid carbon dioxide (KALC) process for HTGR off-gas reprocessing

    International Nuclear Information System (INIS)

    Glass, R.W.; Beaujean, H.W.R.; Cochran, H.D. Jr.; Haas, P.A.; Levins, D.M.; Woods, W.M.

    1975-01-01

    Reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel involves burning of the graphite-matrix elements to release the fuel for recovery purposes. The resulting off-gas is primarily CO 2 with residual amounts of N 2 , O 2 , and CO, together with fission products. Trace quantities of krypton-85 must be recovered in a concentrated form from the gas stream, but processes commonly employed for rare gas removal and concentration are not suitable for use with off-gas from graphite burning. The KALC (Krypton Absorption in Liquid CO 2 ) process employs liquid CO 2 as a volatile solvent for the krypton and is, therefore, uniquely suited to the task. Engineering development of the KALC process is currently under way at the Oak Ridge National Laboratory (ORNL) and the Oak Ridge Gaseous Diffusion Plant (ORGDP). The ORNL system is designed for close study of the individual separation operations involved in the KALC process, while the ORGDP system provides a complete pilot facility for demonstrating combined operations on a somewhat larger scale. Packed column performance and process control procedures have been of prime importance in the initial studies. Computer programs have been prepared to analyze and model operational performance of the KALC studies, and special sampling and in-line monitoring systems have been developed for use in the experimental facilities. (U.S.)

  3. Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation

    Directory of Open Access Journals (Sweden)

    Roberto Castro-Muñoz

    2018-06-01

    Full Text Available Membranes, as perm-selective barriers, have been widely applied for gas separation applications. Since some time ago, pure polymers have been used mainly for the preparation of membranes, considering different kinds of polymers for such preparation. At this point, polyimides (e.g., Matrimid®5218 are probably one of the most considered polymers for this purpose. However, the limitation on the performance relationship of polymeric membranes has promoted their enhancement through the incorporation of different inorganic materials (e.g., zeolites into their matrix. Therefore, the aim of this work is to provide an overview about the progress of zeolite embedding in Matrimid®5218, aiming at the preparation of mixed matrix membranes for gas separation. Particular attention is paid to the relevant experimental results and current findings. Finally, we describe the prospects and future trends in the field.

  4. FABRICATION AND CHARACTERIZATION OF POLYIMIDE/POLYETHERSULFONE-FUMED SILICA MIXED MATRIX MEMBRANE FOR GAS SEPARATION

    Directory of Open Access Journals (Sweden)

    A. F. Ismail

    2012-01-01

    Full Text Available This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/polyethersulfone (PES-fumed silica mixed matrix membranes were casted using dry/wet technique. The results from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM’s cross-section view indicated good compatibility between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membranes with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.

  5. Formation of Sclerotic Hydrate Deposits in a Pipe for Extraction of a Gas from a Dome Separator

    Science.gov (United States)

    Urazov, R. R.; Chiglinstev, I. A.; Nasyrov, A. A.

    2017-09-01

    The theory of formation of hydrate deposits on the walls of a pipe for extraction of a gas from a dome separator designed for the accident-related collection of hydrocarbons on the ocean floor is considered. A mathematical model has been constructed for definition of a steady movement of a gas in such a pipe with gas-hydrate deposition under the conditions of changes in the velocity, temperature, pressure, and moisture content of the gas flow.

  6. Optimization of a gas turbine in the methanol process, using the NLP model

    International Nuclear Information System (INIS)

    Kralj, Anita Kovac; Glavic, Peter

    2007-01-01

    Heat and power integration can reduce fuel usage, CO 2 and SO 2 emissions and, thereby, pollution. In the simultaneous heat and power integration approach and including additional production, the optimization problem is formulated using a simplified process superstructure. Nonlinear programming (NLP) contains equations which enable structural heat and power integration and parametric optimization. In the present work, the NLP model is formulated as an optimum energy target of process integration and electricity generation using a gas turbine with a separator. The reactor acts as a combustion chamber of the gas turbine plant, producing high temperature. The simultaneous NLP approach can account for capital cost, integration of combined heat and power, process modification, and additional production trade-offs accurately, and can thus yield a better solution. It gives better results than non-simultaneous methods. The NLP model does not guarantee a global cost optimum, but it does lead to good, perhaps near optimum designs. This approach is illustrated by an existing, complex methanol production process. The objective function generates a possible increase in annual profit of 1.7 MEUR/a

  7. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren; Zhang, Chen; Rungta, Meha; Qiu, Wulin; Liu, Junqiang; Koros, William J.

    2014-01-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family

  8. Hybrid gas separation membranes containing star-shaped polystyrene with the fullerene (C60) core

    Czech Academy of Sciences Publication Activity Database

    Pulyalina, A. Y.; Rostovtseva, V. A.; Pientka, Zbyněk; Vinogradova, L. V.; Polotskaya, G. A.

    2018-01-01

    Roč. 58, č. 4 (2018), s. 296-303 ISSN 0965-5441 Institutional support: RVO:61389013 Keywords : gas separation * hybrid membranes * star-shaped macromolecules Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.493, year: 2016

  9. Device for separating and concentrating rare gases containing krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    In orer to highly concentrate krypton by means of adsorption and desorption of activated carbon, in a device for continuously separating and concentrating rare gases containing krypton gas by means of adsorbing and desorbing operation of activated carbon, the device includes adsorbers arranged in parallel and more than two stages of adsorbers arranged in series with the first mentioned adsorbers with the amount of activated carbon filled successively reduced, and a cooling mechanism for cooling the adsorbers when adsorbed and a heating mechanism for heating the adsorbers when desorbed.

  10. Exhaust circulation into dry gas desulfurization process to prevent carbon deposition in an Oxy-fuel IGCC power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Nakao, Yoshinobu; Oki, Yuso

    2014-01-01

    Highlights: • Power plant with semi-closed gas turbine and O 2 –CO 2 coal gasifier was studied. • We adopt dry gas sulfur removal process to establish the system. • The exhaust gas circulation remarkably prevented carbon deposition. • Efficiency loss for exhaust gas circulation is quite small. • Appropriate operating condition of sulfur removal process is revealed. - Abstract: Semi-closed cycle operation of gas turbine fueled by oxygen–CO 2 blown coal gasification provides efficient power generation with CO 2 separation feature by excluding pre-combustion type CO 2 capture that usually brings large efficiency loss. The plant efficiency at transmission end is estimated as 44% at lower heating value (LHV) providing compressed CO 2 with concentration of 93 vol%. This power generation system will solve the contradiction between economical resource utilization and reduction of CO 2 emission from coal-fired power plant. The system requires appropriate sulfur reduction process to protect gas turbine from corrosion and environment from sulfur emission. We adopt dry gas sulfur removal process to establish the system where apprehension about the detrimental carbon deposition from coal gas. The effect of circulation of a portion of exhaust gas to the process on the retardation of carbon deposition was examined at various gas compositions. The circulation remarkably prevented carbon deposition in the sulfur removal sorbent. The impact of the circulation on the thermal efficiency is smaller than the other auxiliary power consumption. Thus, the circulation is appropriate operation for the power generation

  11. Evaluation of the performance of thermal diffusion column separating binary gas mixtures with continuous draw-off

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Takashima, Yoichi

    1977-01-01

    Advanced transport relations involving three column constants, H sup(σ), K sub(c)sup(σ) and K sub(d)sup(σ), are developed to describe the separation performance of a thermal diffusion column with continuous draw-off. These constants were related to some integral functions of velocity profile, temperature distribution, density of gas mixture and characteristic values of transport coefficients. The separation of binary gas mixture by this technique was so effective that three reasonable factors had to be introduced into the column constants in the theory. They are a circulation constant of natural convection, a definition of characteristic mean temperature and a definition of mean composition over the column. The separation performance and the column constants also varied with the distortion of velocity profile due to continuous draw-off from the top or the bottom of column. However, its effect was not large, compared with the other factors mentioned above. The theory presented here makes possible to estimate the separation performance of hot-wire type thermal diffusion column with high accuracy. (auth.)

  12. Separation of a light additive gas by separation nozzle cascades

    International Nuclear Information System (INIS)

    Becker, E.; Bley, P.; Ehrfeld, W.; Fritz, W.; Steinhaus, H.

    1984-01-01

    Double-turn separation nozzles, in comparison with single-turn separation nozzles, offer much greater advantages in the separation of UF6 and H2 than in the separation of the U isotopes, for which the double-turn separation nozzles were conceived. By using a double-turn separation-nozzle stage as a preseparation stage in combination with a low-temperature separator, one can reduce the ratio of the buffer input stream to the product stream, in contrast with the solution used up to this time, with only a slight increase in cost of about an order of magnitude. The control program in the case of return feeding of the UF6 from the buffer and the danger of production losses connected with it are thereby correspondingly diminished. An example is given of the enrichment of 235U using the title facility with UF6. (orig./PW)

  13. CO2 separation by calcium looping from full and partial fuel oxidation processes

    International Nuclear Information System (INIS)

    Sivalingam, Senthoorselvan

    2013-01-01

    This thesis work deals with the research and development of calcium looping process for CO 2 separation from full and partial fuel oxidation based power generation systems. CO 2 is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO 2 emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO 2 from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO 2 capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO 2 separation from fuel oxidation processes. CaL process involves separation of CO 2 at high temperatures (600-700 C) by calcium sorbents (CaO). CO 2 reacts with CaO in a carbonation process and produces CaCO 3 . In a subsequent thermal regeneration (>850 C) called calcination, the CO 2 is released from CaCO 3 . By alternating carbonations and calcinations over multiple cycles, CO 2 is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO 2 capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility. ASPEN Plus power plant simulations integrating the CaL based CO 2

  14. Modified molecular sieves: stationary phase for the gas chromatographic separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.; Iyer, R.M.

    1993-01-01

    Gas chromatographic separation of hydrogen isotopes on different molecular sieves at liquid nitrogen temperature has been investigated. Normal molecular sieves 5A, 13X and AW500 are not satisfactory for the purpose both in the partially dehydrated as well as totally dehydrated state. Molecular sieve 4A in partially dehydrated state separated H 2 and D 2 while H 2 and HD are not well resolved. Iron exchanged or coated molecular sieves 4A, 5A, 13X and AW500 in the partially dehydrated state separated the isotopic mixtures H 2 , HD, D 2 and H 2 , HT, T 2 . The resolution varied depending on the amount of iron content and the residual moisture in the molecular sieves. Good separations were obtained on 15% Fe coated molecular sieve 5A and 5% Fe coated molecular sieve 4A. (author). 18 refs., 6 figs., 3 tabs

  15. Efficient Separations and Processing Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems

  16. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  17. The practical use of resistance modelling to interpret the gas separation properties of hollow fiber membranes

    International Nuclear Information System (INIS)

    Ahmad Fauzi Ismail; Shilton, S.J.

    2000-01-01

    A simple resistance modelling methodology is presented for gas transport through asymmetric polymeric membranes. The methodology allows fine structural properties such as active layer thickness and surface porosity, to be determined from experimental gas permeation data. This paper, which could be regarded as a practical guide, shows that resistance modeling, if accompanied by realistic working assumptions, need not be difficult and can provide a valuable insight into the relationships between the membrane fabrication conditions and performance of gas separation membranes. (Author)

  18. Gas-processing profit margin series begins in OGJ

    International Nuclear Information System (INIS)

    Kovacs, K.J.

    1991-01-01

    This paper reports on the bases and methods employed by the WK (Wright, Killen and Co, Houston) profit-margin indicator for U.S. gas-processing plants. Additionally, this article reviews the historical profitability of the gas-processing industry and key factors affecting these trends. Texas was selected as the most representative for the industry, reflecting the wide spectrum of gas-processing plants. The profit performance of Texas' gas plants is of special significance because of the large number of plants and high volume of NGL production in the region

  19. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  1. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance

    Directory of Open Access Journals (Sweden)

    Muntazim Munir Khan

    2018-02-01

    Full Text Available The poly(ethylene glycol-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine/(Jeffamine®. The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR, indicating the presence of a cyclic benzoxazine ring. The polymer solutions were casted on the glass plate and cross-linked via thermal treatment to produce tough and flexible films without using any external additives. Thermal properties and the crosslinking behaviour of these polymers were studied by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Single gas (H2, O2, N2, CO2, and CH4 transport properties of the crosslinked polymeric membranes were measured by the time-lag method. The crosslinked PEG-based polybenzoxazine membranes show improved selectivities for CO2/N2 and CO2/CH4 gas pairs. The good separation selectivities of these PEG-based polybenzoxazine materials suggest their utility as efficient thin film composite membranes for gas and liquid membrane separation technology.

  2. Separation of Process Wastewater with Extractive Heterogeneous-Azeotropic Distillation

    Directory of Open Access Journals (Sweden)

    Tóth András József

    2016-10-01

    Full Text Available The application of vapour-liquid equilibria-based separation alternatives can be extraordinarily complicated for the treatment of process wastewaters containing heterogeneous-azeotropic. Despite dissimilar successfully tested methods for separation, there is possibility to get better distillation method by enabling the separation of more and more specific process wastewater. Extractive heterogeneous-azeotropic distillation (EHAD is a new advance in treatment of fine chemical wastewater showing special features to cope with the treatment of highly non-ideal mixtures. This method combines the worth of heterogeneous-azeotropic and extractive distillations in one apparatus without addition of any extra materials. The study of the separations of ternary component process wastewater from the fine chemical industry shows both in the modelled and experimental results that EHAD can be successfully applied. The measured and modelled compositions at extreme purities, that is, close to 0% or 100%, can be different because of the inaccuracies of the modelling. This highlights the paramount importance of the experiments if special extra-fine chemicals with almost no impurities, e.g. of pharmacopoeial quality are to be produced by special distillation technique. This study expands the application of EHAD technique, this new field is the separation of process wastewaters.

  3. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes

    Directory of Open Access Journals (Sweden)

    Lorena Giordano

    2016-12-01

    The data were obtained using a model for simulating gas separation, described in the research article entitled “Interplay of inlet temperature and humidity on energy penalty for CO2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process” (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016 [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO2 separation degree.

  4. Determination of the main parameters of the cyclone separator of the flue gas produced during the smelting of secondary aluminum

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav

    2016-06-01

    One way how is possible to separate the solid particulate pollutants from the flue gas is use the cyclone separators. The cyclone separators are very frequently used separators due to the simplicity of their design and their low operating costs. Separation of pollutants in the form of solids is carried out using three types of forces: inertia force, centrifugal force, gravity force. The main advantage is that cyclone consist of the parts which are resistant to wear and have long life time, e.g. various rotating and sliding parts. Mostly are used as pre-separators, because they have low efficiency in the separation of small particles. Their function is to separate larger particles from the flue gases which are subsequently cleaned in the other device which is capable of removing particles smaller than 1 µm, which is limiting size of particle separation. The article will deal with the issue of calculating the basic dimensions and main parameters of the cyclone separator from flue gas produced during the smelting of secondary aluminum.

  5. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-01-01

    as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated

  6. Preliminary study on gas separation performance of flat sheet mixed matrix (PVDF/Zeolite)

    Science.gov (United States)

    Rahman, Sunarti Abd; Abdalla Suliman Haron, Gamal; Krishna Roshan Kanasan, Raj; Hasbullah, Hasrinah

    2018-04-01

    Membrane separation has attracted a lot of attention over the last years mainly due to its separation ability, operational capability and economical viability. Mixed matrix membrane (MMM) combines the superior transport and selectivity properties of inorganic membrane materials and the excellent fabrication properties of organic polymers. This emerging technology can be utilized to purify biogas which can be used in a variety of applications. In this study, flat sheet mixed matrix membranes were synthesized with different percentages of N-Mehtyl-2-pyrrolidone (NMP) as solvent, Polyvinylidene Fluoride (PVDF) as the polymer matrix and zeolite 4A as the dispersed fine particles, membrane A (80: 20: 0), membrane B (80: 18: 2), membrane C (80: 15: 5), and membrane D (75: 15: 10) respectively. The membranes were fabricated using dry/wet phase inversion method. The membrane’s performance in terms of permeability and selectivity was examined using the single gas permeation device. The general trend was that, the permeability of the two gases (CO2/CH4) decreased with the increase of the pressure (0.5, 1, 1.5) bar. Membrane D was found to be suitable to separate the pair gas (CO2/CH4) as the permeability was 65623.412, Barrer and 15587.508, Barrer respectively, and its selectivity for was 4.21 at 0.5 bar.

  7. Membrane separation principle used for gas drying processes in fuel cells and life support systems

    International Nuclear Information System (INIS)

    Nigsch, H.A.; Fleck, W.U.

    1991-07-01

    Different membrane separation principles as applied to fuel cell powerplants and ECLSS are described. A new separator type that enables smaller weight and geometries and requires less energy than conventional mechanical separator techniques for space applications is presented. Module optimization and investigations concerning ECLSS applications are discussed. 5 refs

  8. Gas Sorption, Diffusion and Permeation in a Polymer of Intrinsic Microporosity (PIM-7)

    KAUST Repository

    Alaslai, Nasser Y.

    2013-01-01

    consumption. Membrane technology is a relatively new separation process for natural gas purification with large growth potential, specifically for off-shore applications. The economics of any membrane separation process depend primarily on the intrinsic gas

  9. Effect of differences in gas-dynamic behaviour on the separation performance of ultracentrifuges connected in parallel

    International Nuclear Information System (INIS)

    Portoghese, C.C.P.; Buchmann, J.H.

    1996-01-01

    This paper is concerned with the degradation of separation factors occurred when groups of ultracentrifuges having different gas-dynamic behaviour are connected in parallel arrangements. Differences in the gas-dynamic behavior were traduced in terms of different tails pressures for the same operational conditions, that are feed flow rate, product pressure and cut number. A mathematical model describing the ratio of the tails flow rates as a function of the tails pressure ratios and the feed flow rate was developed using experimental data collected from a pair of different ultracentrifuges connected in parallel. The optimization of model parameters was made using Marquardt's algorithm. The model developed was used to simulate the separation factors degradation in some parallel arrangements containing more than two centrifuges. Te obtained results were compared with experimental data collected from different groups of ultracentrifuges. It was observed that the calculated results were in good agreement with experimental data. This mathematical model, which parameters were determined in a two-centrifuges parallel arrangement, is useful to simulate the effect of quantified gas-dynamic differences in the separation factors of groups containing any number of different ultracentrifuges and, consequently, to analyze cascade losses due to this kind of occurrence. (author)

  10. Radioactive gas waste processing device

    International Nuclear Information System (INIS)

    Soma, Koichi.

    1996-01-01

    The present invention concerns a radioactive gas waste processing device which extracts exhaust gases from a turbine condensator in a BWR type reactor and releases them after decaying radioactivity thereof during temporary storage. The turbine condensator is connected with an extracting ejector, a preheater, a recombiner for converting hydrogen gas into steams, an off gas condensator for removing water content, a flow rate control valve, a dehumidifier, a hold up device for removing radiation contaminated materials, a vacuum pump for sucking radiation decayed-off gases, a circulation water tank for final purification and an exhaustion cylinder by way of connection pipelines in this order. An exhaust gas circulation pipeline is disposed to circulate exhaust gases from an exhaust gas exit pipeline of the recycling water tank to an exhaust gas exit pipeline of the exhaust gas condensator, and a pressure control valve is disposed to the exhaust gas circulation pipeline. This enable to perform a system test for the dehumidification device under a test condition approximate to the load of the dehumidification device under actual operation state, and stabilize both of system flow rate and pressure. (T.M.)

  11. Optimisation énergétique des procédés de séparation en raffinage et en traitement de gaz naturel Optimal Use of Energy in Separation Processes for Refining and Natural Gas Treatment

    Directory of Open Access Journals (Sweden)

    Rojey A.

    2006-11-01

    Full Text Available Cet article présente une méthode d'optimisation des procédés de séparation basée sur une analyse thermodynamique. Cette analyse s'appuie sur un bilan exergétique qui est établi dans le cas général d'un système quelconque opérant en régime permanent. Les facteurs qui conditionnent le rendement exergétique d'un procédé de séparation sont ensuite examinés. Il en résulte une méthode d'optimisation basée sur une réduction des irréversibilités thermodynamiques. Des exemples concrets d'application en raffinage et en traitement de gaz naturel sont présentés, et on montre comment cette analyse peut déboucher sur la conception de procédés innovants. The optimization of separation units in refining and natural-gas processing must take into consideration new needs and constraints that may seem incompatible. New installations must be designed not only on the basis of energy optimization but also by seeking to minimize investments and to respect new rules concerning environmental protection. The optimization described in this article is based on a thermodynamic analysis of different material and energy exchanges, The energybalance provides a suitable basis for making this analysis. It leads to the defining of an exergy efficiency that is all the higher as the thermodynamic irreversibilities are reduced, and that tends toward one for an ideal reversible system. For a separation process, a separation exergyterm is defined that correspond to the minimum separation work . Distillation is the basic separation operation. The exergy efficiency of this operation is low, and we show that, even in a relatively favorable cas, it is no greater than a value of about 6%. For an atmospheric distillation operation of crude oil, the exergy efficiency is about 4%. This overall exergy efficiency is the product of an external exergy efficiency and an internal exergy efficiency. The external exergy efficiency can be improved by better thermal

  12. Separation science and technology

    International Nuclear Information System (INIS)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-01-01

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO 2 thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO 2 films in reaction with chlorophenol

  13. Hydrogen separation from coke oven gas using PSA

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M.: Tanibashi, N.; Nishida, S

    1983-01-01

    Twin column apparatus was used to study the adsorption characteristics of various components of coke oven gas at an adsorption pressure of 5 kg/cm/SUP/2G. The following results were obtained. Over 99.99% Of the H/sub 2/ could be separated, and for this a 5 angstrom zeolite was optimal. Since the break-through order is H/sub 2/, O/sub 2/, N/sub 2/, CH/SUB/4, CO there is a tendency for the product H/sub 2/ to be adulterated with O/sub 2/ and N/sub 2/. Although there was a large adsorption of CO/sub 2/ and C/sub 2/H/sub 4/, desorption was difficult, even under reduced pressure and H/sub 2/ flushing. Hence, the industrial version of this apparatus will have to include activated carbon. 5 references.

  14. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    International Nuclear Information System (INIS)

    1998-01-01

    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO 3 · 1/2 H 2 O), calcium sulfate (CaSO 4 · 2H 2 O), unreacted limestone (CaCO 3 ), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column

  15. Development of silver impregnated alumina for iodine separation from off-gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto [Energy Research Laboratory, Hitachi (Japan)] [and others

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  16. Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1

    KAUST Repository

    Swaidan, Raja

    2014-05-01

    The prototypical solution-processable polymer of intrinsic microporosity, PIM-1, and derivatives thereof offer combinations of permeability and selectivity that make them potential candidate materials for membrane-based gas separations. Paramount to the design and evaluation of PIMs for economical natural gas sweetening is a high and stable CO2/CH4 selectivity under realistic, mixed-gas conditions. Here, amidoxime-functionalized PIM-1 (AO-PIM-1) was prepared and examined for fundamental structure/property relationships. Qualitative NLDFT pore-size distribution analyses of physisorption isotherms (N2 at -196 oC; CO2 at 0 oC) reveal a tightened microstructure indicating size-sieving ultra-microporosity (<7Å). AO-PIM-1 demonstrated a three-fold increase in αD(CO2/CH4) over PIM-1, surpassing the 2008 upper bound with P(CO2)=1153Barrer and ideal α(CO2/CH4)=34. Under a 50:50 CO2:CH4 mixed-gas feed, AO-PIM-1 showed less selectivity loss than PIM-1, maintaining a mixed-gas α(CO2/CH4) ~21 across a 20bar pressure range. Conversely, PIM-1 endured up to 60% increases in mixed-gas CH4 permeability over pure-gas values concurrent with a selectivity of only ~8 at 20bar. A pervasive intermolecular hydrogen bonding network in AO-PIM-1 predominantly yields a rigidified microstructure that mitigates CO2-induced matrix dilations, reducing detrimental mixed-gas CH4 copermeation. © 2014 Elsevier B.V.

  17. Great gas plants : these five natural gas processing facilities demonstrate decades of top-flight technology

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-07-15

    The natural gas purification and pipeline sector is a major economic driver in Canada. Gas processing facilities are growing in number, and several large gas projects are being planned for future construction in the western provinces. This article outlined 5 gas plants in order to illustrate the sector's history and breadth in Canada. The Shell Jumping Pound gas complex was constructed in 1951 after a sulfur-rich gas discovery near Calgary in 1944. The Empress Straddle plant was built in 1971 in southeastern Alberta and is one of the largest single industrial consumers of electrical power in the province. The Fort Nelson gas processing plant is North America's largest sour gas processing facility. The Shell Caroline complex was built 1993. The Sable offshore energy project is located on the coast of Nova Scotia to handle gas produced from the Thebaud wells. A consortium is now considering the development of new gas fields in the Sable area. 5 figs.

  18. Isotopic separation of nitrogen 15. Influence of the gaseous phase composition

    International Nuclear Information System (INIS)

    Lacoste, Germain; Routie, Rene; Mahenc, Jean

    1977-01-01

    A study has been made on the gas phase composition effect on the isotopic separation of nitrogen 15 for the two HNO 3 -NO and N 2 O 3 -NO systems. It was shown that the changes in composition of the gas phases could account for the increase in the overall separation; most accuracy, measurements of isotopic concentration along the separation column and of total enrichment exhibit how important are the reactions of oxydo-reduction between the two phases in such process [fr

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  20. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  1. Two-Phase Phenomena In Wet Flue Gas Desulfurization Process

    International Nuclear Information System (INIS)

    Minzer, U.; Moses, E.J.; Toren, M.; Blumenfeld, Y.

    1998-01-01

    In order to reduce sulfur oxides discharge, Israel Electric Corporation (IEC) is building a wet Flue Gas Desulfurization (FGD) facility at Rutenberg B power station. The primary objective of IEC is to minimize the occurrence of stack liquid discharge and avoid the discharge of large droplets, in order to prevent acid rain around the stack. Liquid discharge from the stack is the integrated outcome of two-phase processes, which are discussed in this work. In order to estimate droplets discharge the present investigation employs analytical models, empirical tests, and numerical calculations of two-phase phenomena. The two-phase phenomena are coupled and therefore cannot be investigated separately. The present work concerns the application of Computational Fluid Dynamic (CFD) as an engineering complementary tool in the IEC investigation

  2. Development of a Small, Inexpensive, and Field-deployable Gas Chromatograph for the Automated Collection, Separation, and Analysis of Gas-phase Organic Compounds

    Science.gov (United States)

    Skog, K.; Xiong, F.; Gentner, D. R.

    2017-12-01

    The identification and quantification of gas-phase organic compounds, like volatile organic compounds (VOCs), in the atmosphere relies on separation of complex mixtures and sensitive detection. Gas chromatography (GC) is widely applied, but relies on the need for high-purity compressed gases for separation and, often for detection. We have developed a low-cost, compact GC-based system for the collection and quantitative chemical speciation of complex mixtures of common atmospheric VOCs without the need for compressed high-purity gases or expensive detectors. We present results of lab and field testing against a commercially-available GC system. At optimized linear velocities challenging VOC pairs of similar volatility were resolved within 30 minutes, including n- and i-pentane; n-pentane and isoprene; and ethylbenzene and m/p-xylene. For 5-30 minute samples, we observe ppt-level detection limits for common VOCs such as benzene, toluene, ethylbenzene, xylenes, alpha-pinene, and limonene. We also present results of in-field use for VOC measurements. In all, this instrument is accurate, precise, small, and inexpensive (<$2500). Its lack of compressed gas cylinders make it ideal for field deployment and has been demonstrated to produce similar quality data to available GC technology.

  3. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    Full Text Available The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA. Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH, as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality and EVAPORATION (for pure compound vapor pressures with oxidation product information from the Master Chemical Mechanism (MCM for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH. Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1 non-ideality in the condensed phase needs to be considered and (2 liquid-liquid phase separation is a consequence of considerable deviations

  4. Sustainable development of gree solvent separation process

    OpenAIRE

    Lisickov, Kiril; Fidancevska, Emilija; Grujic, Radoslav; Srebrenkoska, Vineta; Kuvendziev, Stefan

    2011-01-01

    Solvents defi ne a major part of the environmental performance of processes in the chemical industry and impact on cost, safety and health issues. The idea of green solvents expresses the goal to minimize the environmental impact resulting from the use of solvents in chemical production. In spite of conventional separation methods, precise process green technologies are based on the application of modern processes and process equipment as well as control and management...

  5. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS; F

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. The gas processed by the membrane system will meet pipeline specifications for dew point and Btu value, and the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. The BP-Amoco gas processing plant in Pascagoula, MS was finalized as the location for the field demonstration. Detailed drawings of the MTR membrane skid (already constructed) were submitted to the plant in February, 2000. However, problems in reaching an agreement on the specifications of the system compressor delayed the project significantly, so MTR requested (and was subsequently granted) a no-cost extension to the project. Following resolution of the compressor issues, the goal is to order the compressor during the first quarter of 2002, and to start field tests in mid-2002. Information from potential users of the membrane separation process in the natural gas processing industry suggests that applications such as fuel gas conditioning and wellhead gas processing are the most promising initial targets. Therefore, most of our commercialization effort is focused on promoting these applications. Requests for stream evaluations and for design and price quotations have been received through MTR's web site, from direct contact with potential users, and through announcements in industry publications. To date, about 90 commercial quotes have been supplied, and orders totaling about$1.13 million for equipment or rental of membrane units have been received

  6. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  7. Have oil and gas prices got separated?

    International Nuclear Information System (INIS)

    Erdős, Péter

    2012-01-01

    This paper applies vector error correction models that show that oil and natural gas prices decoupled around 2009. Before 2009, US and UK gas prices had a long-term equilibrium with crude prices to which gas prices always reverted after exogenous shocks. Both US and UK gas prices adjusted to the crude oil price individually, and departure from the equilibrium gas price on one continent resulted in a similar departure on the other. After an exogenous shock, the adjustment between US and UK gas prices took approximately 20 weeks on average, and the convergence was mediated mainly by crude oil with a necessary condition that arbitrage across the Atlantic was possible. After 2009, however, the UK gas price has remained integrated with oil price, but the US gas price decoupled from crude oil price and the European gas price, as the Atlantic arbitrage has halted. The oversupply from shale gas production has not been mitigated by North American export, as there has been no liquefying and export capacity. - Highlights: ► VEC models are applied to investigate the relationship between oil and natural gas prices. ► While natural gas prices in Europe and Asia react to oil price, US gas price decoupled from oil in 2009. ► Since 2009, the US gas price has decoupled from the European and Asian gas prices.

  8. Separation of gas mixtures

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus is described for the separation of a gaseous plasma mixture into components in some of which the original concentration of a specific ion has been greatly increased or decreased, comprising: a source for converting the gaseous mixture into a train of plasma packets; an open-ended vessel with a main section and at least one branch section, adapted to enclose along predetermined tracks the original plasma packets in the main section, and the separated plasma components in the branch sections; drive means for generating travelling magnetic waves along the predetermined tracks with the magnetic flux vector of the waves transverse to each of the tracks; and means for maintaining phase coherence between the plasma packets and the magnetic waves at a value needed for accelerating the components of the packets to different velocities and in such different directions that the plasma of each packet is divided into distinctly separate packets in some of which the original concentration of a specific ion has been greatly increased or decreased, and which plasma packets are collected from the branch sections of the vessels. (author)

  9. Modelling of fast hydrogen permeability of alloys for membrane gas separation

    Science.gov (United States)

    Zaika, Yu. V.; Rodchenkova, N. I.

    2017-05-01

    The method of measuring the specific hydrogen permeability is used to study various alloys that are promising for gas separation installations. The nonlinear boundary value problem of hydrogen permeability complying with the specific features of the experiment and its modifications taking into account the high transfer rate is presented. Substantial difference from the quasi-equilibrium model (Richardson approximation in the assumption of the equilibrium Sieverts' law near the surface) has been discussed. The model is tested on published experimental data on Ta77Nb23 alloy.

  10. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P; Soubbaramayer, [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    technology was up to the task but the programme was shelved mainly because of lack of demand. Finally, seven papers deal with laser processes. Two of them review the AVLIS program in the UK and one paper gives the status of the MLIS project in West Germany. One communication from China and three papers by French authors deal with specific problems currently met in AVLIS studies, on the vapour beam and the ion extraction. A number of phenomena observed in AVLIS needs satisfactory explanations: the high value of the vapour velocity, the low value of metastables in the vapour beam, the extraction of ions at high density, etc. Session 1: plasma separation (review of isotopic plasma separation processes; production of depleted zirconium using a plasma centrifuge; measurements of isotope separation in a vacuum arc centrifuge). Session 2: plasma separation and centrifugation (recent developments in stable isotope separation by ionic cyclotron resonance; some aspects of the separation of multi-isotope mixtures with gas centrifuges; review paper on centrifuge technology and status of the URENCO centrifuge project; solution of the two-fluid equations for flow in a centrifuge; influence of stationary poles in the central region of gas centrifuges; extension of the analytic sixth order theory; applications of different analytic solutions for the centrifuge flow). Sessions 4 and 5: rotating flows (convection flows driven by centrifugal buoyancy in rapidly rotating systems; experimental investigation of the flow in a rotating pie-shaped cylinder; temperature distribution on rotating spherical shells; centrifugal separation of a suspension in a rotating vessel; spin-up from rest of a suspension - preliminary insight). Session 6: particle fluid mixture (modelling, simulation and comprehension of the flow field of a particles-fluid mixture; the effect of shear and lift on particle-gas separation; on the hydrodynamics of electrolytic refining of metals). Session 7 (calculation of condensation

  11. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    technology was up to the task but the programme was shelved mainly because of lack of demand. Finally, seven papers deal with laser processes. Two of them review the AVLIS program in the UK and one paper gives the status of the MLIS project in West Germany. One communication from China and three papers by French authors deal with specific problems currently met in AVLIS studies, on the vapour beam and the ion extraction. A number of phenomena observed in AVLIS needs satisfactory explanations: the high value of the vapour velocity, the low value of metastables in the vapour beam, the extraction of ions at high density, etc. Session 1: plasma separation (review of isotopic plasma separation processes; production of depleted zirconium using a plasma centrifuge; measurements of isotope separation in a vacuum arc centrifuge). Session 2: plasma separation and centrifugation (recent developments in stable isotope separation by ionic cyclotron resonance; some aspects of the separation of multi-isotope mixtures with gas centrifuges; review paper on centrifuge technology and status of the URENCO centrifuge project; solution of the two-fluid equations for flow in a centrifuge; influence of stationary poles in the central region of gas centrifuges; extension of the analytic sixth order theory; applications of different analytic solutions for the centrifuge flow). Sessions 4 and 5: rotating flows (convection flows driven by centrifugal buoyancy in rapidly rotating systems; experimental investigation of the flow in a rotating pie-shaped cylinder; temperature distribution on rotating spherical shells; centrifugal separation of a suspension in a rotating vessel; spin-up from rest of a suspension - preliminary insight). Session 6: particle fluid mixture (modelling, simulation and comprehension of the flow field of a particles-fluid mixture; the effect of shear and lift on particle-gas separation; on the hydrodynamics of electrolytic refining of metals). Session 7 (calculation of condensation

  12. Innovative Separations Technologies

    International Nuclear Information System (INIS)

    Tripp, J.; Soelberg, N.; Wigeland, R.

    2011-01-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR and D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  13. Innovative Separations Technologies

    Energy Technology Data Exchange (ETDEWEB)

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  14. Method of isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, R K

    1975-05-22

    Isotopes of a gaseous compound can be separated by multi-infrared photoabsorption which follows a selective dissociation of the excited molecules by single photon absorption of photons of visible or UV radiation. The process involves three steps. Firstly, the molecules to be separated are irradiated with a high-energy IR laser, whereby the molecules of the compound containing the lighter isotopes are preferably excited. They are then irradiated by a second laser with UV or visible light whose frequency of radiation brings the excited molecules into a form in which they can be separated from the non-excited molecules. The third step is the reformation of the substances according to known methods. A power density of at least 10/sup 4/ watt/cm/sup 2/ per torr gas pressure with an irradiation time of 10/sup -10/ to 5 x 10/sup -5/ seconds in the presence of a second gas with at least 5 times higher partial pressure is necessary for the IR radiation. The method may be used for UF/sub 6/ for which an example is given here.

  15. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  16. Separating uranium by laser: the atomic process

    Energy Technology Data Exchange (ETDEWEB)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados

    1996-07-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  17. Separating uranium by laser: the atomic process

    International Nuclear Information System (INIS)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar

    1996-01-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  18. The development and application of dynamic operational risk assessment in oil/gas and chemical process industry

    International Nuclear Information System (INIS)

    Yang Xiaole; Mannan, M. Sam

    2010-01-01

    A methodology of dynamic operational risk assessment (DORA) is proposed for operational risk analysis in oil/gas and chemical industries. The methodology is introduced comprehensively starting from the conceptual framework design to mathematical modeling and to decision making based on cost-benefit analysis. The probabilistic modeling part of DORA integrates stochastic modeling and process dynamics modeling to evaluate operational risk. The stochastic system-state trajectory is modeled according to the abnormal behavior or failure of each component. For each of the possible system-state trajectories, a process dynamics evaluation is carried out to check whether process variables, e.g., level, flow rate, temperature, pressure, or chemical concentration, remain in their desirable regions. Component testing/inspection intervals and repair times are critical parameters to define the system-state configuration, and play an important role for evaluating the probability of operational failure. This methodology not only provides a framework to evaluate the dynamic operational risk in oil/gas and chemical industries, but also guides the process design and further optimization. To illustrate the probabilistic study, we present a case-study of a level control in an oil/gas separator at an offshore plant.

  19. Development of gas-jet transport systems for fission products and coupling these with methods for continuous separation of short-lived product nuclides

    International Nuclear Information System (INIS)

    Stender, E.

    1979-01-01

    The development of gas-jet transport systems for fission products as well as the coupling of these with continuous separation methods from aqueous solutions (SISAK) and with a mass separator for on-line separation of neutron-rich nuclides are described in this work. Nuclides from the fission of 235 U or other fission materials can be transported using gas-jet systems with thermal neutrons over larger distances (100 m and over). Aerosols (clusters) of either organic (e.g. ethylene) or inorganic nature (e.g. potassium chloride) serve as carrier for the nuclides. The clusters are passed through 1 mm capillaries with a transport gas (nitrogen, helium etc.) under laminar flow conditions. The diameter of the cluster fluctuates between 10 -7 and 10 -6 m. The time required from the production of a nuclide to its detection at the end of a 8 m long capillary tube is 0.8 s for the ethylene/nitrogen and potassium chloride/helium gas-jet systems. By coupling various gas-jet systems with the continuous extraction technique SISAK working with H centrifuges, the elements lanthanum, cerium, praseodymium, zirconium, niobium and technetium can be separated out of the complex fission product mixtures. The on-line technetium chemistry was used with neutron-rich 106 Tc (36 s), 107 Tc (21 s) and 108 Tc (5 s) for γγ(t) measurements. The coupling of a potassium chloride/helium gas jet with a mass separator equiped with a plasma ion source is described. The dependence of the transmission rate of various test parameters is investigated to optimize the system. (orig.) [de

  20. Influence of Geometric Parameters of the Hydrocyclone and Sand Concentration on the Water/Sand/Heavy-Oil Separation Process: Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    F Farias

    2016-09-01

    Full Text Available In the oil exploitation, produced fluids are composed of oil, gas, water and sand (depending on the reservoir location. The presence of sand in flow oil leads to several industrial problems for example: erosion and accumulation in valves and pipeline. Thus, it is necessary to stop production for manual cleaning of equipments and pipes. These facts have attracted attention of academic and industrial areas, enabling the appearing of new technologies or improvement of the water/oil/sand separation process. One equipment that has been used to promote phase separation is the hydrocyclone due to high performance of separation and required low cost to installation and maintenance. In this sense, the purpose of this work is to study numerically the effect of geometric parameters (vortex finder diameter of the hydrocyclone and sand concentration on the inlet fluid separation process. A numerical solution of the governing equations was obtained by the ANSYS CFX-11 commercial code. Results of the streamlines, pressure drop and separation efficiency on the hydrocyclone are presented and analyzed. It was observed that the particles concentration and geometry affect the separation efficiency of the hydrocyclone.