WorldWideScience

Sample records for gas plenum experiment

  1. Design of pellet surface grooves for fission gas plenum

    International Nuclear Information System (INIS)

    Carter, T.J.; Jones, L.R.; Macici, N.; Miller, G.C.

    1986-01-01

    In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMP heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM

  2. Final report on 3-D experiment project air-water upper plenum experiments

    International Nuclear Information System (INIS)

    Jacoby, J.K.; Mohr, C.M.

    1978-11-01

    The results are presented from upper plenum air-water reflood behavior testing performed as part of the program to investigate three-dimensional aspects of PWR LOCA research. Tests described were performed at near ambient temperature and pressure in a plexiglass vessel which included the important features of the upper core and upper plenum regions corresponding to a single fuel bundle in both Westinghouse Electric Corporation (Trojan) and Kraftwerk Union (KKU) PWR designs. The data included observed two-phase flow characteristics, particularly with regard to countercurrent flow, and cinematography of the characteristic upper plenum flow patterns

  3. Scaled Experimental Modeling of VHTR Plenum Flows

    International Nuclear Information System (INIS)

    ICONE, 15

    2007-01-01

    The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (''thermal striping'') in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums

  4. Scaled Experimental Modeling of VHTR Plenum Flows

    Energy Technology Data Exchange (ETDEWEB)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  5. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

    2007-11-01

    The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties.

  6. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

    International Nuclear Information System (INIS)

    Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

    2007-01-01

    The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties

  7. Scaled experimental modeling of VHTR plenum flows

    International Nuclear Information System (INIS)

    McCreery, Glenn E.; Condie, Keith G.; Schultz, Richard R.

    2007-01-01

    The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. Various scaled heated and unheated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification ('thermal striping') in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the buoyancy effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, scaling distortions will occur due primarily to the necessity of using a reduced number of channels connected to the upper plenum than in the prototype in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums. (author)

  8. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

    2005-09-01

    The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

  9. Numerical Experiments of Coolant Mixing in a Lower Plenum of PWR Under Asymmetric Thermal- Hydraulics Conditions

    International Nuclear Information System (INIS)

    Masanori Ohtani; Akito Kozuru; Yasuyuki Kashimoto; Mitsuto Montani; Koutaro Takeda; Yasushi Makino

    2006-01-01

    Asymmetric thermal-hydraulic conditions among primary loops during a postulated steam line break (SLB) induce a non-uniform temperature distribution at a core inlet. When coolant of lower temperature intrudes into a part of core, it leads to a reactivity insertion and a local power increase. Therefore, an appropriate model for the core inlet temperature distribution is required for a realistic SLB analysis. In this study, numerical experiments were conducted to examine the core inlet temperature distribution under the asymmetric thermal-hydraulic coolant conditions among primary loops. 3D steady-state calculations were carried out for Japanese standard Pressurized Water Reactor (PWR) such as 2, 3, 4 loop types and an advanced PWR. Since the flow in a reactor vessel involves time-dependent velocity fluctuations due to a high Reynolds number condition and a complicated geometry of flow path, the turbulent mixing might be enhanced. Hence, the turbulent thermal diffusivity for the steady-state calculation was examined based on experimental results and another transient calculation. As a result, it was confirmed that (1) the turbulent mixing in a downcomer and a lower plenum were enhanced due to time-dependent velocity fluctuations and therefore the turbulent thermal diffusivity for steady-state calculation was specified to be greater, (2) the core inlet temperature distribution predicted by a steady-state calculation reasonably agreed with a experimental data, (3) the patterns of core inlet temperature distribution were comprehended to be dependent on the plant type, i.e. the number of primary loop and (4) under a low flow rate condition, the coolant of lower temperature appeared on the opposite side of the affected loop due to the effect of a natural convection. (authors)

  10. IDAHO NATIONAL LABORATORY PROGRAM TO OBTAIN BENCHMARK DATA ON THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR THE VALIDATION OF CFD CODES

    International Nuclear Information System (INIS)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-01-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a typical prismatic gas-cooled (GCR) reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A detailed description of the model, scaling, the experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that are presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic GCR design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal undeveloped, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet flow is also presented

  11. PIV Experiments to Measure Flow Phenomena in a Scaled Model of a VHTR Lower Plenum

    Energy Technology Data Exchange (ETDEWEB)

    Hugh M. McIlroy, Jr.; Donald M. McEligot; Richard R. Schultz; Daniel Christensen; Robert J. Pink; Ryan C. Johnson

    2006-09-01

    A report of experimental data collected at the Matched-Index-of-Refraction (MIR) Laboratory in support of contract DE-AC07-05ID14517 and the INL Standard Problem on measurements of flow phenomena occurring in a lower plenum of a typical prismatic VHTR concept reactor to assess CFD code is presented. Background on the experimental setup and procedures is provided along with several samples of data obtained from the 3-D PIV system and an assessment of experimental uncertainty is provided. Data collected in this study include 3-dimensional velocity-field descriptions of the flow in all four inlet jets and the entire lower plenum with inlet jet Reynolds numbers (ReJet) of approximately 4300 and 12,400. These investigations have generated over 2 terabytes of data that has been processed to describe the various velocity components in formats suitable for external release and archived on removable hard disks. The processed data from both experimental studies are available in multi-column text format.

  12. RELAP/MOD3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, P.D.

    2003-01-17

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior.

  13. RELAP/MOD3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    International Nuclear Information System (INIS)

    Bayless, P.D.

    2003-01-01

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior

  14. RELAP-5/MOD 3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    Energy Technology Data Exchange (ETDEWEB)

    Paul D. Bayless

    2003-01-01

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior.

  15. Coolant mixing in the LMFBR outlet plenum

    International Nuclear Information System (INIS)

    Chen, Y.B.; Golay, M.W.

    1977-06-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds Number (Re) values of 33000 and 70000 in a 1/15-scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet velocity field, upon the degree of inlet turbulence, and upon the turbulence momentum exchange model used in the calculations. It is found in the FFTF geometry that the TEACH-T predictions are better than that of VARR-II, and in the CRBR geometry neither code provides a good prediction of the observed behavior. From the sensitivity analysis, it is found that the production and dissipation of turbulence are the dominant terms in the transport equations for turbulent kinetic energy and turbulent energy dissipation rate, and the diffusion terms are relatively small. From the same study a new set of empirical constants for the turbulence model is evolved for the prediction of plenum flows

  16. Ultrafast gas switching experiments

    International Nuclear Information System (INIS)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-01-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field

  17. Experimental and CFD Studies of Coolant Flow Mixing within Scaled Models of the Upper and Lower Plenums of NGNP Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Anand, Nk [Texas A & M Univ., College Station, TX (United States)

    2016-03-30

    A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensity peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by

  18. Experimental and CFD Studies of Coolant Flow Mixing within Scaled Models of the Upper and Lower Plenums of NGNP Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Hassan, Yassin; Anand, Nk

    2016-01-01

    A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensity peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by

  19. Hydro mechanical investigation on different PWR upper plenum core structures

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Yu Ping'an; Yang Guanyue

    1997-01-01

    The development of Nuclear Industry relys on the safe and reliable operation of nuclear power station. Whether or not control rods moving upward and downward freedly and dropping rapidly in emergency case by order directly dominates the nuclear power regulation and emergency shut-down. So to clarify the factors which exert great influences on the drop of control rods is very important for making certain that PWR is operated safety and relialy. Among the factors, the hydraulic load on the control rods plays an important role during the operation of reactor. However because of complication in turbulent flow and concentration of the control rod guide bundles in the upper plenum, the flow field has not been thoroughly studied up to now. In order to understand the flow field in upper plenum fully a 1/4 scale transparent model of the upper plenum of a active 300 MWe PWR is designed and installed in line with similarity theory. The velocity distributions (including horizontal and axial velocity) in the upper plenum are obtained by using N-J type Dynamic Resistance Strain Foil Velocimetry (N-J type DRSFV) and Laser Doppler Velocimetry (LDV). For the sake of alleviating the hydraulic load on the control rods and making certain that the control rods and making certain that the control rods are moving upward and downward freely and drop rapidly in emergency case by order, the core structure in the upper plenum of the active 300 MWe PWR is improved as in the following 2 cases: 1 Some protective sleeves are added to the control rod guide bundles near the upper plenum outlet nozzles (symmetric 4 bundles: 02-26, 03-25, 11-29, 12-28). The rest of the core structure is same as that of the core structure in the active 300 MWe PWR. 2. The active upper plenum core structure with 37 control rod guide bundles is replaced by the core structure with 33 protective-sleeved control rod guide bundles. The results of the simulated experiments with the 2 cases are compared with that of the

  20. Stratification in SNR-300 outlet plenum

    International Nuclear Information System (INIS)

    Reinders, R.

    1983-01-01

    In the inner outlet plenum of the SNR-300 under steady state conditions a large toroidal vortex is expected. The main flow passes through the gap between dipplate and shield vessel to the outer annular space. Only 3% of the flow pass the 24 emergency cooling holes, situated in the shield vessel. The sodium leaves the reactor tank through the 3 symmetrically arranged outlet nozzles. For a scram flow rates and temperatures are decreased simultaneously, so it is expected, that stratification occurs in the inner outlet plenum. A measure of stratification effects is the Archimedes Number Ar, which is the relation of buoyancy forces (negative) to kinetic energy. (The Archimedes Number is nearly identical with the Richardson Number). For values Ar>1 stratification can occur. Under the assumption of stratification the code TIRE was developed, which is only applicable for the period of time after some 50 sec after scram. This code serves for long term calculations. As the equations are very simple, it is a very fast code which gives the possibility to calculate transients for some hours real time. This code mainly has to take into account the pressure difference between inner plenum and outlet annulus caused by geodatic pressure. That force is in equilibrium with the pressure drop over the gap and holes in the shield vessel. For more detailed calculations of flow pattern and temperature distribution the code MIX and INKO 2T are applied. MIX was developed and validated at ANL, INKO 2T is a development of INTERATOM. INKO 2T is under validation. Mock up experiments were carried out with water to simulate the transient behavior of the SNR-300 outlet plenum. Calculations obtained by INKO 2T for steady state and the transient are shown for the flow pattern. Results of measurements also prove that stratification begins after about 30 sec. Measurements and detailed calculations show that it is admissible to use the code TIRE for the long term calculations. Calculations for a scram

  1. Thermalhydraulic characteristics in LMFBR hot plenum

    International Nuclear Information System (INIS)

    Tanaka, N.; Moriya, S.; Wada, A.

    1983-01-01

    The most important problem in the thermalhydraulic designs of the pool-type FBR is to estimate the thermal conditions affecting the vessel and/or internal structures during both steady and transient operations. The severity of these conditions in the Japanese pool-type reactor which will be reinforced and equipped with special devices for aseismic demands are apt to be much greater than other countries. Water tests and thermalhydraulic analyses have been performed to study such conditions. The main purpose of this study is to estimate the effects of the elevations of UIS (Upper Internal Structure) discharge and IHX (Intermediate Heat Exchanger) intakes of flow patterns, free surface disturbance and thermal-stratification in hot plenum. From the results of the experiments, suitable elevations could be recommended by comparing some thermalhydraulic characteristics. The calculation agreed well with the experimental results on the steady-state flow patterns and thermal-transients except the thermal-stratification

  2. Gas Detection for Experiments

    CERN Document Server

    Hay, D

    2001-01-01

    Flammable gases are often used in detectors for physics experiments. The storage, distribution and manipulation of such flammable gases present several safety hazards. As most flammable gases cannot be detected by human senses, specific well-placed gas detection systems must be installed. Following a request from the user group and in collaboration with CERN safety officers, risk analyses are performed. An external contractor, who needs to receive detailed user requirements from CERN, performs the installations. The contract is passed on a guaranteed results basis. Co-ordination between all the CERN groups and verification of the technical installation is done by ST/AA/AS. This paper describes and focuses on the structured methodology applied to implement such installations based on goal directed project management techniques (GDPM). This useful supervision tool suited to small to medium sized projects facilitates the task of co-ordinating numerous activities to achieve a completely functional system.

  3. The Interstellar Gas Experiment (IGE)

    Science.gov (United States)

    Lind, Don

    1991-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils in order to collect neutral particles from the interstellar gas. These particles were entrapped in the foils along with precipitating magnetospheric and ambient atmospheric particles. Seven of these foils collected particles arriving from seven different directions as seen from the spacecraft for the entire duration of the Long Duration Exposure Facility (LDEF) mission. The authors' mass spectroscopy analysis of the noble gas component of these interstellar particles detected isotopes of helium and neon. These preliminary measurements suggest that the various isotopes are occurring in approximately the expected amounts and that their distribution in direction of arrival is close to what models predict. The analysis to subtract the background fluxes of magnetospheric and atmospheric particles is still in progress. The hope of this experiment is to investigate the noble gas isotopic ratios of this interstellar sample of matter which originated outside the solar system.

  4. Flow distribution in the inlet plenum of steam generator

    International Nuclear Information System (INIS)

    Khadamakar, H.P.; Patwardhan, A.W.; Padmakumar, G.; Vaidyanathan, G.

    2011-01-01

    Highlights: → Various flow distribution devices have been studied to make the flow distribution uniform in axial as well as tangential direction. → Experiments were performed using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV). → CFD modeling has been carried out to give more insights. → Various flow distribution devices have been compared. - Abstract: The flow distribution in a 1/5th and 1/8th scale models of inlet plenum of steam generator (SG) has been studied by a combination of experiments and Computational Fluid Dynamics (CFD) simulations. The distribution of liquid sodium in the inlet plenum of the SG strongly affects the thermal as well as mechanical performance of the steam generator. Various flow distribution devices have been used to make the flow distribution uniform in axial as well as tangential direction in the window region. Experiments have been conducted to measure the radial velocity distribution using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV) under a variety of conditions. CFD modeling has been carried out for various configurations to give more insight into the flow distribution phenomena. The various flow distribution devices have been compared on the basis of a non-uniformity index parameter.

  5. Status of the INL gas reactor test system experiment facility

    International Nuclear Information System (INIS)

    Marshall, Theron; Bennet, Brion; Tschaggeny, Charles; Reyes, Jose; Groome, John

    2007-01-01

    The Gas Reactor Test System (GRTS) is an experiment facility for examining the thermal hydraulic performance of the Generation IV, Very High Temperature Reactor (VHTR) during a Large-Break Loss of Coolant Accident (LB-LOCA). The LB-LOCA is defined as the double guillotine break of the VHTR coaxial inlet and outlet cross duct. Two system safety codes, MELCOR and RELAP5-3D were used to calculate core temperatures and flow rates during the LB-LOCA transient. Computational fluid dynamics modeling of the transient produced flow vectors and gas species distribution. The most important phenomenon during the transient is the lock-exchange process, which suppresses the onset of natural circulation until considerable molecular diffusion has occurred. The GRTS was designed based upon a hierarchical two tier scaling analysis whose primary objective was replicating the lock-exchange and natural circulation characteristics of the VHTR. The GRTS uses a scaled graphite core to represent the VHTR's graphite core. An in-depth scaling analysis was performed for the GRTS in order to ensure that it accurately simulated the VHTR thermal responses. RELAP5-3D thermal analyses, ProEngineer stress analyses, and combined FLUENT-STARCD CFD analyses have provided a system design that fulfills the GRTS mission statement. This paper discusses the design analyses and their implications on the GRTS capabilities. A discussion is also presented on the preliminary instrumentation plan. The GRTS will provide an extensive temperature map of the VHTR core outlet plenum and its core support, oxygen transport rates during the lock-exchange phenomenon, and thermal conduction rates from the core to the vessel. As a result of the GRTS using helium coolant at 950 C, the resulting experiment data is expected to considerably extend the U.S. database for high-temperature gas reactor operations. Finally, the discussion will present conclusions from the GRTS manufacturing and quality control processes that may

  6. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  7. Coolant mixing in the HPLWR upper plenum

    Energy Technology Data Exchange (ETDEWEB)

    Wank, Alexander; Schulenberg, Thomas; Class, Andreas G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kern- und Energietechnik

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a new type of reactor cooled with supercritical water. The cooling water is heated in 3 stages. In the first stage, the evaporator, the water flows to the top, then flows down in superheater 1 before again flowing upward in superheater II. To prevent peak temperatures and enthalpies being passed on from one heating stage to the next, and to homogenize temperature, the water is mixed in two mixing chambers between the heating stages. Mixing in the upper plenum was computed as a reference case by the STAR-CD CFD code. For quantitative evaluation of mixing, passive scalars were added to the flow and evaluated. Further studies will be conducted to improve mixing by appropriate design measures. (orig.)

  8. Gratiae plenum: Latin, Greek and the Cominform

    Directory of Open Access Journals (Sweden)

    David Movrin

    2010-12-01

    Full Text Available The survival of classics in the People’s Republic of Slovenia after World War II was dominated by the long shadow of the Coryphaeus of the Sciences, Joseph Stalin. Since 1945, the profile of the discipline was determined by the Communist Party, which followed the Soviet example, well-nigh destroying the classical education in the process. Fran Bradač, head of Classics at the University of Ljubljana, was removed for political reasons; the classical gymnasium belonging to the Church was closed down; Greek was struck from the curriculum of the two remaining state classical gymnasia; Latin, previously a central subject at every gymnasium, was severely reduced in 1945, only to disappear entirely in 1946. The classicists who continued to teach were forced to take ‘reorientation courses’ which enabled them to teach Russian and other more suitable subjects. By 1949, only two out of the 42 classicists employed by the Ministry of Education were actually teaching Latin. The Classics department at the university, where only two students were studying in 1949, was on the brink of closure.  Paradoxically, the classical tradition was saved by Stalin’s attack on the same Party. The Cominform conflict in 1948 astonished the Yugoslav communists and pushed them towards a tactical détente with the West, prompting a revision of some of their policies, including education. The process was led by the top echelons of the Party — such as Milovan Djilas, head of the central Agitprop, Boris Kidrič, in charge of Yugoslav economy, and Edvard Kardelj, the Party’s chief ideologue — during the Third Plenum of the Central Committee Politburo in Belgrade in December 1949. Their newly discovered love of Latin and Greek, documented in the minutes of the Politburo Plenum, was overseen only by the discriminating eye of Josip Broz Tito. Classical gymnasia were revived, Latin was reintroduced to some of the other gymnasia, students returned to study classics at the

  9. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  10. WIPP Gas-Generation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Frank S. Felicione; Steven M. Frank; Dennis D. Keiser

    2007-05-01

    An experimental investigation was conducted for gas generation in contact-handled transuranic (CH TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750 ml headspace in each vessel was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure estimated in the repository were it to be inundated. The temperature was maintained at the expected 30°C. The test program objective was to measure the quantities and species of gases generated by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6 1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. Up to 4.2% hydrogen, by volume, was measured. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in vessels containing carbon steel. Visual examination of carbon-steel coupons confirmed the correspondence between the extent of observable corrosion and hydrogen generation. Average corrosion penetration rates

  11. Experimental Measurement of Flow Phenomena in a VHTR Lower Plenum Model

    Energy Technology Data Exchange (ETDEWEB)

    Hugh M. McIlroy Jr.; Keith G. Condie; Glenn E. McCreery; Donald M. McEligot; Robert J. Pink

    2006-06-01

    The Very-High-Temperature Reactor (VHTR) is one of six reactor technologies chosen for further development by the Generation IV International Forum. In addition this system is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. In preparation for the thermal-hydraulics and safety analyses that will be required to confirm the performance of the NGNP, work has begun on readying the computational tools that will be needed to predict the thermal-hydraulics conditions and safety margins of the reactor design. Meaningful feasibility studies for VHTR designs will require accurate, reliable predictions of material temperatures which depend upon the thermal convection in the coolant channels of the core and other components. Unfortunately, one-dimensional system codes for gas-cooled reactors typically underpredict these temperatures, particularly for reduced power operations and hypothesized accident scenarios. Likewise, most turbulence models in general-purpose CFD codes also underpredict these temperatures. Matched-Index-of-Refraction (MIR) fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of CFD solutions of the momentum equations, scalar mixing and turbulence models for typical VHTR plenum geometries in the limiting case of negligible buoyancy and constant fluid properties.

  12. Ideal Gas Laws: Experiments for General Chemistry

    Science.gov (United States)

    Deal, Walter J.

    1975-01-01

    Describes a series of experiments designed to verify the various relationships implicit in the ideal gas equation and shows that the success of the Graham's law effusion experiments can be explained by elementary hydrodynamics. (GS)

  13. Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y. [Power Reactor and Nuclear Fuel Development Corporation, Ibaraki (Japan)

    1995-09-01

    Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.

  14. Experimental Modeling of VHTR Plenum Flows during Normal Operation and Pressurized Conduction Cooldown

    Energy Technology Data Exchange (ETDEWEB)

    Glenn E McCreery; Keith G Condie

    2006-09-01

    The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. The present document addresses experimental modeling of flow and thermal mixing phenomena of importance during normal or reduced power operation and during a loss of forced reactor cooling (pressurized conduction cooldown) scenario. The objectives of the experiments are, 1), provide benchmark data for assessment and improvement of codes proposed for NGNP designs and safety studies, and, 2), obtain a better understanding of related phenomena, behavior and needs. Physical models of VHTR vessel upper and lower plenums which use various working fluids to scale phenomena of interest are described. The models may be used to both simulate natural convection conditions during pressurized conduction cooldown and turbulent lower plenum flow during normal or reduced power operation.

  15. Development of whole core thermal-hydraulic analysis program ACT. 4. Incorporation of three-dimensional upper plenum model

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2003-03-01

    The thermal-hydraulic analysis computer program ACT is under development for the evaluation of detailed flow and temperature fields in a core region of fast breeder reactors under various operation conditions. The purpose of this program development is to contribute not only to clarifying thermal hydraulic characteristics that cannot be revealed by experiments due to measurement difficulty but also to performing rational safety design and assessment. This report describes the incorporation of a three-dimensional upper plenum model to ACT and its verification study as part of the program development. To treat the influence of three-dimensional thermal-hydraulic behavior in a upper plenum on the in-core temperature field, the multi-dimensional general purpose thermal-hydraulic analysis program AQUA, which was developed and validated at JNC, was applied as the base of the upper plenum analysis module of ACT. AQUA enables to model the upper plenum configuration including immersed heat exchangers of the direct reactor auxiliary cooling system (DRACS). In coupling core analysis module that consists of the fuel-assembly and the inter-wrapper gap calculation parts with the upper plenum module, different types of computation mesh systems were jointed using the staggered quarter assembly mesh scheme. A coupling algorithm among core, upper plenum and heat transport system modules, which can keep mass, momentum and energy conservation, was developed and optimized in consideration of parallel computing. ACT was applied to analyzing a sodium experiment (PLANDTL-DHX) performed at JNC, which simulated the natural circulation decay heat removal under DRACS operation conditions for the program verification. From the calculation result, the validity of the improved program was confirmed. (author)

  16. Heavy ion source support gas mixing experiments

    International Nuclear Information System (INIS)

    Hudson, E.D.; Mallory, M.L.

    1977-01-01

    Experiments on mixing an easily ionized support gas with the primary ion source gas have produced large beam enhancements for high charge state light ions (masses less than or equal to 20). In the Oak Ridge Isochronous Cyclotron (ORIC), the beam increase has been a factor of 5 or greater, depending on ion species and charge state. Approximately 0.1 cc/min of the easily ionized support gas (argon, krypton, or xenon) is supplied to the ion source through a separate gas line and the primary gas flow is reduced by approximately 30 percent. The proposed mechanism for increased intensity is as follows: The heavier support gas ionizes readily to a higher charge state, providing increased cathode heating. The increased heating permits a reduction in primary gas flow (lower pressure) and the subsequent beam increase

  17. Improved plenum pressure gradient facemaps for PKL reactors

    International Nuclear Information System (INIS)

    Crowley, D.A.; Hamm, L.L.

    1988-05-01

    This report documents the development of improved plenum pressure gradient facemaps* for PKL Mark 16--31 and Mark 22 reactor charges. These new maps are based on the 1985 L-area AC flow tests. Use of the L-area data base for estimating C-area plenum pressure gradient maps is inappropriate because the nozzle geometry plays a major role in determining the shape of the plenum pressure profile. These plenum pressure gradient facemaps are used in the emergency cooling system (ECS) and in the flow instability (FI) loss of coolant accident (LOCA) limits calculations. For the ECS LOCA limits calculations, the maps are used as input to the FLOWZONE computer code to determine the average flow within a flowzone during normal operating conditions. For the FI LOCA limits calculations, the maps are used as plenum pressure boundary conditions in the FLOWTRAN computer code to determine the maximum pre-incident assembly flow within a flowzone. These maps will also be used for flowzoning and transient protection limits analyses

  18. Numerical investigation of flow characteristics in a prototypical lower plenum of a prismatic VHTR

    International Nuclear Information System (INIS)

    Ying, Alice; Narula, Manmeet; Abdou, Mohamed; Tsai, Peter; Ando, Yuya

    2007-01-01

    The aim of this study is to obtain insights into the flow behavior, as well as to develop predictive capability with regards to the flow and thermal mixing, that occurs in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In this paper, numerical modeling has been used to capture qualitative phenomena observed during an experiment performed at INL, using a finite volume, thermo-fluid solver system, 'SC/Tetra' from CRADLE. The choice of the correct turbulence model is critical to accurately predict the flow in the VHTR lower plenum. Four different turbulence models have been used in this study and the flow predictions are significantly different. A trail of marker particles and fluid temperature as a passive scalar have been used to qualitatively study the flow characteristics, specifically the turbulent mixing of water jets. The quantitative experimental data, when available, will be used to compare and improve on the available turbulence models. Preliminary numerical modeling has been carried out to address the issue of hot streaking and buoyancy effects of hot helium jets in the lower plenum. (author)

  19. NUMERICAL ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST REACTOR

    Directory of Open Access Journals (Sweden)

    SEOK-KI CHOI

    2013-04-01

    Full Text Available A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (∼300 seconds. However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy may be due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

  20. Gas Pressure-Drop Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  1. Experience with unconventional gas turbine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, D.K. [ABB Power Generation Ltd., Baden (Switzerland)

    1996-12-31

    Low grade fuels such as Blast Furnace Gas, biomass, residual oil, coke, and coal - if used in conjunction with appropriate combustion, gasification, and clean-up processes and in combination with a gas turbine combined cycle -offer attractive and environmentally sound power generation. Recently, the Bao Shan Iron and Steel Company in Shanghai placed an order with Kawasaki Heavy Industries, Japan, to supply a combined-cycle power plant. The plant is to employ ABB`s GT 11N2 with a combustor modified to burn blast furnace gas. Recent tests in Shanghai and at Kawasaki Steel, Japan, have confirmed the burner design. The same basic combustor concept can also be used for the low BTU gas derived from airblown gasification processes. ABB is also participating in the API project: A refinery-residual gasification combined-cycle plant in Italy. The GT 13E2 gas turbine employees MBTU EV burners that have been successfully tested under full operating conditions. These burners can also handle the MBTU gas produced in oxygenblown coal gasification processes. ABB`s vast experience in burning blast furnace gas (21 plants built during the 1950s and 1960s), residuals, crude, and coal in various gas turbine applications is an important asset for building such power plants. This presentation discusses some of the experience gained in such plants. (orig.) 6 refs.

  2. CFD predictions of standby liquid control system mixing in lower plenum of a BWR

    International Nuclear Information System (INIS)

    Boyd, Christopher; Skarda, Raymond

    2014-01-01

    Highlights: • Computational fluid dynamics analysis of BWR lower plenum. • Mixing and stratification of the standby liquid control system injection. • Scoping study highlights the expected flow paths and limitations of experiments. - Abstract: During an anticipated transient without scram (ATWS) scenario in certain boiling water reactor (BWR) systems, a standby liquid control system (SLCS) is used to inject a sodium pentaborate solution into the reactor system in order to quickly shut down (scram) the reactor without the use of the control rods. Some BWR designs utilize a SLCS that injects through a set of nozzles on a vertical pipe in the peripheral region of the lower plenum of the reactor vessel. During the scenario, system water levels are reduced and natural circulation flow rates down through the jet pump nozzles and up into the core are a small fraction of the rated system flow. It is during this period that the SLCS flows are considered. This work outlines some initial scoping studies completed by the staff at the Nuclear Regulatory Commission (NRC). An attempt at benchmarking the computational fluid dynamics (CFD) approach using a set of available test data from a small facility is outlined. Due to our lack of information related to specific details of the facility geometry along with the limited data available from the test, the benchmark exercise produced only a qualitative basis for selecting turbulence models and mesh density. A CFD model simulating a full-scale reactor system is developed for the lower plenum of a representative BWR/4 design and SLCS flows and mixing are studied under a range of flow conditions. The full-scale BWR simulation builds upon the lessons learned from the benchmark exercise. One challenge for this work is the large size of the domain and the relatively small size of the geometric details such as flow passages and gaps. The geometry is simplified to make meshing feasible by eliminating some of the small features. The

  3. Development of thermal mixing enhancement method for lower plenum of the High Temperature Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gradecka, Malwina Joanna, E-mail: malgrad@gmail.com; Woods, Brian G., E-mail: brian.woods@oregonstate.edu

    2016-08-15

    Highlights: • Coolant mixing in lower plenum might be insufficient and pose operational issues. • Two mixing methods were developed to lower the coolant temperature variation. • The methods resulted with reduction of the temperature variation by 60% and 71%. - Abstract: The High Temperature Gas-cooled Reactor (HTGR) is one of the most mature Gen IV reactor concepts under development today. The High Temperature Test Facility (HTTF) at Oregon State University is a test facility that supports the R&D needs for HTGRs. This study focuses on the issue of helium mixing after the core section in the HTTF, the results of which are generally applicable in HTGRs. In the HTTF, hot helium jets at different temperatures are supposed to uniformly mix in the lower plenum (LP) chamber. However, the level of mixing is not sufficient to reduce the peak helium temperature before the hot jet impinges the LP structure, which can cause issues with structural materials and operational issues in the heat exchanger downstream. The maximum allowable temperature variation in the outlet duct connected to the lower plenum is defined as 40 K (±20 K from the average temperature), while the CFD simulations of this study indicate that the reference design suffers temperature variations in the duct as high as 100 K. To solve this issue, the installation of mixing-enhancing structures within the outlet duct were proposed and analyzed using CFD modeling. We show that using either an optimized “Kwiat” structure (developed in this study) or a motionless mixer installed in the outlet duct, the temperature variations can be brought dramatically, with acceptable increases in pressure drop. The optimal solution appears to be to install double motionless mixers with long blades in the outlet duct, which brings the temperature variation into the acceptable range (from 100 K down to 18 K), with a resulting pressure drop increase in the HTTF loop of 0.73 kPa (6% of total pressure drop).

  4. Buoyancy effects on turbulent mixing in the LMFBR outlet plenum

    International Nuclear Information System (INIS)

    Chang, S.H.

    1983-01-01

    The effect of flow stratification is of particular concern during transient after scram in the outlet plenum of LMFBR. In this case, buoyancy effects on turbulent mixing are the importance to designers. An investigation has been made to identify the appropriate change in the available turbulence models which are necessary to include the effects of buoyancy on turbulence transport equations. The developed physical model of the buoyant turbulent flow are solved through SMAC method. Testing of the developed numerical model was undertaken and compared with experimental results. The results show that the buoyant turbulent effects account for the significant increase in the stability of the stratification, with a strong suppression of turbulence in the outlet plenum. (Author)

  5. Modeling study of deposition locations in the 291-Z plenum

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Glissmeyer, J.A.

    1994-06-01

    The TEMPEST (Trent and Eyler 1991) and PART5 computer codes were used to predict the probable locations of particle deposition in the suction-side plenum of the 291-Z building in the 200 Area of the Hanford Site, the exhaust fan building for the 234-5Z, 236-Z, and 232-Z buildings in the 200 Area of the Hanford Site. The Tempest code provided velocity fields for the airflow through the plenum. These velocity fields were then used with TEMPEST to provide modeling of near-floor particle concentrations without particle sticking (100% resuspension). The same velocity fields were also used with PART5 to provide modeling of particle deposition with sticking (0% resuspension). Some of the parameters whose importance was tested were particle size, point of injection and exhaust fan configuration

  6. Upper plenum dump during reflood. Topical report Sep 79-Aug 80

    International Nuclear Information System (INIS)

    Sudo, Y.; Griffith, P.

    1980-10-01

    Upper plenum dump during reflood in a large break loss-of-coolant accident of PWR is studied with the emergency core coolant injection into the upper plenum and the simple analysis based on a one-dimensional model was done using the drift flux model in order to investigate the conditions under which water dump through the core occurs during reflood. The most significant result is an upper plenum dump occurs when the pressure in the upper plenum is greater than the lower plenum. Under those circumstances the flow regime is co-current down flow in which the upper plenum is rapidly emptied. On the other hand, when the upper plenum pressure (hydrostatic head) is less than the lower plenum pressure (hydrostatic head), the co-current down flow is not realized but a countercurrent down flow occurs. With subcooled water injection to the upper plenum, co-current down flow is realized even when the upper plenum hydrostatic head is less than the lower plenum hydrostatic head. The importance of this effect varies according to the magnitude of water subcooling

  7. Molten material relocation into the lower plenum: a status report

    International Nuclear Information System (INIS)

    1998-09-01

    This report, prepared by the task group 'Degraded Core Cooling' (DCC) for the CSNI, summarizes the experimental and theoretical knowledge of molten material relocation from a degraded core to the lower plenum of the reactor vessel under the main severe accident scenarios envisaged for both PWRs and BWRs, and boundary conditions. Consequences of movement of material to the lower head are considered with respect to the potential for reactor pressure vessel failure. The following models are reviewed: SCDAP/RELAP5, ICARE/CATHARE, ATHLET-CD/KESS, MELCOR, MAAP4, ESCADRE, etc.

  8. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  9. ULY JUPITER INTERSTELLAR NEUTRAL-GAS EXPERIMENT - NO DATA

    Data.gov (United States)

    National Aeronautics and Space Administration — No data were provided by the Interstellar Neutral-Gas Experiment (GAS) instrument team in connection with this volume. For data made available to the PDS subsequent...

  10. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  11. Numerical simulation analysis of three dimensional flow field in the lower plenum of CNP1000

    International Nuclear Information System (INIS)

    Liu Changwen; Jiang Xiaohua; Chen Weihong

    2004-01-01

    China National Nuclear Corporation (CNNC) proposed the CNP1000 design for Chinese market, which is a 1000MWe class nuclear power plant with three loops, in order to meet the electric power requirements of China and to fit the Chinese nuclear power development plan. This design, in which the number of fuel assembly is reasonably increased to 177 to lower the linear power density, has the characteristics of high safety and better economy. Comparing with the typical three-loop 1000MWe class nuclear power plant with 157 fuel assemblies, the reactor internals has been redesigned due to increasing of core diameter. NPIC has performed the hydraulic simulation test in order to validate the reactor internals design and analyze the reactor hydraulic characteristics. The aims of this paper are to analyze the effect of the new reactor internals design on the reactor thermal-hydraulic characteristics, particularly the flow distribution of the lower plenum and the core inlet flow distribution. The hydraulic tests were usually used to investigate the flow-rate distribution and flow resistance in the core. But the experimental periods were so long and the experiments were too expensive, especially for optimizing schemes. Along with the development of computer, computational fluid dynamics (CFD) became one kind of powerful means for research and engineering design. The flow distribution and pressure drop of the lower core plate can be obtained by numerical simulation of the 3-D flow field in the lower plenum. Through the comparison with the experiment data, not only the reactor internals design can be validated, but also the thermal hydraulic characteristics of the flow in the reactor vessel can be analyzed in detail. Computational fluid dynamics is the combination of neoteric hydrodynamics, numerical mathematics and computer science. It is a fringe subject with powerful vitality. CFD uses computer and discretization method to simulate the practical hydrodynamic problem. There are

  12. Thermal-hydraulic characteristics in a liquid-metal fast breeder reactor hot plenum

    International Nuclear Information System (INIS)

    Tanaka, N.; Moriya, S.; Wada, A.

    1984-01-01

    The most important problem in the thermal-hydraulic designs of the pool-type fast breeder reactor is to estimate the thermal conditions affecting the vessel and/or internal structures during both steady and transient operations. The severity of these conditions in the Japanese pool-type reactor, which will be reinforced and equipped with special devices for seismic demands, is apt to be much greater than for other countries. Water tests and thermal-hydraulic analyses have been performed to study such conditions. The effects of the elevations of upper internal structure discharge and intermediate heat exchanger intakes on flow patterns, free surface disturbance, and thermal stratification in the hot plenum have been estimated. From the results of the experiments, suitable elevations could be recommended by comparing some thermal-hydraulic characteristics. The calculations agreed well with the experimental results for the steady-state flow patterns and thermal transients, with the exception of thermal stratification

  13. Mitigation of thermal transients by tube bundle inlet plenum design

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60 0 sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger

  14. Fracture mechanics evaluation of LOFT lower plenum injection nozzle

    International Nuclear Information System (INIS)

    Nagata, P.K.; Reuter, W.G.

    1977-01-01

    An analysis to establish whether or not a leak-before-break concept would apply to the LOFT lower plenum injection nozzle is described. The analysis encompassed the structure from the inlet side of valve V-2170 to the lower plenum nozzle-to-reactor vessel weld on the left side of the emergency core cooling system (ECCS). The defect that was assumed to exist was of such a size that the probability of its being missed by the applicable inspection technique was near zero. The Inconel 600 nozzle forging with an initial assumed defect size of 0.64 cm (0.25 in.) deep would behave as follows: (1) the axially oriented defect would result in leak before rupture (the number of cycles to rupture was 11,000), (2) the circumferentially oriented defect would result in a rupture before leak. The number of cycles to failure would be in excess of 14,000. Based on the conservative assumption that the thermal stresses were membrane stresses as opposed to a bending stress, the following were found. For the Inconel 82 weld metal (thickness of 1.3 cm [0.53 in.]) and AISI 316 SST valve body, with an initial assumed defect of 0.25 cm (0.1 in.), the crack would grow through the thickness in a minimum of 3950 cycles and to a critical rupture crack length of 5.1 cm (2.0 in.) in an additional 80 cycles. The Inconel 82 weld metal at the shell body (thickness of 9.7 cm or 3.8 in.) with an assumed defect 1.3 cm (0.5 in.) deep would fail in 334 cycles. Calculations made assuming a linear stress gradient instead of the above-mentioned flat distribution through the wall indicated that the number of stress cycles increased to 2200

  15. Gas quality and geochemical studies in gas-stimulation experiments

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1976-01-01

    Gas produced following the Gasbuggy and Rulison gas-stimulation nuclear explosions had a different composition than the natural gas produced in the same areas before nuclear stimulation. The principal difference was the presence of substantial amounts of CO 2 , CO, H 2 , and H 2 O in the post-explosion gas. There also were changes in ratios of hydrocarbons. Because CO 2 reduces the heating value of the gas, and steam presents a troublesome disposal problem due to the trace of tritium it carries, an understanding of the geochemical effects produced by these types of nuclear explosions is needed. Samples of gas-bearing shales were heated under a variety of conditions evolving CO 2 at temperatures as low as 500 0 C, even under a CO 2 pressure of 50 atm, due to reactions between fine-grained carbonates and silicates. In other experimental studies evidence was obtained that regions of high temperature (approximately 400 0 C), rather than radiation, caused the changes in gas composition observed in the Gasbuggy chimney during the 6-mo ''shut-in'' period. In looking ahead to the geochemical effects that occur when multiple explosions are used to form interconnecting chimneys, it is concluded that less CO 2 will be produced per unit yield than for a single explosion in the same rock. This is because the intensely heated rock is cooled rapidly by convecting gas before it can heat the adjacent rubble, which results in less rubble being heated hot enough to release CO 2 . Steam production, however, will be greater in the case of multiple explosions than for single explosions because a higher fraction of the total yield is deposited as heat in the chimney, thus increasing the average chimney temperature. The average chimney temperature, and thus the steam pressure, increases as the distance between multiple explosions is decreased. The steam pressure will also increase as the depth of nuclear explosions is increased

  16. The Spanish experience - future developments in the gas industry

    International Nuclear Information System (INIS)

    Moraleda, P.

    1996-01-01

    Spanish experience is presented concerned it may be useful at the time of setting up a natural gas industry. The Spanish natural gas industry is of recent creation. Developing infrastructure and securing gas supplies have been major challenges. Challenges which, are also common for majority of the countries. The presentation is split into two blocks: the first one is on our experience in the establishment and consolidation of the market for natural gas in Spain. The second block deals with future developments aiming to strengthen the security of supply; and with the opportunities and threats the gas industry will face

  17. Effects of lower plenum flow structure on core inlet flow of ABWR

    International Nuclear Information System (INIS)

    Watanabe, Shun; Abe, Yutaka; Kaneko, Akiko; Watanabe, Fumitoshi; Tezuka, Kenichi

    2010-01-01

    The evaluation of coolant flow structure at a lower plenum of an advanced boiling water reactor (ABWR) in which there are many structures is very important in order to improve generating power. Although the simulation results by CFD (Computational Fluid Dynamics) codes can predict such complicated flow in the lower plenum, it is required to establish the database of flow structure in lower plenum of ABWR experimentally for the benchmark of the CFD codes. In the model of the lower plenum, we measured velocity profiles with LDV and PIV. And differential pressure of constructed model is measured with differential pressure instrument. It was identified that the velocity and differential pressure profiles also showed the tendency to be flat in the core inlet. Moreover, vortexes were observed around side entry orifice by PIV measurement. (author)

  18. Intake plenum volume and its influence on the engine performance, cyclic variability and emissions

    International Nuclear Information System (INIS)

    Ceviz, M.A.

    2007-01-01

    Intake manifold connects the intake system to the intake valve of the engine and through which air or air-fuel mixture is drawn into the cylinder. Details of the flow in intake manifolds are extremely complex. Recently, most of engine companies are focused on variable intake manifold technology due to their improvement on engine performance. This paper investigates the effects of intake plenum volume variation on engine performance and emissions to constitute a base study for variable intake plenum. Brake and indicated engine performance characteristics, coefficient of variation in indicated mean effective pressure (COV imep ) as an indicator for cyclic variability, pulsating flow pressure in the intake manifold runner, and CO, CO 2 and HC emissions were taken into consideration to evaluate the effects of different plenum volumes. The results of this study showed that the variation in the plenum volume causes an improvement on the engine performance and the pollutant emissions. The brake torque and related performance characteristics improved pronouncedly about between 1700 and 2600 rpm by increasing plenum volume. Additionally, although the increase in the plenum volume caused the mixture leaner due to the increase in the intake runner pressure and lean mixtures inclined to increase the cyclic variability, a decrease was interestingly observed in the COV imep

  19. Experience in education and training of gas engineers in Russia

    International Nuclear Information System (INIS)

    Basniev, K.; Vladimirov, A.

    1997-01-01

    Experience gained in training and retraining of engineers for gas industry is considered in the report. The report contains the material on modern state of higher technical education in Russia in view of the reforms taking place in this country. The report deals with questions concerning the experience gained in a specialized training of gas engineers at higher educational establishments of Russia including training of specialists for foreign countries. Conditions under which retraining of engineers involved in gas industry takes place are presented in the report. The report is based mainly on the experience gained by the Russian leading higher educational establishment of oil and gas profile, that is the State Gubkin Oil and Gas Academy. (au)

  20. A generic-tee-plenum mixing system for application to single point aerosol sampling in stacks and ducts.

    Science.gov (United States)

    Han, Taewon; O'Neal, Dennis L; Ortiz, Carlos A

    2007-01-01

    The ANSI/HPS-N13.1-1999 standard is based on the concept of obtaining a single point representative sample from a location where the velocity and contaminant profiles are relatively uniform. It is difficult to predict the level of mixing in an arbitrary stack or duct without experimental data to meet the ANSI/HPS N13.1-1999 requirements. The goal of this study was to develop experimental data for a range of conditions in "S" (S-shaped configuration) duct systems with different mixing elements and "S" systems having one or two mixing elements. Results were presented in terms of the coefficients of variation (COVs) for velocity, tracer gas, and 10-mum aerodynamic diameter (AD) aerosol particle profiles at different downstream locations for each mixing element. Five mixing elements were tested, including a 90 degrees elbow, a commercial static mixer, a Small-Horizontal Generic-Tee-Plenum (SH-GTP), a Small-Vertical Generic-Tee-Plenum (SV-GTP), and a Large-Horizontal Generic-Tee-Plenum (LH-GTP) system. The COVs for velocity, gas concentration, and aerosol particles for the three GTP systems were all determined to be less than 8%. Tests with two different sizes of GTPs were conducted, and the results showed the performance of the GTPs was relatively unaffected by either size or velocity as reflected by the Reynolds number. The pressure coefficients were 0.59, 0.57, and 0.65, respectively, for the SH-GTP, SV-GTP, and LH-GTP. The pressure drop for the GTPs was approximately twice that of the round elbow, but a factor of 5 less than a Type IV Air Blender. The GTP was developed to provide a sampling location less than 4-duct diameters downstream of a mixing element with low pressure drop condition. The object of the developmental effort was to provide a system that could be employed in new stack; however, the concept of GTPs could also be retrofitted onto existing system applications as well. Results from these tests show that the system performance is well within the ANSI

  1. Cylinder expansion test and gas gun experiment comparison

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This is a summer internship presentation by the Hydro Working Group at Los Alamos National Laboratory (LANL) and goes into detail about their cylinder expansion test and gas gun experiment comparison. Specifically, the gas gun experiment is detailed along with applications, the cylinder expansion test is detailed along with applications, there is a comparison of the methods with pros and cons and limitations listed, the summer project is detailed, and future work is talked about.

  2. Stratospheric Aerosol and Gas Experiment III

    Science.gov (United States)

    Thomason, Larry W.; Chu, William P.; Pitts, Michael C.

    1998-12-01

    The SAGE III is the fourth generation of solar occultation instruments designed to measure aerosols and trace gas species in the stratosphere and upper troposphere. It will be launched aboard a Meteor-3M platform in the summer of 1999 and the International Space Station Alpha in 2001. SAGE III preserves the robust characteristics of the SAGE series, including self-calibration and high vertical resolution, and adds new capabilities including a lunar occultation mode. This paper will describe the SAGE III instrument and outline its potential contribution to global change research.

  3. Proper battery system design for GAS experiments

    Science.gov (United States)

    Calogero, Stephen A.

    1992-10-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  4. Design of a new SI engine intake manifold with variable length plenum

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Akin, M.

    2010-01-01

    This paper investigates the effects of intake plenum length/volume on the performance characteristics of a spark-ignited engine with electronically controlled fuel injectors. Previous work was carried out mainly on the engine with carburetor producing a mixture desirable for combustion and dispatching the mixture to the intake manifold. The more stringent emission legislations have driven engine development towards concepts based on electronic-controlled fuel injection rather than the use of carburetors. In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected onto the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. Engine performance characteristics such as brake torque, brake power, thermal efficiency and specific fuel consumption were taken into consideration to evaluate the effects of the variation in the length of intake plenum. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. According to the test results, plenum length must be extended for low engine speeds and shortened as the engine speed increases. A system taking into account the results of the study was developed to adjust the intake plenum length.

  5. Modeling of modification experiments involving neutral-gas release

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1983-01-01

    Many experiments involve the injection of neutral gases into the upper atmosphere. Examples are critical velocity experiments, MHD wave generation, ionospheric hole production, plasma striation formation, and ion tracing. Many of these experiments are discussed in other sessions of the Active Experiments Conference. This paper limits its discussion to: (1) the modeling of the neutral gas dynamics after injection, (2) subsequent formation of ionosphere holes, and (3) use of such holes as experimental tools

  6. Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum

    International Nuclear Information System (INIS)

    Saito, Ryusuke; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    To estimate the state of reactor pressure vessel of Fukushima Daiichi nuclear power plant, it is important to clarify the breakup and fragmentation of molten material jet in the lower plenum of boiling water reactor (BWR) by a numerical simulation. To clarify the effects of complicated structures on the jet behavior experimentally and validate the simulation code, we conduct the visualized experiments simulating the severe accident in the BWR lower plenum. In this study, jet breakup, fragmentation and surrounding velocity profiles of the jet were observed by the backlight method and the particle image velocimetry (PIV) method. From experimental results using the backlight method, it was clarified that jet tip velocity depends on the conditions whether complicated structures exist or not and also clarified that the structures prevent the core of the jet from expanding. From measurements by the PIV method, the surrounding velocity profiles of the jet in the complicated structures were relatively larger than the condition without structure. Finally, fragment diameters measured in the present study well agree with the theory suggested by Kataoka and Ishii by changing the coefficient term. Thus, it was suggested that the fragmentation mechanism was mainly controlled by shearing stress. (author)

  7. Investigations of the Application of CFD to Flow Expected in the Lower Plenum of the Prismatic VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Richard W.Johnson; Tara Gallaway; Donna P. Guillen

    2006-09-01

    The Generation IV (Gen IV) very high temperature reactor (VHTR) will either be a prismatic (block) or pebble bed design. However, a prismatic VHTR reference design, based on the General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) [General Atomics, 1996] has been developed for preliminary analysis purposes [MacDonald, et al., 2003]. Numerical simulation studies reported herein are based on this reference design. In the lower plenum of the prismatic reference design, the flow will be introduced by dozens of turbulent jets from the core above. The jet flow will encounter rows of columns that support the core. The flow from the core will have to turn ninety degrees and flow toward the exit duct as it passed through the forest of support columns. Due to the radial variation of the power density in the core, the jets will be at various temperatures at the inlet to the lower plenum. This presents some concerns, including that local hot spots may occur in the lower plenum. This may have a deleterious effect on the materials present as well as cause a variation in temperature to be present as the flow enters the power conversion system machinery, which could cause problems with the operation of the machinery. In the past, systems analysis codes have been used to model flow in nuclear reactor systems. It is recognized, however, that such codes are not capable of modeling the local physics of the flow to be able to analyze for local mixing and temperature variations. This has led to the determination that computational fluid dynamic (CFD) codes be used, which are generally regarded as having the capability of accurately simulating local flow physics. Accurate flow modeling involves determining appropriate modeling strategies needed to obtain accurate analyses. These include determining the fineness of the grid needed, the required iterative convergence tolerance, which numerical discretization method to use, and which turbulence model and wall treatment should be

  8. Self sloshing of thermal-stratification interface in LMFBR hot plenum

    International Nuclear Information System (INIS)

    Tanaka, Nobukazu

    2010-01-01

    One of the important problems in thermal hydraulic designs for pool-type LMFBR is to properly estimate thermal conditions of the coolant that is liquid sodium affecting thermal stresses on the vessel or internal structures during both steady and transient operations. The severity of these conditions of pool-type reactor in Japan which will be reinforced and equipped with special devices for anti-seismic demands is apt to be much greater than loop-type due to large volume of coolant. Water tests and thermal hydraulic analyses were performed to investigate such conditions in our institute. Purpose of this report is to overview such investigations which were conducted yet. That is to estimate the effects of the elevations of UIS (Upper Internal Structure) discharge and IHX (Intermediate Heat Exchanger) intakes on flow patterns, free surface disturbance and thermal stratification in hot plenum. From the results of the experiments, suitable elevations could be recommended by comparing some thermal hydraulic characteristics and self sloshing of thermal interface called as internal standing wave was observed in certain limited ranges of Richardson number. (author)

  9. Proposed retrofit of HEPA filter plenums with injection and sampling manifolds for in-place filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Fretthold, J.K. [EG& G Rocky Flats, Inc., Golden, CO (United States)

    1995-02-01

    The importance of testing HEPA filter exhaust plenums with consideration for As Low as Reasonably Achievable (ALARA) will require that new technology be applied to existing plenum designs. HEPA filter testing at Rocky Flats has evolved slowly due to a number of reasons. The first plenums were built in the 1950`s, preceding many standards. The plenums were large, which caused air dispersal problems. The systems were variable air flow. Access to the filters was difficult. The test methods became extremely conservative. Changes in methods were difficult to make. The acceptance of new test methods has been made in recent years with the change in plant mission and the emphasis on worker safety.

  10. Advanced divertor experiments on DIII-D

    International Nuclear Information System (INIS)

    Schaffer, M.J.; Mahdavi, M.A.; Osborne, T.; Petrie, T.W.; Stambaugh, R.D.; Buchenauer, D.; Hill, D.N.; Klepper, C.C.

    1991-01-01

    The poloidal divertor is presently favored for next-step, high-power tokamaks. The DIII-D Advanced Divertor Program (ADP) aims to gain increased control over the divertor plasma and tokamak boundary conditions. This paper reports experiments done in the first phase of the ADP. The DIII-D lower divertor was modified by the addition of a toroidally symmetric, graphite-armoured, water-cooled divertor-biasing ring electrode at the entrance to a gas plenum. (In the past DIII-D operated with an open divertor.) The plenum will eventually contain a He cryogenic loop for active divertor pumping. The separatrix 'strike' position is controlled by the lower poloidal field shaping coils and can be varied smoothly from the ring electrode upper surface to the divertor floor far from the entrance aperture. External power, at up to 550 V and 8 kA separately, has been applied to the electrode to date. (author) 5 refs., 5 figs

  11. High pressure gas spheres for neutron and photon experiments

    Science.gov (United States)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  12. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  13. Experience curve for natural gas production by hydraulic fracturing

    International Nuclear Information System (INIS)

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  14. Key Points of China’s Economic Programme After the Third Plenum of the CPC

    DEFF Research Database (Denmark)

    Brødsgaard, Kjeld Erik; Grünberg, Nis

    2014-01-01

    At the Third Plenum held in November 2013, the Communist Party of China (CPC) adopted a comprehensive reform programme containing no less than 300 reform proposals. It is potentially the most important reform document to have been passed by the CPC since the landmark Third Plenum in December 1978....... Entitled ‘The Decision of the CPC Central Committee on Some Important Questions Concerning Comprehensively Deepening Reform’, the programme upgrades the role of the market in the general economic system from ‘basic’ to ‘decisive’. It also stipulates a number of reform measures within finance, banking, tax...

  15. Flowing gas, non-nuclear experiments on the gas core reactor

    Science.gov (United States)

    Kunze, J. F.; Cooper, C. G.; Macbeth, P. J.

    1973-01-01

    Variations in cavity wall and injection configurations of the gas core reactor were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or Freon to simulate the central nuclear fuel gas. Tests were run both in the down-firing and upfiring directions. Results showed that acceptable flow patterns with volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity long the cavity wall, using louvered injection schemes. Recirculation patterns were needed to stabilize the heavy central gas when different gases are used.

  16. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    Science.gov (United States)

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  17. Large Eddy Simulation of a Film Cooling Technique with a Plenum

    Science.gov (United States)

    Dharmarathne, Suranga; Sridhar, Narendran; Araya, Guillermo; Castillo, Luciano; Parameswaran, Sivapathasund

    2012-11-01

    Factors that affect the film cooling performance have been categorized into three main groups: (i) coolant & mainstream conditions, (ii) hole geometry & configuration, and (iii) airfoil geometry Bogard et al. (2006). The present study focuses on the second group of factors, namely, the modeling of coolant hole and the plenum. It is required to simulate correct physics of the problem to achieve more realistic numerical results. In this regard, modeling of cooling jet hole and the plenum chamber is highly important Iourokina et al. (2006). Substitution of artificial boundary conditions instead of correct plenum design would yield unrealistic results Iourokina et al. (2006). This study attempts to model film cooling technique with a plenum using a Large Eddy Simulation.Incompressible coolant jet ejects to the surface of the plate at an angle of 30° where it meets compressible turbulent boundary layer which simulates the turbine inflow conditions. Dynamic multi-scale approach Araya (2011) is introduced to prescribe turbulent inflow conditions. Simulations are carried out for two different blowing ratios and film cooling effectiveness is calculated for both cases. Results obtained from LES will be compared with experimental results.

  18. Reduction of sound transmission across plenum windows by incorporating an array of rigid cylinders

    Science.gov (United States)

    Tang, S. K.

    2018-02-01

    The potential improvement of plenum window noise reduction by installing rigid circular cylinder arrays into the window cavity is investigated numerically using the finite-element method in this study. A two-dimensional approach is adopted. The sound transmission characteristics and propagation within the plenum window are also examined in detail. Results show that the installation of the cylinders in general gives rise to broadband improvement of noise reduction across a plenum window regardless of the direction of sound incidence. Such acoustical performance becomes better when more cylinder columns are installed, but it is suggested that the number of cylinder rows should not exceed two. Results also show that the cylinder positions relative to the nodal/anti-nodal planes of the acoustic modes are crucial in the noise reduction enhancement mechanisms. Noise reduction can further be enhanced by staggering the cylinder rows, such that each cylinder row supports the development of a different acoustic mode. For the simple cylinder arrangements considered in this study, the traffic noise reduction enhancement observed in this study can be as high as 4-5 dB, which is already comparable to or higher than the maximum achieved by installing sound absorption into a plenum window.

  19. Potential for Hepa filter damage from water spray systems in filter plenums

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Fretthold, J.K.; Slawsld, J.W.

    1997-01-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for HEPA filter damage during fires has also occurred in the field. Afire in a four-stage, HEPA filter plenum at Rocky Flats in 1980 caused the first three stages of HEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenum , additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk.

  20. Gas-filled hohlraum experiments at the national ignition facility.

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, J. C. (Juan C.); Gautier, D. C. (Donald Cort); Goldman, S. R. (Sanford R.); Grimm, B. M.; Hegelich, B. M. (Bjorn M.); Kline, J. L. (John L.); Montgomery, D. S. (David S.); Lanier, N. E. (Nicholas E.); Rose, H. A. (Harvey A.); Schmidt, D. M. (David M.); Swift, D. C.; Workman, J. B. (Jonathan B.); Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K. (Katherine); DeWald, E.; Glenzer, S. (Siegfried); Holder, J. (Joe P.); Kamperschroer, J. H. (James H.); Kimbrough, Joe (Joseph R.); Kirkwood, Robert (Bob); Landen, O. L. (Otto L.); Mccarville, Tom (Tomas J.); Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li [number : znumber] 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  1. Operating experience review of an INL gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeWall, K. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herring, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  2. Tailored ramp wave generation in gas gun experiments

    Directory of Open Access Journals (Sweden)

    Cotton Matthew

    2015-01-01

    Full Text Available Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ∼ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.

  3. TMI-2 [Three Mile Island Unit 2] reactor vessel head and plenum removal

    International Nuclear Information System (INIS)

    Hultman, C.W.; Jackson, R.W.

    1988-01-01

    As a result of the damage to the Three Mile Island Unit 2 (TMI-2) core during the accident in March 1979, removal of the reactor vessel head and plenum in the normal manner was judged to be impossible. In June 1982, a task force was formed to develop a plan for removing the TMI-2 reactor vessel head. The plan proposed removing the head using the standard head removal procedure in conjunction with the necessary precautions, changes, and preparations required for potential problems. This included the potential for both higher than normal radiation levels and airborne radioactive contamination. In addition, the plan specified that the plant be left either in a condition to proceed with plenum and fuel removal immediately after head removal or in a safe long-term lay-up condition. The basic plan consisting of the described major steps is discussed

  4. Measurement of heat and momentum eddy diffusivities in recirculating LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Manno, V.P.; Golay, M.W.

    1978-06-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Lows are introduced into both the 1 / 15 scale FFTF outlet plenum and the 3 / 80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000. Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure

  5. Interferometric investigation of turbulently fluctuating temperature in an LMFBR outlet plenum geometry

    International Nuclear Information System (INIS)

    Bennett, R.G.; Golay, M.W.

    1975-01-01

    A novel optical technique is described for the measurement of turbulently fluctuating temperature in a transparent fluid flow. The technique employs a Mach-Zehnder interferometer of extremely short field and a simple photoconductive diode detector. The system produces a nearly linear D.C. electrical analog of the turbulent temperature fluctuations in a small, 1 mm 3 volume. The frequency response extends well above 2500 Hz, and can be improved by the choice of a more sophisticated photodetector. The turbulent sodium mixing in the ANL 1 1 / 15 -scale FFTF outlet plenum is investigated with a scale model outlet mixing plenum, using flows of air. The scale design represents a cross section of the ANL outlet plenum, so that the average recirculating flow inside the test cell is two dimensional. The range of the instrument is 120 0 F above the ambient air temperature. The accuracy is generally +-5 0 F, with most of the error due to noise originating from building vibrations and room noise. The power spectral density of the fluctuating temperature has been observed experimentally at six different stations in the flow. A strong 300 Hz component is generated in the inlet region, which decays as the flow progresses along streamlines. The effect of the inlet Reynolds number and the temperature difference between the inlet flows on the power spectral density has also been investigated. Traces of the actual fluctuating temperature are included for the six stations

  6. Measurement of heat and momentum eddy diffusivities in recirculating LMFBR outlet plenum flows

    Energy Technology Data Exchange (ETDEWEB)

    Manno, V.P.; Golay, M.W.

    1978-06-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Lows are introduced into both the /sup 1///sub 15/ scale FFTF outlet plenum and the /sup 3///sub 80/ scale CRBR geometry plenum at inlet Reynolds numbers of 22,000. Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure.

  7. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, September 1, 1976--November 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1976-01-01

    Information is presented concerning bundle geometry with wrapped and bare rods, subchannel geometry with bare rods, LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles.

  8. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1977--May 31, 1977

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1977-01-01

    Progress is summarized in the following tasks: (1) bundle flow studies (wrapped and bare rods); (2) subchannel flow studies (bare rods); (3) LMFBR outlet plenum flow mixing; and (4) theoretical determination of local temperature fields in LMFBR fuel rod bundles

  9. CELSS experiment model and design concept of gas recycle system

    Science.gov (United States)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  10. NEXT: Neutrino Experiment with high pressure Xenon gas TPC

    Energy Technology Data Exchange (ETDEWEB)

    Yahlali, Nadia, E-mail: Nadia.Yahlali@ific.uv.e [Instituto de Fisica Corpuscular (Centro mixto UV-CSIC), Apdo. de Correos 22085, E-46071 Valencia (Spain); Ball, M.; Carcel, S.; Diaz, J.; Gil, A.; Gomez Cadenas, J.J.; Martin-Albo, J.; Monrabal, F.; Serra, L.; Sorel, M. [Instituto de Fisica Corpuscular (Centro mixto UV-CSIC), Apdo. de Correos 22085, E-46071 Valencia (Spain)

    2010-05-21

    The search of the neutrinoless double-{beta} decay address the major Physics goals of revealing the nature of the neutrino and setting an absolute scale for its mass. The observation of a positive {beta}{beta}{sup 0{nu}}signal, the unique signature of Majorana neutrinos, would have deep consequences in particle physics and cosmology. Therefore, any claim of observing a positive signal shall require extremely robust evidences. NEXT is a new double-{beta} experiment which aims at building a 100 kg high pressure {sup 136}Xe gas TPC, to be hosted in the Canfranc Underground Laboratory (LSC), in Spain. This paper address the novel design concept of NEXT TPC believed to provide a pathway for an optimized and robust double-{beta} experiment.

  11. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  12. Initial Scaling Studies and Conceptual Thermal Fluids Experiments for the Prismatic NGNP Point Design

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-09-01

    The objective of this report is to document the initial high temperature gas reactor scaling studies and conceptual experiment design for gas flow and heat transfer. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/ATHENA/RELAP5-3D calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses are being applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant forced convection with slight transverse property variation. The flow in the lower plenum can locally be considered to be a situation of multiple buoyant jets into a confined density-stratified crossflow -- with obstructions. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary. The second experiment will treat heated jets entering a model plenum. Unheated MIR (Matched-Index-of-Refraction) experiments are first steps when the geometry is complicated. One does not want to use a computational technique which will not even handle constant properties properly. The MIR experiment will simulate flow features of the paths of jets

  13. Compressed natural gas fueled vehicles: The Houston experience

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  14. The Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder

    Science.gov (United States)

    Hill, C. A.; Damadeo, R. P.; Gasbarre, J. F.

    2017-12-01

    Stratospheric ozone has been the subject of observation and research for decades. Measurements from satellites provided data on the initial decline in the late 1970s and early 1980s that supported the adoption of the Montreal Protocol to current observations hinting at potential recovery. Adequate determination of that recovery requires continuous and, in the case of multiple instruments, overlapping data records. However, most current satellite systems are well beyond their expected lifetimes and thus, with only a few "younger" instruments available, we look towards the future of satellite observations of stratospheric ozone to develop the Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder. The SAGE IV Pathfinder project will develop and validate a technology demonstration that will pave the way for a future SAGE IV mission. Utilizing solar occultation imaging, SAGE IV will be capable of measuring ozone, aerosol, and other trace gas species with the same quality as previous SAGE instruments but with greatly improved pointing knowledge. Furthermore, current technological advancements allow SAGE IV to fit within a CubeSat framework and make use of commercial hardware, significantly reducing the size and cost when compared with traditional missions and enabling sustainability of future measurements.

  15. Measurement of two-phase flow at the core upper plenum interface under simulated reflood conditions

    International Nuclear Information System (INIS)

    Thomas, D.G.; Combs, S.K.; Bagwell, M.E.

    1980-01-01

    Objectives of the Instrument Development Loop program were to simulate flows at the core/upper plenum interface during the reflood phase of a LOCA and to develop instruments for measuring mass-flows at this interface. A tie plate drag body was developed and tested successfully, and the data obtained were shown to be equivalent to pressure drops. The tie-plate drag body gave useful measurements in pure downflow, and the drag/turbine combination correlates with mass flow for high upflow

  16. Thermophysical, hydrodynamic and mechanical aspects of molten core relocation to lower plenum

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    This paper presents the current state of knowledge on molten material relocation into the lower plenum. Consequences of movement of material to the lower head are considered with regard to the potential for reactor pressure vessel failure from both thermal hydraulic and mechanical standpoints. The models are applied to evaluating various in-vessel retention strategies for the Korean Standard Power Plant (KSNPP) reactor. The results are summarized in terms of thermal response of the reactor vessel from the very relevant severe accident management perspective. 10 refs., 1 fig., 1 tab. (Author)

  17. Critical heat flux of water in vertical tubes with an upper plenum and a closed bottom

    International Nuclear Information System (INIS)

    Kim, Hong Chae; Baek, Won Pil; Chang, Soon Heung

    2000-01-01

    An experimental study is conducted for vertical round tubes with an upper plenum and a closed bottom to investigate CHF behavior and CHF onset location under the counter-current condition. The measured CHF values are well predicted by general Wallis type flooding correlations. A 1-D steady state analytical flooding model for thermosyphon by El-Genk and Saber was assessed with the data and the liquid film thickness at the liquid entrance was calculated. The CHF onset position becomes different with L/D and D, and liquid entrance geometry affects only CHF values not CHF onset positions

  18. Anisotropy of the neutral gas distribution of Comet Halley deduced from NGE/Vega 1 measurements. [Neutral Gas Experiment (NGE)

    Science.gov (United States)

    Hsieh, K. C.; Eip, WING-H. AFKEPPLER, E. agrichter, a. k; Eip, WING-H. AFKEPPLER, E. agrichter, a. k

    1986-01-01

    The neutral gas density profile of comet Halley measured by the Neutral Gas Experiment on Vega 1 showed an asymmetry between the inbound and the outbound legs during the fly-by on 6 March 1986. The implications of this asymmetry are discussed, and it is shown how the asymmetry detected by NGE on Vega 1 can be traced back to regions on or near the nucleus to obtain their relative gas production activities at specific times of emission.

  19. Natural gas extraction and artificial gas injection experiments in Opalinus Clay, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Vinsot, A.; Lundy, M. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne Center, Bure (France); Appelo, C.A.J. [Dr C.A.J. Appelo, Hydrochemical Consultant, Amsterdam (Netherlands); and others

    2017-04-15

    Two experiments have been installed at Mont Terri in 2004 and 2009 that allowed gas circulation within a borehole at a pressure between 1 and 2 bar. These experiments made it possible to observe the natural gases that were initially dissolved in pore-water degassing into the borehole and to monitor their content evolution in the borehole over several years. They also allowed for inert (He, Ne) and reactive (H{sub 2}) gases to be injected into the borehole with the aim either to determine their diffusion properties into the rock pore-water or to evaluate their removal reaction kinetics. The natural gases identified were CO{sub 2}, light alkanes, He, and more importantly N{sub 2}. The natural concentration of four gases in Opalinus Clay pore-water was evaluated at the experiment location: N{sub 2} 2.2 mmol/L ± 25%, CH{sub 4} 0.30 mmol/L ± 25%, C{sub 2}H{sub 6} 0.023 mmol/L ± 25%, C{sub 3}H{sub 8} 0.012 mmol/L ± 25%. Retention properties of methane, ethane, and propane were estimated. Ne injection tests helped to characterize rock diffusion properties regarding the dissolved inert gases. These experimental results are highly relevant towards evaluating how the fluid composition could possibly evolve in the drifts of a radioactive waste disposal facility. (authors)

  20. Norm waste in oil and gas industry: The Syrian experience

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Suman, H.

    2001-01-01

    This paper describes the Syrian experience in respect to Naturally Occurring Radioactive Materials (NORM) waste in Syrian oil and gas industry. NORM can be concentrated and accumulated in tubing and surface equipment of oil and gas production lines in the form of scale and sludge. NORM waste (scale, sludge, production water) is therefore generated during cleaning, physical or chemical treatment of streams. Uncontrolled disposal of this type of waste could lead to environmental pollution, and thus eventually to exposure of members of the public. The presence of NORM in Syrian oil fields has been recognized since 1987 and AECS has initiated several studies, in cooperation with oil companies, to manage such type of waste. Three categories of NORM waste in Syrian oil fields were identified. Firstly, hard scales from either decontamination of contaminated equipment and tubular using high-pressure water systems or mechanical cleaning at site are considered to contain the highest levels of radium isotopes ( 226 Ra, 228 Ra, 224 Ra). Secondly, sludge wastes are generated with large amount but low levels of radium isotopes were found. Thirdly, contaminated soil with 226 Ra as a result of uncontrolled disposal of production water was also considered as NORM waste. The first waste type (scale) is stored in Standard storage barrels in a controlled area; the number of barrels is increasing with time. High levels of radium isotopes were found in these scales. The options for disposal of these wastes are still under investigations; one of the most predominant thinking is the re-injection into abundant wells. For sludge waste, plastic lined disposal pits were constructed in each area for temporary storage. Moreover, big gas power stations have been built and operated since the last ten years. Maintenance operations for these stations produce tens of tones of scales containing radon daughters, 210 Pb and 210 Po with relatively high concentrations. The common practice used to dispose

  1. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE

    Directory of Open Access Journals (Sweden)

    Dobler Jeremy

    2016-01-01

    Full Text Available Exelis has recently developed a novel laser-based instrument to aid in the autonomous real-time monitoring and mapping of CO2 concentration over a two-dimensional area. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE instrument uses two transceivers and a series of retroreflectors to continuously measure the differential transmission over a number of overlapping lines of sight or “chords”, forming a plane. By inverting the differential transmission measurements along with locally measured temperature (T, pressure (P and relative humidity (RH the average concentration of CO2 along each chord can be determined and, based on the overlap between chords, a 2D map of CO2 concentration over the measurement plane can be estimated. The GreenLITE system was deployed to the Zero Emissions Research and Technology (ZERT center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions, while utilizing a controlled release of CO2 into a segmented underground pipe [1]. The system demonstrated the ability to identify persistent CO2 sources at the test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, instrument design, and results from the deployment to the ZERT site.

  2. Investigation of the coolability of a continuous mass of relocated debris to a water-filled lower plenum. Technical report

    International Nuclear Information System (INIS)

    Rempe, J.L.; Wolf, J.R.; Chavez, S.A.; Condie, K.G.; Hagrman, D.L.; Carmack, W.J.

    1994-09-01

    This report documents work performed to support the development of an analytical and experimental program to investigate the coolability of a continuous mass of debris that relocates to a water-filled lower plenum. The objective of this program is to provide an adequate data base for developing and validating a model to predict the coolability of a continuous mass of debris relocating to a water-filled lower plenum. The model must address higher pressure scenarios, such as the TMI-2 accident, and lower pressure scenarios, which recent calculations indicate are more likely for most operating LWR plants. The model must also address a range of possible debris compositions

  3. Heavy duty gas turbines experience with ash-forming fuels

    OpenAIRE

    Molière, M.; Sire, J.

    1993-01-01

    The heavy duty gas turbines operating in power plants can burn various fuels ranging from natural gas to heavy oils. Ash-forming fuels can have detrimental effects on the turbine hardware such as : combustion troubles, erosion, corrosion and fouling by ashes. For decades, progress has been made by the gas turbine industry, especially in the fields of superalloy metallurgy, coating and cooling technology. Furthermore, fuel treatments inspired by the petroleum and marine-engine industries (elec...

  4. A modeled experiment of gas behavior in aquifer and residual gas formation

    Science.gov (United States)

    Takahashi, K.; Yamada, Y.; Murata, S.; Nakano, M.; Matsuoka, T.

    2007-12-01

    National and international concern is rising about the possible effects of greenhouse gases (GHGs) on the climate. Several methods are proposed to reduce the gas in the atmosphere and underground sequestration is recently expected as an effective concept. Especially, residual gas can be the most effective method to store the gas in reservoir. Underground sequestration requires the gas injected into a reservoir. When the gas is injected into a water- saturated aquifer, it pushes water out of the pore space. As the gas bubbles go upward, the gas space is filled with water again, but small gas bubbles are trapped in the pore space by surface force and capillary pressure of water. This is the residual gas formation. Once the residual gas is formed, it seldom moves again from the pore space. Residual gas formation needs neither cap-rock nor structural trap, thus has a potential to be applied to broader regions. The purpose of this study is to examine the fundamental mechanism of residual gas formation and gas migration underground by injecting the gas into a modeled and visualized aquifer. We designed and constructed an experimental apparatus to measure the distribution and the saturation of the residual gas. We used glass beads of 1 or 2mm diameters as porous media to construct some reservoir models that have various porosity, permeability, and wettability. The glass beads packed in our apparatus which has 30cm width, 33.5cm height, and 1cm thickness. It has 1§¤volume in amount. The pore space was filled with viscous liquid, then air was injected from the bottom. Some conditions in the injection time and rate were tested. We observed air behavior and measured the volume of the distribution area of residual gas from its digital photographs, and the volume of residual gas from the amount of water that was pushed out from the apparatus. The experimental results showed that differences of reservoir properties made changes in the gas behavior and residual gas volume. It

  5. Experiments in stratified gas-liquid pipe flow

    NARCIS (Netherlands)

    Birvalski, M.

    2015-01-01

    The growing demand for energy in the future will necessitate the production of natural gas from fields which are located farther offshore, in deep water and in very cold environments. This will confront us with difficulties in ensuring continuous production of the fluids (natural gas, condensate and

  6. Evaluation of Gas Retention in Waste Simulants: Tall Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Shimskey, Rick W.; Denslow, Kayte M.; Powell, Michael R.; Boeringa, Gregory K.; Bontha, Jagannadha R.; Karri, Naveen K.; Fifield, Leonard S.; Tran, Diana N.; Sande, Susan; Heldebrant, David J.; Meacham, Joseph E.; Smet, Dave; Bryan, Wesley E.; Calmus, Ronald B.

    2014-05-16

    Gas generation in Hanford’s underground waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which typically has hydrogen as the major component together with other flammable species, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge in a waste tank is undesirable and limits the amount of tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge may potentially result in an unacceptable release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. Rapid release of large amounts of flammable gases could endanger personnel and equipment near the tank. For this reason, a thorough understanding of the circumstances that can lead to a potentially problematic gas accumulation in sludge layers is needed. To respond to this need, the Deep Sludge Gas Release Event Program (DSGREP) was commissioned to examine gas release behavior in sludges.

  7. Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE)

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Jeremy [Exelis Inc., Fort Wayne, IN (United States); Zaccheo, T. Scott [Exelis Inc., Fort Wayne, IN (United States); Blume, Nathan [Exelis Inc., Fort Wayne, IN (United States); Pernini, Timothy [Exelis Inc., Fort Wayne, IN (United States); Braun, Michael [Exelis Inc., Fort Wayne, IN (United States); Botos, Christopher [Exelis Inc., Fort Wayne, IN (United States)

    2016-03-31

    This report describes the development and testing of a novel system, the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE), for Monitoring, Reporting and Verification (MRV) of CO2 at Geological Carbon Storage (GCS) sites. The system consists of a pair of laser based transceivers, a number of retroreflectors, and a set of cloud based data processing, storage and dissemination tools, which enable 2-D mapping of the CO2 in near real time. A system was built, tested locally in New Haven, Indiana, and then deployed to the Zero Emissions Research and Technology (ZERT) facility in Bozeman, MT. Testing at ZERT demonstrated the ability of the GreenLITE system to identify and map small underground leaks, in the presence of other biological sources and with widely varying background concentrations. The system was then ruggedized and tested at the Harris test site in New Haven, IN, during winter time while exposed to temperatures as low as -15 °CºC. Additional testing was conducted using simulated concentration enhancements to validate the 2-D retrieval accuracy. This test resulted in a high confidence in the reconstruction ability to identify sources to tens of meters resolution in this configuration. Finally, the system was deployed for a period of approximately 6 months to an active industrial site, Illinois Basin – Decatur Project (IBDP), where >1M metric tons of CO2 had been injected into an underground sandstone basin. The main objective of this final deployment was to demonstrate autonomous operation over a wide range of environmental conditions with very little human interaction, and to demonstrate the feasibility of the system for long term deployment in a GCS environment.

  8. Study on cooling model for debris in lower plenum and countermeasures for prevention of focusing effect

    International Nuclear Information System (INIS)

    Guan Zhonghua; Yu Hongxing; Jiang Guangming

    2008-01-01

    From the basic energy conservation equations and experimental or empirical correlations, an intact model is constructed for the thermal calculation of the core debris in the lower plenum. For verification of this model, the results of two calculations for AP600 and AP1000 plants are compared with those presented in relevant literature. The analysis highlights on the impact of the decay heat power density and the focusing effect. In order to mitigate the focusing effect, it is proposed in this paper to change the lower head profile from hemisphere to parabola. The results show that this change of lower head profile can change the heat flux distribution of the debris, and mitigate the focusing effect. (authors)

  9. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A. [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  10. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

  11. Gas cooled reactor experience and programs in France

    International Nuclear Information System (INIS)

    Rastoin, J.; Brisbois, J.

    1978-01-01

    After discussing the state of development of natural uranium graphite-gas cooled reactors in France, the current program focused on electricity generating high temperature reactors and the future program based on heat generating applications are presented

  12. Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments

    DEFF Research Database (Denmark)

    Becher, Valentin; Clausen, Sønnik; Fateev, Alexander

    2011-01-01

    AbstractCombustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition as combustion with air. Standard CFD spectral gas radiation models for air combustion are out of their validity range. The series of three articles provides a common spectral basis...

  13. European Experience after The Gas Directive On The Business

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Tore

    1999-07-01

    The Gas Directive came into effect in August 1998. Its main building block is Third Party Access (TPA) to gas transmission and distribution. The transposition into national law in the Member States is in progress as planned. A much higher percentage of the market will be open to competition than the minimum required in the Gas Directive. This presentation asserts that those who have attempted to predict the outcome, the process and the timing of the ongoing development are largely people or organizations with vested interests either way or people who have simply ''transposed'' the UK model into a Continental setting. But there are much more important issues for the European gas industry than the EU liberalization process per se. The presentation discusses what the people in Shell call the Low Oil Price World, then the ''Tokyo'' implementation and then gas fundamentals in Europe. Finally, an attempt is given to see how the political and commercial processes that are already under way may unfold in the future.

  14. Study on experiment conditions of marine shale gas seepage law

    Directory of Open Access Journals (Sweden)

    Weiyao Zhu

    2016-04-01

    Full Text Available In order to discover the conditions suitable for testing shale gas seepage law, marine shale gas cores were taken from southern China. Samples were tested by using the differential pressure-flow rate method with actual gas under two modes (e.g. constant confining pressure and constant net confining pressure. Moreover, influences of the different confining pressure modes on the experimental results were analyzed. The results show that under constant confining pressure or constant net confining pressure mode, the gas seepage law curve has two sections. One is the curve section and the other is the pseudo linear section. Features of non-linear seepage were observed with the inflection points of 1 MPa and 1.3 MPa, as well as the average permeability damage rate of 52.41% and 40.56% respectively. The slip effect generated different influences. In the constant confining pressure mode, the change of injection pressure may cause stress sensitivity, which is not consistent with the actual situation in the reservoir development. The influence of the slip effect on seepage law was more substantial than stress sensitivity under the condition of low effective stress. In the constant net confining pressure mode a complete seepage law curve was obtained to simulate the seepage of the actual reservoir in a certain extent. The confining pressure effect had an insignificant influence on gas seepage. Comprehensive analysis shows that net confining pressure mode is the best way to test the seepage law of marine shale gas core in southern China.

  15. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  16. The first experience with LHC beam gas ionization monitor

    CERN Document Server

    Sapinski, M; Dehning, B; Guerrero, A; Patecki, M; Versteegen, R

    2012-01-01

    The Beam Gas Ionization Monitors (BGI) are used to measure beam emittance on LHC. This paper describes the detectors and their operation and discusses the issues met during the commissioning. It also discusses the various calibration procedures used to correct for non-uniformity of Multi-Channel plates and to correct the beam size for effects affecting the electron trajectory after ionization.

  17. On-line gas chemistry experiments with trans actinide elements

    International Nuclear Information System (INIS)

    Turler, A.; Gaguller, B.; Jost, D.T.

    1993-01-01

    The latest achievements in the gas phase chemistry studies of elements 104 and 105 and their lighter homologs are reviewed. Experimental techniques employed in the studies are described. Experimental data on chlorides and bromides of the groups 4, 5 elements and elements 104, 105 are compared with their theoretically predicted chemical properties. 45 refs

  18. PINEX-2 experiment: concept verification of an inherent shutdown mechanism for HCDA's

    International Nuclear Information System (INIS)

    Porten, D.R.; Padilla, A. Jr.; Baars, R.E.

    1979-07-01

    PINEX-2 was a dual-objective experiment to continue development of the Pinhole Imaging (PINEX) system for monitoring fuel motion, and to further demonstrate the feasibility of internal fuel motion as a mechanism for mitigating the consequences of hypothetical LMFBR accidents. A special fuel pin with a pre-fabricated central hole in the fuel, insulator, and reflector was pre-irradiated in the General Electric Test Reactor and subjected to a simulated 5$/sec transient overpower excursion in the Transient Reactor Test (TREAT) facility. Approximately 10 grams of molten fuel were ejected upward from the fuel region into the reflector and fission gas plenum

  19. Noble Gas Migration Experiment to Support the Detection of Underground Nuclear Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Khris B.; Kirkham, Randy R.; Woods, Vincent T.; Haas, Derek A.; Hayes, James C.; Bowyer, Ted W.; Mendoza, Donaldo P.; Lowrey, Justin D.; Lukins, Craig D.; Suarez, Reynold; Humble, Paul H.; Ellefson, Mark D.; Ripplinger, Mike D.; Zhong, Lirong; Mitroshkov, Alexandre V.; Aalseth, Craig E.; Prinke, Amanda M.; Mace, Emily K.; McIntyre, Justin I.; Stewart, Timothy L.; Mackley, Rob D.; Milbrath, Brian D.; Emer, Dudley; Biegalski, S.

    2016-03-01

    A Noble Gas Migration Experiment (NGME) funded by the National Center for Nuclear Security and conducted at the Nevada National Security Site (NNSS) in collaboration with Lawrence Livermore national Laboratory and National Security Technology provided critical on-site inspection (OSI) information related to the detection of an underground nuclear explosion (UNE) event using noble gas signatures.

  20. Unconventional gas experience at El Paso Production Company : tapping into deep, tight gas and coalbed methane

    International Nuclear Information System (INIS)

    Bartley, R.L.

    2003-01-01

    The current conditions in the natural gas industry were reviewed, from the excellent current and projected energy prices to low activity and rig count. Various graphs were presented, depicting total proved dry gas reserves and annual production over time for the Gulf of Mexico, including its continental shelf, the Texas coastal plains, and the United States lower 48. Offshore growth of unconventional gas was also displayed. The key elements of the strategy were also discussed. These included: (1) earnings driven, (2) superior science, (3) innovative application of technology, (4) ability to act quickly and decisively, (5) leadership, management, and professional development, and (6) achieve learning curve economics. The core competencies were outlined along with recent discoveries in South Texas and the Upper Gulf Coast. figs

  1. Entrapment of Hydrate-coated Gas Bubbles into Oil and Separation of Gas and Hydrate-film; Seafloor Experiments with ROV

    Science.gov (United States)

    Hiruta, A.; Matsumoto, R.

    2015-12-01

    We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).

  2. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    Science.gov (United States)

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  3. A Membrane Gas Separation Experiment for the Undergraduate Laboratory.

    Science.gov (United States)

    Davis, Richard A.; Sandall, Orville C.

    1991-01-01

    Described is a membrane experiment that provides students with experience in fundamental engineering skills such as mass balances, modeling, and using the computer as a research tool. Included are the experimental design, theory, method of solution, sample calculations, and conclusions. (KR)

  4. Experience transfer in Norwegian oil and gas industry: Approaches and organizational mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-12-31

    The main objective of this thesis has been to explore how experience transfer works in Norwegian oil and gas industry. This includes how the concept of experience transfer is defined, what the barriers to achieve experience transfer are, how the oil and gas companies address experience transfer, and how these approaches work. The thesis is organized in five papers: (1) describes how organizational members perceive experience transfer and then specifies the organizational and structural barriers that must be overcome to achieve efficient transfer. (2) discusses the organizational means an oil company implements to address experience transfer. (3) describes a process of improving and using requirement and procedure handbooks for experience transfer. (4) explores how the use of information technology influences experience transfer. (5) compares organizational members` perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. 277 refs., 3 figs., 29 tabs.

  5. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

    International Nuclear Information System (INIS)

    Johnson, Richard W.; Schultz, Richard R.

    2009-01-01

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U.S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made

  6. Current collector design for closed-plenum polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Daniels, F. A.; Attingre, C.; Kucernak, A. R.; Brett, D. J. L.

    2014-03-01

    This work presents a non-isothermal, single-phase, three-dimensional model of the effects of current collector geometry in a 5 cm2 closed-plenum polymer electrolyte membrane (PEM) fuel cell constructed using printed circuit boards (PCBs). Two geometries were considered in this study: parallel slot and circular hole designs. A computational fluid dynamics (CFD) package was used to account for species, momentum, charge and membrane water distribution within the cell for each design. The model shows that the cell can reach high current densities in the range of 0.8 A cm-2-1.2 A cm-2 at 0.45 V for both designs. The results indicate that the transport phenomena are significantly governed by the flow field plate design. A sensitivity analysis on the channel opening ratio shows that the parallel slot design with a 50% opening ratio shows the most promising performance due to better species, heat and charge distribution. Modelling and experimental analysis confirm that flooding inhibits performance, but the risk can be minimised by reducing the relative humidity of the cathode feed to 50%. Moreover, overheating is a potential problem due to the insulating effect of the PCB base layer and as such strategies should be implemented to combat its adverse effects.

  7. Exposure experiments of trees to sulfur dioxide gas. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Otani, A.

    1974-12-01

    The effects of gaseous sulfur dioxide on trees were studied. Twenty species of plant seedlings (70 cm in height) including Cedrus deodara, Metasequoia glyptostroboides, Ginkgo biloba, Celmus parvifolia var. albo-marginata, Pinus thumbergii, P. densiflora, Cryptomeria japonica, and Quercus myrsinaefolia, were exposed in a room to gaseous sulfur dioxide at 0.8 ppm for 7.5 hr/day (from 9 am to 4:30 pm) for 24 days at a temperature of 20-35 deg C and RH of 55-75%. Visible damage to plants was lighter in C.j. and Chamae cyparis obtusa, more severe in P.t., G.b., and C.d. The damage appeared earlier in G.b., Cinnamomum camphona, and Ilex rotunda, and the change of early symptoms was smaller in P.t., C.j., and C.o. The leaves of the 4-5th positions from the sprout were apt to be damaged. Although the sulfur content of exposed leaves increased markedly, that in other parts did not increase. Because of the high concentration of the gas and the short period of exposure, the absorption of sulfur into leaves should have differed from the situation in fields where longer exposure to lower concentrations of the gas would be expected. 6 references.

  8. The gas system of the drift tube detector of the neutrino experiment OPERA

    Science.gov (United States)

    Ferber, T.; Bick, D.; Ebert, J.; Hagner, C.; Hierholzer, M.; Göllnitz, C.; Janutta, B.; Lenkeit, J.; Schmidt-Parzefall, W.; Wonsak, B.; Zimmermann, R.

    2008-07-01

    The gas system of the drift tube detector of the neutrino experiment OPERA is presented. The drift tube detector, called precision tracker (PT), consists of 10 000 thinwalled aluminum tubes of 38 mm diameter and 8 m length filled with an 80% Ar 20% CO2 gas mixture. The total gas volume amounts to 80 m3. During stable operation the gas is exchanged once per 80 h and not recycled. Thus about 1 m 3 per hour is consumed. Argon and CO2 are stored and supplied in liquid form. Subsequently they are mixed and the composition ratio is regulated with a precision better than 1% per component. Inside the drift tubes the gas is kept at a constant absolute pressure within ±0.5%. Since the experiment is operated in the low activity environment of the Gran Sasso underground laboratory, monitoring of the gas quality with a radioactive source is prohibited. Instead the oxygen content of the used gas is measured. We report on the first experience with the performance of the gas system.

  9. Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heredia, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Noris, Federico [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-01

    This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison between different gas sampling methods, and the effect of different ventilation conditions.

  10. An Image Based Mathematical Model for the Propagation of Fan Noise in a Plenum with Large Side Openings

    Directory of Open Access Journals (Sweden)

    Michael J. Panza

    2015-01-01

    Full Text Available This paper presents another application of an images group model for a special enclosure geometry and source orientation. A previous work outlined the concept via application to a special tight-fitting enclosure. Application of the concept to a fan plenum requires different mathematical descriptions for the image groups. This paper describes the sound reverberation inside a sound enclosure with mostly open sides where the primary noise sources are the air inlets and exhausts of axial type fans located at the top of the enclosure, the sound transmission through the air inlet openings, and the radiation to wayside positions. The main reverberation between the floor and ceiling is determined with an image based mathematical model. The model considers how the main reverberant part image group is amplified by its images from two parallel bulkheads and any side wall frame members. The method of images approach allows the hard surfaces of an untreated plenum to be represented by perfectly reflecting surfaces with zero sound absorption coefficients, thus not requiring any estimate or measurement for these surfaces. Numerical results show excellent comparison to experimental results for an actual plenum. The image model is also shown to be significantly more accurate than the standard large room diffuse field reverberant model.

  11. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-21). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  12. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  13. In situ water and gas injection experiments performed in the Hades Underground Research Facility

    International Nuclear Information System (INIS)

    Volckaert, G.; Ortiz, L.; Put, M.

    1995-01-01

    The movement of water and gas through plastic clay is an important subject in the research at SCK-CEN on the possible disposal of high level radioactive waste in the Boom clay layer at Mol. Since the construction of the Hades underground research facility in 1983, SCK-CEN has developed and installed numerous piezometers for the geohydrologic characterization and for in situ radionuclide migration experiments. In situ gas and water injection experiments have been performed at two different locations in the underground laboratory. The first location is a multi filter piezometer installed vertically at the bottom of the shaft in 1986. The second location is a three dimensional configuration of four horizontal multi piezometers installed from the gallery. This piezometer configuration was designed for the MEGAS (Modelling and Experiments on GAS migration through argillaceous rocks) project and installed in 1992. It contains 29 filters at distances between 10 m and 15 m from the gallery in the clay. Gas injection experiments show that gas breakthrough occurs at a gas overpressure of about 0.6 MPa. The breakthrough occurs by the creation of gas pathways along the direction of lowest resistance i.e. the zone of low effective stress resulting from the drilling of the borehole. The water injections performed in a filter -- not used for gas injection -- show that the flow of water is also influenced by the mechanical stress conditions. Low effective stress leads to higher hydraulic conductivity. However, water overpressures up to 1.3 MPa did not cause hydrofracturing. Water injections performed in a filter previously used for gas injections, show that the occluded gas hinders the water flow and reduces the hydraulic conductivity by a factor two

  14. Gas-phase experiments on Au(III) photochemistry.

    Science.gov (United States)

    Marcum, Jesse C; Kaufman, Sydney H; Weber, J Mathias

    2011-04-14

    Irradiation of AuCl(4)(-) and AuCl(2)(OH)(2)(-) in the gas-phase using ultraviolet light (220-415 nm) leads to their dissociation. Observed fragment ions for AuCl(4)(-) are AuCl(3)(-) and AuCl(2)(-) and for AuCl(2)(OH)(2)(-) are AuCl(2)(-) and AuClOH(-). All fragment channels correspond to photoreduction of the gold atom to either Au(II) or Au(I) depending on the number of neutral ligands lost. Fragment branching ratios of AuCl(4)(-) are observed to be highly energy dependent and can be explained by comparison of the experimental data to calculated threshold energies obtained using density functional theory. The main observed spectral features are attributed to ligand-to-metal charge transfer transitions. These results are discussed in the context of the molecular-level mechanisms of Au(III) photochemistry.

  15. Preliminary experiences with 222Rn gas in Arizona homes

    International Nuclear Information System (INIS)

    Kearfott, K.J.

    1989-01-01

    Results of a survey of 222Rn gas using four-day charcoal canister tests in 759 Arizona homes are reported. Although the study was not random with respect to population or land area, it was useful in identifying areas at risk and locating several homes having elevated indoor 222Rn air concentrations. Approximately 18% of the homes tested exceeded 150 Bq m-3 (4 pCi L-1), with 7% exceeding 300 Bq m-3 (8 pCi L-1). Several Arizona cities had larger fractions of homes exceeding 150 Bq m-3 (4 pCi L-1), such as Carefree and Cave Creek (23%), Paradise Valley (30%), Payson (33%), and Prescott (31%). The Granite Dells and Groom Creek areas of Prescott had in excess of 40-60% of the houses tested exceeding 150 Bq m-3 (4 pCi L-1). Elevated 222Rn concentrations were measured for a variety of home types having different construction materials. Private well water was identified as a potentially significant source of 222Rn gas in Prescott homes, with water from one well testing over 3.5 MBq m-3 (94,000 pCi L-1). A 222Rn concentration in air exceeding 410,000 Bq m-3 (11,000 pCi L-1) was measured using a four-day charcoal canister test in a house in Prescott which had a well opening into a living space. Additional measurements in this 150-m3 dwelling revealed a strikingly heterogeneous 222Rn concentration. The excessive 222Rn level in the dwelling was reduced to less than 190 Bq m-3 (5.2 pCi L-1) by sealing the well head with caulking and providing passive ventilation through a pipe

  16. Compressible Convection Experiment using Xenon Gas in a Centrifuge

    Science.gov (United States)

    Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.

    2017-12-01

    We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.

  17. Modeling gas migration experiments in repository host rocks for the MEGAS project

    International Nuclear Information System (INIS)

    Worgan, K.; Impey, M.; Volckaert, G.; DePreter, P.

    1993-01-01

    In response to concerns over the possibility of hydrogen gas generation within an underground repository for high-level radioactive waste, and its implications for repository safety, a joint European research study (MEGAS) is underway. Its aims are to understand and characterize the behavior of gas migration within an argillacious, host-rock. Laboratory experiments are being carried out by SCK/CEN, BGS and ISMES. SCK/CEN are also conducting in situ experiments at the underground laboratory at Mol, Belgium. Modeling of gas migration is being done in parallel with the experiments, by Intera Information Technologies. A two-phase flow code, TOPAZ, has been developed specifically for this work. In this paper the authors report on the results of some preliminary calculations performed with TOPAZ, in advance of the in situ experiments

  18. Gas explosion characterization, wave propagation (small-scale experiments)

    International Nuclear Information System (INIS)

    Larsen, G.C.

    1985-01-01

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. In the initial small scale experiments pressure characteristics, ground reflection phenomena and pressure distribution on box like obstacles were studied. Both configurations with one box and two closely spaced boxes have been considered, and a wave-wave interaction phenomenom was observed in the case of closely spaced obstacles. Main emphasis has been placed on the half scale field experiments. In these, the maximum flame speed has been of the order of 100 m/s, resulting in positive peak pressures of 50-100.10 2 Pa in 5 - 10 m distance from the source. The explosion process was found to be reasonable symmetric. The attenuation of the blast wave due to vegetation and the influence of obstacles as banks, walls and houses on the pressure field have been investigated. The presence of the bank and the house was felt in a zone with a length corresponding to a typical dimension of the obstacles, whereas the overall pressure field is shown to be unaffected by the type of obstacles and vegetation investigated. For the wall and house, reflection factors have been established, and some variation over the surface has been measured. The scatter of the pressure measurements is estimated for stable, neutral and unstable atmospheric conditions, and an attempt to determine the ground reflection factor has been performed. Finally the accelerations of a house exposed to the blast wave have been examined

  19. Melting of rare-gas crystals: Monte Carlo simulation versus experiments.

    Science.gov (United States)

    Bocchetti, V; Diep, H T

    2013-03-14

    We study the melting transition in crystals of rare gas Ar, Xe, and Kr by the use of extensive Monte Carlo simulations with the Lennard-Jones potential. The parameters of this potential have been deduced by Bernardes in 1958 from experiments of rare gas in the gaseous phase. It is amazing that the parameters of such a popular potential were not fully tested so far. Using the Bernardes parameters, we find that the melting temperature of several rare gas is from 13% to 20% higher than that obtained from experiments. We have throughout studied the case of Ar by examining both finite-size and cutoff-distance effects. In order to get a good agreement with the experimental melting temperature, we propose a modification of these parameters to describe better the melting of rare-gas crystals.

  20. Experience with the commissioning of helically coiled advanced gas cooled reactor boilers

    International Nuclear Information System (INIS)

    Kettle, D.B.

    1984-01-01

    The paper describes aspects of the experience gained during commissioning of the helically coiled pod boilers for an advanced gas-cooled reactor. The boiler geometry is shown to be a factor contributing to gas-side and water-side convection phenomena encountered during commissioning. Detailed information on thermal performance and vibrational response was obtained from commissioning tests on specially instrumented boiler units. (author)

  1. Gas explosion characterization, wave propagation (small scale experiments)

    International Nuclear Information System (INIS)

    Larsen, G.C.

    1985-08-01

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. The pressure characteristics has been studied for blast waves with and without influence from reflected waves. The influence of obstacles in the flow field has also been treated. Both configuration with one box and two closely spaced boxes have been considered, and a wave-wave interaction phenomenon was observed in the case of closely spaced obstacles. Moreover reflection coefficients have been established and some pressure variations over the surfaces have been observed. An acoustic appriximation has been used to model the blast wave originating from an expanding sphere. It has been demonstrated, that the generated pressure pulse is very sensitive to the expansion rate. Calculated and measured data have been compared, and a reasonable agreement has been found. (author)

  2. Operating experiences of gas purification system of Heavy Water Plant Talcher (Paper No. 1.11)

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Mohanty, P.R.; Pandey, B.L.

    1992-01-01

    The operating experiences with the purification system installed at Heavy Water Plant, Talcher for purification of feed synthesis gas from fertilizer plant is described. The purification system has performed satisfactorily even with levels of impurities as much as 15 to 20 ppm of oxygen and carbon monoxide. The system could not however be tested at designed gas throughput and on a sustained basis. However, increase in gas throughput upto the design value is not expected to pose any problem on the performance of the purification system. (author). 5 figs

  3. Detailed evaluation of melt pool configuration in the lower plenum of the APR1400 reactor vessel during severe accidents

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Kang, Kyoung-Ho; Hong, Seong-Wan; Kim, Hwan-Yeol

    2015-01-01

    Highlights: • Melt pool condition in the lower plenum was determined using SCDAP/RELAP5. • GEMINI analyses were performed to examine the final melt pool composition. • A density evaluation graph was developed for the melt pool layer inversion. • The final melt pool configurations were determined for five accident scenarios. • The thermodynamic results address the possibility of the layer inversion. - Abstract: For a detailed evaluation of the IVR (In-Vessel corium Retention) through the ERVC (External Reactor Vessel Cooling) during a severe accident, the melt pool configuration should be accurately determined in the lower plenum of the reactor vessel. It affects the thermal load to the vessel wall and plays a key role in determining the integrity of the reactor vessel under the IVR-ERVC. SCDAP/RELAP5 and GEMINI analyses have been performed to determine the final corium condition and examine the final melt pool composition at a reactor vessel failure during a severe accident in an APR (Advanced Power Reactor) 1400, respectively. As the representative accident scenarios, five dominant sequences of the TLFW (Total Loss of Feed Water), the SBO (Station BlackOut), the SBLOCA (Small Break Loss of Coolant Accident) without SI (Safety Injection), the MBLOCA without SI, and the LBLOCA without SI were selected from the level I PSA (Probabilistic Safe Assessment) results. A density evaluation graph was developed for the precise examination of the melt pool layer inversion. The final melt pool configurations at the reactor vessel failure have been determined for five dominant accident scenarios of the APR1400 using the GEMINI results and the density evaluation graph. The thermodynamic analysis results in three sequences of the APR1400 accident address the possibility of a melt pool layer inversion in the lower plenum of the reactor vessel. The layer inversion led to corium pool stratification with a heavy metallic layer below the oxidic pool, which leads to a three

  4. Three-dimensional calculation of the flow in the cold plenum of the Fast Breeder Reactor 1500 MW

    International Nuclear Information System (INIS)

    Chabard, J.P.; Daubert, O.; Gregoire, J.P.; Hemmerich, P.

    1987-01-01

    To solve thermalhydraulics problems which are rising for example on the various parts of nuclear reactors, several departments of the Direction des Etudes et Recherches are developing the N3S code, three-dimensional code using the finite element method. First, this paper presents the basic equations (Navies-Stokes with turbulence modelling and coupled with the thermal equation) and well suited algorithms to solve them. The industrial adequacy of the code is clearly demonstrated through the application to the computation of the flow in the cold plenum of the Fast Breeder Reactor 1500 MW on a mesh of about 20000 velocity nodes [fr

  5. Noble Gas Leak Detector for Use in the SNS Neutron Electric Dipole Moment Experiment

    Science.gov (United States)

    Barrow, Chad; Huffman, Paul; Leung, Kent; Korobkina, Ekaterina; White, Christian; nEDM Collaboration Collaboration

    2017-09-01

    Common practice for leak-checking high vacuum systems uses helium as the probing gas. However, helium may permeate some materials at room temperature, making leak characterization difficult. The experiment to find a permanent electric dipole moment of the neutron (nEDM), to be conducted at Oak Ridge National Laboratories, will employ a large volume of liquid helium housed by such a helium-permeable composite material. It is desirable to construct a leak detector that can employ alternative test gases. The purpose of this experiment is to create a leak detector that can quantify the argon gas flux in a high vacuum environment and interpret this flux as a leak-rate. This apparatus will be used to check the nEDM volumes for leaks at room temperature before cooling down to cryogenic temperatures. Our leak detector uses a residual gas analyzer and a vacuum pumping station to characterize the gas present in an evacuated volume. The introduction of argon gas into the system is interpreted as a leak-rate into the volume. The device has been calibrated with NIST certified calibrated leaks and the machine's sensitivity has been calculated using background gas analysis. As a result of the device construction and software programming, we are able to leak-check composite and polyamide volumes This work was supported in part by the US Department of Energy under Grant No. DE-FG02-97ER41042.

  6. Partner Country Series: Gas Pricing - China's Challenges and IEA Experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    China will play a positive role in the global development of gas, the International Energy Agency’s (IEA) Executive Director, Maria Van der Hoeven has said in Beijing on 11 September, 2012 when launching a new IEA report: Gas Pricing and Regulation, China’s challenges and IEA experiences. In line with its aim to meet growing energy demand while shifting away from coal, China has set an ambitious goal of doubling its use of natural gas from 2011 levels by 2015. Prospects are good for significant new supplies – both domestic and imported, conventional and unconventional – to come online in the medium-term, but notable challenges remain, particularly concerning gas pricing and the institutional and regulatory landscape. While China’s circumstances are, in many respects unique, some current issues are similar to those a number of IEA countries have faced. This report highlights some key challenges China faces in its transition to greater reliance on natural gas, then explores in detail relevant experiences from IEA countries, particularly in the United Kingdom, the Netherlands, and the United States as well as the European Union (EU). Preliminary suggestions about how lessons learned in other countries could be applied to China’s situation are offered as well. The aim of this report is to provide stakeholders in China with a useful reference as they consider decisions about the evolution of the gas sector in their country.

  7. Studies of purification of the Resistive Plate Chamber gas mixture for the Large Hadron Collider experiments

    CERN Document Server

    Capeans, M; Guida, R; Hahn, F; Haider, S

    2009-01-01

    The Resistive Plate Chambers (RPCs) installed as part of the large muon detectors at the Large Hadron Collider (LHC) experiments use a gas mixture of 94.7% C2H2F4, 5% iC(4)H(10) and 0.3% SF6. Based on economical grounds, the design philosophy of the gas systems for the ATLAS and CMS RPC's foresees to recirculate the gas mixture in 90-95% closed loop circulation. At the LHC, RPC chambers are operated in a high radiation environment, conditions for which large amount of impurities in the return gas have been observed in earlier studies. They are potentially dangerous for the stable operation of the detectors, the materials in the detector and the gas system. While several purification stages have been foreseen in the present gas systems, chemical reactions between the absorber and the impurities are yet not well understood. Furthermore, the effects on the gas mixture of the foreseen factor 10 increase of luminosity for the LHC upgraded phase should be studied. We present the results of systematic studies of the...

  8. NACOWA experiments on LMFBR cover gas aerosols, heat transfer, and fission product enrichment

    International Nuclear Information System (INIS)

    Minges, J.; Schuetz, W.

    1993-12-01

    Fifteen different NACOWA test series were carried out. The following items were investigated: sodium mass concentration in the cover gas, sodium aerosol particle size, radiative heat transfer across the cover gas, total heat transfer across the cover gas, sodium deposition on the cover plate, temperature profiles across the cover gas, phenomena if the argon cover gas is replaced by helium, enrichment of cesium, iodine, and zinc in the aerosol and in the deposits. The conditions were mainly related to the design parameters of the EFR. According to the first consistent design, a pool temperature of 545 C and a roof temperature of only 120 C were foreseen at a cover gas height of 85 cm. The experiments were carried out in a stainless steel test vessel of 0.6 m diameter and 1.14 m height. Pool temperature (up to 545 C), cover gas height (12.5 cm, 33 cm, and others), and roof temperature (from 110 C to 450 C) were the main parameters. (orig./HP) [de

  9. Corporate social policy - problems of institutionalization and experience of Russian oil and gas companies

    Science.gov (United States)

    Nekhoda, E.; Kolbysheva, Yu; Makoveeva, V.

    2015-11-01

    The article examines a range of problems related to the process of institutionalization in the corporate social policy, characterizing the social responsibility of business and representing a part of the general strategy of corporate social responsibility. The experience of the social policy implementation in oil and gas companies is analyzed.

  10. Fireworks in noble gas clusters a first experiment with the new "free-electron laser"

    CERN Multimedia

    2002-01-01

    An international group of scientists has published first experiments carried out using the new soft X-ray free-electron laser (FEL) at the research center DESY in Hamburg, Germany. Using small clusters of noble gas atoms, for the first time, researchers studied the interaction of matter with intense X-ray radiation from an FEL on extremely short time scales (1 page).

  11. A gas puff experiment for partial simulation of compact toroid formation on MARAUDER

    International Nuclear Information System (INIS)

    Englert, S.E.; Englert, T.J.; Degnan, J.H.; Gahl, J.M.

    1994-01-01

    Preliminary results will be reported of a single valve gas puff experiment to determine spatial and spectral distribution of a gas during the early ionization stages. This experiment has been developed as a diagnostic test-bed for partial simulation of compact toroid formation on MARAUDER. The manner in which the experimental hardware has been designed allows for a wide range of diagnostic access to evaluate early time evolution of the ionization process. This evaluation will help contribute to a clearer understanding of the initial conditions for the formation stage of the compact toroid in the MARAUDER experiment, where 60 of the same puff valves are used. For the experiment, a small slice of the MARAUDER cylindrical gas injection and expansion region geometry have been re-created but in cartesian coordinates. All of the conditions in the experiment adhere as closely as possible to the MARAUDER experiment. The timing, current rise time, capacitance, resistance and inductance are appropriate to both the simulation of one of the 60 puff valves and current delivery to the load. Both time-resolved images and spectral data have been gathered for visible light emission of the plasma. Processed images reveal characteristics of spatial distribution of the current. Spectral data provide information with respect to electron temperature and density, and entrainment of contaminants

  12. Fundamental experiment on the problem of large, structured rooms with internal two-phase flow

    International Nuclear Information System (INIS)

    Geweke, M.

    1992-01-01

    A loss of coolant accident in a pressurized water reactor results in two phase flow in the upper plenum region. Steam will be generated from the fuel elements and will flow upwards into the upper plenum. Water drops will be entrained and transported by the steam and will be deentrained in the upper plenum. The deentrained water and the upflowing steam can lead to a condition defined as countercurrent flow limitation which tends to restrict the water downflow. The aim of this research project is to investigate the co- and countercurrent flow in the upper plenum region. The influence of the internals, which are installed in scale 1:1 and the outlet flow conditions into the hot leg is investigated. The establishing flow regime depends on the volumetric flow rates of gas and liquid and the area in the upper plenum, which is simulated by the arangement of the internals. An increasing gas flow rate causes flooding in the tie plate. A turbulent froth layer is established above the tie plate. A further increase in the gas flow rate causes flooding in the upper plenum. The experimental results are compared with well-known empirical correlations and with the experimental investigations from the UPTF. A suitable measurement technique is developed to measure the local and time-dependent liquid hold-up, the diameter and the velocity of the drops. (orig.) [de

  13. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    International Nuclear Information System (INIS)

    Aase, Karina

    1997-01-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections

  14. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-07-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections.

  15. Application of Gas Chromatographic analysis to RPC detectors in the ATLAS experiment at CERN-LHC

    CERN Document Server

    De Asmundis, R

    2007-01-01

    Starting from 2007 a large number (1200) Resistive Plate Chambers (RPC) detectors will be used as muon trigger detectors in the ATLAS Experiment at CERN-LHC accelerator. RPC are gaseous detector in which the quality and the stability of the gas mixture as well as the design of the gas supplying system, play a fundamental role in their functioning. RPC are foreseen to work more than ten years in the high radiation environment of ATLAS and the gas mixture acts really as a "lifeguard" for the detectors. For this reason a great attention has been devoted to the gas studies in order to optimize RPC performance, robustness and reliability in a high radiation environment. In this paper we describe the work done to decide how to supply and control in an optimal way the gas to the detectors, in order to ensure their best performance for a long time. The activity, based on Gas Chromatographic (GC) analysis, has been carried on a sample of final RPC working in radiation conditions much more intense than those foreseen f...

  16. Injector design for liner-on-target gas-puff experiments

    Science.gov (United States)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  17. Spatial characterization of the internal gas target at the ESR for the FOCAL experiment

    Science.gov (United States)

    Gassner, T.; Beyer, H. F.

    2015-11-01

    The FOCAL experiment involves a highly accurate twin crystal spectrometer, designed for the measurement of the ground state Lamb shift of stored highly charged ions, like hydrogen-like Au78+, via spectroscopy in the hard-x-ray regime with an accuracy down to the few-eV level where higher-order QED contributions become accessible. For this level of accuracy all geometrical parameters including the position of the x-ray source are of crucial importance. In this conference proceeding we present our efforts to characterize the internal gas target at the experiment storage ring at GSI Darmstadt where in 2012 the FOCAL experiment was conducted.

  18. Utilization of synchronization measures in the fast gas-dynamic experiment

    Science.gov (United States)

    Gilev, V. M.; Vnuchkov, D. A.; Nalivajchenko, D. G.; Shpak, S. I.

    2017-10-01

    This paper presents the system of synchronization for automated fast gas-dynamic experiments, including the experiments with combustion. The system permits using both super- and hypersonic processes in the pulse mode, the duration ranging from several milliseconds to seconds. Under consideration are individual elements of the system, technique of the fast experiment performance; the developed software is described. The description of the weight test of the model of a small-size high-speed aircraft realized with the present system is presented as an example.

  19. Experiments with electron beam injection in ionosphere plasma and rare gas

    International Nuclear Information System (INIS)

    Bykovskij, V.F.; Meshkov, I.N.; Seleznev, I.A.; Syresin, E.M.

    2003-01-01

    The active experiment 'Electron' is intended for the electron beam injection from a meteorological rocket in the ionosphere plasma. The beam is injected in the ionosphere plasma at a current of 0.5 A and an energy of 6.5 - 8 keV. The energy spectra are given for the plasma electrons and ions. The radio-wave spectrum is measured in a RF frequency range of 100-500 MHz. The radio wave traversing through the electron beam injection region is discussed. The laboratory experiments are performed with the electron beam injection in a rare gas to model the active outer-space experiments

  20. Experience in producing LEU fuel elements for the RSG-GAS

    International Nuclear Information System (INIS)

    Suripto, A.; Soentono, S.

    1991-01-01

    To achieve a self-reliance in the operation of the 30 MW Multipurpose Research Reactor at Serpong (the RSG-GAS), a fuel element production facility has been constructed nearby. The main task of the facility is to produce MTR type fuel and control elements containing U 3 O 8 -Al dispersion LEU fuel for the RSG-GAS. The hot commissioning activity has started in early 1988 after completion of the cold commissioning using depleted uranium in 1987, marking the beginning of the real production activity. This paper briefly describes the main features of the fuel production facility, the production experience gained so far, and its current production activity. (orig.)

  1. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    Science.gov (United States)

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  2. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  3. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.

    1982-05-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput ammounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (Author) [de

  4. Theoretical and experimental comparisons of Gamble 2 argon gas puff experiments

    International Nuclear Information System (INIS)

    Thornhill, J.W.; Young, F.C.; Whitney, K.G.; Davis, J.; Stephanakis, S.J.

    1990-01-01

    A one-dimensional radiative MHD analysis of an imploding argon gas puff plasma is performed. The calculations are set up to approximate the conditions of a series of argon gas puff experiments that were carried out on the NRL Gamble II generator. Annular gas puffs (2.5 cm diameter) are imploded with a 1.2-MA peak driving current for different initial argon mass loadings. Comparisons are made with the experimental results for implosion times, K, L-shell x-ray emission, and energy coupled from the generator to the plasma load. The purpose of these calculations is to provide a foundation from which a variety of physical phenomena which influence the power and total energy of the x-ray emission can be analyzed. Comparisons with similar experimental and theoretical results for aluminum plasmas are discussed

  5. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.R.M.

    1983-01-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxiliary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10,000 kcal/kg waste. The maximum throughput amounts to 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveyed by doserate and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (author)

  6. Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst

    Science.gov (United States)

    Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong

    2017-08-01

    A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.

  7. Experiments and numerical analysis of a control method for natural circulation through helium gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki, E-mail: ttakeda@yamanashi.ac.jp; Hatori, Hirofumi; Funatani, Shumpei

    2016-09-15

    This study investigated a control method for natural circulation of air by helium gas injection. A depressurization accident is a design-basis accident of a very high temperature reactor. When a primary pipe rupture accident occurs, air is expected to enter the reactor pressure vessel from the breach. Thus, in-core graphite structures are oxidized. In order to predict and analyze the phenomena of air ingress during a depressurization accident, numerical analysis was carried out using a one-dimensional (1D) analysis code and three-dimensional computational fluid dynamics (3D CFD). An experiment was carried out regarding natural circulation using a circular pipe consisting of a reverse U-shaped channel. The channel consisted of two vertical heated and cooled pipes. The temperature difference between the vertical pipes was maintained at 40–80 K, and a small amount of helium gas was injected into the channel. The injected volume of helium was about 3.1–12.5% of the total channel volume. After injecting helium gas, each component gas moved through molecular diffusion and very weak natural circulation. After approximately 1180 s, ordinary natural circulation of air was suddenly produced. The numerical results of the 3D CFD code were in good agreement with the experimental results. The numerical results also showed that the natural circulation of air can be controlled by helium gas injection.

  8. A (S)TEM Gas Cell Holder with Localized Laser Heating for In Situ Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehraeen, Shareghe [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; McKeown, Joseph T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Deshmukh, Pushkarraj V. [E.A. Fischione Instruments, Inc., Export, PA (United States); Evans, James E. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Abellan, Patricia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Xu, Pinghong [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science; Reed, Bryan W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Taheri, Mitra L. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science & Engineering; Fischione, Paul E. [E.A. Fischione Instruments, Inc., Export, PA (United States); Browning, Nigel D. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    2013-03-04

    We report that the advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 μm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 μm utilized for these experiments.

  9. Recent experience with onshore oil and gas operations in the Mackenzie Delta, NWT

    International Nuclear Information System (INIS)

    Burns, J.

    1999-01-01

    Hydrocarbon deposits in the Beaufort Sea and Mackenzie Delta indicate mean discovered gas reserves of 5 trillion cubic feet of natural gas, 67 million barrels of condensate, and 247 million barrels of oil in fields located onshore. There may be even bigger undiscovered reserves that could be proven by a surge in drilling likely to occur in this region within the next few years. There are a number of characteristics of this area that appeal to the oil and gas industry over and above the discovered and undiscovered reserves. There is a local aboriginal group with a settled land claim, clear and reasonable rules for access, a business-like approach to development and a sophisicated understanding of the oil and gas industry. There is reasonable access by road, commercial air service, rail and barge by Hay river or sea with an excellent harbour at Tuktoyaktuk. Local contractors and labour with applicable skills and good equipment are available. The Inuvialuit Petroleum Corp. and its partners Altagas Services Inc. and Enbridge Inc. completed a project to supply the town of Inuvik with natural gas for electricity generation and local distribution. This project is a small example of the physical, economic and regulatory environments that the oil industry will face with the undertaking of larger projects. Aspects of the region described include: the Inuvialuit, recent experience, logistics, regulatory environment, project approvels, environmental, and specific observations

  10. Modelling the HG-A in situ experiment gas migration through EDZ

    International Nuclear Information System (INIS)

    Arnedo, D.; Alonso, E.E.; Olivella, S.

    2010-01-01

    Document available in extended abstract form only. With the objective of understanding the gas flow processes through argillaceous rocks in schemes of radioactive waste disposal, the HG-A in situ experiment was planned. The modelling of the experiment will permit to improve the design and the action to be taken, to better understand of the responses, to confirm hypothesis of mechanisms and processes and to learn in order to design future experiments. The experiment and modelling activities are included in the project FORGE (FP7). The in situ test HG-A is to be performed by NAGRA at the Mont Terri underground research laboratory. A micro-tunnel of 1 m diameter was excavated in Opalinus Clay departing from a niche in the 2004 gallery. The drilling was performed parallel to the bedding planes, which have a dipping angle of 50 deg. to SE. The aim of the test is to monitor the creation and evolution of the excavation damage zone around the micro-tunnel, to asses the variations in the hydro-mechanical behaviour of Opalinus Clay, with especial focus on its flow properties, and to observe its impact in the gas migration properties during gas injection phase. The experiment main stages are: tunnel excavation; tunnel backfill and emplacement of instrumentation; packer inflation and backfill saturation; gas injection tests; and a second campaign of hydraulic tests. A cross section model of the test is being developed. The modelled section corresponds to the gas injection interval (backfilled section) and is perpendicular to the tunnel axis and the bedding. The constitutive model considers the hydro-mechanical anisotropy of argillaceous rocks. A composite mechanical law for argillaceous rocks allows taking into account the elastoplastic response of the clay matrix and the damage behaviour for the bonding material of Opalinus Clay. The elastic law is a cross anisotropic linear elastic model that includes the bedding orientation. Increases in permeability can be obtained by

  11. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, K. [Fermilab; Backfish, M. [Fermilab; Moretti, A. [Fermilab; Tollestrup, A. V. [Fermilab; Watts, A. [Fermilab; Zwaska, R. M. [Fermilab; Abrams, R. [MUONS Inc., Batavia; Cummings, M. A.; Dudas, A. [MUONS Inc., Batavia; Johnson, R. P. [MUONS Inc., Batavia; Kazakevich, G. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Liu, Q. [Case Western Reserve U.

    2017-05-01

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  12. Modeling three dimensional flows in the lower plenum of Loviisa nuclear power plant with the CFX code

    International Nuclear Information System (INIS)

    Bernard, J.P.; Haekkinen, J.; Sarkomaa, P.

    1997-01-01

    A number of numerical studies on three-dimensional flows in reactor vessels of nuclear power plants have been carried out recently. The main reason for this is the phenomenon of inherent boron dilution. These studies have been done for Loviisa nuclear power plant as well. This presentation focuses on the three dimensional modeling of Loviisa's lower plenum with the commercial CFX code. The investigations particularly deal with the modeling of the two perforated plates located at the bottom and just below the core of the vessel. The perforated plates can be modeled as porous media in the CFX code. The model has been validated against available experimental data. Velocity profiles around the plates, the pressure drop through the plates, and the simulation of mixing factors have been investigated specifically. (author)

  13. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  14. Estimate of LOCA-FI plenum pressure uncertainty for a five-ring RELAP5 production reactor model

    International Nuclear Information System (INIS)

    Griggs, D.P.

    1993-03-01

    The RELAP5/MOD2.5 code (RELAP5) is used to perform best-estimate analyses of certain postulated Design Basis Accidents (DBAs) in SRS production reactors. Currently, the most limiting DBA in terms of reactor power level is an instantaneous double-ended guillotine break (DEGB) loss of coolant accident (LOCA). A six-loop RELAP5 K Reactor model is used to analyze the reactor system behavior dozing the Flow Instability (FI) phase of the LOCA, which comprises only the first 5 seconds following the DEGB. The RELAP5 K Reactor model includes tank and plenum nodalizations having five radial rings and six azimuthal sectors. The reactor system analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in the FLOWTRAN code, which models a single fuel assembly in detail. RELAP5 also performs the system analysis for the latter phase of the LOCA, denoted the Emergency Cooling System (ECS) phase. Results from the RELAP analysis are used to provide boundary conditions to the FLOWTRAN-TF code, which is an advanced two-phase version of FLOWTRAN. The RELAP5 K Reactor model has been tested for LOCA-FI and Loss-of-Pumping Accident analyses and the results compared with equivalent analyses performed with the TRAC-PF1/MOD1 code (TRAC). An equivalent RELAP5 six-loop, five-ring, six-sector L Reactor model has been benchmarked against qualified single-phase system data from the 1989 L-Area In-Reactor Test Program. The RELAP5 K and L Reactor models have also been subjected to an independent Quality Assurance verification

  15. Support and control system of the Waste Isolation Pilot Plant gas generation experiment glovebox

    International Nuclear Information System (INIS)

    Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.; Rosenberg, K.E.

    1997-01-01

    A glovebox was designed and fabricated to house test containers loaded with contact handled transuranic (CH-TRU) waste. The test containers were designed to simulate the environmental characteristics of the caverns at the Waste Isolation Pilot Plant (WIPP). The support and control systems used to operate and maintain the Gas Generation Experiment (GGE) include the following: glovebox atmosphere and pressure control, test container support, glovebox operation support, and gas supply and exhaust systems. The glovebox atmosphere and pressure control systems consist of various components used to control both the pressure and quality of the argon atmosphere inside the glovebox. The glovebox pressure is maintained by three separate pressure control systems. The primary pressure control system is designed to maintain the glovebox at a negative pressure with the other two control systems serving as redundant safety backups. The quality of the argon atmosphere is controlled using a purifying bed system that removes oxygen and moisture. Glovebox atmosphere contaminants that are monitored on a continuous or periodic basis include moisture, oxygen, and nitrogen. The gas generation experiment requires the test containers to be filled with brine, leak tested, maintained at a constant temperature, and the gas head space of the test container sampled on a periodic basis. Test container support systems consisting of a brine addition system, leak test system, heating system, and gas sampling system were designed and implemented. A rupture disk system was constructed to provide pressure relief to the test containers. Operational requirements stipulated that test container temperature and pressure be monitored and collected on a continuous basis. A data acquisition system (DAS) was specifically designed to meet these requirements

  16. City gates maintenance - TBG experience; Experiencia da TBG na manutencao de estacoes de entrega de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Adir de Brito; Tavares, Cipriano Homem; Pinto, Jose Eduardo Christovao [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Owner and sole operator in Brasilian territory of the Bolivia-Brazil Gas Pipeline (GASBOL), the largest of its kind in South America, TBG started operations on July 1 st, 1999. Since then, it has ensured transportation of Bolivian natural gas into Brazil swiftly and safely. This paper relates the TBG experiences on Natural Gas City Gates maintenance and its components like filtering, heating, pressure reducing redundant valves, turbine meters, flow computers, solar panel power supply, satellite monitoring system, acquired by 6 years of operation of Brazil Bolivia Gas Pipe Line. It describes the definitions of maintenance plans using RCM - Reliability-centered Maintenance concepts and the most important learning experiences. (author)

  17. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    Science.gov (United States)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The fate of methane bubbles escaping from seafloor seeps remains an important research question, as it directly concerns our understanding of the impact of seafloor methane leakage on ocean biogeochemistry. While the physics of rising bubbles in a water column has been studied extensively, the process is poorly understood when the gas bubbles form a hydrate ``crust" during their ascent. Understanding bubble rise, expansion and dissolution under these conditions is essential to determine the fate of bubble plumes of hydrate-forming gases such as methane and carbon dioxide from natural and man-made accidental releases. Here, we first present experimental observations of the dynamics of a bubble of Xenon in a water-filled and pressurized Hele-Shaw cell. The evolution is controlled by two processes: (1) the formation of a hydrate "crust" around the bubble, and (2) viscous fingering from bubble expansion (Figure 1). To reproduce the experimental observations, we propose a phase-field model that describes the nucleation and thickening of a porous solid shell on a moving gas-liquid interface. We design the free energy of the three-phase system (gas-liquid-hydrate) to rigorously account for interfacial effects, mutual solubility, and phase transformations (hydrate formation and disappearance). We introduce a pseudo-plasticity model with large viscosity variations to describe the plate-like rheology of the hydrate shell. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex "crustal fingering" patterns as a result of gas fingering dynamics modulated by hydrate growth at the interface. Figure caption: Snapshot of the Hele-Shaw cell experiment. As the bubble expands from depressurization of the cell, gas fingers move through the liquid and Xe-hydrate readily forms at the gas-liquid interface, giving rise to complex "crustal fingering" patterns.

  18. Identification of Gas Components in Lighter by Gas Chromatography: An Experiment for the Undergraduate Instrumental Analysis Laboratory Which Can Be Used With Distance Learning Applications

    Directory of Open Access Journals (Sweden)

    Inci MORGIL

    2006-10-01

    Full Text Available In the applications of instrumental analysis lessons, advanced instruments with the needed experiments are needed. During the lessons it is a fact that the more experiments are performed, the more learning will be. For this reason, experiments that do not last long and should be performed with more simple instruments and that increase students’ attention with current events should be developed. It is thought that there is only propane gas in lighters used in daily life. However, in fact, in certain ratios, there are also other gases having similar structure besides propane gas. For these reasons, the identification of gas components in lighter has been thought. To enlighten this situation a simple experiment design has been planned.

  19. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  20. Validation of the new filters configuration for the RPC gas systems at LHC experiments

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Hahn, Ferdinand; Haider, Stefan

    2012-01-01

    Resistive Plate Chambers (RPCs) are widely employed as muon trigger systems at the Large Hadron Collider (LHC) experiments. Their large detector volume and the use of a relatively expensive gas mixture make a closed-loop gas circulation unavoidable. The return gas of RPCs operated in conditions similar to the experimental background foreseen at LHC contains large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents, characterized during the past years, are currently in use. New test allowed understanding of the properties and performance of a large number of purifiers. On that basis, an optimal combination of different filters consisting of Molecular Sieve (MS) 5Å and 4Å, and a Cu catalyst R11 has been chosen and validated irradiating a set of RPCs at the CERN Gamma Irradiation Facility (GIF) for several years. A very important feature of this new configuration is the increase of the cycle duration for each purifier, which results in better system stabilit...

  1. Reaction Measurements with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Gas Jet Target

    Science.gov (United States)

    Chipps, K. A.; Jensa Collaboration

    2017-09-01

    The development of radioactive ion beams for reaction measurements was a major step forward in nuclear astrophysics, reactions, and structure. However, the move to inverse kinematics presented unique difficulties, in particular with regard to the targets used in such studies. Lower beam intensities may require thicker targets, but this negatively affects the experimental resolution and potential backgrounds. A recent development toward studies of nuclear reactions is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector and spectrometer systems, the range of reaction studies that are experimentally possible is vastly expanded. This talk will focus on the benefits of performing reaction measurements with a gas jet target, including discussion of several example cases using JENSA. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. This work was supported by DOE, NNSA, and NSF.

  2. Quantifying Reaeration Rates in Alpine Streams Using Deliberate Gas Tracer Experiments

    Directory of Open Access Journals (Sweden)

    Andrew Benson

    2014-04-01

    Full Text Available Gas exchange across the air-water interface is a critical process that maintains adequate dissolved oxygen (DO in the water column to support life. Oxygen reaeration rates can be accurately measured using deliberate gas tracers, like sulfur hexafluoride (SF6 or xenon (Xe. Two continuous release experiments were conducted in different creeks in the Sierra Nevada of California: Sagehen Creek in September, 2009, using SF6 and Martis Creek in August, 2012, using both SF6 and Xe. Measuring gas loss along the creek, which was approximated with the one-dimensional advection-dispersion equation, allows for the estimation of the SF6 or Xe reaeration coefficient (KSF6, KXe, which is converted to DO reaeration (KDO or K2 using Schmidt numbers. Mean KSF6 for upper and lower Sagehen and Martis Creeks were, respectively, 34 day−1, 37 day−1 and 33 day−1, with corresponding KDOs of 61 day−1, 66 day−1 and 47 day−1. In Martis Creek, KXe was slightly higher (21% than KSF6, but the calculated KDO from SF6 agreed with the calculated KDO from Xe within about 15%; this difference may be due to bubble-enhanced gas transfer. Established empirical equations of KDO using stream characteristics did a poor job predicting KDO for both creeks.

  3. Shale-Gas Experience as an Analog for Potential Wellbore Integrity Issues in CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Carey, James W. [Los Alamos National Laboratory; Simpson, Wendy S. [Los Alamos National Laboratory; Ziock, Hans-Joachim [Los Alamos National Laboratory

    2011-01-01

    Shale-gas development in Pennsylvania since 2003 has resulted in about 19 documented cases of methane migration from the deep subsurface (7,0000) to drinking water aquifers, soils, domestic water wells, and buildings, including one explosion. In all documented cases, the methane leakage was due to inadequate wellbore integrity, possibly aggravated by hydrofracking. The leakage of methane is instructive on the potential for CO{sub 2} leakage from sequestration operations. Although there are important differences between the two systems, both involve migrating, buoyant gas with wells being a primary leakage pathway. The shale-gas experience demonstrates that gas migration from faulty wells can be rapid and can have significant impacts on water quality and human health and safety. Approximately 1.4% of the 2,200 wells drilled into Pennsylvania's Marcellus Formation for shale gas have been implicated in methane leakage. These have resulted in damage to over 30 domestic water supplies and have required significant remediation via well repair and homeowner compensation. The majority of the wellbore integrity problems are a result of over-pressurization of the wells, meaning that high-pressure gas has migrated into an improperly protected wellbore annulus. The pressurized gas leaks from the wellbore into the shallow subsurface, contaminating drinking water or entering structures. The effects are localized to a few thousands of feet to perhaps two-three miles. The degree of mixing between the drinking water and methane is sufficient that significant chemical impacts are created in terms of elevated Fe and Mn and the formation of black precipitates (metal sulfides) as well as effervescing in tap water. Thus it appears likely that leaking CO{sub 2} could also result in deteriorated water quality by a similar mixing process. The problems in Pennsylvania highlight the critical importance of obtaining background data on water quality as well as on problems associated with

  4. A Novel Temperature Monitoring Sensor for Gas-Based Detectors in Large HEP Experiments

    Science.gov (United States)

    Benussi, L.; Bianco, S.; Caponero, M. A.; Colafranceschi, S.; Ferrini, M.; Felli, F.; Passamonti, L.; Pierluigi, D.; Polimadei, A.; Russo, A.; Saviano, G.; Vendittozzi, C.

    Gaseous detectors are commonly used in HEP (High Energy Physics) experiments to reconstruct the track of elementary particles. They are often made by a very large number of chambers with relatively small individual volume, arranged in thick layers placed approximately all around the vertex of the experiment in order to detect elementary particles produced in any direction. The large volume of gas inside the detector must be monitored for many parameters as they can affect both the efficiency and the working life of the detector. The temperature of the gas inside the individual chambers is a critical parameter to be monitored, as it can both affect the efficiency of the detector and point out on-board electronic circuitry overheating. In this paper we propose a novel gas temperature sensing system based on optical fibre technology. The adopted technology is well suited to make distributed sensing systems with large number of sensors, it is immune to electromagnetic disturbances and it has adequate radiation hardness. A prototype of the basic sensor of the proposed system was tested at the experimental facility for Resistive Plate Chamber characterization available at the INFN laboratories in Frascati. Results are presented and discussed.

  5. Explaining experience curves for new energy technologies. A case study of liquefied natural gas

    International Nuclear Information System (INIS)

    Greaker, Mads; Lund Sagen, Eirik

    2008-01-01

    Many new energy technologies seem to experience a fall in unit price as they mature. In this paper we study the unit price of liquefying natural gas in order to make it transportable by ship to gas power installations all over the world. Our point of departure is the experience curve approach, however unlike many other studies of new energy technologies, we also seek to account for autonomous technological change, scale effects and the effects of upstream competition among technology suppliers. To our surprise we find that upstream competition is by far the most important factor contributing to the fall in unit price. With respect to the natural gas business, this may have implications for the future development in prices as the effect of increased upstream competition is temporary and likely to weaken a lot sooner than effects from learning and technological change. Another more general policy implication, is that while promoting new energy technologies, governments must not forget to pay attention to competition policy. (author)

  6. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  7. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  8. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Tarigan, Alim

    1999-01-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U 3 O 8 -Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  9. Studies of Flow in Ionized Gas: Historical Perspective, Contemporary Experiments, and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2007-01-01

    Since the first observations that a very small ionized fraction (order of 1 ppm) could strongly affect the gas flow, numerous experiments with partially or fully wall-free discharges have demonstrated the dispersion of shock waves, the enhancement of lateral forces in the flow, the prospects of levitation, and other aerodynamic effects with vast potential of application. A review of physical effects and observations are given along with current status of their interpretation. Special attention will be given to the physical problems of energy efficiency in generating wall-free discharges and the phenomenology of filamentary discharges. Comments and case examples are given on the current status of availability of necessary data for modelling and simulation of the aerodynamic phenomena in weakly ionized gas

  10. Numerical analysis of experiments with gas injection into liquid metal coolant

    International Nuclear Information System (INIS)

    Usov, E V; Lobanov, P D; Pribaturin, N A; Mosunova, N A; Chuhno, V I; Kutlimetov, A E

    2016-01-01

    Presented paper contains results of a numerical analysis of experiments with gas injection in water and liquid metal which have been performed at the Institute of Thermophysics Russian Academy of Science (IT RAS). Obtained experimental data are very important to predict processes that take place in the BREST-type reactor during the hypothetical accident with damage of the steam generator tubes, and may be used as a benchmark to validate thermo-hydraulic codes. Detailed description of models to simulate transport of gas phase in a vertical liquid column is presented in a current paper. Two-fluid model with closing relation for wall friction and interface friction coefficients was used to simulate processes which take place in a liquid during injection of gaseous phase. It has being shown that proposed models allow obtaining a good agreement between experimental data and calculation results. (paper)

  11. The unique field experiments on the assessment of accident consequences at industrial enterprises of gas-chemical complexes

    International Nuclear Information System (INIS)

    Belov, N.S.; Trebin, I.S.; Sorokovikova, O.

    1998-01-01

    Sour natural gas fields are the unique raw material base for setting up such large enterprises as gas chemical complexes. The presence of high toxic H 2 S in natural gas results in widening a range of dangerous and harmful factors for biosphere. Emission of such gases into atmosphere during accidents at gas wells and gas pipelines is of especial danger for environment and first of all for people. Development of mathematical forecast models for assessment of accidents progression and consequences is one of the main elements of works on safety analysis and risk assessment. The critical step in development of such models is their validation using the experimental material. Full-scale experiments have been conducted by the All-Union Scientific-Research institute of Natural Gases and Gas Technology (VNIIGAZ) for grounding of sizes of hazard zones in case of the severe accidents with the gas pipelines. The source of emergency gas release was the working gas pipelines with 100 mm dia. And 110 km length. This pipeline was used for transportation of natural gas with significant amount of hydrogen sulphide. During these experiments significant quantities of the gas including H 2 S were released into the atmosphere and then concentrations of gas and H 2 S were measured in the accident region. The results of these experiments are used for validation of atmospheric dispersion models including the new Lagrangian trace stochastic model that takes into account a wide range of meteorological factors. This model was developed as a part of computer system for decision-making support in case of accident release of toxic gases into atmosphere at the enterprises of Russian gas industry. (authors)

  12. Gas transfer under breaking waves: experiments and an improved vorticity-based model

    Directory of Open Access Journals (Sweden)

    V. K. Tsoukala

    2008-07-01

    Full Text Available In the present paper a modified vorticity-based model for gas transfer under breaking waves in the absence of significant wind forcing is presented. A theoretically valid and practically applicable mathematical expression is suggested for the assessment of the oxygen transfer coefficient in the area of wave-breaking. The proposed model is based on the theory of surface renewal that expresses the oxygen transfer coefficient as a function of both the wave vorticity and the Reynolds wave number for breaking waves. Experimental data were collected in wave flumes of various scales: a small-scale experiments were carried out using both a sloping beach and a rubble-mound breakwater in the wave flume of the Laboratory of Harbor Works, NTUA, Greece; b large-scale experiments were carried out with a sloping beach in the wind-wave flume of Delft Hydraulics, the Netherlands, and with a three-layer rubble mound breakwater in the Schneideberg Wave Flume of the Franzius Institute, University of Hannover, Germany. The experimental data acquired from both the small- and large-scale experiments were in good agreement with the proposed model. Although the apparent transfer coefficients from the large-scale experiments were lower than those determined from the small-scale experiments, the actual oxygen transfer coefficients, as calculated using a discretized form of the transport equation, are in the same order of magnitude for both the small- and large-scale experiments. The validity of the proposed model is compared to experimental results from other researchers. Although the results are encouraging, additional research is needed, to incorporate the influence of bubble mediated gas exchange, before these results are used for an environmental friendly design of harbor works, or for projects involving waste disposal at sea.

  13. Neutral Transport Simulations of Gas Puff Imaging Experiments on Alcator C-Mod

    International Nuclear Information System (INIS)

    Stotler, D.P.; LaBombard, B.; Terry, J.L.; Zweben, S.J.

    2002-01-01

    Visible imaging of gas puffs has been used on the Alcator C-Mod tokamak to characterize edge plasma turbulence, yielding data that can be compared with plasma turbulence codes. Simulations of these experiments with the DEGAS 2 Monte Carlo neutral transport code have been carried out to explore the relationship between the plasma fluctuations and the observed light emission. By imposing two-dimensional modulations on the measured time-average plasma density and temperature profiles, we demonstrate that the spatial structure of the emission cloud reflects that of the underlying turbulence. However, the photon emission rate depends on the plasma density and temperature in a complicated way, and no simple scheme for inferring the plasma parameters directly from the light emission patterns is apparent. The simulations indicate that excited atoms generated by molecular dissociation are a significant source of photons, further complicating interpretation of the gas puff imaging results.Visibl e imaging of gas puffs has been used on the Alcator C-Mod tokamak to characterize edge plasma turbulence, yielding data that can be compared with plasma turbulence codes. Simulations of these experiments with the DEGAS 2 Monte Carlo neutral transport code have been carried out to explore the relationship between the plasma fluctuations and the observed light emission. By imposing two-dimensional modulations on the measured time-average plasma density and temperature profiles, we demonstrate that the spatial structure of the emission cloud reflects that of the underlying turbulence. However, the photon emission rate depends on the plasma density and temperature in a complicated way, and no simple scheme for inferring the plasma parameters directly from the light emission patterns is apparent. The simulations indicate that excited atoms generated by molecular dissociation are a significant source of photons, further complicating interpretation of the gas puff imaging results

  14. Near Detectors based on gas TPCs for neutrino long baseline experiments

    CERN Document Server

    Blondel, A

    2017-01-01

    Time Projection Chambers have been used with success for the T2K ND280 near detector and are proposed for an upgrade of the T2K near detector. High pressure TPCs are also being considered for future long-baseline experiments like Hyper-Kamiokande and DUNE. A High Pressure TPC would be a very sensitive detector for the detailed study of neutrino-nucleus interactions, a limiting factor for extracting the ultimate precision in long baseline experiments. The requirements of TPCs for neutrino detectors are quite specific. We propose here the development of state-of-the-art near detectors based on gas TPC: atmospheric pressure TPCs for T2K-II and a high-pressure TPC for neutrino experiments. The project proposed here benefits from a strong involvement of the European (CERN) members of the T2K collaboration and beyond. It is a strongly synergetic precursor of other projects of near detectors using gas TPCs that are under discussion for the long baseline neutrino projects worldwide. It will help maintain and develop...

  15. Experiments on vertical gas-liquid pipe flows using ultrafast X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Banowski, M.; Beyer, M.; Lucas, D.; Hoppe, D.; Barthel, F. [Helmholtz-Zentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung

    2016-12-15

    For the qualification and validation of two-phase CFD-models for medium and large-scale industrial applications dedicated experiments providing data with high temporal and spatial resolution are required. Fluid dynamic parameter like gas volume fraction, bubble size distribution, velocity or turbulent kinetic energy should be measured locally. Considering the fact, that the used measurement techniques should not affect the flow characteristics, radiation based tomographic methods are the favourite candidate for such measurements. Here the recently developed ultrafast X-ray tomography, is applied to measure the local and temporal gas volume fraction distribution in a vertical pipe. To obtain the required frame rate a rotating X-ray source by a massless electron beam and a static detector ring are used. Experiments on a vertical pipe are well suited for development and validation of closure models for two-phase flows. While vertical pipe flows are axially symmetrically, the boundary conditions are well defined. The evolution of the flow along the pipe can be investigated as well. This report documents the experiments done for co-current upwards and downwards air-water and steam-water flows as well as for counter-current air-water flows. The details of the setup, measuring technique and data evaluation are given. The report also includes a discussion on selected results obtained and on uncertainties.

  16. Shock Initiation Behavior of PBXN-9 Determined by Gas Gun Experiments

    Science.gov (United States)

    Sanchez, N. J.; Gustavsen, R. L.; Hooks, D. E.

    2009-12-01

    The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt&percent; dioctyl adipate with a density of 1.75 g/cm3 and 0.8&% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics were embedded magnetic gauges, which are based on Faraday's law of induction, and Photon Doppler Velocimetry (PDV). The run distance to detonation vs. shock pressure, or "Pop plot," was redefined as log(X) = 2.14-1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32+2.211 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 along with providing increased understanding of HMX based explosives in varying formulations.

  17. Conception and realization of optical diagnosis to characterize gas puffs in Z-Pinch experiments. Comparison between experiment and computation. Study of a new nozzle

    International Nuclear Information System (INIS)

    Barnier, J.N.

    1998-01-01

    The CEA develops research programs on plasma. A good way to generate such X-rays sources, is to realize Z-pinch experiments, so to realize the radial implosion on its axis of a conducting cylinder in a very high current. The AMBIORIX machine, allowing such experiments, calls for necessitates the use of gaseous conductors. The gas puff, coming from the nozzle, is ionised by a 2 MA current. The aim of this thesis is the characterisation of the gas source before the current impulse. For this purpose many optic diagnostics have been tested. Interferometric measures allow the gas profile density measurement. Various gas have been studied: neon, argon, helium and aluminium. For the aluminium, the resonant interferometric imagery method has been used. A new nozzle with an innovative injection technic, has been designed, characterized and tested in Z-pinch configuration. Finally measures of light diffusion (Rayleigh) have been realised to show dust in the gas. (A.L.B.)

  18. The ROSELEND-Gas Project: Research On Solicitation Effects in a Large-scale Experiment under Natural Dynamics with Gas

    Science.gov (United States)

    Pili, E.; Richon, P.; Moreira, M.; Agrinier, P.; Sabroux, J.; Adler, P. M.; Queisser, M.

    2008-12-01

    A 128-m long dead-end tunnel has been used since the 90's as an Underground Research Laboratory at 55 m below ground surface in the unsaturated zone of a fractured granitic body in Roselend (French Alps). As part of a multidisciplinary research project (Provost et al., 2004-EOS) aiming at understanding the impact of mechanical, meteorological, hydrogeological, and geochemical stimuli on transport in unsaturated fractured media, experiments have been run from and to the tunnel, based on long-term, high-resolution monitoring of a variety of physical and chemical parameters. In particular, transient phenomena have been studied within this highly dynamic system. The tunnel is located close to and above the artificial Roselend Lake where large variations in water level induce reproducible deformation and hydrogeological disturbances. This mountainous area is also characterized by contrasted water infiltration regimes. Solute transport presents a large variability in space and time due to variations in water content, flow pathways, and chemical reactions. Tracing experiments with natural and artificial tracers have been performed between ground surface and dripping water collecting points in the tunnel. Dripwater fluxes and water chemistry have been monitored for several years along sections of the tunnel showing different geological structures and flow rates in order to get water representative of different contributions of matrix porosity and fractures. Up to now, major findings include: - mechanisms of earthquake precursors (Trique et al., 1999-Nature; Pili et al., 2004-EPSL), - ventilation and the spatial and time variations of radon-222 concentrations in the tunnel (Richon et al., 2005-J.Env.Rad., Perrier et al., 2005-STOTEN), - stereological analysis of fractures and permeability determination (Patriarche et al., 2007-WRR), - reactive transport and residence time determination (Pili et al., 2008-Developments in Earth & Environmental Sciences). The new research

  19. Development of a Time Projection Chamber using CF4 gas for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Isobe, T.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Matsumoto, T.; Kametani, S.; Kajihara, F.; Gunji, T.; Kurihara, N.; Oda, S.X.; Yamaguchi, Y.L.

    2006-01-01

    A prototype Time Projection Chamber (TPC) using pure CF 4 gas was developed for possible use in heavy ion experiments. Basic characteristics such as gain, drift velocity, longitudinal diffusion and attenuation length of produced electrons were measured with the TPC. At an electric field of 900V/cm, the drift velocity and longitudinal diffusion for 1cm drift were obtained as 10cm/μs and 60μm, respectively. The relatively large gain fluctuation is explained to be due to the electron attachment process in CF 4 . These characteristics are encouraging for the measurement of the charged particle trajectories under high multiplicity conditions at RHIC

  20. Flow-induced and acoustically induced vibration experience in operating gas-cooled reactors

    International Nuclear Information System (INIS)

    Halvers, L.J.

    1977-03-01

    An overview has been presented of flow-induced and acoustically induced vibration failures that occurred in the past in gas-cooled graphite-moderated reactors, and the importance of this experience for the Gas-Cooled Fast-Breeder Reactor (GCFR) project has been assessed. Until now only failures in CO 2 -cooled reactors have been found. No problems with helium-cooled reactors have been encountered so far. It is shown that most of the failures occurred because flow-induced and acoustically induced dynamic loads were underestimated, while at the same time not enough was known about the influence of environmental parameters on material behavior. All problems encountered were solved. The comparison of the influence of the gas properties on acoustically induced and flow-induced vibration phenomena shows that the interaction between reactor design and the thermodynamic properties of the primary coolant precludes a general preference for either carbon dioxide or helium. The acoustic characteristics of CO 2 and He systems are different, but the difference in dynamic loadings due to the use of one rather than the other remains difficult to predict. A slight preference for helium seems, however, to be justified

  1. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    Science.gov (United States)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  2. Reaction measurements with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    Science.gov (United States)

    Chipps, K. A.

    2017-09-01

    Explosive stellar environments are sometimes driven by nuclear reactions on short-lived, radioactive nuclei. These reactions often drive the stellar explosion, alter the observable light curves produced, and dictate the final abundances of the isotopes created. Unfortunately, many reaction rates at stellar temperatures cannot be directly measured in the laboratory, due to the physical limitations of ultra-low cross sections and high background rates. An additional complication arises because many of the important reactions involve radioactive nuclei which have lifetimes too short to be made into a target. As such, direct reactions require very intense and pure beams of exotic nuclei. Indirect approaches with both stable and radioactive beams can, however, provide crucial information on the nuclei involved in these astrophysical reactions. A major development toward both direct and indirect studies of nuclear reactions rates is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) supersonic gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector systems, the range of reaction studies that are experimentally possible is vastly expanded. Various representative cases will be discussed.

  3. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment.

    Science.gov (United States)

    Clark, Jordan F; Hudson, G Bryant; Avisar, Dror

    2005-06-01

    A dual gas tracer experiment using sulfur hexafluoride (SF6) and an isotope of helium (3He) and measurements of dissolved noble gases was performed at the El Rio spreading grounds to examine gas transport and trapped air below an artificial recharge pond with a very high recharge rate (approximately 4 m day(-1)). Noble gas concentrations in the groundwater were greater than in surface water due to excess air formation showing that trapped air exists below the pond. Breakthrough curves of SF6 and 3He at two nearby production wells were very similar and suggest that nonequilibrium gas transfer was occurring between the percolating water and the trapped air. At one well screened between 50 and 90 m below ground, both tracers were detected after 5 days and reached a maximum at approximately 24 days. Despite the potential dilution caused by mixing within the production well, the maximum concentration was approximately 25% of the mean pond concentration. More than 50% of the SF6 recharged was recovered by the production wells during the 18 month long experiment. Our results demonstrate that at artificial recharge sites with high infiltration rates and moderately deep water tables, transport times between recharge locations and wells determined with gas tracer experiments are reliable.

  4. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Even, Julia

    2011-01-01

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  5. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States); Shao, Lin [Texas A & M Univ., College Station, TX (United States); Tsvetkov, Pavel [Texas A & M Univ., College Station, TX (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  6. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    International Nuclear Information System (INIS)

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-01-01

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  7. High density experiments with gas puffing and ECRH in T-10

    International Nuclear Information System (INIS)

    Esipchuk, Yu V; Kirneva, N A; Borschegovskij, A A; Chistyakov, V V; Denisov, V Ph; Dremin, M M; Gorbunov, E P; Grashin, S A; Kalupin, D V; Khimchenko, L N; Khramenkov, A V; Kirnev, G S; Krilov, S V; Krupin, V A; Myalton, T B; Pavlov, Yu D; Piterskij, V V; Ploskirev, G N; Poznyak, V I; Roy, I N; Shelukhin, D A; Skosyrev, Yu V; Trukhin, V M; Trukhina, E V; Vershkov, V A; Veschev, E A; Volkov, V V; Zhuravlev, V A

    2003-01-01

    High density experiments were carried out in T-10 with gas puffing and electron cyclotron resonance heating (with absorbed power value up to 1.4 MW) with oblique and perpendicular power launch. Densities exceeding the Greenwald limit (n Gw ) by up to a factor of 1.8 were achieved in a regime with a high value of the edge safety factor at the current flat-top, q(a)≅8.2. The decrease of q(a) to a value of 3 led to the reduction of the ratio ( n-bar e ) lim /n Gw to 1. Confinement degradation with density increase was not significant up to the density limit. However, the typical T-10 linear increase of energy confinement time with density saturates at n-bar e ≥0.6n Gw . This saturation is the result of the development of an additional transport in the electron heat channel. However, the saturated τ E values exceeded the ITER L-mode scaling predictions by up to a factor of 1.2 and were close to the value predicted by the ITER H-mode scaling. Effect of the strong gas puffing on the plasma confinement and experiments with neon seeding are also discussed in this paper

  8. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  9. Modeling CO2 Gas Migration of Shallow Subsurface CO2 Leakage Experiments

    Science.gov (United States)

    Porter, M. L.; Plampin, M. R.; Pawar, R.; Illangasekare, T. H.

    2013-12-01

    Leakage of injected CO2 into shallow subsurface aquifers or back into the atmosphere at geologic carbon sequestration sites is a risk that must be minimized. One potential CO2 leakage pathway involves the transport of dissolved CO2 into a shallow aquifer where the CO2 exsolves, forming a free CO2 gas phase that subsequently migrates through the aquifer. In order to reduce the negative effects of CO2 exsolution, it is important to fully understand each of the processes controlling the movement CO2, as well as the effects of aquifer heterogeneity on the overall fate and transport of CO2. In this work, we present multiphase flow simulations of intermediate scale CO2 exsolution experiments. The multiphase flow simulations were carried out using the Finite Element Heat and Mass Transfer code (FEHM) developed at Los Alamos National Laboratory. Simulations were first designed to model experiments conducted in two different homogeneous packed sands. PEST (Parameter Estimation and Uncertainty Analysis) was used to optimize multiphase flow parameters (i.e., porosity, permeability, relative permeability, and capillary pressure) within FEHM. The optimized parameters were subsequently used to model heterogeneous experiments consisting of various packing configurations using the same sands. Comparisons of CO2 saturation between experiments and simulations will be presented and analyzed.

  10. Experiments on state selection and Penning ionisation with fast metastable rare gas atoms

    International Nuclear Information System (INIS)

    Kroon, J.P.C.

    1985-01-01

    This thesis describes experiments with metastable He/Ne atoms. The experiments are performed in a crossed beam machine. Two different sources are used for the production of metastable atoms: a source for the production of metastable atoms in the thermal energy range and a hollow cathode arc for the production of metastable atoms in the superthermal energy range (1-7 eV). The progress made in the use of the hollow cathode arc is described as well as the experimental set-up. The rare gas energy-level diagram is characterized by two metastable levels. By optical pumping it is possible to select a single metastable level, both for He and Ne. For the case of He this is done by a recently built He quenchlamp which selectively quenches the metastable 2 1 S level population. In the thermal energy range the quenching is complete; in the superthermal energy range the 2 1 S level population is only partly quenched. For the optical pumping of Ne* atoms a cw dye laser is used. New experiments have been started on the measurement, in a crossed beam machine, of the fluorescence caused by inelastic collisions where metastable atoms are involved. The He* + Ne system is used as a pilot study for these experiments. The He-Ne laser is based on this collision system. (Auth.)

  11. Issues of Exercising the Right to Defence amid the Explanations of the Plenum of the Supreme Court of the Russian Federation

    Directory of Open Access Journals (Sweden)

    Oksana A. Voltornist

    2016-04-01

    Full Text Available The article analyzes the explanations of the Plenum of the Supreme Court No. 29 dated June 30, 2015 “On application of laws by the courts ensuring the right to defense in criminal proceedings”. The author details the applied aspects of certain provisions of the aforementioned document within the criminal procedure legislation and estimates their significance for the judicial and investigative practice

  12. 2D/3D program. Upper plenum test facility - UPTF. Test No. 1

    International Nuclear Information System (INIS)

    1987-01-01

    Test No.1 was a quasi-steady state, separate effect test involving the UPTF-System with blocked break valves and blocked pump simulators. Initially the test vessel, the cold and hot leg nozzels as well as the pump seals were completely filled witht hot water in this test. This test was designed to investigate the fluid-fluid mixing phenomena and the development of the fluid and wall temperature fields in the cold leg and downcomer region of a PWR. The experiment was performed by injecting a cold water stream into one cold leg of UPTF while the system was initially filled with stagnant hot water. (orig.)

  13. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  14. Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA

    Science.gov (United States)

    Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.

    2010-11-01

    Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).

  15. Gas solubility of carbon dioxide and of oxygen in cyclohexanol by experiment and molecular simulation

    International Nuclear Information System (INIS)

    Merker, T.; Vrabec, J.; Hasse, H.

    2012-01-01

    Highlights: ► Gas solubility measurements of carbon dioxide in liquid cyclohexanol are reported. ► Gas solubility measurements of oxygen in liquid cyclohexanol are reported. ► Henry’s law constant data is determined from the present experimental results. ► Very good agreement between experiment and molecular simulation is achieved. ► Ambiguity for the Henry’s law constant of oxygen in cyclohexanol is resolved. - Abstract: Henry’s law constant data of carbon dioxide and of oxygen in liquid cyclohexanol are determined at temperatures between (303 and 392) K by means of a precise experimental high-pressure view-cell technique with a synthetic method. Furthermore, molecular simulations are carried out with a molecular mixture model, based on the modified Lorentz–Berthelot combination rule that contains one binary interaction parameter which is adjusted to one experimental Henry’s law constant for each binary mixture. The molecular model yields good results for the Henry’s law constant over the entire temperature range.

  16. A fleet leader experience with dry low emissions aeroderivative gas turbines (LM6000PB and PD)

    Energy Technology Data Exchange (ETDEWEB)

    Vandesteene, J.L.; De Witte, M.

    1998-07-01

    In January 1995, the world's first LM6000 dry low emissions (DLE) aeroderivative gas turbine supplied by GE M and I was successfully started up at Gent power plant. In November 1997, the world's first uprated LM6000, also equipped with the DLE combustion system, began commercial operation at Geel cogeneration facility. TEE handled the engineering, procurement, construction and commissioning of these projects as well as for several other repowering and cogeneration facilities based on high efficiency DLE aeroderivative gas turbines. By mid 1998, seven LM6000 DLE and one LM2500 DLE will be in commercial operation at several cogeneration and power plants in Belgium. The results of three years of experience with the LM engines are presented: the reasons why the LM engines were selected, the history of the different units, the maintenance organization, the fleet fired hours and availability, and the main technical issues like DLE combustor, LPT5 failures. The conclusion is that after having experienced several serious problems, the LM6000 and the DLE combustion system have matured and now seem sufficiently reliable. The actual performance data of the uprated engine are significantly better than initially expected.

  17. New gas detector setup for on-axis STIM tomography experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marques, A.C., E-mail: ana.marques@ctn.ist.utl.pt [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Fraga, M.M.F.R. [Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra (Portugal); Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Fonte, P. [Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra (Portugal); Instituto Superior de Engenharia de Coimbra, 3030-199 Coimbra (Portugal); Beasley, D.G.; Alves, L.C.; Silva, R.C. da [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2013-07-01

    A gas flow ionization chamber for use with on-axis scanning transmission ion microscopy tomography (STIM-T) has been developed. The entrance window is composed of a square silicon nitride membrane 100 nm thick and 1 mm{sup 2} in area. The use of this type of window does not add significantly to the energy resolution with the MeV H{sup +} or He{sup +} particles used in STIM, and proved to be resistant to high proton fluence in the irradiated spot. The ability of such detector to withstand direct beam hit with acceptable energy resolution makes it suitable for on-axis STIM-T, in this respect outperforming the more standard Si PIN diodes, which performance is known to degrade above fluences of ∼10{sup 10}–10{sup 12} cm{sup −2}. The present in-line design while allowing easy mounting of the detector to the existing target chamber, has the peculiarity of providing a practical way of replacing the Si{sub 3}N{sub 4} membrane in case it brakes while operating. The concept of gas ionization chamber under development is expected to become ideal for on-axis STIM-T experiments due to its low ageing during operation, and anticipated attainable speed and energy resolution.

  18. The Stratospheric Aerosol and Gas Experiment III on the International Space Station

    Science.gov (United States)

    Thomason, L.; Pitts, M. C.; Damadeo, R. P.; Zawodny, J. M.

    2012-12-01

    The Stratospheric Aerosol and Gas Experiment (SAGE III) has recently been selected for a flight on the International Space Station (ISS) beginning in 2014. Since the instrument was constructed in the early 2000s, the instrument will require extensive testing and refurbishment prior to deliver to ISS. The project will also include the refurbishment of the ESA Hexapod which is a high-accuracy pointing system developed to support ISS external payloads particularly SAGE III. SAGE III refurbishment may also include the replacement of the neutral density filter that has been associated with some instrument response issues during the METEOR/3M mission. We are also exploring options for expanding the science targets to include additional gas species including IO, BrO, and other solar, lunar, and limb-scatter species. In this presentation, we will discuss our plans for SAGE III - ISS refurbishment including results from Sun-look testing, revisions to the science measurements, and discuss expected measurement accuracies in part by examining SAGE III - METEOR/3M measurement data quality. We will also discuss potential mission science goals enabled by the mid-inclination ISS orbit.

  19. Fabrication and characterization of graded impedance impactors for gas gun experiments from tape cast metal powders

    International Nuclear Information System (INIS)

    Martin, L. Peter; Orlikowski, Daniel; Nguyen, Jeffrey H.

    2006-01-01

    Fabrication of compositionally graded structures for use as light-gas gun impactors has been demonstrated using a tape casting technique. Mixtures of metal powders in the Mg-Cu system were cast into a series of tapes with uniform compositions ranging from 100% Mg to 100% Cu. The individual compositions were fabricated into monolithic pellets for characterization by laminating multiple layers together, thermally removing the organics, and hot-pressing to near-full density. The pellets were characterized by optical and scanning electron microscopy, X-ray diffraction, and measurement of density and sound wave velocity. The density and acoustic impedance were observed to vary monotonically (and nearly linearly) with composition. Graded structures were fabricated by stacking layers of different compositions in a sequence calculated to yield a desired acoustic impedance profile. The measured physical properties of the graded structures compare favorably with those predicted from the monolithic pellet characteristics. Fabrication of graded impactors by this technique is of significant interest for providing improved control of the pressure profile and impactor planarity in gas gun experiments

  20. Leak before break detection-annulus gas monitoring system evolution and operating experience at KGS

    International Nuclear Information System (INIS)

    Jain, D.D.; Sanathkumar, V.V.; Ramamurthy, K.; Nageswara Rao, G.

    2002-01-01

    Full text: Pressurised heavy water reactors (PHWR) at RAPS 1 and 2 and MAPS have provision for detection of pressure tube leak by indirect method. The reactor vessel (calandria) is housed in calandria vault (C/V) filled with air and C/V moisture element indicates the water leak from calandria tube or pressure tube. Further, detection of leak is a cumbersome process. From NAPS onwards, calandria is housed in C/V filled with water, annulus between calandria tube and pressure tube is filled with CO 2 and annulus gas monitoring system (AGMS) is provided by design for detection of any pressure tube leak. The design was improved and AGMS for Kaiga 1 and 2 and RAPS 3 and 4 is having re-circulation mode of operation. The design provides for monitoring dew point of annulus gas (CO 2 ) for indicating the leak and later to identify the pressure tube/calandria tube having leak. The paper deals with operating experience of AGMS at Kaiga generating station (KGS). During the commissioning and initial power operation at KGS, problems were encountered in re-circulation mode. These problems were high radiation field near AGMS piping, high temperature on blower body, blower bearing failure and system leaks. Design modifications were carried out for effective performance of the system for detecting leak before break

  1. Structure and dynamics of gas phase ions: Interplay between experiments and computations in IRMPD spectroscopy

    Science.gov (United States)

    Coletti, Cecilia; Corinti, Davide; Paciotti, Roberto; Re, Nazzareno; Crestoni, Maria Elisa; Fornarini, Simonetta

    2017-11-01

    The investigation of the molecular structure and dynamics of ions in gas phase is an item of increasing interest, due the role such species play in many areas of chemistry and physics, not to mention that they often represent elusive intermediates in more complex reaction mechanisms. Infrared Multiple Photon Dissociation spectroscopy is today one of the most advanced technique to this purpose, because of its high sensitivity to even small structure changes. The interpretation of IRMPD spectra strongly relies on high level quantum mechanical computations, so that a close interplay is needed for a detailed understanding of structure and kinetics properties which can be gathered from the many applications of this powerful technique. Recent advances in experiment and theory in this field are here illustrated, with emphasis on recent progresses for the elucidation of the mechanism of action of cisplatin, one of the most widely used anticancer drugs.

  2. Measurements of electron density and temperature profiles in a gas blanket experiment

    International Nuclear Information System (INIS)

    Kuthy, A.

    1979-02-01

    Radial profiles of electron density, temperature and H sub(β) intensity are presented for the rotating plasma device F-1. The hydrogen filling pressure, the average magnetic field strength at the midplane, and the power input to the discharge have been varied in the ranges 10-100 mTorr, 0.25-0.5 Tesla, and 0.1 to 1.5 MW, respectively. These experiments have been performed with the main purpose of studying the gas blanket (cold-mantle) state of the plasma. It is shown, that a simple spectroscopic method can be used to derive the radial distribution of the electron temperature in such plasmas. The observed peak temperatures and densities are in agreement with earlier theoretical estimates. (author)

  3. On the Stratospheric Aerosol and Gas Experiment III on the International Space Station

    Science.gov (United States)

    Hernandez, Gloria; Zawodny, Joseph M.; Cisewski, Michael S.; Thornton, Brooke M.; Panetta, Andrew D,; Roell, Marilee M.; Vernier, Jean-Paul

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on International Space Station (SAGE3/ISS) is anticipated to be delivered to Cape Canaveral in the spring of 2015. This is the fourth generation, fifth instrument, of visible/near-IR solar occultation instruments operated by the National Aeronautics and Space Agency (NASA) to investigate the Earth's upper atmosphere. The instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. The SAGE3/ISS validation program will be based upon internal consistency of the measurements, detailed analysis of the retrieval algorithm, and comparisons with independent correlative measurements. The Instrument Payload (IP), mission architecture, and major challenges are also discussed.

  4. Mitigating greenhouse gas emissions of the agriculture sector in France. Collection of territorial experiences

    International Nuclear Information System (INIS)

    Pommier, Fabien; Martin, Sarah; Bajeat, Philippe; Larbodiere, Ludovic; Vergez, Antonin

    2013-06-01

    After having briefly indicated the different origins of direct and indirect greenhouse gas emissions by the agriculture sector, presented the technical and political context, and outlined the need for new practices to struggle against climate change and to adapt to changes to come, this publication reports some experiments undertaken in different French regions: a farm network as an animation tool to support farmers, a local partnership to conciliate town and agriculture, the development of actions on energy and greenhouse gases in agriculture, the implementation of climate and agriculture plan, a network of agricultural actors for a sustainable support of change, an agriculture with and for its territory and inhabitants, a debate on agriculture and climate

  5. Investigation on cold fusion phenomena using gas-metal loading experiments

    International Nuclear Information System (INIS)

    Lanza, F.; Bertolini, G.; Vocino, V.; Parnisari, E.; Ronsecco, C.

    1992-01-01

    Previous experiments have shown that tritium is produced in deuterated titanium. The data obtained are highly scattered and non reproducible. In order to try to define better the phenomenon a series of tests have been performed using various metals and alloys and different deuterating conditions. Sheets and shavings of titanium, zirconium, hafnium, tantalum, zircaloy 2 and Ti-Zr 5O% alloy have been tested. The tritium production is obtained as a difference of the tritium content in the deuterated metal and the initial content of tritium in the deuterium gas. The amount of tritium produced is low and reproducibility is rather poor. A statistical analysis shows that significant differences are obtained varying the type of metal used. In general the tritium production increases with the atomic number of the metal. Moreover significantly higher productions of tritium have been obtained using materials of technical purity as tantalum, zircaloy 2 and Ti-Zr alloy

  6. Cogeneration with natural gas fired internal combustion engines: Italian utility's 10 years operating experience

    International Nuclear Information System (INIS)

    Montermini, G.P.

    1992-01-01

    This paper describes the experience that AGAC, an Italian gas and water utility, has acquired in the operation of a 116 Km long district heating network serving about 40,000 inhabitants. The network is powered by a mix of methane fuelled Otto and diesel cycle engines, coal fired fluidized bed boilers, and methane fired boilers producing annually about 153,000 kW of thermal energy, 2,300 kW of cooling energy, and 28.8 million kWh of electric power. This paper reports on the performance of this system in terms of production and sales trends, equipment efficiency and compatibility with new European Communities air pollution standards

  7. Instellar Gas Experiment (IGE): Testing interstellar gas particles to provide information on the processes of nucleosynthesis in the big bang stars and supernova

    Science.gov (United States)

    Lind, Don

    1985-01-01

    The Interstellar Gas Experiment (IGE) is designed to collect particles of the interstellar gas - a wind of interstellar media particles moving in the vicinity of the solar system. These particles will be returned to earth where the isotopic ratios of the noble gases among these particles will be measured. IGE was designed and programmed to expose 7 sets of six copper-beryllium metallic collecting foils to the flux of neutral interstellar gas particles which penetrate the heliosphere to the vicinity of the earth's orbit. These particles are trapped in the collecting foils and will be returned to earth for mass-spectrographic analysis when Long Duration Exposure Facility (LDEF) on which IGE was launched, is recovered.

  8. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    Science.gov (United States)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  9. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dawn M. Scates; John (Jack) K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  10. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    CERN Document Server

    Abbrescia, M.

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  11. The spray characteristic of gas-liquid coaxial swirl injector by experiment

    OpenAIRE

    Chen Chen; Zhihui Yan; Yang Yang; Hongli Gao; Shunhua Yang; Lei Zhang

    2017-01-01

    Using the laser phase Doppler particle analyzer (PDPA), the spray characteristics of gas-liquid coaxial swirl injector were studied. The Sauter mean diameter (SMD), axial velocity and size data rate were measured under different gas injecting pressure drop and liquid injecting pressure drop. Comparing to a single liquid injection, SMD with gas presence is obviously improved. So the gas presence has a significant effect on the atomization of the swirl injector. What’s more, the atomization eff...

  12. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium.

    Science.gov (United States)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11  m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2  = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is

  13. Large-scale Experiment for Water and Gas Transport in Cementitious Backfill Materials (Phase 1 ): COLEX I

    International Nuclear Information System (INIS)

    Mayer, G.; Wittmann, F.H.; Moetsch, H.A.

    1998-05-01

    In the planned Swiss repository for low- and intermediate-level radioactive waste, the voids between the waste containers will be backfilled with a highly permeable mortar (NAGRA designation: mortar M1 ). As well as providing mechanical stability through filling of voids and sorbing radionuclides, the mortar must divert gases formed in the repository as a result of corrosion into the neighbouring host rock. This will prevent damage which could be caused by excess pressure on the repository structures. Water transport, which is coupled to gas transport, is also of interest. The former is responsible for the migration of radionuclides. Up till now, numerical simulations for a repository situation were carried out using transport parameters determined for small samples in the laboratory. However, the numerical simulations still had to be validated by a large-scale experiment. The investigations presented here should close this gap. Investigations into gas and water transport were carried out using a column (up to 5.4 m high) filled with backfill mortar. The column has a modular construction and can be sealed at the top end with a material of defined permeability (plug or top plug). The possibility to vary the material of the plug allows the influence of the more impermeable cavern lining or possible gas escape vents in the cavern roof to be investigated. A gas supply is connected to the bottom end and is used to simulate different gas generation rates from the waste. A total of 5 experiments were carried out in which the gas generation rate, the column height and the permeability of the plug were varied. Before the start of the experiments, the mortar in the column and the plug were saturated with water to approx. 95 %. In all the experiments, an increase in pressure with time could be observed. The higher the gas generation rate and the lower the permeability of the plug, the more quickly this occurred. At the beginning, only water flow out of the top of the column

  14. Implementing greenhouse gas trading in Europe. Lessons from economic literature and international experiences

    International Nuclear Information System (INIS)

    Boemare, Catherine; Quirion, Philippe

    2002-01-01

    The European Commission (document COM (2001) 581) has recently presented a directive proposal to the European Parliament and Council in order to implement a greenhouse gas emission trading scheme. If this proposal survives the policy process, it will create the most ambitious trading system ever implemented. However, the legislative process is an opportunity for various interest groups to amend environmental policies, which as a result generally deviate further from what economic literature proposes. A close look at implemented emission trading schemes, stressing their discrepancies with economic literature requests, is thus useful to increase the chances of forthcoming emission trading schemes to go through the political process. We thus review ten emission trading systems, which are either implemented or at an advanced stage of the policy process. We draw attention to major points to be aware of when designing an emission trading system: sectoral and spatial coverage, permits allocation, temporal flexibility, trading organisation, monitoring, enforcement, compliance, and the harmonisation vs. subsidiarity issue. The aim is to evaluate how far experiences in emission trading move away from theory and why. We then provide some lessons and recommendations on how to implement a greenhouse gas emission trading program in Europe. We identify some pros of the Commission proposal (spatial and sectoral coverage, temporal flexibility, trading organisation, compliance rules), some potential drawbacks (allocation rules, monitoring and enforcement) and items on which further guidance is needed (monitoring and allocation rules). Lastly, the European Commission should devote prominent attention to the US NO X Ozone Transport Commission budget program, as the only example of integration between the federal and state levels

  15. Study of a microstrip gas detector for the Compact Muon Solenoid experiment

    International Nuclear Information System (INIS)

    Clergeau, J. F.

    1997-01-01

    The micro-strip gas chambers (MSGC) were realized due to the technological advances in the field of micro-electronics. The wire of usual gas counters is replaced in these detectors by metallic stripes as a periodic sequence of electrodes (anodes and cathodes) spaced by around 200 μm. At a distance of 3 mm above the strip containing substrate, a metallic plane is placed, thus defining the gaseous room where the passage of a charged particle produces by ionization a primary electron signal collected by the detector anodes. Due to its granularity a MSGC can operate under very high particle fluxes since charge can be collected very rapidly. Also, the impact parameters can be determined with high accuracy due to the high space and time resolutions. The Compact Muon Solenoid (CMS) or the MSGC detectors planned to equip one of the experiments proposed for LHC should detect, in extreme operational conditions, the particle impacts in a 4 Tesla magnetic field, for around ten years and for a particle flux of around 10 4 Hz/mm 2 . The CMS detector is described in chapter 2. The operation principle and the problems encountered in the development of MSGC detectors are summarized in chapter 3. The chapter 4 is dedicated to the study of the performances of MSGCs in magnetic fields. In the chapters 5 to 7 the processing of the signal from detectors of this type is described, particularly, the performances of various ways of treat the signal in terms of detection efficiency and counting loads are presented.The chapter 8 presents the results obtained with the prototype obtained at IPNL while the chapter 9 gives the conclusions of the performed works. (author)

  16. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  17. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.; Lybeck, Nancy J.; Petti, David A.

    2016-10-01

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions. These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules

  18. Gas Research Institute improved fracturing. Unconventional natural gas program, eastern devonian shales diagnostic program: Black No. 1 well experiment results. Third quarterly report, October 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, C.L. (ed.)

    1980-02-01

    During the last quarter of 1979, Sandia National Laboratories participated in an experiment with Thurlow Weed and Associates and the Morgantown Energy Technology Center. This Devonian Shale gas stimulation experiment was conducted in an area north of Columbus, Ohio. One purpose of the experiment was to apply the diagnostic instrumentation that is available for fracture mapping and characterization to increase our understanding of the stimulation technique. The induced fracture apparently followed a pre-existing fracture vertically from the borehole with an orientation of the N 62/sup 0/ E and in the latter stages of the stimulation turned into a shallower horizontal fracture. This fracture behavior was confirmed by several diagnostic analyses and demonstrates the insight that can be gained by fully instrumented stimulation experiments.

  19. Deregulation and natural gas trade relationships: lessons from the Alberta-California experience

    International Nuclear Information System (INIS)

    Wilson, Patrick Impero

    1997-01-01

    In 1978 the US government moved to deregulate the American natural gas industry. The market changes that resulted from this initial step took time to ripple their way out to regional and subnational gas trading relationships. This ripple effect required subnational governments (state and provincial regulators) to rethink their gas regulatory policies. This article examines the restructuring of the Alberta-California gas trade. It explores how changes in US policy forced California and Alberta regulators to recast their policies. It concludes with several lessons that can be drawn from this case about the complex challenge of restructuring international gas trading relationships. (author)

  20. Water Resource Impacts During Unconventional Shale Gas Development: The Pennsylvania Experience

    Science.gov (United States)

    Brantley, S. L.; Yoxtheimer, D.; Arjmand, S.; Grieve, P.; Vidic, R.; Abad, J. D.; Simon, C. A.; Pollak, J.

    2013-12-01

    The number of unconventional Marcellus shale wells in PA has increased from 8 in 2005 to more than 6000 today. This rapid development has been accompanied by environmental issues. We analyze publicly available data describing this Pennsylvania experience (data from www.shalenetwork.org and PA Department of Environmental Protection, i.e., PA DEP). After removing permitting and reporting violations, the average percent of wells/year with at least one notice of violation (NOV) from PA DEP is 35 %. Most violations are minor. An analysis of NOVs reported for wells drilled before 2013 revealed a rate of casing, cement, or well construction issues of 3.4%. Sixteen wells were given notices specifically related to migration of methane. A similarly low percent of wells were contaminated by brine components. Such contamination could derive from spills, subsurface migration of flowback water or shallow natural brines, or contamination by drill cuttings. Most cases of contamination of drinking water supplies with methane or brine components were reported in the previously glaciated part of the state. Before 2011, flowback and production water was often discharged legally into streams after minimal treatment, possibly increasing dissolved Br concentrations in some rivers. The rate of large spills or releases of gas-related industrial wastes in the state peaked in 2009 but little evidence of spills has been found in publicly available surface water chemistry data. The most likely indicators of spillage or subsurface release of flowback or production waters are the dissolved ions Na, Ca, and Cl. However, the data coverage for any given analyte is generally spatially and temporally sparse. Publicly available water quality data for before and after spills into Larrys Creek and Bobs Creek document the difficulties of detecting such events. An observation from the Pennsylvania experience is that the large number of people who have complained about their water supply (~1000 letters

  1. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    Science.gov (United States)

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; Dyer, G.; Ihn, Y. S.; Cortez, J.; Aymond, F.; Gaul, E.; Donovan, M. E.; Barbui, M.; Bonasera, A.; Natowitz, J. B.; Albright, B. J.; Fernández, J. C.; Ditmire, T.

    2014-12-01

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure the average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.

  2. The spray characteristic of gas-liquid coaxial swirl injector by experiment

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2017-01-01

    Full Text Available Using the laser phase Doppler particle analyzer (PDPA, the spray characteristics of gas-liquid coaxial swirl injector were studied. The Sauter mean diameter (SMD, axial velocity and size data rate were measured under different gas injecting pressure drop and liquid injecting pressure drop. Comparing to a single liquid injection, SMD with gas presence is obviously improved. So the gas presence has a significant effect on the atomization of the swirl injector. What’s more, the atomization effect of gas-liquid is enhanced with the increasing of the gas pressure drop. Under the constant gas pressure drop, the injector has an optimal liquid pressure drop under which the atomization performance is best.

  3. The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve

    Science.gov (United States)

    Jiang, Cong; Chen, Yanhao

    2018-04-01

    Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.

  4. RFNC-VNIIEF experience in development and operation of hydrogen isotopes gas-handling systems for basic research

    International Nuclear Information System (INIS)

    Yukhimchuk, A. A.; Il'kaev, R. I.

    2008-01-01

    Application of hydrogen isotopes in different fields of fundamental physics obtained by RFNC-VNIIEF in the last decade are presented. Gas-handling systems for scientific experiments, some technologies and designs of the setup key elements are described, and results obtained with the developed equipment are outlined. (authors)

  5. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  6. Tracer gas experiment to verify the dispersion from a tall stack

    International Nuclear Information System (INIS)

    Sivertsen, B.; Irwin, J.S.

    1996-01-01

    At the request of the Ministerios de Obras Publicas y Urbanismo (MOPU) in Madrid, the Norwegian Institute for Air Research (NILU) planned and carried out a comprehensive field experiment at the Andorra (Teruel) power plant in Spain. All together, eleven releases of sulfur hexafluoride (SF6) tracer were carried out at the 1,200 MW electric coal fired power plant. The tracer was emitted into the atmosphere from the 343 m high stack, stack exit diameter of 9 m. The stack gas emission characteristics were nearly constant during the period having an exit temperature of 175.1 C (1.9), exit velocity of 35.5 m/s (0.14) and sulfur dioxide (SO 2 ) emission rate of 46.1 x 10 3 kg/hr (5.15 x 10 3 ); standard deviations are listed in parentheses. Samples were taken at the surface along sampling arcs located approximately 8, 23, 43 and 75 km downwind. The releases were undertaken during typical late spring daytime conditions. The synoptic weather conditions were dominated by a large high pressure system on the Atlantic, west of Spain. Fronts were passing the area from the north and a low pressure system was developing over central Europe (Germany). Winds at the surface were generally brisk from the northwest at 7 to 12 m/s

  7. Synthesis of urban greenhouse gas emission estimates from the Indianapolis Flux Experiment (INFLUX)

    Science.gov (United States)

    Turnbull, J. C.; Davis, K. J.; Deng, A.; Lauvaux, T.; Miles, N. L.; Richardson, S.; Sarmiento, D. P.; Wu, K.; Brewer, A.; Hardesty, R. M.; McKain, K.; Sweeney, C.; Gurney, K. R.; Liang, J.; O'Keeffe, D.; Patarasuk, R.; Cambaliza, M. O. L.; Harvey, R. M.; Heimburger, A. M. F.; Shepson, P. B.; Karion, A.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.

    2016-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together high-resolution (in both space and time) inventory assessments, a multi-year record of in situ CO2, CH4and CO from tower-based and aircraft-based atmospheric measurements along with a complementary suite of 35 trace gases and isotopes from flasks collected at the same sites, and atmospheric modelling. Together, these provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Here we synthesize the results to date, and demonstrate broad agreement amongst city-wide emission rates determined from the various top-down and bottom-up methods. We highlight the areas where ongoing efforts are reducing uncertainties in the overall flux estimation, including accurate representation of atmospheric transport, partitioning of GHG source types and the influence of background atmospheric GHG mole fractions.

  8. Crises Management in the Oil and Gas Industry: The Niger Delta Experience

    Science.gov (United States)

    Odemene, Glory C.

    The Niger Delta crises escalated beyond the borders of the Nigerian nation to become an issue that affected individuals and corporations around the world. This study led to the discovery of how the local crises escalated with international implications. This discovery was accomplished by addressing how the Niger Delta crises escalated from villages to international scenes, with notable impacts on the environment, health, safety, security, and financial segments of local, international, private, and corporate entities. Using Sweeny's crisis decision theory and Lazarus and Folkman's coping theory, the study considered the coping strategies of community members, the decisions, and actions they took in response to the management approaches of the government and the oil and gas companies (OGCs). This qualitative study utilized historical narrative to collect data by interviewing 4 participants who lived and worked in the region during the crises. NVivo was used for manual and automatic coding of data, as well as for categorization and connection of codes. Content analysis of identified codes and categories revealed the themes and trends in the experiences narrated by participants. Findings include the root causes, trend of escalation, and management strategies of the government and the OGCs that influenced the crises. These findings will help to influence policies and practices in the region and enhance effective management of current and emerging conflicts, with possibilities of restoring stability and security in the areas and in the nation at large.

  9. Comprehensive Interpretation of the Laboratory Experiments Results to Construct Model of the Polish Shale Gas Rocks

    Science.gov (United States)

    Jarzyna, Jadwiga A.; Krakowska, Paulina I.; Puskarczyk, Edyta; Wawrzyniak-Guz, Kamila; Zych, Marcin

    2018-03-01

    More than 70 rock samples from so-called sweet spots, i.e. the Ordovician Sa Formation and Silurian Ja Member of Pa Formation from the Baltic Basin (North Poland) were examined in the laboratory to determine bulk and grain density, total and effective/dynamic porosity, absolute permeability, pore diameters size, total surface area, and natural radioactivity. Results of the pyrolysis, i.e., TOC (Total Organic Carbon) together with S1 and S2 - parameters used to determine the hydrocarbon generation potential of rocks, were also considered. Elemental composition from chemical analyses and mineral composition from XRD measurements were also included. SCAL analysis, NMR experiments, Pressure Decay Permeability measurements together with water immersion porosimetry and adsorption/ desorption of nitrogen vapors method were carried out along with the comprehensive interpretation of the outcomes. Simple and multiple linear statistical regressions were used to recognize mutual relationships between parameters. Observed correlations and in some cases big dispersion of data and discrepancies in the property values obtained from different methods were the basis for building shale gas rock model for well logging interpretation. The model was verified by the result of the Monte Carlo modelling of spectral neutron-gamma log response in comparison with GEM log results.

  10. Development and application of an analysis methodology for interpreting ambiguous historical pressure data in the WIPP gas-generation experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Felicione, F. S.

    2006-01-23

    The potential for generation of gases in transuranic (TRU) waste by microbial activity, chemical interactions, corrosion, and radiolysis was addressed in the Argonne National Laboratory-West (ANL-West) Gas-Generation Experiments (GGE). Data was collected over several years by simulating the conditions in the Waste Isolation Pilot Plant (WIPP) after the eventual intrusion of brine into the repository. Fourteen test containers with various actual TRU waste immersed in representative brine were inoculated with WIPP-relevant microbes, pressurized with inert gases, and kept in an inert-atmosphere environment for several years to provide estimates of the gas-generation rates that will be used in computer models for future WIPP Performance Assessments. Modest temperature variations occurred during the long-term ANL-West experiments. Although the experiment temperatures always remained well within the experiment specifications, the small temperature variation was observed to affect the test container pressure far more than had been anticipated. In fact, the pressure variations were so large, and seemingly erratic, that it was impossible to discern whether the data was even valid and whether the long-term pressure trend was increasing, decreasing, or constant. The result was that no useful estimates of gas-generation rates could be deduced from the pressure data. Several initial attempts were made to quantify the pressure fluctuations by relating these to the measured temperature variation, but none was successful. The work reported here carefully analyzed the pressure measurements to determine if these were valid or erroneous data. It was found that a thorough consideration of the physical phenomena that were occurring can, in conjunction with suitable gas laws, account quite accurately for the pressure changes that were observed. Failure of the earlier attempts to validate the data was traced to the omission of several phenomena, the most important being the variation in

  11. Self-sealing experiments and gas injection tests in a backfilled micro-tunnel of the Mont Terri URL

    International Nuclear Information System (INIS)

    Lanyon, Bill; Marschall, Paul; Trick, Thomas; Vaissiere, Remi de La; Shao, Hua; Leung, Helen

    2012-01-01

    Document available in extended abstract form only. The investigation of damage zones around excavations such as seal sections in tunnels or shafts and their impact on gas migration are key issues in the field of underground waste disposal. The experiment ('Gas path through host rock and along seal sections / HG-A') was designed as a long-term gas experiment in a backfilled micro-tunnel, to investigate both leak-off rates and gas release paths from a sealed tunnel section in an ultra-low permeability host rock (Opalinus Clay). The aims of the HG-A experiment are to: - Provide evidence for barrier function of the Opalinus Clay on the tunnel scale (scale effects in rock permeability); - Investigate self-sealing of the EDZ after tunnel closure (mechanical self-sealing in response to packer inflation and pore pressure changes); - Provide evidence for gas transport capacity of Opalinus Clay (intact host rock and EDZ). The HG-A experiment is located in the southern part of the Mont Terri Rock Laboratory off Gallery 04. A 13 m long, 1 m diameter micro-tunnel was excavated in February 2005. Hydraulic and mechanical response to excavation was monitored in an array of boreholes HG-A2 to HG-A7. This was subsequently extended with additional piezometers and remote sensing boreholes (HG-A8-14, HGA24, A25). In summer 2006 a Mega-packer was emplaced to create a tunnel seal isolating the test section (see Figure 1). The test and seal sections were instrumented with piezometers, strain gauges, total pressure cells and Time Domain Reflectometers (TDRs). The response to excavation of the micro-tunnel and the associated creation and development of the Excavation Damage Zone (EDZ) is discussed in Marschall et al. (2006, 2008). The test section saturation and hydraulic testing prior to gas injection is presented in Lanyon et al. (2009). This paper presents the results of gas leak-off testing, subsequent post-gas hydraulic testing together with an overview of the rock's response to

  12. Gas lift simulation and experiments in conjunction with the Lyapkov P. D. methodic

    OpenAIRE

    Gazizullin, Emil

    2016-01-01

    Master's thesis in Petroleum engineering The present Master’s thesis reports the study of continuous gas lift for a production oil well. The objective of the present work is a better understanding of processes occurring in a gas lift well, as well as optimization of the gas lift system. Numerical simulation for a gas lift well was carried out by means of Matlab. The program and a step-by-step guide were developed on the basis on nodal analysis, with implementation of the Lyapkov’s metho...

  13. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  14. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  15. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    CERN Document Server

    Abbrescia, Marcello; Benussi, Luigi; Bianco, Stefano; Cauwenbergh, Simon Marc D; Ferrini, Mauro; Muhammad, Saleh; Passamontic, L; Pierluigi, Daniele; Piccolo, Davide; Primavera, Federica; Russo, Alessandro; Savianoc, G; Tytgat, Michael

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade several tests are ongoing to measure the performance of the detector in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard cms electronic setup are under test. In this talk preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze and with CO2 based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  16. Corporate realignments in the natural gas industry: does the North American experience foretell the future for the European Union?

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, I.; Wright, Ph. [Sheffield Univ., Energy Studies Programme (United Kingdom); Wright, Ph. [Montpellier-1 Univ., CREDEN-LASER, 34 (France)

    2000-09-01

    This paper seeks to explore the extent to which the corporate realignments which have occurred in the North American Natural Gas Industry during a now relatively lengthy experience with liberalization involving a large number of players, will be imitated in the future by European Union countries other than the UK (which is of course already long-embarked along the path of Anglo-Saxon liberalization). The paper first of all catalogues the North American experience, drawing on company performance data assembled by the authors over the last decade (Rutledge and Wright, 1993, 1995, 1997, 1999, 2000). Secondly, this empirical exploration gives way to theoretical speculation: are there elements of the North American experience for which explanatory generalizations are possible? Thirdly, these empirical and theoretical insights are employed to identify and explore actual and potential differences in the corporate evolution of the European Union natural gas industry. (authors)

  17. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover; David A. Petti

    2007-09-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  18. Capacities and Limitations of Wind Tunnel Physical Experiments on Motion and Dispersion of Different Density Gas Pollutants

    Science.gov (United States)

    Zavila, Ondřej; Blejchař, Tomáš

    2017-04-01

    The article focuses on the analysis of the possibilities to model motion and dispersion of plumes of different density gas pollutants in lowspeed wind tunnels based on the application of physical similarity criteria, in this case the Froude number. The analysis of the physical nature of the modeled process by the Froude number is focused on the influence of air flow velocity, gas pollutant density and model scale. This gives an idea of limitations for this type of physical experiments in relation to the modeled real phenomena. The resulting statements and logical links are exemplified by a CFD numerical simulation of a given task calculated in ANSYS Fluent software.

  19. The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report

    International Nuclear Information System (INIS)

    Carrigan, C.R.

    1994-03-01

    The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and 3 He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of 3 He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques

  20. Introduction to the Design and Optimization of Experiments Using Response Surface Methodology. A Gas Chromatography Experiment for the Instrumentation Laboratory

    Science.gov (United States)

    Lang, Patricia L.; Miller, Benjamin I.; Nowak, Abigail Tuttle

    2006-01-01

    The study describes how to design and optimize an experiment with multiple factors and multiple responses. The experiment uses fractional factorial analysis as a screening experiment only to identify important instrumental factors and does not use response surface methodology to find the optimal set of conditions.

  1. From Hybrid to Actively-Controlled Gas Lubricated Bearings – Theory and Experiment

    DEFF Research Database (Denmark)

    Morosi, Stefano

    offer a low degree of robustness, meaning that an accurate optimization is necessary for each application. Another way of improving gas bearings operation performance is by using active control systems, transforming conventional gas bearings in an electro-mechanical machine component. In this framework...... experimentally, showing dependency on the supply pressure and, less prominently, the rotational velocity. Moreover, additional research is carried out in order to perform a feasibility study on a new kind of hybrid permanent magnetic – aerodynamic gas bearing. This new kind of machine is intended to exploit...... the benefits of the two technologies while minimizing their drawbacks. The idea is to improve the poor start-up and low speed operation performance of the gas bearing by using magnetic forces to lift the rotor. At high speeds the dynamic characteristics of the gas bearing can also be modified by using the same...

  2. Operating experience of gas bearing helium circulators in HTGR development facility

    International Nuclear Information System (INIS)

    Shimomura, H.; Kawaji, S.; Fujisaki, K.; Ihizuka, T.

    1988-01-01

    The large scale helium gas test facility (HENDEL) has been constructed and operated since March 1982 at the Japan Atomic Energy Research Institute to develop HTGR components. The five electric driven gas circulators with dynamic gas bearings are used to circulate the helium gas of 4MPa and 400 deg. C in loops for their compactness, gas tightness, easy maintenance and free from gas contamination. All of these circulators are variable speed types of 3,000 to 12,000 rpm and have the same gas bearings and electric motors. The four machines among them are equipped with centrifugal impeller and one other machine has regenerative type, and the weight of both type rotors are nearly the same. After the troubles and repairing, both type of circulators were tested and the vibration characteristics were measured as preventing maintenance. From the test and measurements of the circulators, it was presumed that the first trouble on regenerative type was caused from excess unbalance force by falling off of a small pin from the rotating part and the second severe trouble on it was caused by the whipping in gas bearing. The static load on tilting pads indicated close relations to occurrence of the whirling through the measurements. It is recognized that fine balancing of the rotors and delicate clearance adjustment of the bearings are very important for the rotor stability and that the mechanism should be designed and machined so precise as to be adjustable. As the gas bearing would be damaged in an instantaneously short time, the monitoring technique for it should be so fast and predictive as to prevent serious damage. Through the tests, the vibration spectrum monitoring method seems to be predictive and useful for early detection of the shaft instability. It will be concluded that the gas bearing machine is an excellent system in its design philosophy, however, it also needs highly precise machining and delicate maintenance technique. 4 refs, 10 figs, 1 tab

  3. Modelling of fission gas release in rods from the International DEMO-RAMP-II Project at Studsvik

    International Nuclear Information System (INIS)

    Malen, K.

    1983-01-01

    The DEMO-RAMP-II rods had a burn-up of 25-30 MWd/kg U. They were ramped to powers in the range 40-50 kW/m with hold times between 10 s and 4.5 minutes. In spite of the short hold times the fission gas release at the higher powers was more than 1%. With these short hold times it is natural to assume that mixing of released gas with plenum gas is limited. Modelling has been performed using GAPCONSV (a modified GAPCON-THERMAL-2) both with and without mixing of released gas with plenum gas. In particular for the high power-short duration ramps only the ''no mixing'' modelling yields release fractions comparable to the experimental values. (author)

  4. Operating experience with gas-bearing circulators in a high-pressure helium loop

    International Nuclear Information System (INIS)

    Sanders, J.P.; Gat, Uri; Young, H.C.

    1987-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1000 0 C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Five MW of power is available to provide the required gas temperature at the test chamber, and an air-cooled heat exchanger, rated at 4.4 MW, serves as a heat sink. This report contains results of tests performed on gas-bearing circulators

  5. Perry's bio-gas experience 1995 ASME/EPRI radwaste workshop

    International Nuclear Information System (INIS)

    Schwenk, A.K.

    1995-01-01

    The Perry Power Plant has been in commercial operation for about ten years. Although we didn't know it at the time, we now believe our bio-gas problem may have started about seven years ago. Barnwell discovered we had a bio-gas problem about a year and a half ago. We found out we had a bio-gas problem a few hours later. The history associated with this process at Perry is outlined, and past as well as present efforts to monitor this process are also discussed

  6. Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Amin S.

    2012-07-01

    amount of dissipated heat from each source should be differentiated. An intermediate heat source model was employed for this purpose. The latter model is after Myhr and Grong that is called distributed point heat sources. This model can be accurately fit to the weld cross section geometry if calibrated accurately. The calibrated parameters were found to be very close to the ones required by Double-ellipsoidal heat source model. By using this approach, not only the effect of welding parameters on weld bead geometry can be categorized, but also the spent time for double-ellipsoidal heat source adjustments will be cut by 90%.A Gaussian heat source was also employed for welding thermal cycle simulations. Accompanying experiments suggested that the thermal gradients hardly change as pressure elevates. However, it was found that the increased pressure level might not necessarily result in higher or lower cooling rates despite the geometrical changes. In a parallel investigation, the metallurgical effect of different shielding environments on phase transformation and mechanical properties of the bead-onplate weld samples was studies. Electron backscattered diffraction (EBSD) and orientation imaging microscopy (OIM) techniques were used to identify the effect of five different shielding environments on the phase transformation. Argon and Helium chamber gases offer the conditions that facilitate the highest amount of acicular ferrite transformation, yet, they show some differences in a number of crystallographic details. Co2 gas provided conditions for a lot of porosity in addition to the dominant polygonal ferrite/bainite transformation. He+1/2Co2 mixture resulted in bainite transformation that was found to follow the maximum heat flow direction in terms of crystallographic orientations.(Author)

  7. Local content: worldwide trends and the Brazilian experience in the oil and gas sector; Conteudo local: tendencias mundiais e a experiencia brasileira no setor de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa Junior, Oswaldo A.; Guimaraes, Paulo Buarque [Associacao Brasileira dos Produtores Independentes de Petroleo e Gas - ABPIP, Rio de Janeiro, RJ (Brazil); Fernandez y Fernandez, Eloi [Organizacao Nacional da Industria do Petroleo, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In recent years a trend on increasing requirements for local investments has been observed worldwide in the petroleum industry. Host countries expect to have increasing social and economical benefits from the development of the oil and gas industry. This expectation drives at a more comprehensive concept of local content to include commitment with social, industrial, and technological development. The Brazilian experience has shown a lot of emphasis on local industry development. Initiatives from governmental authorities and the private sector have been implemented to increase the local industry participation in the oil and gas projects. The current regulation focus on the full and fair opportunities for the local suppliers and the local content commitment established in the E and P concession agreements. A key issue on promoting local content initiatives is to assure that the competitiveness of the indigenous industry will be developed and preserved. The constraints on building up the local industry competitiveness will be addressed, focusing on the taxation overburden, lack of adequate local financing, and internal structural aspects affecting industrial productivity. In addition to this, the experiences on measuring local content for offshore construction and drilling are highlighted. Technology development and technical capability have been addressed by incentive programs for the O and G sector. Finally, the technology learning process and the regulatory requirements to invest in R and D programs conducted by Brazilian technological institutions are discussed. (author)

  8. Application of gas geochemistry experiment in the search for different types of uranium deposits

    International Nuclear Information System (INIS)

    Chen Guoliang; Liu Hanbin; Dong Xiukang; Xiong Xianxiang; Li Zhenfu; Wu Duanyang

    1998-03-01

    The study of primary and secondary gas halo and their application in the search for different types of uranium deposits in China is presented. Through measuring Rn, CO 2 , O 2 and Hg in various deposits of geological and climatic conditions for the gas geochemical survey, three comprehensive measuring methods of CO 2 , Rn and O 2 were thought to be optimum for gas geochemical exploration because of its portability, rapidity, low cost, simple operation and limited interference. The experimental data can be briefly summarized that higher concentration of CO 2 , Rn and lower concentration of secondary halo in soil show blinded deposits. The study of thermal emanating gas in soil and rock have been finished. The methods were confirmed by known deposits and can be used in uranium exploration

  9. Japan’s experience of flue gas treatment by electron beams

    International Nuclear Information System (INIS)

    Machi, S.

    2011-01-01

    The electron beam flue gas treatment technology was invented in Japan in 1970's. The paper presents the outlook of the Japanese activities on the development and present state of EBFGT technology. (author)

  10. Model-Based Control Design for Flexible Rotors Supported by Active Gas Bearings - Theory & Experiment

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo

    work, the control signal design is based on a theoretical model. This approach enables easy modifications of any of the numerous physical parameters in the system if needed. The theoretical model used is based on a modifed version of Reynolds equation where an extra term is added in order to include...... the critical speeds. In order to overcome such limitations, a mechatronic device has been proposed as a possible solution. This device named "hybrid active radial gas bearing" or simply "active gas bearing", combines an aerodynamic gas journal bearing with piezoelectrically controlled injectors. In the present...... frequencies and damping ratios of the rotor-bearing system) is performed and finally to design controllers that allows improvement of the dynamic properties of the rotor-active gas bearings system and lets the systemto safely cross the critical speeds, using the theoretical model as a design tool. The results...

  11. Surface wave observations during CoOP experiments and their relation to air-sea gas transfer

    Science.gov (United States)

    Hara, Tetsu; Uz, B. Mete; Wei, Hua; Edson, James B.; Frew, Nelson M.; McGillis, Wade R.; McKenna, Sean P.; Bock, Erik J.; Haußecker, Horst; Schimpf, Uwe

    Gas exchange between the ocean and the atmosphere is strongly influenced by physical processes in the near-surface waters. Surface waves are particularly important for gas fluxes because they enable faster transfer of gases across the diffusive sublayer by causing more frequent renewal of the skin layer. During the CoOP air-sea gas exchange experiments (1995; 1997), we obtained one of the most comprehensive data sets of physical processes at the air-sea interface in both near-shore and off-shore waters. During these experiments simultaneous measurements of short wind waves, surface films, wind stress, and transfer velocity were made from a towed or self-propelled catamaran with a wide range of wind stress and with varying surface film conditions. The results show that the wave spectra at higher wavenumbers are significantly reduced by surfactant at wind friction velocities below 0.2 m s-1. The surfactant effect may be quantified using the surface enrichment (difference between the CDOM fluorescence in microlayers and that in bulk water) with reasonable accuracy. During rain events the wave spectra are raised at higher wavenumbers (above 200 rad m-1) but are not affected at 100 rad m-1. The surfactant effect is also reduced during rain. The air-sea gas transfer velocity is roughly proportional to the wave spectra at higher wavenumbers but appears to be less sensitive to spectra of longer waves.

  12. Restructuring of oil and gas companies in financial difficulty: the Canadian experience

    International Nuclear Information System (INIS)

    Hudec, A.J.

    1992-01-01

    The relationship, under Canadian law, between oil or gas company in financial difficulty and its various creditors is discussed. In particular, commercial bank lenders and non-defaulting co-venturers in the project are considered. The broad topics covered are: the financing of multi-party resource projects; recent developments in conventional oil and gas production loan facilities; alternative and new approaches to energy loan restructuring; minimizing the lender's environmental risk in realizing against an energy project. (UK)

  13. Scaling studies and conceptual experiment designs for NGNP CFD assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-11-01

    The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary

  14. The design, fabrication and testing of the gas analysis system for the tritium recovery experiment, TRIO-01

    International Nuclear Information System (INIS)

    Finn, P.A.; Bowers, D.L.; Clemmer, E.D.; Clemmer, R.G.; Graczyk, D.G.; Homa, M.I.; Pappas, G.; Reedy, G.T.; Slawecki, M.A.

    1983-01-01

    The tritium recovery experiment, TRIO-01, required a gas analysis system which detected the form of tritium, the amount of tritium (differential and integral), and the presence and amount of other radioactive species. The system had to handle all contingencies and function for months at a time; unattended during weekend operation. The designed system, described herein, consisted of a train of components which could be grouped as desired to match tritium release behavior

  15. Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress

    International Nuclear Information System (INIS)

    Simmons, D.W.; Munday, E.B.

    1995-05-01

    Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF 3 for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF 3 , planning and preparation for experiments to assess hazard of rapid reaction of ClF 3 and hydrated UO 2 F 2 or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material

  16. Overview of the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    Science.gov (United States)

    Flittner, David; Pitts, Michael; Zawodny, Joe; Hill, Charles; Damadeo, Robert; Moore, Randy; Cisewski, Michael

    2012-07-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Avaiation and Space Agency (now known as Roskosmos) Meteor-3M (M3M) platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the International Space Station (ISS) in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observations in the second half of this decade. This exciting mission utilizes contributions from both the Science Mission Directorate and the Human Exploration and Operations Mission Directorate within the National Aeronautics and Space Administration and the European Space Agency to enable scientific measurements that will provide the basis for the analysis of five of the nine critical constituents identified in the U.S. National Plan for Stratospheric Monitoring. A related paper by Anderson et al. discusses the. Presented here is an overview of the mission architecture, its implementation and the data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water

  17. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas

    International Nuclear Information System (INIS)

    Yvon, J.

    1955-01-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  18. Particle image velocimetry measurements in a representative gas-cooled prismatic reactor core model for the estimation of bypass flow

    Science.gov (United States)

    Conder, Thomas E.

    Core bypass flow is considered one of the largest contributors to uncertainty in fuel temperature within the Modular High Temperature Gas-cooled Reactor (MHTGR). It refers to the coolant that navigates through the interstitial regions between the graphite fuel blocks instead of traveling through the designated coolant channels. These flows are of concern because they reduce the desired flow rates in the coolant channels, and thereby have significant influence on the maximum fuel element and coolant exit temperatures. Thus, accurate prediction of the bypass flow is important because it directly impacts core temperature, influencing the life and efficiency of the reactor. An experiment was conducted at Idaho National Laboratory to quantify the flow in the coolant channels in relation to the interstitial gaps between fuel blocks in a representative MHTGR core. Particle Image Velocimetry (PIV) was used to measure the flow fields within a simplified model, which comprised of a stacked junction of six partial fuel blocks with nine coolant tubes, separated by a 6mm gap width. The model had three sections: The upper plenum, upper block, and lower block. Model components were fabricated from clear, fused quartz where optical access was needed for the PIV measurements. Measurements were taken in three streamwise locations: in the upper plenum and in the midsection of the large and small fuel blocks. A laser light sheet was oriented parallel to the flow, while velocity fields were measured at millimeter intervals across the width of the model, totaling 3,276 PIV measurement locations. Inlet conditions were varied to incorporate laminar, transition, and turbulent flows in the coolant channels---all which produced laminar flow in the gap and non-uniform, turbulent flow in the upper plenum. The images were analyzed to create vector maps, and the data was exported for processing and compilation. The bypass flow was estimated by calculating the flow rates through the coolant

  19. Operating experience with gas-bearing circulators in a high-pressure helium loop

    International Nuclear Information System (INIS)

    Sanders, J.P.; Gat, U.; Young, H.C.

    1988-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1,000 deg. C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Three gas-bearing circulators, mounted in series, provide a maximum volumetric flow of 0.47 m 3 /s and a maximum head of 78 kJ/kg at operating pressures from 0.1 to 10.7 MPa. Control of gaseous impurities in the circulating gas was the significant operating requirement that dictated the choice of a circulator that is lubricated by the circulating gas. The motor for each circulator is contained within the pressure boundary, and it is cooled by circulating the gas in the motor cavity over water-cooled coils. Each motor is rated at 200 kW at a speed of 23,500 rpm. The circulators have been operated in the loop for more than 5,000 h. The flow of the gas in the loop is controlled by varying the speed of the circulators through the use of individual 250-kVA, solid state power supplies that can be continuously varied in frequency from 50 to 400 Hz. To prevent excessive wear on the gas bearings during startup, the circulator motor accelerates the rotor to 3,000 rpm in less than one second. During operation, no problems associated with the gas bearings, per se, were encountered; however, related problems pointed to design considerations that should be included in future applications of circulators of this type. The primary test that has been conducted in this loop required sustained operation for several weeks without interruption. After a number of unscheduled interruptions, the operating goals were attained. During part of this period, the loop was operated with only two circulators installed in the pressure vessels with a guard installed in the third vessel to protect the closure flange from the gas temperatures. Unattended

  20. Validation of the ORA Spatial Inversion Algorithm with Respect to the Stratospheric Aerosol and Gas Experiment II Data

    Science.gov (United States)

    Fussen, Didier; Arijs, Etienne; Nevejans, Dennis; van Hellemont, Filip; Brogniez, Colette; Lenoble, Jacqueline

    1998-05-01

    We present the results of a comparison of the total extinction altitude profiles measured at the same time and at same location by the ORA (Occultation Radiometer) and Stratospheric Aerosol and Gas Experiment II solar occultation experiments at three different wavelengths. A series of 25 events for which the grazing points of both experiments lie within a 2 window has been analyzed. The mean relative differences observed over the altitude range 15 45 km are 8.4%, 1.6%, and 3% for the three channels (0.385, 0.6, and 1.02 m). Some systematic degradation occurs below 20 km (as the result of signal saturation and possible cloud interference) and above 40 km (low absorption). The fair general agreement between the extinction profiles obtained by two different instruments enhances our confidence in the results of the ORA experiment and of the recently developed vertical inversion algorithm applied to real data.

  1. Operational experience in mitigating flammable gas releases from Hanford Site Tank 241-SY-101

    International Nuclear Information System (INIS)

    Lentsch, J.W.; Babad, H.; Kirch, N.W.

    1995-01-01

    Flammable gases consisting of hydrogen, nitrous oxide, ammonia, and methane are periodically released from Hanford Site waste tank 241-SY-101 at concentrations above the flammable limit. A large mixer pump installed in the tank in 1993 has effectively mitigated this problem by continuously releasing small amounts of the flammable gases at the rate they are generated. Tank 241-SY-101 is also equipped with multiple high-sensitivity gas monitoring systems and level detection systems to measure the quantity of gas that is retained in and released from the waste

  2. Capture reactions at astrophysically relevant energies: extended gas target experiments and GEANT simulations

    CERN Document Server

    Kölle, V; Braitmayer, S E; Mohr, P J; Wilmes, S; Staudt, G; Hammer, J W; Jäger, M; Knee, H; Kunz, R; Mayer, A

    1999-01-01

    Several resonances of the capture reaction sup 2 sup 0 Ne(alpha, gamma) sup 2 sup 4 Mg were measured using an extended windowless gas target system. Detailed GEANT simulations were performed to derive the strength and the total width of the resonances from the measured yield curve. The crucial experimental parameters, which are mainly the density profile in the gas target and the efficiency of the gamma-ray detector, were analyzed by a comparison between the measured data and the corresponding simulation calculations. The excellent agreement between the experimental data and the simulations gives detailed insight into these parameters. (author)

  3. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    Science.gov (United States)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  4. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  5. Collision Experiment of an Arched Plasma-Filled Flux Rope and a Target Cloud of Initially Neutral Gas

    Science.gov (United States)

    Wongwaitayakornkul, Pakorn; Bellan, Paul; Li, Hui; Li, Shengtai

    2016-10-01

    Shocks occur in the co-rotating interaction regions just beyond the solar corona, in the corona during CME events, and when the solar wind impacts Earth's magnetosphere. The Caltech solar loop experiment investigates shock physics by creating an arched plasma-filled flux rope that expands to collide with a pre-injected, initially-neutral gas. We focus the investigation on the situation of a heavy-gas plasma (Argon) impacting a much lighter neutral gas cloud (Hydrogen). The neutral gas target cloud ionizes immediately upon being impacted and plasma-induced shock waves propagate in the target cloud away from the impact region. Analysis of data from magnetic probes, Langmuir probes, a fast camera, and spectroscopic measurements will be presented. The measurements suggest that a thin, compressed, ionized layer of hydrogen is formed just downstream of the Argon plasma loop and that thin, supersonic shocks form further downstream and propagate obliquely away from the plasma loop. Numerical simulation of an ideal MHD plasma is underway to enable comparison of the measurements with the predictions of MHD theory.

  6. Bioethanol combustion in an industrial gas turbine combustor: simulations and experiments

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Pozarlik, Artur Krzysztof; Beran, Martin; Axelsson, L.; Brem, Gerrit

    2014-01-01

    Combustion tests with bioethanol and diesel as a reference have been performed in OPRA's 2 MWe class OP16 gas turbine combustor. The main purposes of this work are to investigate the combustion quality of ethanol with respect to diesel and to validate the developed CFD model for ethanol spray

  7. Uncertainty in greenhouse-gas emission scenario projections: Experiences from Mexico and South Africa

    DEFF Research Database (Denmark)

    Puig, Daniel

    This report outlines approaches to quantify the uncertainty associated with national greenhouse-gas emission scenario projections. It does so by describing practical applications of those approaches in two countries – Mexico and South Africa. The goal of the report is to promote uncertainty...

  8. COMBINED CYCLE GAS TURBINE FOR THERMAL POWER STATIONS: EXPERIENCE IN DESIGNING AND OPERATION, PROSPECTS IN APPLICATION

    Directory of Open Access Journals (Sweden)

    N. V. Karnitsky

    2014-01-01

    Full Text Available The paper has reviewed main world tendencies in power consumption and power system structure. Main schemes of combined cycle gas turbines have been considered in the paper. The paper contains an operational analysis of CCGT blocks that are operating within the Belarusian energy system. The analysis results have been given in tables showing main operational indices of power blocks

  9. Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Gac, K.; Parys, P.; Szczurek, M.; Tyl, J.

    1995-01-01

    A high temperature, high density plasma can be produced by using a nanosecond, high-power laser with a gas puff target. The gas puff target is formed by puffing a small amount of gas from a high-pressure reservoir through a nozzle into a vacuum chamber. In this paper we present the gas puff target specially designed for x-ray laser experiments. The solenoid valve with the nozzle in the form of a slit 0.3-mm wide and up to 40-mm long, allows to form an elongated gas puff suitable for the creation of an x-ray laser active medium by its perpendicular irradiation with the use of a laser beam focused to a line. Preliminary results of the experiments on the laser irradiation of the gas puff targets, produced by the new valve, show that hot plasma suitable for x-ray lasers is created

  10. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  11. Unsteady Reynolds Averaged Navier-Stokes and Large Eddy Simulations of Flows across Staggered Tube Bundle for a VHTR Lower Plenum Design

    International Nuclear Information System (INIS)

    Choi, Hyeon Kyeong; Park, Jong Woon

    2013-01-01

    In this work, behavior of unsteady and oscillating flow through a typical tube bundle array are analyzed by unsteady computations: 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) and the results are compared with existing experimental data. In order to confirm appropriateness and limitations of CFD applications in the Korean VHTR design, two types of unsteady computations are performed such as 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) for the existing tube bundle array. The velocity component profiles are compared with the experimental data and it is concluded that the URANS with the standard k-ω model is reasonably appropriate for cost-effective VHTR lower plenum analysis. Nevertheless, if more accurate results are needed, the LES-Smagorinsky computation is recommended considering limitations in the time averaged RANS in capturing small eddies

  12. A research of the development of electricity and natural gas markets and the experiences gained from implementation of the electricity and natural gas market laws

    International Nuclear Information System (INIS)

    Lewis, P.E.; Pakkanen, M.; Naervae, T.; Hernesniemi, L.; Partanen, J.; Viljainen, S.; Honkapuro, S.; Tahvanainen, K.; Jylhae, R.

    2007-01-01

    supply' to smaller customers. Generally and maybe surprisingly unbundling has tended to clearly increase electricity retail prices and their volatility, though it is too early to separately estimate the impact of the law changes on unbundling. Limitation of obligation to supply has not significantly influenced electricity prices. Public offer price information is believed to make different electricity suppliers' prices more similar to each other and possibly also higher. In the gas market, the recent developments have resulted mainly from other factors besides the legislative changes that came into force in the beginning of 2005. The legislative changes had perhaps the strongest impact on the supervision of the reasonableness of gas distribution pricing. However, it would be premature to evaluate the consequences of the new regulatory system at this stage because the new system has been in place only since the beginning of the year 2006. The recently adopted regulation principles in the gas distribution sector are largely determined based on the experiences obtained within the electricity distribution sector. In future, however, an approach that takes into account the structure and special characteristics of the Finnish gas markets is required when developing gas sector regulation. (orig.)

  13. A condensation experiment in the accumulated conditions of noncondensable gas in a vertical tube

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Kim, Moo Hwan

    2005-01-01

    Full text of publication follows: It has been well known that the presence of noncondensable gases in vapors can greatly inhibit the condensation process. Many analytical and experimental studies were conducted to investigate the effect of noncondensable gases on steam condensation for both stagnant and forced-convective situations either over a plate or outside a horizontal tube. Recently, several researches have been performed for the condensation in the presence of noncondensable gases taken place inside the vertical tube in order to give the information to design the passive containment cooling system (PCCS) in Simplified Boiling Water Reactor (SBWR). Generally, the experimental results showed that the heat transfer coefficient depends on inlet noncondensable gas mass fraction, inlet saturated steam temperature related with system pressure and inlet mixture Reynolds number. This research was performed for the System-integrated Modular Advanced ReacTor-Pilot (SMART-P), in which the remaining heat is removed from the core passively by Passive Residual Heat Removal System (PRHRS) condenser in a period of serious accident. The PRHRS is separated from working fluid loop, and pressurized by a nitrogen gas during the normal operation of SMART-P. But when the PRHRS starts operating, the nitrogen gas acts as a noncondensable gas and affects the heat transfer characteristics of the PRHRS. The experimental conditions of this study were almost similar with those of previous researches except the noncondensable gas was accumulated and remained inside the vertical tube. In the previous researches, the noncondensable gas was flowing with constant flow rate. Because of the condensate inside condenser tube, the accumulation of noncondensable gas could be developed inside the vertical tube. At steady-state condition the local temperatures and system pressure were measured to obtain heat transfer characteristics. This study also gave the information about the distribution of the

  14. Gas-phase fragmentation of peptides to increase the spatial resolution of the Hydrogen Exchange Mass Spectrometry experiment

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    are produced after precursor ion selection and thus do not add complexity to the LC-MS analysis. The key to obtaining optimal spatial resolution in a hydrogen exchange mass spectrometry (HX-MS) experiment is the fragmentation efficiency. This chapter discusses common fragmentation techniques like collision......-induced dissociation (CID) occur with complete Hydrogen-deuterium (H/D) scrambling, while other techniques that induce dissociation on a faster timescale through radical-based fragmentation channels, like electron-capture dissociation (ECD) and electron-transfer dissociation (ETD), occur inherently without H......Generation of overlapping peptides in solution via multiple proteases requires a very high peak capacity for the LC-MS analysis to minimize signal overlap. An inherent advantage of a gas-phase fragmentation step is that the additional gas-phase fragment ions used to sublocalize deuterium...

  15. Whole Microorganisms Studied by Pyrolysis-Gas Chromatography-Mass Spectrometry: Significance for Extraterrestrial Life Detection Experiments 1

    Science.gov (United States)

    Simmonds, Peter G.

    1970-01-01

    Pyrolysis-gas chromatography-mass spectrometric studies of two microorganisms, Micrococcus luteus and Bacillus subtilis var. niger, indicate that the majority of thermal fragments originate from the principal classes of bio-organic matter found in living systems such as protein and carbohydrate. Furthermore, there is a close qualitative similarity between the type of pyrolysis products found in microorganisms and the pyrolysates of other biological materials. Conversely, there is very little correlation between microbial pyrolysates and comparable pyrolysis studies of meteoritic and fossil organic matter. These observations will aid in the interpretation of a soil organic analysis experiment to be performed on the surface of Mars in 1975. The science payload of this landed mission will include a combined pyrolysis-gas chromatography-mass spectrometry instrument as well as several “direct biology experiments” which are designed to search for extraterrestrial life. PMID:16349890

  16. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    International Nuclear Information System (INIS)

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J.

    1995-01-01

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of ∼3 keV electron temperature and an electron density of ∼1.0 E + 21 cm -3 . A gas cell target design was chosen to confine as gas of ∼0.01 cm 3 in volume at ∼ 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL

  17. The U.S. Gas Flooding Experience: CO2 Injection Strategies and Impact on Ultimate Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Lopez, Vanessa [The University of Texas at Austin; Hosseini, Seyyed; Gil-Egui, Ramon

    2017-09-29

    The Permian Basin in West Texas and southwestern New Mexico has seen 45 years of oil reserve growth through CO2 enhanced oil recovery (CO2 EOR). More than 60 CO2 EOR projects are currently active in the region’s limestone, sandstone and dolomite reservoirs. Water alternating gas (WAG) has been the development strategy of choice in the Permian for several technical and economic reasons. More recently, the technology started to get implemented in the much more porous and permeable clastic depositional systems of the onshore U.S. Gulf Coast. Continued CO2 injection (CGI), as opposed to WAG, was selected as the injection strategy to develop Gulf Coast oil fields, where CO2 injection volumes are significantly larger (up to 6 times larger) than those of the Permian. We conducted a compositional simulation based study with the objective of comparing the CO2 utilization ratios (volume of CO2 injected to produce a barrel of oil) of 4 conventional and novel CO2 injection strategies: (1) continuous gas injection (CGI), (2) water alternating gas (WAG), (3) water curtain injection (WCI), and (4) WAG and WCI combination. These injection scenarios were simulated using the GEM module from the Computer Modeling Group (CMG). GEM is an advanced general equation-of-state compositional simulator, which includes equation of state, CO2 miscible flood, CO2/brine interactions, and complex phase behavior. The simulator is set up to model three fluid phases including water, oil, and gas. Our study demonstrates how the selected field development strategy has a significant impact on the ultimate recovery of CO2-EOR projects, with GCI injection providing maximum oil recovery in absolute volume terms, but with WAG offering a more balanced technical-economical approach.

  18. Assessing risks and regulating safety standards in the oil and gas industry: the Peruvian experience.

    OpenAIRE

    Arturo Leonardo Vásquez Cordano; Julio Salvador Jácome; Raúl Lizardo García Carpio; Victor Fernández Guzman

    2013-01-01

    Environmental regulation has usually focused on controlling continuous sources of pollution such as CO2 emissions through carbon taxes. However, the 2010 oil spill in the Gulf of Mexico has shown that accidents associated to safety failures can also generate bursts of pollution with serious environmental consequences. Regulating safety conditions to prevent accidents in the oil and gas industry is challenging because public regulators cannot perfectly observe whether firms comply with safety ...

  19. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and

  20. Tokamak experiments on JIPP T-II with pulsed gas injection

    International Nuclear Information System (INIS)

    Toi, K.; Itoh, S.; Fujita, J.; Kadota, K.; Kawahata, K.

    1978-02-01

    The confinement of tokamak plasma has been investigated in the wide range of electron density average n sub(e) from 1 x 10 13 to 5 x 10 13 cm -3 by using the pulsed gas injection. The gross energy confinement time increases with increase of electron density and reaches 14 msec. The averaged effective ionic charge derived from plasma conductivity = is about 1 to 2 in the regime of small streaming parameter ( = 0.01 -- 0.08). The ratio of ion temperature to electron one is in the range greater than 0.5. This fact means that the ion energy confinement time is greater than the electron-ion energy relaxation time. Excessive injection of cold neutral gas excites m = 2 MHD oscillations. Much more gas injection leads to the remarkable cooling of plasma periphery and disruptive instabilities. These MHD oscillations and disruptive instabilities have been suppressed by the heating of plasma periphery with the second rapid rise of plasma current. (auth.)

  1. Laser-Plasma Interaction Experiments in Gas-Filled Hohlraums at the LIL Facility

    Science.gov (United States)

    Masson-Laborde, Paul-Edouard; Loiseau, Pascal; Casanova, Michel; Rousseaux, Christophe; Teychenne, Denis; Laffite, Stephane; Huser, Gael

    2009-11-01

    The first laser-plasma interaction campaign conducted at the LIL facility, using gas-filled hohlraums, ended in spring 09. Two different gas-filled hohlraums have been designed in order to mimic plasma conditions expected along two particular beam paths in ignition hohlraums. The targets consist of 3- or 4-millimeters long, 1 atm neo-pentane gas-filled gold hohlraums. The LIL quadruplet is aligned with the hohlraum's axis and delivers a 6-ns long pulse with 15 kJ at 3φ. Optical smoothing is achieved by longitudinal dispersion and a phase plate giving a near 10^15 W/cm^2 mean intensity on the focal spot at maximum power. Plasma conditions from hydrodynamic calculations allow to calcule SBS and SRS linear gain with the PIRANAH code. The calculated spectra are compared to experimental results. We use the paraxial code HERA to investigate the propagation of the LIL quad. Finally, 1D and 2D PIC simulations based on the plasma conditions of the cavity will be discussed in order to understand experimental SRS spectrum.

  2. Results of high resolution seismic imaging experiments for defining permeable pathways in fractured gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Peterson, J.E.; Daley, T. [and others

    1997-10-01

    As part of its Department of Energy (DOE) Industry cooperative program in oil and gas, Berkeley Lab has an ongoing effort in cooperation with Industry partners to develop equipment, field techniques, and interpretational methods to further the practice of characterizing fractured heterogeneous reservoirs. The goal of this work is to demonstrate the combined use of state-of-the-art technology in fluid flow modeling and geophysical imaging into an interdisciplinary approach for predicting the behavior of heterogeneous fractured gas reservoirs. The efforts in this program have mainly focused on using seismic methods linked with geologic and reservoir engineering analysis for the detection and characterization of fracture systems in tight gas formations, i.e., where and how to detect the fractures, what are the characteristics of the fractures, and how the fractures interact with the natural stresses, lithology, and their effect on reservoir performance. The project has also integrated advanced reservoir engineering methods for analyzing flow in fractured systems such that reservoir management strategies can be optimized. The work at Berkeley Lab focuses on integrating high resolution seismic imaging, (VSP, crosswell, and single well imaging), geologic information and well test data to invert for flow paths in fractured systems.

  3. Transport of solutes and gas in soft clay: Experience from the HADES URL[URL = underground research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Canniere, P. de; Volckaert, G.; Ortiz, L.; Put, M.; Sneyers, A. [Belgian Nuclear Research Centre (SCK-CEN), Geological Waste Disposal, Boeretang 200, 2400 Mol (Belgium); Neerdael, B. [International Atomic Enegy Agency (IAEA), Department of Nuclear Energy, Division of Nuclear Fuel Cycle and Waste Tehnology, Waste Technology Section, Waste Disposal, 2561, IAEA-HQ, Vienna (Austria)

    2007-07-01

    In the absence of water conducting features, low-permeability clay formations provide a low flow environment essential for the very long-term containment of radioactive waste. Comprehensive understanding of the physical and chemical processes that control water, gas, and solute transport through deep argillaceous formations is a key factor for assessing their suitability as host rocks for radioactive waste. Hydraulic tests are carried out at different scales to characterize the in situ hydro-geological conditions and to determine the associated parameters. In parallel, geochemical studies are performed to understand the mechanisms controlling the water-rock interactions and the composition of the Boom Clay pore water. Thermo-hydro-mechanical experiments and large-scale demonstration tests are also conducted to determine the technical feasibility and the Iong-term safety of the repository system. Diffusion is the process dominating the transport of radionuclides in Boom Clay. Good agreement is obtained between model predictions and the results of large-scale migration experiments performed in situ with non-retarded tracers. Small-scale experiments installed at the extremity of boreholes have allowed to successfully measure diffusion profiles for strongly sorbed tracers. After helium injection in multi-piezometers up to gas breakthrough, no preferential pathway is detected for tritiated water. (author)

  4. The Relation between Gas Flow and Combustibility using Actual Engine (Basic Experiment of Gas Flow and Combustibility under Low Load Condition)

    OpenAIRE

    田坂, 英紀; 泉, 立哉; 木村, 正寿

    2003-01-01

    Abstract ###Consideration of the global environment problems by exhaust gas is becoming important in recent years. ###Especially about internal combustion engine, social demand has been increasing about low pollution, high ###efficiency and so on. Controlling gas flow in cylinder becomes the key getting good combustion state in ###various driving states. ###The purpose of the research is analysis about the relation between gas flow and combustibility in the cylinder. ###So we measured gas flo...

  5. Apparatus and method for mixing fuel in a gas turbine nozzle

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight

    2014-08-12

    A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.

  6. Gas Electron Multipler (GEM) detectors for parity-violating electron scattering experiments at Jefferson Lab

    Science.gov (United States)

    Matter, John; Gnanvo, Kondo; Liyanage, Nilanga; Solid Collaboration; Moller Collaboration

    2017-09-01

    The JLab Parity Violation In Deep Inelastic Scattering (PVDIS) experiment will use the upgraded 12 GeV beam and proposed Solenoidal Large Intensity Device (SoLID) to measure the parity-violating electroweak asymmetry in DIS of polarized electrons with high precision in order to search for physics beyond the Standard Model. Unlike many prior Parity-Violating Electron Scattering (PVES) experiments, PVDIS is a single-particle tracking experiment. Furthermore the experiment's high luminosity combined with the SoLID spectrometer's open configuration creates high-background conditions. As such, the PVDIS experiment has the most demanding tracking detector needs of any PVES experiment to date, requiring precision detectors capable of operating at high-rate conditions in PVDIS's full production luminosity. Developments in large-area GEM detector R&D and SoLID simulations have demonstrated that GEMs provide a cost-effective solution for PVDIS's tracking needs. The integrating-detector-based JLab Measurement Of Lepton Lepton Electroweak Reaction (MOLLER) experiment requires high-precision tracking for acceptance calibration. Large-area GEMs will be used as tracking detectors for MOLLER as well. The conceptual designs of GEM detectors for the PVDIS and MOLLER experiments will be presented.

  7. Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, D.W.; Munday, E.B.

    1995-05-01

    Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF{sub 3} for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF{sub 3}, planning and preparation for experiments to assess hazard of rapid reaction of ClF{sub 3} and hydrated UO{sub 2}F{sub 2} or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material.

  8. Model-Based Control Design for Flexible Rotors Supported by Active Gas Bearings - Theory & Experiment

    OpenAIRE

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2016-01-01

    Gaslejer bliver benyttet i stigende grad i moderne turbomaskineri på grund af deres indiskutable fordele. De kan operere ved højere hastigheder end de fleste andre lejetyper, stort set uden at generere støj og varme, og i de fleste tilfælde, som i dette arbejde, er den benyttede gas atmosfærisk luft som er billig, nemt tilgængelig og ren. Ikke desto mindre har lejekonceptet flere ulemper: den lave viskositet af smøremidlet resulterer i en lav bæreevne og gaslejer byder også på lave dæmpningse...

  9. Experience with restoration of the EBPVD coatings in stationary power gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Osyka, A.S. [State Area Power Station N 3 of Mosenergo, Electrogorsk (Russian Federation); Rybnikov, A.I. [Polzunov Central Boiler and Turbine Institute - NPO TsKTI, St. Petersburg (Russian Federation); Malashenko, I.S. [E. 0. Paton Electric Welding Institute, Kiev (Ukraine); Leontiev, S.A. [Leningradsky Metallithesky Zavod, St. Petersburg (Russian Federation)

    1998-12-31

    The use of electron beam physical vapour deposition (EBPVD) technology for CoCrAlY protective metal coatings improved the resource of power gas turbine blades in 2-4 times. Alter 7000 h operation the pitting corrosive attack is observed by the mechanism of hot low-temperature corrosion. The technology Removing and redeposition for coating layer has been developed. Blades with redeposited layer after the specified reductive heat treatment have operating time over 3000 h. Coatings on blades are in good states. (orig.) 7 refs.

  10. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  11. Reprint of: Reaction measurements with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    Science.gov (United States)

    Chipps, K. A.

    2018-01-01

    Explosive stellar environments are sometimes driven by nuclear reactions on short-lived, radioactive nuclei. These reactions often drive the stellar explosion, alter the observable light curves produced, and dictate the final abundances of the isotopes created. Unfortunately, many reaction rates at stellar temperatures cannot be directly measured in the laboratory, due to the physical limitations of ultra-low cross sections and high background rates. An additional complication arises because many of the important reactions involve radioactive nuclei which have lifetimes too short to be made into a target. As such, direct reactions require very intense and pure beams of exotic nuclei. Indirect approaches with both stable and radioactive beams can, however, provide crucial information on the nuclei involved in these astrophysical reactions. A major development toward both direct and indirect studies of nuclear reactions rates is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) supersonic gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector systems, the range of reaction studies that are experimentally possible is vastly expanded. Various representative cases will be discussed.

  12. On-Line Digital Computer Applications in Gas Chromatography, An Undergraduate Analytical Experiment

    Science.gov (United States)

    Perone, S. P.; Eagleston, J. F.

    1971-01-01

    Presented are some descriptive background materials and the directions for an experiment which provides an introduction to on-line computer instrumentation. Assumes students are familiar with the Purdue Real-Time Basic (PRTB) laboratory computer system. (PR)

  13. Experiments in support of the Gas Dynamic Trap based facility for plasma–material interaction testing

    Energy Technology Data Exchange (ETDEWEB)

    Soldatkina, E.I., E-mail: E.I.Soldatkina@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Lavrentieva Prospect 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Bagryansky, P.A. [Budker Institute of Nuclear Physics SB RAS, Lavrentieva Prospect 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090 (Russian Federation)

    2013-11-15

    Highlights: • Measurement of plasma heat flux in the mirror of a GDT device had been conducted. • The power density up to 0.25 GW m{sup −2} was experimentally obtained. • Steady state operation has not been achieved due to short NBI pulse. • The possibility of creating the PMI setup based on GDT had been discussed. -- Abstract: The power density along the field lines in the scrape-off layer plasma in machines of the class of ITER, Wendelstein 7-X, NSTX-U is in the range of few hundreds megawatt per square meter. It is crucial for the future of tokamaks and stellarators to develop the plasma science and component technology to handle such high plasma heat fluxes. It would be valuable to produce parallel plasma heat fluxes at these power densities, impinging on test components at very shallow angles, as planned in tokamaks. The primary objective of this work is the direct measurement of plasma heat fluxes in the mirror throat of a Gas Dynamic Trap device. Options to develop a facility for plasma–material interaction testing based on the Gas Dynamic Trap are discussed.

  14. Evaluation of the Home Energy Score: An Experiment with New Jersey Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Knittel, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Wolfran, Catherine [Univ. of California, Berkeley, CA (United States); Gandhi, Raina [Evoworx Inc., Wilmington, DE (United States)

    2016-03-01

    A wide range of climate plans rely on energy efficiency to generate energy and carbon emissions reductions, but conventional wisdom holds that consumers have historically underinvested in energy efficiency upgrades. This underinvestment may occur for a variety of reasons, one of which is that consumers are not adequately informed about the benefits to energy efficiency. To address this, the U.S. Department of Energy created a tool called the Home Energy Score (HEScore) to act as a simple, low-cost means to provide clear information about a home’s energy efficiency and motivate homeowners and homebuyers to invest in energy efficiency. The Department of Energy is in the process of conducting four evaluations assessing the impact of the Home Energy Score on residential energy efficiency investments and program participation. This paper describes one of these evaluations: a randomized controlled trial conducted in New Jersey in partnership with New Jersey Natural Gas. The evaluation randomly provides homeowners who have received an audit, either because they have recently replaced their furnace, boiler, and/or gas water heater with a high-efficiency model and participated in a free audit to access an incentive, or because they requested an independent audit3, between May 2014 and October 2015, with the Home Energy Score.

  15. Effects of ultrafiltration, dialysis, and temperature on gas exchange during hemodiafiltration: a laboratory experiment.

    Science.gov (United States)

    Ruzicka, J; Novak, I; Rokyta, R; Matejovic, M; Hadravsky, M; Nalos, M; Sramek, V

    2001-12-01

    To study gas exchange in the filter during continuous venovenous hemodiafiltration (CVVHDF), an air-tight heated mixing chamber with adjustable CO2 supply was constructed and connected to a CVVHDF monitor. Bicarbonate-free crystalloid (Part 1) and packed red blood cell (Part 2) solutions were circulated at 150 ml x min(-1). Gas exchange expressed as pre-postfilter difference in CO2 and O2 contents was measured at different CVVHDF settings and temperatures of circulating and dialysis solutions. Ultrafiltration was most efficacious for CO2 removal (at 1,000 ml x h(-1) ultrafiltration CO2 losses reached 13% of prefilter CO2 content). Addition of dialysis (1,000 ml x h(-1)) increased CO2 loss to 17% and at maximal parameters (filtration 3,000 ml x h(-1), dialysis 2,500 ml x h(-1)), the loss of CO2 amounted to 35% of prefilter content. Temperature changes of circulating and/or dialysis fluids had no significant impact on CO2 losses. The O2 exchange during CVVHDF was negligible. Currently used CVVHDF is only marginally effective in CO2 removal. Higher volume ultrafiltration combined with dialysis can be expected to reach clinical significance.

  16. Development of a buffer gas trap for the confinement of positrons and study of positronium production in the GBAR experiment

    CERN Document Server

    AUTHOR|(CDS)2101248; van der Werf, Dirk

    The GBAR experiment relies on the production of antihydrogen positive ions to achieve its goal of measuring the gravitational acceleration of antimatter at rest. The ANTION project, included in the GBAR enterprise, is responsible for the production of these antimatter ions. Moreover, it also aims to measure the cross section of antihydrogen production throughout the collision of antiprotons and positronium atoms, as well as the matter cross sections of hydrogen and the hydrogen negative ion. These experiments imply the formation of a very dense positronium cloud, thus a large amount of positrons will be implanted on a positron/positronium converter material. This thesis reports the construction of a three stage buffer gas trap with the goal of trapping and accumulating positrons for the ANTION project. The combination of the Penning-type trap with a LINAC source constitutes a unique experimental setup. The trap was commissioned and optimized and is now fully operational. Trapping protocols were studied and...

  17. Chlorine gas inhalation: human clinical evidence of toxicity and experience in animal models.

    Science.gov (United States)

    White, Carl W; Martin, James G

    2010-07-01

    Humans can come into contact with chlorine gas during short-term, high-level exposures due to traffic or rail accidents, spills, or other disasters. By contrast, workplace and public (swimming pools, etc.) exposures are more frequently long-term, low-level exposures, occasionally punctuated by unintentional transient increases. Acute exposures can result in symptoms of acute airway obstruction including wheezing, cough, chest tightness, and/or dyspnea. These findings are fairly nonspecific, and might be present after exposures to a number of inhaled chemical irritants. Clinical signs, including hypoxemia, wheezes, rales, and/or abnormal chest radiographs may be present. More severely affected individuals may suffer acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). Up to 1% of exposed individuals die. Humidified oxygen and inhaled beta-adrenergic agents are appropriate therapies for victims with respiratory symptoms while assessments are underway. Inhaled bicarbonate and systemic or inhaled glucocorticoids also have been reported anecdotally to be beneficial. Chronic sequelae may include increased airways reactivity, which tends to diminish over time. Airways hyperreactivity may be more of a problem among those survivors that are older, have smoked, and/or have pre-existing chronic lung disease. Individuals suffering from irritant-induced asthma (IIA) due to workplace exposures to chlorine also tend to have similar characteristics, such as airways hyperresponsiveness to methacholine, and to be older and to have smoked. Other workplace studies, however, have indicated that workers exposed to chlorine dioxide/sulfur dioxide have tended to have increased risk for chronic bronchitis and/or recurrent wheezing attacks (one or more episodes) but not asthma, while those exposed to ozone have a greater incidence of asthma. Specific biomarkers for acute and chronic exposures to chlorine gas are currently lacking. Animal models for chlorine gas

  18. Acoustic Characterization of Fluorinert FC-43 Liquid with Helium Gas Bubbles: Numerical Experiments

    Directory of Open Access Journals (Sweden)

    Christian Vanhille

    2017-01-01

    Full Text Available In this work, we define the acoustic characteristics of a biphasic fluid consisting of static helium gas bubbles in liquid Fluorinert FC-43 and study the propagation of ultrasound of finite amplitudes in this medium. Very low sound speed and high sound attenuation are found, in addition to a particularly high acoustic nonlinear parameter. This result suggests the possibility of using this medium as a nonlinear enhancer in various applications. In particular, parametric generation of low ultrasonic frequencies is studied in a resonator cavity as a function of driving pressure showing high conversion efficiency. This work suggests that this medium could be used for applications such as parametric arrays, nondestructive testing, diagnostic medicine, sonochemistry, underwater acoustics, and ultrasonic imaging and to boost the shock formation in fluids.

  19. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Goon C. Park

    2007-01-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls

  20. Study of the characteristics of gas electron multipliers for the FAIR experiment CBM

    International Nuclear Information System (INIS)

    Biswas, S.; Abuhoza, A.; Frankenfeld, U.; Hehner, J.; Schmidt, C.J.; Traeger, M.; Schmidt, H.R.; Colafranceschi, S.; Marinov, A.; Sharma, A.

    2011-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany will use proton and heavy ion beams to study matter at extreme conditions. The CBM experiment at FAIR is designed to explore the QCD phase diagram in the region of high baryon densities. With CBM we will enter a new era of nuclear matter research by measuring rare diagnostic probes never observed before at FAIR energies, and thus CBM has a unique discovery potential. This will only be possible with the application of advanced instrumentation, including highly segmented and fast gaseous detectors

  1. INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Ian D. Harris

    2003-09-01

    A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups

  2. Experience of molecular monitoring techniques in upstream oil and gas operations

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Anthony F.; Anfindsen, Hilde; Liengen, Turid; Molid, Solfrid [Statoil ASA (Denmark)

    2011-07-01

    For a numbers of years, molecular monitoring tools have been used in upstream oil and gas operations but the results have given only limited added value. This paper discusses the various techniques available for upstream molecular monitoring which provides scope for identification of microbial influenced problems. The methodology, which consists of analyzing solid samples using traditional as well as molecular techniques, is detailed. Two cases were studied with the objective of determining if microbial contamination was contributing to the problem. The first case was a study of amorphous deposits in production wells and mainly iron sulphide was found. The second study was of amorphous deposits in water injection wells and the analysis showed typical components of drilling and completion fluids with some organic material. Two more cases, corrosion of tubing in a water injection well and flow line corrosion, are discussed and the results are given. From the study, it can be concluded that failure can be due to several factors, chemical and biological.

  3. Characterization of a Y-TZP Zirconia material for gas gun experiments

    Science.gov (United States)

    Goff, Michael; Millett, Jeremy; Whiteman, Glenn; Collinson, Mark; Ferguson, James

    2017-06-01

    A number of shots were carried out on the AWE single stage gas gun with Het-V diagnostics to determine the shock Hugoniot of a commercial Y-TZP Zirconia ceramic material (ρ 6.05 g/cc). Zirconia ceramic has a higher density and acoustic impedance than alumina, this allows for higher shock pressures to be achieved in impact velocity limited scenarios where conductive materials are not suitable. For example, when using electromagnetic particle velocity gauge diagnostics. The grade examined here was highly reflective to 1550 nm wavelengths, which negated the need for window materials when taking free surface velocity measurements. The shock Hugoniot was determined to be linear up to 13.4 GPa with the form Us = 5.82 + 2.20Up and the HEL was in the range of 7-9 GPa. Additionally data from lateral gauge shots examining the failure behavior of the material are reported on. ©British Crown Owned Copyright 2017/AWE

  4. Hot Experiment on Fission Gas Release Behavior from Voloxidation Process using Spent Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Song, K. C.

    2007-08-01

    Quantitative analysis of the fission gas release characteristics during the voloxidation and OREOX processes of spent PWR fuel was carried out by spent PWR fuel in a hot-cell of the DFDF. The release characteristics of 85 Kr and 14 C fission gases during voloxidation process at 500 .deg. C is closely linked to the degree of conversion efficiency of UO 2 to U 3 O 8 powder, and it can be interpreted that the release from grain-boundary would be dominated during this step. Volatile fission gases of 14 C and 85 Kr were released to near completion during the OREOX process. Both the 14 C and 85 Kr have similar release characteristics under the voloxidation and OREOX process conditions. A higher burn-up spent fuel showed a higher release fraction than that of a low burn-up fuel during the voloxidation step at 500 .deg. C. It was also observed that the release fraction of semi-volatile Cs was about 16% during a reduction at 1,000 .deg. C of the oxidized powder, but over 90% during the voloxidation at 1,250 .deg. C

  5. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Philip X; Michelini, Maria C.; Bray, Travis H.; Russo, Nino; Marcalo, Joaquim; Gibson, John K.

    2011-02-11

    Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX{sub 2}{sup +} and YbX(OH){sup +} (X = OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations - kinetics and extent of hydration - are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.

  6. National greenhouse gas emissions baseline scenarios. Learning from experiences in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    This report reviews national approaches to preparing baseline scenarios of greenhouse-gas (GHG) emissions. It does so by describing and comparing in non-technical language existing practices and choices made by ten developing countries - Brazil, China, Ethiopia, India, Indonesia, Kenya, Mexico, South Africa, Thailand and Vietnam. The review focuses on a number of key elements, including model choices, transparency considerations, choices about underlying assumptions and challenges associated with data management. The aim is to improve overall understanding of baseline scenarios and facilitate their use for policy-making in developing countries more broadly. The findings are based on the results of a collaborative project involving a number of activities undertaken by the Danish Energy Agency, the Organisation for Economic Co-operation and Development (OECD) and the UNEP Risoe Centre (URC), including a series of workshops on the subject. The ten contributing countries account for approximately 40% of current global GHG emissions - a share that is expected to increase in the future. The breakdown of emissions by sector varies widely among these countries. In some countries, the energy sector is the leading source of emissions; for others, the land-use sector and/or agricultural sector dominate emissions. The report underscores some common technical and financial capacity gaps faced by developing countries when preparing baseline scenarios. It does not endeavour to propose guidelines for preparing baseline scenarios. Rather, it is hoped that the report will inform any future attempts at preparing such kind of guidelines. (Author)

  7. Plume dispersion and deposition processes of tracer gas and aerosols in short-distance experiments

    International Nuclear Information System (INIS)

    Taeschner, M.; Bunnenberg, C.

    1988-01-01

    Data used in this paper were extracted from field experiments carried out in France and Canada to study the pathway of elementary tritium after possible emissions from future fusion reactors and from short-range experiments with nutrient aerosols performed in a German forest in view of a therapy of damaged coniferous trees by foliar nutrition. Comparisons of dispersion parameters evaluated from the tritium field experiments show that in the case of the 30-min release the variations of the wind directions represent the dominant mechanism of lateral plume dispersion under unstable weather conditions. This corresponds with the observation that for the short 2-min emission the plume remains more concentrated during propagation, and the small lateral dispersion parameters typical for stable conditions have to be applied. The investigations on the dispersion of aerosol plumes into a forest boundary layer show that the Gaussian plume model can be modified by a windspeed factor to be valid for predictions on aerosol concentrations and depositions even in a structured topography like a forest

  8. Seeking organic compounds on Mars : in situ analysis of organic compounds by Gas Chromatography-Mass Spectrometry on MOMA experiment

    Science.gov (United States)

    Buch, A.; Freissinet, C.; Sternberg, R.; Pinnick, V.; Szopa, C.; Coll, P. J.; Rodier, C.; Garnier, C.; Steininger, H.; Moma Team

    2010-12-01

    The search for signs of past or present life is one of the primary goals of future Mars exploratory missions. The Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars mission (set to launch 2016-2018) is a joint venture by the European Space Agency and NASA to develop a sensitive detector for organics on Mars. MOMA will be one of the main analytical instruments aboard the ExoMars Rover aimed at characterizing possible “signs-of-life molecules” in the Martian environment such as amino acids, carboxylic acids, nucleobases or polycyclic aromatic hydrocarbons (PAHs). With the aim to separate and detect organic compounds from Martian soil, the French MOMA team has built a gas chromatograph able to work in standalone mode by using a TCD detector. The gas chromatograph can also be coupled with an ion trap mass spectrometer developed by the US MOMA team. Moreover, a GC-MS compatible sample processing system (SPS) allowing the extraction and the chemical transformation of the organic compounds from the soil, that fits within space flight conditions, has also been developed. The sample processing is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of oven can be ranged from 20 to 1000 °C which allows for pyrolysis, thermochemolysis or derivatization. The organic extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 0.5 to 5 min. Then, the chemical derivatization and/or thermochemolysis of the extracted compounds is performed directly on the soil with a mixture of MTBSTFA-DMF, TMAH or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the target molecules, this step allows for their volatilization at a temperature below 250°C without any chemical degradation. Once derivatized, the volatile target molecules are trapped in a cold chemical trap and promptly desorbed into the gas chromatograph coupled to the mass

  9. The French experience concerning the contamination by inactive and radioactive impurities and the purification of the cover gas of LMFBRs

    International Nuclear Information System (INIS)

    Michaille, P.; Clerc, R.

    1987-01-01

    With regard to the problems related to the cover gas of LMFBRs, the French position based on the experience of RAPSODIE and PHENIX can be summarized as follows: 1. No particular difficulty has been encountered with impurities such as air. The consequences of lubricants leaks were limited to the maintenance of big components. 2. Concerning the contamination by radioactive species, the main source in the reactor tank is 23 Ne, but fortunately its half decay period is very short (38 s). Two managements of fuel failures were experienced. On RAPSODIE, the failures were numerous for experimental purpose and - in the absence of an efficient localization device - often simultaneous. On PHENIX, the fuel failure rate appears to be very low. Furthermore, the gas analysis unit of the fuel failure localization device (LRG/gas) has been improved steadily, which permits to localize and follow the evolution of each individual failed sub-assembly from the very beginning of the clad failure. For both of the reactors, leaks through the roof were observed, for which solutions were found. 3. The analysis equipment of RAPSODIE and PHENIX evolved to account for: the needs of the operator; experimental programs. The experience gained permitted to select for SUPER PHENIX a simple instrumentation. 4. Limited efforts have been paid to the purification techniques towards the fission products: On RAPSODIE, the use of helium as cover gas allowed to use trapping with charcoal cooled with liquid nitrogen with a high efficiency not only towards xenons, but also kryptons. On PHENIX, it is not necessary to trap krypton: the release rates of 85 Kr (T1/2=10,4 a) are very low, of the same order as 37 Ar (T1/2=35 d) produced by activation, and the fuel failure localization is not performed by gas tagging. Therefore, cooled charcoal adsorption is sufficient. For experimental purpose, a cryogenic distillation column has been installed at PHENIX, but has not yet been put into operation except for testing

  10. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  11. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  12. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  13. In Situ Analysis of Organic Compounds on Mars by Gas Chromatography : Application to the Mars Organic Molecule Analyzer (MOMA) Experiment

    Science.gov (United States)

    Buch, Arnaud; Sternberg, R.; Freissinet, C.; Szopa, C.; Coll, P.; Garnier, C.; Rodier, C.; Phillipon, C.; El bekri, J.; Stambouli, M.; Goesmann, F.; Raulin, F.; MOMA GC-team

    2009-09-01

    The search for signs of past or present life is one of the primary goals of the future Mars exploratory missions. With this aim the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2016 next coming European Space Agency mission is designed to the in situ analysis of organic molecules of exobiological interest in the Martian soil such as amino acids, carboxylic acids, nucleobases or polycyclic aromatic hydrocarbons (PAHs). With the aim to extract from the soil, separate and detect organic compounds we have developed a sample processing system allowing the Gas Chromatographic analysis, within space compatible operating conditions, of the refractory organic compounds able to be contained at trace level in the Martian soil. The sample processing is performed in the oven dedicated to the MOMA experiment containing the solid sample ( 200mg). The internal temperature can be ranged from 20 to 1000 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization or thermochemolysis of the extracted compounds is achieved directly on the soil with a mixture of MTBSTFA-DMF, TMAH or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the target molecules, this step allows their volatilization at a temperature below 250°C without any chemical degradation. Once derivatized, the target volatile molecules are trapped in a cold or chemical trap and promptly desorbed in the gas chromatograph coupled with a mass spectrometer. Organic compounds such as amino and carboxylic acids contained in Martian analogue soil (Atacama) have been detected by using our sample processing system.

  14. Program plan for correction of US instrument degradation or failure in the Upper Plenum Test Facility (UPTF) in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Rhee, G.S.; Chen, Y.S.; Shotkin, L.M.

    1987-07-01

    This report documents, as of September, 1986, the investigation of the failure or degradation of some of the advanced two-phase flow instruments supplied by the United States Nuclear Regulatory Commission (USNRC) to the German Upper Plenum Test Facility (UPTF). These instruments include Tie-Plate Drag Bodies (DBs), Breakthrough Detectors (BTDs), Loop Drag Disc (DD) paddles, Fluid Distribution Grid (FDG) sensors, and Liquid Level Detector (LLD) sensors. The exact causes for these instrument degradations or failures are not known, but several potential causes have been identified. For DBs and BTDs, the primary mechanism for the degradation appears to be a leakage in the Inconel 600 strain gage encapsulation and the subsequent burnout of the strain gage elements. Excessive loads appear to be the cause of the degradation or failure of the drag discs. The degradation cause for most of the FDGs and LLDs may be either steam/water erosion or mechanical abrasion of the sapphire sensor tips. However, some of the FDG tips were found to be cracked also. The corrective actions are being directed towards identification of the primary causes for the instrument degradation or failure and methods of preventing recurrance and toward minimizing the impact on the test program. All possible action items are being reviewed to arrange them in terms of priority and the likelihood of success so that the best results can be obtained under the constraints of a fixed amount of resources and limited time

  15. Access pricing on gas networks and capacity release markets: Lessons from North American and European experiences

    International Nuclear Information System (INIS)

    David, L.; Percebois, J.

    2004-01-01

    An evaluation of different access fee systems in North America and Europe in relation to normative prices is discussed. Among available alternatives the entry-exit pricing system as it is currently applied in the United Kingdom, the Netherlands, Italy and France, was judged to be the best solution to increased competition. Canadian and American experiences highlight the influence of the market power of shippers with regard to the efficacy of capping the market. Whether or not to cap the price on a capacity release market is a choice between the protection of shippers against market abuses and the promotion of secondary market liquidity, a choice that is linked to the level of congestion of a pipeline system. If there is much congestion, a price cap may be necessary; if there is little congestion, the need for market value given by an uncapped price may be more important than the market power of shippers. 15 refs., 2 tabs

  16. Stratospheric aerosol and gas experiment III (SAGE III) mission aboard the International Space Station

    Science.gov (United States)

    Szatkowski, Lorelei S.; Bradley, Obie H.; Mauldin, Lemuel E.; Wusk, Mary B.; Chu, William P.; Farwell, Lester C.; Galeone, Piero

    1999-10-01

    This paper presents the SAGE III mission for the International Space Station. SAGE III is fifth in a series of instruments developed to monitor aerosols and gaseous constituents in the stratosphere and troposphere. Three instruments are being developed by the National Aeronautics and Space Administration (NASA) Langley Research Center for the Earth Science Enterprise: one for a high-inclined orbit aboard the Russian Meteor-3M (M3M) spacecraft; one for a mid-inclined (51.6 deg) orbit on the International Space Station, the subject of this paper; and a third for a potential flight of opportunity (FOO) mission. The SAGE III/ISS payload is comprised of international components: a pointing platform called the Hexapod, provided by the European Space Agency and the Expedite the Processing of Experiments to International Space Station (ISS) (EXPRESS) pallet adapter, (part of a carrier system to be built by Brazil for NASA. The SAGE III/ISS mission is manifested for a launch on the ISS Utilization Flight (UF) 3, currently scheduled to launch February 2003.

  17. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    Science.gov (United States)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  18. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments

    Directory of Open Access Journals (Sweden)

    McConville Malcolm J

    2007-10-01

    Full Text Available Abstract Background Gas chromatography-mass spectrometry (GC-MS is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. Results A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1 all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2 the guide tree is built based on the similarity between the peak lists; (3 peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment, and subsequently the resulting alignments are aligned themselves (between-state alignment. When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. Conclusion We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak

  19. The french experience concerning the contamination by inactive and radioactive impurities and the purification of the cover gas of LMFBRs

    International Nuclear Information System (INIS)

    Clerc, R.; Michaille, P.

    1986-09-01

    In this paper the authors describe, for Rapsodie, Phenix and Super Phenix reactors, the cover gas pipe works, the cover gas purification techniques and give for Rapsodie and Phenix the levels of contamination and the problems created by sodium aerosols

  20. Tag gas burnup based on three-dimensional FTR analysis

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1976-01-01

    Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified

  1. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  2. Experiences of membrane technique in flue gas condensate treatment applications; Utvaerdering av erfarenheter av membranteknik foer rening av roekgaskondensat

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Ekdahl, Emma; Hellman, Mats

    2009-07-01

    Investing in a flue gas condensate treatment plant often turns out to be very profitable. The profitability comes from savings in energy and water consumption when treated waste water is recirculated, and also from savings in the NO{sub x} fee as condensate treatment allows for higher ammonia injection rates in the SNCR (NO{sub x} reduction) system. The membrane based technologies for flue gas treatment, which were investigated in this report, have proven to be successful and are operating well. However, they require that the project management is committed and acquaint themselves with the technology to avoid problems during commissioning and operation. In this project, experience with membrane based flue gas condensate treatment at ten different plants was investigated and evaluated. The ten plants are either biomass fired plants or co-combustion plants using a mixture of biomass and industrial waste. Membrane based flue gas condensate treatment is used by circa ten Swedish plants (Ultra Filtration membranes and/or Reverse Osmosis membranes, and at some plants also membranes for ammonia and carbon dioxide removal). All plants are biomass fired plants or co-combustion plants using a mixture of biomass and industrial waste. In Sweden, no plant firing municipal waste has yet been equipped with membrane based flue gas condensate treatment. These plants usually use precipitation and filtration technologies instead. Also the purpose of the condensation step is primarily to operate as a wet flue gas cleaning step. The heat recovery is of subordinate importance. Typical for these plants is also that they use condensation in several steps. The condensates from the different steps are often treated separately, as they may be of very different qualities. The RO unit is the main equipment in a membrane based water treatment plant. Pre-treatment and post-treatment of the RO water is adjusted to the incoming condensate quality, and to the requirements on the effluent. The

  3. Characterizing the Velocity Profile of a Swirling Gas Experiment by Particle Imaging Velocimetry to Study Angular Momentum Transport in Accretion Disks

    Science.gov (United States)

    Greess, Samuel; Ji, Hantao; Merino, Enrique; Berrios, William

    2013-10-01

    The method by which angular momentum transfers between different sections of accretion disks is a matter of ongoing debate. One suggested answer is Magnetorotational instability (MRI), which would facilitate this transfer through the magnetic interactions between particles at different distances from the center of the disk. While ongoing experiments with MRI have focused on the use of liquid metals to test the effects of magnetic fields, we are developing a swirling gas experiment to study effects beyond incompressible hydrodynamics, including compressible gas dynamics and plasma effects when gas is ionized. A second-generation prototype swirling gas experiment has been built to test the principle and to establish favorable rotation profiles using a chamber of swirling fog to simulate the formation and movement of accretion disks about some gravitational center. The paths of the visible fog particles can then be analyzed with Particle Imaging Velocimetry (PIV) techniques; these velocity measurements can then be organized by a Python program. Anticipated results include a radial profile of velocities at different times during the gas injection process, as well as further refinement of the fog chamber design to improve the accuracy in controlling the profile.

  4. Pilot plant experience in electron-beam treatment of iron-ore sintering flue gas and its application to coal boiler flue gas cleanup

    Science.gov (United States)

    Kawamura, K.; Shui, V. H.

    The peresent development status of the electron-beam flue gas treatment process, which is a dry process capable of removing SOx and NOx simultaneously, is described. The most advanced demonstration of this process was accomplished with a pilot plant in Japan where the maximum gas flow rate of 10,000 Nm 3/h of an iron-ore sintering machine flue gas was successfully treated. The byproduct produced in this process is collected as a dry powder which is a mixture of ammonia sulfate and ammonium nitrate and is salable as a fertilizer or a fertilizer component. A preliminary economic projection showed that this process costs less than the lime scrubber which removes SOx but does not remove NOx. Tests using simulated coal combustion gases suggest that this process will be applicable to coal-fired boiler flue gas treatment as well. However, test on actual coal-fired flue gases are still required for commercial application decisions. A process development unit program consisting of the design, construction and testing of actual coal-fired power station flue gases is underway in the U.S.A. The design and engineering of the test plant is far advanced and the construction phase will be launched in the very near future.

  5. The Stratospheric Aerosol and Gas Experiment III - International Space Station: Extending Long-Term Ozone and Aerosol Observations (Invited)

    Science.gov (United States)

    Eckman, R.; Zawodny, J. M.; Cisewski, M.; Gasbarre, J.; Flittner, D. E.; Hill, C.; Roell, M.; Moore, J. R.; Hernandez, G.; McCormick, M. P.

    2013-12-01

    The Stratospheric Aerosol and Gas Experiment III - International Space Station (SAGE III on ISS) will extend the global measurements of vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases begun with SAGE I in 1979, enabling the detection of long-term trends. SAGE III on ISS is the fourth in a series of instruments developed for monitoring these constituents in the stratosphere and troposphere. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm, using the heritage occultation technique, utilizing both the sun and the moon. Launch to ISS is planned for early 2015 aboard a Falcon 9 spacecraft. SAGE III will investigate the spatial and temporal variability of the measured species in order to determine their role in climatological processes, biogeochemical cycles, the hydrologic cycle, and atmospheric chemistry. It will characterize tropospheric, as well as stratospheric aerosols and upper tropospheric and stratospheric clouds, and investigate their effects on the Earth's environment including radiative, microphysical, and chemical interactions. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Amongst its key objectives will be to assess the state of the recovery in the distribution of ozone, to reestablish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The ISS is ideal for Earth observing experiments; its mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. In this presentation, we describe the SAGE III on ISS mission, its implementation, current status, and concentrate on its key science objectives.

  6. The Jack Rabbit chlorine release experiments: implications of dense gas removal from a depression and downwind concentrations.

    Science.gov (United States)

    Hanna, Steven; Britter, Rex; Argenta, Edward; Chang, Joseph

    2012-04-30

    The Jack Rabbit (JR) field experiment, involving releases of one or two tons of pressurized liquefied chlorine and ammonia into a depression, took place in 2010 at Dugway Proving Ground, Utah, USA. The releases, of duration about 30 s from a short pipe at a height of 2m, were directed towards the ground. The dense two phase cloud was initially confined in a depression of 2 m depth and 50 m diameter. With wind speedsabout 1.5 m s(-1), the initial cloud was not well-confined in the depression and moved downwind. Formulas suggested by Briggs et al. in 1990 in this journal satisfactorily predict the time durations of confinement. Sensitivity runs with the SLAB dense gas model show that the effect of a long confinement on maximum downwind concentrations is strongest near the depression. The model-predicted and observed maximum 20 s chlorine concentrations agree within a factor of two most of the time, as long as the release times based on Briggs' theory are used. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    Pin, F.G.

    1985-01-01

    The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed

  8. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system

    International Nuclear Information System (INIS)

    Varentsov, Victor; Wada, Michiharu

    2004-01-01

    Here we present results of the further development of two novel ideas in the field of slow RI-beams production. They are a fair-wind gas cell concept for big-size high-pressure buffer gas cells and a new approach to the extraction system. For this purpose, detailed gas dynamic simulations based on the solution of a full system of time-dependent Navier-Stokes equations have been performed for both the fair-wind gas cell of 500 mm length at 1 bar helium buffer gas pressure and the RF-funnel extraction system at low buffer gas pressure. The results of gas dynamic calculations were used for detailed microscopic Monte Carlo ion-beam trajectory simulations under the combined effect of the buffer gas flow and electric fields of the RF-funnels. The obtained results made it apparent that the use of the fair-wind gas cell concept and extraction RF-funnels look very promising for production of high-quality low-energy RI-beams

  9. Emission of Gas and Al2O3 Smoke in Gas-Al Particle Deflagration: Experiments and Emission Modeling for Explosive Fireballs

    Science.gov (United States)

    Ranc-Darbord, Isabelle; Baudin, Gérard; Genetier, Marc; Ramel, David; Vasseur, Pierre; Legrand, Julien; Pina, Vincent

    2018-03-01

    Emission of gas and Al2O3 smoke within the deflagration of H2{-}O2-{N2{-}CO2}-Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 μ m, 0.850 μ m, 1.083 μ m, 1.260 μ m, 1.481 μ m) and a grating spectrometer in the range (4.10 μ m to 4.30 μ m). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of Al2O3 smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 μ m CO2 emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.

  10. The development of the gas sector in Tanzania and Mozambique. The early stages of two asymmetric experiments

    International Nuclear Information System (INIS)

    Auge, Benjamin

    2016-10-01

    As huge gas deposits have been discovered in 2010 in Mozambique and in Tanzania, and as the oil barrel price has dramatically decreased since mid-2014, this report, based on interview with local economic, industrial and political actors, describes the very different situations faced by these two countries regarding the development of their gas sector. First, Mozambique possesses four times more gas than Tanzania. Secondly, they display very different relationships between political power and private investors. Therefore the Mozambican project grows at a much higher rate than the Tanzanian one. The author thus proposes presentations of the status and projects of gas exploitation in these both countries, by mentioning involved actors (notably large oil companies), economic and political relationships between them, assessments and perspectives in terms of gas production

  11. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Moritz Pascal

    2015-07-01

    online experiments, which is about three times larger than any stopping cell, using RF structures for the extraction of ions, has demonstrated. The area density and therefore the stopping power of the CSC is limited by the differential pumping. To overcome this limitation the CSC was tested with neon as a stopping gas with area densities of up to 11.3 mg/cm{sup 2} helium equivalent, demonstrating a unprecedented area density for stopping cells based on RF structures. The RF carpet performed reliably and its potential for the future FAIR stopping cell was shown. During the experiments at GSI the mean extraction time of {sup 221}Ac ions from the CSC to a silicon surface detector was measured, it amounts to 24 ms. This value is well in agreement with offline measurements using a pulsed {sup 223}Ra recoil ion source. The combination of a high density stopping cell with high total efficiencies and a non-scanning high-resolution mass spectrometer can be used as an independent identification detector for exotic nuclei by their mass, allowing a recalibration of the in-flight detectors of any fragment separator. As a proof-of-principal experiment the CSC and a MR-TOF-MS have been used as a mass tagger for the FRS at GSI. 134-I ions were produced by in-flight fission from an {sup 238}U primary beam at 1000 MeV/u and identified by the mass tagger. The new method does not rely on specific decay properties and therefore allows a recalibration of the fragment separator independent of the fragment and can also be used with stable nuclides. The usage of the CSC and a MR-TOF-MS will allow fast recalibration and a more effective usage of the limited amount of beam time for all experiments with exotic nuclei even in the case the nuclide of interest is not clearly identified by the in-flight detection scheme. With the CSC low energy experiments such as high-precision mass measurements and decay spectroscopy were made possible, the half lifes of {sup 221}Ac and {sup 223}Th have been measured

  12. The Pennsylvania Experience with Hydraulic Fracturing for Shale Gas Development: Relatively Infrequent Water Quality Incidents with Lots of Public Attention

    Science.gov (United States)

    Brantley, S. L.; Li, Z.; Yoxtheimer, D.; Vidic, R.

    2015-12-01

    New techniques of hydraulic fracturing - "fracking" - have changed the United States over the last 10 years into a leading producer of natural gas extraction from shale. The first such gas well in Pennsylvania was drilled and completed using high-volume hydraulic fracturing in 2004. By late 2014, more than 8500 of these gas wells had been drilled in the Marcellus Shale gas field in Pennsylvania alone. Almost 1000 public complaints about groundwater quality were logged by the PA Department of Environmental Protection (PA DEP) between 2008 and 2012. Only a fraction of these were attributed to unconventional gas development. The most common problem was gas migration into drinking water, but contamination incidents also included spills, seepage, or leaks of fracking fluids, brine salts, or very occasionally, radioactive species. Many problems of gas migration were from a few counties in the northeastern part of the state. However, sometimes one gas well contaminated multiple water wells. For example, one gas well was reported by the state regulator to have contaminated 18 water wells with methane near Dimock PA. It can be argued that such problems at a relatively small fraction of gas wells initiated pockets of pushback against fracking worldwide. This resistance to fracking has grown even though fracking has been in use in the U.S.A. since the 1940s. We have worked as part of an NSF-funded project (the Shale Network) to share water quality data and publish it online using the CUAHSI Hydrologic Information System. Sharing data has led to collaborative investigation of specific contamination incidents to understand how problems can occur, and to efforts to quantify the frequency of impacts. The Shale Network efforts have also highlighted the need for more transparency with water quality data in the arena related to the energy-water nexus. As more data are released, new techniques of data analysis will allow better understanding of how to tune best practices to be

  13. A system for the discharge of gas bubbles from the coolant flow of a nuclear reactor cooled by forced circulation

    International Nuclear Information System (INIS)

    Markfort, D.; Kaiser, A.; Dohmen, A.

    1975-01-01

    In a reactor cooled by forced circulation the gas bubbles carried along with the coolant flow are separated before entering the reactor core or forced away into the external zones. For this purpose the coolant is radially guided into a plenum below the core and deflected to a tangential direction by means of flow guide elements. The flow runs spirally downwards. On the bubbles, during their dwell time in this channel, the buoyant force and a force towards the axis of symmetry of the tank are exerted. The major part of the coolant is directed into a radial direction by means of a guiding apparatus in the lower section of the channel and guided through a chimney in the plenum to the center of the reactor core. This inner chimney is enclosed by an outer chimney for the core edge zones through which coolant with a small share of bubbles is taken away. (RW) [de

  14. Effects of agricultural tillage practise on green house gas balance of an arable soil in a long term field experiment

    Science.gov (United States)

    Munch, Jean Charles; Schilling, Rolf; Ruth, Bernhard; Fuss, Roland

    2010-05-01

    Soils are an important part of the global carbon cycle. A large proportion of global carbon dioxide (CO2) emissions is released from soils, though carbon sequestration occurs. Nitrous oxide (N2O) emissions of soils are also believed to contribute significantly to the green house effect as well as the stratospheric ozone depletion. An important source of N2O emissions is denitrification of nitrate from nitrogen fertilized soils. Although it is desirable to minimize these emissions while maintaining high crop yields it is still poorly understood how green house gas emissions may be steered by agricultural management practise, i.e. tillage and fertilization systems . In an ongoing long term field experiment at the research farm Scheyern, Bavaria, a arable field with one homogenous soil formation was transformed into plots in a randomized design 14 years ago. Since then, they are managed using conventional tillage (CT) and no tillage (NT) as well as low and high fertilization. A conventional crop rotation is maintained on the field. Starting 2007, CO2 and N2O emissions were monitored continuously for 2.5 years. Furthermore water content, temperature and redox potential were measured in-situ as they are major factors on microbial activity and denitrification. Soil was sampled from the Ap horizons of the plots about twice a month and extracts from these soil samples were analyzed for dissolved organic carbon (DOC), ammonium, nitrate/nitrite, and dissolved organic nitrogen (DON). According to the results soil density and hydrology are clearly affected by tillage practise. DOC is more affected by tillage while concentration of nitrogen species is controlled mainly by fertilization. There are distinct differences in redox potential between CT and NT plots with CT plots having more anaerobic periods. CO2 and N2O emissions exhibit a clear seasonal pattern and are affected by both tillage system and fertilization

  15. Thermal Design and Analysis of the Stratospheric Aerosol and Gas Experiment III (SAGE III) for the ISS Mission

    Science.gov (United States)

    Gould, Dana C.

    2002-07-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of spaceborne remote sensing instruments developed by NASA Langley Research Center (LaRC) for monitoring global distribution of aerosols and gaseous constituents using the solar occultation approach. SAGE III will provide global profiles of atmospheric aerosol, ozone, water vapor, nitrogen dioxide, nitrogen trioxide, temperature, and chlorine dioxide in the mesosphere, stratosphere, and troposphere. The instrument is designed to be completely self-calibrating making it well-suited for long-term monitoring of atmospheric species which are important for global change study. To help achieve the desired long-term global coverage, three instruments have been built for different missions. The thermal design of SAGE III is primarily passive using surface finishes and high thermal resistance spacers. Active thermal control consists of operational and survival heaters along with a thermoelectric cooler to maintain the CCD detector temperature within tolerances. While the overall thermal design is consistent among the three instruments, some modifications were necessary to meet the individual mission requirements. The first SAGE III instrument is scheduled for launch on the Russian built METEOR-3M spacecraft in December 2000. This 2.5-ton spacecraft is 5 meters long and 1.5 meters in diameter and will fly a sun-synchronous, polar orbit at an altitude of 1020 km. The second instrument will fly on the International Space Station using an EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Pallet Adapter. This flight has been particularly challenging for designers because of the constraints of the ISS as well as the differences in program schedules (the SAGE instrument has been fabricated and delivered while the EXPRESS project has yet to reach PDR.) For example, the attitude of the ISS can vary substantially making solar occultation difficult. To overcome this, a

  16. Gas-phase reactions of [VO2(OH)2]- and [V2O5(OH)]- with methanol: experiment and theory.

    Science.gov (United States)

    Harris, Benjamin L; Waters, Tom; Khairallah, George N; O'Hair, Richard A J

    2013-02-14

    The gas-phase reactivity of the vanadium hydroxides [VO(2)(OH)(2)](-) and [V(2)O(5)(OH)](-) toward methanol was examined using a combination of ion-molecule reactions (IMRs) and collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer. Isotope-labeling experiments with CD(3)OH, (13)CH(3)OH, and CH(3)(18)OH were used to confirm the stoichiometry of ions and the observed sequence of reactions. The experimental data were interpreted with the aid of density functional theory calculations, carried out at the B3LYP/SDD6-311++G** level of theory. While [VO(2)(OH)(2)](-) is unreactive, [V(2)O(5)(OH)](-) undergoes a metathesis reaction to yield [V(2)O(5)(OCH(3))](-). The DFT calculations reveal that the metathesis reaction of methanol with [VO(2)(OH)(2)](-) suffers from a barrier of +0.52 eV (relative to separated reactants) but that the reaction of [V(2)O(5)(OH)](-) with methanol readily proceeds via addition/elimination reactions with both transition states being below the energy of the separated reactants. CID of [V(2)O(5)(OCH(3))](-) (m/z 213) yields three ions arising from activation of the methoxo ligand: [V(2), O(6), C, H](-) (m/z 211); [V(2), O(5), H](-) (m/z 183); and [V(2), O(4), H](-) (m/z 167). Additional experiments and DFT calculations suggest that these ions arise from losses of H(2), formaldehyde and the sequential losses of H(2) and CO(2), respectively. The use of an (18)O-labeled methoxo ligand in [V(2)O(5)((18)OCH(3))](-) (m/z 215) showed the competing losses of H(2)C(16)O and H(2)C(18)O and [H(2) and C(16)O(18)O] and [H(2) and C(16)O(2)], highlighting that (16)O/(18)O exchange between the methoxo ligand and the vanadium oxide occurs prior to the subsequent fragmentation of the ligand. DFT calculations reveal that a key step involves hydrogen atom transfer from the methoxo ligand to the oxo ligand of the same vanadium center, producing the intermediate [V(2)O(4)(OH)(OCH(2))](-) containing a ketyl radical ligand and a hydroxo ligand

  17. A study on timing of rapid depressurization action during PWR vessel bottom break LOCA with HPI failure and AIS-gas inflow (ROSA-V/LSTF test SB-PV-06)

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

    2007-03-01

    A small break loss-of-coolant accident (SBLOCA) experiment (SB-PV-06) was conducted at the Large Scale Test Facility (LSTF) of ROSA-V program to study the effects of initiation timing of rapid secondary depressurization action on core cooling as one of accident management (AM) measures for a pressurized water reactor (PWR) in case of high pressure injection (HPI) system failure and non-condensable gas inflow from the accumulator injection system (AIS). The break simulated rupture of 10 instrument tubes at the vessel bottom equivalent to 0.2% cold leg break. The rapid depressurization action was initiated after the vessel level below the primary loop nozzle was detected. The results were compared with those of two similar experiments of SB-PV-03 in which the action was initiated after core heat-up, and SB-PV-04 in which the earliest action was initiated by safety injection (SI) signal with 10 minutes delay resulting in adequate core cooling. It is clarified that the vessel level indication for start of the AM action is less effective on core cooling, while steam generator (SG) outlet plenum level indication for earlier AM action can be effective due to larger primary coolant mass as in the SB-PV-04 experiment. The report compares these experimental results to clarify the effects of the initiation timing of rapid secondary depressurization action on core cooling in addition to the precise results of the SB-PV-06 experiment. (author)

  18. The Role of Gas in Determining Image Quality and Resolution During In Situ Scanning Transmission Electron Microscopy Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuanyuan [Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Browning, Nigel D. [Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA

    2017-08-02

    As gas-solid heterogeneous catalytic reactions are molecular in nature, a full mechanistic understanding of the process requires atomic scale characterization under realistic operating conditions. While atomic resolution imaging has become a routine in modern high-vacuum (scanning) transmission electron microscopy ((S)TEM), both image quality and resolution nominally degrade when reaction gases are introduced. In this work, we systematically assess the effects of different gases at various pressures on the quality and resolution of images obtained at room temperature in the annular dark field STEM imaging mode using a differentially pumped (DP) gas cell. This imaging mode is largely free from inelastic scattering effects induced by the presence of gases and retains good imaging properties over a wide range of gas mass/pressures. We demonstrate the application of the ESTEM with atomic resolution images of a complex oxide alkane oxidation catalyst MoVNbTeOx (M1) immersed in light and heavy gas environments.

  19. Report on the experiences with the gas compression heat pump system of the school and sports center at Altenkunstadt

    Science.gov (United States)

    Tscherter, F.

    1981-10-01

    Three years of operation of a 1200 kw natural gas boiler system supplemented by a 800 kw gas heat pump system are evaluated and the savings in primary energy are assessed. Setup, control system and measuring instrumentation are described. The proximity of a river allows an hybrid operation whereby 100% of the heat is produced by the gas powdered heat pump for any river temperature above 3 C whereas below that temperature the gas boiler takes over completely. Annual heat pump heating figures between 1.66 and 1.72 were obtained, thus yielding a saving in primary energy between 36% and 47%, in good agreement with the design values. The cost analysis shows that the savings thus achieved cover the operating costs specific to the heat pump.

  20. Quality Control (QC2) of Gas Electron Multiplier (GEM) for GE1/1 at CMS Experiment

    CERN Document Server

    Sharma, Archana

    2016-01-01

    Gas Electron Multiplier (GEM) is a gas ionization detector that detect charged particles and will be implemented on CMS system. It is designed to improve muon trigger and tracking performance at high luminosity after the second Long Shutdown (LS2). For my project, GEM foils, a component of the Triple GEM detector have been studied. In order to pass the test, the foils need to run in the Fast Test and Long Test of QC2.

  1. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-12-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  2. Effect of Injection Flow Rate on Product Gas Quality in Underground Coal Gasification (UCG Based on Laboratory Scale Experiment: Development of Co-Axial UCG System

    Directory of Open Access Journals (Sweden)

    Akihiro Hamanaka

    2017-02-01

    Full Text Available Underground coal gasification (UCG is a technique to recover coal energy without mining by converting coal into a valuable gas. Model UCG experiments on a laboratory scale were carried out under a low flow rate (6~12 L/min and a high flow rate (15~30 L/min with a constant oxygen concentration. During the experiments, the coal temperature was higher and the fracturing events were more active under the high flow rate. Additionally, the gasification efficiency, which means the conversion efficiency of the gasified coal to the product gas, was 71.22% in the low flow rate and 82.42% in the high flow rate. These results suggest that the energy recovery rate with the UCG process can be improved by the increase of the reaction temperature and the promotion of the gasification area.

  3. Stratospheric Aerosol and Gas Experiment, SAGE III on ISS, An Earth Science Mission on the International Space Station, Schedule Risk Analysis, A Project Perspective

    Science.gov (United States)

    Bonine, Lauren

    2015-01-01

    The presentation provides insight into the schedule risk analysis process used by the Stratospheric Aerosol and Gas Experiment III on the International Space Station Project. The presentation focuses on the schedule risk analysis process highlighting the methods for identification of risk inputs, the inclusion of generic risks identified outside the traditional continuous risk management process, and the development of tailored analysis products used to improve risk informed decision making.

  4. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    Science.gov (United States)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  5. The Stratospheric Aerosol and Gas Experiment III/International Space Station Mission: Science Objectives and Mission Status

    Science.gov (United States)

    Eckman, R.; Zawodny, J. M.; Cisewski, M. S.; Flittner, D. E.; McCormick, M. P.; Gasbarre, J. F.; Damadeo, R. P.; Hill, C. A.

    2015-12-01

    The Stratospheric Aerosol and Gas Experiment III/International Space Station (SAGE III/ISS) is a strategic climate continuity mission which was included in NASA's 2010 plan, "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space." SAGE III/ISS continues the long-term, global measurements of trace gases and aerosols begun in 1979 by SAGE I and continued by SAGE II and SAGE III on Meteor 3M. Using a well characterized occultation technique, the SAGE III instrument's spectrometer will measure vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases relevant to ozone chemistry. The mission will launch in 2016 aboard a Falcon 9 spacecraft.The primary objective of SAGE III/ISS is to monitor the vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere to enhance our understanding of ozone recovery and climate change processes in the stratosphere and upper troposphere. SAGE III/ISS will provide data necessary to assess the state of the recovery in the distribution of ozone, extend the SAGE III aerosol measurement record that is needed by both climate models and ozone models, and gain further insight into key processes contributing to ozone and aerosol variability. The multi-decadal SAGE ozone and aerosol data sets have undergone intense community scrutiny for accuracy and stability. SAGE ozone data have been used to monitor the effectiveness of the Montreal Protocol.The ISS inclined orbit of 51.6 degrees is ideal for SAGE III measurements because the orbit permits solar occultation measurement coverage to approximately +/- 70 degrees of latitude. SAGE III/ISS will make measurements using the solar occultation measurement technique, lunar occultation measurement technique, and the limb scattering measurement technique. In this presentation, we describe the SAGE III/ISS mission, its

  6. Quantifying point source emissions with atmospheric inversions and aircraft measurements: the Aliso Canyon natural gas leak as a tracer experiment

    Science.gov (United States)

    Gourdji, S.; Yadav, V.; Karion, A.; Mueller, K. L.; Kort, E. A.; Conley, S.; Ryerson, T. B.; Nehrkorn, T.

    2017-12-01

    The ability of atmospheric inverse models to detect, spatially locate and quantify emissions from large point sources in urban domains needs improvement before inversions can be used reliably as carbon monitoring tools. In this study, we use the Aliso Canyon natural gas leak from October 2015 to February 2016 (near Los Angeles, CA) as a natural tracer experiment to assess inversion quality by comparison with published estimates of leak rates calculated using a mass balance approach (Conley et al., 2016). Fourteen dedicated flights were flown in horizontal transects downwind and throughout the duration of the leak to sample CH4 mole fractions and collect meteorological information for use in the mass-balance estimates. The same CH4 observational data were then used here in geostatistical inverse models with no prior assumptions about the leak location or emission rate and flux sensitivity matrices generated using the WRF-STILT atmospheric transport model. Transport model errors were assessed by comparing WRF-STILT wind speeds, wind direction and planetary boundary layer (PBL) height to those observed on the plane; the impact of these errors in the inversions, and the optimal inversion setup for reducing their influence was also explored. WRF-STILT provides a reasonable simulation of true atmospheric conditions on most flight dates, given the complex terrain and known difficulties in simulating atmospheric transport under such conditions. Moreover, even large (>120°) errors in wind direction were found to be tolerable in terms of spatially locating the leak rate within a 5-km radius of the actual site. Errors in the WRF-STILT wind speed (>50%) and PBL height have more negative impacts on the inversions, with too high wind speeds (typically corresponding with too low PBL heights) resulting in overestimated leak rates, and vice-versa. Coarser data averaging intervals and the use of observed wind speed errors in the model-data mismatch covariance matrix are shown to

  7. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  8. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    Science.gov (United States)

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  9. Choosing the best energy purchasing option for your organization : benefiting from the experiences of other natural gas consumers

    International Nuclear Information System (INIS)

    Struthers, D.

    2003-01-01

    This presentation outlined natural gas purchasing strategies with particular reference to direct purchase agreements for multi-site, multi-tenant commercial properties. It included an overview of the commercial buyer, the importance of a direct purchase agreement, dealing with an agent, and the procurement process. Direct purchase gas agreements are used for multi-tenant dwellings where tenants pay a proportionate share of costs to heat the building with natural gas. These types of agreements optimize operating costs and offer price stability, thereby contributing to the marketability of the building. The issues that should be considered during the procurement process include: different risk profiles; terms of the contract; current market conditions; futures market; sale of property; acquisition of new properties; and, terms of property management

  10. Thermoplastic materials in oil and gas applications: 30 years experience with polyamide 11 from offshore production to onshore distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Patrick; Werth, Michael [ATOFINA SA, Paris La Defense (France); Marchioni, Roger [ATOFINA Brasil, Rio Claro, SP (Brazil); Mason, James [ATOFINA Chemicals Inc., Philadelphia, PA (United States)

    2004-07-01

    For more than 30 years, the technical polymer Polyamide 11 is used for offshore oil and gas production as pressure sheath of flexible pipes or as tubing for offshore umbilicals. Comprehensive studies on polyamide 11 have been achieved in order to qualify it and use it with confidence. Specifications and technical reports established by API are an important step forward. The purpose of this paper is to present how lifetime prediction has been handled for two main applications of polyamide 11 in both upstream and downstream : offshore flexible pipes and gas distribution pipes. The first case is based on long term chemical ageing and the second on long term mechanical performances. Both cases show that Polyamide 11 is really the polymer of choice in oil and gas environments when performances and reliability are required. (author)

  11. Bulk and surface controlled diffusion of fission gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders D. [Los Alamos National Laboratory

    2012-08-09

    Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion

  12. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  13. In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S{sup 3}): Conceptual studies and preliminary design

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, R., E-mail: Rafael.Ferrer@fys.kuleuven.be [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Bastin, B.; Boilley, D. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Liénard, E.; Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institut de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Huyse, M.; Kudryavtsev, Yu. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Lecesne, N.; Lu, H.; Lutton, F. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Mogilevskiy, E.; Pauwels, D. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Piot, J. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Radulov, D.; Rens, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Savajols, H. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2013-12-15

    Highlights: • A setup to perform In-Gas Laser Ionization and Spectroscopy experiments at the Super Separator Spectrometer is presented. • The reported studies address important aspects necessary to applied the IGLIS technique to short-lived isotopes. • An R and D phase required to reach an enhanced spectral resolution will be carried out at KU Leuven. • High-sensitivity and enhanced-resolution laser spectroscopy studies will be possible with the IGLIS setup at S{sub 3}. -- Abstract: The results of preparatory experiments and the preliminary designs of a new in-gas laser ionization and spectroscopy setup, to be coupled to the Super Separator Spectrometer S{sup 3} of SPIRAL2-GANIL, are reported. Special attention is given to the development and tests to carry out a full implementation of the in-gas jet laser spectroscopy technique. Application of this novel technique to radioactive species will allow high-sensitivity and enhanced-resolution laser spectroscopy studies of ground- and excited-state properties of exotic nuclei.

  14. Application experience of gas-thermal aluminum coatings to protect the pipes for underground construction and repair of heat networks

    Science.gov (United States)

    Kolpakov, A. S.

    2013-11-01

    Questions of sacrificial protection for pipes of underground heat networks with aluminum against the external corrosion are considered. The description of pilot production of pipes with a plasma aluminum coating and the deposition of a sacrificial gas-plasma aluminum coating on weld joints of pipelines and the zone of their thermal influence during assemblage is presented. Examples of repairing the segments of distribution heat networks by the pipes with the tread protection are presented.

  15. Market power and the sale of Ontario residential natural gas: An institutional analysis and a laboratory experiment

    Science.gov (United States)

    Bloemhof, Barbara Lynn

    2005-11-01

    The Ontario residential natural gas market underwent a significant institutional change in 1986, after the federal government decontrolled natural gas prices. Currently, consumers may sign up for fixed-cost natural gas from a broker, or they may continue to be served by the regulated distribution company. This thesis examines the economic effects on consumers of the institutional change, and particularly whether or not market power was enhanced by the change. In the thesis, I first present the industrial organization of the residential natural gas sector, and explain the institutional evolution using an institutional economic approach. I then construct a model of the market environment, with sellers acting as middlemen in a well-defined Bertrand oligopoly setting with no production constraints and single-unit consumer demands. In this model, the only Nash equilibrium in the one-period game is the joint profit maximizing price, and its likelihood of obtaining depends on the nature of the cost of signing up new customers. I then take a version of this model into the laboratory with human subject sellers and simulated buyers and run six replications each of a balanced treatment design under a unique information mechanism that parallels individual customer canvassing used by sellers in the naturally-occurring market. Treatment variables are: number of sellers, number of simulated at-cost sellers present, and presence of input cost uncertainty for sellers. I find that adding any seller to the market has about the same impact on market price, irrespective of whether it is a human subject or a simulated at-cost seller. Although increasing the number of sellers does decrease the market price somewhat, it does not bring about the competitive outcome predicted by the benchmark microeconomic model. This research contributes to the literature on policy making and energy market design, as well as to experimental methodology aimed at policy evaluation.

  16. Theory versus experiment for the rotordynamic coefficients of annular gas seals. Part 1: Test facility and apparatus

    Science.gov (United States)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J. K.; Elrod, D.; Hale, K.

    1983-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  17. Irradiation experiments of 3rd, 4th and 5th fuel assemblies by an in-pile gas loop, OGL-1

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Hayashi, Kimio; Minato, Kazuo; Kikuchi, Teruo; Adachi, Mamoru; Iwamoto, Kazumi; Ikawa, Katsuichi; Itami, Hiroharu.

    1986-07-01

    Three irradiation experiments for 3rd, 4th and 5th fuel assemblies which had been composed of VHTR reference coated particle fuels and graphite components were carried out by an in-pile gas loop, OGL-1 during 1979 and 1982. The main purposes of these experiments were to study on bowing of the fuel rod by irradiation for the 3rd fuel assembly, to study on fuel behavior under relatively low burnup irradiation for the 4th fuel assembly, and to study on fuel behavior up to full burnup of VHTR design for the 5th fuel assembly. For understanding in-pile fuel behavior, fractional releases of fission gases from each fuel assembly were estimated by measuring the fission gas concentrations in the primary loop of OGL-1. The post-irradiation examination (PIE) was carried out extensively on the fuel block, the fuel rods and the fuel compacts in Tokai Hot Laboratory. Also, made were the measurements of metallic fission product distributions in the fuel assemblies and the fuel rods. The results in these experiments were given as follows ; bowing of the fuel rod in the 3rd fuel assembly was 0.7 mm, but integrity of the rod was kept under irradiation. Fractional release of the fission gas from the 4th fuel assembly remained in the order of 10 -7 during irradiation, suggesting that the fuel performance was excellent. The fractional release from the 5th fuel assembly, on the other hand, was in the order of 10 -5 which was the same level in the VHTR design. (author)

  18. The ultimate veal calf reference experiment: Hormone residue analysis data obtained by gas and liquid chromatography tandem mass spectrometry

    NARCIS (Netherlands)

    Nielen, M.W.F.; Lasaroms, J.J.P.; Essers, M.L.; Sanders, M.B.; Heskamp, H.H.; Bovee, T.F.H.; Rhijn, van J.A.; Groot, M.J.

    2007-01-01

    A lifetime controlled reference experiment has been performed using 42 veal calves, 21 males and 21 females which were fed and housed according to European regulations and common veterinary practice. During the experiment feed, water, urine and hair were sampled and feed intake and growth were

  19. Data report of ROSA/LSTF experiment SB-HL-12. 1% hot leg break LOCA with SG depressurization and gas inflow

    International Nuclear Information System (INIS)

    Takeda, Takeshi

    2016-01-01

    An experiment SB-HL-12 was conducted on February 24, 1998 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-HL-12 simulated a 1% hot leg small-break loss-of-coolant accident in a pressurized water reactor under assumptions of total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). Steam generator (SG) secondary-side depressurization by fully opening the relief valves in both SGs as an accident management (AM) action was initiated immediately after maximum surface temperature of simulated fuel rod reached 600 K. Auxiliary feedwater injection into the secondary-side of both SGs was started immediately after the initiation of AM action. After the onset of AM action due to first core uncovery by core boil-off, the primary pressure decreased following the SG secondary-side pressure, causing core mixture level swell. The fuel rod surface temperature then increased up to 635 K. Second core uncovery by core boil-off took place before loop seal clearing (LSC) induced by steam condensation on ACC coolant injected into cold legs. The core liquid level recovered rapidly after the LSC. The fuel rod surface temperature then increased up to 696 K. The pressure difference became larger between the primary and SG secondary sides after the ACC tanks started to discharge nitrogen gas, which resulted in no actuation of LPI system of ECCS during the experiment. Third core uncovery by core boil-off occurred during the reflux condensation in the SG U-tubes under nitrogen gas inflow. The core power was automatically decreased by the LSTF core protection system when the maximum fuel rod surface temperature exceeded 908 K. The obtained data would be useful to define the conditions for counterpart testing of other integral test facilities to address scaling problems through thermal

  20. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  1. Measurement of the electron temperature profiles in the F-1 cold gas blanket experiment by hydrogen line-spectroscopy

    International Nuclear Information System (INIS)

    Kuthy, A.

    1981-01-01

    Radial profiles of the electron temperature in the F-1 device were determined by measurements of the hydrogen Balmer β-line intensity. The F-1 device produces plasmas in the parameter range of cold gas blankets. The measured temperatures were in agreement with earlier theoretical estimates. The temperature amplitudes and profile shapes were strongly dependent on the power input. The neutral penetration length was dominated by temperature profile effects. The temperature of the ionization zone was essentially constant at 2.5 eV independent of the peak temperature. (orig.)

  2. The radon gas at the context of legislation on the quality of internal air in buildings - the Portuguese experience

    International Nuclear Information System (INIS)

    Pinto, Paulo G.A.N.; Pereira, Alcides J.S.C.; Neves, Luis J.P.F.

    2011-01-01

    Radon gas has been recognized as an important environmental risk factor, especially when found in high concentrations inside buildings, and is currently classified by the World Health Organization as a carcinogen type 1. In this context, there is legislation in Portugal since 2006 that sets limits to its concentration in indoor air. The aim of this work was to synthesize the existing legislation with focus on the sampling and analysis. Some statistical data about the measurements obtained in the Natural Radioactivity Laboratory, of the Department of Earth Sciences, of the University of Coimbra are presented, and discussed in the context of the National Energy Certification of Buildings System

  3. Gas and Gas Pains

    Science.gov (United States)

    ... Gas and gas pains Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  4. Characterization of gas flow through low-permeability clay-stone: laboratory experiments and two-phase flow analyses

    International Nuclear Information System (INIS)

    Senger, R.K.; Romero, E.; Ferrari, A.; Marschall, P.L.

    2012-01-01

    Document available in extended abstract form only. The characterization of gas migration through a low-permeability clay host rock for repositories is important because significant amounts of waste-generated gas are expected to migrate from low- and intermediate-level waste (L/ILW) and high-level waste (HLW) repositories into the surrounding host rock. In order to assess the long-term safety of the repository, a comprehensive understanding of the relevant transport phenomena of gas flow through low-permeability clay is required. The assessment of gas migration from the repository is done through large-scale numerical models which incorporate the two-phase flow and associated constitutive models needed to properly represent the relevant processes. The National Cooperative for the Disposal of Radioactive Waste (NAGRA), Switzerland has proposed the Opalinus Clay (OPA) as one of the host rocks for the Stage 1 of the Sectoral Plan process. For this, Nagra has developed a comprehensive program to characterize gas flow through the Opalinus Clay through laboratory tests to determine the relevant hydraulic, geomechanical, and two-phase properties and detailed analyses for developing appropriate constitutive models. Laboratory tests on OPA cores from the borehole BHG-D1 borehole in Mont Terri were performed by two different laboratories. Whereas EPFL focused on retention behaviour and geomechanical tests, UPC performed specific water and air injection tests to determine single-phase liquid and two-phase properties. Oedometer tests were performed by both laboratories to study rock compressibility at different stress levels and water permeability dependency on void ratio. The retention data measured by EPFL and UPC were comparable and could be fitted with a van Genuchten model using the same parameters. The focus of this paper is on the air-injection test, which was performed on two core samples with flow parallel and perpendicular to bedding. Figure 2 shows the time evolution

  5. Gas-Induced Rectified Motion of a Solid Object in a Liquid-Filled Housing during Vibration: Analysis and Experiments

    Science.gov (United States)

    Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.; Koehler, T. P.

    2017-11-01

    The motion of a solid object (a piston) that fits closely within a housing filled with viscous liquid is studied. If a small amount of gas is introduced and the system is subjected to axial vibration, then the piston exhibits rectified motion when the drag on the piston depends on its position within the housing. An idealized system, in which the piston is suspended freely between two springs and the gas is replaced with two compressible bellows, is analyzed theoretically and studied experimentally. For a given vibration amplitude or frequency, the piston either remains near its original position (``up'') or moves to a different position (``down''), where its spring suspension is compressed. Analytical and experimental regime maps of the amplitudes and frequencies at which the piston is up or down are in good agreement. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  6. Diagnosis of arterial gas embolism in SCUBA diving: modification suggestion of autopsy techniques and experience in eight cases.

    Science.gov (United States)

    Casadesús, Josep M; Aguirre, Fernando; Carrera, Ana; Boadas-Vaello, Pere; Serrando, Maria T; Reina, Francisco

    2018-03-01

    The purpose of this study was to suggest modifications of autopsy techniques in order to improve post-mortem diagnosis of arterial gas embolism (AGE) based on multidisciplinary investigation of SCUBA diving fatalities. Five adult human cadavers from the voluntary donation program of the Human Anatomy Laboratory, and eight judicial autopsied bodies of SCUBA divers from the Forensic Pathology Service were assessed. Before performing any autopsies, we accessed the diving plan and the divers' profiles for each case. We then introduced a new dissection procedure that included identification, isolation, and manipulation of carotid, vertebral and thoracic arterial systems. The dissected vascular structures that allowed optimall isolation of the systemic arterial circulation were identified and ligated. In three of the eight judicial cases, we had a strongly suggestive history of arterial gas embolism following pulmonary barotrauma (PBt/AGE). In these cases, the additional arterial dissection allowed us to clearly diagnose AGE in one of them. The autopsy of the rest of the cases showed other causes of death such as asphyxia by drowning and heart attack. In all cases we were able to reject decompression sickness, and in some of them we showed the presence of artefacts secondary to decomposition and resuscitation maneuvers. These results allow us to suggest a specific autopsy technique divided into four steps, aimed at confirming or excluding some evidence of dysbaric disorders according to a re-enactment of the incident. We have demonstrated the presence of large volumes of intravascular air, which is typical of PBt/AGE.

  7. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  8. Muon Chamber Endcap Upgrade of the CMS Experiment with Gas Electron Multiplier (GEM) Detectors and their Performance

    CERN Document Server

    Gola, Mohit

    2017-01-01

    As the CERN LHC is heading towards a high luminosity phase a very high flux is expected in the endcaps of the CMS Detector. The presence of muons in collision events can be due to rare or new physics so it is important to maintain the high trigger efficiency of the CMS muon system. The CMS Collaboration has proposed to instrument the high-eta region (1.6 lt IetaI lt 2.2) of the muon endcaps with Gas Electron Multiplier (GEM) detectors, referred to as GE1/1 chambers, during the LS2. This technology will help in maintaining optimum trigger performance with maximum selection efficiency of muons even in a high flux environment. We describe plans for a Slice Test to installa few GE1/1 chambers covering 50 degrees in azimuthal angle within the CMS detector in 2017, with subsequent operation during the current Run 2 of the LHC. We show the performance of the GE1/1 chambers to be installed during the slice test, specifically GEM foil leakage currents, chamber gas volume integrity, high voltage circuit performanc...

  9. A study of materials used for muon chambers at the CMS Experiment at the LHC: interaction with gas, new materials and new technologies for detector upgrade

    CERN Document Server

    Colafranceschi, Stefano

    This thesis lays its foundation in both technological and theoretical stud- ies carried out between several aspects of applied engineering. There are several original contributions within the material science. The first is the detailed studies about the CMS RPC gas filters, which required an intense 3 years data-taking and ended up with a complete characterization of purifier materials. On top of this a stable ad − hoc setup (GGM) has been devel- oped for the CMS Experiment in order to monitor the RPC muon chamber working point. Finally a complete new detector has been designed, build and tested using new technology and new electronics establishing the word’s record in size for this kind of detector, which is taken under consideration for the upgrade of the high-η region of the CMS Experiment.

  10. Estimating the Distribution of Colored Dissolved Organic Matter During the Southern Ocean Gas Exchange Experiment Using Four-Dimensional Variational Data Assimilation

    Science.gov (United States)

    Del Castillo, C. E.; Dwivedi, S.; Haine, T. W. N.; Ho, D. T.

    2017-01-01

    We diagnosed the effect of various physical processes on the distribution of mixed-layer colored dissolved organic matter (CDOM) and a sulfur hexauoride (SF6) tracer during the Southern Ocean Gas Exchange Experiment (SO GasEx). The biochemical upper ocean state estimate uses in situ and satellite biochemical and physical data in the study region, including CDOM (absorption coefcient and spectral slope), SF6, hydrography, and sea level anomaly. Modules for photobleaching of CDOM and surface transport of SF6 were coupled with an ocean circulation model for this purpose. The observed spatial and temporal variations in CDOM were captured by the state estimate without including any new biological source term for CDOM, assuming it to be negligible over the 26 days of the state estimate. Thermocline entrainment and photobleaching acted to diminish the mixed-layer CDOM with time scales of 18 and 16 days, respectively. Lateral advection of CDOM played a dominant role and increased the mixed-layer CDOM with a time scale of 12 days, whereas lateral diffusion of CDOM was negligible. A Lagrangian view on the CDOM variability was demonstrated by using the SF6 as a weighting function to integrate the CDOM elds. This and similar data assimilation methods can be used to provide reasonable estimates of optical properties, and other physical parameters over the short-term duration of a research cruise, and help in the tracking of tracer releases in large-scale oceanographic experiments, and in oceanographic process studies.

  11. Proposal for the award of a blanket contract for automatic air-sampling systems for fire and gas detection in the LHC experiments

    CERN Document Server

    2004-01-01

    This document concerns the award of a blanket contract for automatic air-sampling systems for fire and gas detection in the LHC experiments. Following a market survey carried out among 119 firms in ten Member States, a call for tenders (IT-2891/ST) was sent on 1 August 2003 to four firms, in three Member States. By the closing date, CERN had received two tenders from one firm and one consortium, in three Member States. The Finance Committee is invited to agree to the negotiation of a blanket contract with ICARE (FR), the lowest bidder, for the supply of automatic air-sampling systems for fire and gas detection in the LHC experiments for a total amount not exceeding 1 750 000 euros (2 714 000 Swiss francs), subject to revision for inflation from 1 January 2007 with options for air-sampling smoke detection systems for electrical racks, for an additional amount of 400 000 euros (620 000 Swiss francs), subject to revision for inflation from 1 January 2007, bringing the total amount to a maximum of 2 150 000 euros...

  12. Can transcutaneous carbon dioxide pressure be a surrogate of blood gas samples for spontaneously breathing emergency patients? The ERNESTO experience.

    Science.gov (United States)

    Peschanski, Nicolas; Garcia, Léa; Delasalle, Emilie; Mzabi, Lynda; Rouff, Edwin; Dautheville, Sandrine; Renai, Fayrouz; Kieffer, Yann; Lefevre, Guillaume; Freund, Yonathan; Ray, Patrick

    2016-05-01

    It is known that the arterial carbon dioxide pressure (PaCO2) is useful for emergency physicians to assess the severity of dyspnoeic spontaneously breathing patients. Transcutaneous carbon dioxide pressure (PtcCO2) measurements could be a non-invasive alternative to PaCO2 measurements obtained by blood gas samples, as suggested in previous studies. This study evaluates the reliability of a new device in the emergency department (ED). We prospectively included patients presenting to the ED with respiratory distress who were breathing spontaneously or under non-invasive ventilation. We simultaneously performed arterial blood gas measurements and measurement of PtcCO2 using a sensor placed either on the forearm or the side of the chest and connected to the TCM4 CombiM device. The agreement between PaCO2 and PtcCO2 was assessed using the Bland-Altman method. Sixty-seven spontaneously breathing patients were prospectively included (mean age 70 years, 52% men) and 64 first measurements of PtcCO2 (out of 67) were analysed out of the 97 performed. Nineteen patients (28%) had pneumonia, 19 (28%) had acute heart failure and 19 (28%) had an exacerbation of chronic obstructive pulmonary disease. Mean PaCO2 was 49 mm Hg (range 22-103). The mean difference between PaCO2 and PtcCO2 was 9 mm Hg (range -47 to +54) with 95% limits of agreement of -21.8 mm Hg and 39.7 mm Hg. Only 36.3% of the measurement differences were within 5 mm Hg. Our results show that PtcCO2 measured by the TCM4 device could not replace PaCO2 obtained by arterial blood gas analysis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Experience in the development of metal uranium-base nuclear fuel for heavy-water gas-cooled reactors

    International Nuclear Information System (INIS)

    Ashikhmin, V.P.; Vorob'ev, M.A.; Gusarov, M.S.; Davidenko, A.S.; Zelenskij, V.F.; Ivanov, V.E.; Krasnorutskij, V.S.; Petel'guzov, I.A.; Stukalov, A.I.

    1978-01-01

    Investigations were carried out to solve the problem of making the development of radiation-resistant uranium fuel for power reactors including the heavy-water gas-cooled KS-150 reactor. Factors are considered that limit the lifetime of uranium fuel elements, and the ways of suppressing them are discussed. Possible reasons of the insufficient radiation resistance of uranium rod fuel element and the progress attained are analyzed. Some general problems on the fuel manufacture processes are discussed. The main results are presented on the operation of the developed fuel in research reactor loops and the commercial heavy-water KS-150 reactor. The results confirm an exceptionally high radiation resistance of fuel to burn-ups of 1.5-2%. The successful solution of a large number of problems associated with the development of metal uranium fuel provides for new possibilities of using metal uranium in power reactors

  14. Deuterium to helium plasma-wall change-over experiments in the JET MkII-gas box divertor

    International Nuclear Information System (INIS)

    Hillis, D.L.; Loarer, T.; Bucalossi, J.; Pospieszczyk, A.; Fundamenski, W.; Matthews, G.; Meigs, A.; Morgan, P.; Phillips, V.; Pitts, R.; Stamp, M.; Hellermann, M. von

    2003-01-01

    The deuterium and helium dynamics in the plasma and subdivertor regions of JET are compared during a sequence of similar ohmic and ICRH pulses where 100% He gas is injected into the JET vacuum vessel, whose graphite walls were previously saturated with deuterium. After the first six He fueled change-over discharges, only He plasma operation was performed. Following this investigation, the situation is reversed and the change-over from an initially saturated He wall is investigated when only D 2 plasma fuelling is used. The He concentration is measured in the subdivertor with a species selective Penning gauge. Comparison of the time dependence of the divertor concentrations with those at the edge and strike point shows significant differences during the first six discharges. This difference along with a global He particle balance is used to assess the status of the wall saturation over the initial 6-7 He change-over discharges

  15. Static Computer Memory Integrity Testing (SCMIT): An experiment flown on STS-40 as part of GAS payload G-616

    Science.gov (United States)

    Hancock, Thomas

    1993-01-01

    This experiment investigated the integrity of static computer memory (floppy disk media) when exposed to the environment of low earth orbit. The experiment attempted to record soft-event upsets (bit-flips) in static computer memory. Typical conditions that exist in low earth orbit that may cause soft-event upsets include: cosmic rays, low level background radiation, charged fields, static charges, and the earth's magnetic field. Over the years several spacecraft have been affected by soft-event upsets (bit-flips), and these events have caused a loss of data or affected spacecraft guidance and control. This paper describes a commercial spin-off that is being developed from the experiment.

  16. Analyze Experiment For Vigas and Pertamax to Performance and Exhaust Gas Emission for Gasoline Motor 2000cc

    Science.gov (United States)

    As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta

    2018-02-01

    The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2

  17. Simulation of real-gas effects on pressure distributions for a proposed Aeroassist Flight Experiment vehicle and comparison to prediction

    Science.gov (United States)

    Micol, John R.

    1987-01-01

    Pressure distributions measured on a 60-deg elliptic cone, raked off at a 73-deg angle and having an ellipsoid nose (ellipticity equal to 2.0), are presented for a range of angle of attack from -10 to 15 deg. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach-6 air (normal shock density ratio equal to 5.25) and Mach 6 CF4 (normal shock density ratio equal to 12.0). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons are made to an inviscid flowfield computer code known as HALIS. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increased angle of attack. The effect of Reynolds number on pressures was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF4.

  18. Simulation of real-gas effects on pressure distributions for aeroassist flight experiment vehicle and comparison with prediction

    Science.gov (United States)

    Micol, John R.

    1992-01-01

    Pressure distributions measured on a 60 degree half-angle elliptic cone, raked off at an angle of 73 degrees from the cone centerline and having an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane) are presented for angles of attack from -10 degrees to 10 degrees. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach 6 air and CF sub 4 (density ratio equal to 5.25 and 12.0, respectively). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons with a three dimensional Euler code known as HALIS are made. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increasing angle of attack. The effect of Reynolds number on pressure distributions was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF sub 4.

  19. An atomistic model of a disordered nanoporous solid: Interplay between Monte Carlo simulations and gas adsorption experiments

    Science.gov (United States)

    Canti, Lorenzo; Fraccarollo, Alberto; Gatti, Giorgio; Errahali, Mina; Marchese, Leonardo; Cossi, Maurizio

    2017-04-01

    A combination of physisorption measurements and theoretical simulations was used to derive a plausible model for an amorphous nanoporous material, prepared by Friedel-Crafts alkylation of tetraphenylethene (TPM), leading to a crosslinked polymer of TPM connected by methylene bridges. The model was refined with a trial-and-error procedure, by comparing the experimental and simulated gas adsorption isotherms, which were analysed by QSDFT approach to obtain the details of the porous structure. The adsorption of both nitrogen at 77 K and CO2 at 273 K was considered, the latter to describe the narrowest pores with greater accuracy. The best model was selected in order to reproduce the pore size distribution of the real material over a wide range of pore diameters, from 5 to 80 Å. The model was then verified by simulating the adsorption of methane and carbon dioxide, obtaining a satisfactory agreement with the experimental uptakes. The resulting model can be fruitfully used to predict the adsorption isotherms of various gases, and the effect of chemical functionalizations or other post-synthesis treatments.

  20. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms

    International Nuclear Information System (INIS)

    Grucker, J.

    2007-12-01

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable 3 P 2 state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ( 3 P 2 ). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms

  1. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  2. Use of natural gas on heavy duty vehicles in Brazil: experience, current scene and barriers that still persist; Utilizacao do gas natural em veiculos pesados no Brasil: experiencia, cenario atual e barreiras que ainda persistem

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme B.; Melo, Tadeu C.C.; Lastres, Luiz Fernando M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In the 80's, because of the oil crisis, the Natural Gas (NG) appeared as a fuel with a great potential for Diesel replacement in Heavy Duty Vehicles. At that time, PETROBRAS with other companies have developed partial conversion technologies from Diesel to NG, known as 'Dual Fuel'. Engine dynamometer and vehicle bus tests have been developed to verify its technical and economical viability. Because of several factors, the Dual Fuel Program did not advance and the experience was interrupted. At the same time, other experiences using NG Otto Cycle bus engines, manufactured in Brazil, have been conducted, mainly at Sao Paulo, nevertheless, without expansion. Currently, factors as increase of the NG converted light vehicles fleet; the NG excess in the National Market, which has contributed to the NG distribution net expansion; the Environmental Legislature in vigor, that continuously determine lower emission limits; the government interest in increasing the NG energy matrix share and in reducing Diesel fuel consumption, and the low NG industrial demand, compose together a great scene to the diffusion of NG as substitute to the Diesel fuel in Heavy Duty Vehicles. (author)

  3. Technical note: Influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies

    Directory of Open Access Journals (Sweden)

    G. Li

    2018-02-01

    Full Text Available Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney–Kim–Davis (CKD/Knopf–Pöschl–Shiraiwa (KPS methods, which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ. We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method or γKPS (derived with the KPS method can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg ∕ R0. On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity, to ensure not only unaffected laminar flow patterns but also other specific requirements for an

  4. Technical note: Influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies

    Science.gov (United States)

    Li, Guo; Su, Hang; Kuhn, Uwe; Meusel, Hannah; Ammann, Markus; Shao, Min; Pöschl, Ulrich; Cheng, Yafang

    2018-02-01

    Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney-Kim-Davis (CKD)/Knopf-Pöschl-Shiraiwa (KPS) methods), which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ). We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT) to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method) or γKPS (derived with the KPS method) can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ) and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg / R0). On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity), to ensure not only unaffected laminar flow patterns but also other specific requirements for an individual flow tube

  5. In-silico experiments on characteristic time scale at a shear-free gas-liquid interface in fully developed turbulence

    International Nuclear Information System (INIS)

    Nagaosa, Ryuichi; Handler, Robert A

    2011-01-01

    The purpose of this study is to model scalar transfer mechanisms in a fully developed turbulence for accurate predictions of the turbulent scalar flux across a shear-free gas-liquid interface. The concept of the surface-renewal approximation (Dankwerts, 1951) is introduced in this study to establish the predictive models for the interfacial scalar flux. Turbulent flow realizations obtained by a direct numerical simulation technique are employed to prepare details of three-dimensional information on turbulence in the region very close to the interface. Two characteristic time scales at the interface have been examined for exact prediction of the scalar transfer flux. One is the time scale which is reciprocal of the root-mean-square surface divergence, T γ = (γγ) −1/2 , where γ is the surface divergence. The other time scale to be examined is T S = Λ/V, where Λ is the zero-correlation length of the surface divergence as the interfacial length scale, and V is the root-mean-square velocity fluctuation in the streamwise direction as the interfacial velocity scale. The results of this study suggests that T γ is slightly unsatisfactory to correlate the turbulent scalar flux at the gas-liquid interface based on the surface-renewal approximation. It is also found that the proportionality constant appear to be 0.19, which is different with that observed in the laboratory experiments, 0.34 (Komori, Murakami, and Ueda, 1989). It is concluded that the time scale, T γ , is considered a different kind of the time scale observed in the laboratory experiments. On the other hand, the present in-silico experiments indicate that T s predicts the turbulent scalar flux based on the surface-renewal approximation in a satisfactory manner. It is also elucidated that the proportionality constant for T s is approximately 0.36, which is very close to that found by the laboratory experiments. This fact shows that the time scale T s appears to be essentially the same as the time scale

  6. Investigation of Bio-Regenerative Life Support and Trash-to-Gas Experiment on a 4-Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG technology.

  7. Investigation of Bio-Regenerative Life Support and Trash-To-Gas Experiment on a 4 Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will storing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into the high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purposes of this study are to show the how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG reactor technology.

  8. Gas chromatography/mass spectrometry-based urine metabolome study in children for inborn errors of metabolism: An Indian experience.

    Science.gov (United States)

    Hampe, Mahesh H; Panaskar, Shrimant N; Yadav, Ashwini A; Ingale, Pramod W

    2017-02-01

    The present study highlights the feasibility of gas chromatography/mass spectrometry (GC/MS)-based analysis for simultaneous detection of >200 marker metabolites in urine found in characteristic pattern in inborn errors of metabolism (IEM) in India. During this retrospective study conducted from July 2013 to January 2016, we collected urine specimens on filter papers from Indian children across the country along with relevant demographic and clinical data. The laboratory technique involved urease pretreatment followed by deproteinization, derivatization, and subsequent computer-aided analysis of organic acids, amino acids, fatty acids, and sugars by GC/MS, which enable chemical diagnosis of IEM. Totally 23,140 patients were investigated for IEM with an estimated frequency of about 1.40%, that is, 323 positive cases. Most frequent disorders observed were of primary lactic acidemia (27.2%) and organic acidemia (methylmalonic aciduria, glutaric acidemia type I, propionic aciduria, etc.) followed by aminoacidopathies (maple syrup urine disease, phenylketonuria, tyrosinemia, etc.). Furthermore, alkaptonuria, canavan disease, and 4-hydroxybutyric aciduria were also diagnosed. Prompt treatment following diagnosis led to a better outcome in a considerable number of patients. GC/MS with one-step metabolomics enables quick detection, accurate identification, and precise quantification of a wide range of urinary markers that may not be discovered using existing newborn screening programs. The technique is effective as a second-tier test to other established screening technologies, as well as one-step primary screening tool for a wide spectrum of IEM. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Development and verification of the LIFE-GCFR computer code for predicting gas-cooled fast-reactor fuel-rod performance

    International Nuclear Information System (INIS)

    Hsieh, T.C.; Billone, M.C.; Rest, J.

    1982-03-01

    The fuel-pin modeling code LIFE-GCFR has been developed to predict the thermal, mechanical, and fission-gas behavior of a Gas-Cooled Fast Reactor (GCFR) fuel rod under normal operating conditions. It consists of three major components: thermal, mechanical, and fission-gas analysis. The thermal analysis includes calculations of coolant, cladding, and fuel temperature; fuel densification; pore migration; fuel grain growth; and plenum pressure. Fuel mechanical analysis includes thermal expansion, elasticity, creep, fission-product swelling, hot pressing, cracking, and crack healing of fuel; and thermal expansion, elasticity, creep, and irradiation-induced swelling of cladding. Fission-gas analysis simultaneously treats all major mechanisms thought to influence fission-gas behavior, which include bubble nucleation, resolution, diffusion, migration, and coalescence; temperature and temperature gradients; and fission-gas interaction with structural defects

  10. The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas

    International Nuclear Information System (INIS)

    Collantes, Gustavo; Melaina, Marc W.

    2011-01-01

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. - Research Highlights: →The broad scale adoption of CNG for transportation in Argentina was initiated by a market demand for an effective fuel that was priced at a significantly lower level compared to the mainstream alternatives. →The Argentine played a marginal role in the development of refueling infrastructure. →The role of the government focused on sending clear signals to the marketplace and developing effective codes and standards. →Consumers willingness to switch to CNG increases as state of the economy deteriorates and disposable incomes decrease.

  11. Development of Micro-Pattern Gas Detectors for the Upgrade of the Muon System of the CMS experiment at the Large Hadron Collider

    CERN Document Server

    Bouhali, Othmane

    2017-01-01

    After the discovery of the long awaited Higgs boson in 2012, the Large hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) and its two general purpose experiments (ATLAS and CMS) are preparing to break new grounds in High Energy Physics (HEP). The international HEP collaboration has established a rigorous research program of exploring new physics at the high energy frontiers. The program includes substantial increase in the luminosity of the LHC putting detectors into a completely new and unprecedented harsh environment. In order to maintain their excellent performance, an upgrade of the existing detectors is mandatory. In this work we will describe ongoing efforts for the upgrade of the CMS muon detection system, in particular the addition of detection layers based on the Gas Electron Multiplier (GEM) technology. We will summarize the past 5-year R\\ and D program and the future installation and operation plans.

  12. Pulling Results Out of Thin Air: Four Years of Ozone and Greenhouse Gas Measurements by the Alpha Jet Atmospheric Experiment (AJAX)

    Science.gov (United States)

    Yates, Emma

    2015-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) has been measuring atmospheric ozone, carbon dioxide, methane and meteorological parameters from near the surface to 8000 m since January 2011. The main goals are to study photochemical ozone production and the impacts of extreme events on western US air quality, provide data to support satellite observations and aid in the quantification of emission sources e.g. wildfires, urban outflow, diary and oil and gas. The aircraft is based at Moffett Field and flies multiple times a month to sample vertical profiles at selected sites in California and Nevada, providing long-term data records at these sites. AJAX is also uniquely positioned to launch with short notice sampling flights in rapid response to extreme events e.g. the 2013 Yosemite Rim fire. This talk will focus on the impacts of vertical transport on surface air quality, and investigation of emission sources from diaries and wildfires.

  13. Plenum of the All-Union Committee on the Study of Rheumatism and Diseases of the Joints at the Presidium of the Academy of Medical Sciences USSR - USSR

    National Research Council Canada - National Science Library

    Shcherbatenko, S

    1960-01-01

    .... The report on the prophylaxis of rheumatism was submitted by Active Member of the Acad. Med. Sci. USSR, Prof. A. I. Nesterov (Moscow). Experience shows that the streptococcus plays the principal role in the development of rheumatism...

  14. The challenge of multi-parameter hydrochemical, gas-physical, and isotopic analyses of in-situ clay pore water and samples from in-situ clay experiments

    International Nuclear Information System (INIS)

    Eichinger, L.; Lorenz, G.D.; Eichinger, F.; Wechner, S.; Voropaev, A.

    2012-01-01

    Document available in extended abstract form only. Within the research framework of natural clay rocks used as barriers for radioactive waste confinement comprehensive analyses are mandatory to determine the chemical and isotopic composition of natural pore water and therein dissolved gases as well as samples from distinct in-situ and lab experiments. Based on the natural conditions pore waters from low permeable argillaceous rocks can be sampled only in small amounts over long time periods. Often those samples are primarily influenced by processes of the exploration and exploitation such as the contamination by drilling fluid and disinfection fluid or cement-water interactions. Sophisticated equipment for circulation experiments allows the sampling of gas and water in the original state in steel and peek cells. The challenge though is to optimise the lab equipment and measurement techniques in a way that the physical-chemical conditions of the water can be analysed in the original state. The development of special micro measuring cells enables the analyses of physical parameters like redox potential under very slow through-flow conditions. Additional analyses can follow subsequently without wasting any drop of the precious pore water. The gas composition is measured in equilibrated gas phases above water phases after emptying a defined volume by inert gas or through manual pressure. The analytical challenge is to obtain an extensive set of parameters which is considered representative for the in-situ conditions using only a few millilitres of water. The parameter analysis includes the determination of the composition of the water, the isotopic compositions of the water and the dissolved constituents as well as their gas concentrations and isotopic signatures. So far the smallest sample volume needed for an analysis of a full set of parameters including the gas composition was 9 ml of water. Obviously, the analysis requires a highly sophisticated infrastructure and

  15. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  16. Gas gun experiments and numerical simulations on the HMX-based explosive PBX 9501 in the overdriven 30 to 120 GPa pressure regime

    Science.gov (United States)

    Pittman, E. R.; Gustavsen, R. L.; Hagelberg, C. R.; Schmidt, J. H.

    2017-06-01

    The focus of this set of experiments is the development of data on the Hugoniot for the overdriven products equation of state (EOS) of PBX 9501 (95 weight % HMX, 5 weight % plastic binder) and to extend data from which current computational EOS models draw. This series of shots was conducted using the two-stage gas-guns at Los Alamos and aimed to gather data in the 30 to 120 GPa pressure regime. Experiments were simulated using FLAG, a Langrangian multiphysics code, using a one-dimensional setup which employs the Wescott Stewart Davis (WSD) reactive burn model. Prior to this study, data did not extend above 90 GPa, so the new data allowed the model to be re-evaluated. A comparison of the simulations with the experimental data shows that the model fits well below 80 GPa. However, the model did not fall within the error bars of the data for higher pressures. This is an indication that the PBX 9501 overdriven EOS products model could be modified to better match the data.

  17. Greenhouse (III): Gas-Exchange and Seed-to-Seed Experiments on the Russian Space Station MIR and Earth-grown, Ethylene-Treated Wheat Plants

    Science.gov (United States)

    Campbell, William F.; Bingham, Gail; Carman, John; Bubenheim, David; Levinskikh, Margarita; Sytchev, Vladimir N.; Podolsky, Igor B.; Chernova, Lola; Nefodova, Yelena

    2001-01-01

    The Mir Space Station provided an outstanding opportunity to study long-term plant responses when exposed to a microgravity environment. Furthermore, if plants can be grown to maturity in a microgravity environment, they might be used in future bioregenerative life-support systems (BLSS). The primary objective of the Greenhouse experiment onboard Mir was to grow Super Dwarf and Apogee wheat through complete life cycles in microgravity; i.e., from seed-to-seed-to-seed. Additional objectives were to study chemical, biochemical, and structural changes in plant tissues as well as photosynthesis, respiration, and transpiration (evaporation of water from plants). Another major objective was to evaluate the suitability clothe facilities on Mir for advanced research with plants. The Greenhouse experiment was conducted in the Russian/Bulgarian plant growth chamber, the Svet, to which the United States added instrumentation systems to monitor changes in CO2 and water vapor caused by the plants (with four infrared gas analyzers monitoring air entering and leaving two small plastic chambers). In addition, the US instrumentation also monitored O2; air, leaf (IR), cabin pressure; photon flux; and substrate temperature and substrate moisture (16 probes in the root module). Facility modifications were first performed during the summer of 1995 during Mir 19, which began after STS-72 left Mir. Plant development was monitored by daily observations and some photographs.

  18. A new user-friendly experiment visual database system application to the gas migration test (GMT) at the Grimsel test site

    International Nuclear Information System (INIS)

    Shimura, Tomoyuki; Asano, Hidekazu; Ando, Kenichi; Okuma, Fumiko; Yamamoto, Shuichi; Vomvoris, Stratis

    2007-01-01

    Available in abstract form only. Full text of publication follows: Long-term integrated field investigations combine information from different groups (laboratory, modeling, experimental) often working in different locations and on different time scales. The results of these different groups are evaluated and integrated for decision making during the experiment execution, but at the end of the experiment a huge database exists, which may be difficult to use at a later stage - for example, for further modeling, benchmarking etc. How can one preserve the information obtained and present it in a transparent and user-friendly manner? A new visual database system developed is presented and its application to the 'Gas Migration in-situ Test (GMT)' is described. The GMT project has been conducted to assess the gas migration (for example from TRU waste) through the engineered barrier system and the adjacent geosphere. The experiment was initiated in 1997 under the auspices of RWMC and with primary funding by the Japanese Ministry of Economy, Trade and Industry. The project consists of a large-scale in-situ test, laboratory tests and numerical modeling. The in-situ test has been performed at the Grimsel Test Site (GTS) in Switzerland operated by NAGRA (National cooperative for the disposal of radioactive waste, Switzerland). Laboratory tests have been performed in facilities in Japan, Germany, Spain and Switzerland. Finally, the modeling activities, performed within the modeling group, have included teams from the US, Spain, France, Japan, Germany and Switzerland with support from organizations BGR, ENRESA, ANDRA, and RWMC. More than 250 reports document the various data and analyses. The database developed uses a three layered framework. The first (or bottom) layer is the data storage which contains all reports, publications as well as the raw data; the second layer is a data flow diagram - from material data, generation of input data to the model and output to the end

  19. Structure and IR spectrum of phenylalanyl-glycyl-glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations.

    Science.gov (United States)

    Reha, D; Valdés, H; Vondrásek, J; Hobza, P; Abu-Riziq, Ali; Crews, Bridgit; de Vries, Mattanjah S

    2005-11-18

    We investigated the potential-energy surface (PES) of the phenylalanyl-glycyl-glycine tripeptide in the gas phase by means of IR/UV double-resonance spectroscopy, and quantum chemical and statistical thermodynamic calculations. Experimentally, we observed four conformational structures and we recorded their IR spectra in the spectral region of 3000-4000 cm(-1). Computationally, we investigated the PES by a combination of molecular dynamics/quenching procedures with high-level correlated ab initio calculations. We found that neither empirical potentials nor various DFT functionals provide satisfactory results. On the other hand, the approximative DFT method covering the dispersion energy yields a reliable set of the most stable structures, which we subsequently investigated with an accurate, correlated ab initio treatment. The global minimum contains three moderately strong intramolecular hydrogen bonds and is mainly stabilized by London dispersion forces between the phenyl ring, the carboxylic acid group, and various peptide bonds. A proper description of the last type of interaction requires accurate correlated ab initio calculations, including the complete basis set limit of the MP2 method and CCSD(T) correction terms. Since in our beam experiments the conformations are frozen by cooling from a higher temperature, it is necessary to localize the most stable structures on the free-energy surface rather than on the PES. We used two different procedures (rigid rotor/harmonic oscillator/ideal gas approximation based on ab initio characteristics and evaluation of relative populations from the molecular dynamic simulations using the AMBER potential) and both yield four structures, the global minimum and three local minima. These four structures were among the 15 most energetically stable structures obtained from accurate ab initio optimization. The calculated IR spectra for these four structures agree well with the experimental frequencies, which validates the

  20. Gas migration from oil and gas fields and associated hazards

    International Nuclear Information System (INIS)

    Gurevich, A.E.; Endres, B.L.; Robertson Jr, J.O.; Chilingar, G.V.

    1993-01-01

    The migration of gas from oil and gas formations to the surface is a problem that greatly affects those surface areas where human activity exists. Underground gas storage facilities and oil fields have demonstrated a long history of gas migration problems. Experience has shown that the migration of gas to the surface creates a serious potential risk of explosion, fires, noxious odors and potential emissions of carcinogenic chemicals. These risks must be seriously examined for all oil and gas operations located in urban areas. This paper presents the mechanics of gas migration, paths of migration and a review of a few of the risks that should be considered when operating a gas facility in an urban area. The gas can migrate in a continuous or discontinuous stream through porous, water-filled media to the surface. The primary force in this migration of gas is the difference between specific weights of gas and water

  1. Process systems of PHWR - Indian experience

    International Nuclear Information System (INIS)

    Ramandan, T.S.V.

    1991-01-01

    Three operational problems are discussed in this paper. The reactors in Madras Atomic Power Station (MAPS), India are Pressurised Heavy Water Reactors PHWR), similar to Douglas Point PGS. The moderator heavy water is pumped into the bottom half of the calandria (horizontal reactor vessel) through one inlet manifold plenum chamber and horizontal louvers which help to distribute the moderator evenly at a very low velocity. The outlet from the calandria is through a smaller manifold structure at a higher elevation. The moderator is held on the shell side of the calandria by means of helium gas pressure differential between top of calandria and dump tank located below. The primary coolant system consists of 306 coolant channels containing the fuel and steam generators (SGs) and pumps on either side of the reactor. Each SC consists of 11 Nos. inverted U tube vertical heat exchangers where heat is transferred from primary coolant heavy water to secondary light water to produce steam. (author)

  2. Determination of Physical Properties of Carbon Materials by Results of Ablative Experiments Con-ducted in the Jets of Gas Dynamic Units

    Directory of Open Access Journals (Sweden)

    V. V. Gorsky

    2015-01-01

    Full Text Available The process of hypersonic vehicles’ movement in the dense layers of the atmosphere is accompanied by the considerable combustion of heat shield, which effects on the aerodynamic, mass-inertial and centering characteristics of the product.For correct calculation of model's movement parameters it is necessary:* Using the theoretical and computation methods for determining ablative characteristics of heat-protective materials;* Taking into account all the basic physical and chemical processes, involved in their ablation, using the above mentioned methods;* Testing these techniques in the wide range of experimental data. This physic-mathematical model of carbon materials (CM aerothermochemical destruction is based on using the following:* Arrhenius equations to calculate carbon kinetic oxidation;* Langmuir-Knudsen formula to calculate the velocity of non-equilibrium carbon’s sublimation;* Carbon erosion law represented as a unique dependence of this process velocity on the gas pressure on the wall.Mathematical description of all major processes included in this formulation of the problem, contains a number of "free" parameters that can be determined only on the basis of comparison of theoretical and experimental data according to total ablation characteristics of these materials.This comparison was performed in the article applicable to the tests conditions of modern CM in the stream of electric arc plant and in combustion products of liquid-propellant rocket engines.As the result, the data of kinetic of carbon oxidation by atomic oxygen at sublimation mode of material ablation were obtained for the first time. Carbon erosion law under high pressure was established for the first time.The new approach to processing of ablation experiments is enunciated. Using this approach allows to turn this experiments for CM from comparative tests into the tests to determine ablation properties of thermal protection. Moreover, it enables us also to use the

  3. Gas-correlation lidar

    OpenAIRE

    Edner, H; Svanberg, Sune; Uneus, L; Wendt, W

    1984-01-01

    Basic principles for the extension of gas-correlation techniques to the lidar situation are discussed. Favorable signal-to-noise ratios and relaxed laser requirements characterize the technique. Preliminary experiments on atomic mercury are reported.

  4. Multi-scale analysis of gas cooled reactors through CFD and system codes

    International Nuclear Information System (INIS)

    Cioni, Olivier; Perdu, Fabien; Ducros, Frederic; Geffraye, Genevieve; Tauveron, Nicolas; Tenchine, Denis; Ruby, Alain; Saez, Manuel

    2006-01-01

    The aim of this paper is to define the space scales related to the thermalhydraulic phenomena in the case of a Gas Cooled Reactor (GCR), and to propose a coherent set of numerical descriptions adapted to each scale. These descriptions will have to allow, by coupling simulations on different scales, to perform parametric studies for the design, or very precise safety studies in specific zones of the reactor. After having identified the various scales, the various types of couplings will be listed. This document is limited primarily to the description of the vessel (core and plenums), even if other elements of the primary circuit can benefit from a multi-scales description (exchangers, decay heat removal system, for example). Lastly, a section is devoted to the first step of coupling with the CFD code Trio U and the system code CATHARE. The paper has the following structure: 1. Introduction; 2. The different scales; 2.1. The system scale (tens of meters); 2.2. The vessel scale (metres); 2.2.1. The plenums and the downcomer; 2.2.2. The core; 2.3. The subassembly scale (centimeters); 2.3.1. The subassembly; 2.3.2. The gaps between subassemblies; 2.4. The fuel element scale (centimeters); 2.5. The fuel ball scale (micrometers); 3. Coupling methods; 3.1. Two possible approaches of coupling; 3.1.1. Domain Decomposition Method without overlapping; 3.1.2. Domain Decomposition Method with overlapping; 4. First realizations; 4.1. The subassembly scale: Blocking of Helium channels in a HTGR; 4.1.1. Description of the study; 4.1.2. Main results; 4.1.3. Conclusion; 4.2. The plenum scale: Thermal fluctuations in the lower plenum of a HTGR; 4.2.1. Description of the study; 4.2.2. Example of results; 4.2.3. Conclusion; 4.3. Scale of the core; 4.3.1. Application to a pebble bed reactor; 4.4. Preliminary work of coupling between the system code CATHARE and the CFD code Trio U; 5. Conclusion. To summarize, this document underlines the various scales, relating to the thermalhydraulic

  5. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  6. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  7. Research on dynamics and experiments about auxiliary bearings for the helium circulator of the 10 MW high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Zhao, Yulan; Yang, Guojun; Liu, Xingnan; Shi, Zhengang; Zhao, Lei

    2016-01-01

    Highlights: • The research in this paper is based on the AMB helium circulator of HTR-10. • The dynamic rotor performance is analyzed by processing experimental data. • The mechanical bearing without lubrication can be applied in the HTR-10 system. - Abstract: The 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University. The auxiliary bearing is utilized in this system to meet particular requirements for the reactor. The main role of the auxiliary bearing is to constrain rotor displacements and also to support the rotor when the rotor drops down, which is caused by the active magnetic bearing (AMB) failure. The auxiliary bearing needs to endure huge impact, rapid angular acceleration and thermal shock. On the one hand, complex geometrical constructions and forces applied on the system bring difficulties and restrictions to establish an appropriate model to reveal the actual dynamic process. On the other hand, large volumes of data obtained from experiments show velocities and displacements of the rotor during the rotor drop process and then can indicate the actual dynamic interactions to a great extent. The research in this paper is based on the test rig of the AMB helium circulator of HTR-10. This paper aims to analyze the dynamic performance and contact forces of the rotor by processing experimental data. A measurement to estimate forces developed due to impacts of the rotor and the auxiliary bearings is presented. It is of great significance and provides certain foundation to elaborate the rotor drop process for the AMB helium circulator of HTR-10.

  8. Intercomparison of Stratospheric Aerosol and Gas Experiment (SAGE) with Umkehr[64] and Umkehr[92] ozone profiles and time series: 1979-1991

    Science.gov (United States)

    Newchurch, M. J.; Cunnold, D. M.; Cao, J.

    1998-12-01

    Analyzing coincident observations of ozone profiles at 15 Umkehr stations with Stratospheric Aerosol and Gas Experiment (SAGE) I and SAGE II measurements within 1000 km and 12 hours in low-aerosol conditions between 1979 and 1991, we find improved agreement between Umkehr and SAGE retrievals using the new (1992) Umkehr algorithm compared to the previous (1964) algorithm, but some significant differences remain. The column ozone amounts in layers 4 through 10 for both old Umkehr[64] (after adjustment for the scale change from the International Ozone Commission/World Meteorological Organization 1968 scale to the Bass and Paur [1985] scale) and new Umkehr[92] retrievals are approximately 5-6% lower than SAGE column amounts. The structure of the aerosol-corrected Umkehr[92] profiles compares much more favorably to SAGE than did the Umkehr[64] profiles in layers 4 to 7 (20-35 km), with considerable consistency in the vertical structure of differences across most sites. The layer-ozone differences, however, increase from zero in layer 4 to -15% (Umkehr[92] low) in layer 8. Belsk and Sapporo are the only 2 sites of the 15 analyzed here that exhibit somewhat dissimilar vertical structure in their differences versus SAGE. The Umkehr[92] a priori climatology contains less ozone in the lower layers (2-5) than does SAGE and somewhat more in the upper layers (7-9). However, these differences in a priori climatology do not significantly affect the broad altitude structure in the SAGE-Umkehr layer-mean ozone differences. On average, the Umkehr[92] profiles possess a correlation between 0.3 and 0.5 (higher at some stations) with the SAGE-measured ozone in individual layers 4 to 8. The time series of the Umkehr[92] and SAGE measurements typically exhibit similar trends except for discontinuous changes noted at Mauna Loa and Kagoshirna.

  9. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  10. First Results from Laser-Driven MagLIF Experiments on OMEGA: Time Evolution of Laser Gas Heating Using Soft X-Ray Diagnostics

    Science.gov (United States)

    Barnak, D. H.; Betti, R.; Chang, P.-Y.; Davies, J. R.

    2015-11-01

    Magnetized liner inertial fusion (MagLIF) is a promising inertial confinement fusion scheme comprised of three stages: axial magnetization, laser heating of the deuterium -tritium gas fill, and compression of the gas by the liner. To study the physics of MagLIF, a scaled-down version has been designed and implemented on the OMEGA-60 laser. This talk will focus primarily on the heating process of a MagLIF target using a 351-nm laser. A neon-doped deuterium gas capsule was heated using a 2.5-ns square pulse delivering 200 J of laser energy. Spectral analysis of the x-ray emission from the side and the laser entrance hole of the capsule is used to infer the time evolution of the gas temperature. The x-ray spectra for a grid of possible gas temperatures and densities are simulated using Spect3D atomic modeling software. The simulation results are then used to deconvolve the raw signals and obtain density and temperature estimations. A gas temperature lower bound of 100 eV at 1.3 ns after the start of the laser pulse can be inferred from these estimations. The estimations are then compared to 2-D hydrocode modeling. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  11. International Experience in Developing Low-Emission Combustors for Land-Based, Large Gas-Turbine Units: Mitsubishi Heavy Industries' Equipment

    Science.gov (United States)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.; Gutnik, M. N.; Ageev, A. V.

    2018-05-01

    This is the second paper in a series of publications summarizing the international experience in the development of low-emission combustors (LEC) for land-based, large (above 250 MW) gas-turbine units (GTU). The purpose of this series is to generalize and analyze the approaches used by various manufacturers in designing flowpaths for fuel and air in LECs, managing fuel combustion, and controlling the fuel flow. The efficiency of advanced GTUs can be as high as 43% (with an output of 350-500 MW) while the efficiency of 600-800 MW combined-cycle units with these GTUs can attain 63.5%. These high efficiencies require a compression ratio of 20-24 and a temperature as high as 1600°C at the combustor outlet. Accordingly, the temperature in the combustion zone also rises. All the requirements for the control of harmful emissions from these GTUs are met. All the manufacturers and designers of LECs for modern GTUs encounter similar problems, such as emissions control, combustion instability, and reliable cooling of hot path parts. Methods of their elimination are different and interesting from the standpoint of science and practice. One more essential requirement is that the efficiency and environmental performance indices must be maintained irrespective of the fuel composition or heating value and also in operation at part loads below 40% of rated. This paper deals with Mitsubishi Series M701 GTUs, F, G, or J class, which have gained a good reputation in the power equipment market. A design of a burner for LECs and a control method providing stable low-emission fuel combustion are presented. The advantages and disadvantages of the use of air bypass valves installed in each liner to maintain a nearly constant air to fuel ratio within a wide range of GTU loads are described. Methods for controlling low- and high-frequency combustion instabilities are outlined. Upgrading of the cooling system for the wall of a liner and a transition piece is of great interest. Change over

  12. Leak locating method using an ultra-snuffler test gas process for the fusion experiment Wendelstein 7-X (W7-X); Ortung einer Leckage mit dem Ultra-Schnueffler-Testgasverfahren fuer das Fusionsexperiment Wendelstein 7-X (W7-X)

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Robert

    2014-11-01

    The fusion experiment Wendelstein 7-X in Greifswald is the largest stellarator experiment worldwide. In order to exclude the leakage of the surrounding vacuum of the magnetic cage the helium-tightness has to be ensured. Besides the conventional demonstration of helium-tightness of all components according DIN EN 1779 the additional demonstration of tightness wars performed using the leak detection method developed at the Max-Planck-Institute for plasma physics, the so-called ultra-snuffler test gas method (UST). With improved sensitivity the ISR method allows to localize a leakage of 10{sup -6} mbar l/s.

  13. Gas gangrene

    Science.gov (United States)

    Tissue infection - Clostridial; Gangrene - gas; Myonecrosis; Clostridial infection of tissues; Necrotizing soft tissue infection ... Gas gangrene is most often caused by bacteria called Clostridium perfringens. It also can be caused by ...

  14. Gas separating

    Science.gov (United States)

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  15. An improved model of fission gas atom transport in irradiated uranium dioxide

    Science.gov (United States)

    Shea, J. H.

    2018-04-01

    The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.

  16. Influence of soil organic C content on the greenhouse gas emission potential after application of biogas residues or cattle slurry - Results from a pot experiment

    Science.gov (United States)

    Heintze, Gawan

    2017-04-01

    Influence of soil organic C content on the greenhouse gas emission potential after application of biogas residues or cattle slurry - Results from a pot experiment Gawan Heintze1,2, Tim Eickenscheidt1, Urs Schmidthalter2 and Matthias Drösler1 1University of Applied Sciences Weihenstephan-Triesdorf, Chair of Vegetation Ecology, Weihenstephaner Berg 4, 85354 Freising, Germany 2Technische Universität München, Chair of Plant Nutrition, Emil-Ramann-Str. 2, 85354 Freising, Germany The European Union Renewable Energy Directive, which sets a binding target of a final energy consumption of 20% from renewable sources by 2020, has markedly promoted the increase of biogas plants, particularly in Germany. As a consequence, a large amount of biogas residue remains as a by-product of the fermentative process. These residues are now widely used instead of mineral fertilizers or animal slurries to maintain soil fertility and productivity. However, to date, the effect of the application of biogas residue on greenhouse gas (GHG) emission, compared to that of other organic fertilizers, is contradictory in literature, not having been completely understood. It is often stated that GHG fluxes are closely related to the quality of the raw material, particularly the type of soil to which the digestates are applied. This study addresses the questions (a) to what extent are the applications of biogas digestate and cattle slurry different in terms of their GHG emission (CO2, CH4 and N2O) potential, and (b) how do different soil organic carbon contents (SOCs) influence the rate of GHG exchange. We hypothesize that, i) cattle slurry application enhances the CO2 and N2O fluxes compared to the biogas digestate due to the overall higher C and N input, and ii) that with increasing SOC and N content, higher emissions of CO2 and N2O can be expected. The study was conducted as a pot experiment. Biogas digestate and cattle slurry were applied to and incorporated into three different soil types with

  17. Ruslands Gas

    OpenAIRE

    Elkjær, Jonas Bondegaard

    2008-01-01

    This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to obtain some political power. Russia owns 32,1 % of the world gas reserves, and The European Union is getting 50 % of its gas import from Russia. I will use John Mearsheimer’s theory ”The Tragedy of Great Power Politics” to explain how Russia can use its big reserves of gas on The European Union to get political influence. This paper is about Ru...

  18. Ruslands Gas

    OpenAIRE

    Elkjær, Jonas Bondegaard

    2008-01-01

    This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to obtain some political power. Russia owns 32,1 % of the world gas reserves, and The European Union is getting 50 % of its gas import from Russia. I will use John Mearsheimer’s theory ”The Tragedy of Great Power Politics” to explain how Russia can use its big reserves of gas on The European Union to get political influence.

  19. Time series analysis of pressure fluctuation in gas-solid fluidized beds

    Directory of Open Access Journals (Sweden)

    C. Alberto S. Felipe

    2004-09-01

    Full Text Available The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.

  20. Harnessing gas

    International Nuclear Information System (INIS)

    1998-01-01

    Nigeria produces almost two million barrels of oil a day from its oil fields in the Niger Delta area. Most of the oil comes from reservoirs containing gas, which is produced with the oil. This associated gas is separated from the oil at flow stations and more than 95 per cent of it is flared-currently a total of some two billion standard cubic feet per day (scf/d), which is estimated to be about a quarter of the gas the world flares and vents. The energy available from Nigeria's flared gas is prodigious, equivalent to one quarter of France's gas requirements. The company recognises that flaring wastes a valuable resource and is environmentally damaging. It aims to stop necessary flaring as soon as possible through a series of projects to harness or conserve this gas. Several gas gathering and conservation projects are already underway in response to emerging markets while other plans await new markets. The company is committed to reduce gas flaring as soon as is feasible to the minimum needed to maintain safe operations. But why are solutions being found only now? why has Nigeria been flaring gas for so long? These question lie at the crux of the debate about Nigeria and gas flaring and the answers, which continue to have a major impact on associated gas development today, are rooted in history, economics and geography

  1. Beyond the gas bubble

    International Nuclear Information System (INIS)

    Hilt, R.H.

    1990-01-01

    The deliverability issue currently being discussed within the natural gas industry involves both near-term and long-term questions. In the near-term, over the next two or three years, it is probable that the natural gas industry will need to mobilize for much greater levels of investment than have been the experience over the past few years. In the longer-term, it is expected that new opportunities for gas will arise as the nation seeks to meet increasing energy requirements within new environmental constraints. Methane for emissions control, CNG vehicles, expanded gas-fired electricity generation, and increased efficiency of traditional energy services are just a few examples. The issues in the longer-term center on the ability of the gas industry to meet increasing supply requirements reliably and at cost-competitive prices for these markets. This paper begins by reviewing the historical situation of gas deliverability that is the capability of the gas producing and transportation portions of the industry. The delivery system's ability to handle shifts in the centers of consumption and production is discussed, with an emphasis on regional problems of gas deliverability and potential bottlenecks. On the production side, the paper reviews the capability and the required investment necessary to handle an orderly transition to a stable supply and demand balance once the elusive bubble had finally disappeared

  2. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements : the InGOS inter-comparison field experiment

    NARCIS (Netherlands)

    Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; Van Den Bulk, W. C M; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.

    2014-01-01

    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying

  3. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment

    NARCIS (Netherlands)

    Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; Van Den Bulk, W. C. M.; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.

    2014-01-01

    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimize the effect of varying

  4. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment

    NARCIS (Netherlands)

    Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F.C.; Bulk, van de W.C.M.; Elbers, J.A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A.T.; Mammarella, I.

    2014-01-01

    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying

  5. Pulsed X-ray radiography of a gas jet target for laser-matter interaction experiments with the use of a CCD detector

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; MikoIajczyk, J.; Szczurek, A.; Szczurek, M.; Foeldes, I.B.; Toth, Zs.

    2005-01-01

    Characterization of gas jet targets has been carried out using pulsed X-ray radiography. A laser-plasma X-ray source was applied for backlighting of the targets to obtain X-ray shadowgraphs registered with a CCD detector. From the shadowgraphs, characteristics of the targets were determined

  6. Neutron Spectrum Measured by Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    Czech Academy of Sciences Publication Activity Database

    Cikhardt, J.; Klír, D.; Řezáč, K.; Shishlov, A. V.; Cherdizov, R. K.; Cikhardtová, B.; Dudkin, G. N.; Fursov, F. I.; Kokshenev, V. A.; Kravařík, J.; Kubeš, P.; Kurmaev, N. E.; Labetsky, A. Yu.; Padalko, V. N.; Ratakhin, N. A.; Šíla, O.; Turek, Karel; Varlachev, V. A.

    2017-01-01

    Roč. 45, č. 12 (2017), s. 3209-3217 ISSN 0093-3813 Institutional support: RVO:61389005 Keywords : neutron detectors * neutron spectroscopy * plasma pinch Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.052, year: 2016

  7. The radon gas at the context of legislation on the quality of internal air in buildings - the Portuguese experience; O gas radao no contexto da legislacao sobre a qualidade do ar interior em edificios - a experiencia portuguesa

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Paulo G.A.N.; Pereira, Alcides J.S.C.; Neves, Luis J.P.F., E-mail: ppinto@dct.uc.p, E-mail: apereira@dct.uc.p, E-mail: luisneves@dct.uc.p [Universidade de Coimbra (Portugal). Dept. de Ciencias da Terra. Instituto do Mar

    2011-10-26

    Radon gas has been recognized as an important environmental risk factor, especially when found in high concentrations inside buildings, and is currently classified by the World Health Organization as a carcinogen type 1. In this context, there is legislation in Portugal since 2006 that sets limits to its concentration in indoor air. The aim of this work was to synthesize the existing legislation with focus on the sampling and analysis. Some statistical data about the measurements obtained in the Natural Radioactivity Laboratory, of the Department of Earth Sciences, of the University of Coimbra are presented, and discussed in the context of the National Energy Certification of Buildings System

  8. Study of micro-strip gas ionisation chambers substrates for CMS experiment at LHC; Etude de substrats pour chambres gazeuses a micropistes dans le cadre de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A.

    1996-06-14

    High luminosity, expected interaction and dose rates of the future LHC collider require the development of micro-strips gas chambers. In addition to optimization of this new detector, this work is concerned with understanding of gain loss phenomena. Influence of the gas substrate is carefully analysed, as well as theoretical concepts concerning glasses and their behaviour under polarization and irradiation, and the consequence on detection operations.Electron spin resonance is used to study, in standard glass, creation of radiation induced defects which may be charged. (D.L.). 14 refs.

  9. Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels

    International Nuclear Information System (INIS)

    Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.

    1995-01-01

    The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant

  10. GAS BEARING

    Science.gov (United States)

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  11. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    CERN Document Server

    Menk, R H; Besch, H J; Walenta, Albert H; Amenitsch, H; Bernstorff, S

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30000 and more) provides stable operation yielding a huge dynamic range of about 10 sup 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  12. Requirements for gas quality and gas appliances

    NARCIS (Netherlands)

    Levinsky, Howard; Gersen, Sander; Kiewiet, Bert

    2015-01-01

    Introduction The gas transmission network in the Netherlands transports two different qualities of gas, low-calorific gas known as G-gas or L-gas and, high calorific gas (H-gas). These two gas qualities are transported in separate networks, and are connected by means of five blending and conversion

  13. TRIO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Clemmer, R.G.; Finn, P.A.; Malecha, R.F.; Misra, B.; Billone, M.C.; Bowers, D.L.; Fischer, A.K.; Greenwood, L.R.; Mattas, R.F.; Tam, S.W.

    1984-09-01

    The TRIO experiment is a test of in-situ tritium recovery and heat transfer performance of a miniaturized solid breeder blanket assembly. The assembly (capsule) was monitored for temperature and neutron flux profiles during irradiation and a sweep gas flowed through the capsule to an anaytical train wherein the amounts of tritium in its various chemical forms were determined. The capsule was designed to operate at different temperatures and sweep gas conditions. At the end of the experiment the amount of tritium retained in the solid was at a concentration of less than 0.1 wppM. More than 99.9% of tritium generated during the experiment was successfully recovered. The results of the experiment showed that the tritium inventories at the beginning and at the end of the experiment follow a relationship which appears to be characteristic of intragranular diffusion.

  14. Development of the front-end board of a Xenon gas Time Projection Chamber at the AXEL neutrinoless double beta decay search experiment

    Science.gov (United States)

    Tanaka, Shunsuke; AXEL Collaboration

    2017-09-01

    AXEL is a project to search for 0νββ using a High pressure Xenon gas TPC. AXEL uses SiPM’s to measure the energies and the tracks of 0νββ events. About 50,000 SiPM’s are required for final 0νββ searching version, so developing Front-End Boards (FEB) are necessary. We develop FEB that has high energy resolution and wide dynamic range.

  15. Gas separating

    Science.gov (United States)

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  16. Low-foot rugby hohlraum experiments on the NIF: Wall-gas mix and a connection with missing x-ray drive energy?

    Science.gov (United States)

    Amendt, Peter; Ross, J. Steven; Schneider, Marilyn; Jones, Oggie; Milovich, Jose; Moody, John

    2014-10-01

    Rugby-shaped hohlraums on the NIF have shown strong symmetry anomalies when simulated with the high-flux model. The wall-gas interface is Rayleigh-Taylor unstable and may lead to the formation of a late-time mix layer that impedes inner- cone propagation, resulting in a drive asymmetry on the capsule. Due to the rugby curvature near the laser entrance hole, the effect of mix may be more pronounced than in cylinders. At the same time a persistent pattern of 15--25% missing energy has been inferred in gas-filled hohlraums (ρ >= 0 . 96 mg/cc). A possible physical connection between formation of a mix layer and the plasma adiabatic lapse rate, where a temperature-gradient reversal is predicted to occur, is explored. Such a profile reversal, in turn, hinders electron conduction to the dense (ρ > 0 . 2 g/cc) Au region responsible for ~900 eV drive x-ray emission, leading to a hotter coronal plasma and reduced hohlraum efficiency. Remedial measures for recovering the loss in hohlraum efficiency through the use of higher-Z gas fills are explored. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    Science.gov (United States)

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  18. Operating Room Environment Control. Part A: a Valve Cannister System for Anesthetic Gas Adsorption. Part B: a State-of-the-art Survey of Laminar Flow Operating Rooms. Part C: Three Laminar Flow Experiments

    Science.gov (United States)

    Meyer, J. S.; Kosovich, J.

    1973-01-01

    An anesthetic gas flow pop-off valve canister is described that is airtight and permits the patient to breath freely. Once its release mechanism is activated, the exhaust gases are collected at a hose adapter and passed through activated coal for adsorption. A survey of laminar air flow clean rooms is presented and the installation of laminar cross flow air systems in operating rooms is recommended. Laminar flow ventilation experiments determine drying period evaporation rates for chicken intestines, sponges, and sections of pig stomach.

  19. Landfill gas

    International Nuclear Information System (INIS)

    Hartnell, Gaynor

    2000-01-01

    Following the UK Government's initiative for stimulating renewable energy through the Non-Fossil Fuel Obligation (NFFO), the UK landfill gas industry has more than trebled in size in just 4 years. As a result, UK companies are now in a strong position to offer their skills and services overseas. Ireland, Greece and Spain also resort heavily to disposal to landfill. Particularly rapid growth of the landfill gas market is expected in the OECD-Pacific and NAFTA areas. The article explains that landfill gas is a methane-rich mixture produced by anaerobic decomposition of organic wastes in landfills: under optimum conditions, up to 500 cubic meters of gas can be obtained from 1 tonne of biodegradable waste. Data on the number and capacity of sites in the UK are given. The Landfill Gas Association runs courses to counteract the skills shortage in the UK, and tailored courses for overseas visitors are planned

  20. Microstrip gas detectors development for the CMS tracker and branching fractions measurement of hadronic B decays with the BaBar experiment

    International Nuclear Information System (INIS)

    Zghiche, A.

    2007-01-01

    The Compact Muon Solenoid (CMS) is one of the two detectors, designed for the search of the Higgs boson at the Large Hadron Collider (LHC), to operate late 2007 at CERN. Micro Strip Gas Counters (MSGC) have been extensively studied to qualify as part of the CMS tracker. When exposed to highly ionizing particles and to high rates of incident particles, MSGCs have shown a good behavior allowing them to cope with the LHC environment. Similar micro pattern gaseous detectors such as Gas Electron Multiplier (GEM) and Micro Mesh gas detectors (MicroMegas) are developed to be used in high energy physics. BaBar, the detector for the Slac PEP-II asymmetric e + e - B Factory operating at the Y(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. First observation of CP violation has been realized in 2001. Since then an impressive amount of B decays measurements has been performed. Among those, we present here the branching fraction measurements of charged and neutral B decays to Dπ - , D * π - , and D ** π - with a missing mass method, based on a sample of 231 million Y(4S) → BB-bar pairs. In order to do this, one of the B mesons is fully reconstructed and the 'recoil' one decays into a reconstructed charged pion and a companion charmed meson identified by its recoil mass, inferred by kinematics. The same sample is used to reconstruct charmed mesons (D, Ds) and baryons (Λ c ) in the 'recoil side' allowing the measurement of the charm number in the B decays. (author)

  1. Radon mitigation experience in difficult-to-mitigate schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.

    1990-01-01

    Initial radon mitigation experience in schools has shown sub-slab depressurization (SSD) to be generally effective in reducing elevated levels of radon in schools that have a continuous layer of clean, coarse aggregate underneath the slab. However, mitigation experience is limited in schools without sub-slab aggregate and in schools with characteristics such as return-air ductwork underneath the slab or unducted return-air plenums in the drop ceiling that are open to the sub-slab area (via open tops of block walls). Mitigation of schools with utility tunnels and of schools constructed over crawl spaces is also limited. Three Maryland schools exhibiting some of the above characteristics are being researched to help understand the mechanisms that control radon entry and mitigation in schools where standard SSD systems are not effective. This paper discusses specific characteristics of potentially difficult-to-mitigate schools and, where applicable, details examples from the three Maryland schools

  2. On natural gas pricing reform in China

    OpenAIRE

    Hu, Aolin; Dong, Qing

    2015-01-01

    Since April 1, 2015, for those non-residential gas users, the stock gas and incremental gas prices have been unified, and direct-supply gas prices have been released. This means that natural gas pricing reform has entered a new stage of development in China. In view of this, we first summarized and analyzed the achievements, status quo and existing problems in natural gas pricing reform in recent years in China. Then, we made an overview on the global natural gas pricing and marketing experie...

  3. An Integrated and Multivariate Model along with Designing Experiments Approach for Assessment of Micro- and Macro- Ergonomic Factors: The Case of a Gas Refinery.

    Science.gov (United States)

    Azadeh, A; Mohammadfam, I; Sadjadi, M; Hamidi, Y; Kianfar, A

    2008-12-28

    The objectives of this paper are three folds. First, an integrated framework for designing and development of the integrated health, safety and environment (HSE) model is presented. Second, it is implemented and tested for a large gas refinery in Iran. Third, it is shown whether the total ergonomics model is superior to the conventional ergonomics approach. This study is among the first to examine total ergonomics components in a manufacturing system. This study was conducted in Sarkhoon & Qeshm Gas refinery- Iran in 2006. To achieve the above objectives, an integrated approach based on total ergonomics factors was developed. Second, it is applied to the refinery and the advantages of total ergonomics approach are discussed. Third, the impacts of total ergonomics factors on local factors are examined through non-parametric statistical analysis. It was shown that total ergonomics model is much more beneficial than conventional approach. It should be noted that the traditional ergonomics methodology is not capable of locating the findings of total ergonomics model. The distinguished aspect of this study is the employment of a total system approach based on integration of the conventional ergonomics factors with HSE factors.

  4. Asian gas

    International Nuclear Information System (INIS)

    Masuda, T.

    1990-01-01

    This paper reports on natural gas which now appears ready to take a leading role on the world energy stage. Demand for natural gas, and specifically LNG, will be strong throughout the world, particularly in Asia. Indonesia and Malaysia will become much more dependent on natural gas in the Asian market. In Thailand, where remarkable economic growth has been fueled by imported oil and domestically produced natural gas, LNG may soon have to be imported from neighboring countries. The author sees Thailand's imports of natural gas increasing from 1.5 to 4.5 million tons annually. Similarly, Korea's imports of LNG will rise from 2 to 8 million tons between 1987 and 2000. In Japan, energy demand is expected to increase at an even faster rate in the 1990s. Given the opposition to nuclear power generation and growing concern about the greenhouse effect, it is likely that LNG will satisfy a major portion of Japan's increasing demand for energy. Japanese gas companies are studying the possibility of establishing a national pipeline network to move gas beyond metropolitan areas

  5. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  6. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  7. The dynamic characteristics of HTGR (High Temperature Gas Cooled Reactor) system, (2)

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Ohta, Masao; Kawasaki, Hidenori

    1979-01-01

    The dynamic characteristics of a HTGR plant, which has two cooling loops, was investigated. The analytical model consists of the core with fuel sleeves, coolant channels and blocks, the upper and lower reflectors, the high and low temperature plenums, two double wall pipings, two intermediate heat exchangers and the secondary system. The key plant parameters for calculation were as follows: the core outlet gas temperature 1000 deg C, the reactor thermal output 50 MW, the flow rate of primary coolant gas 7.96 kg/sec-loop and the pressure of primary coolant gas 40 kg/cm 2 at the rated operating condition. The calculating parameters were fixed as follows: the time interval for core characteristic analysis 0.1 sec, the time interval for thermal characteristic analysis 5.0 sec, the number of division of fuel channels 130, and the number of division of an intermediate heat exchanger 200. The assumptions for making the model were evaluated especially for the power distribution in the core and the heat transmission coefficients in the core, the double wall piping and the intermediate heat exchangers. Concerning the analytical results, the self-control to the outer disturbance of reactivity and the plant dynamic behavior due to the change of flow rate of primary and secondary coolants, and the change of gas temperature of secondary coolant at the inlet of intermediate heat exchangers, are presented. (Nakai, Y.)

  8. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  9. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment

    Science.gov (United States)

    Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; van den Bulk, W. C. M.; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.

    2014-06-01

    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m-2 s-1, provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m-2 (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc

  10. Financial methodology for Brazilian market of small producers of oil and natural gas, based on Canadian and North American experiences in reserves quantification, evaluation and certification; Metodologia de financeiamento para pequenos produtores do mercado brasileiro de petroleo e gas natural, baseado nas experiencias canadense e americana na quantificacao, valoracao e certificacao de reservas

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Enrico Brunno Zipoli de Sousa e [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Geologia; Coelho, Jose Mario [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Minas

    2008-07-01

    ANP (National Agency of Petroleum, Natural gas and Biofuels), through auctions of exploratory blocks in the subsequent years from the break of the monopoly of PETROBRAS with the Law 9.478 of 1997, had important role in the opening of the section and in the attainment of the self-sufficiency of petroleum. However the petroleum production in ripe and marginal fields were left off, since the initial interest in the first rounds was to attract the major companies. - International Oil Companies (IOC) - when ANP granted great blocks offshore. Ripe fields are defined as fields in phase of irreversible declination and marginal fields are also defined as economical concept, certain for business decision and external economical factors (price of the oil, etc.). Canada and USA, worldwide leaders in the market of petroleum and gas, possess politics that benefit and maintain the small companies protected of the competition of INOC's by assuring small companies finance through the guarantee of proved reserves of oil. This paper assemble Canadian and American experiences in regulation for small companies investments and compares it with Brazilian financing types, which is restricted due to the Brazilian finance agent's despite about oil and gas activity. (author)

  11. Gas Chromatography.

    Science.gov (United States)

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  12. Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer.

    Science.gov (United States)

    Yanaga, Akira; Hozumi, Naruto; Ohira, Shin-Ichi; Hasegawa, Asako; Toda, Kei

    2016-02-01

    Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (μGAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000 ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Underwater gas tornado

    Science.gov (United States)

    Byalko, Alexey V.

    2013-07-01

    We present the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Simple measurements show that the tornado forms a vortex of the Rankine type, i.e. the rising gas rotates as a solid body and the liquid rotates with a velocity decreasing hyperbolically with the radius. We obtain the dependence of the tornado radius a on the gas stream value j theoretically: a ∼ j2/5. Processing of a set of experiments yielded the value 0.36 for the exponent in this expression. We also report the initial stages of the theoretical study of this phenomenon.

  14. ATTREX-Aircraft_insitu_TraceGas_Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — This collection consists of the observational data from the Airborne Tropical TRopopause EXperiment (ATTREX) trace gas measurements from three field deployments in...

  15. Tomorrow, gas

    International Nuclear Information System (INIS)

    Icart, Laura; Jean, Pascale; Georget, Cyrille; Schmill, Rafael

    2017-01-01

    This document contains 12 articles notably addressing the importance of natural gas production and supplies in Europe. The themes of the articles are: the advantages of natural gas in the context of energy and environmental policies, energy diversification, energy supply in the local territories, etc.; the position of GrDF, one of the main French natural gas supplier; LPG (butane, propane), a solution which popularity grows in remote areas; the Gaya project (production of renewable gas from dry biomass); a panorama of gas supply routes in Europe; the situation of gas in Europe's energy supply and consumption; the promotion of LNG fuel for maritime and fluvial ships; why the small scale LNG could be the next revolution; presentation of the new 'Honfleur' ferry (using LNG fuel) that will cross the English Channel by 2019; carbon market and the role of ETS for the energy policy in Europe facing the climatic change challenge; presentation of the French 'Climate Plan' that aims to engage France into a carbon neutrality by 2050; presentation of the French policy against air pollution; economic growth, energy, climate: how to square this circle?

  16. Investigation on the removal of natural and synthetic estrogens using biofilms in continuous flow biofilm reactors and batch experiments analysed by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Pieper, Christina; Rotard, Wolfgang

    2011-01-01

    The degradation of the natural estrogen 17β-estradiol and the synthetic steroid hormone 17α-ethinylestradiol, two estrogens already detected in surface waters at low concentration levels, was investigated using continuous flow biofilm reactors and batch experiments. Biofilms in continuous flow experiments were created by natural organisms from river systems of the national park Unteres Odertal, Germany, whereas batch experiments were performed with isolated bacterial strains derived from biofilms. The analytical method, including solid phase extraction, silylation of analytes and measurement with GC/MS, was optimised for the target compounds 17β-estradiol, 17α-ethinylestradiol and the possible metabolites estrone and estriol. The performance characteristics of the analytical method, namely recovery, standard deviations, method detection limits (MDL) and method quantification limits (MQL), were evaluated for accurate interpretation of degradation experiments. Continuous flow biofilm reactors were operated with two different nutrient media under dosage of estradiol and ethinylestradiol. Both estrogens were rapidly degraded within several hours; the metabolite estrone (from estradiol as well as from ethinylestradiol) was detected in significant amounts and was further decomposed. In additional batch experiments using isolated bacterial strains from the natural biofilms to decompose estradiol and ethinylestradiol, different metabolisms of isolates were explored. Five of the 15 isolated bacterial strains tested degraded estradiol and ethinylestradiol with different degradation rates. The results suggest that biofilms from national park Unteres Odertal possess a high capability to aerobically decompose natural and also synthetic estrogens so that these microorganisms could provide enhanced removal of pollutants in municipal water treatment plants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Thermo-fluid-dynamic experiments with gas-cooled bundles of rough rods and their evaluation with the computer code SAGAPO

    International Nuclear Information System (INIS)

    Donne, M.D.; Martelli, A.; Rehme, K.

    1979-01-01

    Heat transfer experiments performed with two bundles of 12 and 19 electrically heated rough rods in a high pressure helium loop are described. The fundamentals of the computer code SAGAPO are given. SAGAPO calculates the friction and heat transfer coefficients in turbulent flow by integrating the logarithmic universal law of the wall for velocity and temperature in the various coolant channels confined by rough surfaces. The code accounts for turbulent mixing and cross flow among the channels, for spacer effects on wall temperatures and pressure drop, for fin efficiency effects due to the roughness ribs, and for inlet effects on wall temperatures in case of smooth rods. Also laminar flow can be calculated. The agreement between experiments and computer calculations is very good for turbulent flow. Two further effects, conduction in the rods in the circumferential direction and thermal radiation, have yet to be considered in the code. These two phenomena play an important role for low mass flows and high temperatures. (author)

  18. Electrically charged small soot particles in the exhaust of an aircraft gas-turbine engine combustor: comparison of model and experiment

    Science.gov (United States)

    Sorokin, A.; Arnold, F.

    The emission of electrically charged soot particles by an aircraft gas-turbine combustor is investigated using a theoretical model. Particular emphasis is placed on the influence of the fuel sulfur content (FSC). The model considers the production of primary "combustion" electrons and ions in the flame zone and their following interaction with molecular oxygen, sulfur-bearing molecules (e.g. O 2, SO 2, SO 3, etc.) and soot particles. The soot particle size distribution is approximated by two different populations of mono-dispersed large and small soot particles with diameters of 20-30 and 5-7 nm, respectively. The effect of thermal ionization of soot and its interaction with electrons and positive and negative ions is included in the model. The computed positive and negative chemiion (CI) concentrations at the combustor exit and relative fractions of small neutral and charged soot particles were found to be in satisfactory agreement with experimental data. The results show that the FSC indeed may influence the concentration of negative CI at low fuel flow into combustor. Importantly the simulation indicates a very efficient mutual interaction of electrons and ions with soot particles with a large effect on both ion and charged soot particle concentrations. This result may be interpreted as a possible indirect effect of FSC on the growth and size distribution of soot particles.

  19. Data acquisition and online control system for new gas-electron multiplier detectors in the endcap muon system of the CMS experiment

    CERN Document Server

    Ruiz Alvarez, Jose David

    2016-01-01

    A new data acquisition and on-line control system is being developed for gas-electron multiplier (GEM) detectors which will be installed in the forward region (1.6 \\( < \\eta < \\) 2.2) of the CMS muon spectrometer during the 2nd long shutdown of the LHC, planned for the period 2018-2019. A prototype system employs the TOTEM VFAT2 ASIC that will eventually be replaced with the VFAT3 ASIC, under development. The front-end ASIC communicates over printed circuit lines with an intermediate on-detector board called the opto-hybrid. Data, trigger, and control information is transmitted via optical fiber between the opto-hybrid and an off-detector readout system using micro-TCA technology. On-line software, implemented in the CMS XDAQ framework, includes applications for latency and HV scans, and system management. We report on the operational status of the prototype system that has been tested using cosmic ray muons and extracted high-energy particle beams. This work is preparatory for the operation of a prot...

  20. New gas electron-multiplier detectors for the endcap muon system of the CMS experiment at the high-luminosity LHC design and prototype performance

    CERN Document Server

    Gruchala, Marek Michal

    2016-01-01

    The high luminosity LHC will require new detectors in the CMS endcap muon system to suppress the trigger rate of background events, to maintain high trigger efficiency for low transverse momentum muons, to enhance the robustness of muon detection in the high-flux environment of the endcap, and to extend the geometrical acceptance. We report on the design and recent progress towards implementing a new system of large-area, triple-foil gas electron-multiplier (GEM) detectors that will be installed in the first three of five muon detector stations in each endcap, the first station being closest to the interaction point. The first station will extend the geometric acceptance in pseudo-rapidity to eta lt 3.0 from the current limit of eta lt 2.4. The second and third stations will enhance the performance in the range 1.6 lt eta lt 2.4. We describe the design of the chambers and readout electronics and report on the performance of prototype systems in tests with cosmic ray muons, high-energy particlebeams, a...

  1. Evaluating the greenhouse gas emissions of a sewage system, which tools and which experiences?; Evaluer les emissions de gaz a effet de serre d'un systeme d'assainissement, quels outils et quelles experiences?

    Energy Technology Data Exchange (ETDEWEB)

    Maugendre, J.P. [Lyonnaise des Eaux, 75 - Paris (France); Arama, G. [Veolia Eau, 75 - Paris (France); Rousselot, O. [SIAAP-DRD, 92 - Colombes (France); Peu, P. [Cemagref, 35 - Rennes (France); Mouchel, J.M. [Paris-6 Univ., 75 (France); Doisne, P. [Ville de Lourdes, 65 (France)

    2007-07-01

    While sewage services are not the most polluting local public services in terms of greenhouse gases, their impact on climatic change will become more and more taken into consideration. More generally, this entry in the accounts will concern the overall environment compartments and not only the water and soils. This criterion will become a decision help element for the choice of new water and sludge treatment processes. The use of existing methods (life cycle analysis approach, carbon status) will probably be generalized to all collective sewage systems whatever their size. However, this supposes that the methodologies to be implemented will be accepted by everyone, which is not the case today, and that a more precise knowledge of the different factors at the origin of greenhouse gas emissions from sewage systems will be available. (J.S.)

  2. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    Energy Technology Data Exchange (ETDEWEB)

    Raussi, P.; Kainulainen, S. [Lappeenranta Univ. of Technology, Lappeenranta (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  3. On natural gas pricing reform in China

    Directory of Open Access Journals (Sweden)

    Aolin Hu

    2015-10-01

    Full Text Available Since April 1, 2015, for those non-residential gas users, the stock gas and incremental gas prices have been unified, and direct-supply gas prices have been released. This means that natural gas pricing reform has entered a new stage of development in China. In view of this, we first summarized and analyzed the achievements, status quo and existing problems in natural gas pricing reform in recent years in China. Then, we made an overview on the global natural gas pricing and marketing experiences and domestic situation in natural gas sector. On this basis, we presented the following proposals and implement approaches to ultimately achieving the market-oriented reform of natural gas pricing in China. First, the ex-factory prices for those residential gas users will be adjusted, which should be differentiated from those for the non-residential gas users. Second, the present natural gas pricing mechanism should be perfected with pipeline fees and gas storage fees being both added. Third, an integrated natural gas pricing system should be improved with differential prices implemented. Fourth, natural gas spot transaction should be promoted and energy measurement in gas metering and pricing should also be put into practice.

  4. Analysis of LOCA experiments with RELAP4J code

    International Nuclear Information System (INIS)

    Mochizuki, Yooji; Sobajima, Makoto; Suzuki, Mitsuhiro.

    1978-09-01

    The results of analysis with RELAP4J Code are presented for two typical experiments of cold leg break (Runs 413 and 312), in the ROSA-II (Rig of Safety Assessment II) test program. The objectives of analysis are to evaluate validity of the RELAP4J Code, to improve analytical models and to get a better understanding of experimental phenomena. The two tests were performed under actual reactor initial pressure and temperature, in the respective different LPCI locations. Typical factors influencing the pressure history were examined analytically. In conclusion, the predictions of macroscopic-hydraulic phenomena such as pressure transient in each location are good, and the predictions of microscopic-hydraulic phenomena such as steam-water slip velocity, multi-dimentional flow in plenums or core, quenching velocity, cooling of fuel rods by small coolant flow are not good. Experimental phenomena not clarified yet with test data are predicted with the analysis. (author)

  5. Experience in KINS on Best Estimate Calculation with Uncertainty Evaluation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Huh, Byung-Gil; Cheong, Ae-ju; Woo, Sweng-Woong

    2013-01-01

    In the present paper, experience of Korea Institute of Nuclear Safety (KINS) on Best Estimate (BE) calculation and uncertainty evaluation of large break loss-of-coolant accident (LB LOCA) of Korean Pressurized Water Reactor (PWR) with various type of Emergency Core Cooling System (ECCS) design is addressed. Specifically, the current status of BE code, BE calculations and uncertainty parameters and related approaches are discussed. And the specific problem such as how to recover the difficulty in treating the uncertainty related to the phenomena specific to ECCS design (e.g., upper plenum injection phenomena) is discussed. Based on the results and discussion, it is found that the present KINS-REM has been successfully developed and applied to the regulatory auditing calculations. Need of further study includes the improvement of reflood model of MARS code, uncertainty of blowdown quenching, and reconsideration of the unconcerned model and fuel conductivity degradation with burnup. (authors)

  6. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling

  7. Soil Greenhouse Gas Fluxes in a Pacific Northwest Douglas-Fir Forest: Results from a Soil Fertilization and Biochar Addition Experiment

    Science.gov (United States)

    Hawthorne, I.; Johnson, M. S.; Jassal, R. S.; Black, T. A.

    2013-12-01

    evacuated 12-mL vials and analyzed by gas chromatography. Chamber headspace GHG mixing ratios vs. time data were fit to linear and exponential models in R (Version 2.14.0) and fluxes were calculated. Results showed high variability in GHG fluxes over time in all treatments. Higher CO2 emissions were observed during early summer (119 μg CO2 m-2 s-1 in the control plots), decreasing with drought (19 μg CO2 m-2 s-1 in the control plots). CH4 uptake by soil increased during summer months from -0.004 μg CH4 m-2 s-1 to -0.089 μg CH4 m-2 s-1 in the control plots, in response to drying conditions in the upper soil profile. N2O was both consumed and emitted in all treatments, with fluxes ranging from -0.0009 to 0.0019 μg N2O m-2 s-1 in the control plots. Analysis of variance indicated that there were significant differences in GHG fluxes between treatments over time. We also investigated the potential effects of large volume headspace removal, and H2O vapour saturation leading to a dilution effect by using a closed-path infra-red gas analyzer with an inline humidity sensor.

  8. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Science.gov (United States)

    Koss, Abigail R.; Sekimoto, Kanako; Gilman, Jessica B.; Selimovic, Vanessa; Coggon, Matthew M.; Zarzana, Kyle J.; Yuan, Bin; Lerner, Brian M.; Brown, Steven S.; Jimenez, Jose L.; Krechmer, Jordan; Roberts, James M.; Warneke, Carsten; Yokelson, Robert J.; de Gouw, Joost

    2018-03-01

    Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I- CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  9. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2018-03-01

    Full Text Available Volatile and intermediate-volatility non-methane organic gases (NMOGs released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF. We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR, broadband cavity-enhanced spectroscopy (ACES, and iodide ion chemical ionization mass spectrometry (I− CIMS where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of  >  0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN, nitrous acid (HONO, and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  10. Gas calorimeter workshop: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Gas calorimeters combining functions of energy measurement and fine tracking have become more and more popular in the past few years. They help identify muons, gammas, electrons, and hadrons within dense tracks from transverse and longitudinal shower development. Fine segmentation capability using pads and strips on the cathodes have made gas-sampling calorimeters very attractive for colliding-beam detectors where a large multiplicity of particles are detected in a projected geometry. Linearity, energy resolution, shower position resolution, multishower resolution, and calibration questions were discussed in detail at the workshop. Ease of energy calibration by monitoring radioactive sources, good gain uniformity, and gain stability obtained were among the topics of the speakers. There was a discussion session on the operation mode of wire chambers. Gas calorimeters have been used successfully at CERN, Cornell, Fermilab, and SLAC for experiments. Some of the results from those large-scale devices were reported. Future usage of gas-sampling calorimeters for colliding-beam experiments at Fermilab and CERN were discussed. Wire chambers using extruded conductive plastic tubes have made construction easy of pads and strips which can conveniently read out induced signals from the cathode. The results of extensive studies on such devices were discussed. Separate entries were prepared for the data base for the 17 papers presented

  11. RELAP5 Analyses of OECD/NEA ROSA-2 Project Experiments on Intermediate-Break LOCAs at Hot Leg or Cold Leg

    Science.gov (United States)

    Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo

    Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.

  12. Cowdung gas

    Energy Technology Data Exchange (ETDEWEB)

    A basic guide for the design and construction of a small biogas plant is presented. The gas holder consists of a battery of seven used oil drums bound together with interconnected via plastic piping. Most other components, with the exception of metal valves and joints, are made of wood, stone or cement.

  13. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  14. Fixed target flammable gas upgrades

    International Nuclear Information System (INIS)

    Schmitt, R.; Squires, B.; Gasteyer, T.; Richardson, R.

    1996-12-01

    In the past, fixed target flammable gas systems were not supported in an organized fashion. The Research Division, Mechanical Support Department began to support these gas systems for the 1995 run. This technical memo describes the new approach being used to supply chamber gasses to fixed target experiments at Fermilab. It describes the engineering design features, system safety, system documentation and performance results. Gas mixtures provide the medium for electron detection in proportional and drift chambers. Usually a mixture of a noble gas and a polyatomic quenching gas is used. Sometimes a small amount of electronegative gas is added as well. The mixture required is a function of the specific chamber design, including working voltage, gain requirements, high rate capability, aging and others. For the 1995 fixed target run all the experiments requested once through gas systems. We obtained a summary of problems from the 1990 fixed target run and made a summary of the operations logbook entries from the 1991 run. These summaries primarily include problems involving flammable gas alarms, but also include incidents where Operations was involved or informed. Usually contamination issues were dealt with by the experimenters. The summaries are attached. We discussed past operational issues with the experimenters involved. There were numerous incidents of drift chamber failure where contaminated gas was suspect. However analyses of the gas at the time usually did not show any particular problems. This could have been because the analysis did not look for the troublesome component, the contaminant was concentrated in the gas over the liquid and vented before the sample was taken, or that contaminants were drawn into the chambers directly through leaks or sub-atmospheric pressures. After some study we were unable to determine specific causes of past contamination problems, although in argon-ethane systems the problems were due to the ethane only

  15. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J

    2007-12-15

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  16. Experiment data report for Semiscale Mod-1 Test S-05-2 (alternate ECC injection test)

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, E. M.; Collins, B. L.; Sackett, K. E.

    1977-02-01

    Recorded test data are presented for Test S-05-2 of the Semiscale Mod-1 alternate emergency core coolant (ECC) injection test series. This test is one of several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-2 was conducted from an initial cold leg fluid temperature of 545/sup 0/F and an initial pressure of 2263 psia. A simulated double-ended offset shear cold leg break was used to investigate core and system response to a depressurization and reflood transient with ECC injection at the intact loop pump suction and broken loop cold leg. A reduced lower plenum volume was used for this test to more accurately represent the lower plenum of a PWR, based on system volume scaling. System flow was set to achieve a core fluid temperature differential of 65/sup 0/F at a core power level of 1.44 MW. The flow resistance of the intact loop was based on core area scaling. An electrically heated core with a slightly peaked radial power profile was used in the pressure vessel to simulate the predicted surface heat flux of nuclear fuel rods during a loss-of-coolant accident.

  17. Test Specifications and the Design of the Wire Wrapped 37-Pin Fuel Assembly for Hydrodynamic Experiments

    International Nuclear Information System (INIS)

    Chang, S. K.; Euh, D. J.; Bae, H.; Lee, H. Y.; Choi, S. R.

    2013-01-01

    Most influencing parameters on uncertainties and sensitivities of the CFD analyses are the friction coefficient and the mixing coefficient. The friction coefficient is related to the flow distribution in reactor sub-channels. The mixing coefficient is defined with the cross flow between neighboring sub-channels. The eventual purpose of the thermal hydraulic design considering these parameters is to guarantee the fuel cladding integrity as the design limit parameter. At the moment, the experimental program is being undertaken to quantify these friction and mixing parameters which characterize the flow distribution in sub-channels, and the wire wrapped 37-pin rod assembly and its hexagonal test rig have been designed and fabricated. The quantified thermal hydraulic experimental data from this program are utilized primarily to estimate the accuracy of the safety analysis codes and their thermal hydraulic model. A wire wrapped 37 pin fuel assembly has been designed for the measurements of the flow distribution, where the measurements are utilized to quantify the friction coefficient and the mixing coefficient. The test rig of the wire wrapped 37 pin fuel assembly has been fabricated considering the geometric and flow dynamic similarities. It comprises four components i. e., the upper plenum, the fuel housing, the lower plenum, and the wire wrapped 37 pin fuel assembly. At further works, the quantified friction and mixing coefficients through the experiments are going to be utilized for insuring the reliability of the CFD analysis results

  18. Flammable gas project topical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D.

    1997-01-29

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  19. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    International Nuclear Information System (INIS)

    Amendt, Peter; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-01-01

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and –resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold–helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to

  20. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    Science.gov (United States)

    Amendt, Peter; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-11-01

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and -resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold-helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix